Strain Name:

B6.C3-Gli3Xt-J/J

Stock Number:

000026

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Type Congenic; Mutant Strain;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
Background Strain C57BL/6J
Donor Strain C3H/HeJ

Description
Mice heterozygous for the extra toes-J spontaneous mutation (Gli3Xt-J) have varying numbers of extra digits on preaxial side of feet. Homozygous mutant mice die in utero with multiple abnormalities. Excessively large pharyngeal arches and an open neural tube are evident at E9. Homologous to Grieg's cephalopoly-syndactyly, a rare multi-system syndrome in humans.

Control Information

  Control
   Untyped from the colony
   000664 C57BL/6J
 
  Considerations for Choosing Controls

Related Strains

Facebase: models
007664   129S-Efnb1tm1Sor/J
000646   A/J
000647   A/WySnJ
005709   B6.129-Skitm1Cco/J
002619   B6.129-Tgfb3tm1Doe/J
007453   B6.129P2(Cg)-Dhcr7tm1Gst/J
010525   B6.129S-Notch2tm3Grid/J
010616   B6.129S1-Jag1tm1Grid/J
010546   B6.129S1-Jag2tm1Grid/J
010620   B6.129S1-Notch2tm1Grid/J
009387   B6.129S1-Osr1tm1Jian/J
009386   B6.129S1-Osr2tm1Jian/J
010621   B6.129S1-Snai1tm2.1Grid/J
010617   B6.129S1-Snai2tm1Grid/J
003865   B6.129S2-Itgavtm1Hyn/J
003755   B6.129S4-Meox2tm1(cre)Sor/J
016902   B6.129S5-Irf6Gt(OST398253)Lex/J
003336   B6.129S7-Cdkn1ctm1Sje/J
012843   B6.129X1(Cg)-Slc32a1tm1.1Bgc/J
004275   B6.Cg-Fignfi/Frk
012844   B6.Cg-Gad1tm1.1Bgc/J
006382   B6;129-Casktm1Sud/J
002711   B6;129-Gabrb3tm1Geh/J
004293   B6;129-Shhtm2Amc/J
012603   B6;129-Tgfbr2tm1Karl/J
010618   B6;129S-Jag1tm2Grid/J
010686   B6;129S-Snai1tm2Grid/J
009389   B6;129S1-Bambitm1Jian/J
010619   B6;129S1-Lfngtm1Grid/J
010547   B6;129S1-Notch3tm1Grid/J
010544   B6;129S1-Notch4tm1Grid/J
010722   B6;129S1-Snai2tm2Grid/J
012463   B6;129S4-Foxd1tm1(GFP/cre)Amc/J
022358   B6;129S6-Rr23tm1Axvi/Mmjax
022359   B6;129S6-Rr24tm1Axvi/Mmjax
022360   B6;129S6-Rr25tm1Axvi/Mmjax
003277   B6;129S7-Acvr2atm1Zuk/J
002788   B6;129S7-Fsttm1Zuk/J
002990   B6;129S7-Inhbatm1Zuk/J
000523   B6By.Cg-Eh/J
000278   B6C3Fe a/a-Papss2bm Hps1ep Hps6ru/J
000515   B6CBACa Aw-J/A-SfnEr/J
001434   C3HeB/FeJ x STX/Le-Mc1rE-so Gli3Xt-J Zeb1Tw/J
000252   DC/LeJ
005057   FVB.129-Kcnj2tm1Swz/J
012655   FVB.A-Irf6clft1/BeiJ
013100   FVB.C-Prdm16csp1/J
017437   FVB/N-Ckap5TgTn(sb-cHS4,Tyr)2320F-1Ove/J
017438   FVB/N-MidnTg(Tyr)2261EOve/J
017609   FVB/N-Rr16Tn(sb-Tyr)1HCebOve/J
017598   FVB/N-Sdccag8Tn(sb-Tyr)2161B.CA1C2Ove/J
017608   FVB/N-Skor2Tn(sb-Tyr)1799B.CA7BOve/J
017436   FVB/N-Tapt1TgTn(sb-cHS4,Tyr)2508GOve/J
016870   FVB/NJ-Ap2b1Tg(Tyr)427Ove/EtevJ
017434   FVB;B6-Cramp1lTgTn(sb-rtTA,Tyr)2447AOve/J
017594   FVB;B6-Eya4TgTn(Prm1-sb10,sb-Tyr)1739AOve/J
017435   FVB;B6-SlmapTn(sb-rtTA)2426B.SB4Ove/J
003318   STOCK Shhtm1Amc/J
003102   STOCK Tgfb2tm1Doe/J
018624   STOCK Tgfb3tm2(Tgfb1)Vk/J
008469   STOCK Wnt9btm1.2Amc/J
View Facebase: models     (61 strains)

Strains carrying   Gli3Xt-J allele
001434   C3HeB/FeJ x STX/Le-Mc1rE-so Gli3Xt-J Zeb1Tw/J
001533   C3HeB/FeJ-Mc1rE-so Gli3Xt-J/J
View Strains carrying   Gli3Xt-J     (2 strains)

Strains carrying other alleles of Gli3
008873   STOCK Gli3tm1Alj/J
013124   STOCK Gt(ROSA)26Sortm3(Gli3)Amc/J
View Strains carrying other alleles of Gli3     (2 strains)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Model with phenotypic similarity to human disease where etiologies involve orthologs. Human genes are associated with this disease. Orthologs of those genes appear in the mouse genotype(s).
Greig Cephalopolysyndactyly Syndrome; GCPS
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Hypothalamic Hamartomas   (GLI3)
Pallister-Hall Syndrome; PHS   (GLI3)
Polydactyly, Postaxial, Type A1; PAPA1   (GLI3)
Polydactyly, Preaxial IV   (GLI3)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Gli3Xt-J/Gli3Xt-J

        B6.C3-Gli3Xt-J/J
  • mortality/aging
  • partial embryonic lethality during organogenesis
    • homozygotes seldom survive beyond E14.5 on this background   (MGI Ref ID J:42454)
  • endocrine/exocrine gland phenotype
  • abnormal mammary gland embryonic development
    • at E13.5, embryos lack mammary bud 3   (MGI Ref ID J:109476)
    • mammary line formation is impaired   (MGI Ref ID J:109476)
  • respiratory system phenotype
  • abnormal left lung morphology
    • reduced width but not length in left lobe   (MGI Ref ID J:42454)
  • abnormal right lung accessory lobe morphology
    • accessory lobe reduced in both width and length   (MGI Ref ID J:42454)
  • abnormal right lung caudal lobe morphology
    • reduced width but not length in right caudal lobe   (MGI Ref ID J:42454)
  • abnormal right lung middle lobe morphology
    • right medial lobe of lung sometimes varies in shape   (MGI Ref ID J:42454)
  • small lung
    • lungs small in all homozygotes from E11.5 onward   (MGI Ref ID J:42454)
    • decreased lung weight
      • about 35% less than weights of littermate controls   (MGI Ref ID J:42454)
  • embryogenesis phenotype
  • abnormal embryonic tissue morphology
    • stratum intermedium is absent in mutants at E11.5   (MGI Ref ID J:109476)
  • increased embryo size
    • consistently larger in size than control littermates   (MGI Ref ID J:42454)
  • homeostasis/metabolism phenotype
  • edema
    • spinal edema as early as E13.5 and in all homozygotes at E14.5   (MGI Ref ID J:42454)
  • growth/size/body phenotype
  • increased embryo size
    • consistently larger in size than control littermates   (MGI Ref ID J:42454)
  • craniofacial phenotype
  • abnormal cranial suture morphology
    • interfrontal suture is initially widened   (MGI Ref ID J:163175)
    • abnormal lambdoidal suture morphology
      • synostosis of the lambdoid sutures   (MGI Ref ID J:163175)
      • the sutural mesenchyme between the parietal and interparietal bones is thicker at E16.5, just before the occurrence of synostosis   (MGI Ref ID J:163175)
      • marker analysis indicates ectopic osteoblast differentiation in lambdoid sutures   (MGI Ref ID J:163175)
      • cell proliferation in the lambdoid sutures is increased at E16.5   (MGI Ref ID J:163175)
    • abnormal sagittal suture morphology
      • sagittal suture is initially widened   (MGI Ref ID J:163175)
  • abnormal neurocranium morphology
    • calvaria is domed shaped and rectangular with an acute angle between the frontal or nasal bones   (MGI Ref ID J:163175)
  • nervous system phenotype
  • abnormal forebrain morphology
    • interfrontal and sagittal sutures are initially widened resulting in an expanded forebrain   (MGI Ref ID J:163175)
  • skeleton phenotype
  • abnormal cranial suture morphology
    • interfrontal suture is initially widened   (MGI Ref ID J:163175)
    • abnormal lambdoidal suture morphology
      • synostosis of the lambdoid sutures   (MGI Ref ID J:163175)
      • the sutural mesenchyme between the parietal and interparietal bones is thicker at E16.5, just before the occurrence of synostosis   (MGI Ref ID J:163175)
      • marker analysis indicates ectopic osteoblast differentiation in lambdoid sutures   (MGI Ref ID J:163175)
      • cell proliferation in the lambdoid sutures is increased at E16.5   (MGI Ref ID J:163175)
    • abnormal sagittal suture morphology
      • sagittal suture is initially widened   (MGI Ref ID J:163175)
  • abnormal neurocranium morphology
    • calvaria is domed shaped and rectangular with an acute angle between the frontal or nasal bones   (MGI Ref ID J:163175)
  • premature suture closure
    • mutants exhibit bilateral premature fusion of the parietal and interparietal bones across the lambdoid sutures at E18.5; suture fuses between E16.5 and E18.5   (MGI Ref ID J:163175)
  • integument phenotype
  • abnormal epidermis stratum basale morphology
    • in E12.5 embryos, cells of the stratum germinativum are are cylindrical, slightly enlarged along the width of the mammary line and covered with periderm   (MGI Ref ID J:109476)
  • abnormal mammary gland embryonic development
    • at E13.5, embryos lack mammary bud 3   (MGI Ref ID J:109476)
    • mammary line formation is impaired   (MGI Ref ID J:109476)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Gli3Xt-J/Gli3+

        involves: C3H * CD-1
  • limbs/digits/tail phenotype
  • abnormal foot plate morphology
    • at day 12 of gestation, footpads are enlarged at the area destined to become digit 1   (MGI Ref ID J:4086)
  • polydactyly
    • display mild preaxial polydactyly in both fore- and hindlimbs   (MGI Ref ID J:38381)

Gli3Xt-J/Gli3+

        C3HeB/FeJ-Mc1rE-so Gli3Xt-J/J
  • limbs/digits/tail phenotype
  • polydactyly
    • duplication of digit 1 (thumb polydactyly) of the hindlimbs   (MGI Ref ID J:27442)

Gli3Xt-J/Gli3+

        involves: 129/Sv * C3H/HeJ * C57BL/6
  • limbs/digits/tail phenotype
  • polyphalangy
    • there is an extra phalange in the first digit   (MGI Ref ID J:121609)
  • skeleton phenotype
  • polyphalangy
    • there is an extra phalange in the first digit   (MGI Ref ID J:121609)

Gli3Xt-J/Gli3+

        involves: C3H/HeJ * C57BL/6J * C57BL/6NHsd
  • limbs/digits/tail phenotype
  • polydactyly
    • 12% with unilateral anterior polydactyly involving the hind limbs only   (MGI Ref ID J:42445)

Gli3Xt-J/Gli3Xt-J

        involves: C3H * CD-1
  • mortality/aging
  • complete perinatal lethality
    • animals that survive to birth die within 2 days after birth   (MGI Ref ID J:4086)
  • partial prenatal lethality
    • many mutants die embryonically with a wide range of defects   (MGI Ref ID J:4086)
  • craniofacial phenotype
  • abnormal craniofacial development
    • enlarged maxillary arch   (MGI Ref ID J:4086)
    • reduced external nasal process   (MGI Ref ID J:4086)
    • abnormal tooth development
      • occurs in some mice   (MGI Ref ID J:38381)
  • abnormal cranium morphology
    • external nasal processes are reduced   (MGI Ref ID J:38381)
    • abnormal maxilla morphology
      • the maxillary region is enlarged   (MGI Ref ID J:38381)
    • abnormal neurocranium morphology
      • skull vault fails to form   (MGI Ref ID J:38381)
  • abnormal ear distance/ position
    • misplaced ears   (MGI Ref ID J:4086)
  • cleft palate
    • occurs in some mice   (MGI Ref ID J:38381)
  • skeleton phenotype
  • abnormal cranium morphology
    • external nasal processes are reduced   (MGI Ref ID J:38381)
    • abnormal maxilla morphology
      • the maxillary region is enlarged   (MGI Ref ID J:38381)
    • abnormal neurocranium morphology
      • skull vault fails to form   (MGI Ref ID J:38381)
  • abnormal long bone morphology   (MGI Ref ID J:38381)
    • increased diameter of humerus
      • slight thickening of the humerus   (MGI Ref ID J:38381)
    • increased diameter of radius
      • slight thickening of the radius   (MGI Ref ID J:38381)
    • increased diameter of ulna
      • slight thickening of the ulna   (MGI Ref ID J:38381)
    • short humerus
      • slight shortening of the humerus   (MGI Ref ID J:38381)
    • short radius
      • slight shortening of the radius   (MGI Ref ID J:38381)
    • short tibia
      • severe truncation of the tibia is observed   (MGI Ref ID J:38381)
    • short ulna
      • slight shortening of the ulna   (MGI Ref ID J:38381)
  • abnormal sternum morphology
    • sternum is unfused   (MGI Ref ID J:38381)
  • abnormal vertebral arch morphology
    • C1 and C2 neural arches are fused   (MGI Ref ID J:38381)
    • neural arches of other cervical vertebrae are expanded and have irregular shapes   (MGI Ref ID J:38381)
  • limbs/digits/tail phenotype
  • abnormal foot plate morphology
    • at E12, mutant embryos show a widening in the preaxial and postaxial areas of the footplates, resulting in a paddle-shaped foot with polydactyly   (MGI Ref ID J:4086)
  • increased diameter of humerus
    • slight thickening of the humerus   (MGI Ref ID J:38381)
  • increased diameter of radius
    • slight thickening of the radius   (MGI Ref ID J:38381)
  • increased diameter of ulna
    • slight thickening of the ulna   (MGI Ref ID J:38381)
  • polydactyly
    • forelimb exhibits severe polydactyly (7-8 digits) and hindlimb exhibits milder polydactyly (6 digits)   (MGI Ref ID J:38381)
    • present on all feet   (MGI Ref ID J:4086)
  • short humerus
    • slight shortening of the humerus   (MGI Ref ID J:38381)
  • short radius
    • slight shortening of the radius   (MGI Ref ID J:38381)
  • short tibia
    • severe truncation of the tibia is observed   (MGI Ref ID J:38381)
  • short ulna
    • slight shortening of the ulna   (MGI Ref ID J:38381)
  • syndactyly
    • present on all feet   (MGI Ref ID J:4086)
  • nervous system phenotype
  • abnormal brain morphology
    • gross malformations of the brain   (MGI Ref ID J:4086)
    • exencephaly
      • midbrain exencephaly   (MGI Ref ID J:4086)
  • incomplete rostral neuropore closure
    • neural tube closure is largely normal, although an opening around the midbrain region is seen   (MGI Ref ID J:4086)
  • hearing/vestibular/ear phenotype
  • abnormal ear distance/ position
    • misplaced ears   (MGI Ref ID J:4086)
  • homeostasis/metabolism phenotype
  • edema   (MGI Ref ID J:4086)
  • vision/eye phenotype
  • abnormal eye development
    • poorly developed eyes   (MGI Ref ID J:4086)
  • digestive/alimentary phenotype
  • cleft palate
    • occurs in some mice   (MGI Ref ID J:38381)
  • embryogenesis phenotype
  • incomplete rostral neuropore closure
    • neural tube closure is largely normal, although an opening around the midbrain region is seen   (MGI Ref ID J:4086)
  • integument phenotype
  • abnormal coat/ hair morphology
    • anomalous number and patterns of supra-orbital hair (eyelashes)   (MGI Ref ID J:4086)
  • abnormal vibrissa number
    • anomalous number and patterns of mystacial hair (vibrissae)   (MGI Ref ID J:4086)

Gli3Xt-J/Gli3Xt-J

        involves: C3H/HeJ
  • limbs/digits/tail phenotype
  • polydactyly
    • distal truncations of the forelimb skeleton and loss of the autopod at E14.5   (MGI Ref ID J:159210)

Gli3Xt-J/Gli3Xt-J

        involves: 129/Sv * C3H/HeJ * C57BL/6J
  • limbs/digits/tail phenotype
  • polydactyly
    • similar to the phenotype seen in Gli3Xt-J Gas1tm2Fan double homozygotes   (MGI Ref ID J:121554)

Gli3Xt-J/Gli3Xt-J

        involves: 129/Sv * C3H/HeJ * C57BL/6
  • limbs/digits/tail phenotype
  • abnormal digit morphology
    • digits have lost their identity with some digits consisting of three phalanges that are usually undivided and longer than those in Gli3tm2Blnw homozygotes   (MGI Ref ID J:121609)
    • abnormal phalanx morphology
      • phalanges in some digits are undivided and longer than those in Gli3tm2Blnw homozygotes   (MGI Ref ID J:121609)
      • rarely extra phalanges element branch from the metatarsals   (MGI Ref ID J:121609)
      • however, ossification occurs at most proximal and distal phalanges   (MGI Ref ID J:121609)
    • polydactyly
      • at E16.5, some mice have 6 to 8 digits that lacked identity   (MGI Ref ID J:121609)
  • absent tibia
    • at E16.5, in some mice   (MGI Ref ID J:121609)
  • skeleton phenotype
  • abnormal phalanx morphology
    • phalanges in some digits are undivided and longer than those in Gli3tm2Blnw homozygotes   (MGI Ref ID J:121609)
    • rarely extra phalanges element branch from the metatarsals   (MGI Ref ID J:121609)
    • however, ossification occurs at most proximal and distal phalanges   (MGI Ref ID J:121609)
  • absent tibia
    • at E16.5, in some mice   (MGI Ref ID J:121609)

Gli3Xt-J/Gli3Xt-J

        involves: C3H/HeJ * CD-1
  • homeostasis/metabolism phenotype
  • edema
  • limbs/digits/tail phenotype
  • polydactyly
  • nervous system phenotype
  • exencephaly
  • skeleton phenotype
  • abnormal sternum morphology   (MGI Ref ID J:152259)
    • abnormal xiphoid process morphology
      • enlarged at E18.5   (MGI Ref ID J:152259)

Gli3Xt-J/Gli3Xt-J

        involves: C3H/HeJ * NMRI
  • limbs/digits/tail phenotype
  • polydactyly
    • additional anterior digits are formed but the anterior most digit 1 is lost   (MGI Ref ID J:184012)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Gli3Xt-J related

Developmental Biology Research
Neural Tube Defects
Skeletal Defects

Neurobiology Research
Neural Tube Defects

Sensorineural Research
Cataracts
      diffuse
Eye Defects

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Gli3Xt-J
Allele Name extra toes Jackson
Allele Type Spontaneous
Common Name(s) Gli3-; Gli3Xt; Gli3XtJ; Gli3delta; XtJ; XtJ; extra-toes J; xt;
Strain of OriginC3H/HeJ
Gene Symbol and Name Gli3, GLI-Kruppel family member GLI3
Chromosome 13
Gene Common Name(s) ACLS; AI854843; AU023367; Bph; GCPS; GLI3-190; GLI3FL; PAP-A; PAPA; PAPA1; PAPB; PHS; PPDIV; Pdn; Xt; add; anterior digit pattern deformity; brachyphalangy; expressed sequence AI854843; expressed sequence AU023367; extra toes; polydactyly Nagoya;
General Note Genbank ID for this allele: AF418601
Phenotypic Similarity to Human Syndrome: lambdoid suture craniosynostosis in homozygous mice (J:163175)
Molecular Note Genomic sequencing and PCR analysis identified the mutation as a 51.5 kb deletion. The deleted region contains all Gli3 coding sequences 3' to exon 9, which includes sequences encoding some, but not all, of the zinc finger domains. This deletion resultsin the expression of an abnormal transcript that fuses Gli3 sequences to an exon belonging to an apparent LTR/MaLR repetitive element. However, this transcript lacks the sequences required for normal GLI3 activity. [MGI Ref ID J:4086] [MGI Ref ID J:48982] [MGI Ref ID J:76587]

Genotyping

Genotyping Information


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Additional References

Aoto K; Nishimura T; Eto K; Motoyama J. 2002. Mouse GLI3 Regulates Fgf8 Expression and Apoptosis in the Developing Neural Tube, Face, and Limb Bud. Dev Biol 251(2):320-32. [PubMed: 12435361]  [MGI Ref ID J:80177]

Ernest S; Christensen B; Gilfix BM; Mamer OA; Hosack A; Rodier M; Colmenares C; McGrath J; Bale A; Balling R; Sankoff D; Rosenblatt DS; Nadeau JH. 2002. Genetic and molecular control of folate-homocysteine metabolism in mutant mice. Mamm Genome 13(5):259-67. [PubMed: 12016514]  [MGI Ref ID J:76559]

Johnson DR. 1967. Extra-toes: a new mutant gene causing multiple abnormalities in the mouse. J Embryol Exp Morphol 17(3):543-81. [PubMed: 6049666]  [MGI Ref ID J:5049]

Palma V; Ruiz i Altaba A. 2004. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131(2):337-45. [PubMed: 14681189]  [MGI Ref ID J:90384]

Schimmang T; Lemaistre M; Vortkamp A; Ruther U. 1992. Expression of the zinc finger gene Gli3 is affected in the morphogenetic mouse mutant extra-toes (Xt). Development 116(3):799-804. [PubMed: 1289066]  [MGI Ref ID J:3333]

Gli3Xt-J related

Ahn S; Joyner AL. 2004. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118(4):505-16. [PubMed: 15315762]  [MGI Ref ID J:92507]

Alt B; Elsalini OA; Schrumpf P; Haufs N; Lawson ND; Schwabe GC; Mundlos S; Gruters A; Krude H; Rohr KB. 2006. Arteries define the position of the thyroid gland during its developmental relocalisation. Development 133(19):3797-804. [PubMed: 16968815]  [MGI Ref ID J:119563]

Anderson C; Williams VC; Moyon B; Daubas P; Tajbakhsh S; Buckingham ME; Shiroishi T; Hughes SM; Borycki AG. 2012. Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity. Genes Dev 26(18):2103-17. [PubMed: 22987640]  [MGI Ref ID J:187740]

Aoto K; Shikata Y; Imai H; Matsumaru D; Tokunaga T; Shioda S; Yamada G; Motoyama J. 2009. Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis. Dev Biol 327(1):106-20. [PubMed: 19103193]  [MGI Ref ID J:145732]

Aruga J; Mizugishi K; Koseki H; Imai K; Balling R; Noda T; Mikoshiba K. 1999. Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mech Dev 89(1-2):141-50. [PubMed: 10559489]  [MGI Ref ID J:58623]

Bai CB; Joyner AL. 2001. Gli1 can rescue the in vivo function of Gli2. Development 128(24):5161-72. [PubMed: 11748151]  [MGI Ref ID J:73074]

Balaskas N; Ribeiro A; Panovska J; Dessaud E; Sasai N; Page KM; Briscoe J; Ribes V. 2012. Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the vertebrate neural tube. Cell 148(1-2):273-84. [PubMed: 22265416]  [MGI Ref ID J:181293]

Balmer CW; LaMantia AS. 2004. Loss of Gli3 and Shh function disrupts olfactory axon trajectories. J Comp Neurol 472(3):292-307. [PubMed: 15065125]  [MGI Ref ID J:109287]

Barna M; Pandolfi PP; Niswander L. 2005. Gli3 and Plzf cooperate in proximal limb patterning at early stages of limb development. Nature 436(7048):277-81. [PubMed: 16015334]  [MGI Ref ID J:99990]

Blaess S; Corrales JD; Joyner AL. 2006. Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region. Development 133(9):1799-809. [PubMed: 16571630]  [MGI Ref ID J:108509]

Bok J; Dolson DK; Hill P; Ruther U; Epstein DJ; Wu DK. 2007. Opposing gradients of Gli repressor and activators mediate Shh signaling along the dorsoventral axis of the inner ear. Development 134(9):1713-22. [PubMed: 17395647]  [MGI Ref ID J:121232]

Bowers M; Eng L; Lao Z; Turnbull RK; Bao X; Riedel E; Mackem S; Joyner AL. 2012. Limb anterior-posterior polarity integrates activator and repressor functions of GLI2 as well as GLI3. Dev Biol 370(1):110-24. [PubMed: 22841643]  [MGI Ref ID J:188038]

Buscher D; Grotewold L; Ruther U. 1998. The XtJ allele generates a Gli3 fusion transcript. Mamm Genome 9(8):676-8. [PubMed: 9680393]  [MGI Ref ID J:48982]

Buttitta L; Mo R; Hui CC; Fan CM. 2003. Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development 130(25):6233-43. [PubMed: 14602680]  [MGI Ref ID J:87223]

Cain JE; Islam E; Haxho F; Blake J; Rosenblum ND. 2011. GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 121(3):1199-206. [PubMed: 21339645]  [MGI Ref ID J:172032]

Cain JE; Islam E; Haxho F; Chen L; Bridgewater D; Nieuwenhuis E; Hui CC; Rosenblum ND. 2009. GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS One 4(10):e7313. [PubMed: 19809516]  [MGI Ref ID J:154102]

Chen MH; Wilson CW; Li YJ; Law KK; Lu CS; Gacayan R; Zhang X; Hui CC; Chuang PT. 2009. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 23(16):1910-28. [PubMed: 19684112]  [MGI Ref ID J:151923]

Chen Y; Knezevic V; Ervin V; Hutson R; Ward Y; Mackem S. 2004. Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh. Development 131(10):2339-47. [PubMed: 15102708]  [MGI Ref ID J:98432]

Cheung HO; Zhang X; Ribeiro A; Mo R; Makino S; Puviindran V; Law KK; Briscoe J; Hui CC. 2009. The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal 2(76):ra29. [PubMed: 19549984]  [MGI Ref ID J:152259]

Christopher KJ; Wang B; Kong Y; Weatherbee SD. 2012. Forward genetics uncovers Transmembrane protein 107 as a novel factor required for ciliogenesis and Sonic hedgehog signaling. Dev Biol 368(2):382-92. [PubMed: 22698544]  [MGI Ref ID J:186552]

Dai P; Shinagawa T; Nomura T; Harada J; Kaul SC; Wadhwa R; Khan MM; Akimaru H; Sasaki H; Colmenares C; Ishii S. 2002. Ski is involved in transcriptional regulation by the repressor and full-length forms of Gli3. Genes Dev 16(22):2843-8. [PubMed: 12435627]  [MGI Ref ID J:80205]

Dakubo GD; Mazerolle C; Furimsky M; Yu C; St-Jacques B; McMahon AP; Wallace VA. 2008. Indian hedgehog signaling from endothelial cells is required for sclera and retinal pigment epithelium development in the mouse eye. Dev Biol 320(1):242-55. [PubMed: 18582859]  [MGI Ref ID J:139168]

Dickie MM. 1967. Presumed recurrences of mutations Mouse News Lett 36:60.  [MGI Ref ID J:78286]

Doles J; Cook C; Shi X; Valosky J; Lipinski R; Bushman W. 2006. Functional compensation in Hedgehog signaling during mouse prostate development. Dev Biol 295(1):13-25. [PubMed: 16707121]  [MGI Ref ID J:144902]

Dunn NR; Winnier GE; Hargett LK; Schrick JJ; Fogo AB; Hogan BL. 1997. Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188(2):235-47. [PubMed: 9268572]  [MGI Ref ID J:42445]

Eggenschwiler JT; Bulgakov OV; Qin J; Li T; Anderson KV. 2006. Mouse Rab23 regulates Hedgehog signaling from Smoothened to Gli proteins. Dev Biol 290(1):1-12. [PubMed: 16364285]  [MGI Ref ID J:104803]

Ernest S; Christensen B; Gilfix BM; Mamer OA; Hosack A; Rodier M; Colmenares C; McGrath J; Bale A; Balling R; Sankoff D; Rosenblatt DS; Nadeau JH. 2002. Genetic and molecular control of folate-homocysteine metabolism in mutant mice. Mamm Genome 13(5):259-67. [PubMed: 12016514]  [MGI Ref ID J:76559]

Fotaki V; Price DJ; Mason JO. 2011. Wnt/beta-catenin signaling is disrupted in the extra-toes (Gli3(Xt/Xt) ) mutant from early stages of forebrain development, concomitant with anterior neural plate patterning defects. J Comp Neurol 519(9):1640-57. [PubMed: 21452227]  [MGI Ref ID J:174727]

Friedrichs M; Larralde O; Skutella T; Theil T. 2008. Lamination of the cerebral cortex is disturbed in Gli3 mutant mice. Dev Biol 318(1):203-14. [PubMed: 18448089]  [MGI Ref ID J:136720]

Furimsky M; Wallace VA. 2006. Complementary Gli activity mediates early patterning of the mouse visual system. Dev Dyn 235(3):594-605. [PubMed: 16342201]  [MGI Ref ID J:106158]

Galli A; Robay D; Osterwalder M; Bao X; Benazet JD; Tariq M; Paro R; Mackem S; Zeller R. 2010. Distinct roles of Hand2 in initiating polarity and posterior Shh expression during the onset of mouse limb bud development. PLoS Genet 6(4):e1000901. [PubMed: 20386744]  [MGI Ref ID J:159210]

Grindley JC; Bellusci S; Perkins D; Hogan BL. 1997. Evidence for the involvement of the Gli gene family in embryonic mouse lung development. Dev Biol 188(2):337-48. [PubMed: 9268579]  [MGI Ref ID J:42454]

Grove EA; Tole S. 1999. Patterning events and specification signals in the developing hippocampus. Cereb Cortex 9(6):551-61. [PubMed: 10498273]  [MGI Ref ID J:102085]

Grove EA; Tole S; Limon J; Yip L; Ragsdale CW. 1998. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125(12):2315-25. [PubMed: 9584130]  [MGI Ref ID J:48569]

Gutin G; Fernandes M; Palazzolo L; Paek H; Yu K; Ornitz DM; McConnell SK; Hebert JM. 2006. FGF signalling generates ventral telencephalic cells independently of SHH. Development 133(15):2937-46. [PubMed: 16818446]  [MGI Ref ID J:119019]

Hager-Theodorides AL; Dessens JT; Outram SV; Crompton T. 2005. The transcription factor Gli3 regulates differentiation of fetal CD4- CD8- double-negative thymocytes. Blood 106(4):1296-304. [PubMed: 15855276]  [MGI Ref ID J:117284]

Hager-Theodorides AL; Furmanski AL; Ross SE; Outram SV; Rowbotham NJ; Crompton T. 2009. The Gli3 transcription factor expressed in the thymus stroma controls thymocyte negative selection via Hedgehog-dependent and -independent mechanisms. J Immunol 183(5):3023-32. [PubMed: 19667090]  [MGI Ref ID J:151855]

Hanashima C; Fernandes M; Hebert JM; Fishell G. 2007. The role of Foxg1 and dorsal midline signaling in the generation of Cajal-Retzius subtypes. J Neurosci 27(41):11103-11. [PubMed: 17928452]  [MGI Ref ID J:125693]

Haraguchi R; Motoyama J; Sasaki H; Satoh Y; Miyagawa S; Nakagata N; Moon A; Yamada G. 2007. Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling. Development 134(3):525-33. [PubMed: 17202190]  [MGI Ref ID J:119913]

Hardcastle Z; Mo R; Hui CC; Sharpe PT. 1998. The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development 125(15):2803-11. [PubMed: 9655803]  [MGI Ref ID J:49252]

Hasenpusch-Theil K; Magnani D; Amaniti EM; Han L; Armstrong D; Theil T. 2012. Transcriptional analysis of Gli3 mutants identifies Wnt target genes in the developing hippocampus. Cereb Cortex 22(12):2878-93. [PubMed: 22235033]  [MGI Ref ID J:203028]

Hatsell SJ; Cowin P. 2006. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development 133(18):3661-70. [PubMed: 16914490]  [MGI Ref ID J:112460]

Haycraft CJ; Banizs B; Aydin-Son Y; Zhang Q; Michaud EJ; Yoder BK. 2005. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1(4):e53. [PubMed: 16254602]  [MGI Ref ID J:115756]

Hill P; Gotz K; Ruther U. 2009. A SHH-independent regulation of Gli3 is a significant determinant of anteroposterior patterning of the limb bud. Dev Biol 328(2):506-16. [PubMed: 19248778]  [MGI Ref ID J:149502]

Hong M; Schachter KA; Jiang G; Krauss RS. 2012. Neogenin regulates sonic hedgehog pathway activity during digit patterning. Dev Dyn 241(3):627-37. [PubMed: 22275192]  [MGI Ref ID J:181269]

Hopyan S; Nadesan P; Yu C; Wunder J; Alman BA. 2005. Dysregulation of hedgehog signalling predisposes to synovial chondromatosis. J Pathol 206(2):143-50. [PubMed: 15834844]  [MGI Ref ID J:98387]

Huang X; Goudy SL; Ketova T; Litingtung Y; Chiang C. 2008. Gli3-deficient mice exhibit cleft palate associated with abnormal tongue development. Dev Dyn 237(10):3079-3087. [PubMed: 18816854]  [MGI Ref ID J:139635]

Huangfu D; Anderson KV. 2005. Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A 102(32):11325-30. [PubMed: 16061793]  [MGI Ref ID J:100466]

Huangfu D; Liu A; Rakeman AS; Murcia NS; Niswander L; Anderson KV. 2003. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426(6962):83-7. [PubMed: 14603322]  [MGI Ref ID J:86437]

Hui CC; Joyner AL. 1993. A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 3(3):241-6. [PubMed: 8387379]  [MGI Ref ID J:4086]

Joeng KS; Long F. 2009. The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization. Development 136(24):4177-85. [PubMed: 19906844]  [MGI Ref ID J:154905]

Kawakami Y; Uchiyama Y; Rodriguez Esteban C; Inenaga T; Koyano-Nakagawa N; Kawakami H; Marti M; Kmita M; Monaghan-Nichols P; Nishinakamura R; Izpisua Belmonte JC. 2009. Sall genes regulate region-specific morphogenesis in the mouse limb by modulating Hox activities. Development 136(4):585-94. [PubMed: 19168674]  [MGI Ref ID J:144018]

Kawasaki T; Ito K; Hirata T. 2006. Netrin 1 regulates ventral tangential migration of guidepost neurons in the lateral olfactory tract. Development 133(5):845-53. [PubMed: 16439477]  [MGI Ref ID J:106022]

Kim JH; Huang Z; Mo R. 2005. Gli3 null mice display glandular overgrowth of the developing stomach. Dev Dyn 234(4):984-91. [PubMed: 16247775]  [MGI Ref ID J:102853]

Kim JW; Lemke G. 2006. Hedgehog-regulated localization of Vax2 controls eye development. Genes Dev 20(20):2833-47. [PubMed: 17043310]  [MGI Ref ID J:113403]

Kim PC; Mo R; Hui Cc C. 2001. Murine models of VACTERL syndrome: Role of sonic hedgehog signaling pathway. J Pediatr Surg 36(2):381-4. [PubMed: 11172440]  [MGI Ref ID J:113186]

Kimmel SG; Mo R; Hui CC; Kim PC. 2000. New mouse models of congenital anorectal malformations J Pediatr Surg 35(2):227-31. [PubMed: 10693670]  [MGI Ref ID J:60446]

Ko HW; Norman RX; Tran J; Fuller KP; Fukuda M; Eggenschwiler JT. 2010. Broad-minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction. Dev Cell 18(2):237-47. [PubMed: 20159594]  [MGI Ref ID J:158583]

Koziel L; Wuelling M; Schneider S; Vortkamp A. 2005. Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development 132(23):5249-60. [PubMed: 16284117]  [MGI Ref ID J:102948]

Kucerova R; Dora N; Mort RL; Wallace K; Leiper LJ; Lowes C; Neves C; Walczysko P; Bruce F; Fowler PA; Rajnicek AM; McCaig CD; Zhao M; West JD; Collinson JM. 2012. Interaction between hedgehog signalling and PAX6 dosage mediates maintenance and regeneration of the corneal epithelium. Mol Vis 18:139-50. [PubMed: 22275805]  [MGI Ref ID J:191495]

Kuijper S; Beverdam A; Kroon C; Brouwer A; Candille S; Barsh G; Meijlink F. 2005. Genetics of shoulder girdle formation: roles of Tbx15 and aristaless-like genes. Development 132(7):1601-10. [PubMed: 15728667]  [MGI Ref ID J:101708]

Kuijper S; Feitsma H; Sheth R; Korving J; Reijnen M; Meijlink F. 2005. Function and regulation of Alx4 in limb development: complex genetic interactions with Gli3 and Shh. Dev Biol 285(2):533-44. [PubMed: 16039644]  [MGI Ref ID J:101265]

Kuschel S; Ruther U; Theil T. 2003. A disrupted balance between Bmp/Wnt and Fgf signaling underlies the ventralization of the Gli3 mutant telencephalon. Dev Biol 260(2):484-95. [PubMed: 12921747]  [MGI Ref ID J:84901]

Lebel M; Mo R; Shimamura K; Hui CC. 2007. Gli2 and Gli3 play distinct roles in the dorsoventral patterning of the mouse hindbrain. Dev Biol 302(1):345-55. [PubMed: 17026983]  [MGI Ref ID J:119875]

Lee MY; Racine V; Jagadpramana P; Sun L; Yu W; Du T; Spencer-Dene B; Rubin N; Le L; Ndiaye D; Bellusci S; Kratochwil K; Veltmaat JM. 2011. Ectodermal influx and cell hypertrophy provide early growth for all murine mammary rudiments, and are differentially regulated among them by Gli3. PLoS One 6(10):e26242. [PubMed: 22046263]  [MGI Ref ID J:179712]

Lei Q; Jeong Y; Misra K; Li S; Zelman AK; Epstein DJ; Matise MP. 2006. Wnt signaling inhibitors regulate the transcriptional response to morphogenetic Shh-Gli signaling in the neural tube. Dev Cell 11(3):325-37. [PubMed: 16950124]  [MGI Ref ID J:112802]

Lei Q; Zelman AK; Kuang E; Li S; Matise MP. 2004. Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord. Development 131(15):3593-604. [PubMed: 15215207]  [MGI Ref ID J:92067]

Li Y; Zhang H; Choi SC; Litingtung Y; Chiang C. 2004. Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis. Dev Biol 270(1):214-31. [PubMed: 15136151]  [MGI Ref ID J:92194]

Lieven O; Ruther U. 2011. The Dkk1 dose is critical for eye development. Dev Biol 355(1):124-37. [PubMed: 21539829]  [MGI Ref ID J:173635]

Litingtung Y; Chiang C. 2000. Specification of ventral neuron types is mediated by an antagonistic interaction between shh and gli3 Nat Neurosci 3(10):979-85. [PubMed: 11017169]  [MGI Ref ID J:64758]

Litingtung Y; Dahn RD; Li Y; Fallon JF; Chiang C. 2002. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418(6901):979-83. [PubMed: 12198547]  [MGI Ref ID J:78941]

Liu J; Heydeck W; Zeng H; Liu A. 2012. Dual function of suppressor of fused in Hh pathway activation and mouse spinal cord patterning. Dev Biol 362(2):141-53. [PubMed: 22182519]  [MGI Ref ID J:180775]

Liu J; Li Q; Kuehn MR; Litingtung Y; Vokes SA; Chiang C. 2013. Sonic hedgehog signaling directly targets Hyaluronic Acid Synthase 2, an essential regulator of phalangeal joint patterning. Dev Biol 375(2):160-71. [PubMed: 23313125]  [MGI Ref ID J:194283]

Lopez-Rios J; Speziale D; Robay D; Scotti M; Osterwalder M; Nusspaumer G; Galli A; Hollander GA; Kmita M; Zeller R. 2012. GLI3 constrains digit number by controlling both progenitor proliferation and BMP-dependent exit to chondrogenesis. Dev Cell 22(4):837-48. [PubMed: 22465667]  [MGI Ref ID J:184012]

Madison BB; McKenna LB; Dolson D; Epstein DJ; Kaestner KH. 2009. FoxF1 and FoxL1 link hedgehog signaling and the control of epithelial proliferation in the developing stomach and intestine. J Biol Chem 284(9):5936-44. [PubMed: 19049965]  [MGI Ref ID J:190291]

Martin B; Lapouble E; Chaix Y. 2007. Involvement of the Gli3 (extra-toes) gene region in body weight in mice. ScientificWorldJournal 7:83-6. [PubMed: 17334602]  [MGI Ref ID J:122515]

Martinelli DC; Fan CM. 2007. Gas1 extends the range of Hedgehog action by facilitating its signaling. Genes Dev 21(10):1231-43. [PubMed: 17504940]  [MGI Ref ID J:121554]

Masuya H; Sagai T; Moriwaki K; Shiroishi T. 1997. Multigenic control of the localization of the zone of polarizing activity in limb morphogenesis in the mouse. Dev Biol 182(1):42-51. [PubMed: 9073443]  [MGI Ref ID J:38196]

Masuya H; Sagai T; Wakana S; Moriwaki K; Shiroishi T. 1995. A duplicated zone of polarizing activity in polydactylous mouse mutants. Genes Dev 9(13):1645-53. [PubMed: 7628698]  [MGI Ref ID J:27442]

Matera I; Watkins-Chow DE; Loftus SK; Hou L; Incao A; Silver DL; Rivas C; Elliott EC; Baxter LL; Pavan WJ. 2008. A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy. Hum Mol Genet 17(14):2118-31. [PubMed: 18397875]  [MGI Ref ID J:136642]

Matsumaru D; Haraguchi R; Miyagawa S; Motoyama J; Nakagata N; Meijlink F; Yamada G. 2011. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation. PLoS One 6(1):e16260. [PubMed: 21283718]  [MGI Ref ID J:169568]

Mau E; Whetstone H; Yu C; Hopyan S; Wunder JS; Alman BA. 2007. PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms. Dev Biol 305(1):28-39. [PubMed: 17328886]  [MGI Ref ID J:121301]

Maynard TM; Jain MD; Balmer CW; LaMantia AS. 2002. High-resolution mapping of the Gli3 mutation extra-toes<J> reveals a 51.5-kb deletion. Mamm Genome 13(1):58-61. [PubMed: 11773971]  [MGI Ref ID J:76587]

McDermott A; Gustafsson M; Elsam T; Hui CC; Emerson CP Jr; Borycki AG. 2005. Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development 132(2):345-57. [PubMed: 15604102]  [MGI Ref ID J:95326]

McGlinn E; Richman JM; Metzis V; Town L; Butterfield NC; Wainwright BJ; Wicking C. 2008. Expression of the NET family member Zfp503 is regulated by hedgehog and BMP signaling in the limb. Dev Dyn 237(4):1172-82. [PubMed: 18351672]  [MGI Ref ID J:132977]

McGlinn E; van Bueren KL; Fiorenza S; Mo R; Poh AM; Forrest A; Soares MB; Bonaldo Mde F; Grimmond S; Hui CC; Wainwright B; Wicking C. 2005. Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development. Mech Dev 122(11):1218-33. [PubMed: 16169709]  [MGI Ref ID J:102872]

McNeill B; Mazerolle C; Bassett EA; Mears AJ; Ringuette R; Lagali P; Picketts DJ; Paes K; Rice D; Wallace VA. 2013. Hedgehog regulates Norrie disease protein to drive neural progenitor self-renewal. Hum Mol Genet 22(5):1005-16. [PubMed: 23201751]  [MGI Ref ID J:192563]

McNeill B; Perez-Iratxeta C; Mazerolle C; Furimsky M; Mishina Y; Andrade-Navarro MA; Wallace VA. 2012. Comparative genomics identification of a novel set of temporally regulated hedgehog target genes in the retina. Mol Cell Neurosci 49(3):333-40. [PubMed: 22281533]  [MGI Ref ID J:196757]

Mill P; Mo R; Fu H; Grachtchouk M; Kim PC; Dlugosz AA; Hui CC. 2003. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 17(2):282-94. [PubMed: 12533516]  [MGI Ref ID J:81295]

Mill P; Mo R; Hu MC; Dagnino L; Rosenblum ND; Hui CC. 2005. Shh controls epithelial proliferation via independent pathways that converge on N-Myc. Dev Cell 9(2):293-303. [PubMed: 16054035]  [MGI Ref ID J:100687]

Miyagawa S; Matsumaru D; Murashima A; Omori A; Satoh Y; Haraguchi R; Motoyama J; Iguchi T; Nakagata N; Hui CC; Yamada G. 2011. The role of sonic hedgehog-gli2 pathway in the masculinization of external genitalia. Endocrinology 152(7):2894-903. [PubMed: 21586556]  [MGI Ref ID J:174885]

Miyagawa S; Moon A; Haraguchi R; Inoue C; Harada M; Nakahara C; Suzuki K; Matsumaru D; Kaneko T; Matsuo I; Yang L; Taketo MM; Iguchi T; Evans SM; Yamada G. 2009. Dosage-dependent hedgehog signals integrated with Wnt/{beta}-catenin signaling regulate external genitalia formation as an appendicular program. Development 136(23):3969-78. [PubMed: 19906864]  [MGI Ref ID J:154979]

Mo R; Freer AM; Zinyk DL; Crackower MA; Michaud J; Heng HH; Chik KW; Shi XM; Tsui LC; Cheng SH; Joyner AL; Hui C. 1997. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124(1):113-23. [PubMed: 9006072]  [MGI Ref ID J:38381]

Mo R; Kim JH; Zhang J; Chiang C; Hui CC; Kim PC. 2001. Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol 159(2):765-74. [PubMed: 11485934]  [MGI Ref ID J:70870]

Moribe H; Takagi T; Kondoh H; Higashi Y. 2000. Suppression of polydactyly of the Gli3 mutant (extra toes) by deltaEF1 homozygous mutation. Dev Growth Differ 42(4):367-76. [PubMed: 10969736]  [MGI Ref ID J:103158]

Motoyama J; Liu J; Mo R; Ding Q; Post M; Hui CC. 1998. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus [see comments] Nat Genet 20(1):54-7. [PubMed: 9731531]  [MGI Ref ID J:49603]

Motoyama J; Milenkovic L; Iwama M; Shikata Y; Scott MP; Hui CC. 2003. Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification. Dev Biol 259(1):150-61. [PubMed: 12812795]  [MGI Ref ID J:84056]

Ocbina PJ; Eggenschwiler JT; Moskowitz I; Anderson KV. 2011. Complex interactions between genes controlling trafficking in primary cilia. Nat Genet 43(6):547-53. [PubMed: 21552265]  [MGI Ref ID J:188764]

Oh S; Huang X; Chiang C. 2005. Specific requirements of sonic hedgehog signaling during oligodendrocyte development. Dev Dyn 234(3):489-96. [PubMed: 15880651]  [MGI Ref ID J:119850]

Oh S; Huang X; Liu J; Litingtung Y; Chiang C. 2009. Shh and Gli3 activities are required for timely generation of motor neuron progenitors. Dev Biol 331(2):261-9. [PubMed: 19433083]  [MGI Ref ID J:150755]

Ohba S; Kawaguchi H; Kugimiya F; Ogasawara T; Kawamura N; Saito T; Ikeda T; Fujii K; Miyajima T; Kuramochi A; Miyashita T; Oda H; Nakamura K; Takato T; Chung UI. 2008. Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity. Dev Cell 14(5):689-99. [PubMed: 18477452]  [MGI Ref ID J:135169]

Okada T; Okumura Y; Motoyama J; Ogawa M. 2008. FGF8 signaling patterns the telencephalic midline by regulating putative key factors of midline development. Dev Biol 320(1):92-101. [PubMed: 18547559]  [MGI Ref ID J:139160]

Palma V; Ruiz i Altaba A. 2004. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131(2):337-45. [PubMed: 14681189]  [MGI Ref ID J:90384]

Panman L; Drenth T; Tewelscher P; Zuniga A; Zeller R. 2005. Genetic interaction of Gli3 and Alx4 during limb development. Int J Dev Biol 49(4):443-8. [PubMed: 15968591]  [MGI Ref ID J:101476]

Park HL; Bai C; Platt KA; Matise MP; Beeghly A; Hui CC; Nakashima M; Joyner AL. 2000. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127(8):1593-605. [PubMed: 10725236]  [MGI Ref ID J:60986]

Patterson VL; Damrau C; Paudyal A; Reeve B; Grimes DT; Stewart ME; Williams DJ; Siggers P; Greenfield A; Murdoch JN. 2009. Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway. Hum Mol Genet 18(10):1719-39. [PubMed: 19223390]  [MGI Ref ID J:147584]

Persson M; Stamataki D; te Welscher P; Andersson E; Bose J; Ruther U; Ericson J; Briscoe J. 2002. Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev 16(22):2865-78. [PubMed: 12435629]  [MGI Ref ID J:80207]

Quinn ME; Haaning A; Ware SM. 2012. Preaxial polydactyly caused by Gli3 haploinsufficiency is rescued by Zic3 loss of function in mice. Hum Mol Genet 21(8):1888-96. [PubMed: 22234993]  [MGI Ref ID J:181884]

Rallu M; Machold R; Gaiano N; Corbin JG; McMahon AP; Fishell G. 2002. Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 and Hedgehog signaling. Development 129(21):4963-74. [PubMed: 12397105]  [MGI Ref ID J:79856]

Rash BG; Grove EA. 2007. Patterning the dorsal telencephalon: a role for sonic hedgehog? J Neurosci 27(43):11595-603. [PubMed: 17959802]  [MGI Ref ID J:127039]

Rash BG; Grove EA. 2011. Shh and Gli3 regulate formation of the telencephalic-diencephalic junction and suppress an isthmus-like signaling source in the forebrain. Dev Biol 359(2):242-50. [PubMed: 21925158]  [MGI Ref ID J:178496]

Renault MA; Roncalli J; Tongers J; Misener S; Thorne T; Jujo K; Ito A; Clarke T; Fung C; Millay M; Kamide C; Scarpelli A; Klyachko E; Losordo DW. 2009. The Hedgehog transcription factor Gli3 modulates angiogenesis. Circ Res 105(8):818-26. [PubMed: 19729595]  [MGI Ref ID J:169960]

Rice DP; Connor EC; Veltmaat JM; Lana-Elola E; Veistinen L; Tanimoto Y; Bellusci S; Rice R. 2010. Gli3Xt-J/Xt-J mice exhibit lambdoid suture craniosynostosis which results from altered osteoprogenitor proliferation and differentiation. Hum Mol Genet 19(17):3457-67. [PubMed: 20570969]  [MGI Ref ID J:163175]

Rutter M; Wang J; Huang Z; Kuliszewski M; Post M. 2010. Gli2 influences proliferation in the developing lung through regulation of cyclin expression. Am J Respir Cell Mol Biol 42(5):615-25. [PubMed: 19574535]  [MGI Ref ID J:171486]

Ruzhynsky VA; McClellan KA; Vanderluit JL; Jeong Y; Furimsky M; Park DS; Epstein DJ; Wallace VA; Slack RS. 2007. Cell cycle regulator E2F4 is essential for the development of the ventral telencephalon. J Neurosci 27(22):5926-35. [PubMed: 17537963]  [MGI Ref ID J:121968]

Sheth R; Bastida MF; Ros M. 2007. Hoxd and Gli3 interactions modulate digit number in the amniote limb. Dev Biol 310(2):430-41. [PubMed: 17714700]  [MGI Ref ID J:128015]

Sheth R; Gregoire D; Dumouchel A; Scotti M; Pham JM; Nemec S; Bastida MF; Ros MA; Kmita M. 2013. Decoupling the function of Hox and Shh in developing limb reveals multiple inputs of Hox genes on limb growth. Development 140(10):2130-8. [PubMed: 23633510]  [MGI Ref ID J:197026]

Sheth R; Marcon L; Bastida MF; Junco M; Quintana L; Dahn R; Kmita M; Sharpe J; Ros MA. 2012. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338(6113):1476-80. [PubMed: 23239739]  [MGI Ref ID J:192010]

Shibukawa Y; Young B; Wu C; Yamada S; Long F; Pacifici M; Koyama E. 2007. Temporomandibular joint formation and condyle growth require Indian hedgehog signaling. Dev Dyn 236(2):426-34. [PubMed: 17191253]  [MGI Ref ID J:117221]

Sugito H; Shibukawa Y; Kinumatsu T; Yasuda T; Nagayama M; Yamada S; Minugh-Purvis N; Pacifici M; Koyama E. 2011. Ihh signaling regulates mandibular symphysis development and growth. J Dent Res 90(5):625-31. [PubMed: 21297010]  [MGI Ref ID J:171003]

Tan M; Hu X; Qi Y; Park J; Cai J; Qiu M. 2006. Gli3 mutation rescues the generation, but not the differentiation, of oligodendrocytes in Shh mutants. Brain Res 1067(1):158-63. [PubMed: 16336945]  [MGI Ref ID J:105340]

Tanimoto Y; Veistinen L; Alakurtti K; Takatalo M; Rice DP. 2012. Prevention of premature fusion of calvarial suture in GLI-Kruppel family member 3 (Gli3)-deficient mice by removing one allele of Runt-related transcription factor 2 (Runx2). J Biol Chem 287(25):21429-38. [PubMed: 22547067]  [MGI Ref ID J:186504]

Theil T. 2005. Gli3 is required for the specification and differentiation of preplate neurons. Dev Biol 286(2):559-71. [PubMed: 16168404]  [MGI Ref ID J:103594]

Theil T; Alvarez-Bolado G; Walter A; Ruther U. 1999. Gli3 is required for Emx gene expression during dorsal telencephalon development. Development 126(16):3561-71. [PubMed: 10409502]  [MGI Ref ID J:53903]

Theil T; Aydin S; Koch S; Grotewold L; Ruther U. 2002. Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 129(13):3045-54. [PubMed: 12070081]  [MGI Ref ID J:79849]

Tole S; Ragsdale CW; Grove EA. 2000. Dorsoventral patterning of the telencephalon is disrupted in the mouse mutant extra-toes(J). Dev Biol 217(2):254-65. [PubMed: 10625551]  [MGI Ref ID J:59923]

Tomioka N; Osumi N; Sato Y; Inoue T; Nakamura S; Fujisawa H; Hirata T. 2000. Neocortical origin and tangential migration of guidepost neurons in the lateral olfactory tract. J Neurosci 20(15):5802-12. [PubMed: 10908621]  [MGI Ref ID J:63610]

Town L; McGlinn E; Fiorenza S; Metzis V; Butterfield NC; Richman JM; Wicking C. 2009. The metalloendopeptidase gene Pitrm1 is regulated by hedgehog signaling in the developing mouse limb and is expressed in muscle progenitors. Dev Dyn 238(12):3175-3184. [PubMed: 19877269]  [MGI Ref ID J:154373]

Veltmaat JM; Relaix F; Le LT; Kratochwil K; Sala FG; van Veelen W; Rice R; Spencer-Dene B; Mailleux AA; Rice DP; Thiery JP; Bellusci S. 2006. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133(12):2325-35. [PubMed: 16720875]  [MGI Ref ID J:109476]

Vierkotten J; Dildrop R; Peters T; Wang B; Ruther U. 2007. Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134(14):2569-77. [PubMed: 17553904]  [MGI Ref ID J:122745]

Vyas A; Saha B; Lai E; Tole S. 2003. Paleocortex is specified in mice in which dorsal telencephalic patterning is severely disrupted. J Comp Neurol 466(4):545-53. [PubMed: 14566948]  [MGI Ref ID J:86254]

Wang C; Pan Y; Wang B. 2007. A hypermorphic mouse Gli3 allele results in a polydactylous limb phenotype. Dev Dyn 236(3):769-76. [PubMed: 17266131]  [MGI Ref ID J:118340]

Wang C; Ruther U; Wang B. 2007. The Shh-independent activator function of the full-length Gli3 protein and its role in vertebrate limb digit patterning. Dev Biol 305(2):460-9. [PubMed: 17400206]  [MGI Ref ID J:121609]

Wang H; Ge G; Uchida Y; Luu B; Ahn S. 2011. Gli3 is required for maintenance and fate specification of cortical progenitors. J Neurosci 31(17):6440-8. [PubMed: 21525285]  [MGI Ref ID J:171423]

Willaredt MA; Hasenpusch-Theil K; Gardner HA; Kitanovic I; Hirschfeld-Warneken VC; Gojak CP; Gorgas K; Bradford CL; Spatz J; Wolfl S; Theil T; Tucker KL. 2008. A crucial role for primary cilia in cortical morphogenesis. J Neurosci 28(48):12887-900. [PubMed: 19036983]  [MGI Ref ID J:142500]

Wuelling M; Kaiser FJ; Buelens LA; Braunholz D; Shivdasani RA; Depping R; Vortkamp A. 2009. Trps1, a regulator of chondrocyte proliferation and differentiation, interacts with the activator form of Gli3. Dev Biol 328(1):40-53. [PubMed: 19389374]  [MGI Ref ID J:149459]

Yu K; McGlynn S; Matise MP. 2013. Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord. Development 140(7):1594-604. [PubMed: 23482494]  [MGI Ref ID J:194893]

Yu T; Fotaki V; Mason JO; Price DJ. 2009. Analysis of early ventral telencephalic defects in mice lacking functional Gli3 protein. J Comp Neurol 512(5):613-27. [PubMed: 19048639]  [MGI Ref ID J:145009]

Yu W; McDonnell K; Taketo MM; Bai CB. 2008. Wnt signaling determines ventral spinal cord cell fates in a time-dependent manner. Development 135(22):3687-96. [PubMed: 18927156]  [MGI Ref ID J:143585]

Yu W; Wang Y; McDonnell K; Stephen D; Bai CB. 2009. Patterning of ventral telencephalon requires positive function of Gli transcription factors. Dev Biol 334(1):264-75. [PubMed: 19632216]  [MGI Ref ID J:153550]

Zakany J; Zacchetti G; Duboule D. 2007. Interactions between HOXD and Gli3 genes control the limb apical ectodermal ridge via Fgf10. Dev Biol 306(2):883-93. [PubMed: 17467687]  [MGI Ref ID J:122561]

Zimmer C; Lee J; Griveau A; Arber S; Pierani A; Garel S; Guillemot F. 2010. Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells. Development 137(2):293-302. [PubMed: 20040495]  [MGI Ref ID J:157253]

Zuniga A; Laurent F; Lopez-Rios J; Klasen C; Matt N; Zeller R. 2012. Conserved cis-regulatory regions in a large genomic landscape control SHH and BMP-regulated Gremlin1 expression in mouse limb buds. BMC Dev Biol 12(1):23. [PubMed: 22888807]  [MGI Ref ID J:187726]

Zuniga A; Zeller R. 1999. Gli3 (Xt) and formin (ld) participate in the positioning of the polarising region and control of posterior limb-bud identity. Development 126(1):13-21. [PubMed: 9834182]  [MGI Ref ID J:49322]

te Welscher P; Zuniga A; Kuijper S; Drenth T; Goedemans HJ; Meijlink F; Zeller R. 2002. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298(5594):827-30. [PubMed: 12215652]  [MGI Ref ID J:79710]

van Tuyl M; Groenman F; Wang J; Kuliszewski M; Liu J; Tibboel D; Post M. 2007. Angiogenic factors stimulate tubular branching morphogenesis of sonic hedgehog-deficient lungs. Dev Biol 303(2):514-526. [PubMed: 17187775]  [MGI Ref ID J:119174]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2085.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.
    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 11 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice
    Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2710.50
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.
    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 11 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice
    Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Control Information

  Control
   Untyped from the colony
   000664 C57BL/6J
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.6)