Strain Name:

B6C3Fe a/a-Rorasg/J

Stock Number:

000237

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Other products are available, see Purchasing Information for Cryopreserved Embryos

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names B6C3Fe-a/a-Rorasg/+    (Changed: 15-DEC-04 )
Type Mutant Strain; Spontaneous Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Specieslaboratory mouse
GenerationN44F1+N1p (01-AUG-04)
Generation Definitions

Appearance
black, ataxic, tremors
Related Genotype: a/a Rorasg/Rorasg

black, unaffected
Related Genotype: a/a +/? or a/a Rorasg/+

Description
Mice homozygous for the staggerer spontaneous mutation (Rorasg) show a staggering gait, mild tremor, hypotonia, and small size. The cerebellar cortex of homozygous mutant mice is grossly underdeveloped with a deficiency of granule cells and Purkinje cells. The remaining granule cells migrate inward from the external layer prematurely and then degenerate. Purkinje cells are much delayed in postnatal differentiation and lack the dendritic spines on which synapses with the parallel fibers from the granule cells normally occur. Staggerer mutant mice have been used as a source of an agranulate cerebellum in a number of investigations of the composition and function of granule cells. Kopmels et al. have reported a hyperproduction of IL1 biological activity and mRNA from LPS stimulated spleen cells of Rorasg/Rorasg mice on the C57BL/6J background relative to wild type siblings.

Control Information

  Control
   Untyped from the colony
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Rorasg allele
002651   B6.C3(Cg)-Rorasg/J
000285   B6.Cg-Rorasg + +/+ Myo5ad Bmp5se/J
View Strains carrying   Rorasg     (2 strains)

Strains carrying   a allele
003879   B10;TFLe-a/a T Itpr3tf/+ Itpr3tf/J
001538   B6 x B6C3Sn a/A-T(1;9)27H/J
000916   B6 x B6C3Sn a/A-T(5;12)31H/J
000602   B6 x B6C3Sn a/A-T(8;16)17H/J
000618   B6 x FSB/GnEi a/a Ctslfs/J
000577   B6 x STOCK a Oca2p Hps5ru2 Ednrbs/J
000601   B6 x STOCK a/a T(7;18)50H/J
000592   B6 x STOCK T(2;4)13H a/J
014608   B6;129S1-a Kitlsl-24J/GrsrJ
000231   B6;C3Fe a/a-Csf1op/J
000785   B6;D2-a Ces1ce/EiJ
000604   B6C3 a/A-T(10;13)199H +/+ Lystbg-J/J or Lystbg-2J/J
001750   B6C3Fe a/a-Eif3cXs-J/J
002807   B6C3Fe a/a-Meox2fla/J
000506   B6C3Fe a/a-Qkqk-v/J
000224   B6C3Fe a/a-Scyl1mdf/J
003020   B6C3Fe a/a-Zdhhc21dep/J
001037   B6C3Fe a/a-Agtpbp1pcd/J
000221   B6C3Fe a/a-Alx4lst-J/J
002062   B6C3Fe a/a-Atp7aMo-8J/J
001756   B6C3Fe a/a-Cacng2stg/J
001815   B6C3Fe a/a-Col1a2oim/J
000209   B6C3Fe a/a-Dh/J
000211   B6C3Fe a/a-Dstdt-J/J
000210   B6C3Fe a/a-Edardl-J/J
000207   B6C3Fe a/a-Edaraddcr/J
000182   B6C3Fe a/a-Eef1a2wst/J
001278   B6C3Fe a/a-Glra1spd/J
000241   B6C3Fe a/a-Glrbspa/J
002875   B6C3Fe a/a-Hoxd13spdh/J
000304   B6C3Fe a/a-Krt71Ca Scn8amed-J/J
000226   B6C3Fe a/a-Largemyd/J
000636   B6C3Fe a/a-Lmx1adr-J/J
001280   B6C3Fe a/a-Lse/J
001573   B6C3Fe a/a-MitfMi/J
001035   B6C3Fe a/a-Napahyh/J
000181   B6C3Fe a/a-Otogtwt/J
000278   B6C3Fe a/a-Papss2bm Hps1ep Hps6ru/J
000205   B6C3Fe a/a-Papss2bm/J
002078   B6C3Fe a/a-Pcdh15av-2J/J
000246   B6C3Fe a/a-Pitpnavb/J
001430   B6C3Fe a/a-Ptch1mes/J
000235   B6C3Fe a/a-Relnrl/J
000290   B6C3Fe a/a-Sox10Dom/J
000230   B6C3Fe a/a-Tcirg1oc/J
003612   B6C3Fe a/a-Trak1hyrt/J
001512   B6C3Fe a/a-Ttnmdm/J
001607   B6C3Fe a/a-Unc5crcm/J
000005   B6C3Fe a/a-Wc/J
000243   B6C3Fe a/a-Wnt1sw/J
000248   B6C3Fe a/a-Xpl/J
000624   B6C3Fe a/a-anx/J
008044   B6C3Fe a/a-bpck/J
002018   B6C3Fe a/a-din/J
002339   B6C3Fe a/a-nma/J
000240   B6C3Fe a/a-soc/J
000063   B6C3Fe a/a-sy/J
001055   B6C3Fe a/a-tip/J
000245   B6C3Fe a/a-tn/J
000296   B6C3Fe-a/a Hoxa13Hd Mcoln3Va-J/J
000019   B6C3Fe-a/a-Itpr1opt/J
001022   B6C3FeF1/J a/a
006450   B6EiC3 a/A-Vss/GrsrJ
000971   B6EiC3 a/A-Och/J
000551   B6EiC3 a/A-Tbx15de-H/J
000557   B6EiC3-+ a/LnpUl A/J
000503   B6EiC3Sn a/A-Gy/J
001811   B6EiC3Sn a/A-Otcspf-ash/J
002343   B6EiC3Sn a/A-Otcspf/J
000391   B6EiC3Sn a/A-Pax6Sey-Dey/J
001923   B6EiC3Sn a/A-Ts(417)2Lws TimT(4;17)3Lws/J
000225   C3FeLe.B6 a/a-Ptpn6me/J
000198   C3FeLe.B6-a/J
000291   C3FeLe.Cg-a/a Hm KitlSl Krt71Ca-J/J
001886   C3HeB/FeJLe a/a-gnd/J
000584   C57BL/6J-+ T(1;2)5Ca/a +/J
000670   DBA/1J
000671   DBA/2J
001057   HPT/LeJ
000260   JGBF/LeJ
000265   MY/HuLeJ
000308   SSL/LeJ
000994   STOCK a Myo5ad Mregdsu/J
000064   STOCK a Tyrp1b Pmelsi/J
002238   STOCK a Tyrp1b shmy/J
001433   STOCK a skt/J
000579   STOCK a tp/J
000319   STOCK a us/J
002648   STOCK a/a Cln6nclf/J
000317   STOCK a/a Egfrwa2/J
000302   STOCK a/a MitfMi-wh +/+ Itpr1opt/J
000286   STOCK a/a Myo5ad fd/+ +/J
000281   STOCK a/a Tmem79ma Flgft/J
000206   STOCK a/a Tyrc-h/J
001432   STOCK a/a Tyrp1b Ndc1sks/Tyrp1b +/J
000312   STOCK stb + a/+ Fignfi a/J
000596   STOCK T(2;11)30H/+ x AEJ-a Gdf5bp-H/J or A/J-a Gdf5bp-J/J
000970   STOCK T(2;16)28H A/T(2;16)28H a/J
000590   STOCK T(2;4)1Sn a/J
000594   STOCK T(2;8)26H a/T(2;8)26H a Tyrp1+/Tyrp1b/J
000623   TR/DiEiJ
View Strains carrying   a     (101 strains)

Strains carrying other alleles of Rora
005047   C57BL/6J-Rorasg-3J/J
View Strains carrying other alleles of Rora     (1 strain)

Strains carrying other alleles of a
002655   Mus pahari/EiJ
000251   AEJ.Cg-ae +/a Gdf5bp-H/J
000202   AEJ/Gn-bd/J
000199   AEJ/GnLeJ
000433   B10.C-H3c H13? A/(28NX)SnJ
000427   B10.CE-H13b Aw/(30NX)SnJ
000423   B10.KR-H13? A/SnJ
000420   B10.LP-H13b Aw/Sn
000477   B10.PA-Bloc1s6pa H3e at/SnJ
000419   B10.UW-H3b we Pax1un at/SnJ
000593   B6 x B6CBCa Aw-J/A-Grid2Lc T(2;6)7Ca MitfMi-wh/J
000502   B6 x B6CBCa Aw-J/A-Myo5aflr Gnb5flr/J
000599   B6 x B6CBCa Aw-J/A-T(5;13)264Ca KitW-v/J
002083   B6 x B6EiC3 a/A-T(7;16)235Dn/J
000507   B6 x B6EiC3 a/A-Otcspf/J
003759   B6 x B6EiC3Sn a/A-T(10;16)232Dn/J
002071   B6 x B6EiC3Sn a/A-T(11;17)202Dn/J
002113   B6 x B6EiC3Sn a/A-T(11A2;16B3)238Dn/J
002068   B6 x B6EiC3Sn a/A-T(11B1;16B5)233Dn/J
002069   B6 x B6EiC3Sn a/A-T(14E4or5;16B5)225Dn/J
001926   B6 x B6EiC3Sn a/A-T(15;16)198Dn/J
001832   B6 x B6EiC3Sn a/A-T(15E;16B1)60Dn/J
003758   B6 x B6EiC3Sn a/A-T(16C3-4;17A2)65Dn/J
001833   B6 x B6EiC3Sn a/A-T(1C2;16C3)45Dn/J
001903   B6 x B6EiC3Sn a/A-T(6F;18C)57Dn/J
001535   B6 x B6EiC3Sn a/A-T(8A4;12D1)69Dn/J
001831   B6 x B6EiC3Sn a/A-T(8C3;16B5)164Dn/J
002016   B6(Cg)-Aw-J EdaTa-6J Chr YB6-Sxr/EiJ
000600   B6-Gpi1b x B6CBCa Aw-J/A-T(7;15)9H Gpi1a/J
000769   B6.C/(HZ18)By-at-44J/J
000203   B6.C3-Aiy/a/J
000017   B6.C3-Avy/J
001572   B6.C3-am-J/J
000628   B6.CE-A Amy1b Amy2a5b/J
001809   B6.Cg-Aw-J EdaTa-6J +/+ ArTfm/J
000552   B6.Cg-Aw-J EdaTa-6J Sxr
001730   B6.Cg-Aw-J EdaTa-6J Sxrb Hya-/J
000841   B6.Cg-Aw-J EdaTa-By/J
000021   B6.Cg-Ay/J
100409   B6129PF1/J-Aw-J/Aw
004200   B6;CBACa Aw-J/A-Npr2cn-2J/GrsrJ
000505   B6C3 Aw-J/A-Bloc1s5mu/J
000604   B6C3 a/A-T(10;13)199H +/+ Lystbg-J/J or Lystbg-2J/J
000065   B6C3Fe a/a-we Pax1un at/J
003301   B6C3FeF1 a/A-Eya1bor/J
000314   B6CBACa Aw-J/A-EdaTa/J-XO
000501   B6CBACa Aw-J/A-Aifm1Hq/J
001046   B6CBACa Aw-J/A-Grid2Lc/J
000500   B6CBACa Aw-J/A-Gs/J
002703   B6CBACa Aw-J/A-Hydinhy3/J
000247   B6CBACa Aw-J/A-Kcnj6wv/J
000287   B6CBACa Aw-J/A-Plp1jp EdaTa/J
000515   B6CBACa Aw-J/A-SfnEr/J
000242   B6CBACa Aw-J/A-spc/J
000288   B6CBACa Aw-J/A-we a Mafbkr/J
001201   B6CBACaF1/J-Aw-J/A
006450   B6EiC3 a/A-Vss/GrsrJ
000557   B6EiC3-+ a/LnpUl A/J
000504   B6EiC3Sn a/A-Cacnb4lh/J
000553   B6EiC3Sn a/A-Egfrwa2 Wnt3avt/J
001811   B6EiC3Sn a/A-Otcspf-ash/J
002343   B6EiC3Sn a/A-Otcspf/J
001923   B6EiC3Sn a/A-Ts(417)2Lws TimT(4;17)3Lws/J
001875   B6EiC3SnF1/J
000638   C3FeB6 A/Aw-J-Sptbn4qv-J/J
000200   C3FeB6 A/Aw-J-Ankank/J
001203   C3FeB6F1/J A/Aw-J
001272   C3H/HeSnJ-Ahvy/J
000099   C3HeB/FeJ-Avy/J
000338   C57BL/6J Aw-J-EdaTa-6J/J
000258   C57BL/6J-Ai/a/J
000774   C57BL/6J-Asy/a/J
000569   C57BL/6J-Aw-J-EdaTa +/+ ArTfm/J
000051   C57BL/6J-Aw-J/J
000055   C57BL/6J-at-33J/J
000070   C57BL/6J-atd/J
002468   KK.Cg-Ay/J
000262   LS/LeJ
000283   LT.CAST-A/J
001759   STOCK A Tyrc Sha/J
001427   STOCK Aw us/J
001145   WSB/EiJ
View Strains carrying other alleles of a     (82 strains)

Phenotype

Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Rorasg/Rora+

        involves: C57BL/6J
  • behavior/neurological phenotype
  • abnormal spatial learning
    • mice exhibit impaired spatial learning in a Z-maze filled with water compared with wild-type mice   (MGI Ref ID J:30686)

Rorasg/Rora+

        involves: C57BL
  • nervous system phenotype
  • abnormal cerebellum morphology   (MGI Ref ID J:1431)
    • abnormal cerebellar layer morphology   (MGI Ref ID J:1431)
      • abnormal cerebellar granule layer morphology
        • granule cell layer decreases with age   (MGI Ref ID J:1431)
        • cell density is reduced   (MGI Ref ID J:1431)
        • decreased cerebellar granule cell number
          • cell numbers are about 35% of controls   (MGI Ref ID J:1431)
      • decreased Purkinje cell number
        • significant loss of Purkinje cells at 1 year of age   (MGI Ref ID J:1431)
    • small cerebellum
      • decreased cross-sectional area of the cerebellum at 1 year of age   (MGI Ref ID J:1431)
  • abnormal inferior olivary complex morphology
    • neuron counts are 60% of controls at 1 year of age   (MGI Ref ID J:1431)

Rorasg/Rorasg

        involves: obese stock
  • mortality/aging
  • partial postnatal lethality
    • about 50% of mutants die by weaning   (MGI Ref ID J:13140)
  • nervous system phenotype
  • abnormal brain morphology   (MGI Ref ID J:13140)
    • abnormal cerebellum morphology
      • cerebellum of adults shows tiny folia with indistinct fissures   (MGI Ref ID J:13140)
      • cerebellum is less than one-third the size of wild-type littermates   (MGI Ref ID J:13140)
      • adult cerebellar cell surface with embryonic characteristics   (MGI Ref ID J:6068)
      • cells agglutinable with wheat germ agglutinin but not wit h Con-A   (MGI Ref ID J:6068)
      • abnormal cerebellar foliation   (MGI Ref ID J:13140)
      • abnormal cerebellar layer morphology   (MGI Ref ID J:5304)
        • abnormal Purkinje cell morphology
          • cells are randomly oriented   (MGI Ref ID J:121314)
          • poorly elaborated dendritic trees   (MGI Ref ID J:121314)
        • abnormal cerebellar granule layer morphology
          • granular cell layer displays a paucity of cells in mutants   (MGI Ref ID J:13140)
          • abnormal cerebellar granule cell morphology
            • external granule layer less developed at birth   (MGI Ref ID J:5304)
            • reduced rate of cell proliferation at 1 and 5 days of age   (MGI Ref ID J:5304)
            • cells migrate prematurely from the external granule layer having undergone fewer cell divisions   (MGI Ref ID J:5304)
            • conspicuous differences in the internal granule layer at 10 days of age   (MGI Ref ID J:5304)
            • decreased cerebellar granule cell number
              • 25% reduction in granule cells in the internal granule cell layer   (MGI Ref ID J:5304)
        • abnormal cerebellar molecular layer   (MGI Ref ID J:13140)
          • thin cerebellar molecular layer   (MGI Ref ID J:13140)
      • small cerebellum   (MGI Ref ID J:13140)
        • weight is significantly less than controls even before neurological symptoms appear   (MGI Ref ID J:5304)
        • less than half of control weight at 5 days of age   (MGI Ref ID J:5304)
    • abnormal cochlear VIII nucleus morphology
      • cochlear nuclei are reduced in volume and severely malformed   (MGI Ref ID J:121314)
      • dendritic spines are rare on cartwheel cells at 1 month of age   (MGI Ref ID J:121314)
      • cartwheel cells are rarely seen in adults   (MGI Ref ID J:121314)
    • abnormal olfactory bulb morphology
      • fewer astrocytes found   (MGI Ref ID J:55239)
      • dendro-dendritic asymmetrical synapses are abundant   (MGI Ref ID J:55239)
      • abnormal olfactory bulb layer morphology   (MGI Ref ID J:55239)
        • abnormal olfactory bulb external plexiform layer morphology
          • thinner than controls   (MGI Ref ID J:55239)
          • lower density of secondary dendrites   (MGI Ref ID J:55239)
          • large, empty, intercellular spaces   (MGI Ref ID J:55239)
        • abnormal olfactory bulb glomerular layer morphology
          • thinner than controls   (MGI Ref ID J:55239)
          • glomerular surface reduced about 15%   (MGI Ref ID J:55239)
          • reduced cell number and intercellular space   (MGI Ref ID J:55239)
          • reduced number of interneuronal relays   (MGI Ref ID J:55239)
        • abnormal olfactory bulb granule cell layer morphology
          • composed of several layers of anaxonal interneurons with smaller than normal cell bodies   (MGI Ref ID J:55239)
          • nuclear size is smaller than controls   (MGI Ref ID J:55239)
          • abnormal olfactory bulb granule cell morphology
            • pycnotic nuclei   (MGI Ref ID J:55239)
            • vacuolations and ruptured membranes   (MGI Ref ID J:55239)
        • abnormal olfactory bulb internal plexiform layer morphology
          • thinner than controls   (MGI Ref ID J:55239)
          • less distinct   (MGI Ref ID J:55239)
        • abnormal olfactory bulb mitral cell layer morphology
          • somewhat discontinuous   (MGI Ref ID J:55239)
        • abnormal olfactory bulb outer nerve layer morphology
          • glial cells with more processes ensheathing axons in the nerve layer   (MGI Ref ID J:55239)
      • small olfactory bulb
        • volume slightly reduced   (MGI Ref ID J:55239)
  • abnormal nervous system physiology
    • immunoreactive somatostatin is significantly elevated in both the cerebrum and in the cerebellum   (MGI Ref ID J:28478)
  • behavior/neurological phenotype
  • abnormal motor capabilities/coordination/movement   (MGI Ref ID J:13140)
    • abnormal gait
      • gait is shuffling and hesitant, interrupted every few steps by lurching motions side-to-side   (MGI Ref ID J:13140)
      • abnormal gait is apparent at ~2 weeks of age   (MGI Ref ID J:13140)
    • abnormal limb posture
      • some animals have hindlimbs held abducted and everted at 45 degrees at rest   (MGI Ref ID J:13140)
    • ataxia   (MGI Ref ID J:13140)
      • clearly visible in all mice   (MGI Ref ID J:46854)
      • mice stumble at a rate 40 times greater than WT mice   (MGI Ref ID J:46854)
      • treatment with a thyrotropin releasing hormone analog improves ataxia (fewer falls in a given distance travelled)   (MGI Ref ID J:18435)
    • decreased grip strength
      • mice have a mean hanging time of 12 seconds compared to over 3 minutes for WT mice   (MGI Ref ID J:46854)
    • hypoactivity
      • mutants remain stationary much more than littermates   (MGI Ref ID J:13140)
    • impaired coordination   (MGI Ref ID J:13140)
      • mice fall off an elevated rod on average of 13 seconds compared to over 3 minutes for WT mice   (MGI Ref ID J:46854)
    • limb grasping
      • is observed in all mice   (MGI Ref ID J:46854)
    • tremors
      • mild tremors accompany initiation of movement   (MGI Ref ID J:13140)
  • abnormal motor learning
    • mice have an impaired ability to learn how to hang onto a rotating rod   (MGI Ref ID J:46854)
    • mice hang onto the rod as opposed the walking strategy WT mice exclusively use   (MGI Ref ID J:46854)
    • scores do not improve with 10 days of training   (MGI Ref ID J:46854)
  • growth/size/body phenotype
  • decreased body size
    • mutants are smaller than littermates   (MGI Ref ID J:13140)
  • homeostasis/metabolism phenotype
  • abnormal hormone level
    • prothyrotropin releasing hormone levels are elevated in the thalamus, cerebellum, brainstem, and spinal cord   (MGI Ref ID J:28467)

Rorasg/Rorasg

        involves: C57BL/6
  • homeostasis/metabolism phenotype
  • abnormal lipid homeostasis
    • plasma APOA1 and APOA2 concentrations are approximately 2 fold lower than in wild-type controls on a normal diet, and the Apoa1 mRNA level in intestine is diminished relative to wild-type, although liver expression of Apoa1 is comparable with wild-type   (MGI Ref ID J:52105)
    • the production rate of APOA1 is diminished, but the fractional catabolic rate is comparable to wild-type   (MGI Ref ID J:52105)
    • decreased circulating cholesterol level
      • plasma total cholesterol levels are significantly lower in both male and female homozygotes than in wild-type controls   (MGI Ref ID J:52105)
      • although cholesterol levels increase on an atherosclerotic diet, homozygotes still have lower plasma cholesterol than wild-type controls also fed this diet   (MGI Ref ID J:52105)
      • decreased circulating HDL cholesterol level
        • plasma HDL cholesterol level is significantly lower in both male and female homozygotes than in wild-type controls, and females have significantly lower plasma HDL level than males both for the homozygous and wild-type data sets. This is true even on an atherogenic diet.   (MGI Ref ID J:52105)
  • cardiovascular system phenotype
  • abnormal vasoconstriction
    • contractions of the mesenteric artery induced by phenylephrin or serotonin are less than in controls   (MGI Ref ID J:109735)
  • abnormal vasodilation
    • blood flow induced dilation of the mesenteric artery is less than for controls   (MGI Ref ID J:109735)
    • endothelium-dependent and independent dilation is reduced   (MGI Ref ID J:109735)
  • atherosclerotic lesions
    • the atherosclerotic lesions induced in homozygotes by 9 weeks of an atherosclerotic diet have a 6 fold greater area in female homozygotes and a 7.5 fold greater area in male homozygotes than those in wild-type controls on the same diet   (MGI Ref ID J:52105)
    • increased susceptibility to atherosclerosis
      • Although homozygotes fed a normal diet do not display abnormal atherosclerotic lesions, 9 weeks of an atherosclerotic diet induces exaggerated altherosclerotic lesions compared with wild-type controls on the atherosclerotic diet   (MGI Ref ID J:52105)
  • decreased mean systemic arterial blood pressure
    • 80mmHg vs 87mmHg for controls   (MGI Ref ID J:109735)
    • phenylephrine causes less blood pressure increase than in controls   (MGI Ref ID J:109735)
    • acetyl choline causes less blood pressure decrease than in controls   (MGI Ref ID J:109735)
  • increased angiogenesis
    • significantly increased in the ischemic leg 28 days after femoral artery ligature   (MGI Ref ID J:115425)
    • 80% rise in vascular density relative to controls   (MGI Ref ID J:115425)
    • 3 fold increase in capillary density relative to controls   (MGI Ref ID J:115425)
  • immune system phenotype
  • *normal* immune system phenotype
    • white blood cell, lymphocyte, and neutrophil counts are not significantly different between homozygotes and wild-type controls   (MGI Ref ID J:52105)
    • abnormal immune system organ morphology   (MGI Ref ID J:2228)
      • spleen atrophy   (MGI Ref ID J:2228)
      • thymus atrophy   (MGI Ref ID J:2228)
    • abnormal immune system physiology
      • abnormal immune responses   (MGI Ref ID J:2228)
      • abnormal macrophage physiology
        • LPS stimulated macrophage produce 2 fold more IL-1 relative to macrophage of controls   (MGI Ref ID J:28095)
      • increased IgE level
        • levels are elevated in unsensitized mice   (MGI Ref ID J:135863)
        • OVA sensitization causes an additional elevation in IgE levels   (MGI Ref ID J:135863)
        • OVA challenge of sensitized mice causes a very great increase in IgE levels   (MGI Ref ID J:135863)
      • increased interleukin-1 secretion
        • LPS stimulated macrophage produce 2 fold more IL-1 relative to macrophage of controls   (MGI Ref ID J:28095)
      • lung inflammation
        • OVA sensitized and challenged mice experience less infiltration of lymphocytes and polymorphonuclear cells into peribronchiolar and perivascular regions of the lungs   (MGI Ref ID J:135863)
        • less alveolar infiltration as well   (MGI Ref ID J:135863)
        • less increase of inflammatory cells in bronchoalveolar lavage   (MGI Ref ID J:135863)
        • less increase of IL-4, IL-5, and IL-13   (MGI Ref ID J:135863)
  • nervous system phenotype
  • abnormal cerebellum morphology
    • embryonic, high sialic acid forms of N-CAM persist on cell surfaces to 14 and 21 days of age   (MGI Ref ID J:6930)
  • abnormal inferior olivary complex morphology
    • individual olivary subnuclei are poorly defined relative to controls   (MGI Ref ID J:20982)
    • definition of subnuclei is better in 21 day old mice but regresses in adults   (MGI Ref ID J:20982)
    • olivary dendrites tend to be multipolar and well branched   (MGI Ref ID J:20982)
    • number of neurons drops 30% within 3 days of birth and continues to decline for 2 months   (MGI Ref ID J:20982)
    • number of neurons in adults is decreased 60% relative to newborns   (MGI Ref ID J:20982)
    • adult cell bodies are smaller than in newborns   (MGI Ref ID J:20982)
    • inferior olive extends further dorsally in the midline   (MGI Ref ID J:28468)
    • decreased cell density   (MGI Ref ID J:28468)
  • reproductive system phenotype
  • abnormal external female genitalia morphology
    • vaginal opening averaged 35 days (never earlier than 31 days) while controls averaged 28 days (earliest 26 days)   (MGI Ref ID J:1960)
  • abnormal female reproductive system physiology   (MGI Ref ID J:1960)
    • abnormal estrous cycle
      • irregular cycles   (MGI Ref ID J:1960)
      • delayed estrous cycle
        • onset of estrus at 45 days vs 40 days for controls   (MGI Ref ID J:1960)
      • prolonged estrus
        • prolonged vaginal estrus relative to controls   (MGI Ref ID J:1960)
      • prolonged metestrus   (MGI Ref ID J:1960)
    • reduced female fertility
      • no females mate before 2.5 months of age   (MGI Ref ID J:1960)
      • females sexual activity decreases after 4.5 months   (MGI Ref ID J:1960)
      • only one of 10 females still mating at 6 months of age   (MGI Ref ID J:1960)
  • abnormal fertility/fecundity
    • some couples receiving vestibular stimulation mated between the ages of 36 and 89 days of age   (MGI Ref ID J:14535)
    • no unstimulated couples mated   (MGI Ref ID J:14535)
    • reduced female fertility
      • no females mate before 2.5 months of age   (MGI Ref ID J:1960)
      • females sexual activity decreases after 4.5 months   (MGI Ref ID J:1960)
      • only one of 10 females still mating at 6 months of age   (MGI Ref ID J:1960)
  • abnormal male reproductive system physiology
    • vestibular stimulation improves the ability of males to mate with experienced females   (MGI Ref ID J:14535)
    • one to two months of social isolation results in increased mounting behavior when a receptive female is encountered   (MGI Ref ID J:26698)
    • successful mating occurs from 35-160 days after the end of male isolation   (MGI Ref ID J:26698)
  • behavior/neurological phenotype
  • abnormal maternal nurturing
    • females from heterozygous parents fail to nurture pups to weaning   (MGI Ref ID J:14497)
    • females from selected homozygous lineages sometimes (9/14) raise pups to weaning although growth rate of pups is lower than normal   (MGI Ref ID J:14497)
  • abnormal spatial learning
    • higher latency to escape at all time tested using two types of water maze   (MGI Ref ID J:30012)
    • less age related degradation in latency to escape although it is always greater than in controls   (MGI Ref ID J:30012)
  • respiratory system phenotype
  • abnormal lung compliance
    • lung resistance in response to methacholine challenge of OVA exposed mice fails to increase   (MGI Ref ID J:135863)
  • abnormal respiratory mucosa morphology
    • less mucous cell hyperplasia in airways after OVA exposure of sensitized mice   (MGI Ref ID J:135863)
  • lung inflammation
    • OVA sensitized and challenged mice experience less infiltration of lymphocytes and polymorphonuclear cells into peribronchiolar and perivascular regions of the lungs   (MGI Ref ID J:135863)
    • less alveolar infiltration as well   (MGI Ref ID J:135863)
    • less increase of inflammatory cells in bronchoalveolar lavage   (MGI Ref ID J:135863)
    • less increase of IL-4, IL-5, and IL-13   (MGI Ref ID J:135863)
  • taste/olfaction phenotype
  • *normal* taste/olfaction phenotype
    • male mice are able to distinguish between the vaginal secretions of estrus and non-estrus females   (MGI Ref ID J:15645)
    • abnormal olfaction
      • aversive threshold concentration for butanol is increased   (MGI Ref ID J:39053)
      • attractive threshold concentration for vanillin is increased   (MGI Ref ID J:39053)
      • amyl alchohol odor induced evoked field potential shows an increased latency preceding the functional response of mitral cells in the olfactory bulb   (MGI Ref ID J:107925)
      • N1 and N2 response amplitudes of the evoked field potential are significantly reduced   (MGI Ref ID J:107925)
  • hematopoietic system phenotype
  • abnormal macrophage physiology
    • LPS stimulated macrophage produce 2 fold more IL-1 relative to macrophage of controls   (MGI Ref ID J:28095)
  • increased IgE level
    • levels are elevated in unsensitized mice   (MGI Ref ID J:135863)
    • OVA sensitization causes an additional elevation in IgE levels   (MGI Ref ID J:135863)
    • OVA challenge of sensitized mice causes a very great increase in IgE levels   (MGI Ref ID J:135863)
  • spleen atrophy   (MGI Ref ID J:2228)
  • thymus atrophy   (MGI Ref ID J:2228)
  • muscle phenotype
  • abnormal vasoconstriction
    • contractions of the mesenteric artery induced by phenylephrin or serotonin are less than in controls   (MGI Ref ID J:109735)
  • abnormal vasodilation
    • blood flow induced dilation of the mesenteric artery is less than for controls   (MGI Ref ID J:109735)
    • endothelium-dependent and independent dilation is reduced   (MGI Ref ID J:109735)
  • endocrine/exocrine gland phenotype
  • thymus atrophy   (MGI Ref ID J:2228)

Rorasg/Rorasg

        involves: C57BL
  • nervous system phenotype
  • abnormal cerebellum morphology
    • cell surface antigen characteristics more embryonic in nature   (MGI Ref ID J:6088)
    • abnormal cerebellar layer morphology   (MGI Ref ID J:5968)
      • abnormal cerebellar Purkinje cell layer
        • Purkinje cell band thicker at 3 days of age   (MGI Ref ID J:5968)
        • abnormal Purkinje cell morphology
          • cells smaller in size with thinner processes   (MGI Ref ID J:5968)
          • larger, typical Purkinje cells are absent in intermediate regions of the cerebellum   (MGI Ref ID J:6185)
          • 60-90% of Purkinje cells are lost   (MGI Ref ID J:6185)
          • multiple climbing fiber synaptic connections to each Purkinje cell are maintained   (MGI Ref ID J:6260)
          • abnormal Purkinje cell dendrite morphology
            • no synapses form between Purkinje cell spines and the parallel fibers at 14 to 43 days of age   (MGI Ref ID J:5968)
            • reduced growth of dendrite arbor   (MGI Ref ID J:5968)
          • abnormal Purkinje cell differentiation
            • retarded   (MGI Ref ID J:5968)
        • delaminated Purkinje cell layer
          • typical laminar array fails to form   (MGI Ref ID J:5968)
      • abnormal cerebellar granule layer morphology   (MGI Ref ID J:5968)
        • abnormal cerebellar granule cell morphology
          • no synapses form between the parallel fibers and the Purkinje cell spines at 14 to 43 days of age   (MGI Ref ID J:5968)
          • synapses do develop between parallel fibers and stellate and basket cells   (MGI Ref ID J:5968)
          • degenerating parallel fibers begin to appear around 7 days and is well advanced by 14 days   (MGI Ref ID J:5968)
        • thin cerebellar granule layer   (MGI Ref ID J:5968)
      • thin cerebellar molecular layer   (MGI Ref ID J:5968)
    • abnormal cerebellum deep nucleus morphology
      • white matter in deep cerebellar nuclei is reduced to 42% of controls   (MGI Ref ID J:6554)
      • area occupied by deep neurons is reduced to 36% of controls but cell numbers are not reduced   (MGI Ref ID J:6554)
      • neurons in the deep nuclei are smaller than seen in controls   (MGI Ref ID J:6554)
    • small cerebellum
      • 62% of normal weight at birth   (MGI Ref ID J:6875)
      • weight is 36% of normal at 7 days   (MGI Ref ID J:6875)
  • abnormal neurotransmitter level
    • taurine and aspartate levels decline between 7 and 10 days   (MGI Ref ID J:6875)
    • low levels persist   (MGI Ref ID J:6875)
    • GABA levels in deep cerebellar nuclei are reduced at all ages examined   (MGI Ref ID J:6875)
    • GABA levels are 52% of controls at 7 days and 30% at 3 weeks   (MGI Ref ID J:6875)
    • abnormal synaptic glutamate release
      • glutamate levels drop between 7 and 10 days   (MGI Ref ID J:6875)
      • levels continue to drop over time   (MGI Ref ID J:6875)
  • homeostasis/metabolism phenotype
  • abnormal noradrenaline level
    • significantly elevated in cerebellum   (MGI Ref ID J:164122)
    • significantly elevated in cerebral cortex   (MGI Ref ID J:164122)
    • measurably increased in the spinal cord   (MGI Ref ID J:164122)
  • cellular phenotype
  • abnormal Purkinje cell differentiation
    • retarded   (MGI Ref ID J:5968)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Rorasg related

Neurobiology Research
Ataxia (Movement) Defects
Cerebellar Defects
      Purkinje cell defect
Receptor Defects
Tremor Defects

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Rorasg
Allele Name staggerer
Allele Type Spontaneous
Common Name(s) RORalpha-; sg;
Strain of Originobese stock
Gene Symbol and Name Rora, RAR-related orphan receptor alpha
Chromosome 9
Gene Common Name(s) 9530021D13Rik; NR1F1; RIKEN cDNA 9530021D13 gene; ROR1; ROR2; ROR3; RZR-ALPHA; RZRA; Tennessee Mouse Genome Consortium 26; neuroscience mutagenesis facility, 267; nmf267; sg; staggerer; tmgc26;
Molecular Note This allele contains a 6.5kb genomic deletion of an exon encoding part of the ligand binding domain. The deletion results in an exon-skipping event that introduces a shift in the reading frame. The resulting protein is predicted to be truncated due to introduction of a premature stop codon. [MGI Ref ID J:31470]
 
Allele Symbol a
Allele Name nonagouti
Allele Type Spontaneous
Strain of Originold mutant of the mouse fancy
Gene Symbol and Name a, nonagouti
Chromosome 2
Gene Common Name(s) AGSW; AGTI; AGTIL; ASP; As; SHEP9; agouti; agouti signal protein; agouti suppressor;
General Note Phenotypic Similarity to Human Syndrome: Metabolic Syndrome in mice homozygous for Apoetm1Unc and heterozygous for Ay and a (J:177084)
Molecular Note Characterization of this allele shows an insertion of DNA comprised of a 5.5kb virus-like element, VL30, into the first intron of the agouti gene. The VL30 element itself contains an additional 5.5 kb sequence, flanked by 526 bp of direct repeats. The host integration site is the same as for at-2Gso and Aw-38J and includes a duplication of four nucleotides of host DNA and a deletion of 2 bp from the end of each repeat. Northern analysis of mRNA from skin of homozygotes shows a smaller agouti message and levels 8 fold lower than found in wild-type. [MGI Ref ID J:16984] [MGI Ref ID J:24934]

Genotyping

Genotyping Information

Genotyping Protocols

Rorasg, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Mamontova A; Seguret-Mace S; Esposito B; Chaniale C; Bouly M; Delhaye-Bouchaud N; Luc G; Staels B; Duverger N; Mariani J; Tedgui A. 1998. Severe atherosclerosis and hypoalphalipoproteinemia in the staggerer mouse, a mutant of the nuclear receptor RORalpha. Circulation 98(24):2738-43. [PubMed: 9851961]  [MGI Ref ID J:52105]

Additional References

Kopmels B; Wollman EE; Guastavino JM; Delhaye-Bouchaud N; Fradelizi D; Mariani J. 1990. Interleukin-1 hyperproduction by in vitro activated peripheral macrophages from cerebellar mutant mice. J Neurochem 55(6):1980-5. [PubMed: 2230805]  [MGI Ref ID J:28095]

Yoon CH. 1972. Developmental mechanism for changes in cerebellum of staggerer mouse, a neurological mutant of genetic origin. Neurology 22(7):743-54. [PubMed: 4673255]  [MGI Ref ID J:5304]

Rorasg related

Angers M; Uldry M; Kong D; Gimble JM; Jetten AM. 2008. Mfsd2a encodes a novel major facilitator superfamily domain-containing protein highly induced in brown adipose tissue during fasting and adaptive thermogenesis. Biochem J 416(3):347-55. [PubMed: 18694395]  [MGI Ref ID J:143949]

Bahjaoui-Bouhaddi M; Padilla F; Nicolet M; Cifuentes-Diaz C; Fellmann D; Mege RM. 1997. Localized deposition of M-cadherin in the glomeruli of the granular layer during the postnatal development of mouse cerebellum. (Erratum 1997;382:139) J Comp Neurol 378(2):180-95. [PubMed: 9120059]  [MGI Ref ID J:38641]

Bakalian A; Kopmels B; Messer A; Fradelizi D; Delhaye-Bouchaud N; Wollman E; Mariani J. 1992. Peripheral macrophage abnormalities in mutant mice with spinocerebellar degeneration. Res Immunol 143(1):129-39. [PubMed: 1565842]  [MGI Ref ID J:2228]

Baumjohann D; Kageyama R; Clingan JM; Morar MM; Patel S; de Kouchkovsky D; Bannard O; Bluestone JA; Matloubian M; Ansel KM; Jeker LT. 2013. The microRNA cluster miR-17 approximately 92 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nat Immunol 14(8):840-8. [PubMed: 23812098]  [MGI Ref ID J:205722]

Baurle J; Hoshi M; Grusser-Cornehls U. 1998. Dependence of parvalbumin expression on Purkinje cell input in the deep cerebellar nuclei. J Comp Neurol 392(4):499-514. [PubMed: 9514513]  [MGI Ref ID J:118391]

Bensoula AN; Guastavino JM; Lalonde R; Portet R; Bertin R; Krafft B. 1995. Spatial navigation of staggerer and normal mice during juvenile and adult stages. Physiol Behav 58(5):823-5. [PubMed: 8577876]  [MGI Ref ID J:30012]

Berrebi AS; Morgan JI; Mugnaini E. 1990. The Purkinje cell class may extend beyond the cerebellum. J Neurocytol 19(5):643-54. [PubMed: 2077109]  [MGI Ref ID J:121314]

Besnard S; Bakouche J; Lemaigre-Dubreuil Y; Mariani J; Tedgui A; Henrion D. 2002. Smooth muscle dysfunction in resistance arteries of the staggerer mouse, a mutant of the nuclear receptor RORalpha. Circ Res 90(7):820-5. [PubMed: 11964376]  [MGI Ref ID J:109735]

Besnard S; Silvestre JS; Duriez M; Bakouche J; Lemaigre-Dubreuil Y; Mariani J; Levy BI; Tedgui A. 2001. Increased ischemia-induced angiogenesis in the staggerer mouse, a mutant of the nuclear receptor Roralpha. Circ Res 89(12):1209-15. [PubMed: 11739287]  [MGI Ref ID J:115425]

Blatt GJ; Eisenman LM. 1985. A qualitative and quantitative light microscopic study of the inferior olivary complex in the adult staggerer mutant mouse. J Neurogenet 2(1):51-66. [PubMed: 4020530]  [MGI Ref ID J:7948]

Boufares S; Guastavino JM; Larsson K. 1993. Restoration of staggerer mouse maternal behavior following long-term breeding selection. Physiol Behav 53(6):1151-5. [PubMed: 8346298]  [MGI Ref ID J:14497]

Brugg B; Dubreuil YL; Huber G; Wollman EE; Delhaye-Bouchaud N; Mariani J. 1995. Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain. Proc Natl Acad Sci U S A 92(7):3032. [PubMed: 7708769]  [MGI Ref ID J:24161]

Caston J; Chianale C; Mariani J. 2004. Spatial memory of heterozygous staggerer (Rora(+)/Rora(sg)) versus normal (Rora(+)/Rora(+)) mice during aging. Behav Genet 34(3):319-24. [PubMed: 14990870]  [MGI Ref ID J:101986]

Caston J; Delhaye-Bouchaud N; Mariani J. 1995. Motor behavior of heterozygous staggerer mutant (+/sg) versus normal (+/+) mice during aging. Behav Brain Res 72(1-2):97-102. [PubMed: 8788862]  [MGI Ref ID J:31409]

Caston J; Hilber P; Chianale C; Mariani J. 2003. Effect of training on motor abilities of heterozygous staggerer mutant (Rora(+)/Rora(sg)) mice during aging. Behav Brain Res 141(1):35-42. [PubMed: 12672557]  [MGI Ref ID J:96224]

Chang SH; Reynolds JM; Pappu BP; Chen G; Martinez GJ; Dong C. 2011. Interleukin-17C Promotes Th17 Cell Responses and Autoimmune Disease via Interleukin-17 Receptor E. Immunity 35(4):611-21. [PubMed: 21982598]  [MGI Ref ID J:177650]

Chung Y; Chang SH; Martinez GJ; Yang XO; Nurieva R; Kang HS; Ma L; Watowich SS; Jetten AM; Tian Q; Dong C. 2009. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30(4):576-87. [PubMed: 19362022]  [MGI Ref ID J:147961]

Costanzo RV; Vila-Ortiz GJ; Perandones C; Carminatti H; Matilla A; Radrizzani M. 2006. Anp32e/Cpd1 regulates protein phosphatase 2A activity at synapses during synaptogenesis. Eur J Neurosci 23(2):309-24. [PubMed: 16420440]  [MGI Ref ID J:105399]

Crepel F; Delhaye-Bouchaud N; Guastavino JM; Sampaio I. 1980. Multiple innervation of cerebellar Purkinje cells by climbing fibres in staggerer mutant mouse. Nature 283(5746):483-4. [PubMed: 7352029]  [MGI Ref ID J:6260]

Deiss V; Baudoin C. 1997. Hyposmia for butanol and vanillin in mutant staggerer male mice. Physiol Behav 61(2):209-13. [PubMed: 9035249]  [MGI Ref ID J:39053]

Deiss V; Baudoin C. 1999. Olfactory learning abilities in staggerer mutant mice. C R Acad Sci III 322(6):467-71. [PubMed: 10457598]  [MGI Ref ID J:58061]

Deiss V; Dubois M; Lalonde R; Strazielle C. 2001. Cytochrome oxidase activity in the olfactory system of staggerer mutant mice. Brain Res 910(1-2):126-33. [PubMed: 11489262]  [MGI Ref ID J:71124]

Deiss V; Feron C; Baudoin C. 1999. Discrimination of olfactory sexual cues in staggerer mutant male mice. Physiol Behav 67(5):631-4. [PubMed: 10604831]  [MGI Ref ID J:96570]

Deiss V; Strazielle C; Lalonde R. 2000. Regional brain variations of cytochrome oxidase activity and motor co-ordination in staggerer mutant mice. Neuroscience 95(3):903-11. [PubMed: 10670457]  [MGI Ref ID J:111971]

Doulazmi M; Frederic F; Capone F; Becker-Andre M; Delhaye-Bouchaud N; Mariani J. 2001. A comparative study of Purkinje cells in two RORalpha gene mutant mice: staggerer and RORalpha(-/-). Brain Res Dev Brain Res 127(2):165-74. [PubMed: 11335003]  [MGI Ref ID J:69287]

Doulazmi M; Frederic F; Lemaigre-Dubreuil Y; Hadj-Sahraoui N ; Delhaye-Bouchaud N ; Mariani J. 1999. Cerebellar Purkinje cell loss during life span of the heterozygous staggerer mouse (Rora(+)/Rora(sg)) is gender-related. J Comp Neurol 411(2):267-73. [PubMed: 10404252]  [MGI Ref ID J:56379]

Duez H; Duhem C; Laitinen S; Patole PS; Abdelkarim M; Bois-Joyeux B; Danan JL; Staels B. 2009. Inhibition of adipocyte differentiation by RORalpha. FEBS Lett 583(12):2031-6. [PubMed: 19450581]  [MGI Ref ID J:150001]

Edelman GM; Chuong CM. 1982. Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci U S A 79(22):7036-40. [PubMed: 6960362]  [MGI Ref ID J:6930]

Feron C; Baudoin C. 1992. Reactions of Staggerer and Non-Mutant Male Mice to Female Urine and Vaginal Secretion Odors Behav Processes 27(3):165-70.  [MGI Ref ID J:3557]

Feron C; Baudoin C. 1993. Sexual experience and preferences for odors of estrous females in staggerer mutant male mice. Behav Neural Biol 60(3):280-1. [PubMed: 8297325]  [MGI Ref ID J:15645]

Feron C; Baudoin C. 1998. Social isolation induces preference for odours of oestrous females in sexually naive male staggerer mutant mice. Chem Senses 23(1):119-21. [PubMed: 9530977]  [MGI Ref ID J:46472]

Feron C; Baudoin C. 1995. Social isolation partially restores reproduction of male staggerer mutant mice. Physiol Behav 58(1):107-10. [PubMed: 7667406]  [MGI Ref ID J:26698]

Feron C; Baudoin C. 1992. [Reduced influence of penile disability on the mating capacity of male staggerer mice] Reprod Nutr Dev 32(5-6):409-13. [PubMed: 1292478]  [MGI Ref ID J:32193]

Frantz GD; Wuenschell CW; Messer A; Tobin AJ. 1996. Presence of calbindin D28K and GAD67 mRNAs in both orthotopic and ectopic Purkinje cells of staggerer mice suggests that staggerer acts after the onset of cytodifferentiation. J Neurosci Res 44(3):255-62. [PubMed: 8723764]  [MGI Ref ID J:32917]

Furusawa J; Moro K; Motomura Y; Okamoto K; Zhu J; Takayanagi H; Kubo M; Koyasu S. 2013. Critical role of p38 and GATA3 in natural helper cell function. J Immunol 191(4):1818-26. [PubMed: 23851685]  [MGI Ref ID J:205695]

Genoux A; Dehondt H; Helleboid-Chapman A; Duhem C; Hum DW; Martin G; Pennacchio LA; Staels B; Fruchart-Najib J; Fruchart JC. 2005. Transcriptional regulation of apolipoprotein A5 gene expression by the nuclear receptor RORalpha. Arterioscler Thromb Vasc Biol 25(6):1186-92. [PubMed: 15790933]  [MGI Ref ID J:114292]

Gold DA; Baek SH; Schork NJ; Rose DW; Larsen DD; Sachs BD; Rosenfeld MG; Hamilton BA. 2003. RORalpha coordinates reciprocal signaling in cerebellar development through sonic hedgehog and calcium-dependent pathways. Neuron 40(6):1119-31. [PubMed: 14687547]  [MGI Ref ID J:87181]

Gold DA; Gent PM; Hamilton BA. 2007. ROR alpha in genetic control of cerebellum development: 50 staggering years. Brain Res 1140:19-25. [PubMed: 16427031]  [MGI Ref ID J:120622]

Grunwald GB; Eisenman LM. 1993. Analysis of protein variations in adult and postnatal day 11 staggerer and lurcher mutant mice. Brain Res Dev Brain Res 73(1):146-50. [PubMed: 8513552]  [MGI Ref ID J:11841]

Guastavino JM; Larsson K. 1992. The staggerer gene curtails the reproductive life span of females. Behav Genet 22(1):101-12. [PubMed: 1590727]  [MGI Ref ID J:1960]

Guastavino JM; Larsson K; Allain C; Jaisson P. 1993. Neonatal vestibular stimulation and mating in cerebellar mutants. Behav Genet 23(3):265-9. [PubMed: 8352721]  [MGI Ref ID J:14535]

Guo H; Sekiguchi M; Tanaka O; Inoue T; Shima H; Nagao M; Tamura S; Abe H. 1995. Protein phosphatase mRNA expression in Purkinje cells of staggerer and reeler mutant mice. Brain Res Mol Brain Res 33(1):121-6. [PubMed: 8774953]  [MGI Ref ID J:28842]

Hadj-Sahraoui N; Frederic F; Zanjani H; Delhaye-Bouchaud N; Herrup K; Mariani J. 2001. Progressive atrophy of cerebellar Purkinje cell dendrites during aging of the heterozygous staggerer mouse (Rora(+/sg)). Brain Res Dev Brain Res 126(2):201-9. [PubMed: 11248354]  [MGI Ref ID J:68149]

Hadj-Sahraoui N; Frederic F; Zanjani H; Herrup K; Delhaye-Bouchaud N ; Mariani J. 1997. Purkinje cell loss in heterozygous staggerer mutant mice during aging. Brain Res Dev Brain Res 98(1):1-8. [PubMed: 9027398]  [MGI Ref ID J:37701]

Halim TY; Maclaren A; Romanish MT; Gold MJ; McNagny KM; Takei F. 2012. Retinoic-Acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37(3):463-74. [PubMed: 22981535]  [MGI Ref ID J:187662]

Halim TY; Steer CA; Matha L; Gold MJ; Martinez-Gonzalez I; McNagny KM; McKenzie AN; Takei F. 2014. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40(3):425-35. [PubMed: 24613091]  [MGI Ref ID J:210240]

Hamilton BA; Frankel WN; Kerrebrock AW; Hawkins TL; FitzHugh W; Kusumi K; Russell LB; Mueller KL; van Berkel V; Birren BW; Kruglyak L; Lander ES. 1996. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature 379(6567):736-9. [PubMed: 8602221]  [MGI Ref ID J:31470]

Hams E; Armstrong ME; Barlow JL; Saunders SP; Schwartz C; Cooke G; Fahy RJ; Crotty TB; Hirani N; Flynn RJ; Voehringer D; McKenzie AN; Donnelly SC; Fallon PG. 2014. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc Natl Acad Sci U S A 111(1):367-72. [PubMed: 24344271]  [MGI Ref ID J:206290]

Hatten ME; Messer A. 1978. Postnatal cerebellar cells from staggerer mutant mice express embryonic cell surface characteristic. Nature 276(5687):504-6. [PubMed: 723931]  [MGI Ref ID J:6068]

Herrup K. 1983. Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Brain Res 313(2):267-74. [PubMed: 6667376]  [MGI Ref ID J:28093]

Herrup K; Mullen RJ. 1979. Regional variation and absence of large neurons in the cerebellum of the staggerer mouse. Brain Res 172(1):1-12. [PubMed: 466453]  [MGI Ref ID J:6185]

Herrup K; Mullen RJ. 1979. Staggerer chimeras: intrinsic nature of Purkinje cell defects and implications for normal cerebellar development. Brain Res 178(2-3):443-57. [PubMed: 509213]  [MGI Ref ID J:11945]

Heuze P; Feron C; Baudoin C. 1997. Early behavioral development of mice is affected by staggerer mutation as soon as postnatal day three. Brain Res Dev Brain Res 101(1-2):81-4. [PubMed: 9263582]  [MGI Ref ID J:42144]

Ikeda M; Matsui K; Ishihara Y; Morita I; Murota S; Yuasa T; Miyatake T. 1994. Cerebellar nitric oxide synthase, cGMP and motor function in two lines of cerebellar mutant mice, Staggerer and Wriggle Mouse Sagami. Neurosci Lett 168(1-2):65-8. [PubMed: 7518067]  [MGI Ref ID J:18352]

Jaradat M; Stapleton C; Tilley SL; Dixon D; Erikson CJ; McCaskill JG; Kang HS; Angers M; Liao G; Collins J; Grissom S; Jetten AM. 2006. Modulatory role for retinoid-related orphan receptor alpha in allergen-induced lung inflammation. Am J Respir Crit Care Med 174(12):1299-309. [PubMed: 16973978]  [MGI Ref ID J:135863]

Jarvis CI; Staels B; Brugg B; Lemaigre-Dubreuil Y; Tedgui A; Mariani J. 2002. Age-related phenotypes in the staggerer mouse expand the RORalpha nuclear receptor's role beyond the cerebellum. Mol Cell Endocrinol 186(1):1-5. [PubMed: 11850116]  [MGI Ref ID J:75570]

Ji Z; Jin Q; Vogel MW. 1997. Evidence of spinocerebellar mossy fiber segregation in the juvenile staggerer cerebellum. J Comp Neurol 378(3):354-62. [PubMed: 9034896]  [MGI Ref ID J:38768]

Jin P; Sun Y; Grabowski GA. 2001. In vivo roles of RORalpha and Sp4 in the regulation of murine prosaposin gene. DNA Cell Biol 20(12):781-9. [PubMed: 11879571]  [MGI Ref ID J:74710]

Jorgensen OS. 1994. Neural cell adhesion molecule and D3 protein in the cerebellum of weaver mutant mice. Int J Dev Neurosci 12(3):213-25. [PubMed: 7942094]  [MGI Ref ID J:19350]

Journiac N; Jolly S; Jarvis C; Gautheron V; Rogard M; Trembleau A; Blondeau JP; Mariani J; Vernet-der Garabedian B. 2009. The nuclear receptor ROR(alpha) exerts a bi-directional regulation of IL-6 in resting and reactive astrocytes. Proc Natl Acad Sci U S A 106(50):21365-70. [PubMed: 19955433]  [MGI Ref ID J:155827]

Kang HS; Angers M; Beak JY; Wu X; Gimble JM; Wada T; Xie W; Collins JB; Grissom SF; Jetten AM. 2007. Gene expression profiling reveals a regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism. Physiol Genomics 31(2):281-94. [PubMed: 17666523]  [MGI Ref ID J:207076]

Kang HS; Okamoto K; Takeda Y; Beak JY; Gerrish K; Bortner CD; Degraff LM; Wada T; Xie W; Jetten AM. 2011. Transcriptional profiling reveals a role for ROR{alpha} in regulating gene expression in obesity-associated inflammation and hepatic steatosis. Physiol Genomics 43(13):818-28. [PubMed: 21540300]  [MGI Ref ID J:174804]

Kopmels B; Mariani J; Delhaye-Bouchaud N; Audibert F; Fradelizi D; Wollman EE. 1992. Evidence for a hyperexcitability state of staggerer mutant mice macrophages. J Neurochem 58(1):192-9. [PubMed: 1727430]  [MGI Ref ID J:28096]

Kopmels B; Mariani J; Taupin V; Delhaye-Bouchaud N; Wollman EE. 1991. Differential IL-6 mRNA expression by stimulated peripheral macrophages of Staggerer and Lurcher cerebellar mutant mice. Eur Cytokine Netw 2(5):345-53. [PubMed: 1804324]  [MGI Ref ID J:11652]

Kopmels B; Wollman EE; Guastavino JM; Delhaye-Bouchaud N; Fradelizi D; Mariani J. 1990. Interleukin-1 hyperproduction by in vitro activated peripheral macrophages from cerebellar mutant mice. J Neurochem 55(6):1980-5. [PubMed: 2230805]  [MGI Ref ID J:28095]

Lalonde R; Bensoula AN; Filali M. 1995. Rotorod sensorimotor learning in cerebellar mutant mice. Neurosci Res 22(4):423-6. [PubMed: 7478307]  [MGI Ref ID J:28880]

Lalonde R; Filali M; Bensoula AN; Lestienne F. 1996. Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem 65(2):113-20. [PubMed: 8833100]  [MGI Ref ID J:31867]

Lalonde R; Filali M; Bensoula AN; Monnier C; Guastavino JM. 1996. Spatial learning in a Z-maze by cerebellar mutant mice. Physiol Behav 59(1):83-6. [PubMed: 8848495]  [MGI Ref ID J:30686]

Lalonde R; Strazielle C. 2008. Discrimination learning in Rora(sg) and Grid2(ho) mutant mice. Neurobiol Learn Mem 90(2):472-4. [PubMed: 18583162]  [MGI Ref ID J:154430]

Lalonde R; Strazielle C. 2007. Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res 1140:51-74. [PubMed: 16499884]  [MGI Ref ID J:120621]

Landis DM; Sidman RL. 1978. Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J Comp Neurol 179(4):831-63. [PubMed: 641237]  [MGI Ref ID J:5968]

Lau P; Fitzsimmons RL; Pearen MA; Watt MJ; Muscat GE. 2011. Homozygous staggerer (sg/sg) mice display improved insulin sensitivity and enhanced glucose uptake in skeletal muscle. Diabetologia :. [PubMed: 21279323]  [MGI Ref ID J:168538]

Lau P; Fitzsimmons RL; Raichur S; Wang SC; Lechtken A; Muscat GE. 2008. The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity. J Biol Chem 283(26):18411-21. [PubMed: 18441015]  [MGI Ref ID J:138180]

Lemaigre-Dubreuil Y; Brugg B; Chianale C; Delhaye-Bouchaud N; Mariani J. 1996. Over-expression of interleukin-1 beta-converting enzyme mRNA in staggerer cerebellum. Neuroreport 7(11):1777-80. [PubMed: 8905663]  [MGI Ref ID J:36680]

Luntz-Leybman V; Rotter A; Zdilar D; Frostholm A. 1995. Uncoupling of GABAA/benzodiazepine receptor alpha 1, beta 2, and gamma 2 subunit mRNA expression in cerebellar Purkinje cells of staggerer mutant mice. J Neurosci 15(12):8121-30. [PubMed: 8613747]  [MGI Ref ID J:30353]

Mallet J; Huchet M; Pougeois R; Changeux JP. 1976. Anatomical, physiological and biochemical studies on the cerebellum from mutant mice. III. Protein differences associated with the weaver, staggerer and nervous mutations. Brain Res 103(2):291-312. [PubMed: 1252920]  [MGI Ref ID J:5619]

Matsui K; Itoh K; Mizumachi M; Kubo H; Goto T; Sato S; Wada K. 1996. Effect of intranasal administration of thyrotropin-releasing hormone on ataxic gait in staggerer mice. Neurosci Lett 212(2):115-8. [PubMed: 8832652]  [MGI Ref ID J:35010]

Matsui K; Kato N; Watanabe N; Ando K. 1988. [Elevated immunoreactive-somatostatin levels in the brain of ataxic mutant mice] Jikken Dobutsu 37(3):263-8. [PubMed: 2901364]  [MGI Ref ID J:28478]

Matsui K; Wada K; Kwak S. 1994. Ataxia-ameliorating effects of YM-14673, a potent analog of thyrotropin releasing hormone, in ataxic mutant mice. Eur J Pharmacol 254(3):295-7. [PubMed: 8013566]  [MGI Ref ID J:18435]

Matysiak-Scholze U; Nehls M. 1997. The structural integrity of ROR alpha isoforms is mutated in staggerer mice: cerebellar coexpression of ROR alpha1 and ROR alpha4. Genomics 43(1):78-84. [PubMed: 9226375]  [MGI Ref ID J:41653]

McHedlidze T; Waldner M; Zopf S; Walker J; Rankin AL; Schuchmann M; Voehringer D; McKenzie AN; Neurath MF; Pflanz S; Wirtz S. 2013. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39(2):357-71. [PubMed: 23954132]  [MGI Ref ID J:208227]

Messer A; Plummer-Siegard J; Eisenberg B. 1990. Staggerer mutant mouse Purkinje cells do not contain detectable calmodulin mRNA. J Neurochem 55(1):293-302. [PubMed: 2355223]  [MGI Ref ID J:28469]

Michel V; Monnier Z; Guastavino JM; Propper A; Math F. 2000. Functional alterations in the olfactory bulb of the staggerer mutant mouse. Neurosci Lett 280(1):1-4. [PubMed: 10696797]  [MGI Ref ID J:107925]

Miret-Duvaux O; Frederic F; Simon D; Guenet JL; Hanauer A; Delhaye-Bouchaud N; Mariani J. 1990. Glutamate dehydrogenase in cerebellar mutant mice: gene localization and enzyme activity in different tissues. J Neurochem 54(1):23-9. [PubMed: 2293612]  [MGI Ref ID J:10148]

Mitsuma T; Adachi K; Mukoyama M; Ando K. 1990. Pro-thyrotropin-releasing hormone concentrations in the brain of ataxic mice. J Neurol Sci 98(2-3):163-7. [PubMed: 2123001]  [MGI Ref ID J:28467]

Mitsumura K; Hosoi N; Furuya N; Hirai H. 2011. Disruption of metabotropic glutamate receptor signalling is a major defect at cerebellar parallel fibre-Purkinje cell synapses in staggerer mutant mice. J Physiol 589(Pt 13):3191-209. [PubMed: 21558162]  [MGI Ref ID J:189405]

Monnier Z; Bahjaoui-Bouhaddi M; Bride J; Bride M; Math F; Propper A. 1999. Structural and immunohistological modifications in olfactory bulb of the staggerer mutant mouse. Biol Cell 91(1):29-44. [PubMed: 10321020]  [MGI Ref ID J:55239]

Muramoto O; Ando K; Kanazawa I. 1982. Central noradrenaline metabolism in cerebellar ataxic mice. Brain Res 237(2):387-95. [PubMed: 6123371]  [MGI Ref ID J:164122]

Murase S; Hayashi Y. 1998. Expression pattern and neurotrophic role of the c-fms proto-oncogene M-CSF receptor in rodent Purkinje cells. J Neurosci 18(24):10481-92. [PubMed: 9852586]  [MGI Ref ID J:52174]

Murase S; Hayashi Y. 1996. Expression pattern of integrin beta 1 subunit in Purkinje cells of rat and cerebellar mutant mice. J Comp Neurol 375(2):225-37. [PubMed: 8915827]  [MGI Ref ID J:36459]

Nakagawa S; Watanabe M; Inoue Y. 1996. Altered gene expression of the N-methyl-D-aspartate receptor channel subunits in Purkinje cells of the staggerer mutant mouse. Eur J Neurosci 8(12):2644-51. [PubMed: 8996814]  [MGI Ref ID J:39065]

Nakagawa S; Watanabe M; Inoue Y. 1996. Regional variation in expression of calbindin and inositol 1,4,5-trisphosphate receptor type 1 mRNAs in the cerebellum of the staggerer mutant mouse. Eur J Neurosci 8(7):1401-7. [PubMed: 8758947]  [MGI Ref ID J:35712]

Nakagawa S; Watanabe M; Isobe T; Kondo H; Inoue Y. 1998. Cytological compartmentalization in the staggerer cerebellum, as revealed by calbindin immunohistochemistry for Purkinje cells. J Comp Neurol 395(1):112-20. [PubMed: 9590549]  [MGI Ref ID J:47380]

Nurieva RI; Chung Y; Hwang D; Yang XO; Kang HS; Ma L; Wang YH; Watowich SS; Jetten AM; Tian Q; Dong C. 2008. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29(1):138-49. [PubMed: 18599325]  [MGI Ref ID J:137869]

Okamoto K; Iwai Y; Oh-Hora M; Yamamoto M; Morio T; Aoki K; Ohya K; Jetten AM; Akira S; Muta T; Takayanagi H. 2010. IkappaBzeta regulates T(H)17 development by cooperating with ROR nuclear receptors. Nature 464(7293):1381-5. [PubMed: 20383124]  [MGI Ref ID J:159461]

Perandones C; Costanzo RV; Kowaljow V; Pivetta OH; Carminatti H; Radrizzani M. 2004. Correlation between synaptogenesis and the PTEN phosphatase expression in dendrites during postnatal brain development. Brain Res Mol Brain Res 128(1):8-19. [PubMed: 15337313]  [MGI Ref ID J:92848]

Qiu CH; Shimokawa N; Iwasaki T; Parhar IS; Koibuchi N. 2007. Alteration of cerebellar neurotropin messenger ribonucleic acids and the lack of thyroid hormone receptor augmentation by staggerer-type retinoic acid receptor-related orphan receptor-alpha mutation. Endocrinology 148(4):1745-53. [PubMed: 17218417]  [MGI Ref ID J:129580]

Radrizzani M; Carminatti H; Pivetta OH; Idoyaga Vargas VP. 1995. Developmental regulation of Thy 1.2 rate of synthesis in the mouse cerebellum. J Neurosci Res 42(2):220-7. [PubMed: 8568922]  [MGI Ref ID J:29491]

Raspe E; Duez H; Gervois P; Fievet C; Fruchart JC; Besnard S; Mariani J; Tedgui A; Staels B. 2001. Transcriptional regulation of apolipoprotein C-III gene expression by the orphan nuclear receptor RORalpha. J Biol Chem 276(4):2865-71. [PubMed: 11053433]  [MGI Ref ID J:124837]

Roffler-Tarlov S; Herrup K. 1981. Quantitative examination of the deep cerebellar nuclei in the staggerer mutant mouse. Brain Res 215(1-2):49-59. [PubMed: 7260600]  [MGI Ref ID J:6554]

Roffler-Tarlov S; Turey M. 1982. The content of amino acids in the developing cerebellar cortex and deep cerebellar nuclei of granule cell deficient mutant mice. Brain Res 247(1):65-73. [PubMed: 6127146]  [MGI Ref ID J:6875]

Ryo Y; Miyawaki A; Furuichi T; Mikoshiba K. 1993. Expression of the metabotropic glutamate receptor mGluR1 alpha and the ionotropic glutamate receptor GluR1 in the brain during the postnatal development of normal mouse and in the cerebellum from mutant mice. J Neurosci Res 36(1):19-32. [PubMed: 8230318]  [MGI Ref ID J:14425]

SIDMAN RL; LANE PW; DICKIE MM. 1962. Staggerer, a new mutation in the mouse affecting the cerebellum. Science 137:610-2. [PubMed: 13912552]  [MGI Ref ID J:13140]

Saito T; Hirano M; Ide T; Ichiki T; Koibuchi N; Sunagawa K; Hirano K. 2013. Pivotal role of Rho-associated kinase 2 in generating the intrinsic circadian rhythm of vascular contractility. Circulation 127(1):104-14. [PubMed: 23172836]  [MGI Ref ID J:209475]

Schaal H; Wille C; Wille W. 1985. Changes of ganglioside pattern during cerebellar development of normal and staggerer mice. J Neurochem 45(2):544-51. [PubMed: 4009175]  [MGI Ref ID J:7910]

Serinagaoglu Y; Zhang R; Zhang Y; Zhang L; Hartt G; Young AP; Oberdick J. 2007. A promoter element with enhancer properties, and the orphan nuclear receptor RORalpha, are required for Purkinje cell-specific expression of a Gi/o modulator. Mol Cell Neurosci 34(3):324-42. [PubMed: 17215137]  [MGI Ref ID J:123239]

Serra HG; Duvick L; Zu T; Carlson K; Stevens S; Jorgensen N; Lysholm A; Burright E; Zoghbi HY; Clark HB; Andresen JM; Orr HT. 2006. RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell 127(4):697-708. [PubMed: 17110330]  [MGI Ref ID J:116123]

Shirley LT; Messer A. 2004. Early postnatal Purkinje cells from staggerer mice undergo aberrant development in vitro with characteristic morphologic and gene expression abnormalities. Brain Res Dev Brain Res 152(2):153-7. [PubMed: 15351503]  [MGI Ref ID J:109172]

Soha JM; Herrup K. 1993. Purkinje cell dendrites in staggerer<-->wild type mouse chimeras lack the aberrant morphologies found in lurcher<-->wild type chimeras. J Comp Neurol 331(4):540-50. [PubMed: 8509510]  [MGI Ref ID J:12149]

Soha JM; Herrup K. 1995. Stunted morphologies of cerebellar Purkinje cells in lurcher and staggerer mice are cell-intrinsic effects of the mutant genes. J Comp Neurol 357(1):65-75. [PubMed: 7673468]  [MGI Ref ID J:26094]

Soha JM; Kim S; Crandall JE; Vogel MW. 1997. Rapid growth of parallel fibers in the cerebella of normal and staggerer mutant mice. J Comp Neurol 389(4):642-54. [PubMed: 9421144]  [MGI Ref ID J:44432]

Sonmez E; Herrup K. 1984. Role of staggerer gene in determining cell number in cerebellar cortex. II. Granule cell death and persistence of the external granule cell layer in young mouse chimeras. Brain Res 314(2):271-83. [PubMed: 6704753]  [MGI Ref ID J:28092]

Sotelo C. 1990. Cerebellar synaptogenesis: what we can learn from mutant mice. J Exp Biol 153:225-49. [PubMed: 2280222]  [MGI Ref ID J:10974]

Stapleton CM; Jaradat M; Dixon D; Kang HS; Kim SC; Liao G; Carey MA; Cristiano J; Moorman MP; Jetten AM. 2005. Enhanced susceptibility of staggerer (RORalphasg/sg) mice to lipopolysaccharide-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 289(1):L144-52. [PubMed: 15778248]  [MGI Ref ID J:104750]

Steinmayr M; Andre E; Conquet F; Rondi-Reig L; Delhaye-Bouchaud N ; Auclair N ; Daniel H ; Crepel F ; Mariani J ; Sotelo C ; Becker-Andre M. 1998. staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc Natl Acad Sci U S A 95(7):3960-5. [PubMed: 9520475]  [MGI Ref ID J:46854]

Swanson DJ; Steshina EY; Wakenight P; Aldinger KA; Goldowitz D; Millen KJ; Chizhikov VV. 2010. Phenotypic and genetic analysis of the cerebellar mutant tmgc26, a new ENU-induced ROR-alpha allele. Eur J Neurosci 32(5):707-16. [PubMed: 20722722]  [MGI Ref ID J:171777]

Takeda Y; Jothi R; Birault V; Jetten AM. 2012. RORgamma directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res 40(17):8519-35. [PubMed: 22753030]  [MGI Ref ID J:199687]

Takeda Y; Kang HS; Angers M; Jetten AM. 2011. Retinoic acid-related orphan receptor {gamma} directly regulates neuronal PAS domain protein 2 transcription in vivo. Nucleic Acids Res 39(11):4769-82. [PubMed: 21317191]  [MGI Ref ID J:173696]

Trenkner E. 1979. Postnatal cerebellar cells of staggerer mutant mice express immature components on their surface. Nature 277(5697):566-7. [PubMed: 368650]  [MGI Ref ID J:6088]

Triarhou LC; Low WC; Ghetti B. 1987. Transplantation of cerebellar anlagen to hosts with genetic cerebellocortical atrophy. Anat Embryol (Berl) 176(2):145-54. [PubMed: 3619071]  [MGI Ref ID J:28471]

Tuong ZK; Lau P; Yeo JC; Pearen MA; Wall AA; Stanley AC; Stow JL; Muscat GE. 2013. Disruption of Roralpha1 and cholesterol 25-hydroxylase expression attenuates phagocytosis in male Roralphasg/sg mice. Endocrinology 154(1):140-9. [PubMed: 23239817]  [MGI Ref ID J:194611]

Vandunk C; Hunter LA; Gray PA. 2011. Development, maturation, and necessity of transcription factors in the mouse suprachiasmatic nucleus. J Neurosci 31(17):6457-67. [PubMed: 21525287]  [MGI Ref ID J:171421]

Varecka L; Wu CH; Rotter A; Frostholm A. 1994. GABAA/benzodiazepine receptor alpha 6 subunit mRNA in granule cells of the cerebellar cortex and cochlear nuclei: expression in developing and mutant mice. J Comp Neurol 339(3):341-52. [PubMed: 8132866]  [MGI Ref ID J:16213]

Vernet-der Garabedian B; Lemaigre-Dubreuil Y; Delhaye-Bouchaud N ; Mariani J. 1998. Abnormal IL-1beta cytokine expression in the cerebellum of the ataxic mutant mice staggerer and lurcher. Brain Res Mol Brain Res 62(2):224-7. [PubMed: 9813341]  [MGI Ref ID J:51056]

Vogel MW; Sinclair M; Qiu D; Fan H. 2000. Purkinje cell fate in staggerer mutants: agenesis versus cell death. J Neurobiol 42(3):323-37. [PubMed: 10645972]  [MGI Ref ID J:113250]

Wong SH; Walker JA; Jolin HE; Drynan LF; Hams E; Camelo A; Barlow JL; Neill DR; Panova V; Koch U; Radtke F; Hardman CS; Hwang YY; Fallon PG; McKenzie AN. 2012. Transcription factor RORalpha is critical for nuocyte development. Nat Immunol 13(3):229-36. [PubMed: 22267218]  [MGI Ref ID J:181284]

Yamazaki T; Yang XO; Chung Y; Fukunaga A; Nurieva R; Pappu B; Martin-Orozco N; Kang HS; Ma L; Panopoulos AD; Craig S; Watowich SS; Jetten AM; Tian Q; Dong C. 2008. CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 181(12):8391-401. [PubMed: 19050256]  [MGI Ref ID J:142071]

Yang XO; Nurieva R; Martinez GJ; Kang HS; Chung Y; Pappu BP; Shah B; Chang SH; Schluns KS; Watowich SS; Feng XH; Jetten AM; Dong C. 2008. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29(1):44-56. [PubMed: 18585065]  [MGI Ref ID J:137851]

Yang XO; Pappu BP; Nurieva R; Akimzhanov A; Kang HS; Chung Y; Ma L; Shah B; Panopoulos AD; Schluns KS; Watowich SS; Tian Q; Jetten AM; Dong C. 2008. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28(1):29-39. [PubMed: 18164222]  [MGI Ref ID J:131020]

Yoon CH. 1972. Developmental mechanism for changes in cerebellum of staggerer mouse, a neurological mutant of genetic origin. Neurology 22(7):743-54. [PubMed: 4673255]  [MGI Ref ID J:5304]

Zanjani HS; Herrup K; Guastavino JM; Delhaye-Bouchaud N; Mariani J. 1994. Developmental studies of the inferior olivary nucleus in staggerer mutant mice. Brain Res Dev Brain Res 82(1-2):18-28. [PubMed: 7842506]  [MGI Ref ID J:20982]

Zanjani HS; Mariani J; Delhaye-Bouchaud N; Herrup K. 1992. Neuronal cell loss in heterozygous staggerer mutant mice: a model for genetic contributions to the aging process. Brain Res Dev Brain Res 67(2):153-60. [PubMed: 1511513]  [MGI Ref ID J:1431]

Zanjani HS; Mariani J; Herrup K. 1990. Cell loss in the inferior olive of the staggerer mutant mouse is an indirect effect of the gene. J Neurogenet 6(4):229-41. [PubMed: 2231177]  [MGI Ref ID J:28468]

a related

Baba K; Sakakibara S; Setsu T; Terashima T. 2007. The superficial layers of the superior colliculus are cytoarchitectually and myeloarchitectually disorganized in the reelin-deficient mouse, reeler. Brain Res 1140:205-15. [PubMed: 17173877]  [MGI Ref ID J:120267]

Batchelor AL; Phillips RJ; Searle AG. 1966. A comparison of the mutagenic effectiveness of chronic neutron- and gamma-irradiation of mouse spermatogonia. Mutat Res 3(3):218-29. [PubMed: 5962396]  [MGI Ref ID J:5021]

Bjorbaek C; Elmquist JK; Frantz JD; Shoelson SE; Flier JS. 1998. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1(4):619-25. [PubMed: 9660946]  [MGI Ref ID J:119803]

Bultman SJ; Klebig ML; Michaud EJ; Sweet HO; Davisson MT; Woychik RP. 1994. Molecular analysis of reverse mutations from nonagouti (a) to black-and-tan (a(t)) and white-bellied agouti (Aw) reveals alternative forms of agouti transcripts. Genes Dev 8(4):481-90. [PubMed: 8125260]  [MGI Ref ID J:16984]

Bultman SJ; Michaud EJ; Woychik RP. 1992. Molecular characterization of the mouse agouti locus. Cell 71(7):1195-204. [PubMed: 1473152]  [MGI Ref ID J:3523]

Bultman SJ; Russell LB; Gutierrez-Espeleta GA; Woychik RP. 1991. Molecular characterization of a region of DNA associated with mutations at the agouti locus in the mouse. Proc Natl Acad Sci U S A 88(18):8062-6. [PubMed: 1896452]  [MGI Ref ID J:16567]

Bundschuh VG; Madry M. 1988. [atwp mutation in an albino mouse substrain (AB/Hum-1)] Z Versuchstierkd 31(6):249-54. [PubMed: 3227730]  [MGI Ref ID J:16568]

Butler AE; Janson J; Soeller WC; Butler PC. 2003. Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 52(9):2304-14. [PubMed: 12941770]  [MGI Ref ID J:132530]

Cattanach BM. 1961. A chemically-induced variegated-type position effect in the mouse. Z Vererbungsl 92:165-82. [PubMed: 13877379]  [MGI Ref ID J:160128]

Cropley JE; Suter CM; Beckman KB; Martin DI. 2006. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci U S A 103(46):17308-12. [PubMed: 17101998]  [MGI Ref ID J:117156]

De Souza J; Butler AA; Cone RD. 2000. Disproportionate inhibition of feeding in A(y) mice by certain stressors: a cautionary note. Neuroendocrinology 72(2):126-32. [PubMed: 10971147]  [MGI Ref ID J:102986]

Dickie MM. 1969. Mutations at the agouti locus in the mouse. J Hered 60(1):20-5. [PubMed: 5798139]  [MGI Ref ID J:30922]

Duchesnes CE; Naggert JK; Tatnell MA; Beckman N; Marnane RN; Rodrigues JA; Halim A; Pontre B; Stewart AW; Wolff GL; Elliott R; Mountjoy KG. 2009. New Zealand Ginger Mouse: Novel model that associates the tyrp1b pigmentation gene locus with regulation of lean body mass. Physiol Genomics 37(3):164-74. [PubMed: 19293329]  [MGI Ref ID J:146052]

Dunn LC. 1928. A Fifth Allelomorph in the Agouti Series of the House Mouse. Proc Natl Acad Sci U S A 14(10):816-9. [PubMed: 16587414]  [MGI Ref ID J:15011]

Dunn LC. 1945. A New Eye Color Mutant in the Mouse with Asymmetrical Expression. Proc Natl Acad Sci U S A 31(11):343-6. [PubMed: 16578176]  [MGI Ref ID J:13122]

Dunn LC; Macdowell EC; Lebedeff GA. 1937. Studies on Spotting Patterns III. Interaction between Genes Affecting White Spotting and Those Affecting Color in the House Mouse. Genetics 22(2):307-18. [PubMed: 17246842]  [MGI Ref ID J:12954]

Enshell-Seijffers D; Lindon C; Morgan BA. 2008. The serine protease Corin is a novel modifier of the Agouti pathway. Development 135(2):217-25. [PubMed: 18057101]  [MGI Ref ID J:130426]

Feuerer M; Herrero L; Cipolletta D; Naaz A; Wong J; Nayer A; Lee J; Goldfine AB; Benoist C; Shoelson S; Mathis D. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930-9. [PubMed: 19633656]  [MGI Ref ID J:152186]

Fujimoto W; Shiuchi T; Miki T; Minokoshi Y; Takahashi Y; Takeuchi A; Kimura K; Saito M; Iwanaga T; Seino S. 2007. Dmbx1 is essential in agouti-related protein action. Proc Natl Acad Sci U S A 104(39):15514-9. [PubMed: 17873059]  [MGI Ref ID J:125193]

Gajewska M; Krysiak E; Wirth-Dziecialowska E. 2010. New coat color mutation mapped in distal part MMU10 MGI Direct Data Submission :.  [MGI Ref ID J:162146]

Galbraith DB; Arceci RJ. 1974. Melanocyte populations of yellow and black hair bulbs in the mouse. J Hered 65(6):381-2. [PubMed: 4448905]  [MGI Ref ID J:5512]

Galbraith DB; Patrignani AM. 1976. Sulfhydryl compounds in melanocytes of yellow (Ay/a), nonagouti (a/a), and agouti (A/A) mice. Genetics 84(3):587-91. [PubMed: 1001879]  [MGI Ref ID J:5737]

Galbraith DB; Wolff GL; Brewer NL. 1980. Hair pigment patterns in different integumental environments of the mouse. Influence of the agouti suppressor (A<s>) mutation on expression of agouti locus alleles. J Hered 71:229-234.  [MGI Ref ID J:12033]

Galbraith DB; Wolff GL; Brewer NL. 1979. Tissue microenvironment and the genetic control of hair pigment patterns in mice Dev Genet 1(2):167-179.  [MGI Ref ID J:156092]

Geschwind II; Huseby RA; Nishioka R. 1972. The effect of melanocyte-stimulating hormone on coat color in the mouse. Recent Prog Horm Res 28:91-130. [PubMed: 4631622]  [MGI Ref ID J:5324]

Granholm DE; Reese RN; Granholm NH. 1996. Agouti alleles alter cysteine and glutathione concentrations in hair follicles and serum of mice (A y/a, A wJ/A wJ, and a/a). J Invest Dermatol 106(3):559-63. [PubMed: 8648194]  [MGI Ref ID J:32132]

Gruneberg H. 1952. . In: The Genetics of the Mouse. Martinus Nijhoff, The Hague.  [MGI Ref ID J:30758]

Heaney JD; Michelson MV; Youngren KK; Lam MY; Nadeau JH. 2009. Deletion of eIF2beta suppresses testicular cancer incidence and causes recessive lethality in agouti-yellow mice. Hum Mol Genet 18(8):1395-404. [PubMed: 19168544]  [MGI Ref ID J:146879]

Hearing VJ; Phillips P; Lutzner MA. 1973. The fine structure of melanogenesis in coat color mutants of the mouse. J Ultrastruct Res 43(1):88-106. [PubMed: 4634048]  [MGI Ref ID J:5346]

Hustad CM; Perry WL; Siracusa LD; Rasberry C; Cobb L; Cattanach BM; Kovatch R; Copeland NG; Jenkins NA. 1995. Molecular genetic characterization of six recessive viable alleles of the mouse agouti locus. Genetics 140(1):255-65. [PubMed: 7635290]  [MGI Ref ID J:24934]

Iwatsuka H; Shino A; Suzuoki Z. 1970. General survey of diabetic features of yellow KK mice. Endocrinol Jpn 17(1):23-35. [PubMed: 5468422]  [MGI Ref ID J:26460]

Jackson IJ; Budd PS; Keighren M; McKie L. 2007. Humanized MC1R transgenic mice reveal human specific receptor function. Hum Mol Genet 16(19):2341-8. [PubMed: 17652101]  [MGI Ref ID J:129904]

Kaelin CB; Xu X; Hong LZ; David VA; McGowan KA; Schmidt-Kuntzel A; Roelke ME; Pino J; Pontius J; Cooper GM; Manuel H; Swanson WF; Marker L; Harper CK; van Dyk A; Yue B; Mullikin JC; Warren WC; Eizirik E; Kos L; O'Brien SJ; Barsh GS; Menotti-Raymond M. 2012. Specifying and sustaining pigmentation patterns in domestic and wild cats. Science 337(6101):1536-41. [PubMed: 22997338]  [MGI Ref ID J:188277]

Kaminen-Ahola N; Ahola A; Maga M; Mallitt KA; Fahey P; Cox TC; Whitelaw E; Chong S. 2010. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6(1):e1000811. [PubMed: 20084100]  [MGI Ref ID J:156866]

Kappenman KE; Dvoracek MA; Harvison GA; Fuller BB; Granholm NH. 1992. Tyrosinase abundance and activity in murine hairbulb melanocytes of agouti mutants (C57BL/6J-a/a, Ay/a, and AwJ/AwJ). Pigment Cell Res Suppl 2:79-83. [PubMed: 1409442]  [MGI Ref ID J:1295]

Knisely AS; Gasser DL; Silvers WK. 1975. Expression in organ culture of agouti locus genes of the mouse. Genetics 79(3):471-5. [PubMed: 1126628]  [MGI Ref ID J:5533]

Lamoreux ML; Wakamatsu K; Ito S. 2001. Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Res 14(1):23-31. [PubMed: 11277491]  [MGI Ref ID J:103803]

Lane PW. 1989. Mottled agouti-J (am-J) Mouse News Lett 84:89.  [MGI Ref ID J:16570]

Leamy LJ; Hrubant HE. 1971. Effects of alleles at the agouti locus on odontometric traits in the C57BL-6 strain of house mice. Genetics 67(1):87-96. [PubMed: 5556294]  [MGI Ref ID J:16571]

Loosli R. 1963. Tanoid--a new agouti mutant in the mouse. J Hered 54:26-29.  [MGI Ref ID J:13082]

Markert CL; Silvers WK. 1956. The Effects of Genotype and Cell Environment on Melanoblast Differentiation in the House Mouse. Genetics 41(3):429-50. [PubMed: 17247639]  [MGI Ref ID J:12970]

Martin NM; Houston PA; Patterson M; Sajedi A; Carmignac DF; Ghatei MA; Bloom SR; Small CJ. 2006. Abnormalities of the somatotrophic axis in the obese agouti mouse. Int J Obes (Lond) 30(3):430-8. [PubMed: 16172617]  [MGI Ref ID J:151302]

Martinez HG; Quinones MP; Jimenez F; Estrada CA; Clark K; Muscogiuri G; Sorice G; Musi N; Reddick RL; Ahuja SS. 2011. Critical role of chemokine (C-C motif) receptor 2 (CCR2) in the KKAy + Apoe -/- mouse model of the metabolic syndrome. Diabetologia 54(10):2660-8. [PubMed: 21779871]  [MGI Ref ID J:177084]

Mayer TC; Fishbane JL. 1972. Mesoderm-ectoderm interaction in the production of the agouti pigmentation pattern in mice. Genetics 71(2):297-303. [PubMed: 4558326]  [MGI Ref ID J:5288]

Miller MW; Duhl DM; Vrieling H; Cordes SP; Ollmann MM; Winkes BM; Barsh GS. 1993. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev 7(3):454-67. [PubMed: 8449404]  [MGI Ref ID J:4186]

Miyazaki M; Sampath H; Liu X; Flowers MT; Chu K; Dobrzyn A; Ntambi JM. 2009. Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochem Biophys Res Commun 380(4):818-22. [PubMed: 19338759]  [MGI Ref ID J:147343]

Monroe DG; Wipf LP; Diggins MR; Matthees DP; Granholm NH. 1998. Agouti-related maturation and tissue distribution of alpha-Melanocyte Stimulating Hormone in wild-type (AwJ/AwJ) and mutant (Ay/a,a/a) mice. Pigment Cell Res 11(5):310-3. [PubMed: 9877102]  [MGI Ref ID J:52183]

Moore KJ; Swing DA; Copeland NG; Jenkins NA. 1990. Interaction of the murine dilute suppressor gene (dsu) with fourteen coat color mutations [published erratum appears in Genetics 1990 Sep;126(1):285] Genetics 125(2):421-30. [PubMed: 2379821]  [MGI Ref ID J:29467]

Moyer FH. 1966. Genetic variations in the fine structure and ontogeny of mouse melanin granules. Am Zool 6(1):43-66. [PubMed: 5902512]  [MGI Ref ID J:5001]

Novak EK; Gautam R; Reddington M; Collinson LM; Copeland NG; Jenkins NA; McGarry MP; Swank RT. 2002. The regulation of platelet-dense granules by Rab27a in the ashen mouse, a model of Hermansky-Pudlak and Griscelli syndromes, is granule-specific and dependent on genetic background. Blood 100(1):128-35. [PubMed: 12070017]  [MGI Ref ID J:77395]

Novak EK; Wieland F; Jahreis GP; Swank RT. 1980. Altered secretion of kidney lysosomal enzymes in the mouse pigment mutants ruby-eye, ruby-eye-2-J, and maroon. Biochem Genet 18(5-6):549-61. [PubMed: 6776948]  [MGI Ref ID J:6422]

Nuotio-Antar AM; Hachey DL; Hasty AH. 2007. Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. Am J Physiol Endocrinol Metab 293(6):E1517-28. [PubMed: 17878220]  [MGI Ref ID J:145108]

Papacleovoulou G; Abu-Hayyeh S; Nikolopoulou E; Briz O; Owen BM; Nikolova V; Ovadia C; Huang X; Vaarasmaki M; Baumann M; Jansen E; Albrecht C; Jarvelin MR; Marin JJ; Knisely AS; Williamson C. 2013. Maternal cholestasis during pregnancy programs metabolic disease in offspring. J Clin Invest 123(7):3172-81. [PubMed: 23934127]  [MGI Ref ID J:201610]

Pettitt SJ; Liang Q; Rairdan XY; Moran JL; Prosser HM; Beier DR; Lloyd KC; Bradley A; Skarnes WC. 2009. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods :. [PubMed: 19525957]  [MGI Ref ID J:149352]

Poole TW. 1975. Dermal-epidermal interactions and the action of alleles at the agouti locus in the mouse. Dev Biol 42(2):203-10. [PubMed: 1090472]  [MGI Ref ID J:5519]

Poole TW. 1982. The agouti suppressor (As) coat color mutation in mice: developmental effects on the expression of agouti locus alleles. J Exp Zool 220(1):57-64. [PubMed: 7077265]  [MGI Ref ID J:6763]

Quevedo WC Jr.; Chase HB. 1958. An analysis of the light mutation of coat color in mice. J Morphol 102:329-345.  [MGI Ref ID J:13094]

Quevedo WC Jr; Holstein TJ. 1992. The shift from physiological genetics to molecular genetics in the study of mouse tyrosinase. Pigment Cell Res Suppl 2:57-60. [PubMed: 1409439]  [MGI Ref ID J:3852]

RUSSELL ES. 1949. A quantitative histological study of the pigment found in the coat-color mutants of the house mouse; interdependence among the variable granule attributes. Genetics 34(2):133-45. [PubMed: 18117146]  [MGI Ref ID J:148461]

Rakyan VK; Chong S; Champ ME; Cuthbert PC; Morgan HD; Luu KV; Whitelaw E. 2003. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A 100(5):2538-43. [PubMed: 12601169]  [MGI Ref ID J:82396]

Rice RH; Bradshaw KM; Durbin-Johnson BP; Rocke DM; Eigenheer RA; Phinney BS; Sundberg JP. 2012. Differentiating inbred mouse strains from each other and those with single gene mutations using hair proteomics. PLoS One 7(12):e51956. [PubMed: 23251662]  [MGI Ref ID J:195664]

Rosenfeld CS; Sieli PT; Warzak DA; Ellersieck MR; Pennington KA; Roberts RM. 2013. Maternal exposure to bisphenol A and genistein has minimal effect on A(vy)/a offspring coat color but favors birth of agouti over nonagouti mice. Proc Natl Acad Sci U S A 110(2):537-42. [PubMed: 23267115]  [MGI Ref ID J:193279]

Russell ES. 1948. A Quantitative Histological Study of the Pigment Found in the Coat Color Mutants of the House Mouse. II. Estimates of the Total Volume of Pigment. Genetics 33(3):228-36. [PubMed: 17247280]  [MGI Ref ID J:148462]

Russell ES. 1946. A Quantitative Histological Study of the Pigment Found in the Coat-Color Mutants of the House Mouse. I. Variable Attributes of the Pigment Granules. Genetics 31(3):327-46. [PubMed: 17247200]  [MGI Ref ID J:148463]

Russell ES. 1949. A Quantitative Histological Study of the Pigment Found in the Coat-Color Mutants of the House Mouse. IV. the Nature of the Effects of Genic Substitution in Five Major Allelic Series. Genetics 34(2):146-66. [PubMed: 17247308]  [MGI Ref ID J:12958]

Russell LB. 1964. Genetic and Functional Mosaicism in the Mouse. In: The Role of the Chromosomes in Development. Academic Press, New York.  [MGI Ref ID J:29504]

Russell LB; Cupp McDaniel MN; Woodiel FN,. 1963. Crossing over within the a "locus" of the mouse Genetics 48:907 Abstr.  [MGI Ref ID J:174047]

SILVERS WK. 1958. An experimental approach to action of genes at the agouti locus in the mouse. III. Transplants of newborn Aw-, A-and at-skin to Ay-, Aw-, A-and aa hosts. J Exp Zool 137(1):189-96. [PubMed: 13563791]  [MGI Ref ID J:13013]

Sakurai T; Ochiai H; Takeuchi T. 1975. Ultrastructural change of melanosomes associated with agouti pattern formation in mouse hair. Dev Biol 47(2):466-71. [PubMed: 1204945]  [MGI Ref ID J:5606]

Silvers WK. 1979. The Coat Colors of Mice; A Model for Mammalian Gene Action and Interaction. In: The Coat Colors of Mice. Springer-Verlag, New York.  [MGI Ref ID J:78801]

Soeller WC; Janson J; Hart SE; Parker JC; Carty MD; Stevenson RW; Kreutter DK; Butler PC. 1998. Islet amyloid-associated diabetes in obese A(vy)/a mice expressing human islet amyloid polypeptide. Diabetes 47(5):743-50. [PubMed: 9588445]  [MGI Ref ID J:133694]

Staats J. 1985. Standardized Nomenclature for Inbred Strains of Mice: eighth listing. Cancer Res 45(3):945-77. [PubMed: 3971387]  [MGI Ref ID J:50296]

Suto J. 2008. Coincidence of loci for glucosuria and obesity in type 2 diabetes-prone KK-Ay mice. Med Sci Monit 14(2):CR65-74. [PubMed: 18227763]  [MGI Ref ID J:131439]

Suto J. 2009. Identification of multiple quantitative trait loci affecting the size and shape of the mandible in mice. Mamm Genome 20(1):1-13. [PubMed: 19067046]  [MGI Ref ID J:143893]

Suto J; Matsuura S; Imamura K; Yamanaka H; Sekikawa K. 1998. Genetics of obesity in KK mouse and effects of A(y) allele on quantitative regulation. Mamm Genome 9(7):506-10. [PubMed: 9657845]  [MGI Ref ID J:48704]

Suwa A; Yoshino M; Yamazaki C; Naitou M; Fujikawa R; Matsumoto S; Kurama T; Shimokawa T; Aramori I. 2010. RMI1 deficiency in mice protects from diet and genetic-induced obesity. FEBS J 277(3):677-86. [PubMed: 20050919]  [MGI Ref ID J:168271]

Sweet SE; Quevedo WC Jr. 1968. Role of melanocyte morphology in pigmentation of mouse hair. Anat Rec 162(2):243-54. [PubMed: 5726144]  [MGI Ref ID J:5095]

Tamate HB; Takeuchi T. 1981. Induction of the shift in melanin synthesis in lethal yellow (A<y>/a) mice in vitro. Dev Genet 2:349-356.  [MGI Ref ID J:11956]

Tanaka S; Kuwahara S; Nishijima K; Ohno T; Matsuzawa A. 2006. Genetic association of mutation at agouti locus with adrenal x zone morphology in BALB/c mice. Exp Anim 55(4):343-7. [PubMed: 16880681]  [MGI Ref ID J:111619]

Tanaka S; Nishimura M; Matsuzawa A. 1994. Genetic association between agouti locus and adrenal X zone morphology in SM/J mice. Acta Anat (Basel) 149(3):170-3. [PubMed: 7976166]  [MGI Ref ID J:19308]

The Jackson Laboratory Office of Genetic Resources. 1983. Registry of Remutation at The Jackson Laboratory, 1983-1984 MGI Direct Data Submission :.  [MGI Ref ID J:79402]

The Jackson Laboratory Office of Genetic Resourses. 1979. Registry of Remutations at The Jackson Laboratory, 1979-1980 MGI Direct Data Submission :.  [MGI Ref ID J:78474]

The Mammalian Genetics Unit at Harwell. 2004. Information obtained from the Mammalian Genetics Unit, Medical Research Council (MRC), Harwell, UK Unpublished :.  [MGI Ref ID J:90559]

Tsuruta Y; Yoshimatsu H; Hidaka S; Kondou S; Okamoto K; Sakata T. 2002. Hyperleptinemia in A(y)/a mice upregulates arcuate cocaine- and amphetamine-regulated transcript expression. Am J Physiol Endocrinol Metab 282(4):E967-73. [PubMed: 11882520]  [MGI Ref ID J:75872]

Vrieling H; Duhl DM; Millar SE; Miller KA; Barsh GS. 1994. Differences in dorsal and ventral pigmentation result from regional expression of the mouse agouti gene. Proc Natl Acad Sci U S A 91(12):5667-71. [PubMed: 8202545]  [MGI Ref ID J:18750]

Wolff GL. 1978. Influence of maternal phenotype on metabolic differentiation of agouti locus mutants in the mouse. Genetics 88(3):529-39. [PubMed: 640377]  [MGI Ref ID J:5964]

Woychik RP; Generoso WM; Russell LB; Cain KT; Cacheiro NL; Bultman SJ; Selby PB; Dickinson ME; Hogan BL; Rutledge JC. 1990. Molecular and genetic characterization of a radiation-induced structural rearrangement in mouse chromosome 2 causing mutations at the limb deformity and agouti loci. Proc Natl Acad Sci U S A 87(7):2588-92. [PubMed: 2320577]  [MGI Ref ID J:10399]

Wu Q; Howell MP; Cowley MA; Palmiter RD. 2008. Starvation after AgRP neuron ablation is independent of melanocortin signaling. Proc Natl Acad Sci U S A 105(7):2687-92. [PubMed: 18272480]  [MGI Ref ID J:132184]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2525.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Frozen Products

Price (US dollars $)
Frozen Embryo $1650.00

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryopreserved Embryos
    Available to most shipping destinations1
    This strain is also available as cryopreserved embryos2. Orders for cryopreserved embryos may be placed with our Customer Service Department. Experienced technicians at The Jackson Laboratory have recovered frozen embryos of this strain successfully. We will provide you enough embryos to perform two embryo transfers. The Jackson Laboratory does not guarantee successful recovery at your facility. For complete information on purchasing embryos, please visit our Cryopreserved Embryos web page.

    1 Shipments cannot be made to Australia due to Australian government import restrictions.
    2 Embryos for most strains are cryopreserved at the two cell stage while some strains are cryopreserved at the eight cell stage. If this information is important to you, please contact Customer Service.
  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We willfulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3283.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Frozen Products

Price (US dollars $)
Frozen Embryo $2145.00

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryopreserved Embryos
    Available to most shipping destinations1
    This strain is also available as cryopreserved embryos2. Orders for cryopreserved embryos may be placed with our Customer Service Department. Experienced technicians at The Jackson Laboratory have recovered frozen embryos of this strain successfully. We will provide you enough embryos to perform two embryo transfers. The Jackson Laboratory does not guarantee successful recovery at your facility. For complete information on purchasing embryos, please visit our Cryopreserved Embryos web page.

    1 Shipments cannot be made to Australia due to Australian government import restrictions.
    2 Embryos for most strains are cryopreserved at the two cell stage while some strains are cryopreserved at the eight cell stage. If this information is important to you, please contact Customer Service.
  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We willfulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

General Supply Notes

  • View the complete collection of spontaneous mutants in the Mouse Mutant Resource.

Control Information

  Control
   Untyped from the colony
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.6)