Strain Name:

STOCK gr +/+ Ap3d1mh/J

Stock Number:

000279

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names STOCK gr +/+ Ap3dmh/J    (Changed: 15-DEC-04 )
Type Mutant Stock; Spontaneous Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Specieslaboratory mouse
GenerationF70
Generation Definitions

Appearance
agouti grey
Related Genotype: A/A gr +/gr ?

mocha coat color
Related Genotype: A/A Ap3d1mh +/Ap3d1mh ?

agouti
Related Genotype: A/A ? +/+ ? or A/A gr +/+ Ap3d1mh

Important Note
This strain is homozygous for the retinal degeneration allele Pde6brd1.

Description
Mice homozygous for the mocha spontaneous mutation (Ap3d1mh) have increased perinatal mortality. They are recognizable at birth by the absence of visible pigment in the eyes, which darken to deep red in adults. The hairs have considerably smaller and fewer melanin granules than normal. Behavior is abnormal, characterized by hyperactivity, tilted heads, and in some the inability to swim. All homozygotes show degenerative changes in the organ of Corti, stria vascularis, and spiral ganglion, and most show abnormalities of the otoliths in the saccule and utricle. This degeneration can be lessened by the administration of supplemental manganese or, to a lesser degree, zinc to the dam during pregnancy. Evoked auditory brainstem responses appear normal in young homozygotes, but decrease with age coincident with the cochlear degeneration with no response detected after six months of age. At three months of age, mice homozygous for the Ap3d1mh allele have significantly increased auditory evoked potentials after the first of two paired tones. Ap3d1mh-2J homozygotes also show an increased response to thefirst tone but this has not been proven with statistical significance. Homozygotes also show prolonged bleeding times due to a platelet storage pool deficiency (SPD) associated with reduced granulation of the platelets. Consistent with this defective vesicle transport, homozygotes also have decreased levels of renal lysosomal enzymes in the urine. Mocha is thus a mouse mutation that, like pa (pallid) and mu (muted), offers a model for human Hermansky-Pudlak syndrome, combining pigment and otolith abnormalities with platelet SPD. Electrocorticograms from awake Ap3d1mh homozygotes show a constant, high voltage, bilaterally synchronous theta wave pattern that is diminished by chloral-hydrate anesthetization. Heterozygotes also have occasional brief bursts of lower voltage theta waves. Ap3d1mh-2J homozygotes do not display hypersynchronized electrocorticograms but have spike-wave and tonic clonic seizures. Ap3d1mh homozygotes may be fertile but are poor breeders. (Lane and Deol, 1974; Rolfson and Erway, 1984; Noebels and Sidman, 1989; Miller et al., 1999; Peden et al., 2002; Kantheti et al., 1998 and 2003.)

This strain is also segregating for the grizzled (gr) spontaneous mutation. gr is a recessive mutation that occasionally causes tail kinks and consistently causes dilution of the yellow pigment but not the black pigment of the hair. The coat color has been described as similar to chinchilla (Tyrc-ch/Tyrc-ch) but with the black pigment remaining undiluted. On the agouti JIGR/Dn background the gr/gr coat color is grayish agouti. On a non-agouti background the hair in the ears and around the genitalia is white. The gr mutation causes 40-50% mortality prior to phenotypic classification and this affects males more than females. This mortality is both postnatal and prenatal from approximately 10 days onward. Pregnant dams expected to carry some homozygotes have been found to carry some dead embryos some of which had craneofacial abnormalities including shortened snout and swollen optic and occipital regions. At birth homozygotes weigh an average of one quarter less than their wildtype siblings. Although they increase in weight as suckling pups, as adults they still weigh 5-25% less than their wildtype siblings. (Falconer, 1950; Bloom and Falconer, 1966.)

This strain is homozygous for the rd1 allele of Pde6b resulting in early onset retinal degeneration in all pups. (Lane and Deol, 1974; Qiao et al., 2003.)

Development
The Ap3d1mh mutation arose spontaneously on the B6.C3-pi/+ background (then at N8) at The Jackson Laboratory in 1963 and was subsequently crossed to a variety of linkage testing stocks (including one carrying Ra, Os, and Pt, one carrying Kcnj6wv, one carrying Re, McolnVa, and Sd, and one carrying Gli3Xt-J, Lystbg-J, and Edaraddcr) before then being crossed to JIGR/Dn (then at F13) which carries ji and gr maintained in repulsion. ji was bred out and the resulting balanced stock with Ap3d1mh in repulsion with gr was then inbred via sibling mating. It reached F5 in 1972, F14 in 1975, F26 in 1978, F35 in 1980, F41 in 1982, F49 in 1984, and in 1989 doubly heterozygous (gr +/+ Ap3d1mh) females and males at F69 or F70 were sibling mated to generate embryos for freezing.

Control Information

  Control
   ? +/+ ? untested from colony
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Pde6brd1 allele
004202   B6.C3 Pde6brd1 Hps4le/+ +-Lmx1adr-8J/J
000002   B6.C3-Pde6brd1 Hps4le/J
001022   B6C3FeF1/J a/a
000652   BDP/J
000653   BUB/BnJ
002439   C3.129P2(B6)-B2mtm1Unc/J
005494   C3.129S1(B6)-Grm1rcw/J
000509   C3.Cg-Lystbg-2J/J
000480   C3.MRL-Faslpr/J
001957   C3A Pde6brd1.O20/A-Prph2Rd2/J
004326   C3Bir.129P2(B6)-Il10tm1Cgn/Lt
003968   C3Bir.129P2(B6)-Il10tm1Cgn/LtJ
006435   C3Fe.SW-Soaa/MonJ
001904   C3H-Atcayji-hes/J
000659   C3H/HeJ
000511   C3H/HeJ-Ap3d1mh-2J/J
000784   C3H/HeJ-Faslgld/J
002433   C3H/HeJ-Sptbn4qv-lnd2J/J
005972   C3H/HeJBirLtJ
001824   C3H/HeJSxJ
000635   C3H/HeOuJ
000474   C3H/HeSn
001431   C3H/HeSn-ocd/J
000661   C3H/HeSnJ
002333   C3H/HeSnJ-gri/J
001576   C3He-Atp7btx-J/J
000658   C3HeB/FeJ
002588   C3HeB/FeJ-Eya1bor/J
001533   C3HeB/FeJ-Mc1rE-so Gli3Xt-J/J
001908   C3HfB/BiJ
001502   C3Sn.B6-Epha4rb/EiGrsrJ
002235   C3Sn.C3-Ctnna2cdf/J
001547   C3Sn.Cg-Cm/J
001906   C3fBAnl.Cg-Catb/AnlJ
000656   CBA/J
000813   CBA/J-Atp7aMo-pew/J
000660   DA/HuSnJ
000023   FL/1ReJ
000025   FL/4ReJ
003024   FVB.129P2(B6)-Fmr1tm1Cgr/J
002539   FVB.129P2-Abcb4tm1Bor/J
002935   FVB.129S2(B6)-Ccnd1tm1Wbg/J
002953   FVB.Cg-Tg(MMTVTGFA)254Rjc/J
003170   FVB.Cg-Tg(Myh6-tTA)6Smbf/J
003078   FVB.Cg-Tg(WapIgf1)39Dlr/J
003487   FVB.Cg-Tg(XGFAP-lacZ)3Mes/J
003257   FVB/N-Tg(GFAPGFP)14Mes/J
002856   FVB/N-Tg(TIE2-lacZ)182Sato/J
002384   FVB/N-Tg(UcpDta)1Kz/J
001800   FVB/NJ
001491   FVB/NMob
000804   HPG/BmJ
000734   MOLD/RkJ
000550   MOLF/EiJ
002423   NON/ShiLtJ
000679   P/J
000680   PL/J
000268   RSV/LeJ
000269   SB/LeJ
010968   SB;C3Sn-Lrp4mdig-2J/GrsrJ
005651   SJL.AK-Thy1a/TseJ
000686   SJL/J
000688   ST/bJ
004808   STOCK Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
002648   STOCK a/a Cln6nclf/J
005965   STOCK Tg(Pomc1-cre)16Lowl/J
004770   SW.B6-Soab/J
002023   SWR.M-Emv21 Emv22/J
000689   SWR/J
000939   SWR/J-Clcn1adr-mto/J
000692   WB/ReJ KitW/J
100410   WBB6F1/J-KitW/KitW-v/J
000693   WC/ReJ KitlSl/J
View Strains carrying   Pde6brd1     (73 strains)

Strains carrying   gr allele
000572   JIGR/DnJ
View Strains carrying   gr     (1 strain)

Strains carrying other alleles of Ap3d1
000511   C3H/HeJ-Ap3d1mh-2J/J
022088   STOCK Ap3d1mh-4J/GrsrJ
View Strains carrying other alleles of Ap3d1     (2 strains)

View Strains carrying other alleles of Pde6b     (13 strains)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Model with phenotypic similarity to human disease where etiologies are distinct. Human genes are associated with this disease. Orthologs of these genes do not appear in the mouse genotype(s).
Hermansky-Pudlak Syndrome 2; HPS2
Models with phenotypic similarity to human diseases where etiology is unknown or involving genes where ortholog is unknown.
Storage Pool Platelet Disease
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Ap3d1mh gr+/Ap3d1+ gr

        STOCK gr +/+ Ap3d1mh/J
  • nervous system phenotype
  • abnormal brain wave pattern
    • electrocorticograms of mocha heterozygotes show occasional brief bursts of lower voltage theta waves, which are a less pronounced abnormality than in homozygotes   (MGI Ref ID J:96307)

Ap3d1mh/Ap3d1mh

        STOCK gr +/+ Ap3d1mh/J
  • mortality/aging
  • postnatal lethality
    • the percent homozygotes surviving to weaning is between 16% and 23% of Mendelian prediction, with some variation over time   (MGI Ref ID J:7485)
    • the percent of newborn homozygotes is between 47% and 97% of Mendelian prediction, with many dying within the first two or three days after birth   (MGI Ref ID J:7485)
  • nervous system phenotype
  • abnormal nervous system physiology
    • synaptic zinc levels are reduced throughout the brain   (MGI Ref ID J:94942)
    • abnormal brain wave pattern
      • electrocorticograms from most awake homozygotes show a constant, high voltage (300-600 microvolts), bilaterally synchronous theta wave pattern that is diminished by chloral-hydrate anesthetization   (MGI Ref ID J:96307)
      • in some homozygotes there is unilateral hemispheric predominance of the altered theta frequency   (MGI Ref ID J:96307)
      • sleep onset causes generalized slowing of cortical activity with sharp waves similar to normal controls   (MGI Ref ID J:96307)
    • abnormal spike wave discharge
      • spike discharge episodes of .25-1 mV amplitude and approximately 0.5-2 seconds duration observed for 4 of 5 mocha homozygotes, more frequent than in mocha 2 Jackson homozygotes   (MGI Ref ID J:59842)
    • abnormal synaptic dopamine release
      • a significant decrease in evoked dopamine release in dorsolateral striatum of   (MGI Ref ID J:163596)
    • enhanced sensorimotor gating   (MGI Ref ID J:59842)
  • hearing/vestibular/ear phenotype
  • abnormal auditory brainstem response
    • the S1 response, but not the S2 response, is markedly greater than in controls and the auditory gating is significantly enhanced as a result   (MGI Ref ID J:59842)
  • abnormal inner ear vestibule morphology
    • greatly reduced pigmentation within the vestibular portions of the inner ear, and this is not corrected by supplementing the mother's diet with manganese-zinc   (MGI Ref ID J:7485)
  • absent linear vestibular evoked potential
    • VESPs are absent at the maximum stimulus intensity used   (MGI Ref ID J:116914)
  • absent otoliths
    • on a normal diet most mocha homozygotes lack otoconia in both the utricle and saccule of one or both ears, but this developmental defect can be greatly prevented in pups by supplementing the mother's diet with manganese-zinc   (MGI Ref ID J:7485)
  • behavior/neurological phenotype
  • abnormal spike wave discharge
    • spike discharge episodes of .25-1 mV amplitude and approximately 0.5-2 seconds duration observed for 4 of 5 mocha homozygotes, more frequent than in mocha 2 Jackson homozygotes   (MGI Ref ID J:59842)
  • homeostasis/metabolism phenotype
  • decreased platelet aggregation
    • decreased aggregation both in the presence of high or low concentrations of collagen   (MGI Ref ID J:29151)
  • decreased platelet serotonin level
    • platelet serotonin levels are less than 6% those of normal   (MGI Ref ID J:29151)
  • increased bleeding time
    • bleed time is greater than 15 minutes   (MGI Ref ID J:29151)
  • hematopoietic system phenotype
  • *normal* hematopoietic system phenotype
    • the invariant chain appears to mature and be degraded with normal kinetics, and to have a normal half-life in LPS stimulated antigen presenting cells,   (MGI Ref ID J:71349)
    • MHC class II transport, peptide binding, and surface expression are normal   (MGI Ref ID J:71349)
    • abnormal platelet dense granule morphology
      • although a normal number of dense granules stain with mepacrine, UV flashing is reduced by more than fivefold indicating an abnormal intragranular environment   (MGI Ref ID J:29151)
      • abnormal platelet dense granule number
        • platelets nearly absent of dense granules   (MGI Ref ID J:29151)
      • decreased platelet serotonin level
        • platelet serotonin levels are less than 6% those of normal   (MGI Ref ID J:29151)
    • decreased platelet aggregation
      • decreased aggregation both in the presence of high or low concentrations of collagen   (MGI Ref ID J:29151)
  • cellular phenotype
  • decreased lysosomal enzyme secretion
    • lysosomal enzyme levels are increased in kidneys and there is an associated decrease in secretion into the urine   (MGI Ref ID J:29151)
    • thrombin-induced secretion of platelet lysosomal enzymes glucuronidase and galactosidase is only 30% to 45% of normal values and is not corrected by the addition of adenosine diphosphate   (MGI Ref ID J:29151)
  • pigmentation phenotype
  • abnormal retinal pigment epithelium morphology
    • although homozygotes do not have the giant granules that are found in the retinal pigment epithelial cells of beige mice, they do have enlarged retinal pigment granules   (MGI Ref ID J:29151)
  • vision/eye phenotype
  • abnormal retinal pigment epithelium morphology
    • although homozygotes do not have the giant granules that are found in the retinal pigment epithelial cells of beige mice, they do have enlarged retinal pigment granules   (MGI Ref ID J:29151)
  • renal/urinary system phenotype
  • abnormal proximal convoluted tubule morphology
    • higher than normal autofluorescence, typical of ceroid-like pigment, is found in proximal tubules   (MGI Ref ID J:29151)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Ap3d1mh/Ap3d1mh

        B6.C3-Grxcr1pi
  • mortality/aging
  • partial postnatal lethality
    • 50-70% die between birth and 4 weeks of age depending on genetic background   (MGI Ref ID J:5511)
  • pigmentation phenotype
  • decreased eye pigmentation
    • absence of visible eye pigment at birth   (MGI Ref ID J:5511)
    • eyes of adult mice appear deep red   (MGI Ref ID J:5511)
  • diluted coat color
    • both yellow (phaeomelanin) and black (eumelanin) hairs are diluted   (MGI Ref ID J:5511)
    • hairs in ear and around genitalia are white   (MGI Ref ID J:5511)
  • behavior/neurological phenotype
  • abnormal motor capabilities/coordination/movement   (MGI Ref ID J:5511)
    • head tilt
      • all do not overtly display this but all show imbalance when handled   (MGI Ref ID J:5511)
    • hyperactivity
      • contributes to poor breeding and offspring neglect   (MGI Ref ID J:5511)
  • growth/size/body phenotype
  • postnatal growth retardation
    • at all ages mice are smaller than normal littermates   (MGI Ref ID J:5511)
  • hearing/vestibular/ear phenotype
  • abnormal hearing physiology
    • mice are initially hypersensitive to sound   (MGI Ref ID J:5511)
    • hearing loss progresses to complete deafness between 3-6 months of age   (MGI Ref ID J:5511)
  • abnormal inner ear morphology
    • in surviving homozygous ranging 27 days or more   (MGI Ref ID J:5511)
    • abnormal inner ear vestibule morphology   (MGI Ref ID J:5511)
    • abnormal otolith morphology   (MGI Ref ID J:89392)
      • inconsistent occurrence of variable amounts and distribution of crystals in some mutants   (MGI Ref ID J:5511)
    • abnormal stria vascularis morphology
      • almost always reduced   (MGI Ref ID J:5511)
    • organ of Corti degeneration
      • >by 100 days of age there is extensive loss of hair cells and distortion of supporting cells   (MGI Ref ID J:5511)
  • absent linear vestibular evoked potential   (MGI Ref ID J:89392)
  • reproductive system phenotype
  • abnormal fertility/fecundity
    • hyperactivity contributes to poor breeding performance and offspring neglect   (MGI Ref ID J:5511)
  • vision/eye phenotype
  • decreased eye pigmentation
    • absence of visible eye pigment at birth   (MGI Ref ID J:5511)
    • eyes of adult mice appear deep red   (MGI Ref ID J:5511)
  • nervous system phenotype
  • cochlear ganglion degeneration
    • severe loss of cells in the spiral ganglion in animals over 100-days-old   (MGI Ref ID J:5511)
  • homeostasis/metabolism phenotype
  • abnormal mineral level
    • loss of vesicular zinc   (MGI Ref ID J:50662)
  • increased bleeding time
    • greater than 15 minutes compared to normal 2 minute bleeding time   (MGI Ref ID J:88018)
  • integument phenotype
  • diluted coat color
    • both yellow (phaeomelanin) and black (eumelanin) hairs are diluted   (MGI Ref ID J:5511)
    • hairs in ear and around genitalia are white   (MGI Ref ID J:5511)

gr/gr

        involves: A * STOCK fz
  • mortality/aging
  • partial postnatal lethality
    • some mutants survive to maturity   (MGI Ref ID J:11987)
    • more females than males survive   (MGI Ref ID J:11987)
  • partial prenatal lethality
    • some survive to birth   (MGI Ref ID J:11987)
    • cranial-facial defects commonly seen may contribute to mortality   (MGI Ref ID J:11987)
  • premature death
    • mortality occurs at all stages with loss of 50-60% of mutants   (MGI Ref ID J:11987)
  • pigmentation phenotype
  • absent coat pigmentation
    • on a non-agouti background hairs on the ears and genitalia normally yellow are white   (MGI Ref ID J:24769)
  • diluted coat color
    • dilutes yellow pigment (phaeomelanin)   (MGI Ref ID J:11987)
    • agouti mice look like chinchilla (A/A;cch/cch)   (MGI Ref ID J:11987)
  • growth/size/body phenotype
  • abnormal postnatal growth/weight/body size   (MGI Ref ID J:11987)
    • abnormal body weight
      • weight is 25% less than normal at birth and remains 10-20% below weight of normal littermates   (MGI Ref ID J:11987)
      • decreased body weight
        • weight data between 2 and 6 weeks of age show females are 75-80% of normal weight; males are 90-95% of normal weight   (MGI Ref ID J:11987)
    • decreased body size
      • reduced body size   (MGI Ref ID J:11987)
      • 20-30% smaller than normal littermates at birth   (MGI Ref ID J:11987)
      • 10% smaller than normal littermates as adults   (MGI Ref ID J:11987)
      • decreased body weight
        • weight data between 2 and 6 weeks of age show females are 75-80% of normal weight; males are 90-95% of normal weight   (MGI Ref ID J:11987)
  • skeleton phenotype
  • abnormal skeleton morphology   (MGI Ref ID J:11987)
    • abnormal craniofacial bone morphology
      • commom among E16-18 fetuses; not seen among pups after birth   (MGI Ref ID J:11987)
      • abnormal cranium morphology   (MGI Ref ID J:11987)
        • abnormal jaw morphology
          • most frequent abnormaity among E16-18 fetuses; not seen among pups after birth   (MGI Ref ID J:11987)
  • craniofacial phenotype
  • abnormal craniofacial bone morphology
    • commom among E16-18 fetuses; not seen among pups after birth   (MGI Ref ID J:11987)
    • abnormal cranium morphology   (MGI Ref ID J:11987)
      • abnormal jaw morphology
        • most frequent abnormaity among E16-18 fetuses; not seen among pups after birth   (MGI Ref ID J:11987)
  • reproductive system phenotype
  • abnormal ovulation   (MGI Ref ID J:11987)
    • decreased ovulation rate
      • although low compared to normal, ovulation rate is consistent with smaller size of mutant mice   (MGI Ref ID J:11987)
  • limbs/digits/tail phenotype
  • abnormal tail morphology   (MGI Ref ID J:11987)
    • kinked tail
      • occasionally seen   (MGI Ref ID J:11987)
  • integument phenotype
  • absent coat pigmentation
    • on a non-agouti background hairs on the ears and genitalia normally yellow are white   (MGI Ref ID J:24769)
  • diluted coat color
    • dilutes yellow pigment (phaeomelanin)   (MGI Ref ID J:11987)
    • agouti mice look like chinchilla (A/A;cch/cch)   (MGI Ref ID J:11987)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Ap3d1mh related

Dermatology Research
Color and White Spotting Defects

Hematological Research
Platelet Defects
      platelet storage pool deficiency

Neurobiology Research
Epilepsy
Hearing Defects

Sensorineural Research
Hearing Defects

Pde6brd1 related
Retinal Degeneration
gr related

Dermatology Research
Color and White Spotting Defects

Developmental Biology Research
Craniofacial and Palate Defects
Growth Defects
Perinatal Lethality
      Homozygous
Postnatal Lethality

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Ap3d1mh
Allele Name mocha
Allele Type Spontaneous
Common Name(s) mh; mocha;
Strain of OriginB6.C3-Grxcr1
Gene Symbol and Name Ap3d1, adaptor-related protein complex 3, delta 1 subunit
Chromosome 10
Gene Common Name(s) AA407035; ADTD; Ap3d; Bolvr; bovine leukemia virus receptor; expressed sequence AA407035; hBLVR; mBLVR1; mh; mocha;
Molecular Note The mutation is a 12 kb deletion that removes at least two exons, resulting in a 496 bp deletion of coding material shortly after the initiating ATG codon and causing an out of frame translation followed by a premature termination site. [MGI Ref ID J:50662]
 
Allele Symbol gr
Allele Name grizzled
Allele Type Spontaneous
Strain of OriginA x STOCK-Sgk3
Gene Symbol and Name gr, grizzled
Chromosome 10
Molecular Note This allele maps to a region of homology with the human paralemmin gene, PALM. Direct sequencing of RNA from brains of homozygous mice and analysis of the paralemmin coding region showed no sequence abnormalities. [MGI Ref ID J:47933]
 
Allele Symbol Pde6brd1
Allele Name retinal degeneration 1
Allele Type Spontaneous
Common Name(s) Pdebrd1; rd; rd-1; rd1; rodless retina;
Strain of Originvarious
Gene Symbol and Name Pde6b, phosphodiesterase 6B, cGMP, rod receptor, beta polypeptide
Chromosome 5
Gene Common Name(s) CSNB3; CSNBAD2; PDEB; Pdeb; RP40; nmf137; phosphodiesterase, cGMP, rod receptor, beta polypeptide; r; rd; rd-1; rd1; rd10; retinal degeneration; retinal degeneration 1; retinal degeneration 10;
General Note The following inbred strains are known to be homozygous for Pde6b: C3H sublines, CBA/J, FVB/NJ, PL/J, SB, SJL/J, and SWR/J.
Molecular Note Two mutations have been identified in rd1 mice. A murine leukimia virus (Xmv-28) insertion in reverse orientation in intron 1 is found in all mouse strains with the rd1 phenotype. Further, a nonsense mutation (C to A transversion) in codon 347 that results in a truncation eliminating more than half of the predicted encoded protein, including the catalytic domain has also been identified in all rd1 strains of mice. A specific degradation of mutant transcript during or after pre-mRNA splicing is suggested. [MGI Ref ID J:11513] [MGI Ref ID J:4366] [MGI Ref ID J:51361]

Genotyping

Genotyping Information


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Additional References

Elewaut D; Lawton AP; Nagarajan NA; Maverakis E; Khurana A; Honing S; Benedict CA; Sercarz E; Bakke O; Kronenberg M; Prigozy TI. 2003. The adaptor protein AP-3 is required for CD1d-mediated antigen presentation of glycosphingolipids and development of Valpha14i NKT cells. J Exp Med 198(8):1133-46. [PubMed: 14557411]  [MGI Ref ID J:86243]

Jones SM; Erway LC; Johnson KR; Yu H; Jones TA. 2004. Gravity receptor function in mice with graded otoconial deficiencies. Hear Res 191(1-2):34-40. [PubMed: 15109702]  [MGI Ref ID J:89392]

Lane PW; Deol MS. 1974. Mocha, a new coat color and behavior mutation on chromosome 10 of the mouse. J Hered 65(6):362-4. [PubMed: 4448900]  [MGI Ref ID J:5511]

Qiao X; Pennesi M; Seong E; Gao H; Burmeister M; Wu SM. 2003. Photoreceptor degeneration and rd1 mutation in the grizzled/mocha mouse strain. Vision Res 43(8):859-65. [PubMed: 12668055]  [MGI Ref ID J:88031]

Rolfsen RM; Erway LC. 1984. Trace metals and otolith defects in mocha mice. J Hered 75(3):159-62. [PubMed: 6736600]  [MGI Ref ID J:7485]

Simpson F; Peden AA; Christopoulou L; Robinson MS. 1997. Characterization of the adaptor-related protein complex, AP-3. J Cell Biol 137(4):835-45. [PubMed: 9151686]  [MGI Ref ID J:20036]

Swank RT; Reddington M; Howlett O; Novak EK. 1991. Platelet storage pool deficiency associated with inherited abnormalities of the inner ear in the mouse pigment mutants muted and mocha. Blood 78(8):2036-44. [PubMed: 1912584]  [MGI Ref ID J:29151]

Ap3d1mh related

Asensio CS; Sirkis DW; Edwards RH. 2010. RNAi screen identifies a role for adaptor protein AP-3 in sorting to the regulated secretory pathway. J Cell Biol 191(6):1173-87. [PubMed: 21149569]  [MGI Ref ID J:167996]

Baguma-Nibasheka M; Kablar B. 2009. Altered retinal cell differentiation in the AP-3 delta mutant (Mocha) mouse. Int J Dev Neurosci 27(7):701-8. [PubMed: 19631730]  [MGI Ref ID J:155635]

Bendor J; Lizardi-Ortiz JE; Westphalen RI; Brandstetter M; Hemmings HC Jr; Sulzer D; Flajolet M; Greengard P. 2010. AGAP1/AP-3-dependent endocytic recycling of M5 muscarinic receptors promotes dopamine release. EMBO J 29(16):2813-26. [PubMed: 20664521]  [MGI Ref ID J:163596]

Feldmann A; Amphornrat J; Schonherr M; Winterstein C; Mobius W; Ruhwedel T; Danglot L; Nave KA; Galli T; Bruns D; Trotter J; Kramer-Albers EM. 2011. Transport of the Major Myelin Proteolipid Protein Is Directed by VAMP3 and VAMP7. J Neurosci 31(15):5659-5672. [PubMed: 21490207]  [MGI Ref ID J:170972]

Gokhale A; Larimore J; Werner E; So L; Moreno-De-Luca A; Lese-Martin C; Lupashin VV; Smith Y; Faundez V. 2012. Quantitative proteomic and genetic analyses of the schizophrenia susceptibility factor dysbindin identify novel roles of the biogenesis of lysosome-related organelles complex 1. J Neurosci 32(11):3697-711. [PubMed: 22423091]  [MGI Ref ID J:183082]

Grabner CP; Price SD; Lysakowski A; Cahill AL; Fox AP. 2006. Regulation of large dense-core vesicle volume and neurotransmitter content mediated by adaptor protein 3. Proc Natl Acad Sci U S A 103(26):10035-40. [PubMed: 16788073]  [MGI Ref ID J:111070]

Jones SM; Erway LC; Johnson KR; Yu H; Jones TA. 2004. Gravity receptor function in mice with graded otoconial deficiencies. Hear Res 191(1-2):34-40. [PubMed: 15109702]  [MGI Ref ID J:89392]

Jones SM; Johnson KR; Yu H; Erway LC; Alagramam KN; Pollak N; Jones TA. 2005. A quantitative survey of gravity receptor function in mutant mouse strains. J Assoc Res Otolaryngol 6(4):297-310. [PubMed: 16235133]  [MGI Ref ID J:116914]

Kantheti P; Qiao X; Diaz ME; Peden AA; Meyer GE; Carskadon SL; Kapfhamer D; Sufalko D; Robinson MS; Noebels JL; Burmeister M. 1998. Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron 21(1):111-22. [PubMed: 9697856]  [MGI Ref ID J:50662]

Lane PW; Deol MS. 1974. Mocha, a new coat color and behavior mutation on chromosome 10 of the mouse. J Hered 65(6):362-4. [PubMed: 4448900]  [MGI Ref ID J:5511]

Larimore J; Tornieri K; Ryder PV; Gokhale A; Zlatic SA; Craige B; Lee JD; Talbot K; Pare JF; Smith Y; Faundez V. 2011. The schizophrenia susceptibility factor dysbindin and its associated complex sort cargoes from cell bodies to the synapse. Mol Biol Cell 22(24):4854-67. [PubMed: 21998198]  [MGI Ref ID J:187545]

Miller CL; Burmeister M; Stevens KE. 1999. Hippocampal auditory gating in the hyperactive mocha mouse. Neurosci Lett 276(1):57-60. [PubMed: 10586974]  [MGI Ref ID J:59842]

Misawa H; Fujigaya H; Nishimura T; Moriwaki Y; Okuda T; Kawashima K; Nakata K; Ruggiero AM; Blakely RD; Nakatsu F; Ohno H. 2008. Aberrant trafficking of the high-affinity choline transporter in AP-3-deficient mice. Eur J Neurosci 27(12):3109-17. [PubMed: 18554297]  [MGI Ref ID J:137410]

Newell-Litwa K; Chintala S; Jenkins S; Pare JF; McGaha L; Smith Y; Faundez V. 2010. Hermansky-Pudlak protein complexes, AP-3 and BLOC-1, differentially regulate presynaptic composition in the striatum and hippocampus. J Neurosci 30(3):820-31. [PubMed: 20089890]  [MGI Ref ID J:157701]

Newell-Litwa K; Seong E; Burmeister M; Faundez V. 2007. Neuronal and non-neuronal functions of the AP-3 sorting machinery. J Cell Sci 120(Pt 4):531-41. [PubMed: 17287392]  [MGI Ref ID J:202736]

Noebels JL; Sidman RL. 1989. Persistent hypersynchronization of neocortical neurons in the mocha mutant of mouse. J Neurogenet 6(1):53-6. [PubMed: 2778559]  [MGI Ref ID J:96307]

Qiao X; Pennesi M; Seong E; Gao H; Burmeister M; Wu SM. 2003. Photoreceptor degeneration and rd1 mutation in the grizzled/mocha mouse strain. Vision Res 43(8):859-65. [PubMed: 12668055]  [MGI Ref ID J:88031]

Rolfsen RM; Erway LC. 1984. Trace metals and otolith defects in mocha mice. J Hered 75(3):159-62. [PubMed: 6736600]  [MGI Ref ID J:7485]

Salazar G; Craige B; Styers ML; Newell-Litwa KA; Doucette MM; Wainer BH; Falcon-Perez JM; Dell'Angelica EC; Peden AA; Werner E; Faundez V. 2006. BLOC-1 complex deficiency alters the targeting of adaptor protein complex-3 cargoes. Mol Biol Cell 17(9):4014-26. [PubMed: 16760431]  [MGI Ref ID J:114481]

Scheuber A; Rudge R; Danglot L; Raposo G; Binz T; Poncer JC; Galli T. 2006. Loss of AP-3 function affects spontaneous and evoked release at hippocampal mossy fiber synapses. Proc Natl Acad Sci U S A 103(44):16562-7. [PubMed: 17056716]  [MGI Ref ID J:115638]

Seong E; Wainer BH; Hughes ED; Saunders TL; Burmeister M; Faundez V. 2005. Genetic analysis of the neuronal and ubiquitous AP-3 adaptor complexes reveals divergent functions in brain. Mol Biol Cell 16(1):128-40. [PubMed: 15537701]  [MGI Ref ID J:94942]

Sevilla LM; Richter SS; Miller J. 2001. Intracellular transport of MHC class II and associated invariant chain in antigen presenting cells from AP-3-deficient mocha mice. Cell Immunol 210(2):143-53. [PubMed: 11520080]  [MGI Ref ID J:71349]

Silvers WK. 1979. The Coat Colors of Mice; A Model for Mammalian Gene Action and Interaction. In: The Coat Colors of Mice. Springer-Verlag, New York.  [MGI Ref ID J:78801]

Sirkis DW; Edwards RH; Asensio CS. 2013. Widespread Dysregulation of Peptide Hormone Release in Mice Lacking Adaptor Protein AP-3. PLoS Genet 9(9):e1003812. [PubMed: 24086151]  [MGI Ref ID J:202452]

Swank RT; Novak EK; McGarry MP; Rusiniak ME; Feng L. 1998. Mouse models of Hermansky Pudlak syndrome: a review. Pigment Cell Res 11(2):60-80. [PubMed: 9585243]  [MGI Ref ID J:88018]

Swank RT; Novak EK; McGarry MP; Zhang Y; Li W; Zhang Q; Feng L. 2000. Abnormal vesicular trafficking in mouse models of Hermansky-Pudlak syndrome. Pigment Cell Res 13 Suppl 8:59-67. [PubMed: 11041359]  [MGI Ref ID J:103794]

Swank RT; Reddington M; Howlett O; Novak EK. 1991. Platelet storage pool deficiency associated with inherited abnormalities of the inner ear in the mouse pigment mutants muted and mocha. Blood 78(8):2036-44. [PubMed: 1912584]  [MGI Ref ID J:29151]

Pde6brd1 related

Acosta ML; Fletcher EL; Azizoglu S; Foster LE; Farber DB; Kalloniatis M. 2005. Early markers of retinal degeneration in rd/rd mice. Mol Vis 11:717-28. [PubMed: 16163270]  [MGI Ref ID J:103970]

Aftab U; Jiang C; Tucker B; Kim JY; Klassen H; Miljan E; Sinden J; Young M. 2009. Growth kinetics and transplantation of human retinal progenitor cells. Exp Eye Res 89(3):301-10. [PubMed: 19524569]  [MGI Ref ID J:151412]

Ahuja S; Ahuja-Jensen P; Johnson LE; Caffe AR; Abrahamson M; Ekstrom PA; van Veen T. 2008. rd1 Mouse retina shows an imbalance in the activity of cysteine protease cathepsins and their endogenous inhibitor cystatin C. Invest Ophthalmol Vis Sci 49(3):1089-96. [PubMed: 18326735]  [MGI Ref ID J:133024]

Ahuja-Jensen P; Johnsen-Soriano S; Ahuja S; Bosch-Morell F; Sancho-Tello M; Romero FJ; Abrahamson M; van Veen T. 2007. Low glutathione peroxidase in rd1 mouse retina increases oxidative stress and proteases. Neuroreport 18(8):797-801. [PubMed: 17471069]  [MGI Ref ID J:122802]

Alavi MV; Bette S; Schimpf S; Schuettauf F; Schraermeyer U; Wehrl HF; Ruttiger L; Beck SC; Tonagel F; Pichler BJ; Knipper M; Peters T; Laufs J; Wissinger B. 2007. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 130(Pt 4):1029-42. [PubMed: 17314202]  [MGI Ref ID J:154966]

Allen AE; Brown TM; Lucas RJ. 2011. A distinct contribution of short-wavelength-sensitive cones to light-evoked activity in the mouse pretectal olivary nucleus. J Neurosci 31(46):16833-43. [PubMed: 22090509]  [MGI Ref ID J:177906]

Allen AE; Cameron MA; Brown TM; Vugler AA; Lucas RJ. 2010. Visual responses in mice lacking critical components of all known retinal phototransduction cascades. PLoS One 5(11):e15063. [PubMed: 21124780]  [MGI Ref ID J:167121]

Alvarez-Lopez C; Cernuda-Cernuda R; Alcorta E; Alvarez-Viejo M; Manuel Garcia-Fernandez J. 2004. Altered endogenous activation of CREB in the suprachiasmatic nucleus of mice with retinal degeneration. Brain Res 1024(1-2):137-45. [PubMed: 15451375]  [MGI Ref ID J:92980]

Alvarez-Lopez C; Cernuda-Cernuda R; Garcia-Fernandez JM. 2006. The mPer1 clock gene expression in the rd mouse suprachiasmatic nucleus is affected by the retinal degeneration. Brain Res 1087(1):134-41. [PubMed: 16626665]  [MGI Ref ID J:109668]

Alvarez-Lopez C; Cernuda-Cernuda R; Paniagua MA; Alvarez-Viejo M; Fernandez-Lopez A; Garcia-Fernandez JM. 2004. The transcription factor CREB is phosphorylated in neurons of the piriform cortex of blind mice in response to illumination of the retina. Neurosci Lett 357(3):223-6. [PubMed: 15003290]  [MGI Ref ID J:121036]

Ardayfio P; Moon J; Leung KK; Youn-Hwang D; Kim KS. 2008. Impaired learning and memory in Pitx3 deficient aphakia mice: A genetic model for striatum-dependent cognitive symptoms in Parkinson's disease. Neurobiol Dis :. [PubMed: 18573342]  [MGI Ref ID J:136304]

Ash J; McLeod DS; Lutty GA. 2005. Transgenic expression of leukemia inhibitory factor (LIF) blocks normal vascular development but not pathological neovascularization in the eye. Mol Vis 11:298-308. [PubMed: 15889014]  [MGI Ref ID J:98579]

Audo I; Bujakowska K; Orhan E; Poloschek CM; Defoort-Dhellemmes S; Drumare I; Kohl S; Luu TD; Lecompte O; Zrenner E; Lancelot ME; Antonio A; Germain A; Michiels C; Audier C; Letexier M; Saraiva JP; Leroy BP; Munier FL; Mohand-Said S; Lorenz B; Friedburg C; Preising M; Kellner U; Renner AB; Moskova-Doumanova V; Berger W; Wissinger B; Hamel CP; Schorderet DF; De Baere E; Sharon D; Banin E; Jacobson SG; Bonneau D; Zanlonghi X; Le Meur G; Casteels I; Koenekoop R; Long VW; Meire F; Prescott K; de Ravel T; Simm. 2012. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 90(2):321-30. [PubMed: 22325361]  [MGI Ref ID J:196741]

Azadi S; Paquet-Durand F; Medstrand P; van Veen T; Ekstrom PA. 2006. Up-regulation and increased phosphorylation of protein kinase C (PKC) delta, mu and theta in the degenerating rd1 mouse retina. Mol Cell Neurosci 31(4):759-73. [PubMed: 16503160]  [MGI Ref ID J:108601]

BRUCKNER R. 1951. [Slit-lamp microscopy and ophthalmoscopy in rat and mouse.] Doc Ophthalmol 5-6:452-554. [PubMed: 14896883]  [MGI Ref ID J:25576]

Ball SL; Powers PA; Shin HS; Morgans CW; Peachey NS; Gregg RG. 2002. Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest Ophthalmol Vis Sci 43(5):1595-603. [PubMed: 11980879]  [MGI Ref ID J:80080]

Barabas P; Liu A; Xing W; Chen CK; Tong Z; Watt CB; Jones BW; Bernstein PS; Krizaj D. 2013. Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc Natl Acad Sci U S A 110(13):5181-6. [PubMed: 23479632]  [MGI Ref ID J:194246]

Barber AC; Hippert C; Duran Y; West EL; Bainbridge JW; Warre-Cornish K; Luhmann UF; Lakowski J; Sowden JC; Ali RR; Pearson RA. 2013. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A 110(1):354-9. [PubMed: 23248312]  [MGI Ref ID J:192521]

Bi A; Cui J; Ma YP; Olshevskaya E; Pu M; Dizhoor AM; Pan ZH. 2006. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50(1):23-33. [PubMed: 16600853]  [MGI Ref ID J:122947]

Blanks JC; Bok D. 1977. An autoradiographic analysis of postnatal cell proliferation in the normal and degenerative mouse retina. J Comp Neurol 174(2):317-27. [PubMed: 864040]  [MGI Ref ID J:5812]

Borowska J; Trenholm S; Awatramani GB. 2011. An intrinsic neural oscillator in the degenerating mouse retina. J Neurosci 31(13):5000-12. [PubMed: 21451038]  [MGI Ref ID J:171202]

Bowes C; Danciger M; Kozak CA; Farber DB. 1989. Isolation of a candidate cDNA for the gene causing retinal degeneration in the rd mouse [published erratum appears in Proc Natl Acad Sci U S A 1990 Feb;87(4):1625] Proc Natl Acad Sci U S A 86(24):9722-6. [PubMed: 2481314]  [MGI Ref ID J:10184]

Bowes C; Li T; Danciger M; Baxter LC; Applebury ML; Farber DB. 1990. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase [see comments] Nature 347(6294):677-80. [PubMed: 1977087]  [MGI Ref ID J:10777]

Bowes C; Li T; Frankel WN; Danciger M; Coffin JM; Applebury ML; Farber DB. 1993. Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc Natl Acad Sci U S A 90(7):2955-9. [PubMed: 8385352]  [MGI Ref ID J:4366]

Bramall AN; Szego MJ; Pacione LR; Chang I; Diez E; D'Orleans-Juste P; Stewart DJ; Hauswirth WW; Yanagisawa M; McInnes RR. 2013. Endothelin-2-mediated protection of mutant photoreceptors in inherited photoreceptor degeneration. PLoS One 8(2):e58023. [PubMed: 23469133]  [MGI Ref ID J:198395]

Brown TM; Gias C; Hatori M; Keding SR; Semo M; Coffey PJ; Gigg J; Piggins HD; Panda S; Lucas RJ. 2010. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biol 8(12):e1000558. [PubMed: 21151887]  [MGI Ref ID J:170401]

Buhr ED; Van Gelder RN. 2014. Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin. Proc Natl Acad Sci U S A 111(23):8625-30. [PubMed: 24843129]  [MGI Ref ID J:211359]

Bumsted KM; Rizzolo LJ; Barnstable CJ. 2001. Defects in the MITF(mi/mi) apical surface are associated with a failure of outer segment elongation. Exp Eye Res 73(3):383-92. [PubMed: 11520113]  [MGI Ref ID J:115620]

Busskamp V; Duebel J; Balya D; Fradot M; Viney TJ; Siegert S; Groner AC; Cabuy E; Forster V; Seeliger M; Biel M; Humphries P; Paques M; Mohand-Said S; Trono D; Deisseroth K; Sahel JA; Picaud S; Roska B. 2010. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329(5990):413-7. [PubMed: 20576849]  [MGI Ref ID J:162017]

Caley DW; Johnson C; Liebelt RA. 1972. The postnatal development of the retina in the normal and rodless CBA mouse: a light and electron microscopic study. Am J Anat 133(2):179-212. [PubMed: 5009246]  [MGI Ref ID J:5250]

Cameron MA; Pozdeyev N; Vugler AA; Cooper H; Iuvone PM; Lucas RJ. 2009. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 29(4):761-7. [PubMed: 19200071]  [MGI Ref ID J:146469]

Carter-Dawson LD; LaVail MM; Sidman RL. 1978. Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci 17(6):489-98. [PubMed: 659071]  [MGI Ref ID J:5988]

Cayouette M; Gravel C. 1997. Adenovirus-mediated gene transfer of ciliary neurotrophic factor can prevent photoreceptor degeneration in the retinal degeneration (rd) mouse. Hum Gene Ther 8(4):423-30. [PubMed: 9054517]  [MGI Ref ID J:39262]

Cayouette M; Smith SB; Becerra SP; Gravel C. 1999. Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 6(6):523-32. [PubMed: 10600408]  [MGI Ref ID J:59343]

Chang B; Hawes NL; Hurd RE; Davisson MT; Nusinowitz S; Heckenlively JR. 2002. Retinal degeneration mutants in the mouse. Vision Res 42(4):517-25. [PubMed: 11853768]  [MGI Ref ID J:75095]

Chang B; Hawes NL; Hurd RE; Wang J; Howell D; Davisson MT; Roderick TH; Nusinowitz S; Heckenlively JR. 2005. Mouse models of ocular diseases. Vis Neurosci 22(5):587-93. [PubMed: 16332269]  [MGI Ref ID J:156373]

Chang B; Hurd R; Wang J; Nishina P. 2013. Survey of common eye diseases in laboratory mouse strains. Invest Ophthalmol Vis Sci 54(7):4974-81. [PubMed: 23800770]  [MGI Ref ID J:198916]

Charbel Issa P; Singh MS; Lipinski DM; Chong NV; Delori FC; Barnard AR; MacLaren RE. 2012. Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration. Invest Ophthalmol Vis Sci 53(2):1066-75. [PubMed: 22169101]  [MGI Ref ID J:191520]

Chen B; Cepko CL. 2009. HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323(5911):256-9. [PubMed: 19131628]  [MGI Ref ID J:143166]

Chen Q; Khoury M; Chen J. 2009. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A :. [PubMed: 19966223]  [MGI Ref ID J:155817]

Chua J; Nivison-Smith L; Fletcher EL; Trenholm S; Awatramani GB; Kalloniatis M. 2013. Early remodeling of Muller cells in the rd/rd mouse model of retinal dystrophy. J Comp Neurol 521(11):2439-53. [PubMed: 23348616]  [MGI Ref ID J:200732]

Cohen AI; Blazynski C. 1990. Dopamine and its agonists reduce a light-sensitive pool of cyclic AMP in mouse photoreceptors. Vis Neurosci 4(1):43-52. [PubMed: 1702315]  [MGI Ref ID J:78184]

Cornett A; Sucic JF; Hillsburg D; Cyr L; Johnson C; Polanco A; Figuereo J; Cabine K; Russo N; Sturtevant A; Jarvinen MK. 2011. Altered glial gene expression, density, and architecture in the visual cortex upon retinal degeneration. Brain Res 1422:46-56. [PubMed: 21983206]  [MGI Ref ID J:179028]

Danciger M; Bowes C; Kozak CA; LaVail MM; Farber DB. 1990. Fine mapping of a putative rd cDNA and its co-segregation with rd expression. Invest Ophthalmol Vis Sci 31(8):1427-32. [PubMed: 1974892]  [MGI Ref ID J:10689]

Daniels DM; Stoddart CW; Martin-Iverson MT; Lai CM; Redmond TM; Rakoczy PE. 2003. Entrainment of circadian rhythm to a photoperiod reversal shows retinal dystrophy in RPE65(-/-) mice. Physiol Behav 79(4-5):701-11. [PubMed: 12954412]  [MGI Ref ID J:96439]

Davies VJ; Powell KA; White KE; Yip W; Hogan V; Hollins AJ; Davies JR; Piechota M; Brownstein DG; Moat SJ; Nichols PP; Wride MA; Boulton ME; Votruba M. 2008. A missense mutation in the murine Opa3 gene models human Costeff syndrome. Brain 131(Pt 2):368-80. [PubMed: 18222992]  [MGI Ref ID J:181670]

Davis RJ; Tosi J; Janisch KM; Kasanuki JM; Wang NK; Kong J; Tsui I; Cilluffo M; Woodruff ML; Fain GL; Lin CS; Tsang SH. 2008. Functional rescue of degenerating photoreceptors in mice homozygous for a hypomorphic cGMP phosphodiesterase 6 b allele (Pde6bH620Q). Invest Ophthalmol Vis Sci 49(11):5067-76. [PubMed: 18658088]  [MGI Ref ID J:141984]

Del Rio P; Irmler M; Arango-Gonzalez B; Favor J; Bobe C; Bartsch U; Vecino E; Beckers J; Hauck SM; Ueffing M. 2011. GDNF-induced osteopontin from Muller glial cells promotes photoreceptor survival in the Pde6b(rd1) mouse model of retinal degeneration. Glia 59(5):821-32. [PubMed: 21360756]  [MGI Ref ID J:169746]

Delyfer MN; Forster V; Neveux N; Picaud S; Leveillard T; Sahel JA. 2005. Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis 11:688-96. [PubMed: 16163266]  [MGI Ref ID J:103968]

Demos C; Bandyopadhyay M; Rohrer B. 2008. Identification of candidate genes for human retinal degeneration loci using differentially expressed genes from mouse photoreceptor dystrophy models. Mol Vis 14:1639-49. [PubMed: 18776951]  [MGI Ref ID J:140115]

Doonan F; Donovan M; Cotter TG. 2003. Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. J Neurosci 23(13):5723-31. [PubMed: 12843276]  [MGI Ref ID J:84389]

Drager UC; Hubel DH. 1978. Studies of visual function and its decay in mice with hereditary retinal degeneration. J Comp Neurol 180(1):85-114. [PubMed: 649791]  [MGI Ref ID J:5980]

Du Y; Davisson MT; Kafadar K; Gardiner K. 2006. A-to-I pre-mRNA editing of the serotonin 2C receptor: comparisons among inbred mouse strains. Gene 382:39-46. [PubMed: 16904273]  [MGI Ref ID J:115050]

Ekstrom P; Sanyal S; Narfstrom K; Chader GJ; van Veen T. 1988. Accumulation of glial fibrillary acidic protein in Muller radial glia during retinal degeneration. Invest Ophthalmol Vis Sci 29(9):1363-71. [PubMed: 3417421]  [MGI Ref ID J:27850]

Feng BS; He SH; Zheng PY; Wu L; Yang PC. 2007. Mast cells play a crucial role in Staphylococcus aureus peptidoglycan-induced diarrhea. Am J Pathol 171(2):537-47. [PubMed: 17600127]  [MGI Ref ID J:123928]

Fletcher RT; Sanyal S; Krishna G; Aguirre G; Chader GJ. 1986. Genetic expression of cyclic GMP phosphodiesterase activity defines abnormal photoreceptor differentiation in neurological mutants of inherited retinal degeneration. J Neurochem 46(4):1240-5. [PubMed: 3005510]  [MGI Ref ID J:12044]

Foster RG; Argamaso S; Coleman S; Colwell CS; Lederman A; Provencio I. 1993. Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythms 8 Suppl:S17-23. [PubMed: 8274758]  [MGI Ref ID J:17940]

Foster RG; Provencio I; Hudson D; Fiske S; De Grip W; Menaker M. 1991. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol [A] 169(1):39-50. [PubMed: 1941717]  [MGI Ref ID J:83743]

Frasson M; Picaud S; Leveillard T; Simonutti M; Mohand-Said S; Dreyfus H; Hicks D; Sabel J. 1999. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 40(11):2724-34. [PubMed: 10509671]  [MGI Ref ID J:57866]

Frasson M; Sahel JA; Fabre M; Simonutti M; Dreyfus H; Picaud S. 1999. Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med 5(10):1183-7. [PubMed: 10502823]  [MGI Ref ID J:57986]

Gao H; Hollyfield JG. 1995. Basic fibroblast growth factor in retinal development: differential levels of bFGF expression and content in normal and retinal degeneration (rd) mutant mice. Dev Biol 169(1):168-184. [PubMed: 7750636]  [MGI Ref ID J:25273]

Garcia-Fernandez JM; Jimenez AJ; Foster RG. 1995. The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (rd/rd): implications for circadian organization. Neurosci Lett 187(1):33-6. [PubMed: 7617296]  [MGI Ref ID J:25157]

Gimenez E; Montoliu L. 2001. A simple polymerase chain reaction assay for genotyping the retinal degeneration mutation (Pdeb(rd1)) in FVB/N-derived transgenic mice. Lab Anim 35(2):153-6. [PubMed: 11315164]  [MGI Ref ID J:69558]

Goel M; Dhingra NK. 2012. Muller glia express rhodopsin in a mouse model of inherited retinal degeneration. Neuroscience 225:152-61. [PubMed: 22967839]  [MGI Ref ID J:192477]

Golub MS; Germann SL; Mercer M; Gordon MN; Morgan DG; Mayer LP; Hoyer PB. 2008. Behavioral consequences of ovarian atrophy and estrogen replacement in the APPswe mouse. Neurobiol Aging 29(10):1512-23. [PubMed: 17451844]  [MGI Ref ID J:140912]

Gouras P; Du J; Kjeldbye H; Kwun R; Lopez R; Zack DJ. 1991. Transplanted photoreceptors identified in dystrophic mouse retina by a transgenic reporter gene. Invest Ophthalmol Vis Sci 32(13):3167-74. [PubMed: 1748547]  [MGI Ref ID J:607]

Gouras P; Du J; Kjeldbye H; Yamamoto S; Zack DJ. 1994. Long-term photoreceptor transplants in dystrophic and normal mouse retina. Invest Ophthalmol Vis Sci 35(8):3145-53. [PubMed: 8045709]  [MGI Ref ID J:20769]

Grafstein B; Murray M; Ingoglia NA. 1972. Protein synthesis and axonal transport in retinal ganglion cells of mice lacking visual receptors. Brain Res 44(1):37-48. [PubMed: 4115728]  [MGI Ref ID J:5292]

Graham DR; Overbeek PA; Ash JD. 2005. Leukemia inhibitory factor blocks expression of crx and nrl transcription factors to inhibit photoreceptor differentiation. Invest Ophthalmol Vis Sci 46(7):2601-10. [PubMed: 15980254]  [MGI Ref ID J:99409]

Greferath U; Goh HC; Chua PY; Astrand E; O'Brien EE; Fletcher EL; Murphy M. 2009. Mapping retinal degeneration and loss-of-function in Rd-FTL mice. Invest Ophthalmol Vis Sci 50(12):5955-64. [PubMed: 19661224]  [MGI Ref ID J:158255]

Grimm C; Wenzel A; Stanescu D; Samardzija M; Hotop S; Groszer M; Naash M; Gassmann M; Reme C. 2004. Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration. J Neurosci 24(25):5651-8. [PubMed: 15215287]  [MGI Ref ID J:133235]

Hackam AS; Strom R; Liu D; Qian J; Wang C; Otteson D; Gunatilaka T; Farkas RH; Chowers I; Kageyama M; Leveillard T; Sahel JA; Campochiaro PA; Parmigiani G; Zack DJ. 2004. Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse. Invest Ophthalmol Vis Sci 45(9):2929-42. [PubMed: 15326104]  [MGI Ref ID J:92921]

Hafezi F; Abegg M; Grimm C; Wenzel A; Munz K; Sturmer J; Farber DB; Reme CE. 1998. Retinal degeneration in the rd mouse in the absence of c-fos. Invest Ophthalmol Vis Sci 39(12):2239-44. [PubMed: 9804131]  [MGI Ref ID J:112088]

Hanno Y; Nakahira M; Jishage K; Noda T; Yoshihara Y. 2003. Tracking mouse visual pathways with WGA transgene. Eur J Neurosci 18(10):2910-4. [PubMed: 14656342]  [MGI Ref ID J:128266]

Hart AW; McKie L; Morgan JE; Gautier P; West K; Jackson IJ; Cross SH. 2005. Genotype-phenotype correlation of mouse pde6b mutations. Invest Ophthalmol Vis Sci 46(9):3443-50. [PubMed: 16123450]  [MGI Ref ID J:101336]

Hatori M; Le H; Vollmers C; Keding SR; Tanaka N; Schmedt C; Jegla T; Panda S. 2008. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3(6):e2451. [PubMed: 18545654]  [MGI Ref ID J:137151]

Hawes NL; Smith RS; Chang B; Davisson M; Heckenlively JR; John SW. 1999. Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Mol Vis 5:22. [PubMed: 10493779]  [MGI Ref ID J:59481]

Heckenlively JR; Chang B; Erway LC; Peng C; Hawes NL; Hageman GS; Roderick TH. 1995. Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome 11p15. Proc Natl Acad Sci U S A 92(24):11100-4. [PubMed: 7479945]  [MGI Ref ID J:121993]

Heynen SR; Tanimoto N; Joly S; Seeliger MW; Samardzija M; Grimm C. 2011. Retinal degeneration modulates intracellular localization of CDC42 in photoreceptors. Mol Vis 17:2934-46. [PubMed: 22128240]  [MGI Ref ID J:179662]

Hopp RM; Ransom N; Hilsenbeck SG; Papermaster DS; Windle JJ. 1998. Apoptosis in the murine rd1 retinal degeneration is predominantly p53-independent. Mol Vis 4:5. [PubMed: 9485488]  [MGI Ref ID J:47520]

Horev G; Benjamini Y; Sakov A; Golani I. 2007. Estimating wall guidance and attraction in mouse free locomotor behavior. Genes Brain Behav 6(1):30-41. [PubMed: 17233639]  [MGI Ref ID J:132656]

Hsiao FC; Liao YH; Tsai LL. 2013. Differential effects of retinal degeneration on sleep and wakefulness responses to short light-dark cycles in albino mice. Neuroscience 248C:459-468. [PubMed: 23811394]  [MGI Ref ID J:207054]

Huber G; Beck SC; Grimm C; Sahaboglu-Tekgoz A; Paquet-Durand F; Wenzel A; Humphries P; Redmond TM; Seeliger MW; Fischer MD. 2009. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 50(12):5888-95. [PubMed: 19661229]  [MGI Ref ID J:158254]

Huerta JJ; Llamosas MM; Cernuda-Cernuda R; Garcia-Fernandez JM. 1997. Fos expression in the retina of rd/rd mice during the light/dark cycle. Neurosci Lett 232(3):143-6. [PubMed: 9310300]  [MGI Ref ID J:43873]

Huerta JJ; Llamosas MM; Cernuda-Cernuda R; Garcia-Fernandez JM. 1999. Spatio-temporal analysis of light-induced Fos expression in the retina of rd mutant mice. Brain Res 834(1-2):122-7. [PubMed: 10407100]  [MGI Ref ID J:56973]

Hughes S; Pothecary CA; Jagannath A; Foster RG; Hankins MW; Peirson SN. 2012. Profound defects in pupillary responses to light in TRPM-channel null mice: a role for TRPM channels in non-image-forming photoreception. Eur J Neurosci 35(1):34-43. [PubMed: 22211741]  [MGI Ref ID J:184336]

Hussain AA; Willmott NJ; Voaden MJ. 1992. Cyclic GMP, calcium and photoreceptor sensitivity in mice heterozygous for the rod dysplasia gene designated rd. Vision Res 32(1):29-36. [PubMed: 1323896]  [MGI Ref ID J:611]

Hwang DY; Fleming SM; Ardayfio P; Moran-Gates T; Kim H; Tarazi FI; Chesselet MF; Kim KS. 2005. 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson's disease. J Neurosci 25(8):2132-7. [PubMed: 15728853]  [MGI Ref ID J:98209]

Ionita MA; Pittler SJ. 2007. Focus on molecules: rod cGMP phosphodiesterase type 6. Exp Eye Res 84(1):1-2. [PubMed: 16563379]  [MGI Ref ID J:123170]

Jia L; Oh EC; Ng L; Srinivas M; Brooks M; Swaroop A; Forrest D. 2009. Retinoid-related orphan nuclear receptor RORbeta is an early-acting factor in rod photoreceptor development. Proc Natl Acad Sci U S A 106(41):17534-9. [PubMed: 19805139]  [MGI Ref ID J:153683]

Johnson LE; van Veen T; Ekstrom PA. 2005. Differential Akt activation in the photoreceptors of normal and rd1 mice. Cell Tissue Res 320(2):213-22. [PubMed: 15789220]  [MGI Ref ID J:105103]

Jomary C; Cullen J; Jones SE. 2006. Inactivation of the Akt survival pathway during photoreceptor apoptosis in the retinal degeneration mouse. Invest Ophthalmol Vis Sci 47(4):1620-9. [PubMed: 16565401]  [MGI Ref ID J:108445]

Jomary C; Thomas M; Grist J; Milbrandt J; Neal MJ; Jones SE. 1999. Expression patterns of neurturin and its receptor components in developing and degenerative mouse retina. Invest Ophthalmol Vis Sci 40(3):568-74. [PubMed: 10067959]  [MGI Ref ID J:53298]

Jones BW; Watt CB; Frederick JM; Baehr W; Chen CK; Levine EM; Milam AH; Lavail MM; Marc RE. 2003. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 464(1):1-16. [PubMed: 12866125]  [MGI Ref ID J:84675]

Jones SE; Jomary C; Grist J; Stewart HJ; Neal MJ. 2000. Identification by array screening of altered nm23-M2/PuF mRNA expression in mouse retinal degeneration. Mol Cell Biol Res Commun 4(1):20-5. [PubMed: 11152623]  [MGI Ref ID J:66982]

Jones SE; Jomary C; Grist J; Thomas MR; Neal MJ. 1998. Expression of Pax-6 mRNA in the retinal degeneration (rd) mouse. Biochem Biophys Res Commun 252(1):236-40. [PubMed: 9813176]  [MGI Ref ID J:50978]

Jones SE; Jomary C; Grist J; Thomas MR; Neal MJ. 1998. Expression of alphaB-crystallin in a mouse model of inherited retinal degeneration. Neuroreport 9(18):4161-5. [PubMed: 9926867]  [MGI Ref ID J:52955]

Joseph RM; Li T. 1996. Overexpression of Bcl-2 or Bcl-XL transgenes and photoreceptor degeneration. Invest Ophthalmol Vis Sci 37(12):2434-46. [PubMed: 8933760]  [MGI Ref ID J:37285]

Kanan Y; Hoffhines A; Rauhauser A; Murray A; Al-Ubaidi MR. 2009. Protein tyrosine-O-sulfation in the retina. Exp Eye Res 89(4):559-67. [PubMed: 19523945]  [MGI Ref ID J:154498]

Kaneko H; Nishiguchi KM; Nakamura M; Kachi S; Terasaki H. 2008. Retardation of photoreceptor degeneration in the detached retina of rd1 mouse. Invest Ophthalmol Vis Sci 49(2):781-7. [PubMed: 18235028]  [MGI Ref ID J:132586]

Karasawa K; Tanaka A; Jung K; Matsuda A; Okamoto N; Oida K; Ebihara N; Ohmori K; Matsuda H. 2011. Retinal degeneration and rd1 mutation in NC/Tnd mice-a human atopic dermatitis model. Curr Eye Res 36(4):350-7. [PubMed: 21275519]  [MGI Ref ID J:179794]

Keady BT; Le YZ; Pazour GJ. 2011. IFT20 is required for opsin trafficking and photoreceptor outer segment development. Mol Biol Cell 22(7):921-30. [PubMed: 21307337]  [MGI Ref ID J:183002]

Keeler C. 1966. Retinal degeneration in the mouse is rodless retina. J Hered 57(2):47-50. [PubMed: 5916892]  [MGI Ref ID J:5007]

Keeler CE. 1926. On the Occurrence in the House Mouse of Mendelizing Structural Defect of the Retina Producing Blindness. Proc Natl Acad Sci U S A 12(4):255-8. [PubMed: 16576989]  [MGI Ref ID J:153354]

Keeler CE. 1924. The inheritance of a retinal abnormality in white mice Proc Natl Acad Sci U S A 10(7):329-33. [PubMed: 16576828]  [MGI Ref ID J:24999]

Keeler CE; Sutcliffe E; Chaffee EL. 1928. Normal and 'Rodless' Retinae of the House Mouse with Respect to the Electromotive Force Generated through Stimulation by Light. Proc Natl Acad Sci U S A 14(6):477-84. [PubMed: 16577134]  [MGI Ref ID J:153353]

Kida E; Rabe A; Walus M; Albertini G; Golabek AA. 2013. Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn. Exp Neurol 240:178-89. [PubMed: 23201095]  [MGI Ref ID J:196979]

Kirschman LT; Kolandaivelu S; Frederick JM; Dang L; Goldberg AF; Baehr W; Ramamurthy V. 2010. The Leber congenital amaurosis protein, AIPL1, is needed for the viability and functioning of cone photoreceptor cells. Hum Mol Genet 19(6):1076-87. [PubMed: 20042464]  [MGI Ref ID J:157652]

Klein SL; Kriegsfeld LJ; Hairston JE; Rau V; Nelson RJ; Yarowsky PJ. 1996. Characterization of sensorimotor performance, reproductive and aggressive behaviors in segmental trisomic 16 (Ts65Dn) mice. Physiol Behav 60(4):1159-64. [PubMed: 8884947]  [MGI Ref ID J:174274]

Kokkinopoulos I; Pearson RA; Macneil A; Dhomen NS; Maclaren RE; Ali RR; Sowden JC. 2008. Isolation and characterisation of neural progenitor cells from the adult Chx10(orJ/orJ) central neural retina. Mol Cell Neurosci 38(3):359-73. [PubMed: 18514541]  [MGI Ref ID J:137047]

Kolandaivelu S; Chang B; Ramamurthy V. 2011. Rod Phosphodiesterase-6 (PDE6) Catalytic Subunits Restore Cone Function in a Mouse Model Lacking Cone PDE6 Catalytic Subunit. J Biol Chem 286(38):33252-9. [PubMed: 21799013]  [MGI Ref ID J:176734]

Kolandaivelu S; Huang J; Hurley JB; Ramamurthy V. 2009. AIPL1, a protein associated with childhood blindness, interacts with alpha-subunit of rod phosphodiesterase (PDE6) and is essential for its proper assembly. J Biol Chem 284(45):30853-61. [PubMed: 19758987]  [MGI Ref ID J:156330]

Komeima K; Rogers BS; Lu L; Campochiaro PA. 2006. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A 103(30):11300-5. [PubMed: 16849425]  [MGI Ref ID J:111826]

Komeima K; Usui S; Shen J; Rogers BS; Campochiaro PA. 2008. Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa. Free Radic Biol Med 45(6):905-12. [PubMed: 18634866]  [MGI Ref ID J:142007]

Kranz K; Paquet-Durand F; Weiler R; Janssen-Bienhold U; Dedek K. 2013. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones. PLoS One 8(2):e57163. [PubMed: 23468924]  [MGI Ref ID J:199394]

Kucharska J; Del Rio P; Arango-Gonzalez B; Gorza M; Feuchtinger A; Hauck SM; Ueffing M. 2014. Cyr61 activates retinal cells and prolongs photoreceptor survival in rd1 mouse model of retinitis pigmentosa. J Neurochem 130(2):227-40. [PubMed: 24593181]  [MGI Ref ID J:213667]

Kuenzi F; Rosahl TW; Morton RA; Fitzjohn SM; Collingridge GL; Seabrook GR. 2003. Hippocampal synaptic plasticity in mice carrying the rd mutation in the gene encoding cGMP phosphodiesterase type 6 (PDE6). Brain Res 967(1-2):144-51. [PubMed: 12650975]  [MGI Ref ID J:82830]

LaVail MM; Matthes MT; Yasumura D; Steinberg RH. 1997. Variability in rate of cone degeneration in the retinal degeneration (rd/rd) mouse. Exp Eye Res 65(1):45-50. [PubMed: 9237863]  [MGI Ref ID J:42223]

LaVail MM; Mullen RJ. 1976. Role of the pigment epithelium in inherited retinal degeneration analyzed with experimental mouse chimeras. Exp Eye Res 23(2):227-45. [PubMed: 976367]  [MGI Ref ID J:5708]

LaVail MW; Yasumura D; Matthes MT; Lau-Villacorta C; Unoki K; Sung CH; Steinberg RH. 1998. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39(3):592-602. [PubMed: 9501871]  [MGI Ref ID J:46230]

Lahdenranta J; Pasqualini R; Schlingemann RO; Hagedorn M; Stallcup WB; Bucana CD; Sidman RL; Arap W. 2001. An anti-angiogenic state in mice and humans with retinal photoreceptor cell degeneration. Proc Natl Acad Sci U S A 98(18):10368-73. [PubMed: 11526242]  [MGI Ref ID J:126744]

Langmann T; Di Gioia SA; Rau I; Stohr H; Maksimovic NS; Corbo JC; Renner AB; Zrenner E; Kumaramanickavel G; Karlstetter M; Arsenijevic Y; Weber BH; Gal A; Rivolta C. 2010. Nonsense mutations in FAM161A cause RP28-associated recessive retinitis pigmentosa. Am J Hum Genet 87(3):376-81. [PubMed: 20705278]  [MGI Ref ID J:169189]

Lavail MM; Nishikawa S; Duncan JL; Yang H; Matthes MT; Yasumura D; Vollrath D; Overbeek PA; Ash JD; Robinson ML. 2008. Sustained delivery of NT-3 from lens fiber cells in transgenic mice reveals specificity of neuroprotection in retinal degenerations. J Comp Neurol 511(6):724-35. [PubMed: 18925574]  [MGI Ref ID J:176641]

Lin B; Koizumi A; Tanaka N; Panda S; Masland RH. 2008. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A 105(41):16009-14. [PubMed: 18836071]  [MGI Ref ID J:141434]

Lin B; Masland RH; Strettoi E. 2009. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res 88(3):589-99. [PubMed: 19087876]  [MGI Ref ID J:146569]

Lin B; Peng EB. 2013. Retinal ganglion cells are resistant to photoreceptor loss in retinal degeneration. PLoS One 8(6):e68084. [PubMed: 23840814]  [MGI Ref ID J:204325]

Liu SH; Gottsch JD; Vinores SA; Derevjanik NL; McLeod DS; Lutty GA. 2001. EMAP cytokine expression in developing retinas of normal and retinal degeneration (rd) mutant mice. J Neuroimmunol 114(1-2):28-34. [PubMed: 11240012]  [MGI Ref ID J:102963]

Lohr HR; Kuntchithapautham K; Sharma AK; Rohrer B. 2006. Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Eye Res 83(2):380-9. [PubMed: 16626700]  [MGI Ref ID J:116326]

Louros SR; Hooks BM; Litvina L; Carvalho AL; Chen C. 2014. A role for stargazin in experience-dependent plasticity. Cell Rep 7(5):1614-25. [PubMed: 24882000]  [MGI Ref ID J:211786]

Lu B; Coffey P; Lund R. 2004. Increased c-fos-like immunoreactivity in the superior colliculus and lateral geniculate nucleus of the rd mouse. Brain Res 1025(1-2):220-5. [PubMed: 15464763]  [MGI Ref ID J:107774]

Lucas RJ; Freedman MS; Munoz M; Garcia-Fernandez JM; Foster RG. 1999. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284(5413):505-7. [PubMed: 10205062]  [MGI Ref ID J:128478]

Lupi D; Oster H; Thompson S; Foster RG. 2008. The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci :. [PubMed: 18711396]  [MGI Ref ID J:141041]

Lupi D; Semo M; Foster RG. 2012. Impact of age and retinal degeneration on the light input to circadian brain structures. Neurobiol Aging 33(2):383-92. [PubMed: 20409612]  [MGI Ref ID J:188243]

Marc RE; Jones BW; Anderson JR; Kinard K; Marshak DW; Wilson JH; Wensel T; Lucas RJ. 2007. Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci 48(7):3364-71. [PubMed: 17591910]  [MGI Ref ID J:123271]

Margolis DJ; Gartland AJ; Singer JH; Detwiler PB. 2014. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration. PLoS One 9(1):e86253. [PubMed: 24489706]  [MGI Ref ID J:212697]

Masana MI; Sumaya IC; Becker-Andre M; Dubocovich ML. 2007. Behavioral characterization and modulation of circadian rhythms by light and melatonin in C3H/HeN mice homozygous for the RORbeta knockout. Am J Physiol Regul Integr Comp Physiol 292(6):R2357-67. [PubMed: 17303680]  [MGI Ref ID J:121989]

Matynia A; Parikh S; Chen B; Kim P; McNeill DS; Nusinowitz S; Evans C; Gorin MB. 2012. Intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion. Exp Eye Res 105:60-9. [PubMed: 23078956]  [MGI Ref ID J:203664]

May A; Nimtschke U; May CA. 2009. The architecture of the mouse ciliary processes and their changes during retinal degeneration. Exp Eye Res 88(3):561-5. [PubMed: 19059237]  [MGI Ref ID J:146578]

May CA. 2009. Fibrae medullares in the retina of the RD mouse: a case report. Curr Eye Res 34(5):411-3. [PubMed: 19401885]  [MGI Ref ID J:149565]

McFadyen MP; Kusek G; Bolivar VJ; Flaherty L. 2003. Differences among eight inbred strains of mice in motor ability and motor learning on a rotorod. Genes Brain Behav 2(4):214-9. [PubMed: 12953787]  [MGI Ref ID J:104873]

McKenzie JA; Fruttiger M; Abraham S; Lange CA; Stone J; Gandhi P; Wang X; Bainbridge J; Moss SE; Greenwood J. 2012. Apelin is required for non-neovascular remodeling in the retina. Am J Pathol 180(1):399-409. [PubMed: 22067912]  [MGI Ref ID J:180164]

Menu dit Huart L; Lorentz O; Goureau O; Leveillard T; Sahel JA. 2004. DNA repair in the degenerating mouse retina. Mol Cell Neurosci 26(3):441-9. [PubMed: 15234348]  [MGI Ref ID J:109747]

Menzler J; Zeck G. 2011. Network oscillations in rod-degenerated mouse retinas. J Neurosci 31(6):2280-91. [PubMed: 21307264]  [MGI Ref ID J:169452]

Mohand-Said S; Deudon-Combe A; Hicks D; Simonutti M; Forster V ; Fintz AC ; Leveillard T ; Dreyfus H ; Sahel JA. 1998. Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proc Natl Acad Sci U S A 95(14):8357-62. [PubMed: 9653191]  [MGI Ref ID J:48731]

Montana CL; Kolesnikov AV; Shen SQ; Myers CA; Kefalov VJ; Corbo JC. 2013. Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc Natl Acad Sci U S A 110(5):1732-7. [PubMed: 23319618]  [MGI Ref ID J:193697]

Morin LP; Studholme KM. 2011. Separation of function for classical and ganglion cell photoreceptors with respect to circadian rhythm entrainment and induction of photosomnolence. Neuroscience 199:213-24. [PubMed: 21985934]  [MGI Ref ID J:184037]

Mrosovsky N; Foster RG; Salmon PA. 1999. Thresholds for masking responses to light in three strains of retinally degenerate mice. J Comp Physiol [A] 184(4):423-8. [PubMed: 10377976]  [MGI Ref ID J:56471]

Mrosovsky N; Hampton RR. 1997. Spatial responses to light in mice with severe retinal degeneration. Neurosci Lett 222(3):204-6. [PubMed: 9148250]  [MGI Ref ID J:40689]

Nakamura K; Harada C; Okumura A; Namekata K; Mitamura Y; Yoshida K; Ohno S; Yoshida H; Harada T. 2005. Effect of p75NTR on the regulation of photoreceptor apoptosis in the rd mouse. Mol Vis 11:1229-35. [PubMed: 16402023]  [MGI Ref ID J:136765]

Namekata K; Okumura A; Harada C; Nakamura K; Yoshida H; Harada T. 2006. Effect of photoreceptor degeneration on RNA splicing and expression of AMPA receptors. Mol Vis 12:1586-93. [PubMed: 17200657]  [MGI Ref ID J:117332]

Nishiguchi KM; Nakamura M; Kaneko H; Kachi S; Terasaki H. 2007. The role of VEGF and VEGFR2/Flk1 in proliferation of retinal progenitor cells in murine retinal degeneration. Invest Ophthalmol Vis Sci 48(9):4315-20. [PubMed: 17724222]  [MGI Ref ID J:126933]

Nishikawa S; LaVail MM. 1998. Neovascularization of the RPE: temporal differences in mice with rod photoreceptor gene defects. Exp Eye Res 67(5):509-15. [PubMed: 9878212]  [MGI Ref ID J:52112]

O'Leary TP; Brown RE. 2009. Visuo-spatial learning and memory deficits on the Barnes maze in the 16-month-old APPswe/PS1dE9 mouse model of Alzheimer's disease. Behav Brain Res 201(1):120-7. [PubMed: 19428625]  [MGI Ref ID J:148386]

Ogilvie JM; Hakenewerth AM; Gardner RR; Martak JG; Maggio VM. 2009. Dopamine receptor loss of function is not protective of rd1 rod photoreceptors in vivo. Mol Vis 15:2868-78. [PubMed: 20038975]  [MGI Ref ID J:157088]

Otani A; Kojima H; Guo C; Oishi A; Yoshimura N. 2012. Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa. Am J Pathol 180(1):328-36. [PubMed: 22074737]  [MGI Ref ID J:180155]

Owens L; Buhr E; Tu DC; Lamprecht TL; Lee J; Van Gelder RN. 2012. Effect of circadian clock gene mutations on nonvisual photoreception in the mouse. Invest Ophthalmol Vis Sci 53(1):454-60. [PubMed: 22159024]  [MGI Ref ID J:191526]

Panda S; Provencio I; Tu DC; Pires SS; Rollag MD; Castrucci AM; Pletcher MT; Sato TK; Wiltshire T; Andahazy M; Kay SA; Van Gelder RN; Hogenesch JB. 2003. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301(5632):525-7. [PubMed: 12829787]  [MGI Ref ID J:165769]

Panda S; Sato TK; Castrucci AM; Rollag MD; DeGrip WJ; Hogenesch JB; Provencio I; Kay SA. 2002. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298(5601):2213-6. [PubMed: 12481141]  [MGI Ref ID J:81501]

Pang J; Cheng M; Haire SE; Barker E; Planelles V; Blanks JC. 2006. Efficiency of lentiviral transduction during development in normal and rd mice. Mol Vis 12:756-67. [PubMed: 16862069]  [MGI Ref ID J:111621]

Paper W; Kroeber M; Heersink S; Stephan DA; Fuchshofer R; Russell P; Tamm ER. 2008. Elevated amounts of myocilin in the aqueous humor of transgenic mice cause significant changes in ocular gene expression. Exp Eye Res 87(3):257-67. [PubMed: 18602390]  [MGI Ref ID J:141881]

Paquet-Durand F ; Hauck SM ; van Veen T ; Ueffing M ; Ekstrom P. 2009. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J Neurochem 108(3):796-810. [PubMed: 19187097]  [MGI Ref ID J:146653]

Paquet-Durand F; Azadi S; Hauck SM; Ueffing M; van Veen T; Ekstrom P. 2006. Calpain is activated in degenerating photoreceptors in the rd1 mouse. J Neurochem 96(3):802-14. [PubMed: 16405498]  [MGI Ref ID J:106017]

Paquet-Durand F; Beck S; Michalakis S; Goldmann T; Huber G; Muhlfriedel R; Trifunovic D; Fischer MD; Fahl E; Duetsch G; Becirovic E; Wolfrum U; van Veen T; Biel M; Tanimoto N; Seeliger MW. 2011. A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa. Hum Mol Genet 20(5):941-7. [PubMed: 21149284]  [MGI Ref ID J:169039]

Park H; Tan CC; Faulkner A; Jabbar SB; Schmid G; Abey J; Iuvone PM; Pardue MT. 2013. Retinal degeneration increases susceptibility to myopia in mice. Mol Vis 19:2068-79. [PubMed: 24146540]  [MGI Ref ID J:205341]

Park SJ; Lee DS; Lim EJ; Choi SH; Kang WS; Kim IB; Chun MH. 2008. The absence of the clathrin-dependent endocytosis in rod bipolar cells of the FVB/N mouse retina. Neurosci Lett 439(2):165-9. [PubMed: 18514403]  [MGI Ref ID J:137049]

Peirson SN; Oster H; Jones SL; Leitges M; Hankins MW; Foster RG. 2007. Microarray analysis and functional genomics identify novel components of melanopsin signaling. Curr Biol 17(16):1363-72. [PubMed: 17702581]  [MGI Ref ID J:128396]

Peng GH; Chen S. 2007. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation. Hum Mol Genet 16(20):3433-52. [PubMed: 17656371]  [MGI Ref ID J:129889]

Petrasch-Parwez E; Habbes HW; Weickert S; Lobbecke-Schumacher M; Striedinger K; Wieczorek S; Dermietzel R; Epplen JT. 2004. Fine-structural analysis and connexin expression in the retina of a transgenic model of Huntington's disease. J Comp Neurol 479(2):181-97. [PubMed: 15452853]  [MGI Ref ID J:135880]

Phelan JK; Bok D. 2000. Analysis and quantitation of mRNAs encoding the alpha- and beta-subunits of rod photoreceptor cGMP phosphodiesterase in neonatal retinal degeneration (rd) mouse retinas. Exp Eye Res 71(2):119-28. [PubMed: 10930317]  [MGI Ref ID J:63861]

Pickard GE; Baver SB; Ogilvie MD; Sollars PJ. 2009. Light-induced fos expression in intrinsically photosensitive retinal ganglion cells in melanopsin knockout (opn4) mice. PLoS ONE 4(3):e4984. [PubMed: 19319185]  [MGI Ref ID J:147460]

Pittler SJ; Baehr W. 1991. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A 88(19):8322-6. [PubMed: 1656438]  [MGI Ref ID J:11513]

Pittler SJ; Keeler CE; Sidman RL; Baehr W. 1993. PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. Proc Natl Acad Sci U S A 90(20):9616-9. [PubMed: 8415750]  [MGI Ref ID J:15231]

Popper P; Farber DB; Micevych PE; Minoofar K; Bronstein JM. 1997. TRPM-2 expression and tunel staining in neurodegenerative diseases: studies in wobbler and rd mice. Exp Neurol 143(2):246-54. [PubMed: 9056387]  [MGI Ref ID J:38831]

Portera-Cailliau C; Sung CH; Nathans J; Adler R. 1994. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 91(3):974-8. [PubMed: 8302876]  [MGI Ref ID J:16708]

Provencio I; Cooper HM; Foster RG. 1998. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol 395(4):417-39. [PubMed: 9619497]  [MGI Ref ID J:47756]

Provencio I; Foster RG. 1995. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res 694(1-2):183-90. [PubMed: 8974643]  [MGI Ref ID J:29236]

Provencio I; Wong S; Lederman AB; Argamaso SM; Foster RG. 1994. Visual and circadian responses to light in aged retinally degenerate mice. Vision Res 34(14):1799-806. [PubMed: 7941382]  [MGI Ref ID J:19843]

Punzo C; Cepko C. 2007. Cellular responses to photoreceptor death in the rd1 mouse model of retinal degeneration. Invest Ophthalmol Vis Sci 48(2):849-57. [PubMed: 17251487]  [MGI Ref ID J:123282]

Punzo C; Kornacker K; Cepko CL. 2009. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44-52. [PubMed: 19060896]  [MGI Ref ID J:144720]

Qiao X; Pennesi M; Seong E; Gao H; Burmeister M; Wu SM. 2003. Photoreceptor degeneration and rd1 mutation in the grizzled/mocha mouse strain. Vision Res 43(8):859-65. [PubMed: 12668055]  [MGI Ref ID J:88031]

RIKEN BioResource Center/RIKEN Genomic Sciences Center. 2008. A Large Scale Mutagenesis Program in RIKEN GSC PhenoSITE, World Wide Web (URL: http://www.brc.riken.jp/lab/gsc/mouse/) :.  [MGI Ref ID J:133634]

Rao A; Dallman R; Henderson S; Chen CK. 2007. Gbeta5 is required for normal light responses and morphology of retinal ON-bipolar cells. J Neurosci 27(51):14199-204. [PubMed: 18094259]  [MGI Ref ID J:129267]

Read DS; McCall MA; Gregg RG. 2002. Absence of voltage-dependent calcium channels delays photoreceptor degeneration in rd mice. Exp Eye Res 75(4):415-20. [PubMed: 12387789]  [MGI Ref ID J:79923]

Rich KA; Zhan Y; Blanks JC. 1997. Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. J Comp Neurol 388(1):47-63. [PubMed: 9364238]  [MGI Ref ID J:44100]

Roesch K; Stadler MB; Cepko CL. 2012. Gene expression changes within Muller glial cells in retinitis pigmentosa. Mol Vis 18:1197-214. [PubMed: 22665967]  [MGI Ref ID J:191614]

Rohrer B; Demos C; Frigg R; Grimm C. 2007. Classical complement activation and acquired immune response pathways are not essential for retinal degeneration in the rd1 mouse. Exp Eye Res 84(1):82-91. [PubMed: 17069800]  [MGI Ref ID J:123183]

Rossi C; Strettoi E; Galli-Resta L. 2003. The spatial order of horizontal cells is not affected by massive alterations in the organization of other retinal cells. J Neurosci 23(30):9924-8. [PubMed: 14586022]  [MGI Ref ID J:120041]

Ruan GX; Allen GC; Yamazaki S; McMahon DG. 2008. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol 6(10):e249. [PubMed: 18959477]  [MGI Ref ID J:141081]

Ruggiero L; Allen CN; Lane Brown R; Robinson DW. 2009. The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration. Eur J Neurosci 29(2):359-67. [PubMed: 19200239]  [MGI Ref ID J:146465]

Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH. 2010. Temporal response properties of retinal ganglion cells in rd1 mice evoked by amplitude-modulated electrical pulse trains. Invest Ophthalmol Vis Sci 51(12):6762-9. [PubMed: 20671284]  [MGI Ref ID J:171389]

SIDMAN RL; GREEN MC. 1965. RETINAL DEGENERATION IN THE MOUSE: LOCATION OF THE RD LOCUS IN LINKAGE GROUP XVII. J Hered 56:23-9. [PubMed: 14276177]  [MGI Ref ID J:114]

Sahaboglu A; Tanimoto N; Kaur J; Sancho-Pelluz J; Huber G; Fahl E; Arango-Gonzalez B; Zrenner E; Ekstrom P; Lowenheim H; Seeliger M; Paquet-Durand F. 2010. PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function. PLoS One 5(11):e15495. [PubMed: 21124852]  [MGI Ref ID J:167317]

Samardzija M; Wenzel A; Aufenberg S; Thiersch M; Reme C; Grimm C. 2006. Differential role of Jak-STAT signaling in retinal degenerations. FASEB J 20(13):2411-3. [PubMed: 16966486]  [MGI Ref ID J:114638]

Samardzija M; Wenzel A; Thiersch M; Frigg R; Reme C; Grimm C. 2006. Caspase-1 ablation protects photoreceptors in a model of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 47(12):5181-90. [PubMed: 17122101]  [MGI Ref ID J:123100]

Sancho-Pelluz J; Wunderlich KA; Rauch U; Romero FJ; van Veen T; Limb GA; Crocker PR; Perez MT. 2008. Sialoadhesin expression in intact degenerating retinas and following transplantation. Invest Ophthalmol Vis Sci 49(12):5602-10. [PubMed: 18641281]  [MGI Ref ID J:142000]

Sanz MM; Johnson LE; Ahuja S; Ekstrom PA; Romero J; van Veen T. 2007. Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration. Neuroscience 145(3):1120-9. [PubMed: 17293057]  [MGI Ref ID J:121644]

Sasahara M; Otani A; Oishi A; Kojima H; Yodoi Y; Kameda T; Nakamura H; Yoshimura N. 2008. Activation of bone marrow-derived microglia promotes photoreceptor survival in inherited retinal degeneration. Am J Pathol 172(6):1693-703. [PubMed: 18483210]  [MGI Ref ID J:136339]

Schmidt SY; Lolley RN. 1973. Cyclic-nucleotide phosphodiesterase: an early defect in inherited retinal degeneration of C3H mice. J Cell Biol 57(1):117-23. [PubMed: 4347974]  [MGI Ref ID J:5332]

Scott A; Powner MB; Fruttiger M. 2014. Quantification of vascular tortuosity as an early outcome measure in oxygen induced retinopathy (OIR). Exp Eye Res 120:55-60. [PubMed: 24418725]  [MGI Ref ID J:210367]

Selby CP; Thompson C; Schmitz TM; Van Gelder RN; Sancar A. 2000. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice Proc Natl Acad Sci U S A 97(26):14697-702. [PubMed: 11114194]  [MGI Ref ID J:66580]

Semo M; Gias C; Ahmado A; Sugano E; Allen AE; Lawrence JM; Tomita H; Coffey PJ; Vugler AA. 2010. Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception. PLoS One 5(11):e15009. [PubMed: 21124784]  [MGI Ref ID J:167120]

Semo M; Lupi D; Peirson SN; Butler JN; Foster RG. 2003. Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 18(11):3007-17. [PubMed: 14656296]  [MGI Ref ID J:89691]

Semo M; Peirson S; Lupi D; Lucas RJ; Jeffery G; Foster RG. 2003. Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 17(9):1793-801. [PubMed: 12752778]  [MGI Ref ID J:128149]

Sharma AK; Rohrer B. 2007. Sustained elevation of intracellular cGMP causes oxidative stress triggering calpain-mediated apoptosis in photoreceptor degeneration. Curr Eye Res 32(3):259-69. [PubMed: 17453946]  [MGI Ref ID J:121112]

Sheedlo HJ; Jaynes D; Bolan AL; Turner JE. 1995. Mullerian glia in dystrophic rodent retinas: an immunocytochemical analysis. Brain Res Dev Brain Res 85(2):171-80. [PubMed: 7600664]  [MGI Ref ID J:24543]

Srinivasan Y; Lovicu FJ; Overbeek PA. 1998. Lens-specific expression of transforming growth factor beta1 in transgenic mice causes anterior subcapsular cataracts. J Clin Invest 101(3):625-34. [PubMed: 9449696]  [MGI Ref ID J:135895]

Stone C; Pinto LH. 1993. Response properties of ganglion cells in the isolated mouse retina. Vis Neurosci 10(1):31-9. [PubMed: 8424927]  [MGI Ref ID J:116795]

Strettoi E; Pignatelli V. 2000. Modifications of retinal neurons in a mouse model of retinitis pigmentosa Proc Natl Acad Sci U S A 97(20):11020-5. [PubMed: 10995468]  [MGI Ref ID J:64742]

Strettoi E; Pignatelli V; Rossi C; Porciatti V; Falsini B. 2003. Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Res 43(8):867-77. [PubMed: 12668056]  [MGI Ref ID J:92316]

Strettoi E; Porciatti V; Falsini B; Pignatelli V; Rossi C. 2002. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J Neurosci 22(13):5492-504. [PubMed: 12097501]  [MGI Ref ID J:109225]

Sumaya IC; Masana MI; Dubocovich ML. 2005. The antidepressant-like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MT1 melatonin receptors. J Pineal Res 39(2):170-7. [PubMed: 16098095]  [MGI Ref ID J:114318]

Takahashi M; Miyoshi H; Verma IM; Gage FH. 1999. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 73(9):7812-6. [PubMed: 10438872]  [MGI Ref ID J:56759]

Tansley K. 1954. An inherited retinal degeneration in the mouse J Hered 45:123-27.  [MGI Ref ID J:15333]

Thaung C; Arnold K; Jackson IJ; Coffey PJ. 2002. Presence of visual head tracking differentiates normal sighted from retinal degenerate mice. Neurosci Lett 325(1):21-4. [PubMed: 12023058]  [MGI Ref ID J:107978]

Thompson CL; Selby CP; Partch CL; Plante DT; Thresher RJ; Araujo F; Sancar A. 2004. Further evidence for the role of cryptochromes in retinohypothalamic photoreception/phototransduction. Brain Res Mol Brain Res 122(2):158-66. [PubMed: 15010208]  [MGI Ref ID J:88468]

Thompson S; Foster RG; Stone EM; Sheffield VC; Mrosovsky N. 2008. Classical and melanopsin photoreception in irradiance detection: negative masking of locomotor activity by light. Eur J Neurosci 27(8):1973-9. [PubMed: 18412618]  [MGI Ref ID J:136825]

Thompson S; Lupi D; Hankins MW; Peirson SN; Foster RG. 2008. The effects of rod and cone loss on the photic regulation of locomotor activity and heart rate. Eur J Neurosci 28(4):724-9. [PubMed: 18702692]  [MGI Ref ID J:140577]

Thompson S; Mullins RF; Philp AR; Stone EM; Mrosovsky N. 2008. Divergent phenotypes of vision and accessory visual function in mice with visual cycle dysfunction (Rpe65 rd12) or retinal degeneration (rd/rd). Invest Ophthalmol Vis Sci 49(6):2737-42. [PubMed: 18515598]  [MGI Ref ID J:137044]

Thompson S; Stasheff SF; Hernandez J; Nylen E; East JS; Kardon RH; Pinto LH; Mullins RF; Stone EM. 2011. Different inner retinal pathways mediate rod-cone input in irradiance detection for the pupillary light reflex and regulation of behavioral state in mice. Invest Ophthalmol Vis Sci 52(1):618-23. [PubMed: 20847113]  [MGI Ref ID J:171559]

Thyagarajan S; van Wyk M; Lehmann K; Lowel S; Feng G; Wassle H. 2010. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci 30(26):8745-58. [PubMed: 20592196]  [MGI Ref ID J:161847]

Tsang SH; Gouras P; Yamashita CK; Kjeldbye H; Fisher J; Farber DB; Goff SP. 1996. Retinal degeneration in mice lacking the gamma subunit of the rod cGMP phosphodiesterase. Science 272(5264):1026-9. [PubMed: 8638127]  [MGI Ref ID J:33048]

Tu DC; Owens LA; Anderson L; Golczak M; Doyle SE; McCall M; Menaker M; Palczewski K; Van Gelder RN. 2006. Inner retinal photoreception independent of the visual retinoid cycle. Proc Natl Acad Sci U S A 103(27):10426-31. [PubMed: 16788071]  [MGI Ref ID J:111700]

Tu DC; Zhang D; Demas J; Slutsky EB; Provencio I; Holy TE; Van Gelder RN. 2005. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48(6):987-99. [PubMed: 16364902]  [MGI Ref ID J:107606]

Tucker B; Klassen H; Yang L; Chen DF; Young MJ. 2008. Elevated MMP Expression in the MRL Mouse Retina Creates a Permissive Environment for Retinal Regeneration. Invest Ophthalmol Vis Sci 49(4):1686-95. [PubMed: 18385092]  [MGI Ref ID J:136153]

Usui S; Oveson BC; Lee SY; Jo YJ; Yoshida T; Miki A; Miki K; Iwase T; Lu L; Campochiaro PA. 2009. NADPH oxidase plays a central role in cone cell death in retinitis pigmentosa. J Neurochem 110(3):1028-37. [PubMed: 19493169]  [MGI Ref ID J:152819]

Van Gelder RN; Wee R; Lee JA; Tu DC. 2003. Reduced pupillary light responses in mice lacking cryptochromes. Science 299(5604):222. [PubMed: 12522242]  [MGI Ref ID J:81500]

Vazquez-Chona FR; Clark AM; Levine EM. 2009. Rlbp1 promoter drives robust Muller glial GFP expression in transgenic mice. Invest Ophthalmol Vis Sci 50(8):3996-4003. [PubMed: 19324864]  [MGI Ref ID J:154561]

Viczian A; Sanyal S; Toffenetti J; Chader GJ; Farber DB. 1992. Photoreceptor-specific mRNAs in mice carrying different allelic combinations at the rd and rds loci. Exp Eye Res 54(6):853-60. [PubMed: 1381682]  [MGI Ref ID J:2579]

Vlachantoni D; Bramall AN; Murphy MP; Taylor RW; Shu X; Tulloch B; Van Veen T; Turnbull DM; McInnes RR; Wright AF. 2011. Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. Hum Mol Genet 20(2):322-35. [PubMed: 21051333]  [MGI Ref ID J:166898]

Wahlin KJ; Adler R; Zack DJ; Campochiaro PA. 2001. Neurotrophic signaling in normal and degenerating rodent retinas. Exp Eye Res 73(5):693-701. [PubMed: 11747369]  [MGI Ref ID J:73377]

Wang Y; Wang ZY; Zhou MN; Cai J; Sun LY; Liu XY; Daugherty BL; Pestka S. 1997. Sequencing and bacterial expression of a novel murine alpha interferon gene. Sci China C Life Sci 40(3):277-283.  [MGI Ref ID J:41297]

Warthen DM; Wiltgen BJ; Provencio I. 2011. Light enhances learned fear. Proc Natl Acad Sci U S A 108(33):13788-93. [PubMed: 21808002]  [MGI Ref ID J:175610]

Welge-Lussen U; Wilsch C; Neuhardt T; Wayne Streilein J; Lutjen-Drecoll E. 1999. Loss of anterior chamber-associated immune deviation (ACAID) in aged retinal degeneration (rd) mice. Invest Ophthalmol Vis Sci 40(13):3209-14. [PubMed: 10586944]  [MGI Ref ID J:58745]

Won J; Shi LY; Hicks W; Wang J; Hurd R; Naggert JK; Chang B; Nishina PM. 2011. Mouse model resources for vision research. J Ophthalmol 2011:391384. [PubMed: 21052544]  [MGI Ref ID J:166679]

Wong P; Borst DE; Farber D; Danciger JS; Tenniswood M; Chader GJ; van Veen T. 1994. Increased TRPM-2/clusterin mRNA levels during the time of retinal degeneration in mouse models of retinitis pigmentosa. Biochem Cell Biol 72(9-10):439-46. [PubMed: 7605616]  [MGI Ref ID J:24128]

Wu J; Trogadis J; Bremner R. 2001. Rod and cone degeneration in the rd mouse is p53 independent. Mol Vis 7:101-6. [PubMed: 11344337]  [MGI Ref ID J:126023]

Wunderlich KA; Leveillard T; Penkowa M; Zrenner E; Perez MT. 2010. Altered expression of metallothionein-I and -II and their receptor megalin in inherited photoreceptor degeneration. Invest Ophthalmol Vis Sci 51(9):4809-20. [PubMed: 20357188]  [MGI Ref ID J:164094]

Yamada H; Yamada E; Hackett SF; Ozaki H; Okamoto N; Campochiaro PA. 1999. Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. J Cell Physiol 179(2):149-56. [PubMed: 10199554]  [MGI Ref ID J:54326]

Yan W; Lewin A; Hauswirth W. 1998. Selective degradation of nonsense beta-phosphodiesterase mRNA in the heterozygous rd mouse. Invest Ophthalmol Vis Sci 39(13):2529-36. [PubMed: 9856762]  [MGI Ref ID J:51361]

Yang LP; Wu LM; Guo XJ; Tso MO. 2007. Activation of endoplasmic reticulum stress in degenerating photoreceptors of the rd1 mouse. Invest Ophthalmol Vis Sci 48(11):5191-8. [PubMed: 17962473]  [MGI Ref ID J:127157]

Yazulla S; Studholme KM; Pinto LH. 1997. Differences in the retinal GABA system among control, spastic mutant and retinal degeneration mutant mice. Vision Res 37(24):3471-82. [PubMed: 9425524]  [MGI Ref ID J:45280]

Yi H; Nakamura RE; Mohamed O; Dufort D; Hackam AS. 2007. Characterization of Wnt signaling during photoreceptor degeneration. Invest Ophthalmol Vis Sci 48(12):5733-41. [PubMed: 18055826]  [MGI Ref ID J:132500]

Yoshimura T; Ebihara S. 1998. Decline of circadian photosensitivity associated with retinal degeneration in CBA/J-rd/rd mice. Brain Res 779(1-2):188-93. [PubMed: 9473668]  [MGI Ref ID J:45462]

Yoshimura T; Ebihara S. 1996. Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+)mice. J Comp Physiol [A] 178(6):797-802. [PubMed: 8667293]  [MGI Ref ID J:33685]

Yoshimura T; Nishio M; Goto M; Ebihara S. 1994. Differences in circadian photosensitivity between retinally degenerate CBA/J mice (rd/rd) and normal CBA/N mice (+/+). J Biol Rhythms 9(1):51-60. [PubMed: 7949306]  [MGI Ref ID J:19351]

Yoshimura T; Yokota Y; Ishikawa A; Yasuo S; Hayashi N; Suzuki T; Okabayashi N; Namikawa T; Ebihara S. 2002. Mapping quantitative trait loci affecting circadian photosensitivity in retinally degenerate mice. J Biol Rhythms 17(6):512-9. [PubMed: 12465884]  [MGI Ref ID J:80788]

Zeiss CJ; Johnson EA. 2004. Proliferation of microglia, but not photoreceptors, in the outer nuclear layer of the rd-1 mouse. Invest Ophthalmol Vis Sci 45(3):971-6. [PubMed: 14985319]  [MGI Ref ID J:109731]

Zeiss CJ; Neal J; Johnson EA. 2004. Caspase-3 in postnatal retinal development and degeneration. Invest Ophthalmol Vis Sci 45(3):964-70. [PubMed: 14985318]  [MGI Ref ID J:88367]

Zencak D; Crippa SV; Tekaya M; Tanger E; Schorderet DE; Munier FL; van Lohuizen M; Arsenijevic Y. 2006. BMI1 loss delays photoreceptor degeneration in Rd1 mice. Bmi1 loss and neuroprotection in Rd1 mice. Adv Exp Med Biol 572:209-15. [PubMed: 17249577]  [MGI Ref ID J:154016]

Zencak D; Schouwey K; Chen D; Ekstrom P; Tanger E; Bremner R; van Lohuizen M; Arsenijevic Y. 2013. Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins. Proc Natl Acad Sci U S A 110(7):E593-601. [PubMed: 23359713]  [MGI Ref ID J:194322]

Zeng HY; Lu QJ; Liu Q; Liu KG; Wang NL. 2011. The role of CCR1 expression in the retinal degeneration in rd mice. Curr Eye Res 36(3):264-9. [PubMed: 21275605]  [MGI Ref ID J:179793]

Zhang N; Kolesnikov AV; Jastrzebska B; Mustafi D; Sawada O; Maeda T; Genoud C; Engel A; Kefalov VJ; Palczewski K. 2013. Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization. J Clin Invest 123(1):121-37. [PubMed: 23221340]  [MGI Ref ID J:194158]

Zhu Y; Tu DC; Denner D; Shane T; Fitzgerald CM; Van Gelder RN. 2007. Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses. Invest Ophthalmol Vis Sci 48(3):1268-75. [PubMed: 17325172]  [MGI Ref ID J:123259]

gr related

Bloom JL; Falconer DS. 1966. "Grizzled", a mutant in linkage group X of the mouse. Genet Res 7:159-167.  [MGI Ref ID J:11987]

Bomar JM; Benke PJ; Slattery EL; Puttagunta R; Taylor LP; Seong E; Nystuen A; Chen W; Albin RL; Patel PD; Kittles RA; Sheffield VC; Burmeister M. 2003. Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. (Erratum) Nat Genet 35(3):264-9. [PubMed: 14556008]  [MGI Ref ID J:85793]

Burwinkel B; Miglierini G; Jenne DE; Gilbert DJ; Copeland NG ; Jenkins NA ; Ring HZ ; Francke U ; Kilimann MW. 1998. Structure of the human paralemmin gene (PALM), mapping to human chromosome 19p13.3 and mouse chromosome 10, and exclusion of coding mutations in grizzled, mocha, jittery, and hesitant mice. Genomics 49(3):462-6. [PubMed: 9615234]  [MGI Ref ID J:47933]

Falconer DS. 1950. Mutant stocks Mouse News Lett 2:3.  [MGI Ref ID J:24769]

Grabner CP; Price SD; Lysakowski A; Cahill AL; Fox AP. 2006. Regulation of large dense-core vesicle volume and neurotransmitter content mediated by adaptor protein 3. Proc Natl Acad Sci U S A 103(26):10035-40. [PubMed: 16788073]  [MGI Ref ID J:111070]

Noebels JL; Sidman RL. 1989. Persistent hypersynchronization of neocortical neurons in the mocha mutant of mouse. J Neurogenet 6(1):53-6. [PubMed: 2778559]  [MGI Ref ID J:96307]

Qiao X; Pennesi M; Seong E; Gao H; Burmeister M; Wu SM. 2003. Photoreceptor degeneration and rd1 mutation in the grizzled/mocha mouse strain. Vision Res 43(8):859-65. [PubMed: 12668055]  [MGI Ref ID J:88031]

Sikora KM; Nosavanh LM; Kantheti P; Burmeister M; Hortsch M. 2012. Expression of Cayman Ataxia aytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity. PLoS One 7(11):e50570. [PubMed: 23226316]  [MGI Ref ID J:194997]

Silvers WK. 1979. The Coat Colors of Mice; A Model for Mammalian Gene Action and Interaction. In: The Coat Colors of Mice. Springer-Verlag, New York.  [MGI Ref ID J:78801]

Southard JL. 1970. Jackson circler, jc. Mouse News Lett 42:30.  [MGI Ref ID J:13506]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3300.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery of Strains Needing Progeny Testing
    At least two untested males and two untested females (two pairs) will be recovered (eight or more mice is typical). The total number of animals provided, their gender and genotype will vary. Untested animals typically are available to ship between 10 and 14 weeks from the date of your order. If the first recovery attempt is unsuccessful, a second recovery will be done, extending the overall recovery time to approximately 25 weeks. Progeny testing is required to identify the genotype of mice of this strain, as a genotyping assay is not available. This type of testing involves breeding the recovered animals and assessing the phenotype of the offspring in order to identify animals carrying the mutation of interest. We can perform the progeny testing for you as a service or we can ship all recovered animals to you for progeny testing at your facility. If you perform the progeny testing, there is no guarantee that a carrier will be identified. If we perform progeny testing as a service, additional breeding time will be required. In this case, when a male and female (one pair) are identified that carry the mutation, they and their offspring will be shipped. Delivery time for strains requiring progeny testing often exceeds 25 weeks and may take 12 months or more due to the difficulties in breeding some strains. The progeny testing cost is in addition to the recovery cost and is based on the number of boxes used and the time taken to produce the mice identified as carrying the mutation.
    Please note that identified pairs may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation of the strain. Mating schemes are sometimes modified for successful cryopreservation.

    Please contact Customer Service for more information on the cost of progeny testing for a strain, tel: 1-800-422-6423 or 1-207-288-5845 (from any location). The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice.
    Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $4290.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery of Strains Needing Progeny Testing
    At least two untested males and two untested females (two pairs) will be recovered (eight or more mice is typical). The total number of animals provided, their gender and genotype will vary. Untested animals typically are available to ship between 10 and 14 weeks from the date of your order. If the first recovery attempt is unsuccessful, a second recovery will be done, extending the overall recovery time to approximately 25 weeks. Progeny testing is required to identify the genotype of mice of this strain, as a genotyping assay is not available. This type of testing involves breeding the recovered animals and assessing the phenotype of the offspring in order to identify animals carrying the mutation of interest. We can perform the progeny testing for you as a service or we can ship all recovered animals to you for progeny testing at your facility. If you perform the progeny testing, there is no guarantee that a carrier will be identified. If we perform progeny testing as a service, additional breeding time will be required. In this case, when a male and female (one pair) are identified that carry the mutation, they and their offspring will be shipped. Delivery time for strains requiring progeny testing often exceeds 25 weeks and may take 12 months or more due to the difficulties in breeding some strains. The progeny testing cost is in addition to the recovery cost and is based on the number of boxes used and the time taken to produce the mice identified as carrying the mutation.
    Please note that identified pairs may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation of the strain. Mating schemes are sometimes modified for successful cryopreservation.

    Please contact Customer Service for more information on the cost of progeny testing for a strain, tel: 1-800-422-6423 or 1-207-288-5845 (from any location). The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice.
    Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

General Supply Notes

  • View the complete collection of spontaneous mutants in the Mouse Mutant Resource.

Control Information

  Control
   ? +/+ ? untested from colony
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Important Note

This strain is homozygous for the retinal degeneration allele Pde6brd1.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)