Strain Name:

B6CBACa Aw-J/A-we a Mafbkr/J

Stock Number:

000288

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names B6CBACa Aw-J/A-we a MafbKrml-kr/J    (Changed: 15-DEC-04 )
Krmlkr    (Changed: 15-DEC-04 )
Type Mutant Strain; Radiation Induced Mutation; Spontaneous Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Specieslaboratory mouse
GenerationN16F2p
Generation Definitions

Related Strains

View Inversions     (48 strains)

View Strains carrying   Aw-J     (30 strains)

Strains carrying   we allele
000419   B10.UW-H3b we Pax1un at/SnJ
000065   B6C3Fe a/a-we Pax1un at/J
View Strains carrying   we     (2 strains)

Strains carrying other alleles of a
002655   Mus pahari/EiJ
000251   AEJ.Cg-ae +/a Gdf5bp-H/J
000202   AEJ/Gn-bd/J
000199   AEJ/GnLeJ
000433   B10.C-H3c H13? A/(28NX)SnJ
000427   B10.CE-H13b Aw/(30NX)SnJ
000423   B10.KR-H13? A/SnJ
000420   B10.LP-H13b Aw/Sn
000477   B10.PA-Bloc1s6pa H3e at/SnJ
000419   B10.UW-H3b we Pax1un at/SnJ
003879   B10;TFLe-a/a T Itpr3tf/+ Itpr3tf/J
001538   B6 x B6C3Sn a/A-T(1;9)27H/J
000916   B6 x B6C3Sn a/A-T(5;12)31H/J
000602   B6 x B6C3Sn a/A-T(8;16)17H/J
002083   B6 x B6EiC3 a/A-T(7;16)235Dn/J
000507   B6 x B6EiC3 a/A-Otcspf/J
003759   B6 x B6EiC3Sn a/A-T(10;16)232Dn/J
002071   B6 x B6EiC3Sn a/A-T(11;17)202Dn/J
002113   B6 x B6EiC3Sn a/A-T(11A2;16B3)238Dn/J
002068   B6 x B6EiC3Sn a/A-T(11B1;16B5)233Dn/J
002069   B6 x B6EiC3Sn a/A-T(14E4or5;16B5)225Dn/J
001926   B6 x B6EiC3Sn a/A-T(15;16)198Dn/J
001832   B6 x B6EiC3Sn a/A-T(15E;16B1)60Dn/J
003758   B6 x B6EiC3Sn a/A-T(16C3-4;17A2)65Dn/J
001833   B6 x B6EiC3Sn a/A-T(1C2;16C3)45Dn/J
001903   B6 x B6EiC3Sn a/A-T(6F;18C)57Dn/J
001535   B6 x B6EiC3Sn a/A-T(8A4;12D1)69Dn/J
001831   B6 x B6EiC3Sn a/A-T(8C3;16B5)164Dn/J
000618   B6 x FSB/GnEi a/a Ctslfs/J
000577   B6 x STOCK a Oca2p Hps5ru2 Ednrbs/J
000601   B6 x STOCK a/a T(7;18)50H/J
000592   B6 x STOCK T(2;4)13H a/J
000769   B6.C/(HZ18)By-at-44J/J
000203   B6.C3-Aiy/a/J
000017   B6.C3-Avy/J
001572   B6.C3-am-J/J
000628   B6.CE-A Amy1b Amy2a5b/J
000021   B6.Cg-Ay/J
014608   B6;129S1-a Kitlsl-24J/GrsrJ
000231   B6;C3Fe a/a-Csf1op/J
004200   B6;CBACa Aw-J/A-Npr2cn-2J/GrsrJ
000785   B6;D2-a Ces1ce/EiJ
000604   B6C3 a/A-T(10;13)199H +/+ Lystbg-J/J or Lystbg-2J/J
001750   B6C3Fe a/a-Eif3cXs-J/J
002807   B6C3Fe a/a-Meox2fla/J
000506   B6C3Fe a/a-Qkqk-v/J
000224   B6C3Fe a/a-Scyl1mdf/J
003020   B6C3Fe a/a-Zdhhc21dep/J
001037   B6C3Fe a/a-Agtpbp1pcd/J
000221   B6C3Fe a/a-Alx4lst-J/J
002062   B6C3Fe a/a-Atp7aMo-8J/J
001756   B6C3Fe a/a-Cacng2stg/J
001815   B6C3Fe a/a-Col1a2oim/J
000209   B6C3Fe a/a-Dh/J
000211   B6C3Fe a/a-Dstdt-J/J
000210   B6C3Fe a/a-Edardl-J/J
000207   B6C3Fe a/a-Edaraddcr/J
000182   B6C3Fe a/a-Eef1a2wst/J
001278   B6C3Fe a/a-Glra1spd/J
000241   B6C3Fe a/a-Glrbspa/J
002875   B6C3Fe a/a-Hoxd13spdh/J
000304   B6C3Fe a/a-Krt71Ca Scn8amed-J/J
000226   B6C3Fe a/a-Largemyd/J
000636   B6C3Fe a/a-Lmx1adr-J/J
001280   B6C3Fe a/a-Lse/J
001573   B6C3Fe a/a-MitfMi/J
001035   B6C3Fe a/a-Napahyh/J
000181   B6C3Fe a/a-Otogtwt/J
000278   B6C3Fe a/a-Papss2bm Hps1ep Hps6ru/J
000205   B6C3Fe a/a-Papss2bm/J
002078   B6C3Fe a/a-Pcdh15av-2J/J
000246   B6C3Fe a/a-Pitpnavb/J
001430   B6C3Fe a/a-Ptch1mes/J
000235   B6C3Fe a/a-Relnrl/J
000237   B6C3Fe a/a-Rorasg/J
000290   B6C3Fe a/a-Sox10Dom/J
000230   B6C3Fe a/a-Tcirg1oc/J
003612   B6C3Fe a/a-Trak1hyrt/J
001512   B6C3Fe a/a-Ttnmdm/J
001607   B6C3Fe a/a-Unc5crcm/J
000005   B6C3Fe a/a-Wc/J
000243   B6C3Fe a/a-Wnt1sw/J
000248   B6C3Fe a/a-Xpl/J
000624   B6C3Fe a/a-anx/J
008044   B6C3Fe a/a-bpck/J
002018   B6C3Fe a/a-din/J
002339   B6C3Fe a/a-nma/J
000240   B6C3Fe a/a-soc/J
000063   B6C3Fe a/a-sy/J
001055   B6C3Fe a/a-tip/J
000245   B6C3Fe a/a-tn/J
000065   B6C3Fe a/a-we Pax1un at/J
000296   B6C3Fe-a/a Hoxa13Hd Mcoln3Va-J/J
000019   B6C3Fe-a/a-Itpr1opt/J
003301   B6C3FeF1 a/A-Eya1bor/J
001022   B6C3FeF1/J a/a
000314   B6CBACa Aw-J/A-EdaTa/J-XO
006450   B6EiC3 a/A-Vss/GrsrJ
000971   B6EiC3 a/A-Och/J
000551   B6EiC3 a/A-Tbx15de-H/J
000557   B6EiC3-+ a/LnpUl A/J
000504   B6EiC3Sn a/A-Cacnb4lh/J
000553   B6EiC3Sn a/A-Egfrwa2 Wnt3avt/J
000503   B6EiC3Sn a/A-Gy/J
001811   B6EiC3Sn a/A-Otcspf-ash/J
002343   B6EiC3Sn a/A-Otcspf/J
000391   B6EiC3Sn a/A-Pax6Sey-Dey/J
001923   B6EiC3Sn a/A-Ts(417)2Lws TimT(4;17)3Lws/J
001875   B6EiC3SnF1/J
000638   C3FeB6 A/Aw-J-Sptbn4qv-J/J
000200   C3FeB6 A/Aw-J-Ankank/J
000225   C3FeLe.B6 a/a-Ptpn6me/J
000198   C3FeLe.B6-a/J
000291   C3FeLe.Cg-a/a Hm KitlSl Krt71Ca-J/J
001272   C3H/HeSnJ-Ahvy/J
000099   C3HeB/FeJ-Avy/J
001886   C3HeB/FeJLe a/a-gnd/J
000584   C57BL/6J-+ T(1;2)5Ca/a +/J
000258   C57BL/6J-Ai/a/J
000774   C57BL/6J-Asy/a/J
000055   C57BL/6J-at-33J/J
000070   C57BL/6J-atd/J
000284   CWD/LeJ
000670   DBA/1J
000671   DBA/2J
001057   HPT/LeJ
000260   JGBF/LeJ
002468   KK.Cg-Ay/J
000262   LS/LeJ
000283   LT.CAST-A/J
000265   MY/HuLeJ
000308   SSL/LeJ
001759   STOCK A Tyrc Sha/J
001427   STOCK Aw us/J
000994   STOCK a Myo5ad Mregdsu/J
000064   STOCK a Tyrp1b Pmelsi/J
002238   STOCK a Tyrp1b shmy/J
001433   STOCK a skt/J
000579   STOCK a tp/J
000319   STOCK a us/J
002648   STOCK a/a Cln6nclf/J
000302   STOCK a/a MitfMi-wh +/+ Itpr1opt/J
000286   STOCK a/a Myo5ad fd/+ +/J
000281   STOCK a/a Tmem79ma Flgft/J
000206   STOCK a/a Tyrc-h/J
001432   STOCK a/a Tyrp1b Ndc1sks/Tyrp1b +/J
000312   STOCK stb + a/+ Fignfi a/J
000596   STOCK T(2;11)30H/+ x AEJ-a Gdf5bp-H/J or A/J-a Gdf5bp-J/J
000970   STOCK T(2;16)28H A/T(2;16)28H a/J
000590   STOCK T(2;4)1Sn a/J
000594   STOCK T(2;8)26H a/T(2;8)26H a Tyrp1+/Tyrp1b/J
000623   TR/DiEiJ
001145   WSB/EiJ
View Strains carrying other alleles of a     (153 strains)

Strains carrying other alleles of we
003656   AKR/J-we4J/J
000475   B10.129-weBkr/CyJ
View Strains carrying other alleles of we     (2 strains)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Multicentric Carpotarsal Osteolysis Syndrome; MCTO   (MAFB)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Mafbkr/Mafbkr

        involves: C3H/HeJ * C57BL/6J * CBA/CaJ
  • skeleton phenotype
  • abnormal hyoid bone greater horn morphology
    • ectopic development of a second arch structure, a hyoid lesser horn, in an area normally derived from the third arch results in an accessory process   (MGI Ref ID J:4596)
  • ectopic bone formation
    • an accessory process is seen on the greater horn of the hyoid bone   (MGI Ref ID J:4596)
  • craniofacial phenotype
  • abnormal hyoid bone greater horn morphology
    • ectopic development of a second arch structure, a hyoid lesser horn, in an area normally derived from the third arch results in an accessory process   (MGI Ref ID J:4596)
  • abnormal pharyngeal arch development
    • the third arch structure does not develop   (MGI Ref ID J:4596)
  • ectopic pharyngeal arch
    • a second arch anlange develops in an area normally derived from a third arch resulting in an accessory process on the greater horn of the hyoid bone   (MGI Ref ID J:4596)
  • embryogenesis phenotype
  • abnormal pharyngeal arch development
    • the third arch structure does not develop   (MGI Ref ID J:4596)
  • abnormal rhombomere morphology
    • segmentation does not occur caudally from the boundary between rhombomeres 3 and 4   (MGI Ref ID J:4596)
    • two rhombomeres do not develop resulting in ectopic structure development   (MGI Ref ID J:4596)
  • ectopic pharyngeal arch
    • a second arch anlange develops in an area normally derived from a third arch resulting in an accessory process on the greater horn of the hyoid bone   (MGI Ref ID J:4596)
  • nervous system phenotype
  • abnormal rhombomere morphology
    • segmentation does not occur caudally from the boundary between rhombomeres 3 and 4   (MGI Ref ID J:4596)
    • two rhombomeres do not develop resulting in ectopic structure development   (MGI Ref ID J:4596)

Mafbkr/Mafbkr

        CBA.Cg-Mafbkr
  • hearing/vestibular/ear phenotype
  • abnormal endolymphatic duct morphology
    • a large endolymphatic space unassociated with a stria vascularis or an endolymphatic duct and sac is seen in mature mutant mice   (MGI Ref ID J:5392)
    • absent endolymphatic duct
      • at E12 otic vesicles of mutant mice lacked an endolymphatic duct   (MGI Ref ID J:5392)
  • abnormal otic vesicle development
    • the expected flattening of the caudolateral wall is not seen at E11   (MGI Ref ID J:5392)
  • abnormal semicircular canal morphology
    • the majority of mutant mice have rudimentary canals and also cysts although the condition may not be bilateral   (MGI Ref ID J:5392)
  • inner ear cysts
    • mice with cysts also have have rudimentary semicircular canals   (MGI Ref ID J:5392)
  • cellular phenotype
  • abnormal cell cycle
    • at E11 the cell cycle time of a developing otocyst is shorter than that seen in a heterozygous littermate or a CBA/J mouse   (MGI Ref ID J:5392)
    • abnormal cell cycle checkpoint function
      • at E11 the premitotic phase of a developing otocyst is longer than seen in a heterozygous littermate or CBA/J mouse   (MGI Ref ID J:5392)

we/we

        Background Not Specified
  • integument phenotype
  • curly vibrissae
    • curly whiskers are evident shortly after birth   (MGI Ref ID J:208)
  • thin hair shaft
    • smaller average diameter hair shaft than normal   (MGI Ref ID J:208)
  • waved hair
    • the coat comes in very wavy, the wave most apparent between 10 and 21 days of age, then the wave decreases with age   (MGI Ref ID J:208)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Mafbkr related

Developmental Biology Research
Neural Tube Defects

Neurobiology Research
Hearing Defects
Neural Tube Defects

Sensorineural Research
Hearing Defects

we related

Dermatology Research
Skin and Hair Texture Defects

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Aw-J
Allele Name white bellied agouti Jackson
Allele Type Spontaneous
Common Name(s) AWJ;
Strain of OriginC57BL/6J
Gene Symbol and Name a, nonagouti
Chromosome 2
Gene Common Name(s) ASP; As; agouti; agouti signal protein; agouti suppressor;
 
Allele Symbol Mafbkr
Allele Name kreisler
Allele Type Radiation induced
Common Name(s) Krmlkr; MafbKrml-kr;
Gene Symbol and Name Mafb, v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (avian)
Chromosome 2
Gene Common Name(s) KRML; Kreisler; Kreisler (maf-related) leucine zipper protein; Krml; Krml1; MCTO; b-maf; kr; kreisler;
Molecular Note There is a chromosomal inversion approximately 0.8 +/- 0.8cM in length very near the Mafb gene. The protein product of the normal gene is a transcription factor. The effect of the inversion appears to be to abolish transcription from the Mafb gene, not by physical disruption of the transcribed sequence, but by separation of coding sequences from a putative regulatory element or introduction of an inhibitory element. [MGI Ref ID J:22020] [MGI Ref ID J:4596] [MGI Ref ID J:83936]
 
Allele Symbol we
Allele Name wellhaarig
Allele Type Spontaneous
Strain of OriginAgnes Bluhm's stocks
Gene Symbol and Name we, wellhaarig
Chromosome 2

Genotyping

Genotyping Information


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Additional References

Cordes SP; Barsh GS. 1994. The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79(6):1025-34. [PubMed: 8001130]  [MGI Ref ID J:22020]

McKay IJ; Muchamore I; Krumlauf R; Maden M; Lumsden A; Lewis J. 1994. The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120(8):2199-211. [PubMed: 7925021]  [MGI Ref ID J:19631]

Aw-J related

Aberg T; Wang XP; Kim JH; Yamashiro T; Bei M; Rice R; Ryoo HM; Thesleff I. 2004. Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol 270(1):76-93. [PubMed: 15136142]  [MGI Ref ID J:92174]

Banerjee H; Das A; Srivastava S; Mattoo HR; Thyagarajan K; Khalsa JK; Tanwar S; Das DS; Majumdar SS; George A; Bal V; Durdik JM; Rath S. 2012. A role for apoptosis-inducing factor in T cell development. J Exp Med 209(9):1641-53. [PubMed: 22869892]  [MGI Ref ID J:191446]

Barsh GS; Epstein CJ. 1989. Physical and genetic characterization of a 75-kilobase deletion associated with al, a recessive lethal allele at the mouse agouti locus. Genetics 121(4):811-8. [PubMed: 2566558]  [MGI Ref ID J:9799]

Baurle J; Vogten H; Grusser-Cornehls U. 1998. Course and targets of the calbindin D-28k subpopulation of primary vestibular afferents. J Comp Neurol 402(1):111-28. [PubMed: 9831049]  [MGI Ref ID J:118430]

Boran T; Lesot H; Peterka M; Peterkova R. 2005. Increased apoptosis during morphogenesis of the lower cheek teeth in tabby/EDA mice. J Dent Res 84(3):228-33. [PubMed: 15723861]  [MGI Ref ID J:112546]

Chinta SJ; Rane A; Yadava N; Andersen JK; Nicholls DG; Polster BM. 2009. Reactive oxygen species regulation by AIF- and complex I-depleted brain mitochondria. Free Radic Biol Med 46(7):939-47. [PubMed: 19280713]  [MGI Ref ID J:145908]

Cui CY; Hashimoto T; Grivennikov SI; Piao Y; Nedospasov SA; Schlessinger D. 2006. Ectodysplasin regulates the lymphotoxin-beta pathway for hair differentiation. Proc Natl Acad Sci U S A 103(24):9142-7. [PubMed: 16738056]  [MGI Ref ID J:111051]

Cui CY; Kunisada M; Esibizione D; Grivennikov SI; Piao Y; Nedospasov SA; Schlessinger D. 2007. Lymphotoxin-beta regulates periderm differentiation during embryonic skin development. Hum Mol Genet 16(21):2583-90. [PubMed: 17673451]  [MGI Ref ID J:129949]

Cunningham D; Spychala K; McLarren KW; Garza LA; Boerkoel CF; Herman GE. 2009. Developmental expression pattern of the cholesterogenic enzyme NSDHL and negative selection of NSDHL-deficient cells in the heterozygous Bpa(1H)/+ mouse. Mol Genet Metab 98(4):356-66. [PubMed: 19631568]  [MGI Ref ID J:155028]

Dickie MM. 1969. Mutations at the agouti locus in the mouse. J Hered 60(1):20-5. [PubMed: 5798139]  [MGI Ref ID J:30922]

Esibizione D; Cui CY; Schlessinger D. 2008. Candidate EDA targets revealed by expression profiling of primary keratinocytes from Tabby mutant mice. Gene 427(1-2):42-6. [PubMed: 18848976]  [MGI Ref ID J:143603]

Granholm DE; Reese RN; Granholm NH. 1996. Agouti alleles alter cysteine and glutathione concentrations in hair follicles and serum of mice (A y/a, A wJ/A wJ, and a/a). J Invest Dermatol 106(3):559-63. [PubMed: 8648194]  [MGI Ref ID J:32132]

Granholm DE; Reese RN; Granholm NH. 1995. Agouti alleles influence thiol concentrations in hair follicles and extrafollicular tissues of mice (Ay/a, AwJ/AwJ, a/a). Pigment Cell Res 8(6):302-6. [PubMed: 8789738]  [MGI Ref ID J:31403]

Hisatomi T; Nakao S; Murakami Y; Noda K; Nakazawa T; Notomi S; Connolly E; She H; Almulki L; Ito Y; Vavvas DG; Ishibashi T; Miller JW. 2012. The regulatory roles of apoptosis-inducing factor in the formation and regression processes of ocular neovascularization. Am J Pathol 181(1):53-61. [PubMed: 22613025]  [MGI Ref ID J:185543]

Jones JM; Huang JD; Mermall V; Hamilton BA; Mooseker MS; Escayg A; Copeland NG; Jenkins NA; Meisler MH. 2000. The mouse neurological mutant flailer expresses a novel hybrid gene derived by exon shuffling between Gnb5 and Myo5a. Hum Mol Genet 9(5):821-8. [PubMed: 10749990]  [MGI Ref ID J:61324]

Kappenman KE; Dvoracek MA; Harvison GA; Fuller BB; Granholm NH. 1992. Tyrosinase abundance and activity in murine hairbulb melanocytes of agouti mutants (C57BL/6J-a/a, Ay/a, and AwJ/AwJ). Pigment Cell Res Suppl 2:79-83. [PubMed: 1409442]  [MGI Ref ID J:1295]

Katoh A; Yoshida T; Himeshima Y; Mishina M; Hirano T. 2005. Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate receptor delta2 subunit or Purkinje cells. Eur J Neurosci 21(5):1315-26. [PubMed: 15813941]  [MGI Ref ID J:101081]

Knapp PE; Adjan VV; Hauser KF. 2009. Cell-specific loss of kappa-opioid receptors in oligodendrocytes of the dysmyelinating jimpy mouse. Neurosci Lett 451(2):114-8. [PubMed: 19110031]  [MGI Ref ID J:146365]

Lee M; Kim A; Chua SC Jr; Obici S; Wardlaw SL. 2007. Transgenic MSH overexpression attenuates the metabolic effects of a high-fat diet. Am J Physiol Endocrinol Metab 293(1):E121-31. [PubMed: 17374695]  [MGI Ref ID J:126508]

Lu W; Tsirka SE. 2002. Partial rescue of neural apoptosis in the Lurcher mutant mouse through elimination of tissue plasminogen activator. Development 129(8):2043-50. [PubMed: 11934869]  [MGI Ref ID J:111363]

Martin LA; Goldowitz D; Mittleman G. 2010. Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur J Neurosci 31(3):544-55. [PubMed: 20105240]  [MGI Ref ID J:159466]

Mayer TC; Fishbane JL. 1972. Mesoderm-ectoderm interaction in the production of the agouti pigmentation pattern in mice. Genetics 71(2):297-303. [PubMed: 4558326]  [MGI Ref ID J:5288]

Mitsumori K; Yasuhara K; Mori I; Hayashi S; Shimo T; Onodera H; Nomura T; Hayashi Y. 1998. Pulmonary fibrosis caused by N-methyl-N-nitrosourethane inhibits lung tumorigenesis by urethane in transgenic mice carrying the human prototype c-Ha-ras gene. Cancer Lett 129(2):181-90. [PubMed: 9719460]  [MGI Ref ID J:52138]

Monroe DG; Wipf LP; Diggins MR; Matthees DP; Granholm NH. 1998. Agouti-related maturation and tissue distribution of alpha-Melanocyte Stimulating Hormone in wild-type (AwJ/AwJ) and mutant (Ay/a,a/a) mice. Pigment Cell Res 11(5):310-3. [PubMed: 9877102]  [MGI Ref ID J:52183]

Mullen RJ. 1974. A<w-J> - white-bellied agouti-J Mouse News Lett 50:38.  [MGI Ref ID J:64104]

Mustonen T; Ilmonen M; Pummila M; Kangas AT; Laurikkala J; Jaatinen R; Pispa J; Gaide O; Schneider P; Thesleff I; Mikkola ML. 2004. Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 131(20):4907-19. [PubMed: 15371307]  [MGI Ref ID J:128256]

O'donnell SM; Hansberger MW; Connolly JL; Chappell JD; Watson MJ; Pierce JM; Wetzel JD; Han W; Barton ES; Forrest JC; Valyi-Nagy T; Yull FE; Blackwell TS; Rottman JN; Sherry B; Dermody TS. 2005. Organ-specific roles for transcription factor NF-kappaB in reovirus-induced apoptosis and disease. J Clin Invest 115(9):2341-2350. [PubMed: 16100570]  [MGI Ref ID J:100906]

Peng J; Wu Z; Wu Y; Hsu M; Stevenson FF; Boonplueang R; Roffler-Tarlov SK; Andersen JK. 2002. Inhibition of caspases protects cerebellar granule cells of the weaver mouse from apoptosis and improves behavioral phenotype. J Biol Chem 277(46):44285-91. [PubMed: 12221097]  [MGI Ref ID J:119427]

Peng J; Xie L; Stevenson FF; Melov S; Di Monte DA; Andersen JK. 2006. Nigrostriatal dopaminergic neurodegeneration in the weaver mouse is mediated via neuroinflammation and alleviated by minocycline administration. J Neurosci 26(45):11644-51. [PubMed: 17093086]  [MGI Ref ID J:114943]

Poole TW. 1975. Dermal-epidermal interactions and the action of alleles at the agouti locus in the mouse. Dev Biol 42(2):203-10. [PubMed: 1090472]  [MGI Ref ID J:5519]

Probst FJ; Cooper ML; Cheung SW; Justice MJ. 2008. Genotype, phenotype, and karyotype correlation in the XO mouse model of Turner Syndrome. J Hered 99(5):512-7. [PubMed: 18499648]  [MGI Ref ID J:138994]

Prtenjaca A; Hill KA. 2011. Mutation frequency is not elevated in the cerebellum of harlequin/Big Blue((R)) mice but Class II deletions occur preferentially in young harlequin cerebellum. Mutat Res 707(1-2):53-60. [PubMed: 21195094]  [MGI Ref ID J:168461]

Smith DE; Xu SG. 2003. Ultrastructural organization of GABA-like immunoreactive profiles in the weaver substantia nigra. J Neurocytol 32(3):293-303. [PubMed: 14724391]  [MGI Ref ID J:121345]

Vandenput L; Swinnen JV; Boonen S; Van Herck E; Erben RG; Bouillon R; Vanderschueren D. 2004. Role of the androgen receptor in skeletal homeostasis: the androgen-resistant testicular feminized male mouse model. J Bone Miner Res 19(9):1462-70. [PubMed: 15312246]  [MGI Ref ID J:111491]

Wu Q; Miller RH; Ransohoff RM; Robinson S; Bu J; Nishiyama A. 2000. Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant. J Neurosci 20(7):2609-17. [PubMed: 10729341]  [MGI Ref ID J:109469]

Yamago G; Takata Y; Furuta I; Urase K; Momoi T; Huh N. 2001. Suppression of hair follicle development inhibits induction of sonic hedgehog, patched, and patched-2 in hair germs in mice. Arch Dermatol Res 293(9):435-41. [PubMed: 11758785]  [MGI Ref ID J:116953]

Yoshida T; Katoh A; Ohtsuki G; Mishina M; Hirano T. 2004. Oscillating Purkinje neuron activity causing involuntary eye movement in a mutant mouse deficient in the glutamate receptor delta2 subunit. J Neurosci 24(10):2440-8. [PubMed: 15014119]  [MGI Ref ID J:97010]

Zhang M; Su YQ; Sugiura K; Xia G; Eppig JJ. 2010. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 330(6002):366-9. [PubMed: 20947764]  [MGI Ref ID J:164870]

van Empel VP; Bertrand AT; van der Nagel R; Kostin S; Doevendans PA; Crijns HJ; de Wit E; Sluiter W; Ackerman SL; De Windt LJ. 2005. Downregulation of apoptosis-inducing factor in harlequin mutant mice sensitizes the myocardium to oxidative stress-related cell death and pressure overload-induced decompensation. Circ Res 96(12):e92-e101. [PubMed: 15933268]  [MGI Ref ID J:110278]

Mafbkr related

Adam J; Haddon C; Lewis J; McKay I; Myat A. 1992. The deaf kreisler mouse: a hindbrain segmentation mutant Hered Deaf News 8:10-11.  [MGI Ref ID J:1490]

Chatonnet F; del Toro ED; Voiculescu O; Charnay P; Champagnat J. 2002. Different respiratory control systems are affected in homozygous and heterozygous kreisler mutant mice. Eur J Neurosci 15(4):684-92. [PubMed: 11886449]  [MGI Ref ID J:89413]

Choo D; Ward J; Reece A; Dou H; Lin Z; Greinwald J. 2006. Molecular mechanisms underlying inner ear patterning defects in kreisler mutants. Dev Biol 289(2):308-17. [PubMed: 16325169]  [MGI Ref ID J:104329]

Cordes SP; Barsh GS. 1994. The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79(6):1025-34. [PubMed: 8001130]  [MGI Ref ID J:22020]

DEOL MS. 1964. THE ABNORMALITIES OF THE INNER EAR IN KREISLER MICE. J Embryol Exp Morphol 12:475-90. [PubMed: 14207033]  [MGI Ref ID J:13001]

Deol MS. 1976. Deficiencies of the inner ear in the mouse and their origin Colloq Int (Collques Internationaux) C.N.R.S. 266:163-171.  [MGI Ref ID J:136112]

Eichmann A; Grapin-Botton A; Kelly L; Graf T; Le Douarin NM; Sieweke M. 1997. The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant. Mech Dev 65(1-2):111-22. [PubMed: 9256349]  [MGI Ref ID J:42034]

Frohman MA; Martin GR; Cordes SP; Halamek LP; Barsh GS. 1993. Altered rhombomere-specific gene expression and hyoid bone differentiation in the mouse segmentation mutant, kreisler (kr). Development 117(3):925-36. [PubMed: 8100767]  [MGI Ref ID J:4596]

Garel S; Garcia-Dominguez M; Charnay P. 2000. Control of the migratory pathway of facial branchiomotor neurones Development 127(24):5297-307. [PubMed: 11076752]  [MGI Ref ID J:65601]

Hertwig P. 1944. Die Genese der Hirn- und Gehororganmissbildungen bei rontgenmutierten Kreisler-Mausen Z Mensch Vererb Konst 18:327-54.  [MGI Ref ID J:15032]

Hertwig P. 1942. Neue Mutationen und Koppelungsgruppen bei der Hausmaus Z Indukt Abstamm Vererbungsl 80:220-246.  [MGI Ref ID J:208]

Manzanares M; Trainor PA; Nonchev S; Ariza-McNaughton L; Brodie J; Gould A; Marshall H; Morrison A; Kwan CT; Sham MH; Wilkinson DG; Krumlauf R. 1999. The role of kreisler in segmentation during hindbrain development. Dev Biol 211(2):220-37. [PubMed: 10395784]  [MGI Ref ID J:56427]

McKay IJ; Lewis J; Lumsden A. 1997. Organization and development of facial motor neurons in the kreisler mutant mouse. Eur J Neurosci 9(7):1499-506. [PubMed: 9240407]  [MGI Ref ID J:43333]

McKay IJ; Lewis J; Lumsden A. 1996. The role of FGF-3 in early inner ear development: an analysis in normal and kreisler mutant mice. Dev Biol 174(2):370-8. [PubMed: 8631508]  [MGI Ref ID J:32033]

McKay IJ; Muchamore I; Krumlauf R; Maden M; Lumsden A; Lewis J. 1994. The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120(8):2199-211. [PubMed: 7925021]  [MGI Ref ID J:19631]

Mechta-Grigoriou F; Giudicelli F; Pujades C; Charnay P; Yaniv M. 2003. c-jun regulation and function in the developing hindbrain. Dev Biol 258(2):419-31. [PubMed: 12798298]  [MGI Ref ID J:83936]

Ruben RJ. 1973. Development and cell kinetics of the kreisler (kr-kr) mouse. Laryngoscope 83(9):1440-68. [PubMed: 4758758]  [MGI Ref ID J:5392]

Vazquez-Echeverria C; Dominguez-Frutos E; Charnay P; Schimmang T; Pujades C. 2008. Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain. Dev Biol 322(1):167-78. [PubMed: 18703040]  [MGI Ref ID J:142115]

Voituron N; Frugiere A; Mc Kay LC; Romero-Granados R; Dominguez-Del-Toro E; Saadani-Makki F; Champagnat J; Bodineau L. 2011. The kreisler mutation leads to the loss of intrinsically hypoxia-activated spots in the region of the retrotrapezoid nucleus/parafacial respiratory group. Neuroscience 194:95-111. [PubMed: 21839147]  [MGI Ref ID J:180338]

we related

FALCONER DS. 1954. Linkage in the mouse: the sex-linked genes and Rough. Z Indukt Abstamm Vererbungsl 86(2):263-8. [PubMed: 13227156]  [MGI Ref ID J:247]

Graff RJ; Simmons D; Meyer J; Martin-Morgan D; Kurtz M. 1986. Abnormal bone production associated with mutant mouse genes pa and we. J Hered 77(2):109-13. [PubMed: 3711636]  [MGI Ref ID J:8296]

Hertwig P. 1942. Neue Mutationen und Koppelungsgruppen bei der Hausmaus Z Indukt Abstamm Vererbungsl 80:220-246.  [MGI Ref ID J:208]

Koniukhov BV; Kupriianov SD. 1990. [The mutant gene wellhaarig disturbs the differentiation of hair follicle cells in the mouse] Ontogenez 21(1):56-62. [PubMed: 1694022]  [MGI Ref ID J:153649]

Koniukhov BV; Malinina NA; Martynov MIu. 2004. [The we gene is a modifier of the wal gene in mice] Genetika 40(7):968-74. [PubMed: 15458208]  [MGI Ref ID J:153574]

Koniukhov BV; Vsevolodov EB; Sazhina MV. 1993. [An ultrastructural analysis of the cells of the outer root sheath of the hair follicles in mice of the wellhaarig mutant strain] Ontogenez 24(1):96-102. [PubMed: 8474761]  [MGI Ref ID J:153577]

Martynova MIu; Isaev DA; Koniukhov BV. 2002. [Effects of the mutant gene wellhaarig in chimeric mice] Genetika 38(11):1511-7. [PubMed: 12500677]  [MGI Ref ID J:153575]

SNELL GD; BUNKER HP. 1964. HISTOCOMPATIBILITY GENES OF MICE. IV. THE POSITION OF H-3 IN THE FIFTH LINKAGE GROUP. Transplantation 2:743-51. [PubMed: 14224656]  [MGI Ref ID J:118]

Sundberg JP (ed.). 1994. Handbook of Mouse Mutations with Skin and Hair Abnormalities: Animal Models and Biomedical Tools. In: Handbook of Mouse Mutations with Skin and Hair Abnormalities: Animal Models and Biomedical Tools. CRC Press, Boca Raton.  [MGI Ref ID J:30359]

Sweet HO; Davisson MT. 1995. Remutations at The Jackson Laboratory (Update to Mouse Genome 1993; 91:862-5 - J16313) Mouse Genome 93(4):1030-4.  [MGI Ref ID J:30778]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3300.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $4290.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)