Strain Name:

A/J

Stock Number:

000646

Order this mouse

Availability:

Level 2

Common Names: AJ;     A;    
A/J mice are widely used in cancer and immunology research.

Description

Strain Information

Type Inbred Strain;
Additional information on Inbred Strains.
Visit our online Nomenclature tutorial.
Mating SystemSibling x Sibling         (Female x Male)   01-MAR-06
Breeding Considerations This strain is a challenging breeder.
Specieslaboratory mouse
H2 Haplotypea
GenerationF297 (05-AUG-14)
Generation Definitions

View larger image

Appearance
albino
Related Genotype: a/a Tyrp1b/Tyrp1b Tyrc/Tyrc

Important Note
This strain is homozygous for Cdh23ahl, the age related hearing loss 1 mutation, and ahl4, which on this background result in progressive hearing loss with onset between three and five months of age.

Description
Developed by LC Strong in 1921 from a cross between a Cold Spring Harbor albino and a Bagg albino, the A/J inbred strain is widely used in cancer and immunology research. It is highly susceptible to cortisone-induced congenital cleft palate. It has a high incidence of spontaneous lung adenomas, and lung tumors readily develop in response to carcinogens. A high percentage of mammary adenocarcinomas (a large proportion of acinar-type) develop in multiparous females. Rare spontaneous myoepitheliomas arising from myoepithelial cells of various exocrine glands have been observed in The Jackson Laboratory substrains.

A/J mice fed an atherogenic diet (1.25% cholesterol, 0.5% cholic acid, and 15% fat) fail to develop atherosclerotic aortic lesions in contrast to several highly susceptible strains of mice (e.g. C57BL/6J, Stock No. 000664; C57L/J, Stock No. 000668, C57BR/cdJ, Stock No. 000667, and SM/J, Stock No. 000687). In addition to atherosclerosis resistance, A/J mice are resistant to diabetes, obesity, insulin resistance and glucose intolerance. On either chow or high fat diet, A/J mice maintain low glucose and insulin levels.

A/J mice develop cigarette smoke-induced emphysema in approximately half the time when compared with C57BL/6J mice. Structural lung damage caused by induced asthma mimics the phenotype found in asthma patients more closely than does the induced damage in BALB/c mice.

A strain characteristic of A/J is a late onset (four to five months) progressive muscular dystrophy as a result of a homozygous retrotransposon insertion in the dysferlin (Dysf) gene. Myofibers in Dysfprmd homozygotes undergo degeneration and regeneration, and their nuclei are placed nuclei. Proximal muscles are more severely affected than distal muscles (Ho M, et al. 2004).

Sequencing of the mitochondrial genome of A/J reveals 10 adenines in a polymorphic adenine repeat sequence in the mt-Tr sequence. This repeat contains nine adenines in NOD/ShiLtJ, A/HeJ, A/WySnJ, and SKH2/J and 10 adenines in A/J, and NZB/B1NJ, and likely enhances the hearing loss associated with the Cdh23ahl allele (Johnson et al. 2001).

Related Strains

A Strains
000645   A/HeJ
000647   A/WySnJ
View A Strains     (2 strains)

Facebase: models
007664   129S-Efnb1tm1Sor/J
000647   A/WySnJ
005709   B6.129-Skitm1Cco/J
002619   B6.129-Tgfb3tm1Doe/J
007453   B6.129P2(Cg)-Dhcr7tm1Gst/J
010525   B6.129S-Notch2tm3Grid/J
010616   B6.129S1-Jag1tm1Grid/J
010546   B6.129S1-Jag2tm1Grid/J
010620   B6.129S1-Notch2tm1Grid/J
009387   B6.129S1-Osr1tm1Jian/J
009386   B6.129S1-Osr2tm1Jian/J
010621   B6.129S1-Snai1tm2.1Grid/J
010617   B6.129S1-Snai2tm1Grid/J
003865   B6.129S2-Itgavtm1Hyn/J
003755   B6.129S4-Meox2tm1(cre)Sor/J
016902   B6.129S5-Irf6Gt(OST398253)Lex/J
003336   B6.129S7-Cdkn1ctm1Sje/J
012843   B6.129X1(Cg)-Slc32a1tm1.1Bgc/J
000026   B6.C3-Gli3Xt-J/J
004275   B6.Cg-Fignfi/Frk
012844   B6.Cg-Gad1tm1.1Bgc/J
006382   B6;129-Casktm1Sud/J
002711   B6;129-Gabrb3tm1Geh/J
004293   B6;129-Shhtm2Amc/J
012603   B6;129-Tgfbr2tm1Karl/J
010618   B6;129S-Jag1tm2Grid/J
010686   B6;129S-Snai1tm2Grid/J
009389   B6;129S1-Bambitm1Jian/J
010619   B6;129S1-Lfngtm1Grid/J
010547   B6;129S1-Notch3tm1Grid/J
010544   B6;129S1-Notch4tm1Grid/J
010722   B6;129S1-Snai2tm2Grid/J
012463   B6;129S4-Foxd1tm1(GFP/cre)Amc/J
022358   B6;129S6-Rr23tm1Axvi/Mmjax
022359   B6;129S6-Rr24tm1Axvi/Mmjax
022360   B6;129S6-Rr25tm1Axvi/Mmjax
003277   B6;129S7-Acvr2atm1Zuk/J
002788   B6;129S7-Fsttm1Zuk/J
002990   B6;129S7-Inhbatm1Zuk/J
000523   B6By.Cg-Eh/J
000278   B6C3Fe a/a-Papss2bm Hps1ep Hps6ru/J
000515   B6CBACa Aw-J/A-SfnEr/J
001434   C3HeB/FeJ x STX/Le-Mc1rE-so Gli3Xt-J Zeb1Tw/J
000252   DC/LeJ
005057   FVB.129-Kcnj2tm1Swz/J
012655   FVB.A-Irf6clft1/BeiJ
013100   FVB.C-Prdm16csp1/J
017437   FVB/N-Ckap5TgTn(sb-cHS4,Tyr)2320F-1Ove/J
017438   FVB/N-MidnTg(Tyr)2261EOve/J
017609   FVB/N-Rr16Tn(sb-Tyr)1HCeb/OveJ
017598   FVB/N-Sdccag8Tn(sb-Tyr)2161B.CA1C2Ove/J
017608   FVB/N-Skor2Tn(sb-Tyr)1799B.CA7BOve/J
017436   FVB/N-Tapt1TgTn(sb-cHS4,Tyr)2508GOve/J
016870   FVB/NJ-Ap2b1Tg(Tyr)427Ove/EtevJ
017434   FVB;B6-Cramp1lTgTn(sb-rtTA,Tyr)2447AOve/J
017594   FVB;B6-Eya4TgTn(Prm1-sb10,sb-Tyr)1739AOve/J
017435   FVB;B6-SlmapTn(sb-rtTA)2426B.SB4Ove/J
003318   STOCK Shhtm1Amc/J
003102   STOCK Tgfb2tm1Doe/J
018624   STOCK Tgfb3tm2(Tgfb1)Vk/J
008469   STOCK Wnt9btm1.2Amc/J
View Facebase: models     (61 strains)

Strains carrying   Ahrb-2 allele
000645   A/HeJ
000130   B6.C-H17c/(HW14)ByJ
000370   B6.C-H38c/(HW119)ByJ
001026   BALB/cByJ
000653   BUB/BnJ
000659   C3H/HeJ
000656   CBA/J
000657   CE/J
000352   CXB2/ByJ
000353   CXB3/ByJ
000354   CXB4/ByJ
000355   CXB5/ByJ
000357   CXB7/ByJ
000673   HRS/J
000679   P/J
000930   PERA/EiJ
000644   SEA/GnJ
000280   SF/CamEiJ
View Strains carrying   Ahrb-2     (18 strains)

Strains carrying   Cdh23ahl allele
001137   129P1/ReJ
000690   129P3/J
000691   129X1/SvJ
000647   A/WySnJ
003070   ALR/LtJ
003072   ALS/LtJ
004502   B6;AKR-Lxl2/GrsrJ
001026   BALB/cByJ
000653   BUB/BnJ
005494   C3.129S1(B6)-Grm1rcw/J
000664   C57BL/6J
004764   C57BL/6J-Cdh23v-8J/J
003129   C57BL/6J-Epha4rb-2J/GrsrJ
004820   C57BL/6J-Kcne12J/J
004703   C57BL/6J-Kcnq2Nmf134/J
004811   C57BL/6J-nmf110/J
004812   C57BL/6J-nmf111/J
004747   C57BL/6J-nmf118/J
004656   C57BL/6J-nmf88/J
004391   C57BL/6J-Chr 13A/J/NaJ
004385   C57BL/6J-Chr 7A/J/NaJ
000662   C57BLKS/J
000667   C57BR/cdJ
000668   C57L/J
000669   C58/J
010614   CBACa.B6-Cdh23ahl/Kjn
000657   CE/J
000670   DBA/1J
001140   DBA/1LacJ
000671   DBA/2J
007048   DBA/2J-Gpnmb+/SjJ
002106   KK/HlJ
000675   LG/J
000676   LP/J
000677   MA/MyJ
001976   NOD/ShiLtJ
002050   NOR/LtJ
000679   P/J
002747   SENCARB/PtJ
002335   SKH2/J
003392   STOCK Crb1rd8/J
View Strains carrying   Cdh23ahl     (41 strains)

Strains carrying   Csahl4-A/J allele
014192   B6.A-(rs3676616-D10Utsw1)/Kjn
004388   C57BL/6J-Chr 10A/J/NaJ
View Strains carrying   Csahl4-A/J     (2 strains)

Strains carrying   Dysfprmd allele
012767   B6.A-Dysfprmd/GeneJ
017917   B6.Cg-Dysfprmd Prkdcscid/J
View Strains carrying   Dysfprmd     (2 strains)

Strains carrying   Hc0 allele
000645   A/HeJ
000647   A/WySnJ
000648   AKR/J
000460   B10.D2-Hc0 H2d H2-T18c/o2SnJ
000461   B10.D2-Hc0 H2d H2-T18c/oSnJ
000657   CE/J
000671   DBA/2J
007048   DBA/2J-Gpnmb+/SjJ
001800   FVB/NJ
001491   FVB/NMob
000674   I/LnJ
001303   NOD.CB17-Prkdcscid/J
001976   NOD/ShiLtJ
000684   NZB/BlNJ
000682   RF/J
000688   ST/bJ
000689   SWR/J
View Strains carrying   Hc0     (17 strains)

Strains carrying   Il3ram1 allele
000645   A/HeJ
000647   A/WySnJ
000648   AKR/J
000653   BUB/BnJ
000669   C58/J
000657   CE/J
000684   NZB/BlNJ
000682   RF/J
000687   SM/J
View Strains carrying   Il3ram1     (9 strains)

Strains carrying   Micrln allele
000651   BALB/cJ
000009   BXH14/TyJ
000038   BXH6/TyJ
000014   BXH7/TyJ
000665   C57BL/10J
000664   C57BL/6J
000669   C58/J
View Strains carrying   Micrln     (7 strains)

Strains carrying   Nrg3ska allele
001673   AXB1/PgnJ
001681   AXB10/PgnJ
001826   AXB13/PgnJ
001684   AXB13a/PgnJ
001687   AXB19/PgnJ
001688   AXB19b/PgnJ
001674   AXB2/PgnJ
001690   AXB23/PgnJ
001676   AXB4/PgnJ
001678   AXB6/PgnJ
001701   BXA13/PgnJ
001702   BXA14/PgnJ
001703   BXA16/PgnJ
001710   BXA24/PgnJ
001711   BXA25/PgnJ
001999   BXA26/PgnJ
001694   BXA4/PgnJ
001696   BXA7/PgnJ
001697   BXA8/PgnJ
View Strains carrying   Nrg3ska     (19 strains)

Strains carrying   Rmcfs allele
000648   AKR/J
000779   AKXD14/TyJ
000780   AKXD23/TyJ
000764   AKXD27/TyJ
000777   AKXD6/TyJ
000667   C57BR/cdJ
000668   C57L/J
000669   C58/J
000682   RF/J
000644   SEA/GnJ
000686   SJL/J
000688   ST/bJ
View Strains carrying   Rmcfs     (12 strains)

Strains carrying   Wnt9bclf1 allele
000645   A/HeJ
000647   A/WySnJ
001690   AXB23/PgnJ
View Strains carrying   Wnt9bclf1     (3 strains)

Strains carrying   mt-Trm1 allele
003072   ALS/LtJ
001976   NOD/ShiLtJ
000684   NZB/BlNJ
View Strains carrying   mt-Trm1     (3 strains)

Strains carrying other alleles of Ahr
000690   129P3/J
000648   AKR/J
002920   B6(D2N).Spretus-Ahrb-3/J
002831   B6.129-Ahrtm1Bra/J
000136   B6.C-H34c/(HW22)ByJ
008599   B6.Cg-Del(9Cyp1a2-Cyp1a1)1Dwn Ahrd Tg(CYP1A1,CYP1A2)1Dwn/DwnJ
002921   B6.D2N-Ahrd/J
002727   B6;129-Ahrtm1Bra/J
000652   BDP/J
000663   C57BL/6By
001139   C57BL/6ByJ
000664   C57BL/6J
000662   C57BLKS/J
000667   C57BR/cdJ
000668   C57L/J
000669   C58/J
000926   CAROLI/EiJ
000928   CAST/EiJ
000351   CXB1/ByJ
000356   CXB6/ByJ
002937   D2.B6-Ahrb-1/J
000671   DBA/2J
000674   I/LnJ
000675   LG/J
000676   LP/J
000677   MA/MyJ
000550   MOLF/EiJ
000684   NZB/BlNJ
000726   RBF/DnJ
000682   RF/J
000686   SJL/J
001146   SPRET/EiJ
000688   ST/bJ
006203   STOCK Ahrtm3.1Bra/J
000689   SWR/J
000693   WC/ReJ KitlSl/J
000933   YBR/EiJ
View Strains carrying other alleles of Ahr     (37 strains)

Strains carrying other alleles of Cdh23
002552   B6(V)-Cdh23v-2J/J
002756   B6.CAST-Cdh23Ahl+/Kjn
010615   B6.CBACa-Cdh23CBA/CaJ/Kjn
002432   B6J x B6.C-H2-Kbm1/ByJ-Cdh23v-J/J
004764   C57BL/6J-Cdh23v-8J/J
004819   C57BL/6J-Cdh23v-9J/J
005016   CByJ;B6-Cdh23v-10J/J
000275   V/LeJ
View Strains carrying other alleles of Cdh23     (8 strains)

Strains carrying other alleles of Dysf
006830   129-Dysftm1Kcam/J
011128   B10.SJL-Dysfim/AwaJ
013149   B6.129-Dysftm1Kcam/J
017644   B6;129S6-Dysftm2.1Kcam/J
000686   SJL/J
View Strains carrying other alleles of Dysf     (5 strains)

View Strains carrying other alleles of Hc     (6 strains)

Strains carrying other alleles of Micrl
000032   BXH10/TyJ
000033   BXH19/TyJ
000011   BXH4/TyJ
000076   BXH8/TyJ
000008   BXH9/TyJ
000260   JGBF/LeJ
000072   JGBF/LeTyJ
View Strains carrying other alleles of Micrl     (7 strains)

Strains carrying other alleles of Naip5
013574   FVB/N-Tg(149m19)M141Kunst/J
View Strains carrying other alleles of Naip5     (1 strain)

Strains carrying other alleles of Rmcf
000690   129P3/J
000765   AKXD13/TyJ
000954   AKXD15/TyJ
001093   AKXD18/TyJ
000947   AKXD22/TyJ
000763   AKXD9/TyJ
000654   CBA/CaJ
000670   DBA/1J
View Strains carrying other alleles of Rmcf     (8 strains)

Strains carrying other alleles of Wnt9b
008469   STOCK Wnt9btm1.2Amc/J
View Strains carrying other alleles of Wnt9b     (1 strain)

Strains carrying other alleles of mt-Tr
003070   ALR/LtJ
002335   SKH2/J
View Strains carrying other alleles of mt-Tr     (2 strains)

Additional Web Information

JAX® NOTES, April 1988; 433. H-2 Haplotypes of Mice from Jackson Laboratory Production Colonies.
JAX® NOTES, Spring 2004; 493. Chromosome Substitution Strain Panel: A New Tool for Quantitative Trait Loci Analysis.
JAX® NOTES, Summer 1992; 450. Myoepitheliomas in Inbred Laboratory Mice.
JAX® NOTES, Winter 2006; 504. JAX® Mice: the Gold Standard Just Got Better.
Mouse Phenome Database / SNP Facility
National Center for Biotechnology Information / SNP Data
Sequence data is available from the Mouse Genomes Project at the Wellcome Trust Sanger Institute

Phenotype

Phenotype Information

View Phenotypic Data

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Model with phenotypic similarity to human disease where etiologies involve orthologs. Human genes are associated with this disease. Orthologs of those genes appear in the mouse genotype(s).
Miyoshi Muscular Dystrophy 1; MMD1
Muscular Dystrophy, Limb-Girdle, Type 2B; LGMD2B
Myopathy, Distal, with Anterior Tibial Onset; DMAT
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Complement Component 5 Deficiency; C5D   (C5)
Deafness, Autosomal Recessive 12; DFNB12   (CDH23)
Eculizumab, Poor Response to   (C5)
Usher Syndrome, Type ID; USH1D   (CDH23)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

       
  • hearing/vestibular/ear phenotype
  • cochlear hair cell degeneration
    • at 30 days of age a hair cell lesion is found in the basal turn of the cochlea in A/J although the spiral ganglion appear normal in all turns including the basal turn   (MGI Ref ID J:139222)
    • at 9 weeks of age there is a massive loss of inner and outer hair cells from the mid-basal turn of the cochlea and a moderate loss of inner and outer hair cells from the mid-apical turn   (MGI Ref ID J:139222)
    • at 20 weeks of age there is a massive loss of inner and outer hair cells throughout the cochlea, except for the apical 10%   (MGI Ref ID J:139222)
    • loss of cochlear hair cells begins around 16 days of age, spreads from base to apex, and outer hair cells are more vulnerable to loss than are inner hair cells   (MGI Ref ID J:139222)
  • nervous system phenotype
  • cochlear hair cell degeneration
    • at 30 days of age a hair cell lesion is found in the basal turn of the cochlea in A/J although the spiral ganglion appear normal in all turns including the basal turn   (MGI Ref ID J:139222)
    • at 9 weeks of age there is a massive loss of inner and outer hair cells from the mid-basal turn of the cochlea and a moderate loss of inner and outer hair cells from the mid-apical turn   (MGI Ref ID J:139222)
    • at 20 weeks of age there is a massive loss of inner and outer hair cells throughout the cochlea, except for the apical 10%   (MGI Ref ID J:139222)
    • loss of cochlear hair cells begins around 16 days of age, spreads from base to apex, and outer hair cells are more vulnerable to loss than are inner hair cells   (MGI Ref ID J:139222)
  • immune system phenotype
  • abnormal neutrophil physiology
    • subsequent to ip injection of 15mg/kg LPS, A/J mice show highly diminished neutrophil infiltration into hepatic sinusoids compared with C57BL/6J controls   (MGI Ref ID J:51631)
  • decreased acute inflammation
    • subsequent to ip injection of 15mg/kg LPS, A/J mice have decreased hepatic, pulmonary and intestinal neutrophil infiltrate compared with C57BL/6J mice   (MGI Ref ID J:51631)
  • hematopoietic system phenotype
  • abnormal neutrophil physiology
    • subsequent to ip injection of 15mg/kg LPS, A/J mice show highly diminished neutrophil infiltration into hepatic sinusoids compared with C57BL/6J controls   (MGI Ref ID J:51631)

Cdh23ahl/Cdh23ahl mt-Trm1/?

        either: A/J X (A/J x CAST/Ei)F1 or A/J X (CAST/Ei x A/J)F1
  • hearing/vestibular/ear phenotype
  • increased or absent threshold for auditory brainstem response
    • average ABR threshold is significantly increased by 3 months of age   (MGI Ref ID J:67312)
  • increased susceptibility to age-related hearing loss
    • the presence of this mitochondrial sequence polymorphism in mice homozygous for the ahl allele results in age related hearing loss by 3 months of age, which is absent when the CAST/Ei mitochondrial sequence is instead present   (MGI Ref ID J:67312)

Csahl4-A/J/Csahl4-A/J

        A/J
  • hearing/vestibular/ear phenotype
  • impaired hearing   (MGI Ref ID J:139222)
  • increased or absent threshold for auditory brainstem response
    • in A/J mice ABR thresholds at 16 and 32 kHz are elevated by 25 days of age and by 3 months of age the ABR thresholds are more than 50 dB above normal   (MGI Ref ID J:139222)
  • increased susceptibility to age-related hearing loss
    • in A/J mice onset of hearing loss is found as early as 25 days of age and is much more severe at 6 months of age than that found in C57BL/6J   (MGI Ref ID J:139222)

Dysfprmd/Dysfprmd

        A/J
  • behavior/neurological phenotype
  • abnormal physical strength   (MGI Ref ID J:92838)
  • limb grasping
    • hind-limb clasping develops after 8 months of age   (MGI Ref ID J:92838)
    • inability to spread legs when suspended by their tails after 8 months of age   (MGI Ref ID J:92838)
  • muscle phenotype
  • abnormal skeletal muscle morphology
    • perivascular infiltrates and inflammation seen by 8 months of age   (MGI Ref ID J:92838)
    • eventually, active myopathy was seen in all skeletal muscles   (MGI Ref ID J:92838)
    • abnormal skeletal muscle fiber morphology
      • abnormalities primarily in proximal muscles at early ages   (MGI Ref ID J:92838)
      • hypertrophic fibers, fiber splitting and fat replacement also seen   (MGI Ref ID J:92838)
      • centrally nucleated skeletal muscle fibers   (MGI Ref ID J:92838)
      • skeletal muscle fiber degeneration
        • fibers with scattered degenerating and regenerating fibers by 4-5 months of age   (MGI Ref ID J:92838)
      • skeletal muscle fiber necrosis
        • increased numbers of necrotic and regenerating fibers with time   (MGI Ref ID J:92838)
    • skeletal muscle endomysial fibrosis
      • endomysial fibrosis at later stages   (MGI Ref ID J:92838)
  • homeostasis/metabolism phenotype
  • skeletal muscle endomysial fibrosis
    • endomysial fibrosis at later stages   (MGI Ref ID J:92838)

Il3ram1/Il3ram1

        A/J
  • hematopoietic system phenotype
  • abnormal common myeloid progenitor cell morphology
    • CFU-GM assays using bone marrow derived cells yield very few colonies in repsonse to interleukin 3, but normal colony growth occurs in response to GM-CSF   (MGI Ref ID J:24918)
  • abnormal leukopoiesis
    • Il3 alone does not support granulocyte/macrophage colony formation in bone marrow cells from A/J mice but does in bone marrow from C57BL/6 controls; costimulation with both Il3 and SCF increases the number of colonies formed compared to SCF alone   (MGI Ref ID J:23971)
  • immune system phenotype
  • abnormal leukopoiesis
    • Il3 alone does not support granulocyte/macrophage colony formation in bone marrow cells from A/J mice but does in bone marrow from C57BL/6 controls; costimulation with both Il3 and SCF increases the number of colonies formed compared to SCF alone   (MGI Ref ID J:23971)

Naip5Lgn1-s/Naip5Lgn1-s

        A/J
  • immune system phenotype
  • increased susceptibility to bacterial infection
    • peritoneal macrophages derived from A/J mice are susceptible to Legionella pneumophilia infection; infected macrophages show a 10-fold increase in bacterial burden after 1 day of infection compared to resistant controls (C57BL/6J)   (MGI Ref ID J:20633)

Nrg3ska/Nrg3ska

        A/J
  • endocrine/exocrine gland phenotype
  • abnormal mammary gland development
    • 95% of female A/J mice display an altered pattern of mammary gland development compared with C57BL/6 which showed no abnormalities in this study   (MGI Ref ID J:60708)
    • abnormal mammary gland pattern
      • 95% of females have abnormal mammary gland development   (MGI Ref ID J:60708)
      • absent mammary gland
        • when observed involves only glands of pair #3   (MGI Ref ID J:60708)
        • 55% of females observed have this phenotype   (MGI Ref ID J:60708)
      • ectopic mammary gland
        • misplacement is usually observed with gland #3   (MGI Ref ID J:60708)
        • 29% of females observed had this phenotype   (MGI Ref ID J:60708)
      • supernumerary mammary glands
        • occasionally found between glands #2 and #4 or below #3 gland along the milkline   (MGI Ref ID J:60708)
        • 31% of the females observed have this phenotype or supernumerary nipples   (MGI Ref ID J:60708)
    • abnormal nipple development   (MGI Ref ID J:60708)
      • ectopic nipples   (MGI Ref ID J:60708)
      • supernumerary nipples
        • most commonly observed laterally to a #4 gland and displaced away from the mid-line   (MGI Ref ID J:60708)
        • connected to distinct underlying ductal systems; not connected to the major ductal system of the normal gland   (MGI Ref ID J:60708)
        • easily observed at 21 days of age   (MGI Ref ID J:60708)
        • this phenotype or supernumerary mammary glands comprise 31% of mice observed   (MGI Ref ID J:60708)
  • integument phenotype
  • abnormal mammary gland development
    • 95% of female A/J mice display an altered pattern of mammary gland development compared with C57BL/6 which showed no abnormalities in this study   (MGI Ref ID J:60708)
    • abnormal mammary gland pattern
      • 95% of females have abnormal mammary gland development   (MGI Ref ID J:60708)
      • absent mammary gland
        • when observed involves only glands of pair #3   (MGI Ref ID J:60708)
        • 55% of females observed have this phenotype   (MGI Ref ID J:60708)
      • ectopic mammary gland
        • misplacement is usually observed with gland #3   (MGI Ref ID J:60708)
        • 29% of females observed had this phenotype   (MGI Ref ID J:60708)
      • supernumerary mammary glands
        • occasionally found between glands #2 and #4 or below #3 gland along the milkline   (MGI Ref ID J:60708)
        • 31% of the females observed have this phenotype or supernumerary nipples   (MGI Ref ID J:60708)
    • abnormal nipple development   (MGI Ref ID J:60708)
      • ectopic nipples   (MGI Ref ID J:60708)
      • supernumerary nipples
        • most commonly observed laterally to a #4 gland and displaced away from the mid-line   (MGI Ref ID J:60708)
        • connected to distinct underlying ductal systems; not connected to the major ductal system of the normal gland   (MGI Ref ID J:60708)
        • easily observed at 21 days of age   (MGI Ref ID J:60708)
        • this phenotype or supernumerary mammary glands comprise 31% of mice observed   (MGI Ref ID J:60708)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cancer Research
Increased Tumor Incidence
      Adenomas
      Adenomas: lung
      Mammary Gland Tumors
      Mammary Gland Tumors: late onset

Cardiovascular Research
Diet-Induced Atherosclerosis
      Relatively Resistant

Developmental Biology Research
Craniofacial and Palate Defects
      congenital cleft palate
Internal/Organ Defects
      gonads

Internal/Organ Research
Lung Defects
      COPD
      emphysema

Neurobiology Research
Hearing Defects
      Age related hearing loss
Muscular Dystrophy
      Limb-Girdle type

Research Tools
General Purpose
Immunology, Inflammation and Autoimmunity Research
      hybridoma production
Infectious Disease
      Anthrax

Sensorineural Research
Hearing Defects
      Age related hearing loss

Cdh23ahl related

Neurobiology Research
Hearing Defects
      Age related hearing loss

Sensorineural Research
Hearing Defects
      Age related hearing loss

Hc0 related

Immunology, Inflammation and Autoimmunity Research
Immunodeficiency
      specific complement deficiency

Research Tools
Immunology, Inflammation and Autoimmunity Research
      specific complement deficiency, C5 complement

Il3ram1 related

Immunology, Inflammation and Autoimmunity Research
CD Antigens, Antigen Receptors, and Histocompatibility Markers
      genes regulating susceptibility to infectious disease and endotoxin

Naip5Lgn1-s related
Immunodeficiency
      Macrophage defects

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Ahrb-2
Allele Name b-2 variant
Allele Type Not Applicable
Common Name(s) Ahb-2; Ahh;
Strain of OriginBALB/cBy
Gene Symbol and Name Ahr, aryl-hydrocarbon receptor
Chromosome 12
Gene Common Name(s) Ah; Ahh; Ahre; In; aromatic hydrocarbon responsiveness; aryl hydrocarbon hydroxylase; bHLHe76; dioxin receptor; inflammatory reactivity;
General Note C57BL/6 carries the responsive Ahrb allele; DBA/2 carries nonresponsive Ahrd. Heterozygotes (Ahrb/Ahrd) are responsive (J:5282). Later work identified a second (J:8895) and later a third (J:22144) allele conferring response. Thus the allele in C57, C58, and MA/My strains is now Ahrb-1; Ahrb-2 is carried by BALB/cBy, A, and C3H; and Ahrb-3 by Mus spretus, M. caroli, and MOLF/Ei. The nonresponsive strains AKR, DBA/2, and 129 carry Ahrd (J:22144). Nucleotide and amino acid sequence differences between Ahrb-1 and Ahrd have been determined (J:17460).

Strain of origin - this allele was found in BALB/cByJ, A/J, C3H/HeJ, CBA strains

Molecular Note This allele encodes a high affinity, heat labile, 104 kDa receptor containing 848 amino acids. Sequencing studies of cDNA from C57BL/6J congenic mice homozygous for this allele identified nucleotide substitutions in the ORF that would cause 5 amino acid differences between the C57BL/6J and BALB/cBy peptides, and 2 amino acid differences between the BALB/cBy and DBA/2J peptides. A T to C transition in exon 11 replaces the opal termination codon in the C57BL/6J allele with an arginine codon in the BALB/cByallele. This change would extend translation of the BALB/cBy mRNA by 43 amino acids, accounting for the larger size of the peptide produced by this allele (104 kDa, vs 95 kDa for the C57BL/6J allele). [MGI Ref ID J:15153] [MGI Ref ID J:22144]
 
Allele Symbol Bhr1A/J
Allele Name A/J
Allele Type QTL
Strain of OriginA/J
Gene Symbol and Name Bhr1, bronchial hyperresponsiveness 1
Chromosome 2
General Note Heterozygosity for A/J-derived alleles at both Bhr1 and Bhr5 is sufficient to confer the airway hyperresponsive phenotype.
Molecular Note This allele confers increased airway hyperresponsiveness compared to C57BL/6J.
 
Allele Symbol Bhr5A/J
Allele Name A/J
Allele Type QTL
Strain of OriginA/J
Gene Symbol and Name Bhr5, bronchial hyperresponsiveness 5
Chromosome 6
General Note Heterozygosity for A/J-derived alleles at both Bhr1 and Bhr5 is sufficient to confer the airway hyperresponsive phenotype.
Molecular Note This allele confers susceptibility to airway hyperresponsiveness compared to C3H/HeJ and C57BL/6J. [MGI Ref ID J:33778]
 
Allele Symbol Cdh23ahl
Allele Name age related hearing loss 1
Allele Type QTL
Common Name(s) Cdh23753A; mdfw;
Strain of Originmultiple strains
Gene Symbol and Name Cdh23, cadherin 23 (otocadherin)
Chromosome 10
Gene Common Name(s) 4930542A03Rik; CDHR23; RIKEN cDNA 4930542A03 gene; USH1D; W; age related hearing loss 1; ahl; bob; bobby; bus; bustling; mdfw; modifier of deaf waddler; neuroscience mutagenesis facility, 112; neuroscience mutagenesis facility, 181; neuroscience mutagenesis facility, 252; nmf112; nmf181; nmf252; sals; salsa; v; waltzer;
Molecular Note Genetic complementation tests have shown allelism between the mdfw (modifier of deaf waddler) locus and the ahl locus. Further analysis has identified an association between ahl and a G to A transition at nucleotide position 753 of Cdh23. This hypomorphic allele causes in frame skipping of exon 7 and reduced message stability. Twenty-seven strains classified with ahl and carrying the 753A allele include: CD1, RBF/DnJ, PL/J, AKR/J, RF/J, BALB/cBy, A/WySnJ, P/J, SENCARA/PtJ, DBA/1J, ALS/LtJ, C58/J, C57BLKS/J, 129P1/ReJ, C57BR/cd, SKH2/J, BUB/Bn, MA/MyJ, LP/J, 129X1/SvJ, NOR/LtJ, A/J, C57BL/6, NOD/LtJ, DBA/2J, ALR/LtJ, C57L/J. Strains classified with ahl that DO NOT carry this mutation include: C3H/HeSnJ, I/LnJ,YBR/Ei, MRL/MpJ. [MGI Ref ID J:86905]
 
Allele Symbol Csahl4-A/J
Allele Name A/J
Allele Type QTL
Strain of OriginA/J
Gene Symbol and Name Cs, citrate synthase
Chromosome 10
Gene Common Name(s) 2610511A05Rik; 9030605P22Rik; BB234005; Cis; RIKEN cDNA 2610511A05 gene; RIKEN cDNA 9030605P22 gene; age related hearing loss 4; ahl4; expressed sequence BB234005;
Molecular Note The C to A nucleotide change in exon 3 of Cs in A/J (SNP rs29358506) mice causes a nonconservative amino acid change, from histidine (H) to asparagine (N) at position 55 of the CS protein (H55N). This histidine is highly conserved in the orthologous proteins of all mammals and in many other species indicating that it is likely to be functionally important.
 
Allele Symbol Dysfprmd
Allele Name progressive muscular dystrophy
Allele Type Spontaneous
Mutation Made By Douglas Albrecht,   Jain Foundation Inc
Strain of OriginA/J
Gene Symbol and Name Dysf, dysferlin
Chromosome 6
Gene Common Name(s) 2310004N10Rik; AI604795; D6Pas3; DNA segment, Chr 6, Pasteur Institute 3; FER1L1; LGMD2B; MMD1; RIKEN cDNA 2310004N10 gene; expressed sequence AI604795;
Molecular Note A retrotransposon insertion occurred within intron 4, causing aberrant splicing of the gene. Protein was abolished as shown by Northern blot and immunoblot analysis. The insertion was 6000bp in size. This allele was found only in A/J mice, not in A/WySnJ, A/HeJ, C57BL/6J, SJL/J, SWR/J or 129/SvJ mice. [MGI Ref ID J:149430] [MGI Ref ID J:149432] [MGI Ref ID J:92838]
 
Allele Symbol Hc0
Allele Name deficient
Allele Type Spontaneous
Common Name(s) C5-; C5-d; C5-def; C5-deficient; hco;
Strain of Originmultiple strains
Gene Symbol and Name Hc, hemolytic complement
Chromosome 2
Gene Common Name(s) C5; C5D; C5a; C5b; CPAMD4; ECLZB; He;
General Note

This is an allele characteristic of various inbred mouse strains including the following: A/HeJ, AKR/J, DBA/2J, NZB/B1NJ, SWR/J, B10.D2/oSnJ

Hc was identified as a candidate gene for Abhr2 in a microarray analysis of lung mRNA from A/J, C3H/HeJ, and (A/J x C3H/HeJ)F1 x A/J backcross animals. Hc genotype shows statistically significant correlation to allergen-induced bronchial hyperresponsive phenotype. The A/J allele contains a 2 bp deletion resulting in deficient Hc mRNA and protein production and is associated with susceptibility to allergen-induced bronchial hyperresponsiveness. (J:108211)

Molecular Note A 2 base "TA" deletion at positions 62 and 63 of an 83 base pair exon near the 5' end of the gene is found in the following mouse strains: A/HeJ, AKR/J, DBA/2J, NZB/B1NJ, SWR/J, B10.D2/oSnJ. The consequence of this deletion is the creation of a stop codon starting four bases after the deletion. A truncated product of 216 amino acids is predicted as a result although contradictory reports exist that a larger pro-C5 protein may be synthesized. Nevertheless, macrophages from mouse strains carrying this allele do not secrete complement 5. [MGI Ref ID J:23983] [MGI Ref ID J:5016]
 
Allele Symbol Il3ram1
Allele Name mutation 1
Allele Type Spontaneous
Common Name(s) Il3raA/J; Il3ran;
Strain of OriginA/J
Gene Symbol and Name Il3ra, interleukin 3 receptor, alpha chain
Chromosome 14
Gene Common Name(s) CD123; Cyrl; IL-3 receptor alpha chain; IL3R; IL3RAY; IL3RX; IL3RY; SUT-1; hIL-3Ra;
Molecular Note Sequence analysis revealed A/J mice lack the sequence corresponding to exon 8, which encodes 10 amino acid residues in the extracellular domain. Aberrant splicing was due to a 5 base pair deletion at the branch point in intron 7. [MGI Ref ID J:23971]
 
Allele Symbol Micrln
Allele Name non-responder
Allele Type QTL
Strain of Originmultiple strains
Gene Symbol and Name Micrl, microwave induced increase in complement receptor B cells
Chromosome 5
General Note The following inbred strains are homozygous for the recessive QTL, Micrl, and do not respond to microwave exposure by increasing splenic C3 receptor-bearing B cells: A/J, BALB/cJ, C3HeB/FeN, C57BL/6J, C57BL/10J (inferred from the response of two congenic lines "B10.BR", "B10.D2", "B10.D2"),C58/J, AK.B6-H2b, and B6.AK-H2k. These recombinant inbred strains are also non-responding: BXH2/Ty, BXH6/Ty, BXH7/Ty, BXH12/Ty, and BXH14/Ty.
 
Allele Symbol Naip5Lgn1-s
Allele Name Legionella, susceptiblility 1
Allele Type Spontaneous
Common Name(s) Lgn1s;
Strain of OriginA/J
Gene Symbol and Name Naip5, NLR family, apoptosis inhibitory protein 5
Chromosome 13
Gene Common Name(s) Birc1; Birc1a; Birc1b; Birc1e; Legionella, susceptiblility 1; Lgn1; Naip; Naip-rs3; Naip2; RGD1559914; baculoviral IAP repeat-containing 1e; neuronal apoptosis inhibitory protein 5; neuronal apoptosis inhibitory protein, related sequence 3;
Molecular Note A/J mice are susceptible to infection by Legionella pneumophilia. This susceptibility is heritable and is caused by a polymorphism in the Naip5 gene. Expression of BAC clones containing the Naip5 gene from resistant strains (C57BL/6J and 129X1/SvJ) in A/J mice rendered transgenic mice resistant to infection (J:81887, J:129300). In addition, Western blot experiments demonstrated that the NAIP5 protein is not expressed in A/J macrophages, while robust expression is seen in macrophages from resistant strains such as C57BL/6J. Sequence polymorphisms in this gene between susceptible and resistant strains were identified that may account for the difference in phenotype. In addition, morpholino antisense inhibition of NAIP5 activity in mouse macrophages fromresistant mice resulted in an increase in permissiveness of Legionella replication (J:129300). [MGI Ref ID J:129300] [MGI Ref ID J:81887]
 
Allele Symbol Nrg3ska
Allele Name scaramanga
Allele Type Spontaneous
Common Name(s) ska;
Strain of OriginA/J
Gene Symbol and Name Nrg3, neuregulin 3
Chromosome 14
Gene Common Name(s) HRG3; RGD1559678; pro-NRG3; scaramanga; ska;
Molecular Note This allele maps to an interval between the microsatellite markers D14Mit14 and D14Mit80 located at 10.0 cM and 13.5 cM. The mutation identified is a microsatellite repeat within intron 7 of the gene. This simple sequence repeat (SSR) was found to completely cosegregate with the ska phenotype. [MGI Ref ID J:100495]
 
Allele Symbol Rmcfs
Allele Name MCF sensitive
Allele Type Spontaneous
Strain of Originmultiple strains
Gene Symbol and Name Rmcf, resistance to MCF virus
Chromosome 5
General Note

This locus controls resistance and susceptibility of cells in tissue culture to infection by mink cell focus-forming murine leukemia viruses. The allele Rmcfr determines resistance and occurs in strains DBA/1, DBA/2, and CBA/Ca; the allele Rmcfs determines susceptibility and occurs in strains AKR/J, C57BL/6, BALB/c, CBA/J, NFS, NZB, 129/J, and many others. Heterozygotes are as resistant as the resistant parent or nearly so. Rmcf is different from and independent of Fv1,a locus that controls susceptibility to infection by ecotropic viruses. Rmcf is located on Chr 5 close to Hm near the centromeric end (J:7108). Rmcfr protects (AKR x CBA/Ca)F1 and (AKR x DBA/2)F1 hybrids from development of spontaneous thymic lymphomas and reduces the incidence of MCF-induced thymic lymphomas (J:7175). It also reduces susceptibility of cells of Sxvs/Sxvr mice to exogenous xenotropic viruses (J:7951). In addition, in strains susceptible to Friend virus-induced erythroleukemia, a condition thought to be due to the replication of MCF virus, Rmcfr increases resistance to the virus-induced erythroleukemia. It may cause resistance by coding for or regulating the production of an MCF-related envelope glycoprotein that blocks the receptor for MCF viruses (J:8074). This conclusion is reinforced by the findings of Buller et al. (J:8497), who showed that the Rmcfr allele contains an endogenous MCF gp70 env gene and that theRmcfs allele, at least in some strains (C57BL/6, CBA/J, and A/WySn), contains a xenotropic gp70 env gene. Presumably the MCF gp70 inhibits exogenous MCF infection in vitro by a mechanism of viral interference.

Molecular Note This locus controls resistance of cells to infection by mink cell focus-forming murine leukemia viruses. The recessive s (susceptible) allele is found in AKR/J, C57BL/6, BALB/c, CBA/J, NFS, NZB and 129/J.
 
Allele Symbol Wnt9bclf1
Allele Name cleft lip 1
Allele Type Spontaneous
Strain of OriginA/WySn
Gene Symbol and Name Wnt9b, wingless-type MMTV integration site family, member 9B
Chromosome 11
Gene Common Name(s) WNT14B; WNT15; Wnt15; cleft lip; cleft lip 1; clf; clf1; wingless-type MMTV integration site 15;
General Note Unequal duplicate epistasis - the normal allele at clf1 is a dominant suppressor of the recessive phenotype at clf2, and the normal allele at clf2 is a semidominant suppressor of the recessive phenotype at the clf1 locus.
Molecular Note This mutation is a novel insertion of an IAP transposon 3' from the gene. In addition, a standard genetic test of allelism between clf1 and a Wnt9b targeted mutation demonstrated noncomplementation, showing clf1 is an allele of Wnt9b. [MGI Ref ID J:117594] [MGI Ref ID J:96061]
 
Allele Symbol mt-Trm1
Allele Name mutation 1
Allele Type Spontaneous
Common Name(s) 10A;
Strain of Originvarious
Gene Symbol and Name mt-Tr, mitochondrially encoded tRNA arginine
Chromosome MT
Gene Common Name(s) TrnR tRNA; tRNA; tRNA-Arg;
General Note This polymorphism is present in A/J, NZB/B1NJ, ALS/Lt and NOD/ShiLtJ. A variant with 9 adenines is found in NOD/ShiLtDvs, ALR/Lt and SKH2/J.
Molecular Note The adenine repeat in the D stem is polymorphic with 10 adenines in this allele. [MGI Ref ID J:67312] [MGI Ref ID J:97969]

Genotyping

Genotyping Information

Inbred mouse strains are maintained through sibling (sister x brother) matings; no genotyping required.

Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Anunciado RV; Nishimura M; Mori M; Ishikawa A; Tanaka S; Horio F; Ohno T; Namikawa T. 2003. Quantitative trait locus analysis of serum insulin, triglyceride, total cholesterol and phospholipid levels in the (SM/J x A/J)F2 mice. Exp Anim 52(1):37-42. [PubMed: 12638235]  [MGI Ref ID J:82274]

Mattson DL. 2001. Comparison of arterial blood pressure in different strains of mice. Am J Hypertens 14(5 Pt 1):405-8. [PubMed: 11368457]  [MGI Ref ID J:109876]

Paigen B; Ishida BY; Verstuyft J; Winters RB; Albee D. 1990. Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis 10(2):316-23. [PubMed: 2317166]  [MGI Ref ID J:22615]

Petkov PM; Cassell MA; Sargent EE; Donnelly CJ; Robinson P; Crew V; Asquith S; Haar RV; Wiles MV. 2004. Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse. Genomics 83(5):902-11. [PubMed: 15081119]  [MGI Ref ID J:89298]

Strong LC. 1936. The establishment of the "A" strain of inbred mice J Hered 27:21-24.  [MGI Ref ID J:2481]

Additional References

Anunciado RV; Nishimura M; Mori M; Ishikawa A; Tanaka S; Horio F; Ohno T; Namikawa T. 2001. Quantitative trait loci for body weight in the intercross between SM/J and A/J mice. Exp Anim 50(4):319-24. [PubMed: 11515095]  [MGI Ref ID J:71465]

Belinsky SA; Stefanski SA; Anderson MW. 1993. The A/J mouse lung as a model for developing new chemointervention strategies. Cancer Res 53(2):410-6. [PubMed: 8417832]  [MGI Ref ID J:3656]

Boraschi D; Meltzer MS. 1980. Defective tumoricidal capacity of macrophages from A/J mice. III. Genetic analysis of the macrophage defect. J Immunol 124(3):1050-3. [PubMed: 6987306]  [MGI Ref ID J:22709]

De Sanctis GT; Merchant M; Beier DR; Dredge RD; Grobholz JK; Martin TR; Lander ES; Drazen JM. 1995. Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nat Genet 11(2):150-4. [PubMed: 7550342]  [MGI Ref ID J:29231]

Ewart SL; Kuperman D; Schadt E; Tankersley C; Grupe A; Shubitowski DM; Peltz G; Wills-Karp M. 2000. Quantitative trait loci controlling allergen-induced airway hyperresponsiveness in inbred mice. Am J Respir Cell Mol Biol 23(4):537-45. [PubMed: 11017920]  [MGI Ref ID J:66641]

Hara T; Ichihara M; Takagi M; Miyajima A. 1995. Interleukin-3 (IL-3) poor-responsive inbred mouse strains carry the identical deletion of a branch point in the IL-3 receptor alpha subunit gene. Blood 85(9):2331-6. [PubMed: 7727767]  [MGI Ref ID J:24918]

Hecht SS; Morse MA; Amin S; Stoner GD; Jordan KG; Choi CI; Chung FL. 1989. Rapid single-dose model for lung tumor induction in A/J mice by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and the effect of diet. Carcinogenesis 10(10):1901-4. [PubMed: 2791206]  [MGI Ref ID J:27317]

Hoag WG. 1963. Spontaneous cancer in mice Ann N Y Acad Sci 108:805-831. [PubMed: 14081516]  [MGI Ref ID J:2434]

International Nomenclature Committee. 1952. COMMITTEE on Standardized Nomenclature for Inbred Strains of Mice Cancer Res 12(8):602-13. [PubMed: 14945054]  [MGI Ref ID J:166288]

Keane TM; Goodstadt L; Danecek P; White MA; Wong K; Yalcin B; Heger A; Agam A; Slater G; Goodson M; Furlotte NA; Eskin E; Nellaker C; Whitley H; Cleak J; Janowitz D; Hernandez-Pliego P; Edwards A; Belgard TG; Oliver PL; McIntyre RE; Bhomra A; Nicod J; Gan X; Yuan W; van der Weyden L; Steward CA; Bala S; Stalker J; Mott R; Durbin R; Jackson IJ; Czechanski A; Guerra-Assuncao JA; Donahue LR; Reinholdt LG; Payseur BA; Ponting CP; Birney E; Flint J; Adams DJ. 2011. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477(7364):289-94. [PubMed: 21921910]  [MGI Ref ID J:177037]

Moy SS; Nadler JJ; Young NB; Perez A; Holloway LP; Barbaro RP; Barbaro JR; Wilson LM; Threadgill DW; Lauder JM; Magnuson TR; Crawley JN. 2007. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 176(1):4-20. [PubMed: 16971002]  [MGI Ref ID J:138682]

O'Malley J; Matesic LE; Zink MC; Strandberg JD; Mooney ML; De Maio A; Reeves RH. 1998. Comparison of acute endotoxin-induced lesions in A/J and C57BL/6J mice. J Hered 89(6):525-30. [PubMed: 9864862]  [MGI Ref ID J:51631]

Roberts JE; Watters JW; Ballard JD; Dietrich WF. 1998. Ltx1, a mouse locus that influences the susceptibility of macrophages to cytolysis caused by intoxication with Bacillus anthracis lethal factor, maps to chromosome 11. Mol Microbiol 29(2):581-91. [PubMed: 9720874]  [MGI Ref ID J:49726]

Rossmeisl M; Rim JS; Koza RA; Kozak LP. 2003. Variation in type 2 diabetes--related traits in mouse strains susceptible to diet-induced obesity. Diabetes 52(8):1958-66. [PubMed: 12882911]  [MGI Ref ID J:86027]

Schlagel CJ; Ahmed A. 1982. Evidence for genetic control of microwave-induced augmentation of complement receptor-bearing B lymphocytes. J Immunol 129(4):1530-3. [PubMed: 6980940]  [MGI Ref ID J:6835]

Shinagawa K; Kojima M. 2003. Mouse model of airway remodeling: strain differences. Am J Respir Crit Care Med 168(8):959-67. [PubMed: 12857720]  [MGI Ref ID J:135072]

Smith BK; Andrews PK; West DB. 2000. Macronutrient diet selection in thirteen mouse strains. Am J Physiol Regul Integr Comp Physiol 278(4):R797-805. [PubMed: 10749765]  [MGI Ref ID J:61602]

Sundberg JP; Hanson CA; Roop DR; Brown KS; Bedigian HG. 1991. Myoepitheliomas in inbred laboratory mice. Vet Pathol 28(4):313-23. [PubMed: 1719689]  [MGI Ref ID J:22767]

Surwit RS; Feinglos MN; Rodin J; Sutherland A; Petro AE; Opara EC; Kuhn CM; Rebuffescrive M. 1995. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44(5):645-651. [PubMed: 7752914]  [MGI Ref ID J:25120]

Welkos SL; Keener TJ; Gibbs PH. 1986. Differences in susceptibility of inbred mice to Bacillus anthracis. Infect Immun 51(3):795-800. [PubMed: 3081444]  [MGI Ref ID J:8197]

West DB; Boozer CN; Moody DL; Atkinson RL. 1992. Dietary obesity in nine inbred mouse strains. Am J Physiol 262(6 Pt 2):R1025-32. [PubMed: 1621856]  [MGI Ref ID J:1348]

Whitehead GS; Walker JK; Berman KG; Foster WM; Schwartz DA. 2003. Allergen-induced airway disease is mouse strain dependent. Am J Physiol Lung Cell Mol Physiol 285(1):L32-42. [PubMed: 12626335]  [MGI Ref ID J:84265]

Xie C; Sharma R; Wang H; Zhou XJ; Mohan C. 2004. Strain distribution pattern of susceptibility to immune-mediated nephritis. J Immunol 172(8):5047-55. [PubMed: 15067087]  [MGI Ref ID J:122988]

Ahrb-2 related

Nebert DW; Considine N; Owens IS. 1973. Genetic expression of aryl hydrocarbon hydroxylase induction. VI. Control of other aromatic hydrocarbon-inducible mono-oxygenase activities at or near the same genetic locus. Arch Biochem Biophys 157(1):148-59. [PubMed: 4716952]  [MGI Ref ID J:84313]

Nebert DW; Gielen JE. 1972. Genetic regulation of aryl hydrocarbon hydroxylase induction in the mouse. Fed Proc 31(4):1315-25. [PubMed: 4114109]  [MGI Ref ID J:5282]

Nebert DW; Jensen NM; Shinozuka H; Kunz HW; Gill TJ 3rd. 1982. The Ah phenotype. Survey of forty-eight rat strains and twenty inbred mouse strains. Genetics 100(1):79-87. [PubMed: 7095422]  [MGI Ref ID J:6809]

Nebert DW; Robinson JR; Niwa A; Kumaki K; Poland AP. 1975. Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. J Cell Physiol 85(2 Pt 2 Suppl 1):393-414. [PubMed: 1091656]  [MGI Ref ID J:84317]

Niwa A; Kumaki K; Nebert DW; Poland AP. 1975. Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. Distinction between the 'responsive' homozygote and heterozygote at the Ah locus. Arch Biochem Biophys 166(2):559-64. [PubMed: 1119809]  [MGI Ref ID J:84316]

Poland A; Glover E. 1990. Characterization and strain distribution pattern of the murine Ah receptor specified by the Ahd and Ahb-3 alleles. Mol Pharmacol 38(3):306-12. [PubMed: 2169579]  [MGI Ref ID J:34840]

Poland A; Glover E; Taylor BA. 1987. The murine Ah locus: a new allele and mapping to chromosome 12. Mol Pharmacol 32(4):471-8. [PubMed: 2823093]  [MGI Ref ID J:8895]

Poland A; Palen D; Glover E. 1994. Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol 46(5):915-21. [PubMed: 7969080]  [MGI Ref ID J:22144]

Robinson JR; Considine N; Nebert DW. 1974. Genetic expression of aryl hydrocarbon hydroxylase induction. Evidence for the involvement of other genetic loci. J Biol Chem 249(18):5851-9. [PubMed: 4413562]  [MGI Ref ID J:84315]

Schmid FA; Pena RC; Robinson W; Tarnowski GS. 1967. Toxicity of intraperitoneal injections of 7, 12-dimethylbenz[a]anthracene in inbred mice. Cancer Res 27(3):558-62. [PubMed: 6021513]  [MGI Ref ID J:26440]

Schmidt JV; Carver LA; Bradfield CA. 1993. Molecular characterization of the murine Ahr gene. Organization, promoter analysis, and chromosomal assignment. J Biol Chem 268(29):22203-9. [PubMed: 8408082]  [MGI Ref ID J:15153]

Smith AG; Clothier B; Robinson S; Scullion MJ; Carthew P; Edwards R; Luo J; Lim CK; Toledano M. 1998. Interaction between iron metabolism and 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice with variants of the Ahr gene: a hepatic oxidative mechanism. Mol Pharmacol 53(1):52-61. [PubMed: 9443932]  [MGI Ref ID J:45850]

Thomas PE; Hutton JJ; Taylor BA. 1973. Genetic relationship between aryl hydrocarbon hydroxylase inducibility and chemical carcinogen induced skin ulceration in mice. Genetics 74(4):655-9. [PubMed: 4750810]  [MGI Ref ID J:5387]

Bhr1A/J related

Ackerman KG; Huang H; Grasemann H; Puma C; Singer JB; Hill AE; Lander E; Nadeau JH; Churchill GA; Drazen JM; Beier DR. 2005. Interacting genetic loci cause airway hyperresponsiveness. Physiol Genomics 21(1):105-11. [PubMed: 15657107]  [MGI Ref ID J:97472]

De Sanctis GT; Merchant M; Beier DR; Dredge RD; Grobholz JK; Martin TR; Lander ES; Drazen JM. 1995. Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nat Genet 11(2):150-4. [PubMed: 7550342]  [MGI Ref ID J:29231]

Bhr5A/J related

Ackerman KG; Huang H; Grasemann H; Puma C; Singer JB; Hill AE; Lander E; Nadeau JH; Churchill GA; Drazen JM; Beier DR. 2005. Interacting genetic loci cause airway hyperresponsiveness. Physiol Genomics 21(1):105-11. [PubMed: 15657107]  [MGI Ref ID J:97472]

De Sanctis GT; Singer JB; Jiao A; Yandava CN; Lee YH; Haynes TC; Lander ES; Beier DR; Drazen JM. 1999. Quantitative trait locus mapping of airway responsiveness to chromosomes 6 and 7 in inbred mice. Am J Physiol 277(6 Pt 1):L1118-23. [PubMed: 10600881]  [MGI Ref ID J:59047]

Ewart SL; Mitzner W; DiSilvestre DA; Meyers DA; Levitt RC. 1996. Airway hyperresponsiveness to acetylcholine: segregation analysis and evidence for linkage to murine chromosome 6. Am J Respir Cell Mol Biol 14(5):487-95. [PubMed: 8624254]  [MGI Ref ID J:33778]

Cdh23ahl related

Bosco A; Crish SD; Steele MR; Romero CO; Inman DM; Horner PJ; Calkins DJ; Vetter ML. 2012. Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 7(8):e43602. [PubMed: 22952717]  [MGI Ref ID J:191663]

Davis RR; Newlander JK; Ling X; Cortopassi GA; Krieg EF; Erway LC. 2001. Genetic basis for susceptibility to noise-induced hearing loss in mice. Hear Res 155(1-2):82-90. [PubMed: 11335078]  [MGI Ref ID J:69679]

Di Palma F; Pellegrino R; Noben-Trauth K. 2001. Genomic structure, alternative splice forms and normal and mutant alleles of cadherin 23 (Cdh23). Gene 281(1-2):31-41. [PubMed: 11750125]  [MGI Ref ID J:73941]

Fetoni AR; Picciotti PM; Paludetti G; Troiani D. 2011. Pathogenesis of presbycusis in animal models: a review. Exp Gerontol 46(6):413-25. [PubMed: 21211561]  [MGI Ref ID J:186964]

Han F; Yu H; Tian C; Chen HE; Benedict-Alderfer C; Zheng Y; Wang Q; Han X; Zheng QY. 2010. A new mouse mutant of the Cdh23 gene with early-onset hearing loss facilitates evaluation of otoprotection drugs. Pharmacogenomics J :. [PubMed: 20644563]  [MGI Ref ID J:174758]

Johnson KR; Erway LC; Cook SA; Willott JF; Zheng QY. 1997. A major gene affecting age-related hearing loss in C57BL/6J mice Hear Res 114(1-2):83-92. [PubMed: 9447922]  [MGI Ref ID J:44966]

Johnson KR; Longo-Guess C; Gagnon LH; Yu H; Zheng QY. 2008. A locus on distal chromosome 11 (ahl8) and its interaction with Cdh23 ahl underlie the early onset, age-related hearing loss of DBA/2J mice. Genomics 92(4):219-25. [PubMed: 18662770]  [MGI Ref ID J:139223]

Johnson KR; Yu H; Ding D; Jiang H; Gagnon LH; Salvi RJ. 2010. Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice. Hear Res 268(1-2):85-92. [PubMed: 20470874]  [MGI Ref ID J:163035]

Johnson KR; Zheng QY; Bykhovskaya Y; Spirina O; Fischel-Ghodsian N. 2001. A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat Genet 27(2):191-4. [PubMed: 11175788]  [MGI Ref ID J:67312]

Johnson KR; Zheng QY; Noben-Trauth K. 2006. Strain background effects and genetic modifiers of hearing in mice. Brain Res 1091(1):79-88. [PubMed: 16579977]  [MGI Ref ID J:110459]

Johnson KR; Zheng QY; Weston MD; Ptacek LJ; Noben-Trauth K. 2005. The Mass1(frings) mutation underlies early onset hearing impairment in BUB/BnJ mice, a model for the auditory pathology of Usher syndrome IIC. Genomics 85(5):582-90. [PubMed: 15820310]  [MGI Ref ID J:97534]

Kane KL; Longo-Guess CM; Gagnon LH; Ding D; Salvi RJ; Johnson KR. 2012. Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear Res 283(1-2):80-8. [PubMed: 22138310]  [MGI Ref ID J:183757]

Keithley EM; Canto C; Zheng QY; Fischel-Ghodsian N; Johnson KR. 2004. Age-related hearing loss and the ahl locus in mice. Hear Res 188(1-2):21-8. [PubMed: 14759567]  [MGI Ref ID J:87783]

Liu X; Bulgakov OV; Darrow KN; Pawlyk B; Adamian M; Liberman MC; Li T. 2007. Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A 104(11):4413-8. [PubMed: 17360538]  [MGI Ref ID J:118927]

Manji SS; Williams LH; Miller KA; Ooms LM; Bahlo M; Mitchell CA; Dahl HH. 2011. A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS One 6(3):e17607. [PubMed: 21423608]  [MGI Ref ID J:171701]

Mathews CE; Leiter EH. 1999. Resistance of ALR/Lt islets to free radical-mediated diabetogenic stress is inherited as a dominant trait. Diabetes 48(11):2189-96. [PubMed: 10535453]  [MGI Ref ID J:109893]

Nadeau JH. 2003. Modifier genes and protective alleles in humans and mice. Curr Opin Genet Dev 13(3):290-5. [PubMed: 12787792]  [MGI Ref ID J:88012]

Noben-Trauth K; Latoche JR; Neely HR; Bennett B. 2010. Phenotype and genetics of progressive sensorineural hearing loss (Snhl1) in the LXS set of recombinant inbred strains of mice. PLoS One 5(7):e11459. [PubMed: 20628639]  [MGI Ref ID J:163117]

Noben-Trauth K; Zheng QY; Johnson KR. 2003. Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35(1):21-3. [PubMed: 12910270]  [MGI Ref ID J:86905]

Noben-Trauth K; Zheng QY; Johnson KR; Nishina PM. 1997. mdfw: a deafness susceptibility locus that interacts with deaf waddler (dfw). Genomics 44(3):266-72. [PubMed: 9325047]  [MGI Ref ID J:38429]

Perrin BJ; Sonnemann KJ; Ervasti JM. 2010. beta-actin and gamma-actin are each dispensable for auditory hair cell development but required for Stereocilia maintenance. PLoS Genet 6(10):e1001158. [PubMed: 20976199]  [MGI Ref ID J:167543]

Perrin BJ; Strandjord DM; Narayanan P; Henderson DM; Johnson KR; Ervasti JM. 2013. beta-Actin and Fascin-2 Cooperate to Maintain Stereocilia Length. J Neurosci 33(19):8114-21. [PubMed: 23658152]  [MGI Ref ID J:197137]

Vazquez AE; Jimenez AM; Martin GK; Luebke AE; Lonsbury-Martin BL. 2004. Evaluating cochlear function and the effects of noise exposure in the B6.CAST+Ahl mouse with distortion product otoacoustic emissions. Hear Res 194(1-2):87-96. [PubMed: 15276680]  [MGI Ref ID J:117746]

Zheng QY; Johnson KR. 2001. Hearing loss associated with the modifier of deaf waddler (mdfw) locus corresponds with age-related hearing loss in 12 inbred strains of mice. Hear Res 154(1-2):45-53. [PubMed: 11423214]  [MGI Ref ID J:70964]

Zheng QY; Scarborough JD; Zheng Y; Yu H; Choi D; Gillespie PG. 2012. Digenic inheritance of deafness caused by 8J allele of myosin-VIIA and mutations in other Usher I genes. Hum Mol Genet 21(11):2588-98. [PubMed: 22381527]  [MGI Ref ID J:183898]

Zilberstein Y; Liberman MC; Corfas G. 2012. Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 32(2):405-10. [PubMed: 22238076]  [MGI Ref ID J:179911]

Csahl4-A/J related

Johnson KR; Gagnon LH; Longo-Guess C; Kane KL. 2012. Association of a citrate synthase missense mutation with age-related hearing loss in A/J mice. Neurobiol Aging 33(8):1720-9. [PubMed: 21803452]  [MGI Ref ID J:188196]

Zheng QY; Ding D; Yu H; Salvi RJ; Johnson KR. 2008. A locus on distal chromosome 10 (ahl4) affecting age-related hearing loss in A/J mice. Neurobiol Aging :. [PubMed: 18280008]  [MGI Ref ID J:139222]

Dysfprmd related

Biondi O; Villemeur M; Marchand A; Chretien F; Bourg N; Gherardi RK; Richard I; Authier FJ. 2013. Dual effects of exercise in dysferlinopathy. Am J Pathol 182(6):2298-309. [PubMed: 23624156]  [MGI Ref ID J:198822]

Burr AR; Millay DP; Goonasekera SA; Park KH; Sargent MA; Collins J; Altamirano F; Philipson KD; Allen PD; Ma J; Lopez JR; Molkentin JD. 2014. Na+ dysregulation coupled with Ca2+ entry through NCX1 promotes muscular dystrophy in mice. Mol Cell Biol 34(11):1991-2002. [PubMed: 24662047]  [MGI Ref ID J:212146]

Chase TH; Cox GA; Burzenski L; Foreman O; Shultz LD. 2009. Dysferlin deficiency and the development of cardiomyopathy in a mouse model of limb-girdle muscular dystrophy 2B. Am J Pathol 175(6):2299-308. [PubMed: 19875504]  [MGI Ref ID J:155340]

Concepcion D; Flores-Garcia L; Hamilton BA. 2009. Multipotent genetic suppression of retrotransposon-induced mutations by Nxf1 through fine-tuning of alternative splicing. PLoS Genet 5(5):e1000484. [PubMed: 19436707]  [MGI Ref ID J:149430]

Demonbreun AR; Fahrenbach JP; Deveaux K; Earley JU; Pytel P; McNally EM. 2011. Impaired muscle growth and response to insulin-like growth factor 1 in dysferlin-mediated muscular dystrophy. Hum Mol Genet 20(4):779-89. [PubMed: 21127009]  [MGI Ref ID J:168708]

Diaz-Manera J; Touvier T; Dellavalle A; Tonlorenzi R; Tedesco FS; Messina G; Meregalli M; Navarro C; Perani L; Bonfanti C; Illa I; Torrente Y; Cossu G. 2010. Partial dysferlin reconstitution by adult murine mesoangioblasts is sufficient for full functional recovery in a murine model of dysferlinopathy. Cell Death Dis 1:e61. [PubMed: 21364666]  [MGI Ref ID J:186461]

Farini A; Sitzia C; Navarro C; D'Antona G; Belicchi M; Parolini D; Del Fraro G; Razini P; Bottinelli R; Meregalli M; Torrente Y. 2012. Absence of T and B lymphocytes modulates dystrophic features in dysferlin deficient animal model. Exp Cell Res 318(10):1160-74. [PubMed: 22465227]  [MGI Ref ID J:186460]

Grounds MD; Terrill JR; Radley-Crabb HG; Robertson T; Papadimitriou J; Spuler S; Shavlakadze T. 2014. Lipid accumulation in dysferlin-deficient muscles. Am J Pathol 184(6):1668-76. [PubMed: 24685690]  [MGI Ref ID J:210966]

Ho M; Post CM; Donahue LR; Lidov HG; Bronson RT; Goolsby H; Watkins SC; Cox GA; Brown RH Jr. 2004. Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency. Hum Mol Genet 13(18):1999-2010. [PubMed: 15254015]  [MGI Ref ID J:92838]

Hosur V; Kavirayani A; Riefler J; Carney LM; Lyons B; Gott B; Cox GA; Shultz LD. 2012. Dystrophin and dysferlin double mutant mice: a novel model for rhabdomyosarcoma. Cancer Genet 205(5):232-41. [PubMed: 22682622]  [MGI Ref ID J:200127]

Kerr JP; Ziman AP; Mueller AL; Muriel JM; Kleinhans-Welte E; Gumerson JD; Vogel SS; Ward CW; Roche JA; Bloch RJ. 2013. Dysferlin stabilizes stress-induced Ca2+ signaling in the transverse tubule membrane. Proc Natl Acad Sci U S A 110(51):20831-6. [PubMed: 24302765]  [MGI Ref ID J:205500]

Krajacic P; Pistilli EE; Tanis JE; Khurana TS; Lamitina ST. 2013. FER-1/Dysferlin promotes cholinergic signaling at the neuromuscular junction in C. elegans and mice. Biol Open 2(11):1245-52. [PubMed: 24244862]  [MGI Ref ID J:205201]

Laure L; Suel L; Roudaut C; Bourg N; Ouali A; Bartoli M; Richard I; Daniele N. 2009. Cardiac ankyrin repeat protein is a marker of skeletal muscle pathological remodelling. FEBS J 276(3):669-84. [PubMed: 19143834]  [MGI Ref ID J:147891]

Lostal W; Bartoli M; Bourg N; Roudaut C; Bentaib A; Miyake K; Guerchet N; Fougerousse F; McNeil P; Richard I. 2010. Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum Mol Genet :. [PubMed: 20154340]  [MGI Ref ID J:158933]

Lostal W; Bartoli M; Roudaut C; Bourg N; Krahn M; Pryadkina M; Borel P; Suel L; Roche JA; Stockholm D; Bloch RJ; Levy N; Bashir R; Richard I. 2012. Lack of correlation between outcomes of membrane repair assay and correction of dystrophic changes in experimental therapeutic strategy in dysferlinopathy. PLoS One 7(5):e38036. [PubMed: 22666441]  [MGI Ref ID J:187293]

Millay DP; Maillet M; Roche JA; Sargent MA; McNally EM; Bloch RJ; Molkentin JD. 2009. Genetic manipulation of dysferlin expression in skeletal muscle: novel insights into muscular dystrophy. Am J Pathol 175(5):1817-23. [PubMed: 19834057]  [MGI Ref ID J:154690]

Nagaraju K; Rawat R; Veszelovszky E; Thapliyal R; Kesari A; Sparks S; Raben N; Plotz P; Hoffman EP. 2008. Dysferlin Deficiency Enhances Monocyte Phagocytosis: A Model for the Inflammatory Onset of Limb-Girdle Muscular Dystrophy 2B. Am J Pathol 172(3):774-785. [PubMed: 18276788]  [MGI Ref ID J:132272]

Roche JA; Lovering RM; Roche R; Ru LW; Reed PW; Bloch RJ. 2010. Extensive mononuclear infiltration and myogenesis characterize recovery of dysferlin-null skeletal muscle from contraction-induced injuries. Am J Physiol Cell Physiol 298(2):C298-312. [PubMed: 19923419]  [MGI Ref ID J:157507]

Spector I; Zilberstein Y; Lavy A; Genin O; Barzilai-Tutsch H; Bodanovsky A; Halevy O; Pines M. 2013. The involvement of collagen triple helix repeat containing 1 in muscular dystrophies. Am J Pathol 182(3):905-16. [PubMed: 23274062]  [MGI Ref ID J:193271]

Uaesoontrachoon K; Cha HJ; Ampong B; Sali A; Vandermeulen J; Wei B; Creeden B; Huynh T; Quinn J; Tatem K; Rayavarapu S; Hoffman EP; Nagaraju K. 2013. The effects of MyD88 deficiency on disease phenotype in dysferlin-deficient A/J mice: role of endogenous TLR ligands. J Pathol 231(2):199-209. [PubMed: 23857504]  [MGI Ref ID J:201914]

Zhang Y; Maksakova IA; Gagnier L; van de Lagemaat LN; Mager DL. 2008. Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet 4(2):e1000007. [PubMed: 18454193]  [MGI Ref ID J:149432]

Hc0 related

Actor JK; Breij E; Wetsel RA; Hoffmann H; Hunter RL Jr; Jagannath C. 2001. A role for complement C5 in organism containment and granulomatous response during murine tuberculosis. Scand J Immunol 53(5):464-74. [PubMed: 11309154]  [MGI Ref ID J:103981]

Addis-Lieser E; Kohl J; Chiaramonte MG. 2005. Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis. J Immunol 175(3):1894-902. [PubMed: 16034133]  [MGI Ref ID J:107269]

Anderson AL; Sporici R; Lambris J; Larosa D; Levinson AI. 2006. Pathogenesis of B-cell superantigen-induced immune complex-mediated inflammation. Infect Immun 74(2):1196-203. [PubMed: 16428769]  [MGI Ref ID J:104987]

Barthlott T; Stockinger B. 2001. Lineage fate alteration of thymocytes developing in an MHC environment containing MHC/peptide ligands with antagonist properties. Eur J Immunol 31(12):3595-601. [PubMed: 11745379]  [MGI Ref ID J:151748]

Baudino L; Sardini A; Ruseva MM; Fossati-Jimack L; Cook HT; Scott D; Simpson E; Botto M. 2014. C3 opsonization regulates endocytic handling of apoptotic cells resulting in enhanced T-cell responses to cargo-derived antigens. Proc Natl Acad Sci U S A 111(4):1503-8. [PubMed: 24474777]  [MGI Ref ID J:206648]

Bauer K; Yu X; Wernhoff P; Koczan D; Thiesen HJ; Ibrahim SM. 2004. Identification of new quantitative trait loci in mice with collagen-induced arthritis. Arthritis Rheum 50(11):3721-8. [PubMed: 15529344]  [MGI Ref ID J:94347]

Binstadt BA; Hebert JL; Ortiz-Lopez A; Bronson R; Benoist C; Mathis D. 2009. The same systemic autoimmune disease provokes arthritis and endocarditis via distinct mechanisms. Proc Natl Acad Sci U S A 106(39):16758-63. [PubMed: 19805369]  [MGI Ref ID J:153217]

Bode J; Dutow P; Sommer K; Janik K; Glage S; Tummler B; Munder A; Laudeley R; Sachse KW; Klos A. 2012. A new role of the complement system: C3 provides protection in a mouse model of lung infection with intracellular Chlamydia psittaci. PLoS One 7(11):e50327. [PubMed: 23189195]  [MGI Ref ID J:194784]

Bora NS; Kaliappan S; Jha P; Xu Q; Sohn JH; Dhaulakhandi DB; Kaplan HJ; Bora PS. 2006. Complement activation via alternative pathway is critical in the development of laser-induced choroidal neovascularization: role of factor B and factor H. J Immunol 177(3):1872-8. [PubMed: 16849499]  [MGI Ref ID J:138026]

Borders CW; Courtney A; Ronen K; Pilar Laborde-Lahoz M; Guidry TV; Hwang SA; Olsen M; Hunter RL Jr; Hollmann TJ; Wetsel RA; Actor JK. 2005. Requisite role for complement C5 and the C5a receptor in granulomatous response to mycobacterial glycolipid trehalose 6,6'-dimycolate. Scand J Immunol 62(2):123-30. [PubMed: 16101818]  [MGI Ref ID J:114316]

Bosco A; Crish SD; Steele MR; Romero CO; Inman DM; Horner PJ; Calkins DJ; Vetter ML. 2012. Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 7(8):e43602. [PubMed: 22952717]  [MGI Ref ID J:191663]

CINADER B; DUBISKI S; WARDLAW AC. 1964. DISTRIBUTION, INHERITANCE, AND PROPERTIES OF AN ANTIGEN, MUB1, AND ITS RELATION TO HEMOLYTIC COMPLEMENT. J Exp Med 120:897-924. [PubMed: 14247728]  [MGI Ref ID J:13003]

Carter WO; Bull C; Bortolon E; Yang L; Jesmok GJ; Gundel RH. 1998. A murine skeletal muscle ischemia-reperfusion injury model: differential pathology in BALB/c and DBA/2N mice. J Appl Physiol 85(5):1676-83. [PubMed: 9804569]  [MGI Ref ID J:51187]

Chen HC; Hofman FM; Kung JT; Lin YD; Wu-Hsieh BA. 2007. Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol 81(11):5518-26. [PubMed: 17360740]  [MGI Ref ID J:153322]

Chen J; Reifsnyder PC; Scheuplein F; Schott WH; Mileikovsky M; Soodeen-Karamath S; Nagy A; Dosch MH; Ellis J; Koch-Nolte F; Leiter EH. 2005. 'Agouti NOD': identification of a CBA-derived Idd locus on Chromosome 7 and its use for chimera production with NOD embryonic stem cells. Mamm Genome 16(10):775-83. [PubMed: 16261419]  [MGI Ref ID J:102639]

Cunnion KM; Benjamin DK Jr; Hester CG; Frank MM. 2004. Role of complement receptors 1 and 2 (CD35 and CD21), C3, C4, and C5 in survival by mice of Staphylococcus aureus bacteremia. J Lab Clin Med 143(6):358-65. [PubMed: 15192652]  [MGI Ref ID J:101948]

Daniel DS; Dai G; Singh CR; Lindsey DR; Smith AK; Dhandayuthapani S; Hunter RL Jr; Jagannath C. 2006. The reduced bactericidal function of complement C5-deficient murine macrophages is associated with defects in the synthesis and delivery of reactive oxygen radicals to mycobacterial phagosomes. J Immunol 177(7):4688-98. [PubMed: 16982908]  [MGI Ref ID J:139313]

Deguchi Y; Andoh A; Inatomi O; Araki Y; Hata K; Tsujikawa T; Kitoh K; Fujiyama Y. 2005. Development of dextran sulfate sodium-induced colitis is aggravated in mice genetically deficient for complement C5. Int J Mol Med 16(4):605-8. [PubMed: 16142393]  [MGI Ref ID J:107581]

Ehrnthaller C; Huber-Lang M; Nilsson P; Bindl R; Redeker S; Recknagel S; Rapp A; Mollnes T; Amling M; Gebhard F; Ignatius A. 2013. Complement C3 and C5 deficiency affects fracture healing. PLoS One 8(11):e81341. [PubMed: 24260573]  [MGI Ref ID J:209669]

Fairweather D; Frisancho-Kiss S; Njoku DB; Nyland JF; Kaya Z; Yusung SA; Davis SE; Frisancho JA; Barrett MA; Rose NR. 2006. Complement receptor 1 and 2 deficiency increases coxsackievirus B3-induced myocarditis, dilated cardiomyopathy, and heart failure by increasing macrophages, IL-1beta, and immune complex deposition in the heart. J Immunol 176(6):3516-24. [PubMed: 16517720]  [MGI Ref ID J:129509]

Ferreira C; Barthlott T; Garcia S; Zamoyska R; Stockinger B. 2000. Differential survival of naive CD4 and CD8 T cells. J Immunol 165(7):3689-94. [PubMed: 11034373]  [MGI Ref ID J:151749]

Flierl MA; Rittirsch D; Nadeau BA; Day DE; Zetoune FS; Sarma JV; Huber-Lang MS; Ward PA. 2008. Functions of the complement components C3 and C5 during sepsis. FASEB J 22(10):3483-90. [PubMed: 18587006]  [MGI Ref ID J:140250]

Flynn S; Stockinger B. 2003. Tumor and CD4 T-cell interactions: tumor escape as result of reciprocal inactivation. Blood 101(11):4472-8. [PubMed: 12543861]  [MGI Ref ID J:151744]

Fossati G; Cooke A; Papafio RQ; Haskins K; Stockinger B. 1999. Triggering a second T cell receptor on diabetogenic T cells can prevent induction of diabetes. J Exp Med 190(4):577-83. [PubMed: 10449528]  [MGI Ref ID J:108724]

Garcia S; DiSanto J; Stockinger B. 1999. Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 11(2):163-71. [PubMed: 10485651]  [MGI Ref ID J:151750]

Girardi G; Berman J; Redecha P; Spruce L; Thurman JM; Kraus D; Hollmann TJ; Casali P; Caroll MC; Wetsel RA; Lambris JD; Holers VM; Salmon JE. 2003. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 112(11):1644-54. [PubMed: 14660741]  [MGI Ref ID J:86845]

Hillebrandt S; Wasmuth HE; Weiskirchen R; Hellerbrand C; Keppeler H; Werth A; Schirin-Sokhan R; Wilkens G; Geier A; Lorenzen J; Kohl J; Gressner AM; Matern S; Lammert F. 2005. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet 37(8):835-43. [PubMed: 15995705]  [MGI Ref ID J:100159]

Ji H; Gauguier D; Ohmura K; Gonzalez A; Duchatelle V; Danoy P; Garchon HJ; Degott C; Lathrop M; Benoist C; Mathis D. 2001. Genetic influences on the end-stage effector phase of arthritis. J Exp Med 194(3):321-30. [PubMed: 11489951]  [MGI Ref ID J:70882]

Karp CL; Grupe A; Schadt E; Ewart SL; Keane-Moore M; Cuomo PJ; Kohl J; Wahl L; Kuperman D; Germer S; Aud D; Peltz G; Wills-Karp M. 2000. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol 1(3):221-6. [PubMed: 10973279]  [MGI Ref ID J:108211]

Kassiotis G; Garcia S; Simpson E; Stockinger B. 2002. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat Immunol 3(3):244-50. [PubMed: 11836529]  [MGI Ref ID J:151747]

Kassiotis G; Zamoyska R; Stockinger B. 2003. Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J Exp Med 197(8):1007-16. [PubMed: 12707300]  [MGI Ref ID J:151743]

Kawikova I; Paliwal V; Szczepanik M; Itakura A; Fukui M; Campos RA; Geba GP; Homer RJ; Iliopoulou BP; Pober JS; Tsuji RF; Askenase PW. 2004. Airway hyper-reactivity mediated by B-1 cell immunoglobulin M antibody generating complement C5a at 1 day post-immunization in a murine hapten model of non-atopic asthma. Immunology 113(2):234-45. [PubMed: 15379984]  [MGI Ref ID J:92933]

Kerepesi LA; Hess JA; Nolan TJ; Schad GA; Abraham D. 2006. Complement component C3 is required for protective innate and adaptive immunity to larval strongyloides stercoralis in mice. J Immunol 176(7):4315-22. [PubMed: 16547268]  [MGI Ref ID J:129872]

Kim CH; Wu W; Wysoczynski M; Abdel-Latif A; Sunkara M; Morris A; Kucia M; Ratajczak J; Ratajczak MZ. 2012. Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia 26(1):106-16. [PubMed: 21769103]  [MGI Ref ID J:181063]

Kim DD; Miwa T; Kimura Y; Schwendener RA; van Lookeren Campagne M; Song WC. 2008. Deficiency of decay-accelerating factor and complement receptor 1-related gene/protein y on murine platelets leads to complement-dependent clearance by the macrophage phagocytic receptor CRIg. Blood 112(4):1109-19. [PubMed: 18524992]  [MGI Ref ID J:138410]

Kirimanjeswara GS; Mann PB; Pilione M; Kennett MJ; Harvill ET. 2005. The complex mechanism of antibody-mediated clearance of Bordetella from the lungs requires TLR4. J Immunol 175(11):7504-11. [PubMed: 16301658]  [MGI Ref ID J:122156]

Kwan WH; Hashimoto D; Paz-Artal E; Ostrow K; Greter M; Raedler H; Medof ME; Merad M; Heeger PS. 2012. Antigen-presenting cell-derived complement modulates graft-versus-host disease. J Clin Invest 122(6):2234-8. [PubMed: 22585573]  [MGI Ref ID J:190492]

Kyriakides C; Austen W Jr; Wang Y; Favuzza J; Kobzik L; Moore FD Jr; Hechtman HB. 1999. Membrane attack complex of complement and neutrophils mediate the injury of acid aspiration. J Appl Physiol 87(6):2357-61. [PubMed: 10601189]  [MGI Ref ID J:103341]

Lee HM; Wu W; Wysoczynski M; Liu R; Zuba-Surma EK; Kucia M; Ratajczak J; Ratajczak MZ. 2009. Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes. Leukemia 23(11):2052-62. [PubMed: 19657368]  [MGI Ref ID J:154482]

Lee HM; Wysoczynski M; Liu R; Shin DM; Kucia M; Botto M; Ratajczak J; Ratajczak MZ. 2010. Mobilization studies in complement-deficient mice reveal that optimal AMD3100 mobilization of hematopoietic stem cells depends on complement cascade activation by AMD3100-stimulated granulocytes. Leukemia 24(3):573-82. [PubMed: 20033053]  [MGI Ref ID J:158026]

Liu Q; He S; Groysman L; Shaked D; Russin J; Cen S; Mack WJ. 2013. White matter injury due to experimental chronic cerebral hypoperfusion is associated with C5 deposition. PLoS One 8(12):e84802. [PubMed: 24386419]  [MGI Ref ID J:209840]

Mahesh J; Daly J; Cheadle WG; Kotwal GJ. 1999. Elucidation of the early events contributing to zymosan-induced multiple organ dysfunction syndrome using MIP-1alpha, C3 knockout, and C5-deficient mice. Shock 12(5):340-9. [PubMed: 10565608]  [MGI Ref ID J:59655]

Mastellos D; Papadimitriou JC; Franchini S; Tsonis PA; Lambris JD. 2001. A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J Immunol 166(4):2479-86. [PubMed: 11160308]  [MGI Ref ID J:111000]

Miller CG; Cook DN; Kotwal GJ. 1996. Two chemotactic factors, C5a and MIP-1alpha, dramatically alter the mortality from zymosan-induced multiple organ dysfunction syndrome (MODS): C5a contributes to MODS while MIP-1alpha has a protective role. Mol Immunol 33(14):1135-7. [PubMed: 9047380]  [MGI Ref ID J:38592]

Miller CG; Justus DE; Jayaraman S; Kotwal GJ. 1995. Severe and prolonged inflammatory response to localized cowpox virus infection in footpads of C5-deficient mice: investigation of the role of host complement in poxvirus pathogenesis. Cell Immunol 162(2):326-32. [PubMed: 7743560]  [MGI Ref ID J:25289]

Miwa T; Zhou L; Kimura Y; Kim D; Bhandoola A; Song WC. 2009. Complement-dependent T-cell lymphopenia caused by thymocyte deletion of the membrane complement regulator Crry. Blood 113(12):2684-94. [PubMed: 19136662]  [MGI Ref ID J:146538]

Mocco J; Mack WJ; Ducruet AF; Sosunov SA; Sughrue ME; Hassid BG; Nair MN; Laufer I; Komotar RJ; Claire M; Holland H; Pinsky DJ; Connolly ES Jr. 2006. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res 99(2):209-17. [PubMed: 16778128]  [MGI Ref ID J:123658]

Mori L; de Libero G. 1998. Genetic control of susceptibility to collagen-induced arthritis in T cell receptor beta-chain transgenic mice. Arthritis Rheum 41(2):256-62. [PubMed: 9485083]  [MGI Ref ID J:134111]

Moulton RA; Mashruwala MA; Smith AK; Lindsey DR; Wetsel RA; Haviland DL; Hunter RL; Jagannath C. 2007. Complement C5a anaphylatoxin is an innate determinant of dendritic cell-induced Th1 immunity to Mycobacterium bovis BCG infection in mice. J Leukoc Biol 82(4):956-67. [PubMed: 17675563]  [MGI Ref ID J:125190]

Mullick A; Elias M; Picard S; Bourget L; Jovcevski O; Gauthier S; Tuite A; Harakidas P; Bihun C; Massie B; Gros P. 2004. Dysregulated inflammatory response to Candida albicans in a C5-deficient mouse strain. Infect Immun 72(10):5868-76. [PubMed: 15385488]  [MGI Ref ID J:93132]

Mullick A; Leon Z; Min-Oo G; Berghout J; Lo R; Daniels E; Gros P. 2006. Cardiac failure in C5-deficient A/J mice after Candida albicans infection. Infect Immun 74(8):4439-51. [PubMed: 16861630]  [MGI Ref ID J:112405]

Niculescu T; Weerth S; Niculescu F; Cudrici C; Rus V; Raine CS; Shin ML; Rus H. 2004. Effects of complement C5 on apoptosis in experimental autoimmune encephalomyelitis. J Immunol 172(9):5702-6. [PubMed: 15100315]  [MGI Ref ID J:89686]

Nilsson UR; Muller-Eberhard HJ. 1967. Deficiency of the fifth component of complement in mice with an inherited complement defect. J Exp Med 125(1):1-16. [PubMed: 4959665]  [MGI Ref ID J:5016]

Ooi YM; Colten HR. 1979. Genetic defect in secretion of complement C5 in mice. Nature 282(5735):207-8. [PubMed: 492335]  [MGI Ref ID J:6214]

Patel SN; Berghout J; Lovegrove FE; Ayi K; Conroy A; Serghides L; Min-oo G; Gowda DC; Sarma JV; Rittirsch D; Ward PA; Liles WC; Gros P; Kain KC. 2008. C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J Exp Med 205(5):1133-43. [PubMed: 18426986]  [MGI Ref ID J:136298]

Pickering MC; Warren J; Rose KL; Carlucci F; Wang Y; Walport MJ; Cook HT; Botto M. 2006. Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. Proc Natl Acad Sci U S A 103(25):9649-54. [PubMed: 16769899]  [MGI Ref ID J:111031]

Pilione MR; Agosto LM; Kennett MJ; Harvill ET. 2006. CD11b is required for the resolution of inflammation induced by Bordetella bronchiseptica respiratory infection. Cell Microbiol 8(5):758-68. [PubMed: 16611225]  [MGI Ref ID J:135740]

Pritchard MT; McMullen MR; Stavitsky AB; Cohen JI; Lin F; Medof ME; Nagy LE. 2007. Differential contributions of C3, C5, and decay-accelerating factor to ethanol-induced fatty liver in mice. Gastroenterology 132(3):1117-26. [PubMed: 17383432]  [MGI Ref ID J:128218]

Prodeus AP; Zhou X; Maurer M; Galli SJ; Carroll MC. 1997. Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 390(6656):172-5. [PubMed: 9367154]  [MGI Ref ID J:44240]

Ratajczak MZ; Lee H; Wysoczynski M; Wan W; Marlicz W; Laughlin MJ; Kucia M; Janowska-Wieczorek A; Ratajczak J. 2010. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due toactivation of complement cascade/membrane attack complex. Leukemia 24(5):976-85. [PubMed: 20357827]  [MGI Ref ID J:160183]

Redecha P; Tilley R; Tencati M; Salmon JE; Kirchhofer D; Mackman N; Girardi G. 2007. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood 110(7):2423-31. [PubMed: 17536017]  [MGI Ref ID J:147022]

Refici ML; Metzger DW; Arulanandam BP; Lennartz MR; Loegering DJ. 2001. Fcgamma-receptor signaling augments the LPS-stimulated increase in serum tumor necrosis factor-alpha levels. Am J Physiol Regul Integr Comp Physiol 280(4):R1037-44. [PubMed: 11247825]  [MGI Ref ID J:114295]

Rittirsch D; Flierl MA; Day DE; Nadeau BA; McGuire SR; Hoesel LM; Ipaktchi K; Zetoune FS; Sarma JV; Leng L; Huber-Lang MS; Neff TA; Bucala R; Ward PA. 2008. Acute lung injury induced by lipopolysaccharide is independent of complement activation. J Immunol 180(11):7664-72. [PubMed: 18490769]  [MGI Ref ID J:136379]

Rittirsch D; Flierl MA; Nadeau BA; Day DE; Huber-Lang M; Mackay CR; Zetoune FS; Gerard NP; Cianflone K; Kohl J; Gerard C; Sarma JV; Ward PA. 2008. Functional roles for C5a receptors in sepsis. Nat Med 14(5):551-7. [PubMed: 18454156]  [MGI Ref ID J:136703]

Saville SP; Lazzell AL; Chaturvedi AK; Monteagudo C; Lopez-Ribot JL. 2008. Use of a genetically engineered strain to evaluate the pathogenic potential of yeast cell and filamentous forms during Candida albicans systemic infection in immunodeficient mice. Infect Immun 76(1):97-102. [PubMed: 17967861]  [MGI Ref ID J:130296]

Schmitt J; Roderfeld M; Sabrane K; Zhang P; Tian Y; Mertens JC; Frei P; Stieger B; Weber A; Mullhaupt B; Roeb E; Geier A. 2012. Complement factor C5 deficiency significantly delays the progression of biliary fibrosis in bile duct-ligated mice. Biochem Biophys Res Commun 418(3):445-50. [PubMed: 22277671]  [MGI Ref ID J:181268]

Schultz G; Tedesco MM; Sho E; Nishimura T; Sharif S; Du X; Myles T; Morser J; Dalman RL; Leung LL. 2010. Enhanced abdominal aortic aneurysm formation in thrombin-activatable procarboxypeptidase B-deficient mice. Arterioscler Thromb Vasc Biol 30(7):1363-70. [PubMed: 20431069]  [MGI Ref ID J:180861]

Sood R; Sholl L; Isermann B; Zogg M; Coughlin SR; Weiler H. 2008. Maternal Par4 and platelets contribute to defective placenta formation in mouse embryos lacking thrombomodulin. Blood 112(3):585-91. [PubMed: 18490515]  [MGI Ref ID J:138440]

Stokol T; O'Donnell P; Xiao L; Knight S; Stavrakis G; Botto M; von Andrian UH; Mayadas TN. 2004. C1q governs deposition of circulating immune complexes and leukocyte Fcgamma receptors mediate subsequent neutrophil recruitment. J Exp Med 200(7):835-46. [PubMed: 15466618]  [MGI Ref ID J:93949]

Strainic MG; Liu J; Huang D; An F; Lalli PN; Muqim N; Shapiro VS; Dubyak GR; Heeger PS; Medof ME. 2008. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28(3):425-35. [PubMed: 18328742]  [MGI Ref ID J:132942]

Strainic MG; Shevach EM; An F; Lin F; Medof ME. 2012. Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF-beta1 signaling and induction of Foxp3(+) regulatory T cells. Nat Immunol 14(2):162-71. [PubMed: 23263555]  [MGI Ref ID J:192613]

Strey CW; Markiewski M; Mastellos D; Tudoran R; Spruce LA; Greenbaum LE; Lambris JD. 2003. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 198(6):913-23. [PubMed: 12975457]  [MGI Ref ID J:109380]

Tanaka D; Kagari T; Doi H; Shimozato T. 2006. Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis. Immunology 119(2):195-202. [PubMed: 16836650]  [MGI Ref ID J:118551]

Trendelenburg M; Fossati-Jimack L; Cortes-Hernandez J; Turnberg D; Lewis M; Izui S; Cook HT; Botto M. 2005. The role of complement in cryoglobulin-induced immune complex glomerulonephritis. J Immunol 175(10):6909-14. [PubMed: 16272350]  [MGI Ref ID J:119691]

Wang Y; Kristan J; Hao L; Lenkoski CS; Shen Y; Matis LA. 2000. A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis. J Immunol 164(8):4340-7. [PubMed: 10754334]  [MGI Ref ID J:61587]

Wetsel RA; Fleischer DT; Haviland DL. 1990. Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5'-exon. J Biol Chem 265(5):2435-40. [PubMed: 2303408]  [MGI Ref ID J:23983]

Wheat WH; Wetsel R; Falus A; Tack BF; Strunk RC. 1987. The fifth component of complement (C5) in the mouse. Analysis of the molecular basis for deficiency. J Exp Med 165(5):1442-7. [PubMed: 3572304]  [MGI Ref ID J:8690]

Wolfe DN; Kirimanjeswara GS; Harvill ET. 2005. Clearance of Bordetella parapertussis from the lower respiratory tract requires humoral and cellular immunity. Infect Immun 73(10):6508-13. [PubMed: 16177324]  [MGI Ref ID J:104212]

Wright RJ; Bikoff EK; Stockinger B. 1998. The Ii41 isoform of invariant chain mediates both positive and negative selection events in T-cell receptor transgenic mice. Immunology 95(3):309-13. [PubMed: 9824491]  [MGI Ref ID J:50737]

Xiao H; Schreiber A; Heeringa P; Falk RJ; Jennette JC. 2007. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol 170(1):52-64. [PubMed: 17200182]  [MGI Ref ID J:117048]

Younger JG; Shankar-Sinha S; Mickiewicz M; Brinkman AS; Valencia GA; Sarma JV; Younkin EM; Standiford TJ; Zetoune FS; Ward PA. 2003. Murine complement interactions with Pseudomonas aeruginosa and their consequences during pneumonia. Am J Respir Cell Mol Biol 29(4):432-8. [PubMed: 14500254]  [MGI Ref ID J:94613]

Zal T; Volkmann A; Stockinger B. 1994. Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen. J Exp Med 180(6):2089-99. [PubMed: 7964486]  [MGI Ref ID J:111649]

Zal T; Weiss S; Mellor A; Stockinger B. 1996. Expression of a second receptor rescues self-specific T cells from thymic deletion and allows activation of autoreactive effector function. Proc Natl Acad Sci U S A 93(17):9102-7. [PubMed: 8799161]  [MGI Ref ID J:151753]

Zhou W; Farrar CA; Abe K; Pratt JR; Marsh JE; Wang Y; Stahl GL; Sacks SH. 2000. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest 105(10):1363-71. [PubMed: 10811844]  [MGI Ref ID J:120567]

de Jorge EG; Macor P; Paixao-Cavalcante D; Rose KL; Tedesco F; Cook HT; Botto M; Pickering MC. 2011. The development of atypical hemolytic uremic syndrome depends on complement C5. J Am Soc Nephrol 22(1):137-45. [PubMed: 21148255]  [MGI Ref ID J:185883]

Il3ram1 related

Gainsford T; Roberts AW; Kimura S; Metcalf D; Dranoff G; Mulligan RC; Begley CG; Robb L; Alexander WS. 1998. Cytokine production and function in c-mpl-deficient mice: no physiologic role for interleukin-3 in residual megakaryocyte and platelet production. Blood 91(8):2745-52. [PubMed: 9531584]  [MGI Ref ID J:47462]

Hara T; Ichihara M; Takagi M; Miyajima A. 1995. Interleukin-3 (IL-3) poor-responsive inbred mouse strains carry the identical deletion of a branch point in the IL-3 receptor alpha subunit gene. Blood 85(9):2331-6. [PubMed: 7727767]  [MGI Ref ID J:24918]

Ichihara M; Hara T; Takagi M; Cho LC; Gorman DM; Miyajima A. 1995. Impaired interleukin-3 (IL-3) response of the A/J mouse is caused by a branch point deletion in the IL-3 receptor alpha subunit gene. EMBO J 14(5):939-50. [PubMed: 7889941]  [MGI Ref ID J:23971]

Micrln related

Schlagel CJ; Ahmed A. 1982. Evidence for genetic control of microwave-induced augmentation of complement receptor-bearing B lymphocytes. J Immunol 129(4):1530-3. [PubMed: 6980940]  [MGI Ref ID J:6835]

Naip5Lgn1-s related

Archer KA; Ader F; Kobayashi KS; Flavell RA; Roy CR. 2010. Cooperation between multiple microbial pattern recognition systems is important for host protection against the intracellular pathogen Legionella pneumophila. Infect Immun 78(6):2477-87. [PubMed: 20351139]  [MGI Ref ID J:159981]

Brieland J; Freeman P; Kunkel R; Chrisp C; Hurley M; Fantone J; Engleberg C. 1994. Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice. A murine model of human Legionnaires' disease. Am J Pathol 145(6):1537-46. [PubMed: 7992856]  [MGI Ref ID J:36191]

Derre I; Isberg RR. 2004. Macrophages from mice with the restrictive Lgn1 allele exhibit multifactorial resistance to Legionella pneumophila. Infect Immun 72(11):6221-9. [PubMed: 15501747]  [MGI Ref ID J:93274]

Diez E; Lee SH; Gauthier S; Yaraghi Z; Tremblay M; Vidal S; Gros P. 2003. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33(1):55-60. [PubMed: 12483212]  [MGI Ref ID J:81887]

Fortier A; de Chastellier C; Balor S; Gros P. 2007. Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by Legionella pneumophila. Cell Microbiol 9(4):910-23. [PubMed: 17087731]  [MGI Ref ID J:148674]

Lamkanfi M; Amer A; Kanneganti TD; Munoz-Planillo R; Chen G; Vandenabeele P; Fortier A; Gros P; Nunez G. 2007. The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178(12):8022-7. [PubMed: 17548639]  [MGI Ref ID J:148581]

Losick VP; Stephan K; Smirnova II; Isberg RR; Poltorak A. 2009. A hemidominant Naip5 allele in mouse strain MOLF/Ei-derived macrophages restricts Legionella pneumophila intracellular growth. Infect Immun 77(1):196-204. [PubMed: 18981241]  [MGI Ref ID J:143768]

Miyamoto H; Maruta K; Ogawa M; Beckers MC; Gros P; Yoshida S. 1996. Spectrum of Legionella species whose intracellular multiplication in murine macrophages is genetically controlled by Lgn1. Infect Immun 64(5):1842-5. [PubMed: 8613400]  [MGI Ref ID J:33896]

Molofsky AB; Byrne BG; Whitfield NN; Madigan CA; Fuse ET; Tateda K; Swanson MS. 2006. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203(4):1093-104. [PubMed: 16606669]  [MGI Ref ID J:123813]

Wright EK; Goodart SA; Growney JD; Hadinoto V; Endrizzi MG; Long EM; Sadigh K; Abney AL; Bernstein-Hanley I; Dietrich WF. 2003. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13(1):27-36. [PubMed: 12526741]  [MGI Ref ID J:129300]

Yamamoto Y; Klein TW; Brown RK; Friedman H. 1992. Electron micrographic analysis of macrophages from genetically susceptible vs. resistant mice infected with Legionella pneumophila J Leukoc Biol Suppl 3:1-63 (35). [PubMed: 1392410]  [MGI Ref ID J:2930]

Yamamoto Y; Klein TW; Friedman H. 1992. Genetic control of macrophage susceptibility to infection by Legionella pneumophila. FEMS Microbiol Immunol 4(3):137-45. [PubMed: 1575991]  [MGI Ref ID J:1635]

Yoshida S; Goto Y; Mizuguchi Y; Nomoto K; Skamene E. 1991. Genetic control of natural resistance in mouse macrophages regulating intracellular Legionella pneumophila multiplication in vitro. Infect Immun 59(1):428-32. [PubMed: 1987055]  [MGI Ref ID J:20633]

Nrg3ska related

Howard B; Panchal H; McCarthy A; Ashworth A. 2005. Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Genes Dev 19(17):2078-90. [PubMed: 16140987]  [MGI Ref ID J:100495]

Howard BA; Gusterson BA. 2000. Mammary gland patterning in the AXB/BXA recombinant inbred strains of mouse. Mech Dev 91(1-2):305-9. [PubMed: 10704854]  [MGI Ref ID J:61355]

Howard BA; Gusterson BA. 2000. The characterization of a mouse mutant that displays abnormal mammary gland development. Mamm Genome 11(3):234-7. [PubMed: 10723730]  [MGI Ref ID J:60708]

Rmcfs related

Buller RS; Sitbon M; Portis JL. 1988. The endogenous mink cell focus-forming (MCF) gp70 linked to the Rmcf gene restricts MCF virus replication in vivo and provides partial resistance to erythroleukemia induced by Friend murine leukemia virus. J Exp Med 167(5):1535-46. [PubMed: 2835418]  [MGI Ref ID J:27618]

Hartley JW; Yetter RA; Morse HC 3rd. 1983. A mouse gene on chromosome 5 that restricts infectivity of mink cell focus-forming recombinant murine leukemia viruses. J Exp Med 158(1):16-24. [PubMed: 6306133]  [MGI Ref ID J:7108]

Jung YT; Lyu MS; Buckler-White A; Kozak CA. 2002. Characterization of a polytropic murine leukemia virus proviral sequence associated with the virus resistance gene Rmcf of DBA/2 mice. J Virol 76(16):8218-24. [PubMed: 12134027]  [MGI Ref ID J:78083]

Wnt9bclf1 related

Juriloff DM. 1995. Genetic analysis of the construction of the AEJ.A congenic strain indicates that nonsyndromic CL(P) in the mouse is caused by two loci with epistatic interaction. J Craniofac Genet Dev Biol 15(1):1-12. [PubMed: 7601909]  [MGI Ref ID J:25484]

Juriloff DM. 1986. Major genes that cause cleft lip in mice: progress in the construction of a congenic strain and in linkage mapping. J Craniofac Genet Dev Biol Suppl 2:55-66. [PubMed: 3491125]  [MGI Ref ID J:22596]

Juriloff DM; Harris MJ; Brown CJ. 2001. Unravelling the complex genetics of cleft lip in the mouse model. Mamm Genome 12(6):426-35. [PubMed: 11353389]  [MGI Ref ID J:69826]

Juriloff DM; Harris MJ; Dewell SL. 2004. A digenic cause of cleft lip in A-strain mice and definition of candidate genes for the two loci. Birth Defects Res Part A Clin Mol Teratol 70(8):509-18. [PubMed: 15329828]  [MGI Ref ID J:92341]

Juriloff DM; Harris MJ; Dewell SL; Brown CJ; Mager DL; Gagnier L; Mah DG. 2005. Investigations of the genomic region that contains the clf1 mutation, a causal gene in multifactorial cleft lip and palate in mice. Birth Defects Res A Clin Mol Teratol 73(2):103-13. [PubMed: 15690355]  [MGI Ref ID J:96061]

Juriloff DM; Harris MJ; McMahon AP; Carroll TJ; Lidral AC. 2006. Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects Res A Clin Mol Teratol 76(8):574-9. [PubMed: 16998816]  [MGI Ref ID J:117594]

mt-Trm1 related

Johnson KR; Zheng QY; Bykhovskaya Y; Spirina O; Fischel-Ghodsian N. 2001. A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat Genet 27(2):191-4. [PubMed: 11175788]  [MGI Ref ID J:67312]

Johnson KR; Zheng QY; Noben-Trauth K. 2006. Strain background effects and genetic modifiers of hearing in mice. Brain Res 1091(1):79-88. [PubMed: 16579977]  [MGI Ref ID J:110459]

Mathews CE; Leiter EH; Spirina O; Bykhovskaya Y; Gusdon AM; Ringquist S; Fischel-Ghodsian N. 2005. mt-Nd2 Allele of the ALR/Lt mouse confers resistance against both chemically induced and autoimmune diabetes. Diabetologia 48(2):261-7. [PubMed: 15692809]  [MGI Ref ID J:97969]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX29
Room Number           AX9
Room Number           MP14
Room Number           MP16
Room Number           RB04

Colony Maintenance

Mating SystemSibling x Sibling         (Female x Male)   01-MAR-06
Breeding Considerations This strain is a challenging breeder.
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)Gender
3 weeks $30.40Female or Male  
4 weeks $30.40Female or Male  
5 weeks $30.40Female or Male  
6 weeks $33.20Female or Male  
7 weeks $36.15Female or Male  
8 weeks $38.95Female or Male  
9 weeks $41.95Female or Male  
10 weeks $44.85Female or Male  
11 weeks $47.70Female or Male  
12 weeks $50.60Female or Male  
13 weeks $53.45Female or Male  
14 weeks $56.35Female or Male  
15 weeks $59.20Female or Male  
16 weeks $62.10Female or Male  
17 weeks $65.10Female or Male  
18 weeks $67.90Female or Male  
19 weeks $70.85Female or Male  
20 weeks $73.65Female or Male  

Standard Supply

Level 2. Up to 100 mice. Larger quantities or custom orders arranged upon request.

Supply Notes

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)Gender
3 weeks $39.60Female or Male  
4 weeks $39.60Female or Male  
5 weeks $39.60Female or Male  
6 weeks $43.20Female or Male  
7 weeks $47.00Female or Male  
8 weeks $50.70Female or Male  
9 weeks $54.60Female or Male  
10 weeks $58.40Female or Male  
11 weeks $62.10Female or Male  
12 weeks $65.80Female or Male  
13 weeks $69.50Female or Male  
14 weeks $73.30Female or Male  
15 weeks $77.00Female or Male  
16 weeks $80.80Female or Male  
17 weeks $84.70Female or Male  
18 weeks $88.30Female or Male  
19 weeks $92.20Female or Male  
20 weeks $95.80Female or Male  

Standard Supply

Level 2. Up to 100 mice. Larger quantities or custom orders arranged upon request.

Supply Notes

  • Shipped at a specific age in weeks. Mice at a precise age in days, littermates and retired breeders are also available.
  • This strain is available from some international Charles River (CR) breeding facilities in Japan and/or Europe. For more information, see the Worldwide Distributor List for JAX® Mice.
View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Level 2. Up to 100 mice. Larger quantities or custom orders arranged upon request.

Important Note

This strain is homozygous for Cdh23ahl, the age related hearing loss 1 mutation, and ahl4, which on this background result in progressive hearing loss with onset between three and five months of age.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)