Strain Name:


Stock Number:


Order this mouse


Level 2

Other products are available, see Purchasing Information for Cryopreserved Embryos
      Cell Line: C3H/HeJ AC386/GrsrJ mES cells
      Cell Line: C3H/HeJ-PB151.24 mES cells
      Cell Line: C3H/HeJ-PRX-C3H #2 mES cells

Common Names: C3H;     C3;     C3H Heston;    
C3H/HeJ mice are used as a general purpose strain in a wide variety of research areas including cancer, infectious disease, sensorineural, and cardiovascular biology research. A spontaneous mutation occurred in C3H/HeJ at the lipopolysaccharide response locus (mutation in toll-like receptor 4 gene, Tlr4Lps-d) making C3H/HeJ mice more resistant to endotoxin. C3H/HeJ (Tlr4Lps-d) mice are highly susceptible to infection by Gram-negative bacteria such as Salmonella enterica.


Strain Information

Former Names C3H/HeJ-Pde6brd1    (Changed: 19-MAR-08 )
Type Inbred Strain;
Additional information on Inbred Strains.
Visit our online Nomenclature tutorial.
Mating SystemSibling x Sibling         (Female x Male)   01-MAR-06
Breeding Considerations This strain is an exceptional breeder.
Specieslaboratory mouse
H2 Haplotypek
GenerationF258pF261 (14-AUG-14)
Generation Definitions

View larger image

Related Genotype: A/A

Important Note
This strain does not carry mouse mammary tumor virus (MMTV). This strain is homozygous for retinal degeneration allele Pde6brd1, the defective lipopolysaccharide response allele Tlr4Lps-d, and for a chromosomal inversion on Chromosome 6. A sighted alternative is Stock No. 003648, C3Sn.BLiA-Pde6b+/DnJ.

C3H/HeJ mice are used as a general purpose strain in a wide variety of research areas including cancer, immunology and inflammation, sensorineural, and cardiovascular biology. C3H/HeJ mice and all other Jackson substrains are homozygous for the retinal degeneration 1 mutation (Pde6brd1), which causes blindness by weaning age. White belly spots, ranging in phenotype from a few white hairs to a defined spot are common in C3H/HeJ mice. There is also a high incidence of hepatomas in C3H mice (reportedly 72-91% in males at 14 months, 59% in virgin females, 30-38% in breeding females). Despite the lack of exogenous mouse mammary tumor virus (MMTV), virgin and breeding females may still develop some mammary tumors later in life. C3H/HeJ mice, fed an atherogenic diet (1.25% cholesterol, 0.5% cholic acid and 15% fat), fail to develop atherosclerotic aortic lesions in contrast to several highly susceptible strains of mice (e.g. C57BL/6J, Stock No. 000664; C57L/J, Stock No. 000668, C57BR/cdJ, Stock No. 000667, and SM/J, Stock No. 000687). C3H/HeJ mice spontaneously develop alopecia areata (AA) at a reported incidence of approximately 0.25% by 5 months of age. In older mice (12-18 months old), incidences as high as approximately 20% are reported. Females as young as 3-5 months can develop AA, but onset typically is delayed until after 6 months in males. Alopecia areata can be surgically-induced by grafting a small piece of skin from an older, donor animal with AA onto a younger, isogenic C3H/HeJ recipient.

A spontaneous mutation occurred in C3H/HeJ at the lipopolysaccharide response locus (later identified as a mutation in the toll-like receptor 4 gene, Tlr4Lps-d) making C3H/HeJ mice endotoxin resistant. C3H/HeJ (Tlr4Lps-d) mice are highly susceptible to infection by Gram-negative bacteria such as Salmonella enterica. Mice infected with Salmonella exhibit delayed chemokine production, impaired nitric oxide generation and attenuated cellular immune responses. Mortality in infected mice appears to result from enhanced bacterial growth within the liver Kupffer cell network (Vazquez-Torres et al., 2004). The C3H/HeJ substrain is homozygous for an inversion on Chromosome 6 (symbol: In(6)1J). The inversion covers 20% of Chromosome 6 between D6Mit124 (~30.3 cM) and D6Mit150 (~51.0 cM), but results in no reported phenotype. Results from screening other C3H substrains and cryopreserved stock from C3H/HeJ suggest that the mutation arose after 1952. See JAX Notes, Fall 2003, No. 491. The spontaneous mutation, spike wave discharge 1 (spkw1), is present in C3H/HeJ, but not C3HeB/FeJ. Mice homozygous for this mutation exhibit a modest incidence of absence seizures.

The C3H parent strain was developed by LC Strong in 1920 from a cross of a Bagg albino female with a DBA male followed by selection for high incidence of mammary tumors. This high incidence resulted from exogenous mouse mammary tumor virus (MMTV) transmitted through the mother's milk. The Jackson Laboratory maintains four C3H substrains, C3H/HeJ (Stock No. 000659), C3H/HeOuJ (Stock No. 000635), C3HeB/FeJ (Stock No. 000658) and C3H/HeSnJ (Stock No. 000661) that are now free of exogenous MMTV. C3H/HeJ and C3H/HeOuJ mice previously carried MMTV but were rederived in 1999 during planned efforts to increase the overall health status of the mice and the virus was not reintroduced. C3H/HeJ and C3H/HeOuJ substrains were separated in 1952 and are genetically very similar. However, a spontaneous mutation occurred in C3H/HeJ sometime between 1960 and 1968 at lipopolysaccharide response locus (mutation in toll-like receptor 4 gene, Tlr4lps) making C3H/HeJ mice endotoxin resistant while the other three C3H strains are endotoxin sensitive.

Related Strains

C3H Strains
005972   C3H/HeJBirLtJ
001824   C3H/HeJSxJ
000635   C3H/HeOuJ
000474   C3H/HeSn
000661   C3H/HeSnJ
000658   C3HeB/FeJ
001908   C3HfB/BiJ
View C3H Strains     (7 strains)

Strains carrying   Ahrb-2 allele
000645   A/HeJ
000646   A/J
000130   B6.C-H17c/(HW14)ByJ
000370   B6.C-H38c/(HW119)ByJ
001026   BALB/cByJ
000653   BUB/BnJ
000656   CBA/J
000657   CE/J
000352   CXB2/ByJ
000353   CXB3/ByJ
000354   CXB4/ByJ
000355   CXB5/ByJ
000357   CXB7/ByJ
000673   HRS/J
000679   P/J
000930   PERA/EiJ
000644   SEA/GnJ
000280   SF/CamEiJ
View Strains carrying   Ahrb-2     (18 strains)

Strains carrying   Pde6brd1 allele
004202   B6.C3 Pde6brd1 Hps4le/+ +-Lmx1adr-8J/J
000002   B6.C3-Pde6brd1 Hps4le/J
001022   B6C3FeF1/J a/a
000652   BDP/J
000653   BUB/BnJ
002439   C3.129P2(B6)-B2mtm1Unc/J
005494   C3.129S1(B6)-Grm1rcw/J
000509   C3.Cg-Lystbg-2J/J
000480   C3.MRL-Faslpr/J
001957   C3A Pde6brd1.O20/A-Prph2Rd2/J
004326   C3Bir.129P2(B6)-Il10tm1Cgn/Lt
003968   C3Bir.129P2(B6)-Il10tm1Cgn/LtJ
006435   C3Fe.SW-Soaa/MonJ
001904   C3H-Atcayji-hes/J
000511   C3H/HeJ-Ap3d1mh-2J/J
000784   C3H/HeJ-Faslgld/J
002433   C3H/HeJ-Sptbn4qv-lnd2J/J
005972   C3H/HeJBirLtJ
001824   C3H/HeJSxJ
000635   C3H/HeOuJ
000474   C3H/HeSn
001431   C3H/HeSn-ocd/J
000661   C3H/HeSnJ
002333   C3H/HeSnJ-gri/J
001576   C3He-Atp7btx-J/J
000658   C3HeB/FeJ
002588   C3HeB/FeJ-Eya1bor/J
001533   C3HeB/FeJ-Mc1rE-so Gli3Xt-J/J
001908   C3HfB/BiJ
001502   C3Sn.B6-Epha4rb/EiGrsrJ
002235   C3Sn.C3-Ctnna2cdf/J
001547   C3Sn.Cg-Cm/J
001906   C3fBAnl.Cg-Catb/AnlJ
000656   CBA/J
000813   CBA/J-Atp7aMo-pew/J
000660   DA/HuSnJ
000023   FL/1ReJ
000025   FL/4ReJ
003024   FVB.129P2(B6)-Fmr1tm1Cgr/J
002539   FVB.129P2-Abcb4tm1Bor/J
002935   FVB.129S2(B6)-Ccnd1tm1Wbg/J
002953   FVB.Cg-Tg(MMTVTGFA)254Rjc/J
003170   FVB.Cg-Tg(Myh6-tTA)6Smbf/J
003078   FVB.Cg-Tg(WapIgf1)39Dlr/J
003487   FVB.Cg-Tg(XGFAP-lacZ)3Mes/J
003257   FVB/N-Tg(GFAPGFP)14Mes/J
002856   FVB/N-Tg(TIE2-lacZ)182Sato/J
002384   FVB/N-Tg(UcpDta)1Kz/J
001800   FVB/NJ
001491   FVB/NMob
000804   HPG/BmJ
000734   MOLD/RkJ
000550   MOLF/EiJ
002423   NON/ShiLtJ
000679   P/J
000680   PL/J
000268   RSV/LeJ
000269   SB/LeJ
010968   SB;C3Sn-Lrp4mdig-2J/GrsrJ
005651   SJL.AK-Thy1a/TseJ
000686   SJL/J
000688   ST/bJ
004808   STOCK Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
002648   STOCK a/a Cln6nclf/J
000279   STOCK gr +/+ Ap3d1mh/J
005965   STOCK Tg(Pomc1-cre)16Lowl/J
004770   SW.B6-Soab/J
002023   SWR.M-Emv21 Emv22/J
000689   SWR/J
000939   SWR/J-Clcn1adr-mto/J
000692   WB/ReJ KitW/J
100410   WBB6F1/J-KitW/KitW-v/J
000693   WC/ReJ KitlSl/J
View Strains carrying   Pde6brd1     (73 strains)

Strains carrying   Tlr4Lps-d allele
002930   C.C3-Tlr4Lps-d/J
005973   C3Bir.129P2(B6)-Il10C3Bir/LtJ
004326   C3Bir.129P2(B6)-Il10tm1Cgn/Lt
003968   C3Bir.129P2(B6)-Il10tm1Cgn/LtJ
005972   C3H/HeJBirLtJ
View Strains carrying   Tlr4Lps-d     (5 strains)

Strains carrying other alleles of Ahr
000690   129P3/J
000648   AKR/J
002920   B6(D2N).Spretus-Ahrb-3/J
002831   B6.129-Ahrtm1Bra/J
000136   B6.C-H34c/(HW22)ByJ
008599   B6.Cg-Del(9Cyp1a2-Cyp1a1)1Dwn Ahrd Tg(CYP1A1,CYP1A2)1Dwn/DwnJ
002921   B6.D2N-Ahrd/J
002727   B6;129-Ahrtm1Bra/J
000652   BDP/J
000663   C57BL/6By
001139   C57BL/6ByJ
000664   C57BL/6J
000662   C57BLKS/J
000667   C57BR/cdJ
000668   C57L/J
000669   C58/J
000926   CAROLI/EiJ
000928   CAST/EiJ
000351   CXB1/ByJ
000356   CXB6/ByJ
002937   D2.B6-Ahrb-1/J
000671   DBA/2J
000674   I/LnJ
000675   LG/J
000676   LP/J
000677   MA/MyJ
000550   MOLF/EiJ
000684   NZB/BlNJ
000726   RBF/DnJ
000682   RF/J
000686   SJL/J
001146   SPRET/EiJ
000688   ST/bJ
006203   STOCK Ahrtm3.1Bra/J
000689   SWR/J
000693   WC/ReJ KitlSl/J
000933   YBR/EiJ
View Strains carrying other alleles of Ahr     (37 strains)

Strains carrying other alleles of Gria4
012618   B6.129(Cg)-Gria4tm2.1Rlh/J
012619   B6.129-Gria4tm1Rlh/J
View Strains carrying other alleles of Gria4     (2 strains)

View Strains carrying other alleles of Pde6b     (15 strains)

Strains carrying other alleles of Tlr4
024872   B6(Cg)-Tlr4tm1.1Karp/J
007227   B6.B10ScN-Tlr4lps-del/JthJ
000029   BXD29-Tlr4lps-2J/J
003752   C57BL/10ScNJ
View Strains carrying other alleles of Tlr4     (4 strains)

Additional Web Information

C3H strains free of exogenous MMTV
JAX® NOTES, April 1988; 433. H-2 Haplotypes of Mice from Jackson Laboratory Production Colonies.
JAX® NOTES, Fall 2003; 491. Chromosomal Inversion Discovered in C3H/HeJ Mice.
JAX® NOTES, January 1988; 432. Arthritis Models in the Mouse.
JAX® NOTES, July 1987; 430. LPS Responsiveness of C3H Substrains.
JAX® NOTES, July 1987; 430. Mammary Tumor Incidence in C3H/HeJ and C3H/OuJ.
JAX® NOTES, Spring 1995; 461. Neoplastic and Hyperplastic Lesions in the C3H/HeJ Mouse Strain.
JAX® NOTES, Spring 2003; 489. Malocclusion in the Laboratory Mouse.
JAX® NOTES, Spring 2005; 497. Update of Chromosome 6 Inversion in JAX® Mice Strain C3H/HeJ.
JAX® NOTES, Summer 2003; 490. Hydrocephalus in Laboratory Mice.
JAX® NOTES, Summer 2005; 498. Toll-like Receptor JAX® Mice for Immunological Research.
JAX® NOTES, Winter 2006; 504. JAX® Mice: the Gold Standard Just Got Better.
JAX® NOTES, Winter 2006; 504. Reliable New Sperm Cryopreservation Service Developed at The Jackson Laboratory.
Mouse Phenome Database / SNP Facility
Sequence data is available from the Mouse Genomes Project at the Wellcome Trust Sanger Institute


Phenotype Information

View Phenotypic Data

Phenotypic Data

Body Weight Information - JAX® Mice Strain C3H/HeJ (000659)

(This chart reflects the typical correlation between body weight and age for mice maintained in production colonies at The Jackson Laboratory.)
Mouse Phenome Database
Festing Inbred Strain Characteristics: C3H
JAX® Physiological Data Summary [pdf]
JAX® Physiological Data Protocol [pdf]
View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Model with phenotypic similarity to human disease where etiologies involve orthologs. Human genes are associated with this disease. Orthologs of those genes appear in the mouse genotype(s).
Retinitis Pigmentosa 40; RP40
Toll-Like Receptor 4; TLR4
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Macular Degeneration, Age-Related, 10; ARMD10   (TLR4)
Night Blindness, Congenital Stationary, Autosomal Dominant 2; CSNBAD2   (PDE6B)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype


  • mortality/aging
  • increased sensitivity to xenobiotic induced morbidity/mortality
    • mice are susceptible to DMBA induced lethality   (MGI Ref ID J:26440)
  • homeostasis/metabolism phenotype
  • increased physiological sensitivity to xenobiotic
    • mice are susceptible to the pathological effects of DMBA and exhibit lethality, weight loss, peritonitis, decreased spleen weight, and decreased thymus weight   (MGI Ref ID J:26440)
  • increased sensitivity to xenobiotic induced morbidity/mortality
    • mice are susceptible to DMBA induced lethality   (MGI Ref ID J:26440)


  • behavior/neurological phenotype
  • absence seizures
    • mice show higher spike wave discharge incidence than C3HeB/FeJ or C57BL/6 mice   (MGI Ref ID J:135814)
  • nervous system phenotype
  • absence seizures
    • mice show higher spike wave discharge incidence than C3HeB/FeJ or C57BL/6 mice   (MGI Ref ID J:135814)


  • normal phenotype
  • no abnormal phenotype detected
    • no phenotype is known to be associated with this chromosomal inversion   (MGI Ref ID J:87486)


  • vision/eye phenotype
  • *normal* vision/eye phenotype
    • despite the absence of rods, mice exhibit normal photopotentiation (defined as a 50% augmentation in pupillary light response (PLR) compared to pre-bright light PLR during a one minute dim blue light exposure after bright light exposure)   (MGI Ref ID J:123259)
    • abnormal retinal outer nuclear layer morphology
      • nearly complete absence of outer nuclear layer   (MGI Ref ID J:66580)
    • absent photoreceptor outer segment   (MGI Ref ID J:66580)
    • retinal degeneration
      • entire outer retina is destroyed, however the inner retina remains intact   (MGI Ref ID J:66580)
  • nervous system phenotype
  • absent photoreceptor outer segment   (MGI Ref ID J:66580)


        involves: C3H/HeJ
  • immune system phenotype
  • abnormal T-helper 2 physiology
    • Th2 responses elevated after induction of autoimmune arthritis   (MGI Ref ID J:96356)
  • abnormal osteoclast differentiation
    • lipopolysaccharide fails to inhibit RANKL induced osteoclast formation as it does in controls   (MGI Ref ID J:131353)
    • antibody to IFN-beta or to IFNAR1 reverses inhibition of osteoclast formation induced by RANKL   (MGI Ref ID J:131353)
  • abnormal tumor necrosis factor level
    • diminished TNF alpha expression after 90 minutes of liver ischemia followed by 6 hours of reperfusion   (MGI Ref ID J:114368)
    • macrophage primary but not secondary necrotic cells with residual stimulatory affect on TNF alpha production by macrophage   (MGI Ref ID J:124334)
  • increased susceptibility to bacterial infection
    • low responsiveness of spleen cells to lipopolysaccharides   (MGI Ref ID J:5721)
    • increased sensitivity to gram (-) infection   (MGI Ref ID J:51522)
    • significantly shortened survival after infection with Klebsiella pneumoniae   (MGI Ref ID J:87807)
    • increased K. pneumoniae levels in the lung   (MGI Ref ID J:87807)
  • increased susceptibility to induced arthritis
    • reduced susceptibility to arthritis induced by type II collagen   (MGI Ref ID J:96356)
  • behavior/neurological phenotype
  • hyporesponsive to tactile stimuli
    • reduced mechanical allodynia after nerve injury   (MGI Ref ID J:97819)
  • increased thermal nociceptive threshold
    • attenuated response to heat   (MGI Ref ID J:97819)
  • skeleton phenotype
  • abnormal osteoclast differentiation
    • lipopolysaccharide fails to inhibit RANKL induced osteoclast formation as it does in controls   (MGI Ref ID J:131353)
    • antibody to IFN-beta or to IFNAR1 reverses inhibition of osteoclast formation induced by RANKL   (MGI Ref ID J:131353)
  • increased susceptibility to induced arthritis
    • reduced susceptibility to arthritis induced by type II collagen   (MGI Ref ID J:96356)
  • muscle phenotype
  • *normal* muscle phenotype
    • MCP-1 (monocyte chemoattractant protein-1) release from isolated mouse aorta smooth muscle cells (MAoSMC) by stimulation with dsRNA is normal relative to controls   (MGI Ref ID J:116310)
  • integument phenotype
  • hyporesponsive to tactile stimuli
    • reduced mechanical allodynia after nerve injury   (MGI Ref ID J:97819)
  • increased thermal nociceptive threshold
    • attenuated response to heat   (MGI Ref ID J:97819)
  • nervous system phenotype
  • abnormal glial cell apoptosis
    • isolated microglia exposed to LPS are resistant to apoptosis   (MGI Ref ID J:99051)
  • homeostasis/metabolism phenotype
  • abnormal circulating enzyme level
    • myeloperoxidase levels are reduced after 90 minutes of liver ischemia followed by 6 hours of reperfusion   (MGI Ref ID J:114368)
    • increased HO-1 expression   (MGI Ref ID J:114368)
    • decreased circulating alanine transaminase level
      • serum levels decreased after 90 minutes of liver ischemia followed by 6 hours of reperfusion   (MGI Ref ID J:114368)
  • abnormal tumor necrosis factor level
    • diminished TNF alpha expression after 90 minutes of liver ischemia followed by 6 hours of reperfusion   (MGI Ref ID J:114368)
    • macrophage primary but not secondary necrotic cells with residual stimulatory affect on TNF alpha production by macrophage   (MGI Ref ID J:124334)
  • hematopoietic system phenotype
  • abnormal T-helper 2 physiology
    • Th2 responses elevated after induction of autoimmune arthritis   (MGI Ref ID J:96356)
  • abnormal osteoclast differentiation
    • lipopolysaccharide fails to inhibit RANKL induced osteoclast formation as it does in controls   (MGI Ref ID J:131353)
    • antibody to IFN-beta or to IFNAR1 reverses inhibition of osteoclast formation induced by RANKL   (MGI Ref ID J:131353)
  • cellular phenotype
  • abnormal glial cell apoptosis
    • isolated microglia exposed to LPS are resistant to apoptosis   (MGI Ref ID J:99051)
  • abnormal osteoclast differentiation
    • lipopolysaccharide fails to inhibit RANKL induced osteoclast formation as it does in controls   (MGI Ref ID J:131353)
    • antibody to IFN-beta or to IFNAR1 reverses inhibition of osteoclast formation induced by RANKL   (MGI Ref ID J:131353)
  • hearing/vestibular/ear phenotype
  • *normal* hearing/vestibular/ear phenotype
    • cisplatin and lipopolysaccharide treatment does not lead to significant increases in auditory brainstem response as is observed in controls   (MGI Ref ID J:168789)


  • mortality/aging
  • decreased sensitivity to induced morbidity/mortality
    • bacterial lipoteichoic acid exposure after priming by IFNgamma and sensitization with D-galactosamine induces lethal shock in Tlr4-deficient mutants, while Tlr2- and Tlr2/4-doubly deficient mice are protected   (MGI Ref ID J:121930)
    • systemic challenge with Myr3-CSK4 (a synthetic lipopeptide) after D-galactosamine induces lethal shock in wild-type mice, but mutants are protected   (MGI Ref ID J:121930)
    • heat-inactivated E. coli exposure results in fatal toxemia as in wild type mice heat-inactivated E. coli exposure results in fatal toxemia as in wild-type mice   (MGI Ref ID J:121930)
  • increased susceptibility to viral infection induced morbidity/mortality
    • 10 days after intranasal infection with 5 x 105 pfu Vac-GFL 70% of mice succumb unlike wild-type controls that all survive   (MGI Ref ID J:162716)
  • growth/size/body region phenotype
  • decreased body size
    • always smaller than controls   (MGI Ref ID J:118467)
    • decreased body weight
      • lower body weight than controls after 8 weeks on a high fat diet   (MGI Ref ID J:126488)
      • weights are 15% lower than controls after 8 months on a high fat diet   (MGI Ref ID J:126488)
      • food intake comparable to controls   (MGI Ref ID J:126488)
  • decreased percent body fat
    • 70% less body fat   (MGI Ref ID J:118467)
  • decreased susceptibility to weight loss
    • reduced weight loss following infection with Vac-GFL   (MGI Ref ID J:162716)
  • immune system phenotype
  • abnormal cytokine level
    • keratinocyte derived cytokine levels in lungs are unaffected by lipopolysaccharide   (MGI Ref ID J:96680)
    • macrophage inflammatory protein-2 levels in lungs are unaffected by lipopolysaccharide   (MGI Ref ID J:96680)
    • abnormal interleukin level
      • Il-6 levels in lungs are unaffected by lipopolysaccharide   (MGI Ref ID J:96680)
      • il6 levels increase less on a high fat diet than in controls   (MGI Ref ID J:96680)
      • increased circulating interleukin-6 level
        • increased levels after 7 days of dextran sodium sulfate treatment   (MGI Ref ID J:37271)
    • abnormal tumor necrosis factor level
      • TNF alpha levels in lungs are unaffected by lipopolysaccharide   (MGI Ref ID J:96680)
      • less increase in TNF alpha on a high fat diet than in controls   (MGI Ref ID J:96680)
  • abnormal macrophage chemotaxis
    • robust macrophage response at the site of spinal injury   (MGI Ref ID J:122597)
  • abnormal microglial cell physiology
    • resistant to lipopolysaccharide induced apoptosis   (MGI Ref ID J:99051)
  • abnormal phagocyte morphology
    • phagocytes fail to respond to LPS stimulation   (MGI Ref ID J:125179)
    • however, response to stimulation with TLR9 or TLR7 and TLR8 with their ligands (CpG and R848, respectively) is similar to in wild-type cells   (MGI Ref ID J:125179)
  • abnormal spleen weight
    • spleen weight fails to increase with dextran sodium sulfate treatment as it does in controls   (MGI Ref ID J:37271)
  • altered susceptibility to infection
    • following intranasal infection with 1x104 pfu Vac-GFL (a recombinant vaccinia virus that expresses a reporter protein) weight loss is reduced at 1 - 3 and 7 - 8 days after infection but the decrease in body temperature is more severe at 4 - 7 days afteinfection and viral replication is increased   (MGI Ref ID J:162716)
    • increased susceptibility to viral infection induced morbidity/mortality
      • 10 days after intranasal infection with 5 x 105 pfu Vac-GFL 70% of mice succumb unlike wild-type controls that all survive   (MGI Ref ID J:162716)
  • liver inflammation
    • after BDL, necroinflammatory foci and lymphocytic infiltration are obviously less than in controls   (MGI Ref ID J:135830)
  • lung inflammation
    • no increase in white blood cells or neutrophiles in bronchoalveolar fluid   (MGI Ref ID J:96680)
    • white blood cells and neutrophiles are not detected by myeloperoxidase assay   (MGI Ref ID J:96680)
  • hematopoietic system phenotype
  • *normal* hematopoietic system phenotype
    • B cell apoptosis in Peyer's patch is not observed after bile duct ligation (BDL)   (MGI Ref ID J:135830)
    • abnormal macrophage chemotaxis
      • robust macrophage response at the site of spinal injury   (MGI Ref ID J:122597)
    • abnormal microglial cell physiology
      • resistant to lipopolysaccharide induced apoptosis   (MGI Ref ID J:99051)
    • abnormal phagocyte morphology
      • phagocytes fail to respond to LPS stimulation   (MGI Ref ID J:125179)
      • however, response to stimulation with TLR9 or TLR7 and TLR8 with their ligands (CpG and R848, respectively) is similar to in wild-type cells   (MGI Ref ID J:125179)
    • abnormal spleen weight
      • spleen weight fails to increase with dextran sodium sulfate treatment as it does in controls   (MGI Ref ID J:37271)
  • homeostasis/metabolism phenotype
  • *normal* homeostasis/metabolism phenotype
    • after BDL, serum alanine transaminase levels are not different from controls   (MGI Ref ID J:135830)
    • abnormal circulating leptin level
      • increase in blood leptin on a high fat diet is 36% less than in controls   (MGI Ref ID J:126488)
    • abnormal cytokine level
      • keratinocyte derived cytokine levels in lungs are unaffected by lipopolysaccharide   (MGI Ref ID J:96680)
      • macrophage inflammatory protein-2 levels in lungs are unaffected by lipopolysaccharide   (MGI Ref ID J:96680)
      • abnormal interleukin level
        • Il-6 levels in lungs are unaffected by lipopolysaccharide   (MGI Ref ID J:96680)
        • il6 levels increase less on a high fat diet than in controls   (MGI Ref ID J:96680)
        • increased circulating interleukin-6 level
          • increased levels after 7 days of dextran sodium sulfate treatment   (MGI Ref ID J:37271)
      • abnormal tumor necrosis factor level
        • TNF alpha levels in lungs are unaffected by lipopolysaccharide   (MGI Ref ID J:96680)
        • less increase in TNF alpha on a high fat diet than in controls   (MGI Ref ID J:96680)
    • abnormal gas homeostasis   (MGI Ref ID J:126488)
      • decreased respiratory quotient
        • lower respiratory exchange ratio   (MGI Ref ID J:126488)
      • increased oxygen consumption
        • oxygen consumption is higher after 8 weeks on a high fat diet than controls   (MGI Ref ID J:126488)
    • abnormal glucose homeostasis   (MGI Ref ID J:126488)
      • abnormal circulating glucose level
        • faster disappearance of glucose in response to insulin when on a high fat diet   (MGI Ref ID J:126488)
      • decreased circulating insulin level
        • lower blood insulin levels when on a high fat diet   (MGI Ref ID J:126488)
      • improved glucose tolerance
        • lower blood glucose in a glucose tolerance test when on a high fat diet   (MGI Ref ID J:126488)
    • abnormal lipid level   (MGI Ref ID J:126488)
      • abnormal fatty acid level
        • less elevated than for controls on a high fat diet   (MGI Ref ID J:126488)
      • decreased liver triglyceride level
        • less increase in hepatic triglycerides on a high fat diet than in controls   (MGI Ref ID J:126488)
    • decreased body temperature
      • more severe reduction in body temperature following infection with Vac-GFL   (MGI Ref ID J:162716)
    • decreased susceptibility to ischemic brain injury
      • reduced brain edema after cerebral ischemia/reperfusion   (MGI Ref ID J:117223)
      • less inflammation after cerebral ischemia/reperfusion   (MGI Ref ID J:117223)
      • less nerve cell swelling after cerebral ischemia/reperfusion   (MGI Ref ID J:117223)
      • reduced neurological impairment after cerebral ischemia/reperfusion   (MGI Ref ID J:117223)
      • decreased cerebral infarction size
        • infarctions due to cerebral ischemia/reperfusion are smaller in size   (MGI Ref ID J:117223)
        • damage due to middle cerebral artery occlusion is considerably reduced   (MGI Ref ID J:124100)
    • increased adiponectin level
      • levels remain elevated on a high fat diet   (MGI Ref ID J:126488)
    • pulmonary edema
      • resistant to lipopolysaccharide induced lung interstitial edema   (MGI Ref ID J:96680)
      • less protein leakage into bronchoalveolar lavage fluid after lipopolysaccharide inhalation   (MGI Ref ID J:96680)
  • liver/biliary system phenotype
  • abnormal hepatocyte morphology
    • confluent foci of feathery hepatocyte degeneration due to bile acid cytotoxicity are significantly reduced compared to controls 24 hours after BDL   (MGI Ref ID J:135830)
  • abnormal liver physiology
    • liver protected from ischemia/reperfusion injury   (MGI Ref ID J:98036)
    • decreased hepatocyte apoptosis
      • hepatocyte cell death is reduced compared to controls after BDL   (MGI Ref ID J:135830)
    • liver inflammation
      • after BDL, necroinflammatory foci and lymphocytic infiltration are obviously less than in controls   (MGI Ref ID J:135830)
  • decreased liver triglyceride level
    • less increase in hepatic triglycerides on a high fat diet than in controls   (MGI Ref ID J:126488)
  • focal hepatic necrosis   (MGI Ref ID J:135830)
  • adipose tissue phenotype
  • decreased epididymal fat pad weight
    • reduced 40% compared to controls when on a high fat diet   (MGI Ref ID J:126488)
    • weight similar to controls on a normal diet   (MGI Ref ID J:126488)
  • decreased fat cell size
    • adipocyte size reduced 30% relative to controls on a high fat diet   (MGI Ref ID J:126488)
    • reduced aggregation of macrophage around dying adipocytes than in controls   (MGI Ref ID J:126488)
  • decreased percent body fat
    • 70% less body fat   (MGI Ref ID J:118467)
  • cardiovascular system phenotype
  • rectal hemorrhage
    • rectal bleeding after 7 days of dextrose sodium sulfate treatment is reduced relative to controls   (MGI Ref ID J:37271)
    • recover from bleeding after 10 days of treatment when 50% of controls are dead   (MGI Ref ID J:37271)
  • digestive/alimentary phenotype
  • rectal hemorrhage
    • rectal bleeding after 7 days of dextrose sodium sulfate treatment is reduced relative to controls   (MGI Ref ID J:37271)
    • recover from bleeding after 10 days of treatment when 50% of controls are dead   (MGI Ref ID J:37271)
  • respiratory system phenotype
  • abnormal respiratory system morphology   (MGI Ref ID J:114985)
    • abnormal pulmonary alveolus morphology
      • destruction of normal alveolar structures   (MGI Ref ID J:114985)
    • dilated pulmonary alveolar ducts
      • enlarged air spaces distal to the terminal bronchioles   (MGI Ref ID J:114985)
    • enlarged lung
      • significantly increased lung volume at 3 months of age in contrast to normal body weights through 12 months   (MGI Ref ID J:114985)
  • abnormal respiratory system physiology   (MGI Ref ID J:96680)
    • lung inflammation
      • no increase in white blood cells or neutrophiles in bronchoalveolar fluid   (MGI Ref ID J:96680)
      • white blood cells and neutrophiles are not detected by myeloperoxidase assay   (MGI Ref ID J:96680)
    • pulmonary edema
      • resistant to lipopolysaccharide induced lung interstitial edema   (MGI Ref ID J:96680)
      • less protein leakage into bronchoalveolar lavage fluid after lipopolysaccharide inhalation   (MGI Ref ID J:96680)
  • nervous system phenotype
  • abnormal microglial cell physiology
    • resistant to lipopolysaccharide induced apoptosis   (MGI Ref ID J:99051)
  • abnormal nervous system morphology   (MGI Ref ID J:124100)
    • abnormal myelin sheath morphology
      • increased myelin destruction at site of spinal cord injury   (MGI Ref ID J:122597)
      • no clear delineation between injured and spared tissues   (MGI Ref ID J:122597)
  • decreased neuron apoptosis
    • neurons are resistant to apoptosis caused by glucose deficiency   (MGI Ref ID J:124100)
  • decreased susceptibility to ischemic brain injury
    • reduced brain edema after cerebral ischemia/reperfusion   (MGI Ref ID J:117223)
    • less inflammation after cerebral ischemia/reperfusion   (MGI Ref ID J:117223)
    • less nerve cell swelling after cerebral ischemia/reperfusion   (MGI Ref ID J:117223)
    • reduced neurological impairment after cerebral ischemia/reperfusion   (MGI Ref ID J:117223)
    • decreased cerebral infarction size
      • infarctions due to cerebral ischemia/reperfusion are smaller in size   (MGI Ref ID J:117223)
      • damage due to middle cerebral artery occlusion is considerably reduced   (MGI Ref ID J:124100)
  • behavior/neurological phenotype
  • abnormal locomotor behavior
    • locomotor recovery impaired as measured 4-6 weeks after spinal cord injury   (MGI Ref ID J:122597)
  • abnormal motor coordination/ balance
    • impaired recovery of fore-limb-hindlimb coordination as measured 4-6 weeks after spinal cord injury   (MGI Ref ID J:122597)
  • skeleton phenotype
  • decreased susceptibility to bone fracture
    • bones resistant to fracture   (MGI Ref ID J:118467)
  • increased bone mass
    • increased bone area of the tibia   (MGI Ref ID J:118467)
  • increased bone mineral content
    • greater mineral content   (MGI Ref ID J:118467)
  • increased bone mineral density
    • significantly increased bone mineral density at 20 weeks   (MGI Ref ID J:118467)
    • density continues to increase over time   (MGI Ref ID J:118467)
  • muscle phenotype
  • abnormal muscle cell glucose uptake
    • insulin stimulated glucose uptake by soleus muscle is not affected by palmitate treatment or by other fatty acids   (MGI Ref ID J:126488)
  • cellular phenotype
  • abnormal macrophage chemotaxis
    • robust macrophage response at the site of spinal injury   (MGI Ref ID J:122597)
  • abnormal muscle cell glucose uptake
    • insulin stimulated glucose uptake by soleus muscle is not affected by palmitate treatment or by other fatty acids   (MGI Ref ID J:126488)
  • decreased hepatocyte apoptosis
    • hepatocyte cell death is reduced compared to controls after BDL   (MGI Ref ID J:135830)
  • decreased neuron apoptosis
    • neurons are resistant to apoptosis caused by glucose deficiency   (MGI Ref ID J:124100)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cancer Research
Increased Tumor Incidence
      Mammary Gland Tumors
      Mammary Gland Tumors: late onset

Cardiovascular Research
Diet-Induced Atherosclerosis
      Relatively Resistant

Immunology, Inflammation and Autoimmunity Research
      Tlr deficiency

Neurobiology Research

Research Tools
General Purpose
Infectious Disease

Sensorineural Research
Retinal Degeneration
      Homozygous for Pde6brd1

Pde6brd1 related

Sensorineural Research
Retinal Degeneration

Tlr4Lps-d related

Immunology, Inflammation and Autoimmunity Research
CD Antigens, Antigen Receptors, and Histocompatibility Markers
      Tlr deficiency
      Tlr deficiency
      Tlr deficiency

Genes & Alleles

Gene & Allele Information provided by MGI

Allele Symbol Ahrb-2
Allele Name b-2 variant
Allele Type Not Applicable
Common Name(s) Ahb-2; Ahh;
Strain of OriginBALB/cBy
Gene Symbol and Name Ahr, aryl-hydrocarbon receptor
Chromosome 12
Gene Common Name(s) Ah; Ahh; Ahre; In; aromatic hydrocarbon responsiveness; aryl hydrocarbon hydroxylase; bHLHe76; dioxin receptor; inflammatory reactivity;
General Note C57BL/6 carries the responsive Ahrb allele; DBA/2 carries nonresponsive Ahrd. Heterozygotes (Ahrb/Ahrd) are responsive (J:5282). Later work identified a second (J:8895) and later a third (J:22144) allele conferring response. Thus the allele in C57, C58, and MA/My strains is now Ahrb-1; Ahrb-2 is carried by BALB/cBy, A, and C3H; and Ahrb-3 by Mus spretus, M. caroli, and MOLF/Ei. The nonresponsive strains AKR, DBA/2, and 129 carry Ahrd (J:22144). Nucleotide and amino acid sequence differences between Ahrb-1 and Ahrd have been determined (J:17460).

Strain of origin - this allele was found in BALB/cByJ, A/J, C3H/HeJ, CBA strains

Molecular Note This allele encodes a high affinity, heat labile, 104 kDa receptor containing 848 amino acids. Sequencing studies of cDNA from C57BL/6J congenic mice homozygous for this allele identified nucleotide substitutions in the ORF that would cause 5 amino acid differences between the C57BL/6J and BALB/cBy peptides, and 2 amino acid differences between the BALB/cBy and DBA/2J peptides. A T to C transition in exon 11 replaces the opal termination codon in the C57BL/6J allele with an arginine codon in the BALB/cByallele. This change would extend translation of the BALB/cBy mRNA by 43 amino acids, accounting for the larger size of the peptide produced by this allele (104 kDa, vs 95 kDa for the C57BL/6J allele). [MGI Ref ID J:15153] [MGI Ref ID J:22144]
Allele Symbol Gria4spkw1
Allele Name spike wave discharge 1
Allele Type QTL
Strain of OriginC3H/HeJ
Gene Symbol and Name Gria4, glutamate receptor, ionotropic, AMPA4 (alpha 4)
Chromosome 9
Gene Common Name(s) GLUR4; GLUR4C; GLURD; GluA4; GluR-D; Glur-4; Glur4; Gluralpha4; glutamate receptor 4; spike wave 1; spkw1;
General Note This allele interacts with spkw2. Animals with the highest incidence of spike wave discharges are homozygous for C3H/HeJ-derived alleles at spkw1 and heterozygous for C57BL/6J and C3H/HeJ alleles at spkw2.
Molecular Note Genomic PCR and sequencing showed a full-length intracisternal A-particle (IAP) proviral insertion in the last intron of Gria4 in C3H/HeJ mice. qRT-PCR showed a 10-fold difference in C3H/HeJ and C3HeB/FeJ substrains in transcripts detected between exons flanking the IAP-containing intron, and a neglible difference between upstream exon transcript levels in these substrains. Gria4 protein levels in HeJ cerebella are reduced compared with controls. [MGI Ref ID J:135814]
Allele Symbol In(6)1J
Allele Name inversion, Chr 6, Jackson 1
Allele Type Spontaneous
Strain of OriginC3H/HeJ
Gene Symbol and Name In(6)1J, inversion, Chr 6, Jackson 1
Chromosome 6
General Note C3H/HeJ and C3H/HeJBir carry this inversion; C3H/HeSnJ and C3HeB/FeJ do not. Examination of recombination distances in Recombinant Inbred (RI) strain sets developed using C3H/HeJ as a progenitor suggest none of these harbor the inversion. Mouse strains carrying spontaneous mutations that arose on the C3H/HeJ background after 1965-1970 could carry the inversion and are expected to if the mutation arose after the early 1970s.
Molecular Note The In(6)1J inversion covers approximately 20% of Chr 6 in C3H/HeJ mice. Therefore, linkage crosses using C3H/HeJ will show no recombination in this region of Chr 6. Genetic analyses of congenic construction crosses suggested that the suppressed region lies between D6Mit124 (cytological band 6C3) and D6Mit150 (cytological band 6F1). FISH analyses using flanking BACs detected a paracentric chromosomal region between ~73 Mb and ~116 Mb. [MGI Ref ID J:105810] [MGI Ref ID J:87486]
Allele Symbol Pde6brd1
Allele Name retinal degeneration 1
Allele Type Spontaneous
Common Name(s) Pdebrd1; rd; rd-1; rd1; rodless retina;
Strain of Originvarious
Gene Symbol and Name Pde6b, phosphodiesterase 6B, cGMP, rod receptor, beta polypeptide
Chromosome 5
Gene Common Name(s) CSNB3; CSNBAD2; PDEB; Pdeb; RP40; nmf137; phosphodiesterase, cGMP, rod receptor, beta polypeptide; r; rd; rd-1; rd1; rd10; retinal degeneration; retinal degeneration 1; retinal degeneration 10;
General Note The following inbred strains are known to be homozygous for Pde6b: C3H sublines, CBA/J, FVB/NJ, PL/J, SB, SJL/J, and SWR/J.
Molecular Note Two mutations have been identified in rd1 mice. A murine leukimia virus (Xmv-28) insertion in reverse orientation in intron 1 is found in all mouse strains with the rd1 phenotype. Further, a nonsense mutation (C to A transversion) in codon 347 that results in a truncation eliminating more than half of the predicted encoded protein, including the catalytic domain has also been identified in all rd1 strains of mice. A specific degradation of mutant transcript during or after pre-mRNA splicing is suggested. [MGI Ref ID J:11513] [MGI Ref ID J:4366] [MGI Ref ID J:51361]
Allele Symbol Tlr4Lps-d
Allele Name defective lipopolysaccharide response
Allele Type Spontaneous
Common Name(s) TLR4-M; TLR4-Mu; TLR4lps-def; TLR4d; Tlr4-; Tlr4d; TlrLps-d; lpsd; mutant TLR4;
Strain of OriginC3H/HeJ
Gene Symbol and Name Tlr4, toll-like receptor 4
Chromosome 4
Gene Common Name(s) ARMD10; CD284; Lps; RAS-like, family 2, locus 8; Rasl2-8; TLR-4; TOLL; lipopolysaccharide response;
General Note C3H/HeJ mice carry this allele. Various combinations of Lps-associated traits have been followed in crosses between C3H/HeJ and other C3H substrains, and the traits have in all cases segregated together (J:30692, J:5557, J:5593, J:5938). Some of the traits show dominance of the Tlr4lps-n allele; others, including Tlr4Lps-d, show codominance.

Genbank ID for this allele: AF095353

Molecular Note This allele corresponds to a mutation in the third exon of the gene. A C to A substitution at nucleotide position 2342 results in an amino acid substitution that replaces proline with histidine at position 712. [MGI Ref ID J:51522] [MGI Ref ID J:53519] [MGI Ref ID J:57938]


Genotyping Information

Inbred mouse strains are maintained through sibling (sister x brother) matings; no genotyping required.

Helpful Links

Genotyping resources and troubleshooting


References provided by MGI

Selected Reference(s)

Akeson EC; Donahue LR; Beamer WG; Shultz KL; Ackert-Bicknell C; Rosen CJ; Corrigan J; Davisson MT. 2006. Chromosomal inversion discovered in C3H/HeJ mice. Genomics 87(2):311-3. [PubMed: 16309882]  [MGI Ref ID J:105810]

Dragani TA; Manenti G; Gariboldi M; Degregorio L; Pierotti MA. 1995. Genetics of liver tumor susceptibility in mice. Toxicol Lett 82-3:613-619. [PubMed: 8597117]  [MGI Ref ID J:31816]

Heston WE; Vlahakis G. 1971. Mammary tumors, plaques, and hyperplastic alveolar nodules in various combinations of mouse inbred strains and the different lines of the mammary tumor virus. Int J Cancer 7(1):141-8. [PubMed: 4322934]  [MGI Ref ID J:24674]

Outzen HC; Corrow D; Shultz LD. 1985. Attenuation of exogenous murine mammary tumor virus virulence in the C3H/HeJ mouse substrain bearing the Lps mutation. J Natl Cancer Inst 75(5):917-23. [PubMed: 2997536]  [MGI Ref ID J:24864]

Petkov PM; Cassell MA; Sargent EE; Donnelly CJ; Robinson P; Crew V; Asquith S; Haar RV; Wiles MV. 2004. Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse. Genomics 83(5):902-11. [PubMed: 15081119]  [MGI Ref ID J:89298]

Additional References

DiPetrillo K; Tsaih SW; Sheehan S; Johns C; Kelmenson P; Gavras H; Churchill GA; Paigen B. 2004. Genetic analysis of blood pressure in C3H/HeJ and SWR/J mice. Physiol Genomics 17(2):215-20. [PubMed: 14996992]  [MGI Ref ID J:89267]

Ewart SL; Kuperman D; Schadt E; Tankersley C; Grupe A; Shubitowski DM; Peltz G; Wills-Karp M. 2000. Quantitative trait loci controlling allergen-induced airway hyperresponsiveness in inbred mice. Am J Respir Cell Mol Biol 23(4):537-45. [PubMed: 11017920]  [MGI Ref ID J:66641]

Fortier AH; Slayter MV; Ziemba R; Meltzer MS; Nacy CA. 1991. Live vaccine strain of Francisella tularensis: infection and immunity in mice. Infect Immun 59(9):2922-8. [PubMed: 1879918]  [MGI Ref ID J:27016]

International Nomenclature Committee. 1952. COMMITTEE on Standardized Nomenclature for Inbred Strains of Mice Cancer Res 12(8):602-13. [PubMed: 14945054]  [MGI Ref ID J:166288]

Keane TM; Goodstadt L; Danecek P; White MA; Wong K; Yalcin B; Heger A; Agam A; Slater G; Goodson M; Furlotte NA; Eskin E; Nellaker C; Whitley H; Cleak J; Janowitz D; Hernandez-Pliego P; Edwards A; Belgard TG; Oliver PL; McIntyre RE; Bhomra A; Nicod J; Gan X; Yuan W; van der Weyden L; Steward CA; Bala S; Stalker J; Mott R; Durbin R; Jackson IJ; Czechanski A; Guerra-Assuncao JA; Donahue LR; Reinholdt LG; Payseur BA; Ponting CP; Birney E; Flint J; Adams DJ. 2011. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477(7364):289-94. [PubMed: 21921910]  [MGI Ref ID J:177037]

McElwee KJ; Boggess D; King LE Jr; Sundberg JP. 1998. Experimental induction of alopecia areata-like hair loss in C3H/HeJ mice using full-thickness skin grafts. J Invest Dermatol 111(5):797-803. [PubMed: 9804341]  [MGI Ref ID J:111520]

McElwee KJ; Boggess D; Miller J; King LE Jr; Sundberg JP. 1999. Spontaneous alopecia areata-like hair loss in one congenic and seven inbred laboratory mouse strains J Investig Dermatol Symp Proc 4(3):202-6. [PubMed: 10674366]  [MGI Ref ID J:60482]

Moeller GR; Terry L; Snyderman R. 1978. The inflammatory response and resistance to endotoxin in mice. J Immunol 120(1):116-23. [PubMed: 627714]  [MGI Ref ID J:5936]

Moy SS; Nadler JJ; Young NB; Perez A; Holloway LP; Barbaro RP; Barbaro JR; Wilson LM; Threadgill DW; Lauder JM; Magnuson TR; Crawley JN. 2007. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 176(1):4-20. [PubMed: 16971002]  [MGI Ref ID J:138682]

Paigen B; Ishida BY; Verstuyft J; Winters RB; Albee D. 1990. Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis 10(2):316-23. [PubMed: 2317166]  [MGI Ref ID J:22615]

Roberts JE; Watters JW; Ballard JD; Dietrich WF. 1998. Ltx1, a mouse locus that influences the susceptibility of macrophages to cytolysis caused by intoxication with Bacillus anthracis lethal factor, maps to chromosome 11. Mol Microbiol 29(2):581-91. [PubMed: 9720874]  [MGI Ref ID J:49726]

Siebenhaar F; Sharov AA; Peters EM; Sharova TY; Syska W; Mardaryev AN; Freyschmidt-Paul P; Sundberg JP; Maurer M; Botchkarev VA. 2007. Substance P as an immunomodulatory neuropeptide in a mouse model for autoimmune hair loss (alopecia areata). J Invest Dermatol 127(6):1489-97. [PubMed: 17273166]  [MGI Ref ID J:122923]

Sultzer BM. 1968. Genetic control of leucocyte responses to endotoxin. Nature 219(160):1253-4. [PubMed: 4877918]  [MGI Ref ID J:5087]

Sundberg JP; Boggess D; Silva KA; McElwee KJ; King LE; Li R; Churchill G; Cox GA. 2003. Major locus on mouse chromosome 17 and minor locus on chromosome 9 are linked with alopecia areata in C3H/HeJ mice. J Invest Dermatol 120(5):771-5. [PubMed: 12713579]  [MGI Ref ID J:83350]

Sundberg JP; Cordy WR; King LE Jr. 1994. Alopecia areata in aging C3H/HeJ mice. J Invest Dermatol 102(6):847-56. [PubMed: 8006447]  [MGI Ref ID J:18877]

Welkos SL; Keener TJ; Gibbs PH. 1986. Differences in susceptibility of inbred mice to Bacillus anthracis. Infect Immun 51(3):795-800. [PubMed: 3081444]  [MGI Ref ID J:8197]

West DB; Boozer CN; Moody DL; Atkinson RL. 1992. Dietary obesity in nine inbred mouse strains. Am J Physiol 262(6 Pt 2):R1025-32. [PubMed: 1621856]  [MGI Ref ID J:1348]

Xie C; Sharma R; Wang H; Zhou XJ; Mohan C. 2004. Strain distribution pattern of susceptibility to immune-mediated nephritis. J Immunol 172(8):5047-55. [PubMed: 15067087]  [MGI Ref ID J:122988]

Ahrb-2 related

Nebert DW; Considine N; Owens IS. 1973. Genetic expression of aryl hydrocarbon hydroxylase induction. VI. Control of other aromatic hydrocarbon-inducible mono-oxygenase activities at or near the same genetic locus. Arch Biochem Biophys 157(1):148-59. [PubMed: 4716952]  [MGI Ref ID J:84313]

Nebert DW; Gielen JE. 1972. Genetic regulation of aryl hydrocarbon hydroxylase induction in the mouse. Fed Proc 31(4):1315-25. [PubMed: 4114109]  [MGI Ref ID J:5282]

Nebert DW; Jensen NM; Shinozuka H; Kunz HW; Gill TJ 3rd. 1982. The Ah phenotype. Survey of forty-eight rat strains and twenty inbred mouse strains. Genetics 100(1):79-87. [PubMed: 7095422]  [MGI Ref ID J:6809]

Nebert DW; Robinson JR; Niwa A; Kumaki K; Poland AP. 1975. Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. J Cell Physiol 85(2 Pt 2 Suppl 1):393-414. [PubMed: 1091656]  [MGI Ref ID J:84317]

Niwa A; Kumaki K; Nebert DW; Poland AP. 1975. Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. Distinction between the 'responsive' homozygote and heterozygote at the Ah locus. Arch Biochem Biophys 166(2):559-64. [PubMed: 1119809]  [MGI Ref ID J:84316]

Poland A; Glover E. 1990. Characterization and strain distribution pattern of the murine Ah receptor specified by the Ahd and Ahb-3 alleles. Mol Pharmacol 38(3):306-12. [PubMed: 2169579]  [MGI Ref ID J:34840]

Poland A; Glover E; Taylor BA. 1987. The murine Ah locus: a new allele and mapping to chromosome 12. Mol Pharmacol 32(4):471-8. [PubMed: 2823093]  [MGI Ref ID J:8895]

Poland A; Palen D; Glover E. 1994. Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol 46(5):915-21. [PubMed: 7969080]  [MGI Ref ID J:22144]

Robinson JR; Considine N; Nebert DW. 1974. Genetic expression of aryl hydrocarbon hydroxylase induction. Evidence for the involvement of other genetic loci. J Biol Chem 249(18):5851-9. [PubMed: 4413562]  [MGI Ref ID J:84315]

Schmid FA; Pena RC; Robinson W; Tarnowski GS. 1967. Toxicity of intraperitoneal injections of 7, 12-dimethylbenz[a]anthracene in inbred mice. Cancer Res 27(3):558-62. [PubMed: 6021513]  [MGI Ref ID J:26440]

Schmidt JV; Carver LA; Bradfield CA. 1993. Molecular characterization of the murine Ahr gene. Organization, promoter analysis, and chromosomal assignment. J Biol Chem 268(29):22203-9. [PubMed: 8408082]  [MGI Ref ID J:15153]

Smith AG; Clothier B; Robinson S; Scullion MJ; Carthew P; Edwards R; Luo J; Lim CK; Toledano M. 1998. Interaction between iron metabolism and 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice with variants of the Ahr gene: a hepatic oxidative mechanism. Mol Pharmacol 53(1):52-61. [PubMed: 9443932]  [MGI Ref ID J:45850]

Thomas PE; Hutton JJ; Taylor BA. 1973. Genetic relationship between aryl hydrocarbon hydroxylase inducibility and chemical carcinogen induced skin ulceration in mice. Genetics 74(4):655-9. [PubMed: 4750810]  [MGI Ref ID J:5387]

Gria4spkw1 related

Beyer B; Deleuze C; Letts VA; Mahaffey CL; Boumil RM; Lew TA; Huguenard JR; Frankel WN. 2008. Absence seizures in C3H/HeJ and knockout mice caused by mutation of the AMPA receptor subunit Gria4. Hum Mol Genet 17(12):1738-49. [PubMed: 18316356]  [MGI Ref ID J:135814]

Frankel WN; Beyer B; Maxwell CR; Pretel S; Letts VA; Siegel SJ. 2005. Development of a new genetic model for absence epilepsy: spike-wave seizures in C3H/He and backcross mice. J Neurosci 25(13):3452-8. [PubMed: 15800200]  [MGI Ref ID J:98638]

Pde6brd1 related

Acosta ML; Fletcher EL; Azizoglu S; Foster LE; Farber DB; Kalloniatis M. 2005. Early markers of retinal degeneration in rd/rd mice. Mol Vis 11:717-28. [PubMed: 16163270]  [MGI Ref ID J:103970]

Aftab U; Jiang C; Tucker B; Kim JY; Klassen H; Miljan E; Sinden J; Young M. 2009. Growth kinetics and transplantation of human retinal progenitor cells. Exp Eye Res 89(3):301-10. [PubMed: 19524569]  [MGI Ref ID J:151412]

Ahuja S; Ahuja-Jensen P; Johnson LE; Caffe AR; Abrahamson M; Ekstrom PA; van Veen T. 2008. rd1 Mouse retina shows an imbalance in the activity of cysteine protease cathepsins and their endogenous inhibitor cystatin C. Invest Ophthalmol Vis Sci 49(3):1089-96. [PubMed: 18326735]  [MGI Ref ID J:133024]

Ahuja-Jensen P; Johnsen-Soriano S; Ahuja S; Bosch-Morell F; Sancho-Tello M; Romero FJ; Abrahamson M; van Veen T. 2007. Low glutathione peroxidase in rd1 mouse retina increases oxidative stress and proteases. Neuroreport 18(8):797-801. [PubMed: 17471069]  [MGI Ref ID J:122802]

Alavi MV; Bette S; Schimpf S; Schuettauf F; Schraermeyer U; Wehrl HF; Ruttiger L; Beck SC; Tonagel F; Pichler BJ; Knipper M; Peters T; Laufs J; Wissinger B. 2007. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 130(Pt 4):1029-42. [PubMed: 17314202]  [MGI Ref ID J:154966]

Allen AE; Brown TM; Lucas RJ. 2011. A distinct contribution of short-wavelength-sensitive cones to light-evoked activity in the mouse pretectal olivary nucleus. J Neurosci 31(46):16833-43. [PubMed: 22090509]  [MGI Ref ID J:177906]

Allen AE; Cameron MA; Brown TM; Vugler AA; Lucas RJ. 2010. Visual responses in mice lacking critical components of all known retinal phototransduction cascades. PLoS One 5(11):e15063. [PubMed: 21124780]  [MGI Ref ID J:167121]

Alvarez-Lopez C; Cernuda-Cernuda R; Alcorta E; Alvarez-Viejo M; Manuel Garcia-Fernandez J. 2004. Altered endogenous activation of CREB in the suprachiasmatic nucleus of mice with retinal degeneration. Brain Res 1024(1-2):137-45. [PubMed: 15451375]  [MGI Ref ID J:92980]

Alvarez-Lopez C; Cernuda-Cernuda R; Garcia-Fernandez JM. 2006. The mPer1 clock gene expression in the rd mouse suprachiasmatic nucleus is affected by the retinal degeneration. Brain Res 1087(1):134-41. [PubMed: 16626665]  [MGI Ref ID J:109668]

Alvarez-Lopez C; Cernuda-Cernuda R; Paniagua MA; Alvarez-Viejo M; Fernandez-Lopez A; Garcia-Fernandez JM. 2004. The transcription factor CREB is phosphorylated in neurons of the piriform cortex of blind mice in response to illumination of the retina. Neurosci Lett 357(3):223-6. [PubMed: 15003290]  [MGI Ref ID J:121036]

Ardayfio P; Moon J; Leung KK; Youn-Hwang D; Kim KS. 2008. Impaired learning and memory in Pitx3 deficient aphakia mice: A genetic model for striatum-dependent cognitive symptoms in Parkinson's disease. Neurobiol Dis :. [PubMed: 18573342]  [MGI Ref ID J:136304]

Ash J; McLeod DS; Lutty GA. 2005. Transgenic expression of leukemia inhibitory factor (LIF) blocks normal vascular development but not pathological neovascularization in the eye. Mol Vis 11:298-308. [PubMed: 15889014]  [MGI Ref ID J:98579]

Ash JA; Velazquez R; Kelley CM; Powers BE; Ginsberg SD; Mufson EJ; Strupp BJ. 2014. Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice. Neurobiol Dis 70:32-42. [PubMed: 24932939]  [MGI Ref ID J:218355]

Audo I; Bujakowska K; Orhan E; Poloschek CM; Defoort-Dhellemmes S; Drumare I; Kohl S; Luu TD; Lecompte O; Zrenner E; Lancelot ME; Antonio A; Germain A; Michiels C; Audier C; Letexier M; Saraiva JP; Leroy BP; Munier FL; Mohand-Said S; Lorenz B; Friedburg C; Preising M; Kellner U; Renner AB; Moskova-Doumanova V; Berger W; Wissinger B; Hamel CP; Schorderet DF; De Baere E; Sharon D; Banin E; Jacobson SG; Bonneau D; Zanlonghi X; Le Meur G; Casteels I; Koenekoop R; Long VW; Meire F; Prescott K; de Ravel T; Simm. 2012. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 90(2):321-30. [PubMed: 22325361]  [MGI Ref ID J:196741]

Azadi S; Paquet-Durand F; Medstrand P; van Veen T; Ekstrom PA. 2006. Up-regulation and increased phosphorylation of protein kinase C (PKC) delta, mu and theta in the degenerating rd1 mouse retina. Mol Cell Neurosci 31(4):759-73. [PubMed: 16503160]  [MGI Ref ID J:108601]

BRUCKNER R. 1951. [Slit-lamp microscopy and ophthalmoscopy in rat and mouse.] Doc Ophthalmol 5-6:452-554. [PubMed: 14896883]  [MGI Ref ID J:25576]

Ball SL; Powers PA; Shin HS; Morgans CW; Peachey NS; Gregg RG. 2002. Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest Ophthalmol Vis Sci 43(5):1595-603. [PubMed: 11980879]  [MGI Ref ID J:80080]

Barabas P; Liu A; Xing W; Chen CK; Tong Z; Watt CB; Jones BW; Bernstein PS; Krizaj D. 2013. Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc Natl Acad Sci U S A 110(13):5181-6. [PubMed: 23479632]  [MGI Ref ID J:194246]

Barber AC; Hippert C; Duran Y; West EL; Bainbridge JW; Warre-Cornish K; Luhmann UF; Lakowski J; Sowden JC; Ali RR; Pearson RA. 2013. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A 110(1):354-9. [PubMed: 23248312]  [MGI Ref ID J:192521]

Bi A; Cui J; Ma YP; Olshevskaya E; Pu M; Dizhoor AM; Pan ZH. 2006. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50(1):23-33. [PubMed: 16600853]  [MGI Ref ID J:122947]

Blanks JC; Bok D. 1977. An autoradiographic analysis of postnatal cell proliferation in the normal and degenerative mouse retina. J Comp Neurol 174(2):317-27. [PubMed: 864040]  [MGI Ref ID J:5812]

Borowska J; Trenholm S; Awatramani GB. 2011. An intrinsic neural oscillator in the degenerating mouse retina. J Neurosci 31(13):5000-12. [PubMed: 21451038]  [MGI Ref ID J:171202]

Bowes C; Danciger M; Kozak CA; Farber DB. 1989. Isolation of a candidate cDNA for the gene causing retinal degeneration in the rd mouse [published erratum appears in Proc Natl Acad Sci U S A 1990 Feb;87(4):1625] Proc Natl Acad Sci U S A 86(24):9722-6. [PubMed: 2481314]  [MGI Ref ID J:10184]

Bowes C; Li T; Danciger M; Baxter LC; Applebury ML; Farber DB. 1990. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase [see comments] Nature 347(6294):677-80. [PubMed: 1977087]  [MGI Ref ID J:10777]

Bowes C; Li T; Frankel WN; Danciger M; Coffin JM; Applebury ML; Farber DB. 1993. Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc Natl Acad Sci U S A 90(7):2955-9. [PubMed: 8385352]  [MGI Ref ID J:4366]

Bramall AN; Szego MJ; Pacione LR; Chang I; Diez E; D'Orleans-Juste P; Stewart DJ; Hauswirth WW; Yanagisawa M; McInnes RR. 2013. Endothelin-2-mediated protection of mutant photoreceptors in inherited photoreceptor degeneration. PLoS One 8(2):e58023. [PubMed: 23469133]  [MGI Ref ID J:198395]

Brown TM; Gias C; Hatori M; Keding SR; Semo M; Coffey PJ; Gigg J; Piggins HD; Panda S; Lucas RJ. 2010. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biol 8(12):e1000558. [PubMed: 21151887]  [MGI Ref ID J:170401]

Buhr ED; Van Gelder RN. 2014. Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin. Proc Natl Acad Sci U S A 111(23):8625-30. [PubMed: 24843129]  [MGI Ref ID J:211359]

Bumsted KM; Rizzolo LJ; Barnstable CJ. 2001. Defects in the MITF(mi/mi) apical surface are associated with a failure of outer segment elongation. Exp Eye Res 73(3):383-92. [PubMed: 11520113]  [MGI Ref ID J:115620]

Busskamp V; Duebel J; Balya D; Fradot M; Viney TJ; Siegert S; Groner AC; Cabuy E; Forster V; Seeliger M; Biel M; Humphries P; Paques M; Mohand-Said S; Trono D; Deisseroth K; Sahel JA; Picaud S; Roska B. 2010. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329(5990):413-7. [PubMed: 20576849]  [MGI Ref ID J:162017]

Caley DW; Johnson C; Liebelt RA. 1972. The postnatal development of the retina in the normal and rodless CBA mouse: a light and electron microscopic study. Am J Anat 133(2):179-212. [PubMed: 5009246]  [MGI Ref ID J:5250]

Cameron MA; Pozdeyev N; Vugler AA; Cooper H; Iuvone PM; Lucas RJ. 2009. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 29(4):761-7. [PubMed: 19200071]  [MGI Ref ID J:146469]

Carter-Dawson LD; LaVail MM; Sidman RL. 1978. Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci 17(6):489-98. [PubMed: 659071]  [MGI Ref ID J:5988]

Cayouette M; Gravel C. 1997. Adenovirus-mediated gene transfer of ciliary neurotrophic factor can prevent photoreceptor degeneration in the retinal degeneration (rd) mouse. Hum Gene Ther 8(4):423-30. [PubMed: 9054517]  [MGI Ref ID J:39262]

Cayouette M; Smith SB; Becerra SP; Gravel C. 1999. Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 6(6):523-32. [PubMed: 10600408]  [MGI Ref ID J:59343]

Chang B; Hawes NL; Hurd RE; Davisson MT; Nusinowitz S; Heckenlively JR. 2002. Retinal degeneration mutants in the mouse. Vision Res 42(4):517-25. [PubMed: 11853768]  [MGI Ref ID J:75095]

Chang B; Hawes NL; Hurd RE; Wang J; Howell D; Davisson MT; Roderick TH; Nusinowitz S; Heckenlively JR. 2005. Mouse models of ocular diseases. Vis Neurosci 22(5):587-93. [PubMed: 16332269]  [MGI Ref ID J:156373]

Chang B; Hurd R; Wang J; Nishina P. 2013. Survey of common eye diseases in laboratory mouse strains. Invest Ophthalmol Vis Sci 54(7):4974-81. [PubMed: 23800770]  [MGI Ref ID J:198916]

Charbel Issa P; Singh MS; Lipinski DM; Chong NV; Delori FC; Barnard AR; MacLaren RE. 2012. Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration. Invest Ophthalmol Vis Sci 53(2):1066-75. [PubMed: 22169101]  [MGI Ref ID J:191520]

Chen B; Cepko CL. 2009. HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323(5911):256-9. [PubMed: 19131628]  [MGI Ref ID J:143166]

Chen Q; Khoury M; Chen J. 2009. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A :. [PubMed: 19966223]  [MGI Ref ID J:155817]

Chua J; Nivison-Smith L; Fletcher EL; Trenholm S; Awatramani GB; Kalloniatis M. 2013. Early remodeling of Muller cells in the rd/rd mouse model of retinal dystrophy. J Comp Neurol 521(11):2439-53. [PubMed: 23348616]  [MGI Ref ID J:200732]

Cohen AI; Blazynski C. 1990. Dopamine and its agonists reduce a light-sensitive pool of cyclic AMP in mouse photoreceptors. Vis Neurosci 4(1):43-52. [PubMed: 1702315]  [MGI Ref ID J:78184]

Cornett A; Sucic JF; Hillsburg D; Cyr L; Johnson C; Polanco A; Figuereo J; Cabine K; Russo N; Sturtevant A; Jarvinen MK. 2011. Altered glial gene expression, density, and architecture in the visual cortex upon retinal degeneration. Brain Res 1422:46-56. [PubMed: 21983206]  [MGI Ref ID J:179028]

Danciger M; Bowes C; Kozak CA; LaVail MM; Farber DB. 1990. Fine mapping of a putative rd cDNA and its co-segregation with rd expression. Invest Ophthalmol Vis Sci 31(8):1427-32. [PubMed: 1974892]  [MGI Ref ID J:10689]

Daniels DM; Stoddart CW; Martin-Iverson MT; Lai CM; Redmond TM; Rakoczy PE. 2003. Entrainment of circadian rhythm to a photoperiod reversal shows retinal dystrophy in RPE65(-/-) mice. Physiol Behav 79(4-5):701-11. [PubMed: 12954412]  [MGI Ref ID J:96439]

Davies VJ; Powell KA; White KE; Yip W; Hogan V; Hollins AJ; Davies JR; Piechota M; Brownstein DG; Moat SJ; Nichols PP; Wride MA; Boulton ME; Votruba M. 2008. A missense mutation in the murine Opa3 gene models human Costeff syndrome. Brain 131(Pt 2):368-80. [PubMed: 18222992]  [MGI Ref ID J:181670]

Davis RJ; Tosi J; Janisch KM; Kasanuki JM; Wang NK; Kong J; Tsui I; Cilluffo M; Woodruff ML; Fain GL; Lin CS; Tsang SH. 2008. Functional rescue of degenerating photoreceptors in mice homozygous for a hypomorphic cGMP phosphodiesterase 6 b allele (Pde6bH620Q). Invest Ophthalmol Vis Sci 49(11):5067-76. [PubMed: 18658088]  [MGI Ref ID J:141984]

Del Rio P; Irmler M; Arango-Gonzalez B; Favor J; Bobe C; Bartsch U; Vecino E; Beckers J; Hauck SM; Ueffing M. 2011. GDNF-induced osteopontin from Muller glial cells promotes photoreceptor survival in the Pde6b(rd1) mouse model of retinal degeneration. Glia 59(5):821-32. [PubMed: 21360756]  [MGI Ref ID J:169746]

Delyfer MN; Forster V; Neveux N; Picaud S; Leveillard T; Sahel JA. 2005. Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis 11:688-96. [PubMed: 16163266]  [MGI Ref ID J:103968]

Demos C; Bandyopadhyay M; Rohrer B. 2008. Identification of candidate genes for human retinal degeneration loci using differentially expressed genes from mouse photoreceptor dystrophy models. Mol Vis 14:1639-49. [PubMed: 18776951]  [MGI Ref ID J:140115]

Doonan F; Donovan M; Cotter TG. 2003. Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. J Neurosci 23(13):5723-31. [PubMed: 12843276]  [MGI Ref ID J:84389]

Drager UC; Hubel DH. 1978. Studies of visual function and its decay in mice with hereditary retinal degeneration. J Comp Neurol 180(1):85-114. [PubMed: 649791]  [MGI Ref ID J:5980]

Du Y; Davisson MT; Kafadar K; Gardiner K. 2006. A-to-I pre-mRNA editing of the serotonin 2C receptor: comparisons among inbred mouse strains. Gene 382:39-46. [PubMed: 16904273]  [MGI Ref ID J:115050]

Ekstrom P; Sanyal S; Narfstrom K; Chader GJ; van Veen T. 1988. Accumulation of glial fibrillary acidic protein in Muller radial glia during retinal degeneration. Invest Ophthalmol Vis Sci 29(9):1363-71. [PubMed: 3417421]  [MGI Ref ID J:27850]

Feng BS; He SH; Zheng PY; Wu L; Yang PC. 2007. Mast cells play a crucial role in Staphylococcus aureus peptidoglycan-induced diarrhea. Am J Pathol 171(2):537-47. [PubMed: 17600127]  [MGI Ref ID J:123928]

Fletcher RT; Sanyal S; Krishna G; Aguirre G; Chader GJ. 1986. Genetic expression of cyclic GMP phosphodiesterase activity defines abnormal photoreceptor differentiation in neurological mutants of inherited retinal degeneration. J Neurochem 46(4):1240-5. [PubMed: 3005510]  [MGI Ref ID J:12044]

Foster RG; Argamaso S; Coleman S; Colwell CS; Lederman A; Provencio I. 1993. Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythms 8 Suppl:S17-23. [PubMed: 8274758]  [MGI Ref ID J:17940]

Foster RG; Provencio I; Hudson D; Fiske S; De Grip W; Menaker M. 1991. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol [A] 169(1):39-50. [PubMed: 1941717]  [MGI Ref ID J:83743]

Frasson M; Picaud S; Leveillard T; Simonutti M; Mohand-Said S; Dreyfus H; Hicks D; Sabel J. 1999. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 40(11):2724-34. [PubMed: 10509671]  [MGI Ref ID J:57866]

Frasson M; Sahel JA; Fabre M; Simonutti M; Dreyfus H; Picaud S. 1999. Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med 5(10):1183-7. [PubMed: 10502823]  [MGI Ref ID J:57986]

Gao H; Hollyfield JG. 1995. Basic fibroblast growth factor in retinal development: differential levels of bFGF expression and content in normal and retinal degeneration (rd) mutant mice. Dev Biol 169(1):168-184. [PubMed: 7750636]  [MGI Ref ID J:25273]

Garcia-Fernandez JM; Jimenez AJ; Foster RG. 1995. The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (rd/rd): implications for circadian organization. Neurosci Lett 187(1):33-6. [PubMed: 7617296]  [MGI Ref ID J:25157]

Gaub BM; Berry MH; Holt AE; Reiner A; Kienzler MA; Dolgova N; Nikonov S; Aguirre GD; Beltran WA; Flannery JG; Isacoff EY. 2014. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc Natl Acad Sci U S A 111(51):E5574-83. [PubMed: 25489083]  [MGI Ref ID J:216941]

Gimenez E; Montoliu L. 2001. A simple polymerase chain reaction assay for genotyping the retinal degeneration mutation (Pdeb(rd1)) in FVB/N-derived transgenic mice. Lab Anim 35(2):153-6. [PubMed: 11315164]  [MGI Ref ID J:69558]

Goel M; Dhingra NK. 2012. Muller glia express rhodopsin in a mouse model of inherited retinal degeneration. Neuroscience 225:152-61. [PubMed: 22967839]  [MGI Ref ID J:192477]

Golub MS; Germann SL; Mercer M; Gordon MN; Morgan DG; Mayer LP; Hoyer PB. 2008. Behavioral consequences of ovarian atrophy and estrogen replacement in the APPswe mouse. Neurobiol Aging 29(10):1512-23. [PubMed: 17451844]  [MGI Ref ID J:140912]

Gouras P; Du J; Kjeldbye H; Kwun R; Lopez R; Zack DJ. 1991. Transplanted photoreceptors identified in dystrophic mouse retina by a transgenic reporter gene. Invest Ophthalmol Vis Sci 32(13):3167-74. [PubMed: 1748547]  [MGI Ref ID J:607]

Gouras P; Du J; Kjeldbye H; Yamamoto S; Zack DJ. 1994. Long-term photoreceptor transplants in dystrophic and normal mouse retina. Invest Ophthalmol Vis Sci 35(8):3145-53. [PubMed: 8045709]  [MGI Ref ID J:20769]

Grafstein B; Murray M; Ingoglia NA. 1972. Protein synthesis and axonal transport in retinal ganglion cells of mice lacking visual receptors. Brain Res 44(1):37-48. [PubMed: 4115728]  [MGI Ref ID J:5292]

Graham DR; Overbeek PA; Ash JD. 2005. Leukemia inhibitory factor blocks expression of crx and nrl transcription factors to inhibit photoreceptor differentiation. Invest Ophthalmol Vis Sci 46(7):2601-10. [PubMed: 15980254]  [MGI Ref ID J:99409]

Greferath U; Goh HC; Chua PY; Astrand E; O'Brien EE; Fletcher EL; Murphy M. 2009. Mapping retinal degeneration and loss-of-function in Rd-FTL mice. Invest Ophthalmol Vis Sci 50(12):5955-64. [PubMed: 19661224]  [MGI Ref ID J:158255]

Grimm C; Wenzel A; Stanescu D; Samardzija M; Hotop S; Groszer M; Naash M; Gassmann M; Reme C. 2004. Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration. J Neurosci 24(25):5651-8. [PubMed: 15215287]  [MGI Ref ID J:133235]

Hackam AS; Strom R; Liu D; Qian J; Wang C; Otteson D; Gunatilaka T; Farkas RH; Chowers I; Kageyama M; Leveillard T; Sahel JA; Campochiaro PA; Parmigiani G; Zack DJ. 2004. Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse. Invest Ophthalmol Vis Sci 45(9):2929-42. [PubMed: 15326104]  [MGI Ref ID J:92921]

Hafezi F; Abegg M; Grimm C; Wenzel A; Munz K; Sturmer J; Farber DB; Reme CE. 1998. Retinal degeneration in the rd mouse in the absence of c-fos. Invest Ophthalmol Vis Sci 39(12):2239-44. [PubMed: 9804131]  [MGI Ref ID J:112088]

Hanno Y; Nakahira M; Jishage K; Noda T; Yoshihara Y. 2003. Tracking mouse visual pathways with WGA transgene. Eur J Neurosci 18(10):2910-4. [PubMed: 14656342]  [MGI Ref ID J:128266]

Hart AW; McKie L; Morgan JE; Gautier P; West K; Jackson IJ; Cross SH. 2005. Genotype-phenotype correlation of mouse pde6b mutations. Invest Ophthalmol Vis Sci 46(9):3443-50. [PubMed: 16123450]  [MGI Ref ID J:101336]

Hatori M; Le H; Vollmers C; Keding SR; Tanaka N; Schmedt C; Jegla T; Panda S. 2008. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3(6):e2451. [PubMed: 18545654]  [MGI Ref ID J:137151]

Hawes NL; Smith RS; Chang B; Davisson M; Heckenlively JR; John SW. 1999. Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Mol Vis 5:22. [PubMed: 10493779]  [MGI Ref ID J:59481]

Heckenlively JR; Chang B; Erway LC; Peng C; Hawes NL; Hageman GS; Roderick TH. 1995. Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome 11p15. Proc Natl Acad Sci U S A 92(24):11100-4. [PubMed: 7479945]  [MGI Ref ID J:121993]

Heynen SR; Tanimoto N; Joly S; Seeliger MW; Samardzija M; Grimm C. 2011. Retinal degeneration modulates intracellular localization of CDC42 in photoreceptors. Mol Vis 17:2934-46. [PubMed: 22128240]  [MGI Ref ID J:179662]

Hopp RM; Ransom N; Hilsenbeck SG; Papermaster DS; Windle JJ. 1998. Apoptosis in the murine rd1 retinal degeneration is predominantly p53-independent. Mol Vis 4:5. [PubMed: 9485488]  [MGI Ref ID J:47520]

Horev G; Benjamini Y; Sakov A; Golani I. 2007. Estimating wall guidance and attraction in mouse free locomotor behavior. Genes Brain Behav 6(1):30-41. [PubMed: 17233639]  [MGI Ref ID J:132656]

Hsiao FC; Liao YH; Tsai LL. 2013. Differential effects of retinal degeneration on sleep and wakefulness responses to short light-dark cycles in albino mice. Neuroscience 248C:459-468. [PubMed: 23811394]  [MGI Ref ID J:207054]

Huber G; Beck SC; Grimm C; Sahaboglu-Tekgoz A; Paquet-Durand F; Wenzel A; Humphries P; Redmond TM; Seeliger MW; Fischer MD. 2009. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 50(12):5888-95. [PubMed: 19661229]  [MGI Ref ID J:158254]

Huerta JJ; Llamosas MM; Cernuda-Cernuda R; Garcia-Fernandez JM. 1997. Fos expression in the retina of rd/rd mice during the light/dark cycle. Neurosci Lett 232(3):143-6. [PubMed: 9310300]  [MGI Ref ID J:43873]

Huerta JJ; Llamosas MM; Cernuda-Cernuda R; Garcia-Fernandez JM. 1999. Spatio-temporal analysis of light-induced Fos expression in the retina of rd mutant mice. Brain Res 834(1-2):122-7. [PubMed: 10407100]  [MGI Ref ID J:56973]

Hughes S; Pothecary CA; Jagannath A; Foster RG; Hankins MW; Peirson SN. 2012. Profound defects in pupillary responses to light in TRPM-channel null mice: a role for TRPM channels in non-image-forming photoreception. Eur J Neurosci 35(1):34-43. [PubMed: 22211741]  [MGI Ref ID J:184336]

Hussain AA; Willmott NJ; Voaden MJ. 1992. Cyclic GMP, calcium and photoreceptor sensitivity in mice heterozygous for the rod dysplasia gene designated rd. Vision Res 32(1):29-36. [PubMed: 1323896]  [MGI Ref ID J:611]

Hwang DY; Fleming SM; Ardayfio P; Moran-Gates T; Kim H; Tarazi FI; Chesselet MF; Kim KS. 2005. 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson's disease. J Neurosci 25(8):2132-7. [PubMed: 15728853]  [MGI Ref ID J:98209]

Ionita MA; Pittler SJ. 2007. Focus on molecules: rod cGMP phosphodiesterase type 6. Exp Eye Res 84(1):1-2. [PubMed: 16563379]  [MGI Ref ID J:123170]

Jia L; Oh EC; Ng L; Srinivas M; Brooks M; Swaroop A; Forrest D. 2009. Retinoid-related orphan nuclear receptor RORbeta is an early-acting factor in rod photoreceptor development. Proc Natl Acad Sci U S A 106(41):17534-9. [PubMed: 19805139]  [MGI Ref ID J:153683]

Johnson LE; van Veen T; Ekstrom PA. 2005. Differential Akt activation in the photoreceptors of normal and rd1 mice. Cell Tissue Res 320(2):213-22. [PubMed: 15789220]  [MGI Ref ID J:105103]

Jomary C; Cullen J; Jones SE. 2006. Inactivation of the Akt survival pathway during photoreceptor apoptosis in the retinal degeneration mouse. Invest Ophthalmol Vis Sci 47(4):1620-9. [PubMed: 16565401]  [MGI Ref ID J:108445]

Jomary C; Thomas M; Grist J; Milbrandt J; Neal MJ; Jones SE. 1999. Expression patterns of neurturin and its receptor components in developing and degenerative mouse retina. Invest Ophthalmol Vis Sci 40(3):568-74. [PubMed: 10067959]  [MGI Ref ID J:53298]

Jones BW; Watt CB; Frederick JM; Baehr W; Chen CK; Levine EM; Milam AH; Lavail MM; Marc RE. 2003. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 464(1):1-16. [PubMed: 12866125]  [MGI Ref ID J:84675]

Jones SE; Jomary C; Grist J; Stewart HJ; Neal MJ. 2000. Identification by array screening of altered nm23-M2/PuF mRNA expression in mouse retinal degeneration. Mol Cell Biol Res Commun 4(1):20-5. [PubMed: 11152623]  [MGI Ref ID J:66982]

Jones SE; Jomary C; Grist J; Thomas MR; Neal MJ. 1998. Expression of Pax-6 mRNA in the retinal degeneration (rd) mouse. Biochem Biophys Res Commun 252(1):236-40. [PubMed: 9813176]  [MGI Ref ID J:50978]

Jones SE; Jomary C; Grist J; Thomas MR; Neal MJ. 1998. Expression of alphaB-crystallin in a mouse model of inherited retinal degeneration. Neuroreport 9(18):4161-5. [PubMed: 9926867]  [MGI Ref ID J:52955]

Joseph RM; Li T. 1996. Overexpression of Bcl-2 or Bcl-XL transgenes and photoreceptor degeneration. Invest Ophthalmol Vis Sci 37(12):2434-46. [PubMed: 8933760]  [MGI Ref ID J:37285]

Kahle M; Horsch M; Fridrich B; Seelig A; Schultheiss J; Leonhardt J; Irmler M; Beckers J; Rathkolb B; Wolf E; Franke N; Gailus-Durner V; Fuchs H; de Angelis MH; Neschen S. 2013. Phenotypic comparison of common mouse strains developing high-fat diet-induced hepatosteatosis. Mol Metab 2(4):435-46. [PubMed: 24327959]  [MGI Ref ID J:220415]

Kanan Y; Hoffhines A; Rauhauser A; Murray A; Al-Ubaidi MR. 2009. Protein tyrosine-O-sulfation in the retina. Exp Eye Res 89(4):559-67. [PubMed: 19523945]  [MGI Ref ID J:154498]

Kaneko H; Nishiguchi KM; Nakamura M; Kachi S; Terasaki H. 2008. Retardation of photoreceptor degeneration in the detached retina of rd1 mouse. Invest Ophthalmol Vis Sci 49(2):781-7. [PubMed: 18235028]  [MGI Ref ID J:132586]

Karasawa K; Tanaka A; Jung K; Matsuda A; Okamoto N; Oida K; Ebihara N; Ohmori K; Matsuda H. 2011. Retinal degeneration and rd1 mutation in NC/Tnd mice-a human atopic dermatitis model. Curr Eye Res 36(4):350-7. [PubMed: 21275519]  [MGI Ref ID J:179794]

Katti C; Butler R; Sekaran S. 2013. Diurnal and circadian regulation of connexin 36 transcript and protein in the mammalian retina. Invest Ophthalmol Vis Sci 54(1):821-9. [PubMed: 23307963]  [MGI Ref ID J:214563]

Keady BT; Le YZ; Pazour GJ. 2011. IFT20 is required for opsin trafficking and photoreceptor outer segment development. Mol Biol Cell 22(7):921-30. [PubMed: 21307337]  [MGI Ref ID J:183002]

Keeler C. 1966. Retinal degeneration in the mouse is rodless retina. J Hered 57(2):47-50. [PubMed: 5916892]  [MGI Ref ID J:5007]

Keeler CE. 1926. On the Occurrence in the House Mouse of Mendelizing Structural Defect of the Retina Producing Blindness. Proc Natl Acad Sci U S A 12(4):255-8. [PubMed: 16576989]  [MGI Ref ID J:153354]

Keeler CE. 1924. The inheritance of a retinal abnormality in white mice Proc Natl Acad Sci U S A 10(7):329-33. [PubMed: 16576828]  [MGI Ref ID J:24999]

Keeler CE; Sutcliffe E; Chaffee EL. 1928. Normal and 'Rodless' Retinae of the House Mouse with Respect to the Electromotive Force Generated through Stimulation by Light. Proc Natl Acad Sci U S A 14(6):477-84. [PubMed: 16577134]  [MGI Ref ID J:153353]

Kida E; Rabe A; Walus M; Albertini G; Golabek AA. 2013. Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn. Exp Neurol 240:178-89. [PubMed: 23201095]  [MGI Ref ID J:196979]

Kirschman LT; Kolandaivelu S; Frederick JM; Dang L; Goldberg AF; Baehr W; Ramamurthy V. 2010. The Leber congenital amaurosis protein, AIPL1, is needed for the viability and functioning of cone photoreceptor cells. Hum Mol Genet 19(6):1076-87. [PubMed: 20042464]  [MGI Ref ID J:157652]

Klein SL; Kriegsfeld LJ; Hairston JE; Rau V; Nelson RJ; Yarowsky PJ. 1996. Characterization of sensorimotor performance, reproductive and aggressive behaviors in segmental trisomic 16 (Ts65Dn) mice. Physiol Behav 60(4):1159-64. [PubMed: 8884947]  [MGI Ref ID J:174274]

Kokkinopoulos I; Pearson RA; Macneil A; Dhomen NS; Maclaren RE; Ali RR; Sowden JC. 2008. Isolation and characterisation of neural progenitor cells from the adult Chx10(orJ/orJ) central neural retina. Mol Cell Neurosci 38(3):359-73. [PubMed: 18514541]  [MGI Ref ID J:137047]

Kolandaivelu S; Chang B; Ramamurthy V. 2011. Rod Phosphodiesterase-6 (PDE6) Catalytic Subunits Restore Cone Function in a Mouse Model Lacking Cone PDE6 Catalytic Subunit. J Biol Chem 286(38):33252-9. [PubMed: 21799013]  [MGI Ref ID J:176734]

Kolandaivelu S; Huang J; Hurley JB; Ramamurthy V. 2009. AIPL1, a protein associated with childhood blindness, interacts with alpha-subunit of rod phosphodiesterase (PDE6) and is essential for its proper assembly. J Biol Chem 284(45):30853-61. [PubMed: 19758987]  [MGI Ref ID J:156330]

Komeima K; Rogers BS; Lu L; Campochiaro PA. 2006. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A 103(30):11300-5. [PubMed: 16849425]  [MGI Ref ID J:111826]

Komeima K; Usui S; Shen J; Rogers BS; Campochiaro PA. 2008. Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa. Free Radic Biol Med 45(6):905-12. [PubMed: 18634866]  [MGI Ref ID J:142007]

Kranz K; Paquet-Durand F; Weiler R; Janssen-Bienhold U; Dedek K. 2013. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones. PLoS One 8(2):e57163. [PubMed: 23468924]  [MGI Ref ID J:199394]

Kucharska J; Del Rio P; Arango-Gonzalez B; Gorza M; Feuchtinger A; Hauck SM; Ueffing M. 2014. Cyr61 activates retinal cells and prolongs photoreceptor survival in rd1 mouse model of retinitis pigmentosa. J Neurochem 130(2):227-40. [PubMed: 24593181]  [MGI Ref ID J:213667]

Kuenzi F; Rosahl TW; Morton RA; Fitzjohn SM; Collingridge GL; Seabrook GR. 2003. Hippocampal synaptic plasticity in mice carrying the rd mutation in the gene encoding cGMP phosphodiesterase type 6 (PDE6). Brain Res 967(1-2):144-51. [PubMed: 12650975]  [MGI Ref ID J:82830]

LaVail MM; Matthes MT; Yasumura D; Steinberg RH. 1997. Variability in rate of cone degeneration in the retinal degeneration (rd/rd) mouse. Exp Eye Res 65(1):45-50. [PubMed: 9237863]  [MGI Ref ID J:42223]

LaVail MM; Mullen RJ. 1976. Role of the pigment epithelium in inherited retinal degeneration analyzed with experimental mouse chimeras. Exp Eye Res 23(2):227-45. [PubMed: 976367]  [MGI Ref ID J:5708]

LaVail MW; Yasumura D; Matthes MT; Lau-Villacorta C; Unoki K; Sung CH; Steinberg RH. 1998. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39(3):592-602. [PubMed: 9501871]  [MGI Ref ID J:46230]

Lahdenranta J; Pasqualini R; Schlingemann RO; Hagedorn M; Stallcup WB; Bucana CD; Sidman RL; Arap W. 2001. An anti-angiogenic state in mice and humans with retinal photoreceptor cell degeneration. Proc Natl Acad Sci U S A 98(18):10368-73. [PubMed: 11526242]  [MGI Ref ID J:126744]

Langmann T; Di Gioia SA; Rau I; Stohr H; Maksimovic NS; Corbo JC; Renner AB; Zrenner E; Kumaramanickavel G; Karlstetter M; Arsenijevic Y; Weber BH; Gal A; Rivolta C. 2010. Nonsense mutations in FAM161A cause RP28-associated recessive retinitis pigmentosa. Am J Hum Genet 87(3):376-81. [PubMed: 20705278]  [MGI Ref ID J:169189]

Lavail MM; Nishikawa S; Duncan JL; Yang H; Matthes MT; Yasumura D; Vollrath D; Overbeek PA; Ash JD; Robinson ML. 2008. Sustained delivery of NT-3 from lens fiber cells in transgenic mice reveals specificity of neuroprotection in retinal degenerations. J Comp Neurol 511(6):724-35. [PubMed: 18925574]  [MGI Ref ID J:176641]

Lin B; Koizumi A; Tanaka N; Panda S; Masland RH. 2008. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A 105(41):16009-14. [PubMed: 18836071]  [MGI Ref ID J:141434]

Lin B; Masland RH; Strettoi E. 2009. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res 88(3):589-99. [PubMed: 19087876]  [MGI Ref ID J:146569]

Lin B; Peng EB. 2013. Retinal ganglion cells are resistant to photoreceptor loss in retinal degeneration. PLoS One 8(6):e68084. [PubMed: 23840814]  [MGI Ref ID J:204325]

Liu SH; Gottsch JD; Vinores SA; Derevjanik NL; McLeod DS; Lutty GA. 2001. EMAP cytokine expression in developing retinas of normal and retinal degeneration (rd) mutant mice. J Neuroimmunol 114(1-2):28-34. [PubMed: 11240012]  [MGI Ref ID J:102963]

Lohr HR; Kuntchithapautham K; Sharma AK; Rohrer B. 2006. Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Eye Res 83(2):380-9. [PubMed: 16626700]  [MGI Ref ID J:116326]

Louros SR; Hooks BM; Litvina L; Carvalho AL; Chen C. 2014. A role for stargazin in experience-dependent plasticity. Cell Rep 7(5):1614-25. [PubMed: 24882000]  [MGI Ref ID J:211786]

Lu B; Coffey P; Lund R. 2004. Increased c-fos-like immunoreactivity in the superior colliculus and lateral geniculate nucleus of the rd mouse. Brain Res 1025(1-2):220-5. [PubMed: 15464763]  [MGI Ref ID J:107774]

Lucas RJ; Freedman MS; Munoz M; Garcia-Fernandez JM; Foster RG. 1999. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284(5413):505-7. [PubMed: 10205062]  [MGI Ref ID J:128478]

Lupi D; Oster H; Thompson S; Foster RG. 2008. The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci :. [PubMed: 18711396]  [MGI Ref ID J:141041]

Lupi D; Semo M; Foster RG. 2012. Impact of age and retinal degeneration on the light input to circadian brain structures. Neurobiol Aging 33(2):383-92. [PubMed: 20409612]  [MGI Ref ID J:188243]

Marc RE; Jones BW; Anderson JR; Kinard K; Marshak DW; Wilson JH; Wensel T; Lucas RJ. 2007. Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci 48(7):3364-71. [PubMed: 17591910]  [MGI Ref ID J:123271]

Margolis DJ; Gartland AJ; Singer JH; Detwiler PB. 2014. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration. PLoS One 9(1):e86253. [PubMed: 24489706]  [MGI Ref ID J:212697]

Masana MI; Sumaya IC; Becker-Andre M; Dubocovich ML. 2007. Behavioral characterization and modulation of circadian rhythms by light and melatonin in C3H/HeN mice homozygous for the RORbeta knockout. Am J Physiol Regul Integr Comp Physiol 292(6):R2357-67. [PubMed: 17303680]  [MGI Ref ID J:121989]

Matynia A; Parikh S; Chen B; Kim P; McNeill DS; Nusinowitz S; Evans C; Gorin MB. 2012. Intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion. Exp Eye Res 105:60-9. [PubMed: 23078956]  [MGI Ref ID J:203664]

May A; Nimtschke U; May CA. 2009. The architecture of the mouse ciliary processes and their changes during retinal degeneration. Exp Eye Res 88(3):561-5. [PubMed: 19059237]  [MGI Ref ID J:146578]

May CA. 2009. Fibrae medullares in the retina of the RD mouse: a case report. Curr Eye Res 34(5):411-3. [PubMed: 19401885]  [MGI Ref ID J:149565]

McFadyen MP; Kusek G; Bolivar VJ; Flaherty L. 2003. Differences among eight inbred strains of mice in motor ability and motor learning on a rotorod. Genes Brain Behav 2(4):214-9. [PubMed: 12953787]  [MGI Ref ID J:104873]

McKenzie JA; Fruttiger M; Abraham S; Lange CA; Stone J; Gandhi P; Wang X; Bainbridge J; Moss SE; Greenwood J. 2012. Apelin is required for non-neovascular remodeling in the retina. Am J Pathol 180(1):399-409. [PubMed: 22067912]  [MGI Ref ID J:180164]

Meng R; Wu J; Harper DC; Wang Y; Kowalska MA; Abrams CS; Brass LF; Poncz M; Stalker TJ; Marks MS. 2015. Defective release of alpha granule and lysosome contents from platelets in mouse Hermansky-Pudlak syndrome models. Blood 125(10):1623-32. [PubMed: 25477496]  [MGI Ref ID J:221384]

Menu dit Huart L; Lorentz O; Goureau O; Leveillard T; Sahel JA. 2004. DNA repair in the degenerating mouse retina. Mol Cell Neurosci 26(3):441-9. [PubMed: 15234348]  [MGI Ref ID J:109747]

Menzler J; Channappa L; Zeck G. 2014. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas. PLoS One 9(8):e106047. [PubMed: 25153888]  [MGI Ref ID J:219242]

Menzler J; Zeck G. 2011. Network oscillations in rod-degenerated mouse retinas. J Neurosci 31(6):2280-91. [PubMed: 21307264]  [MGI Ref ID J:169452]

Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T. 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20:1527-44. [PubMed: 25489226]  [MGI Ref ID J:220255]

Mohand-Said S; Deudon-Combe A; Hicks D; Simonutti M; Forster V ; Fintz AC ; Leveillard T ; Dreyfus H ; Sahel JA. 1998. Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proc Natl Acad Sci U S A 95(14):8357-62. [PubMed: 9653191]  [MGI Ref ID J:48731]

Montana CL; Kolesnikov AV; Shen SQ; Myers CA; Kefalov VJ; Corbo JC. 2013. Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc Natl Acad Sci U S A 110(5):1732-7. [PubMed: 23319618]  [MGI Ref ID J:193697]

Morin LP; Studholme KM. 2011. Separation of function for classical and ganglion cell photoreceptors with respect to circadian rhythm entrainment and induction of photosomnolence. Neuroscience 199:213-24. [PubMed: 21985934]  [MGI Ref ID J:184037]

Mrosovsky N; Foster RG; Salmon PA. 1999. Thresholds for masking responses to light in three strains of retinally degenerate mice. J Comp Physiol [A] 184(4):423-8. [PubMed: 10377976]  [MGI Ref ID J:56471]

Mrosovsky N; Hampton RR. 1997. Spatial responses to light in mice with severe retinal degeneration. Neurosci Lett 222(3):204-6. [PubMed: 9148250]  [MGI Ref ID J:40689]

Nakamura K; Harada C; Okumura A; Namekata K; Mitamura Y; Yoshida K; Ohno S; Yoshida H; Harada T. 2005. Effect of p75NTR on the regulation of photoreceptor apoptosis in the rd mouse. Mol Vis 11:1229-35. [PubMed: 16402023]  [MGI Ref ID J:136765]

Namekata K; Okumura A; Harada C; Nakamura K; Yoshida H; Harada T. 2006. Effect of photoreceptor degeneration on RNA splicing and expression of AMPA receptors. Mol Vis 12:1586-93. [PubMed: 17200657]  [MGI Ref ID J:117332]

Nishiguchi KM; Nakamura M; Kaneko H; Kachi S; Terasaki H. 2007. The role of VEGF and VEGFR2/Flk1 in proliferation of retinal progenitor cells in murine retinal degeneration. Invest Ophthalmol Vis Sci 48(9):4315-20. [PubMed: 17724222]  [MGI Ref ID J:126933]

Nishikawa S; LaVail MM. 1998. Neovascularization of the RPE: temporal differences in mice with rod photoreceptor gene defects. Exp Eye Res 67(5):509-15. [PubMed: 9878212]  [MGI Ref ID J:52112]

Nuhn JS; Fuerst PG. 2014. Developmental localization of adhesion and scaffolding proteins at the cone synapse. Gene Expr Patterns 16(1):36-50. [PubMed: 25176525]  [MGI Ref ID J:216508]

O'Leary TP; Brown RE. 2009. Visuo-spatial learning and memory deficits on the Barnes maze in the 16-month-old APPswe/PS1dE9 mouse model of Alzheimer's disease. Behav Brain Res 201(1):120-7. [PubMed: 19428625]  [MGI Ref ID J:148386]

Ogilvie JM; Hakenewerth AM; Gardner RR; Martak JG; Maggio VM. 2009. Dopamine receptor loss of function is not protective of rd1 rod photoreceptors in vivo. Mol Vis 15:2868-78. [PubMed: 20038975]  [MGI Ref ID J:157088]

Otani A; Kojima H; Guo C; Oishi A; Yoshimura N. 2012. Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa. Am J Pathol 180(1):328-36. [PubMed: 22074737]  [MGI Ref ID J:180155]

Owens L; Buhr E; Tu DC; Lamprecht TL; Lee J; Van Gelder RN. 2012. Effect of circadian clock gene mutations on nonvisual photoreception in the mouse. Invest Ophthalmol Vis Sci 53(1):454-60. [PubMed: 22159024]  [MGI Ref ID J:191526]

Panda S; Provencio I; Tu DC; Pires SS; Rollag MD; Castrucci AM; Pletcher MT; Sato TK; Wiltshire T; Andahazy M; Kay SA; Van Gelder RN; Hogenesch JB. 2003. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301(5632):525-7. [PubMed: 12829787]  [MGI Ref ID J:165769]

Panda S; Sato TK; Castrucci AM; Rollag MD; DeGrip WJ; Hogenesch JB; Provencio I; Kay SA. 2002. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298(5601):2213-6. [PubMed: 12481141]  [MGI Ref ID J:81501]

Pang J; Cheng M; Haire SE; Barker E; Planelles V; Blanks JC. 2006. Efficiency of lentiviral transduction during development in normal and rd mice. Mol Vis 12:756-67. [PubMed: 16862069]  [MGI Ref ID J:111621]

Paper W; Kroeber M; Heersink S; Stephan DA; Fuchshofer R; Russell P; Tamm ER. 2008. Elevated amounts of myocilin in the aqueous humor of transgenic mice cause significant changes in ocular gene expression. Exp Eye Res 87(3):257-67. [PubMed: 18602390]  [MGI Ref ID J:141881]

Paquet-Durand F ; Hauck SM ; van Veen T ; Ueffing M ; Ekstrom P. 2009. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J Neurochem 108(3):796-810. [PubMed: 19187097]  [MGI Ref ID J:146653]

Paquet-Durand F; Azadi S; Hauck SM; Ueffing M; van Veen T; Ekstrom P. 2006. Calpain is activated in degenerating photoreceptors in the rd1 mouse. J Neurochem 96(3):802-14. [PubMed: 16405498]  [MGI Ref ID J:106017]

Paquet-Durand F; Beck S; Michalakis S; Goldmann T; Huber G; Muhlfriedel R; Trifunovic D; Fischer MD; Fahl E; Duetsch G; Becirovic E; Wolfrum U; van Veen T; Biel M; Tanimoto N; Seeliger MW. 2011. A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa. Hum Mol Genet 20(5):941-7. [PubMed: 21149284]  [MGI Ref ID J:169039]

Park H; Tan CC; Faulkner A; Jabbar SB; Schmid G; Abey J; Iuvone PM; Pardue MT. 2013. Retinal degeneration increases susceptibility to myopia in mice. Mol Vis 19:2068-79. [PubMed: 24146540]  [MGI Ref ID J:205341]

Park SJ; Lee DS; Lim EJ; Choi SH; Kang WS; Kim IB; Chun MH. 2008. The absence of the clathrin-dependent endocytosis in rod bipolar cells of the FVB/N mouse retina. Neurosci Lett 439(2):165-9. [PubMed: 18514403]  [MGI Ref ID J:137049]

Peirson SN; Oster H; Jones SL; Leitges M; Hankins MW; Foster RG. 2007. Microarray analysis and functional genomics identify novel components of melanopsin signaling. Curr Biol 17(16):1363-72. [PubMed: 17702581]  [MGI Ref ID J:128396]

Peng GH; Chen S. 2007. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation. Hum Mol Genet 16(20):3433-52. [PubMed: 17656371]  [MGI Ref ID J:129889]

Pennesi ME; Michaels KV; Magee SS; Maricle A; Davin SP; Garg AK; Gale MJ; Tu DC; Wen Y; Erker LR; Francis PJ. 2012. Long-term characterization of retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(8):4644-56. [PubMed: 22562504]  [MGI Ref ID J:213983]

Petrasch-Parwez E; Habbes HW; Weickert S; Lobbecke-Schumacher M; Striedinger K; Wieczorek S; Dermietzel R; Epplen JT. 2004. Fine-structural analysis and connexin expression in the retina of a transgenic model of Huntington's disease. J Comp Neurol 479(2):181-97. [PubMed: 15452853]  [MGI Ref ID J:135880]

Phelan JK; Bok D. 2000. Analysis and quantitation of mRNAs encoding the alpha- and beta-subunits of rod photoreceptor cGMP phosphodiesterase in neonatal retinal degeneration (rd) mouse retinas. Exp Eye Res 71(2):119-28. [PubMed: 10930317]  [MGI Ref ID J:63861]

Pickard GE; Baver SB; Ogilvie MD; Sollars PJ. 2009. Light-induced fos expression in intrinsically photosensitive retinal ganglion cells in melanopsin knockout (opn4) mice. PLoS ONE 4(3):e4984. [PubMed: 19319185]  [MGI Ref ID J:147460]

Pittler SJ; Baehr W. 1991. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A 88(19):8322-6. [PubMed: 1656438]  [MGI Ref ID J:11513]

Pittler SJ; Keeler CE; Sidman RL; Baehr W. 1993. PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. Proc Natl Acad Sci U S A 90(20):9616-9. [PubMed: 8415750]  [MGI Ref ID J:15231]

Popper P; Farber DB; Micevych PE; Minoofar K; Bronstein JM. 1997. TRPM-2 expression and tunel staining in neurodegenerative diseases: studies in wobbler and rd mice. Exp Neurol 143(2):246-54. [PubMed: 9056387]  [MGI Ref ID J:38831]

Portera-Cailliau C; Sung CH; Nathans J; Adler R. 1994. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 91(3):974-8. [PubMed: 8302876]  [MGI Ref ID J:16708]

Provencio I; Cooper HM; Foster RG. 1998. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol 395(4):417-39. [PubMed: 9619497]  [MGI Ref ID J:47756]

Provencio I; Foster RG. 1995. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res 694(1-2):183-90. [PubMed: 8974643]  [MGI Ref ID J:29236]

Provencio I; Wong S; Lederman AB; Argamaso SM; Foster RG. 1994. Visual and circadian responses to light in aged retinally degenerate mice. Vision Res 34(14):1799-806. [PubMed: 7941382]  [MGI Ref ID J:19843]

Punzo C; Cepko C. 2007. Cellular responses to photoreceptor death in the rd1 mouse model of retinal degeneration. Invest Ophthalmol Vis Sci 48(2):849-57. [PubMed: 17251487]  [MGI Ref ID J:123282]

Punzo C; Kornacker K; Cepko CL. 2009. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44-52. [PubMed: 19060896]  [MGI Ref ID J:144720]

Qiao X; Pennesi M; Seong E; Gao H; Burmeister M; Wu SM. 2003. Photoreceptor degeneration and rd1 mutation in the grizzled/mocha mouse strain. Vision Res 43(8):859-65. [PubMed: 12668055]  [MGI Ref ID J:88031]

RIKEN BioResource Center/RIKEN Genomic Sciences Center. 2008. A Large Scale Mutagenesis Program in RIKEN GSC PhenoSITE, World Wide Web (URL: :.  [MGI Ref ID J:133634]

Rao A; Dallman R; Henderson S; Chen CK. 2007. Gbeta5 is required for normal light responses and morphology of retinal ON-bipolar cells. J Neurosci 27(51):14199-204. [PubMed: 18094259]  [MGI Ref ID J:129267]

Read DS; McCall MA; Gregg RG. 2002. Absence of voltage-dependent calcium channels delays photoreceptor degeneration in rd mice. Exp Eye Res 75(4):415-20. [PubMed: 12387789]  [MGI Ref ID J:79923]

Rich KA; Zhan Y; Blanks JC. 1997. Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. J Comp Neurol 388(1):47-63. [PubMed: 9364238]  [MGI Ref ID J:44100]

Roesch K; Stadler MB; Cepko CL. 2012. Gene expression changes within Muller glial cells in retinitis pigmentosa. Mol Vis 18:1197-214. [PubMed: 22665967]  [MGI Ref ID J:191614]

Rohrer B; Demos C; Frigg R; Grimm C. 2007. Classical complement activation and acquired immune response pathways are not essential for retinal degeneration in the rd1 mouse. Exp Eye Res 84(1):82-91. [PubMed: 17069800]  [MGI Ref ID J:123183]

Rossi C; Strettoi E; Galli-Resta L. 2003. The spatial order of horizontal cells is not affected by massive alterations in the organization of other retinal cells. J Neurosci 23(30):9924-8. [PubMed: 14586022]  [MGI Ref ID J:120041]

Ruan GX; Allen GC; Yamazaki S; McMahon DG. 2008. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol 6(10):e249. [PubMed: 18959477]  [MGI Ref ID J:141081]

Ruggiero L; Allen CN; Lane Brown R; Robinson DW. 2009. The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration. Eur J Neurosci 29(2):359-67. [PubMed: 19200239]  [MGI Ref ID J:146465]

Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH. 2010. Temporal response properties of retinal ganglion cells in rd1 mice evoked by amplitude-modulated electrical pulse trains. Invest Ophthalmol Vis Sci 51(12):6762-9. [PubMed: 20671284]  [MGI Ref ID J:171389]


Sahaboglu A; Tanimoto N; Kaur J; Sancho-Pelluz J; Huber G; Fahl E; Arango-Gonzalez B; Zrenner E; Ekstrom P; Lowenheim H; Seeliger M; Paquet-Durand F. 2010. PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function. PLoS One 5(11):e15495. [PubMed: 21124852]  [MGI Ref ID J:167317]

Samardzija M; Wenzel A; Aufenberg S; Thiersch M; Reme C; Grimm C. 2006. Differential role of Jak-STAT signaling in retinal degenerations. FASEB J 20(13):2411-3. [PubMed: 16966486]  [MGI Ref ID J:114638]

Samardzija M; Wenzel A; Thiersch M; Frigg R; Reme C; Grimm C. 2006. Caspase-1 ablation protects photoreceptors in a model of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 47(12):5181-90. [PubMed: 17122101]  [MGI Ref ID J:123100]

Sancho-Pelluz J; Wunderlich KA; Rauch U; Romero FJ; van Veen T; Limb GA; Crocker PR; Perez MT. 2008. Sialoadhesin expression in intact degenerating retinas and following transplantation. Invest Ophthalmol Vis Sci 49(12):5602-10. [PubMed: 18641281]  [MGI Ref ID J:142000]

Sanz MM; Johnson LE; Ahuja S; Ekstrom PA; Romero J; van Veen T. 2007. Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration. Neuroscience 145(3):1120-9. [PubMed: 17293057]  [MGI Ref ID J:121644]

Sasahara M; Otani A; Oishi A; Kojima H; Yodoi Y; Kameda T; Nakamura H; Yoshimura N. 2008. Activation of bone marrow-derived microglia promotes photoreceptor survival in inherited retinal degeneration. Am J Pathol 172(6):1693-703. [PubMed: 18483210]  [MGI Ref ID J:136339]

Schmidt SY; Lolley RN. 1973. Cyclic-nucleotide phosphodiesterase: an early defect in inherited retinal degeneration of C3H mice. J Cell Biol 57(1):117-23. [PubMed: 4347974]  [MGI Ref ID J:5332]

Scott A; Powner MB; Fruttiger M. 2014. Quantification of vascular tortuosity as an early outcome measure in oxygen induced retinopathy (OIR). Exp Eye Res 120:55-60. [PubMed: 24418725]  [MGI Ref ID J:210367]

Selby CP; Thompson C; Schmitz TM; Van Gelder RN; Sancar A. 2000. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice Proc Natl Acad Sci U S A 97(26):14697-702. [PubMed: 11114194]  [MGI Ref ID J:66580]

Semo M; Gias C; Ahmado A; Sugano E; Allen AE; Lawrence JM; Tomita H; Coffey PJ; Vugler AA. 2010. Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception. PLoS One 5(11):e15009. [PubMed: 21124784]  [MGI Ref ID J:167120]

Semo M; Lupi D; Peirson SN; Butler JN; Foster RG. 2003. Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 18(11):3007-17. [PubMed: 14656296]  [MGI Ref ID J:89691]

Semo M; Peirson S; Lupi D; Lucas RJ; Jeffery G; Foster RG. 2003. Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 17(9):1793-801. [PubMed: 12752778]  [MGI Ref ID J:128149]

Sharma AK; Rohrer B. 2007. Sustained elevation of intracellular cGMP causes oxidative stress triggering calpain-mediated apoptosis in photoreceptor degeneration. Curr Eye Res 32(3):259-69. [PubMed: 17453946]  [MGI Ref ID J:121112]

Sheedlo HJ; Jaynes D; Bolan AL; Turner JE. 1995. Mullerian glia in dystrophic rodent retinas: an immunocytochemical analysis. Brain Res Dev Brain Res 85(2):171-80. [PubMed: 7600664]  [MGI Ref ID J:24543]

Srinivasan Y; Lovicu FJ; Overbeek PA. 1998. Lens-specific expression of transforming growth factor beta1 in transgenic mice causes anterior subcapsular cataracts. J Clin Invest 101(3):625-34. [PubMed: 9449696]  [MGI Ref ID J:135895]

Stone C; Pinto LH. 1993. Response properties of ganglion cells in the isolated mouse retina. Vis Neurosci 10(1):31-9. [PubMed: 8424927]  [MGI Ref ID J:116795]

Strettoi E; Pignatelli V. 2000. Modifications of retinal neurons in a mouse model of retinitis pigmentosa Proc Natl Acad Sci U S A 97(20):11020-5. [PubMed: 10995468]  [MGI Ref ID J:64742]

Strettoi E; Pignatelli V; Rossi C; Porciatti V; Falsini B. 2003. Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Res 43(8):867-77. [PubMed: 12668056]  [MGI Ref ID J:92316]

Strettoi E; Porciatti V; Falsini B; Pignatelli V; Rossi C. 2002. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J Neurosci 22(13):5492-504. [PubMed: 12097501]  [MGI Ref ID J:109225]

Sumaya IC; Masana MI; Dubocovich ML. 2005. The antidepressant-like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MT1 melatonin receptors. J Pineal Res 39(2):170-7. [PubMed: 16098095]  [MGI Ref ID J:114318]

Takahashi M; Miyoshi H; Verma IM; Gage FH. 1999. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 73(9):7812-6. [PubMed: 10438872]  [MGI Ref ID J:56759]

Tansley K. 1954. An inherited retinal degeneration in the mouse J Hered 45:123-27.  [MGI Ref ID J:15333]

Thaung C; Arnold K; Jackson IJ; Coffey PJ. 2002. Presence of visual head tracking differentiates normal sighted from retinal degenerate mice. Neurosci Lett 325(1):21-4. [PubMed: 12023058]  [MGI Ref ID J:107978]

Thompson CL; Selby CP; Partch CL; Plante DT; Thresher RJ; Araujo F; Sancar A. 2004. Further evidence for the role of cryptochromes in retinohypothalamic photoreception/phototransduction. Brain Res Mol Brain Res 122(2):158-66. [PubMed: 15010208]  [MGI Ref ID J:88468]

Thompson S; Foster RG; Stone EM; Sheffield VC; Mrosovsky N. 2008. Classical and melanopsin photoreception in irradiance detection: negative masking of locomotor activity by light. Eur J Neurosci 27(8):1973-9. [PubMed: 18412618]  [MGI Ref ID J:136825]

Thompson S; Lupi D; Hankins MW; Peirson SN; Foster RG. 2008. The effects of rod and cone loss on the photic regulation of locomotor activity and heart rate. Eur J Neurosci 28(4):724-9. [PubMed: 18702692]  [MGI Ref ID J:140577]

Thompson S; Mullins RF; Philp AR; Stone EM; Mrosovsky N. 2008. Divergent phenotypes of vision and accessory visual function in mice with visual cycle dysfunction (Rpe65 rd12) or retinal degeneration (rd/rd). Invest Ophthalmol Vis Sci 49(6):2737-42. [PubMed: 18515598]  [MGI Ref ID J:137044]

Thompson S; Stasheff SF; Hernandez J; Nylen E; East JS; Kardon RH; Pinto LH; Mullins RF; Stone EM. 2011. Different inner retinal pathways mediate rod-cone input in irradiance detection for the pupillary light reflex and regulation of behavioral state in mice. Invest Ophthalmol Vis Sci 52(1):618-23. [PubMed: 20847113]  [MGI Ref ID J:171559]

Thyagarajan S; van Wyk M; Lehmann K; Lowel S; Feng G; Wassle H. 2010. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci 30(26):8745-58. [PubMed: 20592196]  [MGI Ref ID J:161847]

Tochitsky I; Polosukhina A; Degtyar VE; Gallerani N; Smith CM; Friedman A; Van Gelder RN; Trauner D; Kaufer D; Kramer RH. 2014. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81(4):800-13. [PubMed: 24559673]  [MGI Ref ID J:220643]

Tsang SH; Gouras P; Yamashita CK; Kjeldbye H; Fisher J; Farber DB; Goff SP. 1996. Retinal degeneration in mice lacking the gamma subunit of the rod cGMP phosphodiesterase. Science 272(5264):1026-9. [PubMed: 8638127]  [MGI Ref ID J:33048]

Tu DC; Owens LA; Anderson L; Golczak M; Doyle SE; McCall M; Menaker M; Palczewski K; Van Gelder RN. 2006. Inner retinal photoreception independent of the visual retinoid cycle. Proc Natl Acad Sci U S A 103(27):10426-31. [PubMed: 16788071]  [MGI Ref ID J:111700]

Tu DC; Zhang D; Demas J; Slutsky EB; Provencio I; Holy TE; Van Gelder RN. 2005. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48(6):987-99. [PubMed: 16364902]  [MGI Ref ID J:107606]

Tucker B; Klassen H; Yang L; Chen DF; Young MJ. 2008. Elevated MMP Expression in the MRL Mouse Retina Creates a Permissive Environment for Retinal Regeneration. Invest Ophthalmol Vis Sci 49(4):1686-95. [PubMed: 18385092]  [MGI Ref ID J:136153]

Usui S; Oveson BC; Lee SY; Jo YJ; Yoshida T; Miki A; Miki K; Iwase T; Lu L; Campochiaro PA. 2009. NADPH oxidase plays a central role in cone cell death in retinitis pigmentosa. J Neurochem 110(3):1028-37. [PubMed: 19493169]  [MGI Ref ID J:152819]

Van Gelder RN; Wee R; Lee JA; Tu DC. 2003. Reduced pupillary light responses in mice lacking cryptochromes. Science 299(5604):222. [PubMed: 12522242]  [MGI Ref ID J:81500]

Vazquez-Chona FR; Clark AM; Levine EM. 2009. Rlbp1 promoter drives robust Muller glial GFP expression in transgenic mice. Invest Ophthalmol Vis Sci 50(8):3996-4003. [PubMed: 19324864]  [MGI Ref ID J:154561]

Viczian A; Sanyal S; Toffenetti J; Chader GJ; Farber DB. 1992. Photoreceptor-specific mRNAs in mice carrying different allelic combinations at the rd and rds loci. Exp Eye Res 54(6):853-60. [PubMed: 1381682]  [MGI Ref ID J:2579]

Vlachantoni D; Bramall AN; Murphy MP; Taylor RW; Shu X; Tulloch B; Van Veen T; Turnbull DM; McInnes RR; Wright AF. 2011. Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. Hum Mol Genet 20(2):322-35. [PubMed: 21051333]  [MGI Ref ID J:166898]

Wahlin KJ; Adler R; Zack DJ; Campochiaro PA. 2001. Neurotrophic signaling in normal and degenerating rodent retinas. Exp Eye Res 73(5):693-701. [PubMed: 11747369]  [MGI Ref ID J:73377]

Wang Y; Wang ZY; Zhou MN; Cai J; Sun LY; Liu XY; Daugherty BL; Pestka S. 1997. Sequencing and bacterial expression of a novel murine alpha interferon gene. Sci China C Life Sci 40(3):277-283.  [MGI Ref ID J:41297]

Warthen DM; Wiltgen BJ; Provencio I. 2011. Light enhances learned fear. Proc Natl Acad Sci U S A 108(33):13788-93. [PubMed: 21808002]  [MGI Ref ID J:175610]

Welge-Lussen U; Wilsch C; Neuhardt T; Wayne Streilein J; Lutjen-Drecoll E. 1999. Loss of anterior chamber-associated immune deviation (ACAID) in aged retinal degeneration (rd) mice. Invest Ophthalmol Vis Sci 40(13):3209-14. [PubMed: 10586944]  [MGI Ref ID J:58745]

Won J; Shi LY; Hicks W; Wang J; Hurd R; Naggert JK; Chang B; Nishina PM. 2011. Mouse model resources for vision research. J Ophthalmol 2011:391384. [PubMed: 21052544]  [MGI Ref ID J:166679]

Wong P; Borst DE; Farber D; Danciger JS; Tenniswood M; Chader GJ; van Veen T. 1994. Increased TRPM-2/clusterin mRNA levels during the time of retinal degeneration in mouse models of retinitis pigmentosa. Biochem Cell Biol 72(9-10):439-46. [PubMed: 7605616]  [MGI Ref ID J:24128]

Wu J; Trogadis J; Bremner R. 2001. Rod and cone degeneration in the rd mouse is p53 independent. Mol Vis 7:101-6. [PubMed: 11344337]  [MGI Ref ID J:126023]

Wunderlich KA; Leveillard T; Penkowa M; Zrenner E; Perez MT. 2010. Altered expression of metallothionein-I and -II and their receptor megalin in inherited photoreceptor degeneration. Invest Ophthalmol Vis Sci 51(9):4809-20. [PubMed: 20357188]  [MGI Ref ID J:164094]

Yamada H; Yamada E; Hackett SF; Ozaki H; Okamoto N; Campochiaro PA. 1999. Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. J Cell Physiol 179(2):149-56. [PubMed: 10199554]  [MGI Ref ID J:54326]

Yan W; Lewin A; Hauswirth W. 1998. Selective degradation of nonsense beta-phosphodiesterase mRNA in the heterozygous rd mouse. Invest Ophthalmol Vis Sci 39(13):2529-36. [PubMed: 9856762]  [MGI Ref ID J:51361]

Yang LP; Wu LM; Guo XJ; Tso MO. 2007. Activation of endoplasmic reticulum stress in degenerating photoreceptors of the rd1 mouse. Invest Ophthalmol Vis Sci 48(11):5191-8. [PubMed: 17962473]  [MGI Ref ID J:127157]

Yazulla S; Studholme KM; Pinto LH. 1997. Differences in the retinal GABA system among control, spastic mutant and retinal degeneration mutant mice. Vision Res 37(24):3471-82. [PubMed: 9425524]  [MGI Ref ID J:45280]

Yi H; Nakamura RE; Mohamed O; Dufort D; Hackam AS. 2007. Characterization of Wnt signaling during photoreceptor degeneration. Invest Ophthalmol Vis Sci 48(12):5733-41. [PubMed: 18055826]  [MGI Ref ID J:132500]

Yoshimura T; Ebihara S. 1998. Decline of circadian photosensitivity associated with retinal degeneration in CBA/J-rd/rd mice. Brain Res 779(1-2):188-93. [PubMed: 9473668]  [MGI Ref ID J:45462]

Yoshimura T; Ebihara S. 1996. Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+)mice. J Comp Physiol [A] 178(6):797-802. [PubMed: 8667293]  [MGI Ref ID J:33685]

Yoshimura T; Nishio M; Goto M; Ebihara S. 1994. Differences in circadian photosensitivity between retinally degenerate CBA/J mice (rd/rd) and normal CBA/N mice (+/+). J Biol Rhythms 9(1):51-60. [PubMed: 7949306]  [MGI Ref ID J:19351]

Yoshimura T; Yokota Y; Ishikawa A; Yasuo S; Hayashi N; Suzuki T; Okabayashi N; Namikawa T; Ebihara S. 2002. Mapping quantitative trait loci affecting circadian photosensitivity in retinally degenerate mice. J Biol Rhythms 17(6):512-9. [PubMed: 12465884]  [MGI Ref ID J:80788]

Zeiss CJ; Johnson EA. 2004. Proliferation of microglia, but not photoreceptors, in the outer nuclear layer of the rd-1 mouse. Invest Ophthalmol Vis Sci 45(3):971-6. [PubMed: 14985319]  [MGI Ref ID J:109731]

Zeiss CJ; Neal J; Johnson EA. 2004. Caspase-3 in postnatal retinal development and degeneration. Invest Ophthalmol Vis Sci 45(3):964-70. [PubMed: 14985318]  [MGI Ref ID J:88367]

Zencak D; Crippa SV; Tekaya M; Tanger E; Schorderet DE; Munier FL; van Lohuizen M; Arsenijevic Y. 2006. BMI1 loss delays photoreceptor degeneration in Rd1 mice. Bmi1 loss and neuroprotection in Rd1 mice. Adv Exp Med Biol 572:209-15. [PubMed: 17249577]  [MGI Ref ID J:154016]

Zencak D; Schouwey K; Chen D; Ekstrom P; Tanger E; Bremner R; van Lohuizen M; Arsenijevic Y. 2013. Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins. Proc Natl Acad Sci U S A 110(7):E593-601. [PubMed: 23359713]  [MGI Ref ID J:194322]

Zeng H; Ding M; Chen XX; Lu Q. 2014. Microglial NADPH oxidase activation mediates rod cell death in the retinal degeneration in rd mice. Neuroscience 275:54-61. [PubMed: 24929065]  [MGI Ref ID J:215397]

Zeng HY; Lu QJ; Liu Q; Liu KG; Wang NL. 2011. The role of CCR1 expression in the retinal degeneration in rd mice. Curr Eye Res 36(3):264-9. [PubMed: 21275605]  [MGI Ref ID J:179793]

Zhang N; Kolesnikov AV; Jastrzebska B; Mustafi D; Sawada O; Maeda T; Genoud C; Engel A; Kefalov VJ; Palczewski K. 2013. Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization. J Clin Invest 123(1):121-37. [PubMed: 23221340]  [MGI Ref ID J:194158]

Zhu Y; Tu DC; Denner D; Shane T; Fitzgerald CM; Van Gelder RN. 2007. Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses. Invest Ophthalmol Vis Sci 48(3):1268-75. [PubMed: 17325172]  [MGI Ref ID J:123259]

Tlr4Lps-d related

Abel B; Thieblemont N; Quesniaux VJ; Brown N; Mpagi J; Miyake K; Bihl F; Ryffel B. 2002. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol 169(6):3155-62. [PubMed: 12218133]  [MGI Ref ID J:78959]

An CH; Wang XM; Lam HC; Ifedigbo E; Washko GR; Ryter SW; Choi AM. 2012. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol 303(9):L748-57. [PubMed: 22983353]  [MGI Ref ID J:193661]

Andonegui G; Bonder CS; Green F; Mullaly SC; Zbytnuik L; Raharjo E; Kubes P. 2003. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest 111(7):1011-20. [PubMed: 12671050]  [MGI Ref ID J:82623]

Andonegui G; Goyert SM; Kubes P. 2002. Lipopolysaccharide-induced leukocyte-endothelial cell interactions: a role for CD14 versus toll-like receptor 4 within microvessels. J Immunol 169(4):2111-9. [PubMed: 12165539]  [MGI Ref ID J:120701]

Apte RN; Ascher O; Pluznik DH. 1977. Relationship between lipopolysaccharide-induced serum colony stimulating factor and interferon in regulation of murine granulopoiesis Exp Hematol 5(Suppl 2):12 (Abstr.).  [MGI Ref ID J:30692]

Arizmendi NG; Abel M; Mihara K; Davidson C; Polley D; Nadeem A; El Mays T; Gilmore BF; Walker B; Gordon JR; Hollenberg MD; Vliagoftis H. 2011. Mucosal allergic sensitization to cockroach allergens is dependent on proteinase activity and proteinase-activated receptor-2 activation. J Immunol 186(5):3164-72. [PubMed: 21270400]  [MGI Ref ID J:169393]

Askenase PW; Itakura A; Leite-de-Moraes MC; Lisbonne M; Roongapinun S; Goldstein DR; Szczepanik M. 2005. TLR-dependent IL-4 production by invariant Valpha14+Jalpha18+ NKT cells to initiate contact sensitivity in vivo. J Immunol 175(10):6390-401. [PubMed: 16272291]  [MGI Ref ID J:119381]

Babcock AA; Toft-Hansen H; Owens T. 2008. Signaling through MyD88 regulates leukocyte recruitment after brain injury. J Immunol 181(9):6481-90. [PubMed: 18941239]  [MGI Ref ID J:140719]

Babcock AA; Wirenfeldt M; Holm T; Nielsen HH; Dissing-Olesen L; Toft-Hansen H; Millward JM; Landmann R; Rivest S; Finsen B; Owens T. 2006. Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation. J Neurosci 26(49):12826-37. [PubMed: 17151286]  [MGI Ref ID J:116760]

Babelova A; Moreth K; Tsalastra-Greul W; Zeng-Brouwers J; Eickelberg O; Young MF; Bruckner P; Pfeilschifter J; Schaefer RM; Grone HJ; Schaefer L. 2009. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284(36):24035-48. [PubMed: 19605353]  [MGI Ref ID J:155256]

Bachmaier K; Toya S; Malik AB. 2014. Therapeutic administration of the chemokine CXCL1/KC abrogates autoimmune inflammatory heart disease. PLoS One 9(2):e89647. [PubMed: 24586934]  [MGI Ref ID J:214482]

Bandukwala HS; Clay BS; Tong J; Mody PD; Cannon JL; Shilling RA; Verbeek JS; Weinstock JV; Solway J; Sperling AI. 2007. Signaling through Fc gamma RIII is required for optimal T helper type (Th)2 responses and Th2-mediated airway inflammation. J Exp Med 204(8):1875-89. [PubMed: 17664287]  [MGI Ref ID J:125951]

Barber SA; Perera PY; Vogel SN. 1995. Defective ceramide response in C3H/HeJ (Lpsd) macrophages. J Immunol 155(5):2303-5. [PubMed: 7650365]  [MGI Ref ID J:28193]

Barrett TJ; Potter ME; Strockbine NA. 1990. Evidence for participation of the macrophage in Shiga-like toxin II-induced lethality in mice. Microb Pathog 9(2):95-103. [PubMed: 2277589]  [MGI Ref ID J:25812]

Barsness KA; Arcaroli J; Harken AH; Abraham E; Banerjee A; Reznikov L; McIntyre RC. 2004. Hemorrhage-induced acute lung injury is TLR-4 dependent. Am J Physiol Regul Integr Comp Physiol 287(3):R592-9. [PubMed: 15072965]  [MGI Ref ID J:95788]

Basu S; Kang TJ; Chen WH; Fenton MJ; Baillie L; Hibbs S; Cross AS. 2007. Role of Bacillus anthracis spore structures in macrophage cytokine responses. Infect Immun 75(5):2351-8. [PubMed: 17339355]  [MGI Ref ID J:121885]

Bauer AK; Dixon D; DeGraff LM; Cho HY; Walker CR; Malkinson AM; Kleeberger SR. 2005. Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis. J Natl Cancer Inst 97(23):1778-81. [PubMed: 16333033]  [MGI Ref ID J:104658]

Baumgarten G; Knuefermann P; Nozaki N; Sivasubramanian N; Mann DL; Vallejo JG. 2001. In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of toll-like receptor-4. J Infect Dis 183(11):1617-24. [PubMed: 11343210]  [MGI Ref ID J:120520]

Benjamin JT; Carver BJ; Plosa EJ; Yamamoto Y; Miller JD; Liu JH; van der Meer R; Blackwell TS; Prince LS. 2010. NF-kappaB activation limits airway branching through inhibition of Sp1-mediated fibroblast growth factor-10 expression. J Immunol 185(8):4896-903. [PubMed: 20861353]  [MGI Ref ID J:164723]

Berguer PM; Mundinano J; Piazzon I; Goldbaum FA. 2006. A polymeric bacterial protein activates dendritic cells via TLR4. J Immunol 176(4):2366-72. [PubMed: 16455994]  [MGI Ref ID J:129193]

Bhan U; Ballinger MN; Zeng X; Newstead MJ; Cornicelli MD; Standiford TJ. 2010. Cooperative interactions between TLR4 and TLR9 regulate interleukin 23 and 17 production in a murine model of gram negative bacterial pneumonia. PLoS One 5(3):e9896. [PubMed: 20360853]  [MGI Ref ID J:158954]

Bhattacharyya S; Kelley K; Melichian DS; Tamaki Z; Fang F; Su Y; Feng G; Pope RM; Budinger GR; Mutlu GM; Lafyatis R; Radstake T; Feghali-Bostwick C; Varga J. 2013. Toll-like receptor 4 signaling augments transforming growth factor-beta responses: a novel mechanism for maintaining and amplifying fibrosis in scleroderma. Am J Pathol 182(1):192-205. [PubMed: 23141927]  [MGI Ref ID J:192234]

Bou Ghanem EN; McElroy DS; D'Orazio SE. 2009. Multiple mechanisms contribute to the robust rapid gamma interferon response by CD8+ T cells during Listeria monocytogenes infection. Infect Immun 77(4):1492-501. [PubMed: 19179413]  [MGI Ref ID J:147169]

Braedel S; Radsak M; Einsele H; Latge JP; Michan A; Loeffler J; Haddad Z; Grigoleit U; Schild H; Hebart H. 2004. Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br J Haematol 125(3):392-9. [PubMed: 15086422]  [MGI Ref ID J:89264]

Branger J; Knapp S; Weijer S; Leemans JC; Pater JM; Speelman P; Florquin S; van der Poll T. 2004. Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun 72(2):788-94. [PubMed: 14742522]  [MGI Ref ID J:87807]

Buchholz BM; Billiar TR; Bauer AJ. 2010. Dominant role of the MyD88-dependent signaling pathway in mediating early endotoxin-induced murine ileus. Am J Physiol Gastrointest Liver Physiol 299(2):G531-8. [PubMed: 20508155]  [MGI Ref ID J:163354]

Buchholz BM; Chanthaphavong RS; Bauer AJ. 2009. Nonhemopoietic cell TLR4 signaling is critical in causing early lipopolysaccharide-induced ileus. J Immunol 183(10):6744-53. [PubMed: 19846874]  [MGI Ref ID J:157181]

Bunt SK; Clements VK; Hanson EM; Sinha P; Ostrand-Rosenberg S. 2009. Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol 85(6):996-1004. [PubMed: 19261929]  [MGI Ref ID J:149766]

Burch LH; Yang IV; Whitehead GS; Chao FG; Berman KG; Schwartz DA. 2006. The transcriptional response to lipopolysaccharide reveals a role for interferon-gamma in lung neutrophil recruitment. Am J Physiol Lung Cell Mol Physiol 291(4):L677-82. [PubMed: 16766576]  [MGI Ref ID J:144404]

Cabanski M; Steinmuller M; Marsh LM; Surdziel E; Seeger W; Lohmeyer J. 2008. PKR regulates TLR2/TLR4-dependent signaling in murine alveolar macrophages. Am J Respir Cell Mol Biol 38(1):26-31. [PubMed: 17690330]  [MGI Ref ID J:142999]

Campos MA; Rosinha GM; Almeida IC; Salgueiro XS; Jarvis BW; Splitter GA; Qureshi N; Bruna-Romero O; Gazzinelli RT; Oliveira SC. 2004. Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect Immun 72(1):176-86. [PubMed: 14688095]  [MGI Ref ID J:87836]

Canale-Zambrano JC; Auger ML; Haston CK. 2010. Toll-like receptor-4 genotype influences the survival of cystic fibrosis mice. Am J Physiol Gastrointest Liver Physiol 299(2):G381-90. [PubMed: 20522639]  [MGI Ref ID J:163347]

Cao CX; Yang QW; Lv FL; Cui J; Fu HB; Wang JZ. 2007. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 353(2):509-14. [PubMed: 17188246]  [MGI Ref ID J:117223]

Carmona J; Cruz A; Moreira-Teixeira L; Sousa C; Sousa J; Osorio NS; Saraiva AL; Svenson S; Kallenius G; Pedrosa J; Rodrigues F; Castro AG; Saraiva M. 2013. Strains Are Differentially Recognized by TLRs with an Impact on the Immune Response. PLoS One 8(6):e67277. [PubMed: 23840651]  [MGI Ref ID J:203717]

Caso JR; Pradillo JM; Hurtado O; Lorenzo P; Moro MA; Lizasoain I. 2007. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115(12):1599-608. [PubMed: 17372179]  [MGI Ref ID J:133065]

Cenedeze MA; Goncalves GM; Feitoza CQ; Wang PM; Damiao MJ; Bertocchi AP; Pacheco-Silva A; Camara NO. 2007. The role of toll-like receptor 4 in cisplatin-induced renal injury. Transplant Proc 39(2):409-11. [PubMed: 17362743]  [MGI Ref ID J:124472]

Chapes SK; Mosier DA; Wright AD; Hart ML. 2001. MHCII, Tlr4 and Nramp1 genes control host pulmonary resistance against the opportunistic bacterium Pasteurella pneumotropica. J Leukoc Biol 69(3):381-6. [PubMed: 11261784]  [MGI Ref ID J:69552]

Chassin C; Goujon JM; Darche S; du Merle L; Bens M; Cluzeaud F; Werts C; Ogier-Denis E; Le Bouguenec C; Buzoni-Gatel D; Vandewalle A. 2006. Renal collecting duct epithelial cells react to pyelonephritis-associated Escherichia coli by activating distinct TLR4-dependent and -independent inflammatory pathways. J Immunol 177(7):4773-84. [PubMed: 16982918]  [MGI Ref ID J:139309]

Chen L; Guo S; Ranzer MJ; DiPietro LA. 2013. Toll-like receptor 4 has an essential role in early skin wound healing. Erratum 2014 page 583 J Invest Dermatol 133(1):258-67. [PubMed: 22951730]  [MGI Ref ID J:196482]

Choi SH; Harkewicz R; Lee JH; Boullier A; Almazan F; Li AC; Witztum JL; Bae YS; Miller YI. 2009. Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ Res 104(12):1355-63. [PubMed: 19461045]  [MGI Ref ID J:164760]

Chung YW; Choi JH; Oh TY; Eun CS; Han DS. 2008. Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in Toll-like receptor 4 mutant mice. Clin Exp Immunol 151(1):182-9. [PubMed: 18005362]  [MGI Ref ID J:130145]

Cole BC; Mu HH; Pennock ND; Hasebe A; Chan FV; Washburn LR; Peltier MR. 2005. Isolation and partial purification of macrophage- and dendritic cell-activating components from Mycoplasma arthritidis: association with organism virulence and involvement with Toll-like receptor 2. Infect Immun 73(9):6039-47. [PubMed: 16113324]  [MGI Ref ID J:100413]

Constante M; Wang D; Raymond VA; Bilodeau M; Santos MM. 2007. Repression of repulsive guidance molecule C during inflammation is independent of Hfe and involves tumor necrosis factor-alpha. Am J Pathol 170(2):497-504. [PubMed: 17255318]  [MGI Ref ID J:117889]

Coutinho A; Moller G; Gronowicz E. 1975. Genetical control of B-cell responses. IV. Inheritance of the unresponsiveness to lipopolysaccharides. J Exp Med 142(1):253-8. [PubMed: 1097575]  [MGI Ref ID J:5557]

Cunningham PN; Wang Y; Guo R; He G; Quigg RJ. 2004. Role of Toll-like receptor 4 in endotoxin-induced acute renal failure. J Immunol 172(4):2629-35. [PubMed: 14764737]  [MGI Ref ID J:88059]

Curran CS; Demick KP; Mansfield JM. 2006. Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways. Cell Immunol 242(1):23-30. [PubMed: 17034774]  [MGI Ref ID J:116741]

D'Avila H; Melo RC; Parreira GG; Werneck-Barroso E; Castro-Faria-Neto HC; Bozza PT. 2006. Mycobacterium bovis bacillus Calmette-Guerin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J Immunol 176(5):3087-97. [PubMed: 16493068]  [MGI Ref ID J:129415]

Da Costa CU; Wantia N; Kirschning CJ; Busch DH; Rodriguez N; Wagner H; Miethke T. 2004. Heat shock protein 60 from Chlamydia pneumoniae elicits an unusual set of inflammatory responses via Toll-like receptor 2 and 4 in vivo. Eur J Immunol 34(10):2874. [PubMed: 15368304]  [MGI Ref ID J:92331]

Dabbagh K; Dahl ME; Stepick-Biek P; Lewis DB. 2002. Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J Immunol 168(9):4524-30. [PubMed: 11970998]  [MGI Ref ID J:113992]

De Filippo K; Henderson RB; Laschinger M; Hogg N. 2008. Neutrophil Chemokines KC and Macrophage-Inflammatory Protein-2 Are Newly Synthesized by Tissue Macrophages Using Distinct TLR Signaling Pathways. J Immunol 180(6):4308-15. [PubMed: 18322244]  [MGI Ref ID J:132950]

De Nardo D; Labzin LI; Kono H; Seki R; Schmidt SV; Beyer M; Xu D; Zimmer S; Lahrmann C; Schildberg FA; Vogelhuber J; Kraut M; Ulas T; Kerksiek A; Krebs W; Bode N; Grebe A; Fitzgerald ML; Hernandez NJ; Williams BR; Knolle P; Kneilling M; Rocken M; Lutjohann D; Wright SD; Schultze JL; Latz E. 2014. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol 15(2):152-60. [PubMed: 24317040]  [MGI Ref ID J:209298]

Dear JW; Yasuda H; Hu X; Hieny S; Yuen PS; Hewitt SM; Sher A; Star RA. 2006. Sepsis-induced organ failure is mediated by different pathways in the kidney and liver: acute renal failure is dependent on MyD88 but not renal cell apoptosis. Kidney Int 69(5):832-6. [PubMed: 16518342]  [MGI Ref ID J:136506]

Delano MJ; Kelly-Scumpia KM; Thayer TC; Winfield RD; Scumpia PO; Cuenca AG; Harrington PB; O'Malley KA; Warner E; Gabrilovich S; Mathews CE; Laface D; Heyworth PG; Ramphal R; Strieter RM; Moldawer LL; Efron PA. 2011. Neutrophil mobilization from the bone marrow during polymicrobial sepsis is dependent on CXCL12 signaling. J Immunol 187(2):911-8. [PubMed: 21690321]  [MGI Ref ID J:178027]

Dillon LM; Hida A; Garcia S; Prolla TA; Moraes CT. 2012. Long-term bezafibrate treatment improves skin and spleen phenotypes of the mtDNA mutator mouse. PLoS One 7(9):e44335. [PubMed: 22962610]  [MGI Ref ID J:191639]

Dugan CM; Fullerton AM; Roth RA; Ganey PE. 2011. Natural killer cells mediate severe liver injury in a murine model of halothane hepatitis. Toxicol Sci 120(2):507-18. [PubMed: 21245496]  [MGI Ref ID J:171014]

Dumont F; Barrois R. 1976. Electrokinetic properties of splenic lymphocytes from the low-lipopolysaccharide responder C3H/Hej mice. Folia Biol (Praha) 12(3):145-50. [PubMed: 1086804]  [MGI Ref ID J:5721]

Ehl S; Bischoff R; Ostler T; Vallbracht S; Schulte-Monting J; Poltorak A; Freudenberg M. 2004. The role of Toll-like receptor 4 versus interleukin-12 in immunity to respiratory syncytial virus. Eur J Immunol 34(4):1146-53. [PubMed: 15048726]  [MGI Ref ID J:88878]

Eisenbarth SC; Zhadkevich A; Ranney P; Herrick CA; Bottomly K. 2004. IL-4-dependent Th2 collateral priming to inhaled antigens independent of Toll-like receptor 4 and myeloid differentiation factor 88. J Immunol 172(7):4527-34. [PubMed: 15034070]  [MGI Ref ID J:88724]

Fairweather D; Yusung S; Frisancho S; Barrett M; Gatewood S; Steele R; Rose NR. 2003. IL-12 Receptor beta1 and Toll-Like Receptor 4 Increase IL-1beta- and IL-18-Associated Myocarditis and Coxsackievirus Replication. J Immunol 170(9):4731-7. [PubMed: 12707353]  [MGI Ref ID J:83020]

Fei M; Bhatia S; Oriss TB; Yarlagadda M; Khare A; Akira S; Saijo S; Iwakura Y; Fallert Junecko BA; Reinhart TA; Foreman O; Ray P; Kolls J; Ray A. 2011. TNF-{alpha} from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection. Proc Natl Acad Sci U S A 108(13):5360-5. [PubMed: 21402950]  [MGI Ref ID J:171233]

Frendeus B; Godaly G; Hang L; Karpman D; Svanborg C. 2001. Interleukin-8 receptor deficiency confers susceptibility to acute pyelonephritis. J Infect Dis 183 Suppl 1:S56-60. [PubMed: 11171016]  [MGI Ref ID J:120023]

Frink M; Hsieh YC; Thobe BM; Choudhry MA; Schwacha MG; Bland KI; Chaudry IH. 2007. TLR4 regulates Kupffer cell chemokine production, systemic inflammation and lung neutrophil infiltration following trauma-hemorrhage. Mol Immunol 44(10):2625-30. [PubMed: 17239439]  [MGI Ref ID J:118691]

Frisancho-Kiss S; Davis SE; Nyland JF; Frisancho JA; Cihakova D; Barrett MA; Rose NR; Fairweather D. 2007. Cutting edge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease. J Immunol 178(11):6710-4. [PubMed: 17513715]  [MGI Ref ID J:147853]

Frisard MI; McMillan RP; Marchand J; Wahlberg KA; Wu Y; Voelker KA; Heilbronn L; Haynie K; Muoio B; Li L; Hulver MW. 2010. Toll-like receptor 4 modulates skeletal muscle substrate metabolism. Am J Physiol Endocrinol Metab 298(5):E988-98. [PubMed: 20179247]  [MGI Ref ID J:162884]

Gangloff SC; Zahringer U; Blondin C; Guenounou M; Silver J; Goyert SM. 2005. Influence of CD14 on ligand interactions between lipopolysaccharide and its receptor complex. J Immunol 175(6):3940-5. [PubMed: 16148141]  [MGI Ref ID J:116691]

Ganta RR; Wilkerson MJ; Cheng C; Rokey AM; Chapes SK. 2002. Persistent Ehrlichia chaffeensis infection occurs in the absence of functional major histocompatibility complex class II genes. Infect Immun 70(1):380-8. [PubMed: 11748204]  [MGI Ref ID J:74569]

Gao C; Kozlowska A; Nechaev S; Li H; Zhang Q; Hossain DM; Kowolik CM; Chu P; Swiderski P; Diamond DJ; Pal SK; Raubitschek A; Kortylewski M. 2013. TLR9 signaling in the tumor microenvironment initiates cancer recurrence after radiotherapy. Cancer Res 73(24):7211-21. [PubMed: 24154870]  [MGI Ref ID J:206520]

Geisel J; Kahl F; Muller M; Wagner H; Kirschning CJ; Autenrieth IB; Frick JS. 2007. IL-6 and maturation govern TLR2 and TLR4 induced TLR agonist tolerance and cross-tolerance in dendritic cells. J Immunol 179(9):5811-8. [PubMed: 17947654]  [MGI Ref ID J:153008]

Geisel RE; Sakamoto K; Russell DG; Rhoades ER. 2005. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J Immunol 174(8):5007-15. [PubMed: 15814731]  [MGI Ref ID J:98152]

Georgel P; Jiang Z; Kunz S; Janssen E; Mols J; Hoebe K; Bahram S; Oldstone MB; Beutler B. 2007. Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology 362(2):304-13. [PubMed: 17292937]  [MGI Ref ID J:124488]

Giangreco A; Hoste E; Takai Y; Rosewell I; Watt FM. 2012. Epidermal Cadm1 expression promotes autoimmune alopecia via enhanced T cell adhesion and cytotoxicity. J Immunol 188(3):1514-22. [PubMed: 22210910]  [MGI Ref ID J:180748]

Glickstein LJ; Coburn JL. 2006. Short report: Association of macrophage inflammatory response and cell death after in vitro Borrelia burgdorferi infection with arthritis resistance. Am J Trop Med Hyg 75(5):964-7. [PubMed: 17123997]  [MGI Ref ID J:135947]

Goodridge HS; Marshall FA; Else KJ; Houston KM; Egan C; Al-Riyami L; Liew FY; Harnett W; Harnett MM. 2005. Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62. J Immunol 174(1):284-93. [PubMed: 15611251]  [MGI Ref ID J:95856]

Grobner S; Schulz S; Soldanova I; Gunst DS; Waibel M; Wesselborg S; Borgmann S; Autenrieth IB. 2007. Absence of Toll-like receptor 4 signaling results in delayed Yersinia enterocolitica YopP-induced cell death of dendritic cells. Infect Immun 75(1):512-7. [PubMed: 17074859]  [MGI Ref ID J:116649]

Guo S; Al-Sadi R; Said HM; Ma TY. 2013. Lipopolysaccharide Causes an Increase in Intestinal Tight Junction Permeability in Vitro and in Vivo by Inducing Enterocyte Membrane Expression and Localization of TLR-4 and CD14. Am J Pathol 182(2):375-87. [PubMed: 23201091]  [MGI Ref ID J:192566]

Ha H; Lee JH; Kim HN; Kwak HB; Kim HM; Lee SE; Rhee JH; Kim HH; Lee ZH. 2008. Stimulation by TLR5 modulates osteoclast differentiation through STAT1/IFN-beta. J Immunol 180(3):1382-9. [PubMed: 18209032]  [MGI Ref ID J:131353]

Ha T; Li Y; Hua F; Ma J; Gao X; Kelley J; Zhao A; Haddad GE; Williams DL; William Browder I; Kao RL; Li C. 2005. Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res 68(2):224-34. [PubMed: 15967420]  [MGI Ref ID J:106358]

Han H; Xu W; Headley MB; Jessup HK; Lee KS; Omori M; Comeau MR; Marshak-Rothstein A; Ziegler SF. 2012. Thymic stromal lymphopoietin (TSLP)-mediated dermal inflammation aggravates experimental asthma. Mucosal Immunol 5(3):342-51. [PubMed: 22354320]  [MGI Ref ID J:199558]

Hannan TJ; Mysorekar IU; Hung CS; Isaacson-Schmid ML; Hultgren SJ. 2010. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 6(8):. [PubMed: 20811584]  [MGI Ref ID J:167926]

Hara K; Iijima K; Elias MK; Seno S; Tojima I; Kobayashi T; Kephart GM; Kurabayashi M; Kita H. 2014. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa. J Immunol 192(9):4032-42. [PubMed: 24663677]  [MGI Ref ID J:209984]

Hartwig C; Mazzega M; Constabel H; Krishnaswamy JK; Gessner JE; Braun A; Tschernig T; Behrens GM. 2010. Fcgamma receptor-mediated antigen uptake by lung DC contributes to allergic airway hyper-responsiveness and inflammation. Eur J Immunol 40(5):1284-95. [PubMed: 20148421]  [MGI Ref ID J:160960]

Hasegawa M; Osaka T; Tawaratsumida K; Yamazaki T; Tada H; Chen GY; Tsuneda S; Nunez G; Inohara N. 2010. Transitions in oral and intestinal microflora composition and innate immune receptor-dependent stimulation during mouse development. Infect Immun 78(2):639-50. [PubMed: 19933833]  [MGI Ref ID J:157789]

Hasegawa T; Matsuguchi T; Noda K; Tanaka K; Kumamoto S; Shoyama Y; Yoshikai Y. 2002. Toll-like receptor 2 is at least partly involved in the antitumor activity of glycoprotein from Chlorella vulgaris. Int Immunopharmacol 2(4):579-89. [PubMed: 11962736]  [MGI Ref ID J:76114]

Headley MB; Zhou B; Shih WX; Aye T; Comeau MR; Ziegler SF. 2009. TSLP conditions the lung immune environment for the generation of pathogenic innate and antigen-specific adaptive immune responses. J Immunol 182(3):1641-7. [PubMed: 19155513]  [MGI Ref ID J:144318]

Herter S; Osterloh P; Hilf N; Rechtsteiner G; Hohfeld J; Rammensee HG; Schild H. 2005. Dendritic cell aggresome-like-induced structure formation and delayed antigen presentation coincide in influenza virus-infected dendritic cells. J Immunol 175(2):891-8. [PubMed: 16002687]  [MGI Ref ID J:100719]

Higgins SC; Lavelle EC; McCann C; Keogh B; McNeela E; Byrne P; O'Gorman B; Jarnicki A; McGuirk P; Mills KH. 2003. Toll-like receptor 4-mediated innate IL-10 activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology. J Immunol 171(6):3119-27. [PubMed: 12960338]  [MGI Ref ID J:85389]

Hiratsuka S; Watanabe A; Sakurai Y; Akashi-Takamura S; Ishibashi S; Miyake K; Shibuya M; Akira S; Aburatani H; Maru Y. 2008. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10(11):1349-55. [PubMed: 18820689]  [MGI Ref ID J:145634]

Hogan MM; Yancey KB; Vogel SN. 1989. Role of C5a in the induction of tumoricidal activity in C3H/HeJ (Lpsd) and C3H/OuJ (Lpsn) macrophages. J Leukoc Biol 46(6):565-70. [PubMed: 2509612]  [MGI Ref ID J:24638]

Holland WL; Bikman BT; Wang LP; Yuguang G; Sargent KM; Bulchand S; Knotts TA; Shui G; Clegg DJ; Wenk MR; Pagliassotti MJ; Scherer PE; Summers SA. 2011. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121(5):1858-70. [PubMed: 21490391]  [MGI Ref ID J:173952]

Hollestelle SC; De Vries MR; Van Keulen JK; Schoneveld AH; Vink A; Strijder CF; Van Middelaar BJ; Pasterkamp G; Quax PH; De Kleijn DP. 2004. Toll-like receptor 4 is involved in outward arterial remodeling. Circulation 109(3):393-8. [PubMed: 14699006]  [MGI Ref ID J:101995]

Hollingsworth JW; Whitehead G; Berman KG; Tekippe EM; Gilmour MI; Larkin JE; Quackenbush J; Schwartz DA. 2007. Genetic basis of murine antibacterial defense to streptococcal lung infection. Immunogenetics 59(9):713-24. [PubMed: 17701033]  [MGI Ref ID J:125210]

Hopkins W; Gendron-Fitzpatrick A; McCarthy DO; Haine JE; Uehling DT. 1996. Lipopolysaccharide-responder and nonresponder C3H mouse strains are equally susceptible to an induced Escherichia coli urinary tract infection. Infect Immun 64(4):1369-72. [PubMed: 8606102]  [MGI Ref ID J:33518]

Hopkins WJ; Gendron-Fitzpatrick A; Balish E; Uehling DT. 1998. Time course and host responses to Escherichia coli urinary tract infection in genetically distinct mouse strains. Infect Immun 66(6):2798-802. [PubMed: 9596750]  [MGI Ref ID J:48225]

Hoshino K; Takeuchi O; Kawai T; Sanjo H; Ogawa T; Takeda Y; Takeda K; Akira S. 1999. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162(7):3749-52. [PubMed: 10201887]  [MGI Ref ID J:53519]

Hsieh YC; Frink M; Thobe BM; Hsu JT; Choudhry MA; Schwacha MG; Bland KI; Chaudry IH. 2007. 17beta-Estradiol downregulates Kupffer cell TLR4-dependent p38 MAPK pathway and normalizes inflammatory cytokine production following trauma-hemorrhage. Mol Immunol 44(9):2165-72. [PubMed: 17182102]  [MGI Ref ID J:117916]

Hua F; Ha T; Ma J; Li Y; Kelley J; Gao X; Browder IW; Kao RL; Williams DL; Li C. 2007. Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism. J Immunol 178(11):7317-24. [PubMed: 17513782]  [MGI Ref ID J:147828]

Huang X; Du W; McClellan SA; Barrett RP; Hazlett LD. 2006. TLR4 is required for host resistance in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 47(11):4910-6. [PubMed: 17065506]  [MGI Ref ID J:123090]

Hui W; Jinxiang Z; Heshui W; Zhuoya L; Qichang Z. 2009. Bone marrow and non-bone marrow TLR4 regulates hepatic ischemia/reperfusion injury. Biochem Biophys Res Commun 389(2):328-32. [PubMed: 19723506]  [MGI Ref ID J:153516]

Hutchens MA; Luker KE; Sonstein J; Nunez G; Curtis JL; Luker GD. 2008. Protective effect of Toll-like receptor 4 in pulmonary vaccinia infection. PLoS Pathog 4(9):e1000153. [PubMed: 18802464]  [MGI Ref ID J:162716]

Ignacio-Souza LM; Bombassaro B; Pascoal LB; Portovedo MA; Razolli DS; Coope A; Victorio SC; de Moura RF; Nascimento LF; Arruda AP; Anhe GF; Milanski M; Velloso LA. 2014. Defective regulation of the ubiquitin/proteasome system in the hypothalamus of obese male mice. Endocrinology 155(8):2831-44. [PubMed: 24892821]  [MGI Ref ID J:214459]

Imai Y; Kuba K; Neely GG; Yaghubian-Malhami R; Perkmann T; van Loo G; Ermolaeva M; Veldhuizen R; Leung YH; Wang H; Liu H; Sun Y; Pasparakis M; Kopf M; Mech C; Bavari S; Peiris JS; Slutsky AS; Akira S; Hultqvist M; Holmdahl R; Nicholls J; Jiang C; Binder CJ; Penninger JM. 2008. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133(2):235-49. [PubMed: 18423196]  [MGI Ref ID J:145306]

Ito Y; Kawamura I; Kohda C; Tsuchiya K; Nomura T; Mitsuyama M. 2005. Seeligeriolysin O, a protein toxin of Listeria seeligeri, stimulates macrophage cytokine production via Toll-like receptors in a profile different from that induced by other bacterial ligands. Int Immunol 17(12):1597-606. [PubMed: 16291660]  [MGI Ref ID J:103653]

Jang S; Uematsu S; Akira S; Salgame P. 2004. IL-6 and IL-10 induction from dendritic cells in response to Mycobacterium tuberculosis is predominantly dependent on TLR2-mediated recognition. J Immunol 173(5):3392-7. [PubMed: 15322203]  [MGI Ref ID J:92712]

Jeyaseelan S; Chu HW; Young SK; Freeman MW; Worthen GS. 2005. Distinct roles of pattern recognition receptors CD14 and Toll-like receptor 4 in acute lung injury. Infect Immun 73(3):1754-63. [PubMed: 15731076]  [MGI Ref ID J:96680]

Jilling T; Simon D; Lu J; Meng FJ; Li D; Schy R; Thomson RB; Soliman A; Arditi M; Caplan MS. 2006. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 177(5):3273-82. [PubMed: 16920968]  [MGI Ref ID J:139539]

Jin JJ; Kim HD; Maxwell JA; Li L; Fukuchi K. 2008. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer's disease. J Neuroinflammation 5:23. [PubMed: 18510752]  [MGI Ref ID J:174833]

John B; Crispe IN. 2005. TLR-4 regulates CD8+ T cell trapping in the liver. J Immunol 175(3):1643-50. [PubMed: 16034104]  [MGI Ref ID J:107284]

Johnson DR; O'Connor JC; Hartman ME; Tapping RI; Freund GG. 2007. Acute hypoxia activates the neuroimmune system, which diabetes exacerbates. J Neurosci 27(5):1161-6. [PubMed: 17267571]  [MGI Ref ID J:117904]

Johnson GB; Riggs BL; Platt JL. 2004. A genetic basis for the 'Adonis' phenotype of low adiposity and strong bones. FASEB J 18(11):1282-4. [PubMed: 15208271]  [MGI Ref ID J:118467]

Jordan JM; Woods ME; Olano J; Walker DH. 2008. The absence of Toll-like receptor 4 signaling in C3H/HeJ mice predisposes them to overwhelming rickettsial infection and decreased protective Th1 responses. Infect Immun 76(8):3717-24. [PubMed: 18490467]  [MGI Ref ID J:139397]

Jude BA; Pobezinskaya Y; Bishop J; Parke S; Medzhitov RM; Chervonsky AV; Golovkina TV. 2003. Subversion of the innate immune system by a retrovirus. Nat Immunol 4(6):573-8. [PubMed: 12730691]  [MGI Ref ID J:83088]

Jung DY; Lee H; Jung BY; Ock J; Lee MS; Lee WH; Suk K. 2005. TLR4, but not TLR2, signals autoregulatory apoptosis of cultured microglia: a critical role of IFN-beta as a decision maker. J Immunol 174(10):6467-76. [PubMed: 15879150]  [MGI Ref ID J:99051]

Jung YW; Schoeb TR; Weaver CT; Chaplin DD. 2006. Antigen and lipopolysaccharide play synergistic roles in the effector phase of airway inflammation in mice. Am J Pathol 168(5):1425-34. [PubMed: 16651610]  [MGI Ref ID J:108686]

Juskewitch JE; Knudsen BE; Platt JL; Nath KA; Knutson KL; Brunn GJ; Grande JP. 2012. LPS-induced murine systemic inflammation is driven by parenchymal cell activation and exclusively predicted by early MCP-1 plasma levels. Am J Pathol 180(1):32-40. [PubMed: 22067909]  [MGI Ref ID J:180166]

Kallberg E; Vogl T; Liberg D; Olsson A; Bjork P; Wikstrom P; Bergh A; Roth J; Ivars F; Leanderson T. 2012. S100A9 interaction with TLR4 promotes tumor growth. PLoS One 7(3):e34207. [PubMed: 22470535]  [MGI Ref ID J:187129]

Kampfrath T; Maiseyeu A; Ying Z; Shah Z; Deiuliis JA; Xu X; Kherada N; Brook RD; Reddy KM; Padture NP; Parthasarathy S; Chen LC; Moffatt-Bruce S; Sun Q; Morawietz H; Rajagopalan S. 2011. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ Res 108(6):716-26. [PubMed: 21273555]  [MGI Ref ID J:183599]

Kang S; Lee SP; Kim KE; Kim HZ; Memet S; Koh GY. 2009. Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 113(11):2605-13. [PubMed: 19098273]  [MGI Ref ID J:146303]

Kang TH; Mao CP; Lee SY; Chen A; Lee JH; Kim TW; Alvarez RD; Roden RB; Pardoll D; Hung CF; Wu TC. 2013. Chemotherapy acts as an adjuvant to convert the tumor microenvironment into a highly permissive state for vaccination-induced antitumor immunity. Cancer Res 73(8):2493-504. [PubMed: 23418322]  [MGI Ref ID J:196970]

Karper JC; de Vries MR; van den Brand BT; Hoefer IE; Fischer JW; Jukema JW; Niessen HW; Quax PH. 2011. Toll-like receptor 4 is involved in human and mouse vein graft remodeling, and local gene silencing reduces vein graft disease in hypercholesterolemic APOE*3Leiden mice. Arterioscler Thromb Vasc Biol 31(5):1033-40. [PubMed: 21330606]  [MGI Ref ID J:191490]

Karst SY; Ward-Bailey PF; Donahue LR; Johnson KR; Davisson MT. 2007. Ruby eye 2-like (Ru2l): a new spontaneous mutation causing a light coat color and red eyes MGI Direct Data Submission :.  [MGI Ref ID J:123265]

Katz J; Zhang P; Martin M; Vogel SN; Michalek SM. 2006. Toll-like receptor 2 is required for inflammatory responses to Francisella tularensis LVS. Infect Immun 74(5):2809-16. [PubMed: 16622218]  [MGI Ref ID J:108092]

Kerepesi LA; Leon O; Lustigman S; Abraham D. 2005. Protective immunity to the larval stages of onchocerca volvulus is dependent on Toll-like receptor 4. Infect Immun 73(12):8291-7. [PubMed: 16299326]  [MGI Ref ID J:104303]

Khan MA; Ma C; Knodler LA; Valdez Y; Rosenberger CM; Deng W; Finlay BB; Vallance BA. 2006. Toll-like receptor 4 contributes to colitis development but not to host defense during Citrobacter rodentium infection in mice. Infect Immun 74(5):2522-36. [PubMed: 16622187]  [MGI Ref ID J:108095]

Kigerl KA; Lai W; Rivest S; Hart RP; Satoskar AR; Popovich PG. 2007. Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem 102(1):37-50. [PubMed: 17403033]  [MGI Ref ID J:122597]

Kilic U; Kilic E; Matter CM; Bassetti CL; Hermann DM. 2008. TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol Dis 31(1):33-40. [PubMed: 18486483]  [MGI Ref ID J:138382]

Kim HS; Han MS; Chung KW; Kim S; Kim E; Kim MJ; Jang E; Lee HA; Youn J; Akira S; Lee MS. 2007. Toll-like Receptor 2 Senses beta-Cell Death and Contributes to the Initiation of Autoimmune Diabetes. Immunity 27(2):321-33. [PubMed: 17707128]  [MGI Ref ID J:124334]

Kin NW; Sanders VM. 2006. CD86 stimulation on a B cell activates the phosphatidylinositol 3-kinase/Akt and phospholipase C gamma 2/protein kinase C alpha beta signaling pathways. J Immunol 176(11):6727-35. [PubMed: 16709832]  [MGI Ref ID J:131798]

Kirimanjeswara GS; Mann PB; Pilione M; Kennett MJ; Harvill ET. 2005. The complex mechanism of antibody-mediated clearance of Bordetella from the lungs requires TLR4. J Immunol 175(11):7504-11. [PubMed: 16301658]  [MGI Ref ID J:122156]

Kleeberger SR; Reddy SP; Zhang LY; Cho HY; Jedlicka AE. 2001. Toll-like receptor 4 mediates ozone-induced murine lung hyperpermeability via inducible nitric oxide synthase. Am J Physiol Lung Cell Mol Physiol 280(2):L326-33. [PubMed: 11159012]  [MGI Ref ID J:108671]

Koedel U; Angele B; Rupprecht T; Wagner H; Roggenkamp A; Pfister HW; Kirschning CJ. 2003. Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 170(1):438-44. [PubMed: 12496429]  [MGI Ref ID J:127283]

Koga T; Lim JH; Jono H; Ha UH; Xu H; Ishinaga H; Morino S; Xu X; Yan C; Kai H; Li JD. 2008. Tumor suppressor cylindromatosis acts as a negative regulator for Streptococcus pneumoniae-induced NFAT signaling. J Biol Chem 283(18):12546-54. [PubMed: 18332137]  [MGI Ref ID J:136838]

Kolli D; Bao X; Liu T; Hong C; Wang T; Garofalo RP; Casola A. 2011. Human metapneumovirus glycoprotein G inhibits TLR4-dependent signaling in monocyte-derived dendritic cells. J Immunol 187(1):47-54. [PubMed: 21632720]  [MGI Ref ID J:176038]

Komai-Koma M; Gilchrist DS; Xu D. 2009. Direct recognition of LPS by human but not murine CD8+ T cells via TLR4 complex. Eur J Immunol 39(6):1564-72. [PubMed: 19405031]  [MGI Ref ID J:149561]

Komura H; Miksa M; Wu R; Goyert SM; Wang P. 2009. Milk fat globule epidermal growth factor-factor VIII is down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. J Immunol 182(1):581-7. [PubMed: 19109191]  [MGI Ref ID J:142885]

Kozak W; Wrotek S; Kozak A. 2006. Pyrogenicity of CpG-DNA in mice: role of interleukin-6, cyclooxygenases, and nuclear factor-kappaB. Am J Physiol Regul Integr Comp Physiol 290(4):R871-80. [PubMed: 16293680]  [MGI Ref ID J:115760]

Kupz A; Guarda G; Gebhardt T; Sander LE; Short KR; Diavatopoulos DA; Wijburg OL; Cao H; Waithman JC; Chen W; Fernandez-Ruiz D; Whitney PG; Heath WR; Curtiss R 3rd; Tschopp J; Strugnell RA; Bedoui S. 2012. NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8 T cells. Nat Immunol 13(2):162-9. [PubMed: 22231517]  [MGI Ref ID J:181212]

Laird MH; Rhee SH; Perkins DJ; Medvedev AE; Piao W; Fenton MJ; Vogel SN. 2009. TLR4/MyD88/PI3K interactions regulate TLR4 signaling. J Leukoc Biol 85(6):966-77. [PubMed: 19289601]  [MGI Ref ID J:149619]

Lange S; Delbro DS; Jennische E; Mattsby-Baltzer I. 1996. The role of the Lps gene in experimental ulcerative colitis in mice. APMIS 104(11):823-33. [PubMed: 8982246]  [MGI Ref ID J:37271]

Laskin DL; Chen L; Hankey PA; Laskin JD. 2010. Role of STK in mouse liver macrophage and endothelial cell responsiveness during acute endotoxemia. J Leukoc Biol 88(2):373-82. [PubMed: 20453108]  [MGI Ref ID J:163944]

Lee EK; Kang SM; Paik DJ; Kim JM; Youn J. 2005. Essential roles of Toll-like receptor-4 signaling in arthritis induced by type II collagen antibody and LPS. Int Immunol 17(3):325-33. [PubMed: 15684036]  [MGI Ref ID J:96356]

Lee JS; Frevert CW; Matute-Bello G; Wurfel MM; Wong VA; Lin SM; Ruzinski J; Mongovin S; Goodman RB; Martin TR. 2005. TLR-4 pathway mediates the inflammatory response but not bacterial elimination in E. coli pneumonia. Am J Physiol Lung Cell Mol Physiol 289(5):L731-8. [PubMed: 16024722]  [MGI Ref ID J:115440]

Lee K; Hwang S; Paik DJ; Kim WK; Kim JM; Youn J. 2012. Bacillus-derived poly-gamma-glutamic acid reciprocally regulates the differentiation of T helper 17 and regulatory T cells and attenuates experimental autoimmune encephalomyelitis. Clin Exp Immunol 170(1):66-76. [PubMed: 22943202]  [MGI Ref ID J:188286]

Lee SJ; Kang JH; Choi SY; Suk KT; Kim DJ; Kwon OS. 2013. PKCdelta as a regulator for TGFbeta1-induced alpha-SMA production in a murine nonalcoholic steatohepatitis model. PLoS One 8(2):e55979. [PubMed: 23441159]  [MGI Ref ID J:199411]

Lehnardt S; Henneke P; Lien E; Kasper DL; Volpe JJ; Bechmann I; Nitsch R; Weber JR; Golenbock DT; Vartanian T. 2006. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol 177(1):583-92. [PubMed: 16785556]  [MGI Ref ID J:134437]

Lehnardt S; Lachance C; Patrizi S; Lefebvre S; Follett PL; Jensen FE; Rosenberg PA; Volpe JJ; Vartanian T. 2002. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22(7):2478-86. [PubMed: 11923412]  [MGI Ref ID J:109244]

Leite-de-Moraes MC; Herbelin A; Gombert JM; Vicari A; Papiernik M ; Dy M. 1997. Requirement of IL-7 for IL-4-producing potential of MHC class I-selected CD4-CD8-TCR alpha beta+ thymocytes. Int Immunol 9(1):73-9. [PubMed: 9043949]  [MGI Ref ID J:40708]

Leng CH; Chen HW; Chang LS; Liu HH; Liu HY; Sher YP; Chang YW; Lien SP; Huang TY; Chen MY; Chou AH; Chong P; Liu SJ. 2010. A recombinant lipoprotein containing an unsaturated fatty acid activates NF-kappaB through the TLR2 signaling pathway and induces a differential gene profile from a synthetic lipopeptide. Mol Immunol :. [PubMed: 20478617]  [MGI Ref ID J:160689]

Levy RM; Prince JM; Yang R; Mollen KP; Liao H; Watson GA; Fink MP; Vodovotz Y; Billiar TR. 2006. Systemic inflammation and remote organ damage following bilateral femur fracture requires Toll-like receptor 4. Am J Physiol Regul Integr Comp Physiol 291(4):R970-6. [PubMed: 16675630]  [MGI Ref ID J:144408]

Li H; Nookala S; Bina XR; Bina JE; Re F. 2006. Innate immune response to Francisella tularensis is mediated by TLR2 and caspase-1 activation. J Leukoc Biol 80(4):766-73. [PubMed: 16895974]  [MGI Ref ID J:113031]

Li Q; Cherayil BJ. 2004. Toll-like receptor 4 mutation impairs the macrophage TNFalpha response to peptidoglycan. Biochem Biophys Res Commun 325(1):91-6. [PubMed: 15522205]  [MGI Ref ID J:93526]

Liang CF; Liu JT; Wang Y; Xu A; Vanhoutte PM. 2013. Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. Arterioscler Thromb Vasc Biol 33(4):777-84. [PubMed: 23413427]  [MGI Ref ID J:217972]

Liang Y; Ma S; Zhang Y; Wang Y; Cheng Q; Wu Y; Jin Y; Zheng D; Wu D; Liu H. 2014. IL-1beta and TLR4 signaling are involved in the aggravated murine acute graft-versus-host disease caused by delayed bortezomib administration. J Immunol 192(3):1277-85. [PubMed: 24363427]  [MGI Ref ID J:207316]

Liu H; Redline RW; Han YW. 2007. Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response. J Immunol 179(4):2501-8. [PubMed: 17675512]  [MGI Ref ID J:151289]

Liu S; Kielian T. 2009. Microglial activation by Citrobacter koseri is mediated by TLR4- and MyD88-dependent pathways. J Immunol 183(9):5537-47. [PubMed: 19812209]  [MGI Ref ID J:156619]

Liu Y; Yuan Y; Li Y; Zhang J; Xiao G; Vodovotz Y; Billiar TR; Wilson MA; Fan J. 2009. Interacting neuroendocrine and innate and acquired immune pathways regulate neutrophil mobilization from bone marrow following hemorrhagic shock. J Immunol 182(1):572-80. [PubMed: 19109190]  [MGI Ref ID J:142886]

Looney MR; Nguyen JX; Hu Y; Van Ziffle JA; Lowell CA; Matthay MA. 2009. Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. J Clin Invest 119(11):3450-61. [PubMed: 19809160]  [MGI Ref ID J:154615]

Loser K; Vogl T; Voskort M; Lueken A; Kupas V; Nacken W; Klenner L; Kuhn A; Foell D; Sorokin L; Luger TA; Roth J; Beissert S. 2010. The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med 16(6):713-7. [PubMed: 20473308]  [MGI Ref ID J:161530]

Loures FV; Pina A; Felonato M; Araujo EF; Leite KR; Calich VL. 2010. Toll-like receptor 4 signaling leads to severe fungal infection associated with enhanced proinflammatory immunity and impaired expansion of regulatory T cells. Infect Immun 78(3):1078-88. [PubMed: 20008536]  [MGI Ref ID J:157774]

Mahieu T; Park JM; Revets H; Pasche B; Lengeling A; Staelens J; Wullaert A; Vanlaere I; Hochepied T; van Roy F; Karin M; Libert C. 2006. The wild-derived inbred mouse strain SPRET/Ei is resistant to LPS and defective in IFN-beta production. Proc Natl Acad Sci U S A 103(7):2292-7. [PubMed: 16455798]  [MGI Ref ID J:106066]

Malley R; Henneke P; Morse SC; Cieslewicz MJ; Lipsitch M; Thompson CM; Kurt-Jones E; Paton JC; Wessels MR; Golenbock DT. 2003. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 100(4):1966-71. [PubMed: 12569171]  [MGI Ref ID J:81975]

Mann PB; Elder KD; Kennett MJ; Harvill ET. 2004. Toll-like receptor 4-dependent early elicited tumor necrosis factor alpha expression is critical for innate host defense against Bordetella bronchiseptica. Infect Immun 72(11):6650-8. [PubMed: 15501798]  [MGI Ref ID J:93263]

Mann PB; Kennett MJ; Harvill ET. 2004. Toll-like receptor 4 is critical to innate host defense in a murine model of bordetellosis. J Infect Dis 189(5):833-6. [PubMed: 14976600]  [MGI Ref ID J:88587]

Mann PB; Wolfe D; Latz E; Golenbock D; Preston A; Harvill ET. 2005. Comparative toll-like receptor 4-mediated innate host defense to Bordetella infection. Infect Immun 73(12):8144-52. [PubMed: 16299309]  [MGI Ref ID J:104298]

Maroso M; Balosso S; Ravizza T; Liu J; Aronica E; Iyer AM; Rossetti C; Molteni M; Casalgrandi M; Manfredi AA; Bianchi ME; Vezzani A. 2010. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16(4):413-9. [PubMed: 20348922]  [MGI Ref ID J:159308]

Mattioli TA; Leduc-Pessah H; Skelhorne-Gross G; Nicol CJ; Milne B; Trang T; Cahill CM. 2014. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence. PLoS One 9(5):e97361. [PubMed: 24824631]  [MGI Ref ID J:216345]

McCartney-Francis N; Jin W; Wahl SM. 2004. Aberrant Toll receptor expression and endotoxin hypersensitivity in mice lacking a functional TGF-beta 1 signaling pathway. J Immunol 172(6):3814-21. [PubMed: 15004187]  [MGI Ref ID J:88604]

Medoff BD; Wain JC; Seung E; Jackobek R; Means TK; Ginns LC; Farber JM; Luster AD. 2006. CXCR3 and its ligands in a murine model of obliterative bronchiolitis: regulation and function. J Immunol 176(11):7087-95. [PubMed: 16709871]  [MGI Ref ID J:131767]

Meng X; Ao L; Song Y; Raeburn CD; Fullerton DA; Harken AH. 2005. Signaling for myocardial depression in hemorrhagic shock: roles of Toll-like receptor 4 and p55 TNF-alpha receptor. Am J Physiol Regul Integr Comp Physiol 288(3):R600-6. [PubMed: 15514106]  [MGI Ref ID J:96316]

Milanski M; Arruda AP; Coope A; Ignacio-Souza LM; Nunez CE; Roman EA; Romanatto T; Pascoal LB; Caricilli AM; Torsoni MA; Prada PO; Saad MJ; Velloso LA. 2012. Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61(6):1455-62. [PubMed: 22522614]  [MGI Ref ID J:196822]

Mishra PK; Wu W; Rozo C; Hallab NJ; Benevenia J; Gause WC. 2011. Micrometer-sized titanium particles can induce potent Th2-type responses through TLR4-independent pathways. J Immunol 187(12):6491-8. [PubMed: 22095717]  [MGI Ref ID J:180376]

Moayeri M; Martinez NW; Wiggins J; Young HA; Leppla SH. 2004. Mouse susceptibility to anthrax lethal toxin is influenced by genetic factors in addition to those controlling macrophage sensitivity. Infect Immun 72(8):4439-47. [PubMed: 15271901]  [MGI Ref ID J:91775]

Mollen KP; Levy RM; Prince JM; Hoffman RA; Scott MJ; Kaczorowski DJ; Vallabhaneni R; Vodovotz Y; Billiar TR. 2008. Systemic inflammation and end organ damage following trauma involves functional TLR4 signaling in both bone marrow-derived cells and parenchymal cells. J Leukoc Biol 83(1):80-8. [PubMed: 17925504]  [MGI Ref ID J:130089]

Monteiro AC; Schmitz V; Svensjo E; Gazzinelli RT; Almeida IC; Todorov A; de Arruda LB; Torrecilhas AC; Pesquero JB; Morrot A; Bouskela E; Bonomo A; Lima AP; Muller-Esterl W; Scharfstein J. 2006. Cooperative activation of TLR2 and bradykinin B2 receptor is required for induction of type 1 immunity in a mouse model of subcutaneous infection by Trypanosoma cruzi. J Immunol 177(9):6325-35. [PubMed: 17056563]  [MGI Ref ID J:140513]

Moreth K; Brodbeck R; Babelova A; Gretz N; Spieker T; Zeng-Brouwers J; Pfeilschifter J; Young MF; Schaefer RM; Schaefer L. 2010. The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis. J Clin Invest 120(12):4251-72. [PubMed: 21084753]  [MGI Ref ID J:171866]

Mortaz E; Redegeld FA; Nijkamp FP; Wong HR; Engels F. 2006. Acetylsalicylic acid-induced release of HSP70 from mast cells results in cell activation through TLR pathway. Exp Hematol 34(1):8-18. [PubMed: 16413386]  [MGI Ref ID J:104576]

Moses T; Wagner L; Fleming SD. 2009. TLR4-mediated Cox-2 expression increases intestinal ischemia/reperfusion-induced damage. J Leukoc Biol 86(4):971-80. [PubMed: 19564573]  [MGI Ref ID J:153441]

Mottillo EP; Shen XJ; Granneman JG. 2007. Role of hormone-sensitive lipase in beta-adrenergic remodeling of white adipose tissue. Am J Physiol Endocrinol Metab 293(5):E1188-97. [PubMed: 17711991]  [MGI Ref ID J:126761]

Mu HH; Sawitzke AD; Cole BC. 2001. Presence of Lps(d) mutation influences cytokine regulation in vivo by the Mycoplasma arthritidis mitogen superantigen and lethal toxicity in mice infected with M. arthritidis. Infect Immun 69(6):3837-44. [PubMed: 11349049]  [MGI Ref ID J:69541]

Mueller M; Postius S; Thimm JG; Gueinzius K; Muehldorfer I; Hermann C. 2004. Toll-like receptors 2 and 4 do not contribute to clearance of Chlamydophila pneumoniae in mice, but are necessary for the release of monokines. Immunobiology 209(8):599-608. [PubMed: 15638128]  [MGI Ref ID J:101915]

Naseemuddin M; Iqbal A; Nasti TH; Ghandhi JL; Kapadia AD; Yusuf N. 2012. Cell mediated immune responses through TLR4 prevents DMBA-induced mammary carcinogenesis in mice. Int J Cancer 130(4):765-74. [PubMed: 21455984]  [MGI Ref ID J:181012]

Neal MD; Leaphart C; Levy R; Prince J; Billiar TR; Watkins S; Li J; Cetin S; Ford H; Schreiber A; Hackam DJ. 2006. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 176(5):3070-9. [PubMed: 16493066]  [MGI Ref ID J:129416]

Netea MG; Van Der Graaf CA; Vonk AG; Verschueren I; Van Der Meer JW; Kullberg BJ. 2002. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185(10):1483-9. [PubMed: 11992285]  [MGI Ref ID J:126008]

Nishikubo K; Imanaka-Yoshida K; Tamaki S; Hiroe M; Yoshida T; Adachi Y; Yasutomi Y. 2007. Th1-type immune responses by Toll-like receptor 4 signaling are required for the development of myocarditis in mice with BCG-induced myocarditis. J Autoimmun 29(2-3):146-53. [PubMed: 17698322]  [MGI Ref ID J:125182]

Nolte MA; Leibundgut-Landmann S; Joffre O; Reis e Sousa C. 2007. Dendritic cell quiescence during systemic inflammation driven by LPS stimulation of radioresistant cells in vivo. J Exp Med 204(6):1487-501. [PubMed: 17548522]  [MGI Ref ID J:125853]

O'Brien AD; Weinstein DA; Soliman MY; Rosenstreich DL. 1985. Additional evidence that the Lps gene locus regulates natural resistance to S. typhimurium in mice. J Immunol 134(5):2820-3. [PubMed: 3884708]  [MGI Ref ID J:7783]

Ochoa-Cortes F; Ramos-Lomas T; Miranda-Morales M; Spreadbury I; Ibeakanma C; Barajas-Lopez C; Vanner S. 2010. Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am J Physiol Gastrointest Liver Physiol 299(3):G723-32. [PubMed: 20576919]  [MGI Ref ID J:163333]

Ogawa A; Tagawa T; Nishimura H; Yajima T; Abe T; Arai T; Taniguchi M; Takeda K; Akira S; Nimura Y; Yoshikai Y. 2006. Toll-like receptors 2 and 4 are differentially involved in Fas dependent apoptosis in Peyer's patch and the liver at an early stage after bile duct ligation in mice. Gut 55(1):105-13. [PubMed: 16118350]  [MGI Ref ID J:135830]

Oh GS; Kim HJ; Choi JH; Shen A; Kim CH; Kim SJ; Shin SR; Hong SH; Kim Y; Park C; Lee SJ; Akira S; Park R; So HS. 2011. Activation of lipopolysaccharide-TLR4 signaling accelerates the ototoxic potential of cisplatin in mice. J Immunol 186(2):1140-50. [PubMed: 21148032]  [MGI Ref ID J:168789]

Ohashi K; Burkart V; Flohe S; Kolb H. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164(2):558-61. [PubMed: 10623794]  [MGI Ref ID J:59296]

Oliveira AC; Peixoto JR; de Arruda LB; Campos MA; Gazzinelli RT; Golenbock DT; Akira S; Previato JO; Mendonca-Previato L; Nobrega A; Bellio M. 2004. Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J Immunol 173(9):5688-96. [PubMed: 15494520]  [MGI Ref ID J:93767]

Oyama J; Blais C Jr; Liu X; Pu M; Kobzik L; Kelly RA; Bourcier T. 2004. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109(6):784-9. [PubMed: 14970116]  [MGI Ref ID J:102150]

Pacheco P; Vieira-de-Abreu A; Gomes RN; Barbosa-Lima G; Wermelinger LB; Maya-Monteiro CM; Silva AR; Bozza MT; Castro-Faria-Neto HC; Bandeira-Melo C; Bozza PT. 2007. Monocyte chemoattractant protein-1/CC chemokine ligand 2 controls microtubule-driven biogenesis and leukotriene B4-synthesizing function of macrophage lipid bodies elicited by innate immune response. J Immunol 179(12):8500-8. [PubMed: 18056397]  [MGI Ref ID J:155194]

Palliser D; Huang Q; Hacohen N; Lamontagne SP; Guillen E; Young RA; Eisen HN. 2004. A role for Toll-like receptor 4 in dendritic cell activation and cytolytic CD8+ T cell differentiation in response to a recombinant heat shock fusion protein. J Immunol 172(5):2885-93. [PubMed: 14978090]  [MGI Ref ID J:88229]

Park JE; Kim YI; Yi AK. 2009. Protein kinase D1 is essential for MyD88-dependent TLR signaling pathway. J Immunol 182(10):6316-27. [PubMed: 19414785]  [MGI Ref ID J:148236]

Patnode ML; Bando JK; Krummel MF; Locksley RM; Rosen SD. 2014. Leukotriene B4 amplifies eosinophil accumulation in response to nematodes. J Exp Med 211(7):1281-8. [PubMed: 24889202]  [MGI Ref ID J:214462]

Patole PS; Schubert S; Hildinger K; Khandoga S; Khandoga A; Segerer S; Henger A; Kretzler M; Werner M; Krombach F; Schlondorff D; Anders HJ. 2005. Toll-like receptor-4: renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis. Kidney Int 68(6):2582-7. [PubMed: 16316333]  [MGI Ref ID J:116903]

Peyssonnaux C; Zinkernagel AS; Datta V; Lauth X; Johnson RS; Nizet V. 2006. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 107(9):3727-32. [PubMed: 16391018]  [MGI Ref ID J:132558]

Pierer M; Wagner U; Rossol M; Ibrahim S. 2011. Toll-like receptor 4 is involved in inflammatory and joint destructive pathways in collagen-induced arthritis in DBA1J mice. PLoS One 6(8):e23539. [PubMed: 21858160]  [MGI Ref ID J:176361]

Poltorak A; He X; Smirnova I; Liu MY; Huffel CV; Du X; Birdwell D; Alejos E; Silva M; Galanos C; Freudenberg M; Ricciardi-Castagnoli P; Layton B; Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085-8. [PubMed: 9851930]  [MGI Ref ID J:51522]

Popovic ZV; Wang S; Papatriantafyllou M; Kaya Z; Porubsky S; Meisner M; Bonrouhi M; Burgdorf S; Young MF; Schaefer L; Grone HJ. 2011. The proteoglycan biglycan enhances antigen-specific T cell activation potentially via MyD88 and TRIF pathways and triggers autoimmune perimyocarditis. J Immunol 187(12):6217-26. [PubMed: 22095710]  [MGI Ref ID J:180379]

Prince LS; Okoh VO; Moninger TO; Matalon S. 2004. Lipopolysaccharide increases alveolar type II cell number in fetal mouse lungs through Toll-like receptor 4 and NF-kappaB. Am J Physiol Lung Cell Mol Physiol 287(5):L999-1006. [PubMed: 15475494]  [MGI Ref ID J:98217]

Qureshi ST; Gros P; Malo D. 1999. The Lps locus: genetic regulation of host responses to bacterial lipopolysaccharide Inflamm Res 48(12):613-20. [PubMed: 10669111]  [MGI Ref ID J:60495]

Qureshi ST; Lariviere L; Leveque G; Clermont S; Moore KJ; Gros P ; Malo D. 1999. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4) [see comments] J Exp Med 189(4):615-25. [PubMed: 9989976]  [MGI Ref ID J:53343]

Rafi A; Nagarkatti M; Nagarkatti PS. 1997. Hyaluronate-CD44 interactions can induce murine B-cell activation. Blood 89(8):2901-8. [PubMed: 9108410]  [MGI Ref ID J:39824]

Rathinam VA; Appledorn DM; Hoag KA; Amalfitano A; Mansfield LS. 2009. Campylobacter jejuni-induced activation of dendritic cells involves cooperative signaling through Toll-like receptor 4 (TLR4)-MyD88 and TLR4-TRIF axes. Infect Immun 77(6):2499-507. [PubMed: 19332531]  [MGI Ref ID J:149359]

Redecha P; Tilley R; Tencati M; Salmon JE; Kirchhofer D; Mackman N; Girardi G. 2007. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood 110(7):2423-31. [PubMed: 17536017]  [MGI Ref ID J:147022]

Reese TA; Liang HE; Tager AM; Luster AD; Van Rooijen N; Voehringer D; Locksley RM. 2007. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447(7140):92-6. [PubMed: 17450126]  [MGI Ref ID J:122735]

Reiling N; Holscher C; Fehrenbach A; Kroger S; Kirschning CJ; Goyert S; Ehlers S. 2002. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 169(7):3480-4. [PubMed: 12244136]  [MGI Ref ID J:120386]

Reino DC; Pisarenko V; Palange D; Doucet D; Bonitz RP; Lu Q; Colorado I; Sheth SU; Chandler B; Kannan KB; Ramanathan M; Xu da Z; Deitch EA; Feinman R. 2011. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice. PLoS One 6(8):e14829. [PubMed: 21829592]  [MGI Ref ID J:176529]

Reynolds JM; Martinez GJ; Chung Y; Dong C. 2012. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A 109(32):13064-9. [PubMed: 22826216]  [MGI Ref ID J:188488]

Rico MA; Infantes S; Ramos M; Trento A; Johnstone C; Melero JA; Del Val M; Lopez D. 2010. TLR4-independent upregulation of activation markers in mouse B lymphocytes infected by HRSV. Mol Immunol 47(9):1802-7. [PubMed: 20362337]  [MGI Ref ID J:160628]

Riehl TE; Foster L; Stenson WF. 2012. Hyaluronic acid is radioprotective in the intestine through a TLR4 and COX-2-mediated mechanism. Am J Physiol Gastrointest Liver Physiol 302(3):G309-16. [PubMed: 22038822]  [MGI Ref ID J:183323]

Robays LJ; Lanckacker EA; Moerloose KB; Maes T; Bracke KR; Brusselle GG; Joos GF; Vermaelen KY. 2009. Concomitant inhalation of cigarette smoke and aerosolized protein activates airway dendritic cells and induces allergic airway inflammation in a TLR-independent way. J Immunol 183(4):2758-66. [PubMed: 19635922]  [MGI Ref ID J:151472]

Rocchi R; Kimura H; Tzou SC; Suzuki K; Rose NR; Pinchera A; Ladenson PW; Caturegli P. 2007. Toll-like receptor-MyD88 and Fc receptor pathways of mast cells mediate the thyroid dysfunctions observed during nonthyroidal illness. Proc Natl Acad Sci U S A 104(14):6019-24. [PubMed: 17389381]  [MGI Ref ID J:120373]

Rodriguez N; Lang R; Wantia N; Cirl C; Ertl T; Durr S; Wagner H; Miethke T. 2008. Induction of iNOS by Chlamydophila pneumoniae requires MyD88-dependent activation of JNK. J Leukoc Biol 84(6):1585-93. [PubMed: 18799752]  [MGI Ref ID J:142747]

Rodriguez N; Wantia N; Fend F; Durr S; Wagner H; Miethke T. 2006. Differential involvement of TLR2 and TLR4 in host survival during pulmonary infection with Chlamydia pneumoniae. Eur J Immunol 36(5):1145-55. [PubMed: 16609927]  [MGI Ref ID J:114778]

Roffe E; Rothfuchs AG; Santiago HC; Marino AP; Ribeiro-Gomes FL; Eckhaus M; Antonelli LR; Murphy PM. 2012. IL-10 limits parasite burden and protects against fatal myocarditis in a mouse model of Trypanosoma cruzi infection. J Immunol 188(2):649-60. [PubMed: 22156594]  [MGI Ref ID J:180798]

Romero CD; Varma TK; Hobbs JB; Reyes A; Driver B; Sherwood ER. 2011. The toll-like receptor 4 agonist monophosphoryl lipid a augments innate host resistance to systemic bacterial infection. Infect Immun 79(9):3576-87. [PubMed: 21646453]  [MGI Ref ID J:175569]

Ropelle ER; Flores MB; Cintra DE; Rocha GZ; Pauli JR; Morari J; de Souza CT; Moraes JC; Prada PO; Guadagnini D; Marin RM; Oliveira AG; Augusto TM; Carvalho HF; Velloso LA; Saad MJ; Carvalheira JB. 2010. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol 8(8):. [PubMed: 20808781]  [MGI Ref ID J:166779]

Rosenstein RK; Bezbradica JS; Yu S; Medzhitov R. 2014. Signaling pathways activated by a protease allergen in basophils. Proc Natl Acad Sci U S A 111(46):E4963-71. [PubMed: 25369937]  [MGI Ref ID J:216741]

Ruckdeschel K; Pfaffinger G; Haase R; Sing A; Weighardt H; Hacker G; Holzmann B; Heesemann J. 2004. Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol 173(5):3320-8. [PubMed: 15322195]  [MGI Ref ID J:92674]

Rudick CN; Jiang M; Yaggie RE; Pavlov VI; Done J; Heckman CJ; Whitfield C; Schaeffer AJ; Klumpp DJ. 2012. O-antigen modulates infection-induced pain states. PLoS One 7(8):e41273. [PubMed: 22899994]  [MGI Ref ID J:189938]

Rumbaut RE; Bellera RV; Randhawa JK; Shrimpton CN; Dasgupta SK; Dong JF; Burns AR. 2006. Endotoxin enhances microvascular thrombosis in mouse cremaster venules via a TLR4-dependent, neutrophil-independent mechanism. Am J Physiol Heart Circ Physiol 290(4):H1671-9. [PubMed: 16284241]  [MGI Ref ID J:108441]

Sanders CJ; Yu Y; Moore DA 3rd; Williams IR; Gewirtz AT. 2006. Humoral immune response to flagellin requires T cells and activation of innate immunity. J Immunol 177(5):2810-8. [PubMed: 16920916]  [MGI Ref ID J:139555]

Schaefer L; Babelova A; Kiss E; Hausser HJ; Baliova M; Krzyzankova M; Marsche G; Young MF; Mihalik D; Gotte M; Malle E; Schaefer RM; Grone HJ. 2005. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 115(8):2223-2233. [PubMed: 16025156]  [MGI Ref ID J:100228]

Schilling JD; Mulvey MA; Vincent CD; Lorenz RG; Hultgren SJ. 2001. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J Immunol 166(2):1148-55. [PubMed: 11145696]  [MGI Ref ID J:66850]

Schurr JR; Young E; Byrne P; Steele C; Shellito JE; Kolls JK. 2005. Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria. Infect Immun 73(1):532-45. [PubMed: 15618193]  [MGI Ref ID J:94838]

Scott MJ; Billiar TR. 2008. Beta2-integrin-induced p38 MAPK activation is a key mediator in the CD14/TLR4/MD2-dependent uptake of lipopolysaccharide by hepatocytes. J Biol Chem 283(43):29433-46. [PubMed: 18701460]  [MGI Ref ID J:142561]

Segreti J; Gheusi G; Dantzer R; Kelley KW; Johnson RW. 1997. Defect in interleukin-1beta secretion prevents sickness behavior in C3H/HeJ mice. Physiol Behav 61(6):873-8. [PubMed: 9177560]  [MGI Ref ID J:41154]

Sen G; Khan AQ; Chen Q; Snapper CM. 2005. In vivo humoral immune responses to isolated pneumococcal polysaccharides are dependent on the presence of associated TLR ligands. J Immunol 175(5):3084-91. [PubMed: 16116197]  [MGI Ref ID J:113209]

Shalaby KH; Allard-Coutu A; O'Sullivan MJ; Nakada E; Qureshi ST; Day BJ; Martin JG. 2013. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the TLR4-TRIF pathway. J Immunol 191(2):922-33. [PubMed: 23776177]  [MGI Ref ID J:205448]

Shalaby KH; Jo T; Nakada E; Allard-Coutu A; Tsuchiya K; Hirota N; Qureshi ST; Maghni K; Rioux CR; Martin JG. 2012. ICOS-expressing CD4 T cells induced via TLR4 in the nasal mucosa are capable of inhibiting experimental allergic asthma. J Immunol 189(6):2793-804. [PubMed: 22908333]  [MGI Ref ID J:190232]

Shen XD; Ke B; Zhai Y; Gao F; Busuttil RW; Cheng G; Kupiec-Weglinski JW. 2005. Toll-like receptor and heme oxygenase-1 signaling in hepatic ischemia/reperfusion injury. Am J Transplant 5(8):1793-800. [PubMed: 15996225]  [MGI Ref ID J:114368]

Silver K; Ferry H; Crockford T; Cornall RJ. 2006. TLR4, TLR9 and MyD88 are not required for the positive selection of autoreactive B cells into the primary repertoire. Eur J Immunol 36(6):1404-12. [PubMed: 16703567]  [MGI Ref ID J:115059]

Silvia OJ; Urosevic N. 1999. Variations in LPS responsiveness among different mouse substrains of C3H lineage and their congenic derivative sublines. Immunogenetics 50(5-6):354-7. [PubMed: 10630301]  [MGI Ref ID J:169915]

Sing A; Roggenkamp A; Geiger AM; Heesemann J. 2002. Yersinia enterocolitica evasion of the host innate immune response by V antigen-induced IL-10 production of macrophages is abrogated in IL-10-deficient mice. J Immunol 168(3):1315-21. [PubMed: 11801671]  [MGI Ref ID J:127288]

Skidmore BJ; Chiller JM; Weigle WO; Riblet R; Watson J. 1976. Immunologic properties of bacterial lipopolysaccharide (LPS). III. Genetic linkage between the in vitro mitogenic and in vivo adjuvant properties of LPS. J Exp Med 143(1):143-50. [PubMed: 1244416]  [MGI Ref ID J:5593]

Sodhi CP; Shi XH; Richardson WM; Grant ZS; Shapiro RA; Prindle T Jr; Branca M; Russo A; Gribar SC; Ma C; Hackam DJ. 2010. Toll-like receptor-4 inhibits enterocyte proliferation via impaired beta-catenin signaling in necrotizing enterocolitis. Gastroenterology 138(1):185-96. [PubMed: 19786028]  [MGI Ref ID J:192520]

Sokol CL; Barton GM; Farr AG; Medzhitov R. 2008. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 9(3):310-8. [PubMed: 18300366]  [MGI Ref ID J:131552]

Sokol CL; Chu NQ; Yu S; Nish SA; Laufer TM; Medzhitov R. 2009. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10(7):713-20. [PubMed: 19465907]  [MGI Ref ID J:150141]

Sorgi CA; Secatto A; Fontanari C; Turato WM; Belanger C; de Medeiros AI; Kashima S; Marleau S; Covas DT; Bozza PT; Faccioli LH. 2009. Histoplasma capsulatum cell wall {beta}-glucan induces lipid body formation through CD18, TLR2, and dectin-1 receptors: correlation with leukotriene B4 generation and role in HIV-1 infection. J Immunol 182(7):4025-35. [PubMed: 19299700]  [MGI Ref ID J:147134]

Spiller S; Dreher S; Meng G; Grabiec A; Thomas W; Hartung T; Pfeffer K; Hochrein H; Brade H; Bessler W; Wagner H; Kirschning CJ. 2007. Cellular recognition of trimyristoylated peptide or enterobacterial lipopolysaccharide via both TLR2 and TLR4. J Biol Chem 282(18):13190-8. [PubMed: 17353199]  [MGI Ref ID J:121930]

Spinner DS; Cho IS; Park SY; Kim JI; Meeker HC; Ye X; Lafauci G; Kerr DJ; Flory MJ; Kim BS; Kascsak RB; Wisniewski T; Levis WR; Schuller-Levis GB; Carp RI; Park E; Kascsak RJ. 2008. Accelerated prion disease pathogenesis in Toll-like receptor 4 signaling-mutant mice. J Virol 82(21):10701-8. [PubMed: 18715916]  [MGI Ref ID J:142968]

Standiford LR; Standiford TJ; Newstead MJ; Zeng X; Ballinger MN; Kovach MA; Reka AK; Bhan U. 2012. TLR4-dependent GM-CSF protects against lung injury in Gram-negative bacterial pneumonia. Am J Physiol Lung Cell Mol Physiol 302(5):L447-54. [PubMed: 22160309]  [MGI Ref ID J:183448]

Steiner AA; Chakravarty S; Rudaya AY; Herkenham M; Romanovsky AA. 2006. Bacterial lipopolysaccharide fever is initiated via Toll-like receptor 4 on hematopoietic cells. Blood 107(10):4000-2. [PubMed: 16403908]  [MGI Ref ID J:132740]

Stewart PW; Chapes SK. 2003. Role of major histocompatibility complex class II in resistance of mice to naturally acquired infection with Syphacia obvelata. Comp Med 53(1):70-4. [PubMed: 12625509]  [MGI Ref ID J:82325]

Suganami T; Mieda T; Itoh M; Shimoda Y; Kamei Y; Ogawa Y. 2007. Attenuation of obesity-induced adipose tissue inflammation in C3H/HeJ mice carrying a Toll-like receptor 4 mutation. Biochem Biophys Res Commun 354(1):45-9. [PubMed: 17210129]  [MGI Ref ID J:117843]

Suganami T; Yuan X; Shimoda Y; Uchio-Yamada K; Nakagawa N; Shirakawa I; Usami T; Tsukahara T; Nakayama K; Miyamoto Y; Yasuda K; Matsuda J; Kamei Y; Kitajima S; Ogawa Y. 2009. Activating transcription factor 3 constitutes a negative feedback mechanism that attenuates saturated Fatty acid/toll-like receptor 4 signaling and macrophage activation in obese adipose tissue. Circ Res 105(1):25-32. [PubMed: 19478204]  [MGI Ref ID J:164755]

Suhs KA; Marthaler BR; Welch RA; Hopkins WJ. 2011. Lack of association between the Tlr4 (Lpsd/Lpsd) genotype and increased susceptibility to Escherichia coli bladder infections in female C3H/HeJ mice. MBio 2(3):e00094-11. [PubMed: 21628500]  [MGI Ref ID J:182202]

Sun Y; Karmakar M; Roy S; Ramadan RT; Williams SR; Howell S; Shive CL; Han Y; Stopford CM; Rietsch A; Pearlman E. 2010. TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. J Immunol 185(7):4272-83. [PubMed: 20826748]  [MGI Ref ID J:164286]

Suram S; Silveira LJ; Mahaffey S; Brown GD; Bonventre JV; Williams DL; Gow NA; Bratton DL; Murphy RC; Leslie CC. 2013. Cytosolic phospholipase A(2)alpha and eicosanoids regulate expression of genes in macrophages involved in host defense and inflammation. PLoS One 8(7):e69002. [PubMed: 23950842]  [MGI Ref ID J:204931]

Suzuki M; Nakano K. 1996. Increase in histamine synthesis by liver macrophages in CCl4-injured mast cell-deficient W/Wv mice. Biochem Pharmacol 52(5):809-13. [PubMed: 8765479]  [MGI Ref ID J:35601]

Tagliabue A; McCoy JL; Herberman RB. 1978. Refractoriness to migration inhibitory factor of macrophages of LPS nonresponder mouse strains. J Immunol 121(4):1223-6. [PubMed: 359704]  [MGI Ref ID J:6043]

Takakuwa T; Knopf HP; Sing A; Carsetti R; Galanos C; Freudenberg MA. 1996. Induction of CD14 expression in Lpsn, Lpsd and tumor necrosis factor receptor-deficient mice. Eur J Immunol 26(11):2686-92. [PubMed: 8921956]  [MGI Ref ID J:36452]

Tan AM; Chen HC; Pochard P; Eisenbarth SC; Herrick CA; Bottomly HK. 2010. TLR4 signaling in stromal cells is critical for the initiation of allergic Th2 responses to inhaled antigen. J Immunol 184(7):3535-44. [PubMed: 20194715]  [MGI Ref ID J:160085]

Tang SC; Arumugam TV; Xu X; Cheng A; Mughal MR; Jo DG; Lathia JD; Siler DA; Chigurupati S; Ouyang X; Magnus T; Camandola S; Mattson MP. 2007. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104(34):13798-803. [PubMed: 17693552]  [MGI Ref ID J:124100]

Tang SC; Lathia JD; Selvaraj PK; Jo DG; Mughal MR; Cheng A; Siler DA; Markesbery WR; Arumugam TV; Mattson MP. 2008. Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 213(1):114-21. [PubMed: 18586243]  [MGI Ref ID J:138608]

Tanga FY; Nutile-McMenemy N; Deleo JA. 2005. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A 102(16):5856-61. [PubMed: 15809417]  [MGI Ref ID J:97819]

Tavener SA; Long EM; Robbins SM; McRae KM; Van Remmen H; Kubes P. 2004. Immune cell Toll-like receptor 4 is required for cardiac myocyte impairment during endotoxemia. Circ Res 95(7):700-7. [PubMed: 15358664]  [MGI Ref ID J:101491]

Taylor KR; Yamasaki K; Radek KA; Di Nardo A; Goodarzi H; Golenbock D; Beutler B; Gallo RL. 2007. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. J Biol Chem 282(25):18265-75. [PubMed: 17400552]  [MGI Ref ID J:123387]

Thaete LG; Qu XW; Jilling T; Crawford SE; Fitchev P; Hirsch E; Khan S; Neerhof MG. 2013. Impact of toll-like receptor 4 deficiency on the response to uterine ischemia/reperfusion in mice. Reproduction 145(5):517-26. [PubMed: 23509372]  [MGI Ref ID J:197922]

Thomas JA; Tsen MF; White DJ; Horton JW. 2002. TLR4 inactivation and rBPI(21) block burn-induced myocardial contractile dysfunction. Am J Physiol Heart Circ Physiol 283(4):H1645-55. [PubMed: 12234819]  [MGI Ref ID J:108049]

Timmers L; Sluijter JP; van Keulen JK; Hoefer IE; Nederhoff MG; Goumans MJ; Doevendans PA; van Echteld CJ; Joles JA; Quax PH; Piek JJ; Pasterkamp G; de Kleijn DP. 2008. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res 102(2):257-64. [PubMed: 18007026]  [MGI Ref ID J:145592]

Tjota MY; Williams JW; Lu T; Clay BS; Byrd T; Hrusch CL; Decker DC; de Araujo CA; Bryce PJ; Sperling AI. 2013. IL-33-dependent induction of allergic lung inflammation by FcgammaRIII signaling. J Clin Invest 123(5):2287-97. [PubMed: 23585480]  [MGI Ref ID J:201453]

Treml LS; Carlesso G; Hoek KL; Stadanlick JE; Kambayashi T; Bram RJ; Cancro MP; Khan WN. 2007. TLR stimulation modifies BLyS receptor expression in follicular and marginal zone B cells. J Immunol 178(12):7531-9. [PubMed: 17548587]  [MGI Ref ID J:148596]

Tsukumo DM; Carvalho-Filho MA; Carvalheira JB; Prada PO; Hirabara SM; Schenka AA; Araujo EP; Vassallo J; Curi R; Velloso LA; Saad MJ. 2007. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56(8):1986-98. [PubMed: 17519423]  [MGI Ref ID J:126488]

Tsung A; Hoffman RA; Izuishi K; Critchlow ND; Nakao A; Chan MH; Lotze MT; Geller DA; Billiar TR. 2005. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J Immunol 175(11):7661-8. [PubMed: 16301676]  [MGI Ref ID J:122164]

Tsung A; Klune JR; Zhang X; Jeyabalan G; Cao Z; Peng X; Stolz DB; Geller DA; Rosengart MR; Billiar TR. 2007. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med 204(12):2913-23. [PubMed: 17984303]  [MGI Ref ID J:128522]

Tsung A; Sahai R; Tanaka H; Nakao A; Fink MP; Lotze MT; Yang H; Li J; Tracey KJ; Geller DA; Billiar TR. 2005. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201(7):1135-43. [PubMed: 15795240]  [MGI Ref ID J:98036]

Tsung A; Zheng N; Jeyabalan G; Izuishi K; Klune JR; Geller DA; Lotze MT; Lu L; Billiar TR. 2007. Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J Leukoc Biol 81(1):119-28. [PubMed: 17062605]  [MGI Ref ID J:117230]

Vazquez-Torres A; Vallance BA; Bergman MA; Finlay BB; Cookson BT; Jones-Carson J; Fang FC. 2004. Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J Immunol 172(10):6202-8. [PubMed: 15128808]  [MGI Ref ID J:89854]

Velazquez P; Wei B; McPherson M; Mendoza LM; Nguyen SL; Turovskaya O; Kronenberg M; Huang TT; Schrage M; Lobato LN; Fujiwara D; Brewer S; Arditi M; Cheng G; Sartor RB; Newberry RD; Braun J. 2008. Villous B cells of the small intestine are specialized for invariant NK T cell dependence. J Immunol 180(7):4629-38. [PubMed: 18354186]  [MGI Ref ID J:133099]

Vogel SN; Johnson D; Perera PY; Medvedev A; Lariviere L; Qureshi ST ; Malo D. 1999. Cutting edge: functional characterization of the effect of the C3H/HeJ defect in mice that lack an Lpsn gene: in vivo evidence for a dominant negative mutation. J Immunol 162(10):5666-70. [PubMed: 10229796]  [MGI Ref ID J:54987]

Vogl T; Tenbrock K; Ludwig S; Leukert N; Ehrhardt C; van Zoelen MA; Nacken W; Foell D; van der Poll T; Sorg C; Roth J. 2007. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13(9):1042-9. [PubMed: 17767165]  [MGI Ref ID J:125179]

Wang MJ; Jeng KC; Shih PC. 2000. Differential expression and regulation of macrophage inflammatory protein (MIP)-1alpha and MIP-2 genes by alveolar and peritoneal macrophages in LPS-hyporesponsive C3H/HeJ mice Cell Immunol 204(2):88-95. [PubMed: 11069716]  [MGI Ref ID J:65822]

Wang S; Schmaderer C; Kiss E; Schmidt C; Bonrouhi M; Porubsky S; Gretz N; Schaefer L; Kirschning CJ; Popovic ZV; Grone HJ. 2010. Recipient Toll-like receptors contribute to chronic graft dysfunction by both MyD88- and TRIF-dependent signaling. Dis Model Mech 3(1-2):92-103. [PubMed: 20038715]  [MGI Ref ID J:157656]

Wang X; Moser C; Louboutin JP; Lysenko ES; Weiner DJ; Weiser JN; Wilson JM. 2002. Toll-like receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung. J Immunol 168(2):810-5. [PubMed: 11777976]  [MGI Ref ID J:73739]

Wang XM; Kim HP; Nakahira K; Ryter SW; Choi AM. 2009. The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1. J Immunol 182(6):3809-18. [PubMed: 19265160]  [MGI Ref ID J:145914]

Wang Y; Han G; Wang K; Liu G; Wang R; Xiao H; Li X; Hou C; Shen B; Guo R; Li Y; Chen G. 2014. Tumor-derived GM-CSF promotes inflammatory colon carcinogenesis via stimulating epithelial release of VEGF. Cancer Res 74(3):716-26. [PubMed: 24366884]  [MGI Ref ID J:208169]

Wang ZY; Yang D; Chen Q; Leifer CA; Segal DM; Su SB; Caspi RR; Howard ZO; Oppenheim JJ. 2006. Induction of dendritic cell maturation by pertussis toxin and its B subunit differentially initiate Toll-like receptor 4-dependent signal transduction pathways. Exp Hematol 34(8):1115-24. [PubMed: 16863919]  [MGI Ref ID J:111901]

Wantia N; Rodriguez N; Cirl C; Ertl T; Durr S; Layland LE; Wagner H; Miethke T. 2011. Toll-like receptors 2 and 4 regulate the frequency of IFNgamma-producing CD4+ T-cells during pulmonary infection with Chlamydia pneumoniae. PLoS One 6(11):e26101. [PubMed: 22096480]  [MGI Ref ID J:180980]

Warger T; Hilf N; Rechtsteiner G; Haselmayer P; Carrick DM; Jonuleit H; von Landenberg P; Rammensee HG; Nicchitta CV; Radsak MP; Schild H. 2006. Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J Biol Chem 281(32):22545-53. [PubMed: 16754684]  [MGI Ref ID J:116459]

Watson J; Largen M; McAdam KP. 1978. Genetic control of endotoxic responses in mice. J Exp Med 147(1):39-49. [PubMed: 342667]  [MGI Ref ID J:5938]

Weighardt H; Kaiser-Moore S; Vabulas RM; Kirschning CJ; Wagner H; Holzmann B. 2002. Cutting edge: myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection. J Immunol 169(6):2823-7. [PubMed: 12218091]  [MGI Ref ID J:120435]

Whitaker SM; Colmenares M; Pestana KG; McMahon-Pratt D. 2008. Leishmania pifanoi proteoglycolipid complex P8 induces macrophage cytokine production through Toll-like receptor 4. Infect Immun 76(5):2149-56. [PubMed: 18299340]  [MGI Ref ID J:134478]

Wong PM; Kang A; Chen H; Yuan Q; Fan P; Sultzer BM; Kan YW; Chung SW. 1999. Lps(d)/Ran of endotoxin-resistant C3H/HeJ mice is defective in mediating lipopolysaccharide endotoxin responses. Proc Natl Acad Sci U S A 96(20):11543-8. [PubMed: 10500213]  [MGI Ref ID J:57938]

Woods JP; Frelinger JA; Warrack G; Cannon JG. 1988. Mouse genetic locus Lps influences susceptibility to Neisseria meningitidis infection. Infect Immun 56(8):1950-5. [PubMed: 3397181]  [MGI Ref ID J:27288]

Wright SD; Burton C; Hernandez M; Hassing H; Montenegro J; Mundt S; Patel S; Card DJ; Hermanowski-Vosatka A; Bergstrom JD; Sparrow CP; Detmers PA; Chao YS. 2000. Infectious agents are not necessary for murine atherogenesis. J Exp Med 191(8):1437-42. [PubMed: 10770809]  [MGI Ref ID J:61722]

Wu SC; Yang JC; Rau CS; Chen YC; Lu TH; Lin MW; Tzeng SL; Wu YC; Wu CJ; Hsieh CH. 2013. Profiling circulating microRNA expression in experimental sepsis using cecal ligation and puncture. PLoS One 8(10):e77936. [PubMed: 24205035]  [MGI Ref ID J:209241]

Xiang M; Yin L; Li Y; Xiao G; Vodovotz Y; Billiar TR; Wilson MA; Fan J. 2011. Hemorrhagic shock activates lung endothelial reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase via neutrophil NADPH oxidase. Am J Respir Cell Mol Biol 44(3):333-40. [PubMed: 20418360]  [MGI Ref ID J:183358]

Yang HZ; Wang JP; Mi S; Liu HZ; Cui B; Yan HM; Yan J; Li Z; Liu H; Hua F; Lu W; Hu ZW. 2012. TLR4 activity is required in the resolution of pulmonary inflammation and fibrosis after acute and chronic lung injury. Am J Pathol 180(1):275-92. [PubMed: 22062220]  [MGI Ref ID J:180182]

Yang R; Murillo FM; Delannoy MJ; Blosser RL; Yutzy WH 4th; Uematsu S; Takeda K; Akira S; Viscidi RP; Roden RB. 2005. B lymphocyte activation by human papillomavirus-like particles directly induces Ig class switch recombination via TLR4-MyD88. J Immunol 174(12):7912-9. [PubMed: 15944297]  [MGI Ref ID J:100870]

Yang X; Murthy V; Schultz K; Tatro JB; Fitzgerald KA; Beasley D. 2006. Toll-like receptor 3 signaling evokes a proinflammatory and proliferative phenotype in human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 291(5):H2334-43. [PubMed: 16782847]  [MGI Ref ID J:116310]

Yano J; Palmer GE; Eberle KE; Peters BM; Vogl T; McKenzie AN; Fidel PL Jr. 2014. Vaginal epithelial cell-derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis. Infect Immun 82(2):783-92. [PubMed: 24478092]  [MGI Ref ID J:209808]

Yao C; Purwanti N; Karabasil MR; Azlina A; Javkhlan P; Hasegawa T; Akamatsu T; Hosoi T; Ozawa K; Hosoi K. 2010. Potential down-regulation of salivary gland AQP5 by LPS via cross-coupling of NF-kappaB and p-c-Jun/c-Fos. Am J Pathol 177(2):724-34. [PubMed: 20522648]  [MGI Ref ID J:163414]

Yohe HC; O'Hara KA; Hunt JA; Kitzmiller TJ; Wood SG; Bement JL; Bement WJ; Szakacs JG; Wrighton SA; Jacobs JM; Kostrubsky V; Sinclair PR; Sinclair JF. 2006. Involvement of Toll-like receptor 4 in acetaminophen hepatotoxicity. Am J Physiol Gastrointest Liver Physiol 290(6):G1269-79. [PubMed: 16439473]  [MGI Ref ID J:111091]

Yoshida S; Goto Y; Miyamoto H; Fujio H; Mizuguchi Y. 1991. Association of Lps gene with natural resistance of mouse macrophages against Legionella pneumophila. FEMS Microbiol Immunol 4(1):51-6. [PubMed: 1815711]  [MGI Ref ID J:657]

Yu FS; Cornicelli MD; Kovach MA; Newstead MW; Zeng X; Kumar A; Gao N; Yoon SG; Gallo RL; Standiford TJ. 2010. Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide. J Immunol 185(2):1142-9. [PubMed: 20566829]  [MGI Ref ID J:162021]

Yu H; Ha T; Liu L; Wang X; Gao M; Kelley J; Kao R; Williams D; Li C. 2012. Scavenger receptor A (SR-A) is required for LPS-induced TLR4 mediated NF-kappaB activation in macrophages. Biochim Biophys Acta 1823(7):1192-8. [PubMed: 22627090]  [MGI Ref ID J:185204]

Yusuf N; Nasti TH; Long JA; Naseemuddin M; Lucas AP; Xu H; Elmets CA. 2008. Protective role of Toll-like receptor 4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Res 68(2):615-22. [PubMed: 18199559]  [MGI Ref ID J:131415]

Yvan-Charvet L; Welch C; Pagler TA; Ranalletta M; Lamkanfi M; Han S; Ishibashi M; Li R; Wang N; Tall AR. 2008. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 118(18):1837-47. [PubMed: 18852364]  [MGI Ref ID J:165622]

Zamboni DS; Campos MA; Torrecilhas AC; Kiss K; Samuel JE; Golenbock DT; Lauw FN; Roy CR; Almeida IC; Gazzinelli RT. 2004. Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J Biol Chem 279(52):54405-15. [PubMed: 15485838]  [MGI Ref ID J:95155]

Zampell JC; Elhadad S; Avraham T; Weitman E; Aschen S; Yan A; Mehrara BJ. 2012. Toll-like receptor deficiency worsens inflammation and lymphedema after lymphatic injury. Am J Physiol Cell Physiol 302(4):C709-19. [PubMed: 22049214]  [MGI Ref ID J:180614]

Zanotti G; Casiraghi M; Abano JB; Tatreau JR; Sevala M; Berlin H; Smyth S; Funkhouser WK; Burridge K; Randell SH; Egan TM. 2009. Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema. Am J Physiol Lung Cell Mol Physiol 297(1):L52-63. [PubMed: 19376887]  [MGI Ref ID J:151006]

Zhang B; Choi JJ; Eum SY; Daunert S; Toborek M. 2013. TLR4 signaling is involved in brain vascular toxicity of PCB153 bound to nanoparticles. PLoS One 8(5):e63159. [PubMed: 23690990]  [MGI Ref ID J:202173]

Zhang X; Shan P; Jiang G; Cohn L; Lee PJ. 2006. Toll-like receptor 4 deficiency causes pulmonary emphysema. J Clin Invest 116(11):3050-9. [PubMed: 17053835]  [MGI Ref ID J:114985]

Zhang Y; Woodruff M; Zhang Y; Miao J; Hanley G; Stuart C; Zeng X; Prabhakar S; Moorman J; Zhao B; Yin D. 2008. Toll-like receptor 4 mediates chronic restraint stress-induced immune suppression. J Neuroimmunol 194(1-2):115-22. [PubMed: 18192029]  [MGI Ref ID J:131903]

Zhou Q; Desta T; Fenton M; Graves DT; Amar S. 2005. Cytokine profiling of macrophages exposed to Porphyromonas gingivalis, its lipopolysaccharide, or its FimA protein. Infect Immun 73(2):935-43. [PubMed: 15664935]  [MGI Ref ID J:95773]

Zou L; Feng Y; Li Y; Zhang M; Chen C; Cai J; Gong Y; Wang L; Thurman JM; Wu X; Atkinson JP; Chao W. 2013. Complement factor B is the downstream effector of TLRs and plays an important role in a mouse model of severe sepsis. J Immunol 191(11):5625-35. [PubMed: 24154627]  [MGI Ref ID J:207017]

de Groot D; Hoefer IE; Grundmann S; Schoneveld A; Haverslag RT; van Keulen JK; Bot PT; Timmers L; Piek JJ; Pasterkamp G; de Kleijn DP. 2011. Arteriogenesis requires toll-like receptor 2 and 4 expression in bone-marrow derived cells. J Mol Cell Cardiol 50(1):25-32. [PubMed: 20708624]  [MGI Ref ID J:171028]

van Rossum AM; Lysenko ES; Weiser JN. 2005. Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model. Infect Immun 73(11):7718-26. [PubMed: 16239576]  [MGI Ref ID J:104292]

In(6)1J related

Akeson EC. 2003. Chromosomal inversion discovered in C3H/HeJ mice JAX Notes 491:15.  [MGI Ref ID J:87486]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           MP14
Room Number           MP24
Room Number           RB09

Colony Maintenance

Mating SystemSibling x Sibling         (Female x Male)   01-MAR-06
Breeding Considerations This strain is an exceptional breeder.
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls

Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)Gender
3 weeks $25.44Female  
4 weeks $25.44Female  
5 weeks $25.44Female  
6 weeks $28.09Female  
7 weeks $30.85Female  
8 weeks $30.85Female  
9 weeks $30.85Female  
10 weeks $35.72Female  
11 weeks $35.72Female  
12 weeks $35.72Female  
13 weeks $38.53Female  
14 weeks $38.53Female  
15 weeks $38.53Female  

Standard Supply

Level 2. Up to 100 mice. Larger quantities or custom orders arranged upon request.

Supply Notes


Frozen Products

Price (US dollars $)
Frozen Embryo $1725.00

Standard Supply

Level 2. Up to 100 mice. Larger quantities or custom orders arranged upon request.

Supply Notes

  • Cryopreserved Embryos
    Available to most shipping destinations1
    This strain is also available as cryopreserved embryos2. Orders for cryopreserved embryos may be placed with our Customer Service Department. Experienced technicians at The Jackson Laboratory have recovered frozen embryos of this strain successfully. We will provide you enough embryos to perform two embryo transfers. The Jackson Laboratory does not guarantee successful recovery at your facility. For complete information on purchasing embryos, please visit our Cryopreserved Embryos web page.

    1 Shipments cannot be made to Australia due to Australian government import restrictions.
    2 Embryos for most strains are cryopreserved at the two cell stage while some strains are cryopreserved at the eight cell stage. If this information is important to you, please contact Customer Service.

JAX® Cells, Tissues & Products

Select the cell line of interest to go to the cell line data sheet
C3H/HeJ AC386/GrsrJ mES cells
C3H/HeJ-PB151.24 mES cells
C3H/HeJ-PRX-C3H #2 mES cells
Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)Gender
3 weeks $33.10Female  
4 weeks $33.10Female  
5 weeks $33.10Female  
6 weeks $36.60Female  
7 weeks $40.20Female  
8 weeks $40.20Female  
9 weeks $40.20Female  
10 weeks $46.50Female  
11 weeks $46.50Female  
12 weeks $46.50Female  
13 weeks $50.10Female  
14 weeks $50.10Female  
15 weeks $50.10Female  

Standard Supply

Level 2. Up to 100 mice. Larger quantities or custom orders arranged upon request.

Supply Notes

  • Shipped at a specific age in weeks. Mice at a precise age in days, littermates and retired breeders are also available.


Frozen Products

Price (US dollars $)
Frozen Embryo $2242.50

Standard Supply

Level 2. Up to 100 mice. Larger quantities or custom orders arranged upon request.

Supply Notes

  • Cryopreserved Embryos
    Available to most shipping destinations1
    This strain is also available as cryopreserved embryos2. Orders for cryopreserved embryos may be placed with our Customer Service Department. Experienced technicians at The Jackson Laboratory have recovered frozen embryos of this strain successfully. We will provide you enough embryos to perform two embryo transfers. The Jackson Laboratory does not guarantee successful recovery at your facility. For complete information on purchasing embryos, please visit our Cryopreserved Embryos web page.

    1 Shipments cannot be made to Australia due to Australian government import restrictions.
    2 Embryos for most strains are cryopreserved at the two cell stage while some strains are cryopreserved at the eight cell stage. If this information is important to you, please contact Customer Service.

JAX® Cells, Tissues & Products

Select the cell line of interest to go to the cell line data sheet
C3H/HeJ AC386/GrsrJ mES cells
C3H/HeJ-PB151.24 mES cells
C3H/HeJ-PRX-C3H #2 mES cells
View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Level 2. Up to 100 mice. Larger quantities or custom orders arranged upon request.

Important Note

This strain does not carry mouse mammary tumor virus (MMTV). This strain is homozygous for retinal degeneration allele Pde6brd1, the defective lipopolysaccharide response allele Tlr4Lps-d, and for a chromosomal inversion on Chromosome 6. A sighted alternative is Stock No. 003648, C3Sn.BLiA-Pde6b+/DnJ.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

See Terms of Use tab for General Terms and Conditions

The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use

General Terms and Conditions

Contact information

General inquiries regarding Terms of Use

Contracts Administration


JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty


In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.