Strain Name:

DBA/2J

Stock Number:

000671

Order this mouse

Availability:

Level 2


      Cell Line: DBA/2J AC173/GrsrJ mES cells
      Cell Line: DBA/2J AC203/GrsrJ mES cells

Common Names: D2;     D2J;    
DBA/2J is a widely used inbred strain. Some characteristics include low susceptibility to developing atherosclerotic aortic lesions, high-frequency hearing loss, susceptibility to audiogenic seizures, development of progressive eye abnormalities that closely mimic human hereditary glaucoma, and extreme intolerance to alcohol and morphine.

Description

Strain Information

Type Inbred Strain;
Additional information on Inbred Strains.
Visit our online Nomenclature tutorial.
Mating SystemSibling x Sibling         (Female x Male)   01-MAR-06
Breeding Considerations This strain is a challenging breeder.
Specieslaboratory mouse
H2 Haplotyped
GenerationF219pF224 (14-AUG-14)
Generation Definitions

View larger image

Appearance
dilute brown
Related Genotype: a/a Tyrp1b/Tyrp1b Myo5ad/Myo5ad

Important Note
This strain is homozygous for Cdh23ahl, the age related hearing loss 1 mutation, which on this background results in progressive hearing loss that is already severe by three months of age.

Description
DBA/2J is a widely used inbred strain that is valuable in a large number of research areas, including cardiovascular biology, neurobiology, and sensorineural research. Its characteristics are often contrasted with those of the C57BL/6J inbred strain (Stock No. 000664). DBA/2J mice show a low susceptibility to developing atherosclerotic aortic lesions (20 to 350 um2 atherosclerotic aortic lesions /aortic cross-section) following 14 weeks on an atherogenic diet (1.25% cholesterol, 0.5% cholic acid and 15% fat). They also exhibit high-frequency hearing loss beginning roughly at the time of weaning/adolescence (between three to four weeks of age) and becoming severe by two to three months of age. The age related hearing loss 8 mutation arose spontaneously in DBA/2J between 1951 and 1975. This strain possesses three recessive alleles that cause progressive cochlear pathology initially affecting the organ of Corti. Decreasing anteroventral cochlear nucleus volume decreases and neuron loss parallel the progression of peripheral hearing loss. Young DBA/2J inbred mice are also susceptible to audiogenic seizures due to the asp2 mutation, however, this susceptibility decreases as animals reach adulthood. There is high incidence of calcareous pericarditis, and calcified lesions of the testes, tongue and skeletal muscle. This strain is among the least responsive to phytohemagglutinin (Heiniger et al., 1975).

Aging DBA/2J mice develop progressive eye abnormalities that closely mimic human hereditary glaucoma. Defects include iris pigment dispersion, iris atrophy, anterior synechia (adhesion of the iris to the cornea), and elevated intraocularpressure (IOP). The onset of disease symptoms begins between three and four months of age with 56% of females and 15% of males showing signs of iris pigment epithelium loss and transillumination of the peripheral iris. By six to seven months of age, all mice demonstrate significant widespread transillumination and thickening of the iris border. Elevation of IOP is evident in some females by six months of age. By nine months of age, both sexes exhibit elevated IOP, with pressures higher in females (mean: 20.3 +/-79; 1.8 mmHg) compared to males (mean: 16.2 +/-79; 1.4 mmHg). Retinal histopathology reveals retinal ganglion cell, as well as GABAergic and cholinergic amacrine cell, loss. (Moon JI et al. 2005). Two alleles contribute to the eye phenotype, GpnmbR150X and Tyrp1isa; both are present in DBA/2J mice.

DBA/2J mice also show an extreme intolerance to alcohol and morphine. In 2002, Vance et al. reported that NK cells in DBA/2J exhibit the unique characteristic that they lack surface expression of CD94/NKG2A receptors. CD94/NKG2 receptors are normally expressed on the surface of most fetal NK cells. Expression of CD94/NKG2 is thought to play a role in self tolerance and the ability of NK cells to distinguish between MHC Ilow and MHC Ihigh target cells. CD94 is the product of the mouse Klrd1 locus, on mouse Chromosome 6. A subsequent publication by Wilhelm and coworkers identified a deletion in the 3' end of the Klrd1 gene of DBA/2J mice. This ~2.4 kb deletion does not prevent transcription of the gene, but prevents translation and cell surface expression of the CD94 protein. Analysis of DNA samples held at The Jackson Laboratory (unpublished results) confirmed the presence of the deletion of Klrd1 in the DBA/2J strain. The deletion, which occurred sometime between 1984 and 1989, is homozygous within our colonies, making DBA/2J mice naturally CD94 deficient.

Development
The DBA inbred strain is the oldest of all inbred strains of mice. Dr. CC Little began inbreeding in 1909 from a mouse colony segregating for coat color. During 1929 and 1930 crosses were made among substrains, and several new substrains were established including DBA/1 and DBA/2. DBA/1 and DBA/2 differ at a large number of loci (including the MHC H2 haplotype) which is most likely results from residual heterozygosity in the strain when the substrains were separated.

Related Strains

DBA Strains
000670   DBA/1J
001140   DBA/1LacJ
001907   DBA/2BiJ
000052   DBA/2DeJ
000973   DBA/2HaSmnJ
002860   DBA/8BiDsmJ
View DBA Strains     (6 strains)

Strains carrying   Ahrd allele
000690   129P3/J
000648   AKR/J
008599   B6.Cg-Cyp1a2/Cyp1a1tm2Dwn Ahrd Tg(CYP1A1,CYP1A2)1Dwn/DwnJ
002921   B6.D2N-Ahrd/J
000652   BDP/J
000928   CAST/EiJ
000674   I/LnJ
000675   LG/J
000676   LP/J
000684   NZB/BlNJ
000726   RBF/DnJ
000682   RF/J
000686   SJL/J
000688   ST/bJ
000689   SWR/J
000693   WC/ReJ KitlSl/J
000933   YBR/EiJ
View Strains carrying   Ahrd     (17 strains)

Strains carrying   Cdh23ahl allele
001137   129P1/ReJ
000690   129P3/J
000691   129X1/SvJ
000646   A/J
000647   A/WySnJ
003070   ALR/LtJ
003072   ALS/LtJ
004502   B6;AKR-Lxl2/GrsrJ
001026   BALB/cByJ
000653   BUB/BnJ
005494   C3.129S1(B6)-Grm1rcw/J
000664   C57BL/6J
004764   C57BL/6J-Cdh23v-8J/J
003129   C57BL/6J-Epha4rb-2J/GrsrJ
004820   C57BL/6J-Kcne12J/J
004703   C57BL/6J-Kcnq2Nmf134/J
004811   C57BL/6J-nmf110/J
004812   C57BL/6J-nmf111/J
004747   C57BL/6J-nmf118/J
004656   C57BL/6J-nmf88/J
004391   C57BL/6J-Chr 13A/J/NaJ
004385   C57BL/6J-Chr 7A/J/NaJ
000662   C57BLKS/J
000667   C57BR/cdJ
000668   C57L/J
000669   C58/J
010614   CBACa.B6-Cdh23ahl/Kjn
000657   CE/J
000670   DBA/1J
001140   DBA/1LacJ
007048   DBA/2J-Gpnmb+/SjJ
002106   KK/HlJ
000675   LG/J
000676   LP/J
000677   MA/MyJ
001976   NOD/ShiLtJ
002050   NOR/LtJ
000679   P/J
002747   SENCARB/PtJ
002335   SKH2/J
003392   STOCK Crb1rd8/J
View Strains carrying   Cdh23ahl     (41 strains)

Strains carrying   Fscn2ahl8 allele
009629   B6.D2-Fscn2ahl8/4Kjn
View Strains carrying   Fscn2ahl8     (1 strain)

Strains carrying   GpnmbR150X allele
000957   AKXD28/TyJ
View Strains carrying   GpnmbR150X     (1 strain)

Strains carrying   Hc0 allele
000645   A/HeJ
000646   A/J
000647   A/WySnJ
000648   AKR/J
000460   B10.D2-Hc0 H2d H2-T18c/o2SnJ
000461   B10.D2-Hc0 H2d H2-T18c/oSnJ
000657   CE/J
007048   DBA/2J-Gpnmb+/SjJ
001800   FVB/NJ
001491   FVB/NMob
000674   I/LnJ
001303   NOD.CB17-Prkdcscid/J
001976   NOD/ShiLtJ
000684   NZB/BlNJ
000682   RF/J
000688   ST/bJ
000689   SWR/J
View Strains carrying   Hc0     (17 strains)

Strains carrying   Myo5ad allele
001005   AKXD1/TyJ
001003   AKXD11/TyJ
000765   AKXD13/TyJ
000779   AKXD14/TyJ
000954   AKXD15/TyJ
001093   AKXD18/TyJ
000776   AKXD2/TyJ
001062   AKXD21/TyJ
000947   AKXD22/TyJ
000949   AKXD25/TyJ
000764   AKXD27/TyJ
000959   AKXD3/TyJ
000285   B6.Cg-Rorasg + +/+ Myo5ad Bmp5se/J
012889   B6N;TKDU-Myo5ad Cacna2d2du/J
000652   BDP/J
000036   BXD1/TyJ
000013   BXD16/TyJ
000015   BXD18/TyJ
000010   BXD19/TyJ
000077   BXD21/TyJ
000043   BXD22/TyJ
000081   BXD25/TyJ
000029   BXD29-Tlr4lps-2J/J
010981   BXD29/Ty
000037   BXD5/TyJ
000007   BXD6/TyJ
000084   BXD8/TyJ
000105   BXD9/TyJ
000670   DBA/1J
000963   DBA/2J-Myo5ad+17J/Myo5ad/J
000964   DBA/2J-Myo5ad+18J/Myo5ad/J
000067   DBA/2J-Myo5ad+2J/Myo5ad/J
000673   HRS/J
000674   I/LnJ
001850   MEV-Q/TyJ
001855   MEV-V/TyJ
003345   MEV/2Ty-Emv64/J
000679   P/J
000644   SEA/GnJ
000390   STOCK Myo5ad Ds/J
000994   STOCK a Myo5ad Mregdsu/J
000286   STOCK a/a Myo5ad fd/+ +/J
View Strains carrying   Myo5ad     (42 strains)

Strains carrying   P2rx7P451L allele
000665   C57BL/10J
000664   C57BL/6J
000670   DBA/1J
View Strains carrying   P2rx7P451L     (3 strains)

Strains carrying   Tyrp1isa allele
000957   AKXD28/TyJ
View Strains carrying   Tyrp1isa     (1 strain)

Strains carrying   a allele
003879   B10;TFLe-a/a T Itpr3tf/+ Itpr3tf/J
001538   B6 x B6C3Sn a/A-T(1;9)27H/J
000916   B6 x B6C3Sn a/A-T(5;12)31H/J
000602   B6 x B6C3Sn a/A-T(8;16)17H/J
000618   B6 x FSB/GnEi a/a Ctslfs/J
000577   B6 x STOCK a Oca2p Hps5ru2 Ednrbs/J
000601   B6 x STOCK a/a T(7;18)50H/J
000592   B6 x STOCK T(2;4)13H a/J
014608   B6;129S1-a Kitlsl-24J/GrsrJ
000231   B6;C3Fe a/a-Csf1op/J
000785   B6;D2-a Ces1ce/EiJ
000604   B6C3 a/A-T(10;13)199H +/+ Lystbg-J/J or Lystbg-2J/J
001750   B6C3Fe a/a-Eif3cXs-J/J
002807   B6C3Fe a/a-Meox2fla/J
000506   B6C3Fe a/a-Qkqk-v/J
000224   B6C3Fe a/a-Scyl1mdf/J
003020   B6C3Fe a/a-Zdhhc21dep/J
001037   B6C3Fe a/a-Agtpbp1pcd/J
000221   B6C3Fe a/a-Alx4lst-J/J
002062   B6C3Fe a/a-Atp7aMo-8J/J
001756   B6C3Fe a/a-Cacng2stg/J
001815   B6C3Fe a/a-Col1a2oim/J
000209   B6C3Fe a/a-Dh/J
000211   B6C3Fe a/a-Dstdt-J/J
000210   B6C3Fe a/a-Edardl-J/J
000207   B6C3Fe a/a-Edaraddcr/J
000182   B6C3Fe a/a-Eef1a2wst/J
001278   B6C3Fe a/a-Glra1spd/J
000241   B6C3Fe a/a-Glrbspa/J
002875   B6C3Fe a/a-Hoxd13spdh/J
000304   B6C3Fe a/a-Krt71Ca Scn8amed-J/J
000226   B6C3Fe a/a-Largemyd/J
000636   B6C3Fe a/a-Lmx1adr-J/J
001280   B6C3Fe a/a-Lse/J
001573   B6C3Fe a/a-MitfMi/J
001035   B6C3Fe a/a-Napahyh/J
000181   B6C3Fe a/a-Otogtwt/J
000278   B6C3Fe a/a-Papss2bm Hps1ep Hps6ru/J
000205   B6C3Fe a/a-Papss2bm/J
002078   B6C3Fe a/a-Pcdh15av-2J/J
000246   B6C3Fe a/a-Pitpnavb/J
001430   B6C3Fe a/a-Ptch1mes/J
000235   B6C3Fe a/a-Relnrl/J
000237   B6C3Fe a/a-Rorasg/J
000290   B6C3Fe a/a-Sox10Dom/J
000230   B6C3Fe a/a-Tcirg1oc/J
003612   B6C3Fe a/a-Trak1hyrt/J
001512   B6C3Fe a/a-Ttnmdm/J
001607   B6C3Fe a/a-Unc5crcm/J
000005   B6C3Fe a/a-Wc/J
000243   B6C3Fe a/a-Wnt1sw/J
000248   B6C3Fe a/a-Xpl/J
000624   B6C3Fe a/a-anx/J
008044   B6C3Fe a/a-bpck/J
002018   B6C3Fe a/a-din/J
002339   B6C3Fe a/a-nma/J
000240   B6C3Fe a/a-soc/J
000063   B6C3Fe a/a-sy/J
001055   B6C3Fe a/a-tip/J
000245   B6C3Fe a/a-tn/J
000296   B6C3Fe-a/a Hoxa13Hd Mcoln3Va-J/J
000019   B6C3Fe-a/a-Itpr1opt/J
001022   B6C3FeF1/J a/a
006450   B6EiC3 a/A-Vss/GrsrJ
000971   B6EiC3 a/A-Och/J
000551   B6EiC3 a/A-Tbx15de-H/J
000557   B6EiC3-+ a/LnpUl A/J
000503   B6EiC3Sn a/A-Gy/J
001811   B6EiC3Sn a/A-Otcspf-ash/J
002343   B6EiC3Sn a/A-Otcspf/J
000391   B6EiC3Sn a/A-Pax6Sey-Dey/J
001923   B6EiC3Sn a/A-Ts(417)2Lws TimT(4;17)3Lws/J
000225   C3FeLe.B6 a/a-Ptpn6me/J
000198   C3FeLe.B6-a/J
000291   C3FeLe.Cg-a/a Hm KitlSl Krt71Ca-J/J
001886   C3HeB/FeJLe a/a-gnd/J
000584   C57BL/6J-+ T(1;2)5Ca/a +/J
000670   DBA/1J
001057   HPT/LeJ
000260   JGBF/LeJ
000265   MY/HuLeJ
000308   SSL/LeJ
000994   STOCK a Myo5ad Mregdsu/J
000064   STOCK a Tyrp1b Pmelsi/J
002238   STOCK a Tyrp1b shmy/J
001433   STOCK a skt/J
000579   STOCK a tp/J
000319   STOCK a us/J
002648   STOCK a/a Cln6nclf/J
000317   STOCK a/a Egfrwa2/J
000302   STOCK a/a MitfMi-wh +/+ Itpr1opt/J
000286   STOCK a/a Myo5ad fd/+ +/J
000281   STOCK a/a Tmem79ma Flgft/J
000206   STOCK a/a Tyrc-h/J
001432   STOCK a/a Tyrp1b Ndc1sks/Tyrp1b +/J
000312   STOCK stb + a/+ Fignfi a/J
000596   STOCK T(2;11)30H/+ x AEJ-a Gdf5bp-H/J or A/J-a Gdf5bp-J/J
000970   STOCK T(2;16)28H A/T(2;16)28H a/J
000590   STOCK T(2;4)1Sn a/J
000594   STOCK T(2;8)26H a/T(2;8)26H a Tyrp1+/Tyrp1b/J
000623   TR/DiEiJ
View Strains carrying   a     (101 strains)

Strains carrying other alleles of Ahr
000645   A/HeJ
000646   A/J
002920   B6(D2N).Spretus-Ahrb-3/J
002831   B6.129-Ahrtm1Bra/J
000130   B6.C-H17c/(HW14)ByJ
000136   B6.C-H34c/(HW22)ByJ
000370   B6.C-H38c/(HW119)ByJ
002727   B6;129-Ahrtm1Bra/J
001026   BALB/cByJ
000653   BUB/BnJ
000659   C3H/HeJ
000663   C57BL/6By
001139   C57BL/6ByJ
000664   C57BL/6J
000662   C57BLKS/J
000667   C57BR/cdJ
000668   C57L/J
000669   C58/J
000926   CAROLI/EiJ
000656   CBA/J
000657   CE/J
000351   CXB1/ByJ
000352   CXB2/ByJ
000353   CXB3/ByJ
000354   CXB4/ByJ
000355   CXB5/ByJ
000356   CXB6/ByJ
000357   CXB7/ByJ
002937   D2.B6-Ahrb-1/J
000673   HRS/J
000677   MA/MyJ
000550   MOLF/EiJ
000679   P/J
000930   PERA/EiJ
000644   SEA/GnJ
000280   SF/CamEiJ
001146   SPRET/EiJ
006203   STOCK Ahrtm3.1Bra/J
View Strains carrying other alleles of Ahr     (38 strains)

Strains carrying other alleles of Cdh23
002552   B6(V)-Cdh23v-2J/J
002756   B6.CAST-Cdh23Ahl+/Kjn
010615   B6.CBACa-Cdh23CBA/CaJ/Kjn
002432   B6J x B6.C-H2-Kbm1/ByJ-Cdh23v-J/J
004764   C57BL/6J-Cdh23v-8J/J
004819   C57BL/6J-Cdh23v-9J/J
005016   CByJ;B6-Cdh23v-10J/J
000275   V/LeJ
View Strains carrying other alleles of Cdh23     (8 strains)

Strains carrying other alleles of Fbrwt1
000664   C57BL/6J
View Strains carrying other alleles of Fbrwt1     (1 strain)

Strains carrying other alleles of Fbrwt2
000664   C57BL/6J
View Strains carrying other alleles of Fbrwt2     (1 strain)

Strains carrying other alleles of Fscn2
012438   D2.B6-Fscn2+/Kjn
012440   DBA/2J-Tg(RP24-180N9)2Kjn/Kjn
View Strains carrying other alleles of Fscn2     (2 strains)

Strains carrying other alleles of Gpnmb
018554   B6N(Cg)-Gpnmbtm1.1(KOMP)Vlcg/J
024704   D2.Cg-Gpnmb+Tg(Thy1-CFP)23Jrs/SjJ
025018   D2.Cg-Gpnmb+Tg(Thy1-YFP)HJrs/SjJ
007048   DBA/2J-Gpnmb+/SjJ
View Strains carrying other alleles of Gpnmb     (4 strains)

View Strains carrying other alleles of Hc     (6 strains)

Strains carrying other alleles of Myo5a
005012   A.B6 Tyr+-Myo5ad-l31J/J
001013   B10.D2/nSnJ-Myo5ad-n/J
000502   B6 x B6CBCa Aw-J/A-Myo5aflr Gnb5flr/J
000963   DBA/2J-Myo5ad+17J/Myo5ad/J
000964   DBA/2J-Myo5ad+18J/Myo5ad/J
000067   DBA/2J-Myo5ad+2J/Myo5ad/J
000253   DLS/LeJ
View Strains carrying other alleles of Myo5a     (7 strains)

Strains carrying other alleles of P2rx7
005576   B6.129P2-P2rx7tm1Gab/J
015809   NOD.129P2(B6)-P2rx7tm1Gab/DvsJ
View Strains carrying other alleles of P2rx7     (2 strains)

View Strains carrying other alleles of Tyrp1     (17 strains)

Strains carrying other alleles of a
002655   Mus pahari/EiJ
000251   AEJ.Cg-ae +/a Gdf5bp-H/J
000202   AEJ/Gn-bd/J
000199   AEJ/GnLeJ
000433   B10.C-H3c H13? A/(28NX)SnJ
000427   B10.CE-H13b Aw/(30NX)SnJ
000423   B10.KR-H13? A/SnJ
000420   B10.LP-H13b Aw/Sn
000477   B10.PA-Bloc1s6pa H3e at/SnJ
000419   B10.UW-H3b we Pax1un at/SnJ
000593   B6 x B6CBCa Aw-J/A-Grid2Lc T(2;6)7Ca MitfMi-wh/J
000502   B6 x B6CBCa Aw-J/A-Myo5aflr Gnb5flr/J
000599   B6 x B6CBCa Aw-J/A-T(5;13)264Ca KitW-v/J
002083   B6 x B6EiC3 a/A-T(7;16)235Dn/J
000507   B6 x B6EiC3 a/A-Otcspf/J
003759   B6 x B6EiC3Sn a/A-T(10;16)232Dn/J
002071   B6 x B6EiC3Sn a/A-T(11;17)202Dn/J
002113   B6 x B6EiC3Sn a/A-T(11A2;16B3)238Dn/J
002068   B6 x B6EiC3Sn a/A-T(11B1;16B5)233Dn/J
002069   B6 x B6EiC3Sn a/A-T(14E4or5;16B5)225Dn/J
001926   B6 x B6EiC3Sn a/A-T(15;16)198Dn/J
001832   B6 x B6EiC3Sn a/A-T(15E;16B1)60Dn/J
003758   B6 x B6EiC3Sn a/A-T(16C3-4;17A2)65Dn/J
001833   B6 x B6EiC3Sn a/A-T(1C2;16C3)45Dn/J
001903   B6 x B6EiC3Sn a/A-T(6F;18C)57Dn/J
001535   B6 x B6EiC3Sn a/A-T(8A4;12D1)69Dn/J
001831   B6 x B6EiC3Sn a/A-T(8C3;16B5)164Dn/J
002016   B6(Cg)-Aw-J EdaTa-6J Chr YB6-Sxr/EiJ
000600   B6-Gpi1b x B6CBCa Aw-J/A-T(7;15)9H Gpi1a/J
000769   B6.C/(HZ18)By-at-44J/J
000203   B6.C3-Aiy/a/J
000017   B6.C3-Avy/J
001572   B6.C3-am-J/J
000628   B6.CE-A Amy1b Amy2a5b/J
001809   B6.Cg-Aw-J EdaTa-6J +/+ ArTfm/J
000552   B6.Cg-Aw-J EdaTa-6J Sxr
001730   B6.Cg-Aw-J EdaTa-6J Sxrb Hya-/J
000841   B6.Cg-Aw-J EdaTa-By/J
000021   B6.Cg-Ay/J
100409   B6129PF1/J-Aw-J/Aw
004200   B6;CBACa Aw-J/A-Npr2cn-2J/GrsrJ
000505   B6C3 Aw-J/A-Bloc1s5mu/J
000604   B6C3 a/A-T(10;13)199H +/+ Lystbg-J/J or Lystbg-2J/J
000065   B6C3Fe a/a-we Pax1un at/J
003301   B6C3FeF1 a/A-Eya1bor/J
000314   B6CBACa Aw-J/A-EdaTa/J-XO
000501   B6CBACa Aw-J/A-Aifm1Hq/J
001046   B6CBACa Aw-J/A-Grid2Lc/J
000500   B6CBACa Aw-J/A-Gs/J
002703   B6CBACa Aw-J/A-Hydinhy3/J
000247   B6CBACa Aw-J/A-Kcnj6wv/J
000287   B6CBACa Aw-J/A-Plp1jp EdaTa/J
000515   B6CBACa Aw-J/A-SfnEr/J
000242   B6CBACa Aw-J/A-spc/J
000288   B6CBACa Aw-J/A-we a Mafbkr/J
001201   B6CBACaF1/J-Aw-J/A
006450   B6EiC3 a/A-Vss/GrsrJ
000557   B6EiC3-+ a/LnpUl A/J
000504   B6EiC3Sn a/A-Cacnb4lh/J
000553   B6EiC3Sn a/A-Egfrwa2 Wnt3avt/J
001811   B6EiC3Sn a/A-Otcspf-ash/J
002343   B6EiC3Sn a/A-Otcspf/J
001923   B6EiC3Sn a/A-Ts(417)2Lws TimT(4;17)3Lws/J
001875   B6EiC3SnF1/J
000638   C3FeB6 A/Aw-J-Sptbn4qv-J/J
000200   C3FeB6 A/Aw-J-Ankank/J
001203   C3FeB6F1/J A/Aw-J
001272   C3H/HeSnJ-Ahvy/J
000099   C3HeB/FeJ-Avy/J
000338   C57BL/6J Aw-J-EdaTa-6J/J
000258   C57BL/6J-Ai/a/J
000774   C57BL/6J-Asy/a/J
000569   C57BL/6J-Aw-J-EdaTa +/+ ArTfm/J
000051   C57BL/6J-Aw-J/J
000055   C57BL/6J-at-33J/J
000070   C57BL/6J-atd/J
002468   KK.Cg-Ay/J
000262   LS/LeJ
000283   LT.CAST-A/J
001759   STOCK A Tyrc Sha/J
001427   STOCK Aw us/J
001145   WSB/EiJ
View Strains carrying other alleles of a     (82 strains)

Additional Web Information

JAX® NOTES, April 1988; 433. H-2 Haplotypes of Mice from Jackson Laboratory Production Colonies.
JAX® NOTES, Fall 2004; 495. CD94 Deletion Verified in JAX® Mice Strain DBA/2J.
JAX® NOTES, Spring 1990; 441. Imperforate Vagina and Mucometra in Mice.
JAX® NOTES, Spring 2002; 485. Genes Implicated in a Mouse Model for Pigmentary Glaucoma.
JAX® NOTES, Spring 2003; 489. Malocclusion in the Laboratory Mouse.
JAX® NOTES, Summer 2003; 490. Hydrocephalus in Laboratory Mice.
JAX® NOTES, Summer 2009; 514. JAX® Mice Study: Starvation Diet Does Not Extend Life.
JAX® NOTES, Winter 2006; 504. JAX® Mice: the Gold Standard Just Got Better.
JAX® NOTES, Winter 2008; 512. DBA/2J, a multipurpose neurological disease model
Mouse Phenome Database / SNP Facility
National Center for Biotechnology Information / SNP Data
Sequence data is available from the Mouse Genomes Project at the Wellcome Trust Sanger Institute

Phenotype

Phenotype Information

View Phenotypic Data

Phenotypic Data

Body Weight Information - JAX® Mice Strain DBA/2J (000671)

(This chart reflects the typical correlation between body weight and age for mice maintained in production colonies at The Jackson Laboratory.)
Mouse Phenome Database
Festing Inbred Strain Characteristics: DBA
JAX® Physiological Data Summary [pdf]
JAX® Physiological Data Protocol [pdf]
View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
Models with phenotypic similarity to human diseases where etiology is unknown or involving genes where ortholog is unknown.
Glaucoma-Related Pigment Dispersion Syndrome; GPDS1
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Albinism, Oculocutaneous, Type III; OCA3   (TYRP1)
Complement Component 5 Deficiency; C5D   (C5)
Deafness, Autosomal Recessive 12; DFNB12   (CDH23)
Eculizumab, Poor Response to   (C5)
Griscelli Syndrome, Type 1; GS1   (MYO5A)
Retinitis Pigmentosa 30; RP30   (FSCN2)
Usher Syndrome, Type ID; USH1D   (CDH23)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

       
  • craniofacial phenotype
  • abnormal tongue morphology
    • DBA inbred sublines have a frequent occurance of spontaneous polypoid or slightly elevated lesions of granulation tissue with focal calcification on the tongue, mainly on the dorsum linguae near the margo linguae   (MGI Ref ID J:166811)
  • digestive/alimentary phenotype
  • abnormal tongue morphology
    • DBA inbred sublines have a frequent occurance of spontaneous polypoid or slightly elevated lesions of granulation tissue with focal calcification on the tongue, mainly on the dorsum linguae near the margo linguae   (MGI Ref ID J:166811)
  • growth/size/body phenotype
  • abnormal tongue morphology
    • DBA inbred sublines have a frequent occurance of spontaneous polypoid or slightly elevated lesions of granulation tissue with focal calcification on the tongue, mainly on the dorsum linguae near the margo linguae   (MGI Ref ID J:166811)
  • homeostasis/metabolism phenotype
  • calcinosis
    • nearly 40% of males and a lower percentage of females have calcified lesions of the tongue at 20 weeks of age   (MGI Ref ID J:166811)

Ahrd/Ahrd

        DBA/2J
  • mortality/aging
  • decreased sensitivity to xenobiotic induced morbidity/mortality
    • mice are resistant to the pathological effects of DMBA including mortality, morbidity and severity of effects   (MGI Ref ID J:26440)
  • homeostasis/metabolism phenotype
  • decreased physiological sensitivity to xenobiotic
    • mice are more resistant to the teratogenic effects of TCDD than Ahrb-1 homozygotes with only 30% of mice exhibiting altered palate development compared to 100% of Ahrb-1 homozygotes   (MGI Ref ID J:132380)
    • mice from mothers treated with TCDD exhibit a similar incidence of hydronephrosis as Ahrb-1 homozygotes but at a reduced severity   (MGI Ref ID J:132380)
    • mice are resistant to the pathological effects of DMBA including mortality, morbidity and severity of effects   (MGI Ref ID J:26440)
  • decreased sensitivity to xenobiotic induced morbidity/mortality
    • mice are resistant to the pathological effects of DMBA including mortality, morbidity and severity of effects   (MGI Ref ID J:26440)

Ahrd/Ahrd

        DBA/2
  • mortality/aging
  • decreased sensitivity to xenobiotic induced morbidity/mortality
    • mice are resistant to the pathological effects of DMBA including mortality, morbidity and severity of effects   (MGI Ref ID J:26440)
  • homeostasis/metabolism phenotype
  • decreased physiological sensitivity to xenobiotic
    • mice are resistant to the pathological effects of DMBA including mortality, morbidity and severity of effects   (MGI Ref ID J:26440)
  • decreased sensitivity to xenobiotic induced morbidity/mortality
    • mice are resistant to the pathological effects of DMBA including mortality, morbidity and severity of effects   (MGI Ref ID J:26440)

Fscn2ahl8/Fscn2ahl8

        DBA/2J
  • hearing/vestibular/ear phenotype
  • abnormal auditory brainstem response
    • although DBA/2J is homozygous for both Cdh23 and ahl8, through linkage analysis with CAST/Ei, which is wild-type at Cdh23, ahl8 is shown to contribute up to 37% of the 16 kHz ABR threshold variation in 13 week old homozygotes   (MGI Ref ID J:139223)
    • increased or absent threshold for auditory brainstem response
      • increased ABR threshold   (MGI Ref ID J:162868)
  • decreased inner hair cell stereocilia number
    • hair bundles appear normal at 2 weeks of age but are progressively lost between 1 and 6 months of age   (MGI Ref ID J:162868)
  • decreased outer hair cell stereocilia number
    • degeneration occurs earliest here   (MGI Ref ID J:162868)
  • increased susceptibility to age-related hearing loss
    • hearing loss is progressive and shows a much earlier onset than in C57BL/6J, with average 16 kHz ABR thresholds approximately 50 dB higher at 10 weeks of age than in 30 week old C57BL/6J   (MGI Ref ID J:139223)
    • hearing appears normal at 2 weeks of age but is progressively lost, based upon measurement of auditory brainstem response between 1 and 6 months of age   (MGI Ref ID J:162868)
  • nervous system phenotype
  • decreased inner hair cell stereocilia number
    • hair bundles appear normal at 2 weeks of age but are progressively lost between 1 and 6 months of age   (MGI Ref ID J:162868)
  • decreased outer hair cell stereocilia number
    • degeneration occurs earliest here   (MGI Ref ID J:162868)

GpnmbR150X/GpnmbR150X

        DBA/2J
  • vision/eye phenotype
  • abnormal iris pigmentation
    • pigment dispersion in the iris   (MGI Ref ID J:54013)
  • pigmentation phenotype
  • abnormal iris pigmentation
    • pigment dispersion in the iris   (MGI Ref ID J:54013)

GpnmbR150X/GpnmbR150X Tyrp1isa/Tyrp1isa

        DBA/2J
  • vision/eye phenotype
  • abnormal iris pigment epithelium
  • abnormal iris stroma morphology
  • optic nerve atrophy   (MGI Ref ID J:54013)
  • retinal ganglion cell degeneration
    • loss of retinal ganglion cells   (MGI Ref ID J:54013)
  • pigmentation phenotype
  • abnormal iris pigment epithelium
  • nervous system phenotype
  • optic nerve atrophy   (MGI Ref ID J:54013)
  • retinal ganglion cell degeneration
    • loss of retinal ganglion cells   (MGI Ref ID J:54013)

Klrd1DBA/2J/Klrd1DBA/2J

        DBA/2J
  • no phenotypic analysis
  • *normal* no phenotypic analysis   (MGI Ref ID J:163228)

Tyrp1isa/Tyrp1isa

        DBA/2J
  • vision/eye phenotype
  • abnormal iris stroma morphology

a/a Myo5ad/Myo5ad

        involves: DBA/2J
  • pigmentation phenotype
  • abnormal choroid melanin granule morphology
    • granules tend to clump in the choroid but not in the retina   (MGI Ref ID J:5346)
  • abnormal hair follicle melanin granule distribution
    • mice have clumped granules in the hair and skin   (MGI Ref ID J:5346)
  • vision/eye phenotype
  • abnormal choroid melanin granule morphology
    • granules tend to clump in the choroid but not in the retina   (MGI Ref ID J:5346)
  • integument phenotype
  • abnormal hair follicle melanin granule distribution
    • mice have clumped granules in the hair and skin   (MGI Ref ID J:5346)

asp2/asp2

        DBA/2J
  • mortality/aging
  • premature death
    • audiogenic seizures lead to death   (MGI Ref ID J:11261)
  • behavior/neurological phenotype
  • audiogenic seizures   (MGI Ref ID J:5094)
    • induced by auditory stimuli   (MGI Ref ID J:11261)
  • hyperactivity
    • wild running is induced by auditory stimuli   (MGI Ref ID J:11261)
  • nervous system phenotype
  • audiogenic seizures   (MGI Ref ID J:5094)
    • induced by auditory stimuli   (MGI Ref ID J:11261)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cardiovascular Research
Diet-Induced Atherosclerosis
      Relatively Resistant

Developmental Biology Research
Lymphoid Tissue Defects
      hematopoietic defects

Neurobiology Research
Epilepsy
      audiogenic seizures
Hearing Defects
      Age related hearing loss

Research Tools
General Purpose
Immunology, Inflammation and Autoimmunity Research
      specific complement deficiency, C5 complement
Infectious Disease
      Anthrax

Sensorineural Research
Eye Defects
      hereditary glaucoma
Hearing Defects
      Age related hearing loss

Ahrd related

Metabolism Research

Research Tools
Toxicology Research

Cdh23ahl related

Neurobiology Research
Hearing Defects
      Age related hearing loss

Sensorineural Research
Hearing Defects
      Age related hearing loss

Fscn2ahl8 related
      Age related hearing loss
Hc0 related

Immunology, Inflammation and Autoimmunity Research
Immunodeficiency
      specific complement deficiency

Research Tools
Immunology, Inflammation and Autoimmunity Research
      specific complement deficiency, C5 complement

Myo5ad related

Dermatology Research
Color and White Spotting Defects

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Ahrd
Allele Name d variant
Allele Type Not Applicable
Common Name(s) Ahd; Ahk; AhRd; Ahhn; ah; in;
Gene Symbol and Name Ahr, aryl-hydrocarbon receptor
Chromosome 12
Gene Common Name(s) Ah; Ahh; Ahre; In; aromatic hydrocarbon responsiveness; aryl hydrocarbon hydroxylase; bHLHe76; dioxin receptor; inflammatory reactivity;
General Note Compared with Ahrd/Ahrd mice, Ahrb/Ahrb individuals have a high inflammatory response to cutaneous application of dimethylbenzanthracene; a high susceptibility to methylcholanthrene- and benzopyrene-induced subcutaneous sarcomas and methylcholanthrene-induced lung tumors; an increased resistance to zoxazolamine-induced paralysis, lindane toxicity, and benzo[a]pyrene-induced aplastic anemia and leukemia; a high susceptibility to acetaminophen-induced hepatic necrosis and cataract formation; and an increased susceptibility to polycyclic hydrocarbon-induced birth defects, stillbirths, resorptions, decreased body weight, ovarian primordial oocyte depletion, and spermatozoal aberrations (J:5822). The Ahrballele is associated with increases in numerous metabolites of chemical carcinogens binding to DNA nucleotides (J:12156). The effectiveness of several mutagens for Salmonella in vitro is enhanced by presence of a liver fraction from Ahrb/Ahrb> mice treated with polycyclic hydrocarbons, but not from similarly treated Ahrd/Ahr mice (J:5564). In contrast, oral doses of benzopyrene cause a high rate of leukemia in Ahrd/Ahrd but not in Ahrd/Ahrd mice, probably because the carcinogenic metabolites produced in responsive Ahrb/Ahrd mice are rapidly degraded in the intestine and excreted in the feces (J:6074).

Strain of origin - this allele was found in DBA/2J, AKR/J, 129, SWR, RF, NZB strains

Molecular Note This allele encodes a 104 kDa receptor that is stabilized by molybdate and has an affinity for ligand 10-100 fold lower than that of the receptor produced by the C57BL/6J allele. PCR sequencing of cDNA revealed ten nucleotide differences between the coding sequences of the DBA/2J and C57BL/6J receptors. Five of the ten differences would cause amino acid changes. One of these, an apparent T to C transition replaces the opal termination codon in the C57BL/6J allele with an arginine codon in the DBA/2J allele. This change would extend translation of the DBA/2J mRNA by 43 amino acids, accounting for the larger size of the peptide produced by this allele (104 kDa vs 95 kDa for the C57BL/6J allele). A second T to C transition changes a leucine codon in the C57BL/6J allele to a proline codon in the DBA/2J allele, and would likely change secondary structure of the peptide and thus ligand affinity. [MGI Ref ID J:15153] [MGI Ref ID J:17460] [MGI Ref ID J:22144]
 
Allele Symbol Cdh23ahl
Allele Name age related hearing loss 1
Allele Type QTL
Common Name(s) Cdh23753A; mdfw;
Strain of Originmultiple strains
Gene Symbol and Name Cdh23, cadherin 23 (otocadherin)
Chromosome 10
Gene Common Name(s) 4930542A03Rik; CDHR23; RIKEN cDNA 4930542A03 gene; USH1D; W; age related hearing loss 1; ahl; bob; bobby; bus; bustling; mdfw; modifier of deaf waddler; neuroscience mutagenesis facility, 112; neuroscience mutagenesis facility, 181; neuroscience mutagenesis facility, 252; nmf112; nmf181; nmf252; sals; salsa; v; waltzer;
Molecular Note Genetic complementation tests have shown allelism between the mdfw (modifier of deaf waddler) locus and the ahl locus. Further analysis has identified an association between ahl and a G to A transition at nucleotide position 753 of Cdh23. This hypomorphic allele causes in frame skipping of exon 7 and reduced message stability. Twenty-seven strains classified with ahl and carrying the 753A allele include: CD1, RBF/DnJ, PL/J, AKR/J, RF/J, BALB/cBy, A/WySnJ, P/J, SENCARA/PtJ, DBA/1J, ALS/LtJ, C58/J, C57BLKS/J, 129P1/ReJ, C57BR/cd, SKH2/J, BUB/Bn, MA/MyJ, LP/J, 129X1/SvJ, NOR/LtJ, A/J, C57BL/6, NOD/LtJ, DBA/2J, ALR/LtJ, C57L/J. Strains classified with ahl that DO NOT carry this mutation include: C3H/HeSnJ, I/LnJ,YBR/Ei, MRL/MpJ. [MGI Ref ID J:86905]
 
Allele Symbol Fbrwt1DBA/2J
Allele Name DBA/2J
Allele Type QTL
Strain of OriginDBA/2J
Gene Symbol and Name Fbrwt1, forebrain weight 1
Chromosome 1
 
Allele Symbol Fbrwt2DBA/2J
Allele Name DBA/2J
Allele Type QTL
Strain of OriginDBA/2J
Gene Symbol and Name Fbrwt2, forebrain weight 2
Chromosome 11
Gene Common Name(s) Fbrwt11;
 
Allele Symbol Fscn2ahl8
Allele Name age related hearing loss 18
Allele Type Spontaneous
Common Name(s) Fscn2R109H;
Strain of OriginDBA/2J
Gene Symbol and Name Fscn2, fascin homolog 2, actin-bundling protein, retinal (Strongylocentrotus purpuratus)
Chromosome 11
Gene Common Name(s) C630046B20Rik; RFSN; RIKEN cDNA C630046B20 gene; RP30; age related hearing loss 8; ahl8;
General Note ahl8 interacts with Cdh23 on chromosome 10.
Molecular Note G to A transition located in exon 1 and is of predicted to cause a nonsynonymous amino acid change of arginine to histidine at position 109 (R109H). The known genealogy of the DBA-related strains and genotyping analysis of archived DBA/2J DNA samples indicate that this allele occurred in the DBA/2J lineage between 1951 (when it was separated from the DBA/2N lineage) and 1975. [MGI Ref ID J:139223] [MGI Ref ID J:162868]
 
Allele Symbol GpnmbR150X
Allele Name iris pigment dispersion
Allele Type Spontaneous
Common Name(s) Gpnmbipd;
Strain of OriginDBA/2J
Gene Symbol and Name Gpnmb, glycoprotein (transmembrane) nmb
Chromosome 6
Gene Common Name(s) Dchil; HGFIN; NMB; Osteoactivin; dendritic cell associated heparan sulfate proteoglycans dependent integrin ligand; ipd; iris pigment dispersion;
General Note

The mouse strain DBA/2J develops glaucoma associated with iris stromal atrophy and iris pigment dispersion phneotypes. Genetic studies defined two separate loci that contribute to the overall phenotype in the DBA/2J mouse, ipd and isa. Either mutation in a homozygous state contributes to glaucoma, while mice homozygous for both mutations develop an earlier onset and more severe iris disease.

Molecular Note The underlying mutation responsible for the phenotype in the iris pigment dispersion mouse was identified as a C to T substitution that resulted in a nonsense mutation, Arg150stop. [MGI Ref ID J:75398]
 
Allele Symbol Hc0
Allele Name deficient
Allele Type Spontaneous
Common Name(s) C5-; C5-d; C5-def; C5-deficient; hco;
Strain of Originmultiple strains
Gene Symbol and Name Hc, hemolytic complement
Chromosome 2
Gene Common Name(s) C5; C5D; C5a; C5b; CPAMD4; ECLZB; He;
General Note

This is an allele characteristic of various inbred mouse strains including the following: A/HeJ, AKR/J, DBA/2J, NZB/B1NJ, SWR/J, B10.D2/oSnJ

Hc was identified as a candidate gene for Abhr2 in a microarray analysis of lung mRNA from A/J, C3H/HeJ, and (A/J x C3H/HeJ)F1 x A/J backcross animals. Hc genotype shows statistically significant correlation to allergen-induced bronchial hyperresponsive phenotype. The A/J allele contains a 2 bp deletion resulting in deficient Hc mRNA and protein production and is associated with susceptibility to allergen-induced bronchial hyperresponsiveness. (J:108211)

Molecular Note A 2 base "TA" deletion at positions 62 and 63 of an 83 base pair exon near the 5' end of the gene is found in the following mouse strains: A/HeJ, AKR/J, DBA/2J, NZB/B1NJ, SWR/J, B10.D2/oSnJ. The consequence of this deletion is the creation of a stop codon starting four bases after the deletion. A truncated product of 216 amino acids is predicted as a result although contradictory reports exist that a larger pro-C5 protein may be synthesized. Nevertheless, macrophages from mouse strains carrying this allele do not secrete complement 5. [MGI Ref ID J:23983] [MGI Ref ID J:5016]
 
Allele Symbol Klrd1DBA/2J
Allele Name DBA/2J
Allele Type Spontaneous
Strain of OriginDBA/2J
Gene Symbol and Name Klrd1, killer cell lectin-like receptor, subfamily D, member 1
Chromosome 6
Gene Common Name(s) CD94;
Molecular Note A 2.4 Kb deletion at the 3' end of the gene, encompassing exon 6, occurred spontaneously in the DBA/2J colony at the Jackson Laboratory between 1984 and 1989. This mutation does not prevent translation or cell surface expression of the predicted protein. [MGI Ref ID J:163228]
 
Allele Symbol Myo5ad
Allele Name dilute
Allele Type Spontaneous
Common Name(s) Maltese dilution; blue dilution; d; dv;
Strain of Originold mutant of the mouse fancy
Gene Symbol and Name Myo5a, myosin VA
Chromosome 9
Gene Common Name(s) 9630007J19Rik; AI413174; AI661011; D; Dbv; Dop; GS1; MVa; MYH12; MYO5; MYR12; Myo5; MyoVA; RIKEN cDNA 9630007J19 gene; d; dilute; expressed sequence AI413174; expressed sequence AI661011; flail; flailer; flr; myosin V; nmf244;
Molecular Note This mutation is the result of the integration of ecotropic murine leukemia virus Emv-3 into a noncoding region of the Myo5ad gene. Reversions of Myo5ad to wild-type are caused by excision of the virus leaving exactly one long terminal repeat in place. [MGI Ref ID J:6587] [MGI Ref ID J:7092] [MGI Ref ID J:7751]
 
Allele Symbol P2rx7P451L
Allele Name P451L
Allele Type Spontaneous
Strain of Originvarious
Gene Symbol and Name P2rx7, purinergic receptor P2X, ligand-gated ion channel, 7
Chromosome 5
Gene Common Name(s) AI467586; P2X(7); P2X7; P2X7 receptor; P2X7R; expressed sequence AI467586;
Molecular Note A proline to leucine change at amino acid residue 451 is caused by a T to C transition at nucleic acid base 1352. This mutation is found in C57BL/6, C57BL/10, DBA/1, and DBA/2 and contrasts with the condition in BALB/c, NZW, NOD, 129, Mus caroli, M. spretus, M. musculus, and M. poschiavinus. The mutation lies within a C-terminal cytoplasmic domain homologous with the TNFR 1-death domain and with an SH3 binding protein. [MGI Ref ID J:79540]
 
Allele Symbol Tyrp1isa
Allele Name iris stromal atrophy
Allele Type Spontaneous
Common Name(s) isa;
Strain of OriginDBA/2J
Gene Symbol and Name Tyrp1, tyrosinase-related protein 1
Chromosome 4
Gene Common Name(s) B; CAS2; CATB; GP75; OCA3; TRP; TRP-1; TRP1; TYRP; Tyrp; b; b-PROTEIN; brown; iris stromal atrophy; isa; tyrosinase-related protein;
General Note

The mouse strain DBA/2J develops glaucoma associated with iris stromal atrophy and iris pigment dispersion phneotypes. Genetic studies defined two separate loci that contribute to the overall phenotype in the DBA/2J mouse, ipd and isa. Either mutation in a homozygous state contributes to glaucoma, while mice homozygous for both mutations develop an earlier onset and more severe iris disease.

Molecular Note Expression of a BAC containing the wild-type Tyrp1 gene rescues the phenotype of isa mice. The isa phenotype has been identified in numerous aged stocks carrying Tyrp1b allele. It is therefore most probable, that the Tyrp1b alleleis responsible for the isa phenotype. [MGI Ref ID J:75398]
 
Allele Symbol a
Allele Name nonagouti
Allele Type Spontaneous
Strain of Originold mutant of the mouse fancy
Gene Symbol and Name a, nonagouti
Chromosome 2
Gene Common Name(s) AGSW; AGTI; AGTIL; ASP; As; SHEP9; agouti; agouti signal protein; agouti suppressor;
General Note Phenotypic Similarity to Human Syndrome: Metabolic Syndrome in mice homozygous for Apoetm1Unc and heterozygous for Ay and a (J:177084)
Molecular Note Characterization of this allele shows an insertion of DNA comprised of a 5.5kb virus-like element, VL30, into the first intron of the agouti gene. The VL30 element itself contains an additional 5.5 kb sequence, flanked by 526 bp of direct repeats. The host integration site is the same as for at-2Gso and Aw-38J and includes a duplication of four nucleotides of host DNA and a deletion of 2 bp from the end of each repeat. Northern analysis of mRNA from skin of homozygotes shows a smaller agouti message and levels 8 fold lower than found in wild-type. [MGI Ref ID J:16984] [MGI Ref ID J:24934]
 
Allele Symbol asp2
Allele Name audiogenic seizure prone 2
Allele Type Spontaneous
Strain of OriginDBA/2
Gene Symbol and Name asp2, audiogenic seizure prone 2
Chromosome 4
Gene Common Name(s) asp; asp-2; audiogenic seizure prone;
General Note This allele is carrried in DBA/2. C57BL/6 is resistant to audiogenic seizures.

Genotyping

Genotyping Information

Inbred mouse strains are maintained through sibling (sister x brother) matings; no genotyping required.

Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Anderson MG; Smith RS; Hawes NL; Zabaleta A; Chang B; Wiggs JL; John SW. 2002. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet 30(1):81-5. [PubMed: 11743578]  [MGI Ref ID J:75398]

Drake TA; Schadt E; Hannani K; Kabo JM; Krass K; Colinayo V; Greaser LE 3rd; Goldin J; Lusis AJ. 2001. Genetic loci determining bone density in mice with diet-induced atherosclerosis. Physiol Genomics 5(4):205-15. [PubMed: 11328966]  [MGI Ref ID J:69682]

Howell GR; Libby RT; John SW. 2008. Mouse genetic models: an ideal system for understanding glaucomatous neurodegeneration and neuroprotection. Prog Brain Res 173:303-21. [PubMed: 18929118]  [MGI Ref ID J:140472]

Howell GR; Soto I; Ryan M; Graham LC; Smith RS; John SW. 2013. Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice. J Neuroinflammation 10(1):76. [PubMed: 23806181]  [MGI Ref ID J:199369]

Kirk EA; Moe GL; Caldwell MT; Lernmark JA; Wilson DL; LeBoeuf RC. 1995. Hyper- and hypo-responsiveness to dietary fat and cholesterol among inbred mice: searching for level and variability genes. J Lipid Res 36(7):1522-32. [PubMed: 7595076]  [MGI Ref ID J:28648]

Nishina PM; Wang J; Toyofuku W; Kuypers FA; Ishida BY; Paigen B. 1993. Atherosclerosis and plasma and liver lipids in nine inbred strains of mice. Lipids 28(7):599-605. [PubMed: 8355588]  [MGI Ref ID J:13267]

Paigen B. 1995. Genetics of responsiveness to high-fat and high- cholesterol diets in the mouse. Am J Clin Nutr 62(2):458S-462S. [PubMed: 7625360]  [MGI Ref ID J:28248]

Paigen B; Ishida BY; Verstuyft J; Winters RB; Albee D. 1990. Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis 10(2):316-23. [PubMed: 2317166]  [MGI Ref ID J:22615]

Paigen B; Morrow A; Brandon C; Mitchell D; Holmes P. 1985. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57(1):65-73. [PubMed: 3841001]  [MGI Ref ID J:109950]

Petkov PM; Cassell MA; Sargent EE; Donnelly CJ; Robinson P; Crew V; Asquith S; Haar RV; Wiles MV. 2004. Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse. Genomics 83(5):902-11. [PubMed: 15081119]  [MGI Ref ID J:89298]

Williams PA; Howell GR; Barbay JM; Braine CE; Sousa GL; John SW; Morgan JE. 2013. Retinal ganglion cell dendritic atrophy in DBA/2J glaucoma. PLoS One 8(8):e72282. [PubMed: 23977271]  [MGI Ref ID J:199858]

Additional References

Belknap JK; Crabbe JC; Riggan J; O'Toole LA. 1993. Voluntary consumption of morphine in 15 inbred mouse strains. Psychopharmacology (Berl) 112(2-3):352-8. [PubMed: 7871041]  [MGI Ref ID J:15468]

Chang B; Smith RS; Hawes NL; Anderson MG; Zabaleta A; Savinova O ; Roderick TH ; Heckenlively JR ; Davisson MT ; John SW. 1999. Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 21(4):405-9. [PubMed: 10192392]  [MGI Ref ID J:54013]

Doering CH; Shire JG; Kessler S; Clayton RB. 1973. Genetic and biochemical studies of the adrenal lipid depletion phenotype in mice. Biochem Genet 8(1):101-11. [PubMed: 4348256]  [MGI Ref ID J:5333]

Dunn TB; Deringer MK. 1968. Reticulum cell neoplasm, type B, or the Hodgkin's-like lesion of the mouse. J Natl Cancer Inst 40(4):771-821. [PubMed: 4869134]  [MGI Ref ID J:2417]

Erway LC; Willott JF; Archer JR; Harrison DE. 1993. Genetics of age-related hearing loss in mice: I. Inbred and F1 hybrid strains. Hear Res 65(1-2):125-32. [PubMed: 8458745]  [MGI Ref ID J:11837]

Fuller JL; Sjursen FH Jr. 1967. Audiogenic seizures in eleven mouse strains. J Hered 58(3):135-40. [PubMed: 6055327]  [MGI Ref ID J:24264]

Heiniger HJ; Taylor BA; Hards EJ; Meier H. 1975. Heritability of the phytohemagglutinin responsiveness of lymphocytes and its relationship to leukemogenesis. Cancer Res 35(3):825-31. [PubMed: 163691]  [MGI Ref ID J:22608]

International Nomenclature Committee. 1952. COMMITTEE on Standardized Nomenclature for Inbred Strains of Mice Cancer Res 12(8):602-13. [PubMed: 14945054]  [MGI Ref ID J:166288]

John SW; Smith RS; Savinova OV; Hawes NL; Chang B; Turnbull D; Davisson M; Roderick TH; Heckenlively JR. 1998. Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice [published erratum appears in Invest Ophthalmol Vis Sci 1998 Aug;39(9):1641] Invest Ophthalmol Vis Sci 39(6):951-62. [PubMed: 9579474]  [MGI Ref ID J:47302]

Keane TM; Goodstadt L; Danecek P; White MA; Wong K; Yalcin B; Heger A; Agam A; Slater G; Goodson M; Furlotte NA; Eskin E; Nellaker C; Whitley H; Cleak J; Janowitz D; Hernandez-Pliego P; Edwards A; Belgard TG; Oliver PL; McIntyre RE; Bhomra A; Nicod J; Gan X; Yuan W; van der Weyden L; Steward CA; Bala S; Stalker J; Mott R; Durbin R; Jackson IJ; Czechanski A; Guerra-Assuncao JA; Donahue LR; Reinholdt LG; Payseur BA; Ponting CP; Birney E; Flint J; Adams DJ. 2011. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477(7364):289-94. [PubMed: 21921910]  [MGI Ref ID J:177037]

Matsushima Y; Imai T; Watanabe O; Kawahara H; Ohne M; Takai H. 1984. Spontaneous calcified tongue lesions in DBA mice. Jikken Dobutsu 33(4):539-42. [PubMed: 6519193]  [MGI Ref ID J:166811]

Moy SS; Nadler JJ; Young NB; Perez A; Holloway LP; Barbaro RP; Barbaro JR; Wilson LM; Threadgill DW; Lauder JM; Magnuson TR; Crawley JN. 2007. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 176(1):4-20. [PubMed: 16971002]  [MGI Ref ID J:138682]

Nguyen PV; Duffy SN; Young JZ. 2000. Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. J Neurophysiol 84(5):2484-93. [PubMed: 11067991]  [MGI Ref ID J:71278]

Nilsson UR; Muller-Eberhard HJ. 1967. Deficiency of the fifth component of complement in mice with an inherited complement defect. J Exp Med 125(1):1-16. [PubMed: 4959665]  [MGI Ref ID J:5016]

Ooi YM; Colten HR. 1979. Genetic defect in secretion of complement C5 in mice. Nature 282(5735):207-8. [PubMed: 492335]  [MGI Ref ID J:6214]

Reid HM; Collins RL. 1989. Independence of uniphasic and biphasic audiogenic seizure progressions in mice. Behav Neural Biol 52(3):417-21. [PubMed: 2590151]  [MGI Ref ID J:27065]

Smith BK; Andrews PK; West DB. 2000. Macronutrient diet selection in thirteen mouse strains. Am J Physiol Regul Integr Comp Physiol 278(4):R797-805. [PubMed: 10749765]  [MGI Ref ID J:61602]

Turner JG; Willott JF. 1998. Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice. Hear Res 118(1-2):101-13. [PubMed: 9606065]  [MGI Ref ID J:47560]

West DB; Boozer CN; Moody DL; Atkinson RL. 1992. Dietary obesity in nine inbred mouse strains. Am J Physiol 262(6 Pt 2):R1025-32. [PubMed: 1621856]  [MGI Ref ID J:1348]

Wetsel RA; Fleischer DT; Haviland DL. 1990. Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5'-exon. J Biol Chem 265(5):2435-40. [PubMed: 2303408]  [MGI Ref ID J:23983]

Wheat WH; Wetsel R; Falus A; Tack BF; Strunk RC. 1987. The fifth component of complement (C5) in the mouse. Analysis of the molecular basis for deficiency. J Exp Med 165(5):1442-7. [PubMed: 3572304]  [MGI Ref ID J:8690]

Whitehead GS; Walker JK; Berman KG; Foster WM; Schwartz DA. 2003. Allergen-induced airway disease is mouse strain dependent. Am J Physiol Lung Cell Mol Physiol 285(1):L32-42. [PubMed: 12626335]  [MGI Ref ID J:84265]

Willott JF; Bross LS. 1996. Morphological changes in the anteroventral cochlear nucleus that accompany sensorineural hearing loss in DBA/2J and C57BL/6J mice. Brain Res Dev Brain Res 91(2):218-26. [PubMed: 8852372]  [MGI Ref ID J:32170]

Xie C; Sharma R; Wang H; Zhou XJ; Mohan C. 2004. Strain distribution pattern of susceptibility to immune-mediated nephritis. J Immunol 172(8):5047-55. [PubMed: 15067087]  [MGI Ref ID J:122988]

Ahrd related

Benedict WF; Considine N; Nebert DW. 1973. Genetic differences in aryl hydrocarbon hydroxylase induction and benzo(a)pyrene-produced tumorigenesis in the mouse. Mol Pharmacol 9(2):266-77. [PubMed: 4123113]  [MGI Ref ID J:84312]

Boobis AR; Nebert DW. 1976. Genetic differences in the metabolism of carcinogens and in the binding of benzo (a) pyrene metabolites to DNA. Adv Enzyme Regul 15:339-62. [PubMed: 1030186]  [MGI Ref ID J:12156]

Castro DJ; Lohr CV; Fischer KA; Pereira CB; Williams DE. 2008. Lymphoma and lung cancer in offspring born to pregnant mice dosed with dibenzo[a,l]pyrene: the importance of in utero vs. lactational exposure. Toxicol Appl Pharmacol 233(3):454-8. [PubMed: 18848954]  [MGI Ref ID J:143604]

Chang C; Smith DR; Prasad VS; Sidman CL; Nebert DW; Puga A. 1993. Ten nucleotide differences, five of which cause amino acid changes, are associated with the Ah receptor locus polymorphism of C57BL/6 and DBA/2 mice. Pharmacogenetics 3(6):312-21. [PubMed: 8148872]  [MGI Ref ID J:17460]

Curran CP; Miller KA; Dalton TP; Vorhees CV; Miller ML; Shertzer HG; Nebert DW. 2006. Genetic differences in lethality of newborn mice treated in utero with coplanar versus non-coplanar hexabromobiphenyl. Toxicol Sci 89(2):454-64. [PubMed: 16291824]  [MGI Ref ID J:113285]

Felton JS; Nebert DW. 1975. Mutagenesis of certain activated carcinogens in vitro associated with genetically mediated increases in monooxygenase activity and cytochrome P 1-450. J Biol Chem 250(17):6769-78. [PubMed: 808546]  [MGI Ref ID J:5564]

Gielen JE; Goujon FM; Nebert DW. 1972. Genetic regulation of aryl hydrocarbon hydroxylase induction. II. Simple Mendelian expression in mouse tissues in vivo. J Biol Chem 247(4):1125-37. [PubMed: 4110756]  [MGI Ref ID J:84250]

Goujon FM; Nebert DW; Gielen JE. 1972. Genetic expression of aryl hydrocarbon hydroxylase induction. IV. Interaction of various compounds with different forms of cytochrome P-450 and the effect on benzo(a)pyrene metabolism in vitro. Mol Pharmacol 8(6):667-80. [PubMed: 4118365]  [MGI Ref ID J:84252]

Harper PA; Golas CL; Okey AB. 1991. Ah receptor in mice genetically nonresponsive for cytochrome P4501A1 induction: cytosolic Ah receptor, transformation to the nuclear binding state, and induction of aryl hydrocarbon hydroxylase by halogenated and nonhalogenated aromatic hydrocarbons in embryonic tissues and cells. Mol Pharmacol 40(5):818-26. [PubMed: 1658612]  [MGI Ref ID J:2134]

Kerley-Hamilton JS; Trask HW; Ridley CJ; Dufour E; Lesseur C; Ringelberg CS; Moodie KL; Shipman SL; Korc M; Gui J; Shworak NW; Tomlinson CR. 2012. Inherent and benzo[a]pyrene-induced differential aryl hydrocarbon receptor signaling greatly affects life span, atherosclerosis, cardiac gene expression, and body and heart growth in mice. Toxicol Sci 126(2):391-404. [PubMed: 22228805]  [MGI Ref ID J:183715]

Kouri RE; Rude TH; Joglekar R; Dansette PM; Jerina DM; Atlas SA; Owens IS; Nebert DW. 1978. 2,3,7,8-tetrachlorodibenzo-p-dioxin as cocarcinogen causing 3-methylcholanthrene-initiated subcutaneous tumors in mice genetically 'nonresponsive' at Ah locus. Cancer Res 38(9):2777-83. [PubMed: 679184]  [MGI Ref ID J:84318]

Levova K; Moserova M; Nebert DW; Phillips DH; Frei E; Schmeiser HH; Arlt VM; Stiborova M. 2012. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I. Toxicol Appl Pharmacol 265(3):360-7. [PubMed: 22982977]  [MGI Ref ID J:192865]

Lew BJ; Manickam R; Lawrence BP. 2011. Activation of the aryl hydrocarbon receptor during pregnancy in the mouse alters mammary development through direct effects on stromal and epithelial tissues. Biol Reprod 84(6):1094-102. [PubMed: 21270426]  [MGI Ref ID J:173706]

Moriguchi T; Motohashi H; Hosoya T; Nakajima O; Takahashi S; Ohsako S; Aoki Y; Nishimura N; Tohyama C; Fujii-Kuriyama Y; Yamamoto M. 2003. Distinct response to dioxin in an arylhydrocarbon receptor (AHR)-humanized mouse. Proc Natl Acad Sci U S A 100(10):5652-7. [PubMed: 12730383]  [MGI Ref ID J:132380]

Nebert DW; Atlas SA; Guenthner TM; Kouri RE. 1978. The Ah locus: genetic regulation of the enzymes which metabolize polycyclic hydrocarbons and the risk of cancer. In: Polycyclic Hydrocarbons and Cancer: Chemistry, Molecular Biology and Environment. Academic Press, New York.  [MGI Ref ID J:30693]

Nebert DW; Considine N; Owens IS. 1973. Genetic expression of aryl hydrocarbon hydroxylase induction. VI. Control of other aromatic hydrocarbon-inducible mono-oxygenase activities at or near the same genetic locus. Arch Biochem Biophys 157(1):148-59. [PubMed: 4716952]  [MGI Ref ID J:84313]

Nebert DW; Gelboin HV. 1969. The in vivo and in vitro induction of aryl hydrocarbon hydroxylase in mammalian cells of different species, tissues, strains, and developmental and hormonal states. Arch Biochem Biophys 134(1):76-89. [PubMed: 4981257]  [MGI Ref ID J:84248]

Nebert DW; Gielen JE. 1972. Genetic regulation of aryl hydrocarbon hydroxylase induction in the mouse. Fed Proc 31(4):1315-25. [PubMed: 4114109]  [MGI Ref ID J:5282]

Nebert DW; Gielen JE; Goujon FM. 1972. Genetic expression of aryl hydrocarbon hydroxylase induction. 3. Changes in the binding of n-octylamine to cytochrome P-450. Mol Pharmacol 8(6):651-66. [PubMed: 4118364]  [MGI Ref ID J:84251]

Nebert DW; Goujon FM; Gielen JE. 1972. Aryl hydrocarbon hydroxylase induction by polycyclic hydrocarbons: simple autosomal dominant trait in the mouse. Nat New Biol 236(65):107-10. [PubMed: 4502804]  [MGI Ref ID J:84249]

Nebert DW; Jensen NM. 1979. Benzo[a]pyrene-initiated leukemia in mice. Association with allelic differences at the Ah locus. Biochem Pharmacol 28(1):149-51. [PubMed: 758905]  [MGI Ref ID J:6074]

Nebert DW; Jensen NM; Shinozuka H; Kunz HW; Gill TJ 3rd. 1982. The Ah phenotype. Survey of forty-eight rat strains and twenty inbred mouse strains. Genetics 100(1):79-87. [PubMed: 7095422]  [MGI Ref ID J:6809]

Nebert DW; Kon H. 1973. Genetic regulation of aryl hydrocarbon hydroxylase induction. V. Specific changes in spin state of cytochrome P 450 from genetically responsive animals. J Biol Chem 248(1):169-78. [PubMed: 4348203]  [MGI Ref ID J:84311]

Nebert DW; Robinson JR; Niwa A; Kumaki K; Poland AP. 1975. Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. J Cell Physiol 85(2 Pt 2 Suppl 1):393-414. [PubMed: 1091656]  [MGI Ref ID J:84317]

Niwa A; Kumaki K; Nebert DW; Poland AP. 1975. Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. Distinction between the 'responsive' homozygote and heterozygote at the Ah locus. Arch Biochem Biophys 166(2):559-64. [PubMed: 1119809]  [MGI Ref ID J:84316]

Oesch F; Morris N; Daly JW. 1973. Genetic expression of the induction of epoxide hydrase and aryl hydrocarbon hydroxylase activities in the mouse by phenobarbital or 3-methylcholanthrene. Mol Pharmacol 9(5):629-6. [PubMed: 4788156]  [MGI Ref ID J:25852]

Okey AB; Vella LM; Harper PA. 1989. Detection and characterization of a low affinity form of cytosolic Ah receptor in livers of mice nonresponsive to induction of cytochrome P1-450 by 3-methylcholanthrene. Mol Pharmacol 35(6):823-30. [PubMed: 2543914]  [MGI Ref ID J:27899]

Poel WE; Stanton D; Peters E; Wade HO. 1958. Comparative susceptibilities of seven inbred strains of mice to qualified applications of 3, 4-benzpyrene Proc Am Assoc Cancer Res 2:335.  [MGI Ref ID J:84245]

Poland A; Bradfield C. 1992. A brief review of the Ah locus. Tohoku J Exp Med 168(2):83-7. [PubMed: 1339107]  [MGI Ref ID J:12546]

Poland A; Glover E. 1990. Characterization and strain distribution pattern of the murine Ah receptor specified by the Ahd and Ahb-3 alleles. Mol Pharmacol 38(3):306-12. [PubMed: 2169579]  [MGI Ref ID J:34840]

Poland A; Glover E; Kende AS. 1976. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem 251(16):4936-46. [PubMed: 956169]  [MGI Ref ID J:84247]

Poland A; Glover E; Taylor BA. 1987. The murine Ah locus: a new allele and mapping to chromosome 12. Mol Pharmacol 32(4):471-8. [PubMed: 2823093]  [MGI Ref ID J:8895]

Poland A; Palen D; Glover E. 1994. Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol 46(5):915-21. [PubMed: 7969080]  [MGI Ref ID J:22144]

Poland A; Teitelbaum P; Glover E; Kende A. 1989. Stimulation of in vivo hepatic uptake and in vitro hepatic binding of [125I]2-lodo-3,7,8-trichlorodibenzo-p-dioxin by the administration of agonist for the Ah receptor. Mol Pharmacol 36(1):121-7. [PubMed: 2546046]  [MGI Ref ID J:126377]

Poland AP; Glover E; Robinson JR; Nebert DW. 1974. Genetic expression of aryl hydrocarbon hydroxylase activity. Induction of monooxygenase activities and cytochrome P1-450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically 'nonresponsive' to other aromatic hydrocarbons. J Biol Chem 249(17):5599-606. [PubMed: 4370044]  [MGI Ref ID J:84314]

Quintana FJ; Basso AS; Iglesias AH; Korn T; Farez MF; Bettelli E; Caccamo M; Oukka M; Weiner HL. 2008. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453(7191):65-71. [PubMed: 18362915]  [MGI Ref ID J:136052]

Robinson JR; Considine N; Nebert DW. 1974. Genetic expression of aryl hydrocarbon hydroxylase induction. Evidence for the involvement of other genetic loci. J Biol Chem 249(18):5851-9. [PubMed: 4413562]  [MGI Ref ID J:84315]

Schmid FA; Demetriades MS; Schabel FM 3rd; Tarnowski GS. 1967. Toxicity of several cancerigenic polycyclic hydrocarbons and other agents in AKR and C57BL-6 mice. Cancer Res 27(3):563-7. [PubMed: 6021514]  [MGI Ref ID J:84246]

Schmid FA; Elmer I; Tarnowski GS. 1969. Genetic determination of differential inflammatory reactivity and subcutaneous tumor susceptibility of AKR-J and C57BL-6J mice to 7,12-dimethylbenz- [a]anthracene. Cancer Res 29(8):1585-9. [PubMed: 5807232]  [MGI Ref ID J:34134]

Schmid FA; Pena RC; Robinson W; Tarnowski GS. 1967. Toxicity of intraperitoneal injections of 7, 12-dimethylbenz[a]anthracene in inbred mice. Cancer Res 27(3):558-62. [PubMed: 6021513]  [MGI Ref ID J:26440]

Schmidt JV; Carver LA; Bradfield CA. 1993. Molecular characterization of the murine Ahr gene. Organization, promoter analysis, and chromosomal assignment. J Biol Chem 268(29):22203-9. [PubMed: 8408082]  [MGI Ref ID J:15153]

Shi Z; Chen Y; Dong H; Amos-Kroohs RM; Nebert DW. 2008. Generation of a 'humanized' hCYP1A1_1A2_Cyp1a1/1a2(-/-)_Ahrd mouse line harboring the poor-affinity aryl hydrocarbon receptor. Biochem Biophys Res Commun 376(4):775-80. [PubMed: 18814841]  [MGI Ref ID J:141523]

Shivanna B; Zhang W; Jiang W; Welty SE; Couroucli XI; Wang L; Moorthy B. 2013. Functional deficiency of aryl hydrocarbon receptor augments oxygen toxicity-induced alveolar simplification in newborn mice. Toxicol Appl Pharmacol 267(3):209-17. [PubMed: 23337360]  [MGI Ref ID J:193493]

Simonian PL; Wehrmann F; Roark CL; Born WK; O'Brien RL; Fontenot AP. 2010. gammadelta T cells protect against lung fibrosis via IL-22. J Exp Med 207(10):2239-53. [PubMed: 20855496]  [MGI Ref ID J:165803]

Smith AG; Clothier B; Robinson S; Scullion MJ; Carthew P; Edwards R; Luo J; Lim CK; Toledano M. 1998. Interaction between iron metabolism and 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice with variants of the Ahr gene: a hepatic oxidative mechanism. Mol Pharmacol 53(1):52-61. [PubMed: 9443932]  [MGI Ref ID J:45850]

Stiborova M; Levova K; Barta F; Shi Z; Frei E; Schmeiser HH; Nebert DW; Phillips DH; Arlt VM. 2012. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol Sci 125(2):345-58. [PubMed: 22086975]  [MGI Ref ID J:183662]

Tanos R; Murray IA; Smith PB; Patterson A; Perdew GH. 2012. Role of the ah receptor in homeostatic control of Fatty Acid synthesis in the liver. Toxicol Sci 129(2):372-9. [PubMed: 22696238]  [MGI Ref ID J:188164]

Taylor BA. 1971. Strain distribution and linkage tests of 7,12-dimethylbenzanthracene (DMBA) inflammatory response in mice. Life Sci I 10(19):1127-34. [PubMed: 5132702]  [MGI Ref ID J:5244]

Thomas PE; Hutton JJ; Taylor BA. 1973. Genetic relationship between aryl hydrocarbon hydroxylase inducibility and chemical carcinogen induced skin ulceration in mice. Genetics 74(4):655-9. [PubMed: 4750810]  [MGI Ref ID J:5387]

Thomas PE; Kouri RE; Hutton JJ. 1972. The genetics of aryl hydrocarbon hydroxylase induction in mice: a single gene difference between C57BL-6J and DBA-2J. Biochem Genet 6(2):157-68. [PubMed: 4666754]  [MGI Ref ID J:31977]

Thorgeirsson SS; Nebert DW. 1977. The Ah locus and the metabolism of chemical carcinogens and other foreign compounds. Adv Cancer Res 25:149-93. [PubMed: 405846]  [MGI Ref ID J:5822]

Walisser JA; Bunger MK; Glover E; Bradfield CA. 2004. Gestational exposure of Ahr and Arnt hypomorphs to dioxin rescues vascular development. Proc Natl Acad Sci U S A 101(47):16677-82. [PubMed: 15545609]  [MGI Ref ID J:94465]

Yeager RL; Reisman SA; Aleksunes LM; Klaassen CD. 2009. Introducing the 'TCDD-inducible AhR-Nrf2 gene battery'. Toxicol Sci 111(2):238-46. [PubMed: 19474220]  [MGI Ref ID J:154083]

Yu Z; Mahadevan B; Lohr CV; Fischer KA; Louderback MA; Krueger SK; Pereira CB; Albershardt DJ; Baird WM; Bailey GS; Williams DE. 2006. Indole-3-carbinol in the maternal diet provides chemoprotection for the fetus against transplacental carcinogenesis by the polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene. Carcinogenesis 27(10):2116-23. [PubMed: 16704990]  [MGI Ref ID J:113356]

Zhou Y; Tung HY; Tsai YM; Hsu SC; Chang HW; Kawasaki H; Tseng HC; Plunkett B; Gao P; Hung CH; Vonakis BM; Huang SK. 2013. Aryl hydrocarbon receptor controls murine mast cell homeostasis. Blood 121(16):3195-204. [PubMed: 23462117]  [MGI Ref ID J:197552]

Cdh23ahl related

Bosco A; Crish SD; Steele MR; Romero CO; Inman DM; Horner PJ; Calkins DJ; Vetter ML. 2012. Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 7(8):e43602. [PubMed: 22952717]  [MGI Ref ID J:191663]

Davis RR; Newlander JK; Ling X; Cortopassi GA; Krieg EF; Erway LC. 2001. Genetic basis for susceptibility to noise-induced hearing loss in mice. Hear Res 155(1-2):82-90. [PubMed: 11335078]  [MGI Ref ID J:69679]

Di Palma F; Pellegrino R; Noben-Trauth K. 2001. Genomic structure, alternative splice forms and normal and mutant alleles of cadherin 23 (Cdh23). Gene 281(1-2):31-41. [PubMed: 11750125]  [MGI Ref ID J:73941]

Fetoni AR; Picciotti PM; Paludetti G; Troiani D. 2011. Pathogenesis of presbycusis in animal models: a review. Exp Gerontol 46(6):413-25. [PubMed: 21211561]  [MGI Ref ID J:186964]

Han F; Yu H; Tian C; Chen HE; Benedict-Alderfer C; Zheng Y; Wang Q; Han X; Zheng QY. 2010. A new mouse mutant of the Cdh23 gene with early-onset hearing loss facilitates evaluation of otoprotection drugs. Pharmacogenomics J :. [PubMed: 20644563]  [MGI Ref ID J:174758]

Johnson KR; Erway LC; Cook SA; Willott JF; Zheng QY. 1997. A major gene affecting age-related hearing loss in C57BL/6J mice Hear Res 114(1-2):83-92. [PubMed: 9447922]  [MGI Ref ID J:44966]

Johnson KR; Longo-Guess C; Gagnon LH; Yu H; Zheng QY. 2008. A locus on distal chromosome 11 (ahl8) and its interaction with Cdh23 ahl underlie the early onset, age-related hearing loss of DBA/2J mice. Genomics 92(4):219-25. [PubMed: 18662770]  [MGI Ref ID J:139223]

Johnson KR; Yu H; Ding D; Jiang H; Gagnon LH; Salvi RJ. 2010. Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice. Hear Res 268(1-2):85-92. [PubMed: 20470874]  [MGI Ref ID J:163035]

Johnson KR; Zheng QY; Bykhovskaya Y; Spirina O; Fischel-Ghodsian N. 2001. A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat Genet 27(2):191-4. [PubMed: 11175788]  [MGI Ref ID J:67312]

Johnson KR; Zheng QY; Noben-Trauth K. 2006. Strain background effects and genetic modifiers of hearing in mice. Brain Res 1091(1):79-88. [PubMed: 16579977]  [MGI Ref ID J:110459]

Johnson KR; Zheng QY; Weston MD; Ptacek LJ; Noben-Trauth K. 2005. The Mass1(frings) mutation underlies early onset hearing impairment in BUB/BnJ mice, a model for the auditory pathology of Usher syndrome IIC. Genomics 85(5):582-90. [PubMed: 15820310]  [MGI Ref ID J:97534]

Kane KL; Longo-Guess CM; Gagnon LH; Ding D; Salvi RJ; Johnson KR. 2012. Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear Res 283(1-2):80-8. [PubMed: 22138310]  [MGI Ref ID J:183757]

Keithley EM; Canto C; Zheng QY; Fischel-Ghodsian N; Johnson KR. 2004. Age-related hearing loss and the ahl locus in mice. Hear Res 188(1-2):21-8. [PubMed: 14759567]  [MGI Ref ID J:87783]

Liu X; Bulgakov OV; Darrow KN; Pawlyk B; Adamian M; Liberman MC; Li T. 2007. Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A 104(11):4413-8. [PubMed: 17360538]  [MGI Ref ID J:118927]

Manji SS; Williams LH; Miller KA; Ooms LM; Bahlo M; Mitchell CA; Dahl HH. 2011. A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS One 6(3):e17607. [PubMed: 21423608]  [MGI Ref ID J:171701]

Mathews CE; Leiter EH. 1999. Resistance of ALR/Lt islets to free radical-mediated diabetogenic stress is inherited as a dominant trait. Diabetes 48(11):2189-96. [PubMed: 10535453]  [MGI Ref ID J:109893]

Nadeau JH. 2003. Modifier genes and protective alleles in humans and mice. Curr Opin Genet Dev 13(3):290-5. [PubMed: 12787792]  [MGI Ref ID J:88012]

Noben-Trauth K; Latoche JR; Neely HR; Bennett B. 2010. Phenotype and genetics of progressive sensorineural hearing loss (Snhl1) in the LXS set of recombinant inbred strains of mice. PLoS One 5(7):e11459. [PubMed: 20628639]  [MGI Ref ID J:163117]

Noben-Trauth K; Zheng QY; Johnson KR. 2003. Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35(1):21-3. [PubMed: 12910270]  [MGI Ref ID J:86905]

Noben-Trauth K; Zheng QY; Johnson KR; Nishina PM. 1997. mdfw: a deafness susceptibility locus that interacts with deaf waddler (dfw). Genomics 44(3):266-72. [PubMed: 9325047]  [MGI Ref ID J:38429]

Perrin BJ; Sonnemann KJ; Ervasti JM. 2010. beta-actin and gamma-actin are each dispensable for auditory hair cell development but required for Stereocilia maintenance. PLoS Genet 6(10):e1001158. [PubMed: 20976199]  [MGI Ref ID J:167543]

Perrin BJ; Strandjord DM; Narayanan P; Henderson DM; Johnson KR; Ervasti JM. 2013. beta-Actin and Fascin-2 Cooperate to Maintain Stereocilia Length. J Neurosci 33(19):8114-21. [PubMed: 23658152]  [MGI Ref ID J:197137]

Vazquez AE; Jimenez AM; Martin GK; Luebke AE; Lonsbury-Martin BL. 2004. Evaluating cochlear function and the effects of noise exposure in the B6.CAST+Ahl mouse with distortion product otoacoustic emissions. Hear Res 194(1-2):87-96. [PubMed: 15276680]  [MGI Ref ID J:117746]

Zheng QY; Johnson KR. 2001. Hearing loss associated with the modifier of deaf waddler (mdfw) locus corresponds with age-related hearing loss in 12 inbred strains of mice. Hear Res 154(1-2):45-53. [PubMed: 11423214]  [MGI Ref ID J:70964]

Zheng QY; Scarborough JD; Zheng Y; Yu H; Choi D; Gillespie PG. 2012. Digenic inheritance of deafness caused by 8J allele of myosin-VIIA and mutations in other Usher I genes. Hum Mol Genet 21(11):2588-98. [PubMed: 22381527]  [MGI Ref ID J:183898]

Zilberstein Y; Liberman MC; Corfas G. 2012. Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 32(2):405-10. [PubMed: 22238076]  [MGI Ref ID J:179911]

Fbrwt1DBA/2J related

Lu L; Wei L; Peirce JL; Wang X; Zhou J; Homayouni R; Williams RW; Airey DC. 2008. Using gene expression databases for classical trait QTL candidate gene discovery in the BXD recombinant inbred genetic reference population: mouse forebrain weight. BMC Genomics 9:444. [PubMed: 18817551]  [MGI Ref ID J:143361]

Fbrwt2DBA/2J related

Lu L; Wei L; Peirce JL; Wang X; Zhou J; Homayouni R; Williams RW; Airey DC. 2008. Using gene expression databases for classical trait QTL candidate gene discovery in the BXD recombinant inbred genetic reference population: mouse forebrain weight. BMC Genomics 9:444. [PubMed: 18817551]  [MGI Ref ID J:143361]

Fscn2ahl8 related

Johnson KR; Longo-Guess C; Gagnon LH; Yu H; Zheng QY. 2008. A locus on distal chromosome 11 (ahl8) and its interaction with Cdh23 ahl underlie the early onset, age-related hearing loss of DBA/2J mice. Genomics 92(4):219-25. [PubMed: 18662770]  [MGI Ref ID J:139223]

Perrin BJ; Strandjord DM; Narayanan P; Henderson DM; Johnson KR; Ervasti JM. 2013. beta-Actin and Fascin-2 Cooperate to Maintain Stereocilia Length. J Neurosci 33(19):8114-21. [PubMed: 23658152]  [MGI Ref ID J:197137]

Shin JB; Longo-Guess CM; Gagnon LH; Saylor KW; Dumont RA; Spinelli KJ; Pagana JM; Wilmarth PA; David LL; Gillespie PG; Johnson KR. 2010. The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2J mice. J Neurosci 30(29):9683-94. [PubMed: 20660251]  [MGI Ref ID J:162868]

GpnmbR150X related

Abdelmagid SM; Barbe MF; Rico MC; Salihoglu S; Arango-Hisijara I; Selim AH; Anderson MG; Owen TA; Popoff SN; Safadi FF. 2008. Osteoactivin, an anabolic factor that regulates osteoblast differentiation and function. Exp Cell Res 314(13):2334-51. [PubMed: 18555216]  [MGI Ref ID J:138006]

Abdelmagid SM; Belcher JY; Moussa FM; Lababidi SL; Sondag GR; Novak KM; Sanyurah AS; Frara NA; Razmpour R; Del Carpio-Cano FE; Safadi FF. 2014. Mutation in Osteoactivin Decreases Bone Formation in Vivo and Osteoblast Differentiation in Vitro. Am J Pathol 184(3):697-713. [PubMed: 24462663]  [MGI Ref ID J:206565]

Anderson MG; Libby RT; Mao M; Cosma IM; Wilson LA; Smith RS; John SW. 2006. Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma. BMC Biol 4:20. [PubMed: 16827931]  [MGI Ref ID J:128215]

Anderson MG; Nair KS; Amonoo LA; Mehalow A; Trantow CM; Masli S; John SW. 2008. GpnmbR150X allele must be present in bone marrow derived cells to mediate DBA/2J glaucoma. BMC Genet 9:30. [PubMed: 18402690]  [MGI Ref ID J:134670]

Anderson MG; Smith RS; Savinova OV; Hawes NL; Chang B; Zabaleta A; Wilpan R; Heckenlively JR; Davisson M; John SW. 2001. Genetic modification of glaucoma associated phenotypes between AKXD-28/Ty and DBA/2J mice. BMC Genet 2(1):1. [PubMed: 11178107]  [MGI Ref ID J:82878]

Barabas P; Huang W; Chen H; Koehler CL; Howell G; John SW; Tian N; Renteria RC; Krizaj D. 2011. Missing optomotor head-turning reflex in the DBA/2J mouse. Invest Ophthalmol Vis Sci 52(9):6766-73. [PubMed: 21757588]  [MGI Ref ID J:181395]

Chang B; Hawes NL; Hurd RE; Wang J; Howell D; Davisson MT; Roderick TH; Nusinowitz S; Heckenlively JR. 2005. Mouse models of ocular diseases. Vis Neurosci 22(5):587-93. [PubMed: 16332269]  [MGI Ref ID J:156373]

Chang B; Smith RS; Hawes NL; Anderson MG; Zabaleta A; Savinova O ; Roderick TH ; Heckenlively JR ; Davisson MT ; John SW. 1999. Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 21(4):405-9. [PubMed: 10192392]  [MGI Ref ID J:54013]

Crish SD; Dapper JD; MacNamee SE; Balaram P; Sidorova TN; Lambert WS; Calkins DJ. 2013. Failure of axonal transport induces a spatially coincident increase in astrocyte BDNF prior to synapse loss in a central target. Neuroscience 229:55-70. [PubMed: 23159315]  [MGI Ref ID J:193975]

Harder JM; Fernandes KA; Libby RT. 2012. The Bcl-2 family member BIM has multiple glaucoma-relevant functions in DBA/2J mice. Sci Rep 2:530. [PubMed: 22833783]  [MGI Ref ID J:207269]

Howell GR; Libby RT; Jakobs TC; Smith RS; Phalan FC; Barter JW; Barbay JM; Marchant JK; Mahesh N; Porciatti V; Whitmore AV; Masland RH; John SW. 2007. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 179(7):1523-37. [PubMed: 18158332]  [MGI Ref ID J:131073]

Howell GR; Macalinao DG; Sousa GL; Walden M; Soto I; Kneeland SC; Barbay JM; King BL; Marchant JK; Hibbs M; Stevens B; Barres BA; Clark AF; Libby RT; John SW. 2011. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 121(4):1429-44. [PubMed: 21383504]  [MGI Ref ID J:172016]

Huang W; Xing W; Ryskamp DA; Punzo C; Krizaj D. 2011. Localization and phenotype-specific expression of ryanodine calcium release channels in C57BL6 and DBA/2J mouse strains. Exp Eye Res 93(5):700-9. [PubMed: 21933672]  [MGI Ref ID J:189480]

Inman DM; Sappington RM; Horner PJ; Calkins DJ. 2006. Quantitative correlation of optic nerve pathology with ocular pressure and corneal thickness in the DBA/2 mouse model of glaucoma. Invest Ophthalmol Vis Sci 47(3):986-96. [PubMed: 16505033]  [MGI Ref ID J:108329]

Jakobs TC; Libby RT; Ben Y; John SW; Masland RH. 2005. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313-25. [PubMed: 16247030]  [MGI Ref ID J:104518]

Libby RT; Li Y; Savinova OV; Barter J; Smith RS; Nickells RW; John SW. 2005. Susceptibility to neurodegeneration in a glaucoma is modified by bax gene dosage. PLoS Genet 1(1):e4. [PubMed: 16103918]  [MGI Ref ID J:100118]

Ripoll VM; Irvine KM; Ravasi T; Sweet MJ; Hume DA. 2007. Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J Immunol 178(10):6557-66. [PubMed: 17475886]  [MGI Ref ID J:146106]

Trantow CM; Cuffy TL; Fingert JH; Kuehn MH; Anderson MG. 2011. Microarray analysis of iris gene expression in mice with mutations influencing pigmentation. Invest Ophthalmol Vis Sci 52(1):237-48. [PubMed: 20739468]  [MGI Ref ID J:171565]

Zhou X; Li F; Kong L; Tomita H; Li C; Cao W. 2005. Involvement of inflammation, degradation, and apoptosis in a mouse model of glaucoma. J Biol Chem 280(35):31240-8. [PubMed: 15985430]  [MGI Ref ID J:101163]

Hc0 related

Actor JK; Breij E; Wetsel RA; Hoffmann H; Hunter RL Jr; Jagannath C. 2001. A role for complement C5 in organism containment and granulomatous response during murine tuberculosis. Scand J Immunol 53(5):464-74. [PubMed: 11309154]  [MGI Ref ID J:103981]

Addis-Lieser E; Kohl J; Chiaramonte MG. 2005. Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis. J Immunol 175(3):1894-902. [PubMed: 16034133]  [MGI Ref ID J:107269]

Anderson AL; Sporici R; Lambris J; Larosa D; Levinson AI. 2006. Pathogenesis of B-cell superantigen-induced immune complex-mediated inflammation. Infect Immun 74(2):1196-203. [PubMed: 16428769]  [MGI Ref ID J:104987]

Barthlott T; Stockinger B. 2001. Lineage fate alteration of thymocytes developing in an MHC environment containing MHC/peptide ligands with antagonist properties. Eur J Immunol 31(12):3595-601. [PubMed: 11745379]  [MGI Ref ID J:151748]

Baudino L; Sardini A; Ruseva MM; Fossati-Jimack L; Cook HT; Scott D; Simpson E; Botto M. 2014. C3 opsonization regulates endocytic handling of apoptotic cells resulting in enhanced T-cell responses to cargo-derived antigens. Proc Natl Acad Sci U S A 111(4):1503-8. [PubMed: 24474777]  [MGI Ref ID J:206648]

Bauer K; Yu X; Wernhoff P; Koczan D; Thiesen HJ; Ibrahim SM. 2004. Identification of new quantitative trait loci in mice with collagen-induced arthritis. Arthritis Rheum 50(11):3721-8. [PubMed: 15529344]  [MGI Ref ID J:94347]

Binstadt BA; Hebert JL; Ortiz-Lopez A; Bronson R; Benoist C; Mathis D. 2009. The same systemic autoimmune disease provokes arthritis and endocarditis via distinct mechanisms. Proc Natl Acad Sci U S A 106(39):16758-63. [PubMed: 19805369]  [MGI Ref ID J:153217]

Bode J; Dutow P; Sommer K; Janik K; Glage S; Tummler B; Munder A; Laudeley R; Sachse KW; Klos A. 2012. A new role of the complement system: C3 provides protection in a mouse model of lung infection with intracellular Chlamydia psittaci. PLoS One 7(11):e50327. [PubMed: 23189195]  [MGI Ref ID J:194784]

Bora NS; Kaliappan S; Jha P; Xu Q; Sohn JH; Dhaulakhandi DB; Kaplan HJ; Bora PS. 2006. Complement activation via alternative pathway is critical in the development of laser-induced choroidal neovascularization: role of factor B and factor H. J Immunol 177(3):1872-8. [PubMed: 16849499]  [MGI Ref ID J:138026]

Borders CW; Courtney A; Ronen K; Pilar Laborde-Lahoz M; Guidry TV; Hwang SA; Olsen M; Hunter RL Jr; Hollmann TJ; Wetsel RA; Actor JK. 2005. Requisite role for complement C5 and the C5a receptor in granulomatous response to mycobacterial glycolipid trehalose 6,6'-dimycolate. Scand J Immunol 62(2):123-30. [PubMed: 16101818]  [MGI Ref ID J:114316]

Bosco A; Crish SD; Steele MR; Romero CO; Inman DM; Horner PJ; Calkins DJ; Vetter ML. 2012. Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 7(8):e43602. [PubMed: 22952717]  [MGI Ref ID J:191663]

CINADER B; DUBISKI S; WARDLAW AC. 1964. DISTRIBUTION, INHERITANCE, AND PROPERTIES OF AN ANTIGEN, MUB1, AND ITS RELATION TO HEMOLYTIC COMPLEMENT. J Exp Med 120:897-924. [PubMed: 14247728]  [MGI Ref ID J:13003]

Carter WO; Bull C; Bortolon E; Yang L; Jesmok GJ; Gundel RH. 1998. A murine skeletal muscle ischemia-reperfusion injury model: differential pathology in BALB/c and DBA/2N mice. J Appl Physiol 85(5):1676-83. [PubMed: 9804569]  [MGI Ref ID J:51187]

Chen HC; Hofman FM; Kung JT; Lin YD; Wu-Hsieh BA. 2007. Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol 81(11):5518-26. [PubMed: 17360740]  [MGI Ref ID J:153322]

Chen J; Reifsnyder PC; Scheuplein F; Schott WH; Mileikovsky M; Soodeen-Karamath S; Nagy A; Dosch MH; Ellis J; Koch-Nolte F; Leiter EH. 2005. 'Agouti NOD': identification of a CBA-derived Idd locus on Chromosome 7 and its use for chimera production with NOD embryonic stem cells. Mamm Genome 16(10):775-83. [PubMed: 16261419]  [MGI Ref ID J:102639]

Cunnion KM; Benjamin DK Jr; Hester CG; Frank MM. 2004. Role of complement receptors 1 and 2 (CD35 and CD21), C3, C4, and C5 in survival by mice of Staphylococcus aureus bacteremia. J Lab Clin Med 143(6):358-65. [PubMed: 15192652]  [MGI Ref ID J:101948]

Daniel DS; Dai G; Singh CR; Lindsey DR; Smith AK; Dhandayuthapani S; Hunter RL Jr; Jagannath C. 2006. The reduced bactericidal function of complement C5-deficient murine macrophages is associated with defects in the synthesis and delivery of reactive oxygen radicals to mycobacterial phagosomes. J Immunol 177(7):4688-98. [PubMed: 16982908]  [MGI Ref ID J:139313]

Deguchi Y; Andoh A; Inatomi O; Araki Y; Hata K; Tsujikawa T; Kitoh K; Fujiyama Y. 2005. Development of dextran sulfate sodium-induced colitis is aggravated in mice genetically deficient for complement C5. Int J Mol Med 16(4):605-8. [PubMed: 16142393]  [MGI Ref ID J:107581]

Ehrnthaller C; Huber-Lang M; Nilsson P; Bindl R; Redeker S; Recknagel S; Rapp A; Mollnes T; Amling M; Gebhard F; Ignatius A. 2013. Complement C3 and C5 deficiency affects fracture healing. PLoS One 8(11):e81341. [PubMed: 24260573]  [MGI Ref ID J:209669]

Fairweather D; Frisancho-Kiss S; Njoku DB; Nyland JF; Kaya Z; Yusung SA; Davis SE; Frisancho JA; Barrett MA; Rose NR. 2006. Complement receptor 1 and 2 deficiency increases coxsackievirus B3-induced myocarditis, dilated cardiomyopathy, and heart failure by increasing macrophages, IL-1beta, and immune complex deposition in the heart. J Immunol 176(6):3516-24. [PubMed: 16517720]  [MGI Ref ID J:129509]

Ferreira C; Barthlott T; Garcia S; Zamoyska R; Stockinger B. 2000. Differential survival of naive CD4 and CD8 T cells. J Immunol 165(7):3689-94. [PubMed: 11034373]  [MGI Ref ID J:151749]

Flierl MA; Rittirsch D; Nadeau BA; Day DE; Zetoune FS; Sarma JV; Huber-Lang MS; Ward PA. 2008. Functions of the complement components C3 and C5 during sepsis. FASEB J 22(10):3483-90. [PubMed: 18587006]  [MGI Ref ID J:140250]

Flynn S; Stockinger B. 2003. Tumor and CD4 T-cell interactions: tumor escape as result of reciprocal inactivation. Blood 101(11):4472-8. [PubMed: 12543861]  [MGI Ref ID J:151744]

Fossati G; Cooke A; Papafio RQ; Haskins K; Stockinger B. 1999. Triggering a second T cell receptor on diabetogenic T cells can prevent induction of diabetes. J Exp Med 190(4):577-83. [PubMed: 10449528]  [MGI Ref ID J:108724]

Garcia S; DiSanto J; Stockinger B. 1999. Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 11(2):163-71. [PubMed: 10485651]  [MGI Ref ID J:151750]

Girardi G; Berman J; Redecha P; Spruce L; Thurman JM; Kraus D; Hollmann TJ; Casali P; Caroll MC; Wetsel RA; Lambris JD; Holers VM; Salmon JE. 2003. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 112(11):1644-54. [PubMed: 14660741]  [MGI Ref ID J:86845]

Hillebrandt S; Wasmuth HE; Weiskirchen R; Hellerbrand C; Keppeler H; Werth A; Schirin-Sokhan R; Wilkens G; Geier A; Lorenzen J; Kohl J; Gressner AM; Matern S; Lammert F. 2005. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet 37(8):835-43. [PubMed: 15995705]  [MGI Ref ID J:100159]

Ji H; Gauguier D; Ohmura K; Gonzalez A; Duchatelle V; Danoy P; Garchon HJ; Degott C; Lathrop M; Benoist C; Mathis D. 2001. Genetic influences on the end-stage effector phase of arthritis. J Exp Med 194(3):321-30. [PubMed: 11489951]  [MGI Ref ID J:70882]

Karp CL; Grupe A; Schadt E; Ewart SL; Keane-Moore M; Cuomo PJ; Kohl J; Wahl L; Kuperman D; Germer S; Aud D; Peltz G; Wills-Karp M. 2000. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol 1(3):221-6. [PubMed: 10973279]  [MGI Ref ID J:108211]

Kassiotis G; Garcia S; Simpson E; Stockinger B. 2002. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat Immunol 3(3):244-50. [PubMed: 11836529]  [MGI Ref ID J:151747]

Kassiotis G; Zamoyska R; Stockinger B. 2003. Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J Exp Med 197(8):1007-16. [PubMed: 12707300]  [MGI Ref ID J:151743]

Kawikova I; Paliwal V; Szczepanik M; Itakura A; Fukui M; Campos RA; Geba GP; Homer RJ; Iliopoulou BP; Pober JS; Tsuji RF; Askenase PW. 2004. Airway hyper-reactivity mediated by B-1 cell immunoglobulin M antibody generating complement C5a at 1 day post-immunization in a murine hapten model of non-atopic asthma. Immunology 113(2):234-45. [PubMed: 15379984]  [MGI Ref ID J:92933]

Kerepesi LA; Hess JA; Nolan TJ; Schad GA; Abraham D. 2006. Complement component C3 is required for protective innate and adaptive immunity to larval strongyloides stercoralis in mice. J Immunol 176(7):4315-22. [PubMed: 16547268]  [MGI Ref ID J:129872]

Kim CH; Wu W; Wysoczynski M; Abdel-Latif A; Sunkara M; Morris A; Kucia M; Ratajczak J; Ratajczak MZ. 2012. Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia 26(1):106-16. [PubMed: 21769103]  [MGI Ref ID J:181063]

Kim DD; Miwa T; Kimura Y; Schwendener RA; van Lookeren Campagne M; Song WC. 2008. Deficiency of decay-accelerating factor and complement receptor 1-related gene/protein y on murine platelets leads to complement-dependent clearance by the macrophage phagocytic receptor CRIg. Blood 112(4):1109-19. [PubMed: 18524992]  [MGI Ref ID J:138410]

Kirimanjeswara GS; Mann PB; Pilione M; Kennett MJ; Harvill ET. 2005. The complex mechanism of antibody-mediated clearance of Bordetella from the lungs requires TLR4. J Immunol 175(11):7504-11. [PubMed: 16301658]  [MGI Ref ID J:122156]

Kwan WH; Hashimoto D; Paz-Artal E; Ostrow K; Greter M; Raedler H; Medof ME; Merad M; Heeger PS. 2012. Antigen-presenting cell-derived complement modulates graft-versus-host disease. J Clin Invest 122(6):2234-8. [PubMed: 22585573]  [MGI Ref ID J:190492]

Kyriakides C; Austen W Jr; Wang Y; Favuzza J; Kobzik L; Moore FD Jr; Hechtman HB. 1999. Membrane attack complex of complement and neutrophils mediate the injury of acid aspiration. J Appl Physiol 87(6):2357-61. [PubMed: 10601189]  [MGI Ref ID J:103341]

Lee HM; Wu W; Wysoczynski M; Liu R; Zuba-Surma EK; Kucia M; Ratajczak J; Ratajczak MZ. 2009. Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes. Leukemia 23(11):2052-62. [PubMed: 19657368]  [MGI Ref ID J:154482]

Lee HM; Wysoczynski M; Liu R; Shin DM; Kucia M; Botto M; Ratajczak J; Ratajczak MZ. 2010. Mobilization studies in complement-deficient mice reveal that optimal AMD3100 mobilization of hematopoietic stem cells depends on complement cascade activation by AMD3100-stimulated granulocytes. Leukemia 24(3):573-82. [PubMed: 20033053]  [MGI Ref ID J:158026]

Liu Q; He S; Groysman L; Shaked D; Russin J; Cen S; Mack WJ. 2013. White matter injury due to experimental chronic cerebral hypoperfusion is associated with C5 deposition. PLoS One 8(12):e84802. [PubMed: 24386419]  [MGI Ref ID J:209840]

Mahesh J; Daly J; Cheadle WG; Kotwal GJ. 1999. Elucidation of the early events contributing to zymosan-induced multiple organ dysfunction syndrome using MIP-1alpha, C3 knockout, and C5-deficient mice. Shock 12(5):340-9. [PubMed: 10565608]  [MGI Ref ID J:59655]

Mastellos D; Papadimitriou JC; Franchini S; Tsonis PA; Lambris JD. 2001. A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J Immunol 166(4):2479-86. [PubMed: 11160308]  [MGI Ref ID J:111000]

Miller CG; Cook DN; Kotwal GJ. 1996. Two chemotactic factors, C5a and MIP-1alpha, dramatically alter the mortality from zymosan-induced multiple organ dysfunction syndrome (MODS): C5a contributes to MODS while MIP-1alpha has a protective role. Mol Immunol 33(14):1135-7. [PubMed: 9047380]  [MGI Ref ID J:38592]

Miller CG; Justus DE; Jayaraman S; Kotwal GJ. 1995. Severe and prolonged inflammatory response to localized cowpox virus infection in footpads of C5-deficient mice: investigation of the role of host complement in poxvirus pathogenesis. Cell Immunol 162(2):326-32. [PubMed: 7743560]  [MGI Ref ID J:25289]

Miwa T; Zhou L; Kimura Y; Kim D; Bhandoola A; Song WC. 2009. Complement-dependent T-cell lymphopenia caused by thymocyte deletion of the membrane complement regulator Crry. Blood 113(12):2684-94. [PubMed: 19136662]  [MGI Ref ID J:146538]

Mocco J; Mack WJ; Ducruet AF; Sosunov SA; Sughrue ME; Hassid BG; Nair MN; Laufer I; Komotar RJ; Claire M; Holland H; Pinsky DJ; Connolly ES Jr. 2006. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res 99(2):209-17. [PubMed: 16778128]  [MGI Ref ID J:123658]

Mori L; de Libero G. 1998. Genetic control of susceptibility to collagen-induced arthritis in T cell receptor beta-chain transgenic mice. Arthritis Rheum 41(2):256-62. [PubMed: 9485083]  [MGI Ref ID J:134111]

Moulton RA; Mashruwala MA; Smith AK; Lindsey DR; Wetsel RA; Haviland DL; Hunter RL; Jagannath C. 2007. Complement C5a anaphylatoxin is an innate determinant of dendritic cell-induced Th1 immunity to Mycobacterium bovis BCG infection in mice. J Leukoc Biol 82(4):956-67. [PubMed: 17675563]  [MGI Ref ID J:125190]

Mullick A; Elias M; Picard S; Bourget L; Jovcevski O; Gauthier S; Tuite A; Harakidas P; Bihun C; Massie B; Gros P. 2004. Dysregulated inflammatory response to Candida albicans in a C5-deficient mouse strain. Infect Immun 72(10):5868-76. [PubMed: 15385488]  [MGI Ref ID J:93132]

Mullick A; Leon Z; Min-Oo G; Berghout J; Lo R; Daniels E; Gros P. 2006. Cardiac failure in C5-deficient A/J mice after Candida albicans infection. Infect Immun 74(8):4439-51. [PubMed: 16861630]  [MGI Ref ID J:112405]

Niculescu T; Weerth S; Niculescu F; Cudrici C; Rus V; Raine CS; Shin ML; Rus H. 2004. Effects of complement C5 on apoptosis in experimental autoimmune encephalomyelitis. J Immunol 172(9):5702-6. [PubMed: 15100315]  [MGI Ref ID J:89686]

Nilsson UR; Muller-Eberhard HJ. 1967. Deficiency of the fifth component of complement in mice with an inherited complement defect. J Exp Med 125(1):1-16. [PubMed: 4959665]  [MGI Ref ID J:5016]

Ooi YM; Colten HR. 1979. Genetic defect in secretion of complement C5 in mice. Nature 282(5735):207-8. [PubMed: 492335]  [MGI Ref ID J:6214]

Patel SN; Berghout J; Lovegrove FE; Ayi K; Conroy A; Serghides L; Min-oo G; Gowda DC; Sarma JV; Rittirsch D; Ward PA; Liles WC; Gros P; Kain KC. 2008. C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J Exp Med 205(5):1133-43. [PubMed: 18426986]  [MGI Ref ID J:136298]

Pickering MC; Warren J; Rose KL; Carlucci F; Wang Y; Walport MJ; Cook HT; Botto M. 2006. Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. Proc Natl Acad Sci U S A 103(25):9649-54. [PubMed: 16769899]  [MGI Ref ID J:111031]

Pilione MR; Agosto LM; Kennett MJ; Harvill ET. 2006. CD11b is required for the resolution of inflammation induced by Bordetella bronchiseptica respiratory infection. Cell Microbiol 8(5):758-68. [PubMed: 16611225]  [MGI Ref ID J:135740]

Pritchard MT; McMullen MR; Stavitsky AB; Cohen JI; Lin F; Medof ME; Nagy LE. 2007. Differential contributions of C3, C5, and decay-accelerating factor to ethanol-induced fatty liver in mice. Gastroenterology 132(3):1117-26. [PubMed: 17383432]  [MGI Ref ID J:128218]

Prodeus AP; Zhou X; Maurer M; Galli SJ; Carroll MC. 1997. Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 390(6656):172-5. [PubMed: 9367154]  [MGI Ref ID J:44240]

Ratajczak MZ; Lee H; Wysoczynski M; Wan W; Marlicz W; Laughlin MJ; Kucia M; Janowska-Wieczorek A; Ratajczak J. 2010. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due toactivation of complement cascade/membrane attack complex. Leukemia 24(5):976-85. [PubMed: 20357827]  [MGI Ref ID J:160183]

Redecha P; Tilley R; Tencati M; Salmon JE; Kirchhofer D; Mackman N; Girardi G. 2007. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood 110(7):2423-31. [PubMed: 17536017]  [MGI Ref ID J:147022]

Refici ML; Metzger DW; Arulanandam BP; Lennartz MR; Loegering DJ. 2001. Fcgamma-receptor signaling augments the LPS-stimulated increase in serum tumor necrosis factor-alpha levels. Am J Physiol Regul Integr Comp Physiol 280(4):R1037-44. [PubMed: 11247825]  [MGI Ref ID J:114295]

Rittirsch D; Flierl MA; Day DE; Nadeau BA; McGuire SR; Hoesel LM; Ipaktchi K; Zetoune FS; Sarma JV; Leng L; Huber-Lang MS; Neff TA; Bucala R; Ward PA. 2008. Acute lung injury induced by lipopolysaccharide is independent of complement activation. J Immunol 180(11):7664-72. [PubMed: 18490769]  [MGI Ref ID J:136379]

Rittirsch D; Flierl MA; Nadeau BA; Day DE; Huber-Lang M; Mackay CR; Zetoune FS; Gerard NP; Cianflone K; Kohl J; Gerard C; Sarma JV; Ward PA. 2008. Functional roles for C5a receptors in sepsis. Nat Med 14(5):551-7. [PubMed: 18454156]  [MGI Ref ID J:136703]

Saville SP; Lazzell AL; Chaturvedi AK; Monteagudo C; Lopez-Ribot JL. 2008. Use of a genetically engineered strain to evaluate the pathogenic potential of yeast cell and filamentous forms during Candida albicans systemic infection in immunodeficient mice. Infect Immun 76(1):97-102. [PubMed: 17967861]  [MGI Ref ID J:130296]

Schmitt J; Roderfeld M; Sabrane K; Zhang P; Tian Y; Mertens JC; Frei P; Stieger B; Weber A; Mullhaupt B; Roeb E; Geier A. 2012. Complement factor C5 deficiency significantly delays the progression of biliary fibrosis in bile duct-ligated mice. Biochem Biophys Res Commun 418(3):445-50. [PubMed: 22277671]  [MGI Ref ID J:181268]

Schultz G; Tedesco MM; Sho E; Nishimura T; Sharif S; Du X; Myles T; Morser J; Dalman RL; Leung LL. 2010. Enhanced abdominal aortic aneurysm formation in thrombin-activatable procarboxypeptidase B-deficient mice. Arterioscler Thromb Vasc Biol 30(7):1363-70. [PubMed: 20431069]  [MGI Ref ID J:180861]

Sood R; Sholl L; Isermann B; Zogg M; Coughlin SR; Weiler H. 2008. Maternal Par4 and platelets contribute to defective placenta formation in mouse embryos lacking thrombomodulin. Blood 112(3):585-91. [PubMed: 18490515]  [MGI Ref ID J:138440]

Stokol T; O'Donnell P; Xiao L; Knight S; Stavrakis G; Botto M; von Andrian UH; Mayadas TN. 2004. C1q governs deposition of circulating immune complexes and leukocyte Fcgamma receptors mediate subsequent neutrophil recruitment. J Exp Med 200(7):835-46. [PubMed: 15466618]  [MGI Ref ID J:93949]

Strainic MG; Liu J; Huang D; An F; Lalli PN; Muqim N; Shapiro VS; Dubyak GR; Heeger PS; Medof ME. 2008. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28(3):425-35. [PubMed: 18328742]  [MGI Ref ID J:132942]

Strainic MG; Shevach EM; An F; Lin F; Medof ME. 2012. Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF-beta1 signaling and induction of Foxp3(+) regulatory T cells. Nat Immunol 14(2):162-71. [PubMed: 23263555]  [MGI Ref ID J:192613]

Strey CW; Markiewski M; Mastellos D; Tudoran R; Spruce LA; Greenbaum LE; Lambris JD. 2003. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 198(6):913-23. [PubMed: 12975457]  [MGI Ref ID J:109380]

Tanaka D; Kagari T; Doi H; Shimozato T. 2006. Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis. Immunology 119(2):195-202. [PubMed: 16836650]  [MGI Ref ID J:118551]

Trendelenburg M; Fossati-Jimack L; Cortes-Hernandez J; Turnberg D; Lewis M; Izui S; Cook HT; Botto M. 2005. The role of complement in cryoglobulin-induced immune complex glomerulonephritis. J Immunol 175(10):6909-14. [PubMed: 16272350]  [MGI Ref ID J:119691]

Wang Y; Kristan J; Hao L; Lenkoski CS; Shen Y; Matis LA. 2000. A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis. J Immunol 164(8):4340-7. [PubMed: 10754334]  [MGI Ref ID J:61587]

Wetsel RA; Fleischer DT; Haviland DL. 1990. Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5'-exon. J Biol Chem 265(5):2435-40. [PubMed: 2303408]  [MGI Ref ID J:23983]

Wheat WH; Wetsel R; Falus A; Tack BF; Strunk RC. 1987. The fifth component of complement (C5) in the mouse. Analysis of the molecular basis for deficiency. J Exp Med 165(5):1442-7. [PubMed: 3572304]  [MGI Ref ID J:8690]

Wolfe DN; Kirimanjeswara GS; Harvill ET. 2005. Clearance of Bordetella parapertussis from the lower respiratory tract requires humoral and cellular immunity. Infect Immun 73(10):6508-13. [PubMed: 16177324]  [MGI Ref ID J:104212]

Wright RJ; Bikoff EK; Stockinger B. 1998. The Ii41 isoform of invariant chain mediates both positive and negative selection events in T-cell receptor transgenic mice. Immunology 95(3):309-13. [PubMed: 9824491]  [MGI Ref ID J:50737]

Xiao H; Schreiber A; Heeringa P; Falk RJ; Jennette JC. 2007. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol 170(1):52-64. [PubMed: 17200182]  [MGI Ref ID J:117048]

Younger JG; Shankar-Sinha S; Mickiewicz M; Brinkman AS; Valencia GA; Sarma JV; Younkin EM; Standiford TJ; Zetoune FS; Ward PA. 2003. Murine complement interactions with Pseudomonas aeruginosa and their consequences during pneumonia. Am J Respir Cell Mol Biol 29(4):432-8. [PubMed: 14500254]  [MGI Ref ID J:94613]

Zal T; Volkmann A; Stockinger B. 1994. Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen. J Exp Med 180(6):2089-99. [PubMed: 7964486]  [MGI Ref ID J:111649]

Zal T; Weiss S; Mellor A; Stockinger B. 1996. Expression of a second receptor rescues self-specific T cells from thymic deletion and allows activation of autoreactive effector function. Proc Natl Acad Sci U S A 93(17):9102-7. [PubMed: 8799161]  [MGI Ref ID J:151753]

Zhou W; Farrar CA; Abe K; Pratt JR; Marsh JE; Wang Y; Stahl GL; Sacks SH. 2000. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest 105(10):1363-71. [PubMed: 10811844]  [MGI Ref ID J:120567]

de Jorge EG; Macor P; Paixao-Cavalcante D; Rose KL; Tedesco F; Cook HT; Botto M; Pickering MC. 2011. The development of atypical hemolytic uremic syndrome depends on complement C5. J Am Soc Nephrol 22(1):137-45. [PubMed: 21148255]  [MGI Ref ID J:185883]

Klrd1DBA/2J related

Wilhelm BT; Landry JR; Takei F; Mager DL. 2003. Transcriptional control of murine CD94 gene: differential usage of dual promoters by lymphoid cell types. J Immunol 171(8):4219-26. [PubMed: 14530345]  [MGI Ref ID J:163228]

Myo5ad related

Cattanach BM. 1961. A chemically-induced variegated-type position effect in the mouse. Z Vererbungsl 92:165-82. [PubMed: 13877379]  [MGI Ref ID J:160128]

Coleman DL. 1962. Effect of genic substitution on the incorporation of tyrosine into the melanin of mouse skin. Arch Biochem Biophys 96:562-8. [PubMed: 13880466]  [MGI Ref ID J:12173]

Copeland NG; Hutchison KW; Jenkins NA. 1983. Excision of the DBA ecotropic provirus in dilute coat-color revertants of mice occurs by homologous recombination involving the viral LTRs. Cell 33(2):379-87. [PubMed: 6305507]  [MGI Ref ID J:7092]

Engle LJ; Kennett RH. 1994. Cloning, analysis, and chromosomal localization of myoxin (MYH12), the human homologue to the mouse dilute gene. Genomics 19(3):407-16. [PubMed: 8188282]  [MGI Ref ID J:16915]

Goodwins IR; Vincent MAC. 1955. Further data on linkage between short-ear and Maltese dilution in the house mouse Heredity 9:413-4.  [MGI Ref ID J:259]

Grobman AB; Charles DR. 1947. Mutant white mice. A new dominant autosomal mutant affecting coat color in Mus musculus. J Hered 38:381-384.  [MGI Ref ID J:13058]

Hearing VJ; Phillips P; Lutzner MA. 1973. The fine structure of melanogenesis in coat color mutants of the mouse. J Ultrastruct Res 43(1):88-106. [PubMed: 4634048]  [MGI Ref ID J:5346]

Hutchison KW; Copeland NG; Jenkins NA. 1984. Dilute-coat-color locus of mice: nucleotide sequence analysis of the d+2J and d+Ha revertant alleles. Mol Cell Biol 4(12):2899-904. [PubMed: 6098826]  [MGI Ref ID J:7751]

Jenkins NA; Copeland NG; Taylor BA; Lee BK. 1981. Dilute (d) coat colour mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome. Nature 293(5831):370-4. [PubMed: 6268990]  [MGI Ref ID J:6587]

Jenkins NA; Copeland NG; Taylor BA; Lee BK. 1982. Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J Virol 43(1):26-36. [PubMed: 6287001]  [MGI Ref ID J:6844]

Libby RT; Lillo C; Kitamoto J; Williams DS; Steel KP. 2004. Myosin Va is required for normal photoreceptor synaptic activity. J Cell Sci 117(Pt 19):4509-15. [PubMed: 15316067]  [MGI Ref ID J:92181]

Markert CL; Silvers WK. 1956. The Effects of Genotype and Cell Environment on Melanoblast Differentiation in the House Mouse. Genetics 41(3):429-50. [PubMed: 17247639]  [MGI Ref ID J:12970]

Medical Research Council (MRC) Harwell. 2012. Direct Data Submission 2012/01/05 MGI Direct Data Submission :.  [MGI Ref ID J:178968]

Medical Research Council (MRC) Harwell. 2012. Direct Data Submission 2012/01/18 MGI Direct Data Submission :.  [MGI Ref ID J:179353]

Mercer JA; Seperack PK; Strobel MC; Copeland NG; Jenkins NA. 1991. Novel myosin heavy chain encoded by murine dilute coat colour locus [published erratum appears in Nature 1991 Aug 8;352(6335):547] Nature 349(6311):709-13. [PubMed: 1996138]  [MGI Ref ID J:11005]

Moore KJ; Swing DA; Copeland NG; Jenkins NA. 1990. Interaction of the murine dilute suppressor gene (dsu) with fourteen coat color mutations [published erratum appears in Genetics 1990 Sep;126(1):285] Genetics 125(2):421-30. [PubMed: 2379821]  [MGI Ref ID J:29467]

Moore KJ; Swing DA; Copeland NG; Jenkins NA. 1994. The murine dilute suppressor gene encodes a cell autonomous suppressor. Genetics 138(2):491-7. [PubMed: 7828830]  [MGI Ref ID J:20796]

Moore KJ; Swing DA; Rinchik EM; Mucenski ML; Buchberg AM; Copeland NG; Jenkins NA. 1988. The murine dilute suppressor gene dsu suppresses the coat-color phenotype of three pigment mutations that alter melanocyte morphology, d, ash and ln. Genetics 119(4):933-41. [PubMed: 3410303]  [MGI Ref ID J:9309]

MouseBookTM. 2005. Information obtained from MouseBook<sup>TM</sup>, Medical Research Council Mammalian Genetics Unit, Harwell, UK. Unpublished :.  [MGI Ref ID J:169366]

Murray WS. 1934. The breeding behavior of the dilute brown stock of mice (Little dba) Am J Cancer 20:573-593.  [MGI Ref ID J:2464]

O'Sullivan TN; Wu XS; Rachel RA; Huang JD; Swing DA; Matesic LE; Hammer JA 3rd; Copeland NG; Jenkins NA. 2004. dsu functions in a MYO5A-independent pathway to suppress the coat color of dilute mice. Proc Natl Acad Sci U S A 101(48):16831-6. [PubMed: 15550542]  [MGI Ref ID J:94728]

PIERRO LJ; CHASE HB. 1963. Slate--a new coat color mutant in the mouse. J Hered 54:47-50. [PubMed: 13943454]  [MGI Ref ID J:25388]

Pastural E; Barrat FJ; Dufourcq-Lagelouse R; Certain S; Sanal O ; Jabado N ; Seger R ; Griscelli C ; Fischer A ; de Saint Basile G. 1997. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat Genet 16(3):289-92. [PubMed: 9207796]  [MGI Ref ID J:41253]

Provance DW Jr; Wei M; Ipe V; Mercer JA. 1996. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc Natl Acad Sci U S A 93(25):14554-8. [PubMed: 8962090]  [MGI Ref ID J:37976]

Quevedo WC Jr.; Chase HB. 1958. An analysis of the light mutation of coat color in mice. J Morphol 102:329-345.  [MGI Ref ID J:13094]

RIKEN BioResource Center/RIKEN Genomic Sciences Center. 2008. A Large Scale Mutagenesis Program in RIKEN GSC PhenoSITE, World Wide Web (URL: http://www.brc.riken.jp/lab/gsc/mouse/) :.  [MGI Ref ID J:133634]

RUSSELL ES. 1949. A quantitative histological study of the pigment found in the coat-color mutants of the house mouse; interdependence among the variable granule attributes. Genetics 34(2):133-45. [PubMed: 18117146]  [MGI Ref ID J:148461]

Rachel RA; Nagashima K; O'Sullivan TN; Frost LS; Stefano FP; Marigo V; Boesze-Battaglia K. 2012. Melanoregulin, product of the dsu locus, links the BLOC-pathway and OA1 in organelle biogenesis. PLoS One 7(9):e42446. [PubMed: 22984402]  [MGI Ref ID J:191882]

Russell ES. 1948. A Quantitative Histological Study of the Pigment Found in the Coat Color Mutants of the House Mouse. II. Estimates of the Total Volume of Pigment. Genetics 33(3):228-36. [PubMed: 17247280]  [MGI Ref ID J:148462]

Russell ES. 1946. A Quantitative Histological Study of the Pigment Found in the Coat-Color Mutants of the House Mouse. I. Variable Attributes of the Pigment Granules. Genetics 31(3):327-46. [PubMed: 17247200]  [MGI Ref ID J:148463]

Russell ES. 1949. A Quantitative Histological Study of the Pigment Found in the Coat-Color Mutants of the House Mouse. IV. the Nature of the Effects of Genic Substitution in Five Major Allelic Series. Genetics 34(2):146-66. [PubMed: 17247308]  [MGI Ref ID J:12958]

Sweet HO. 1983. Dilute suppressor, a new suppressor gene in the house mouse. J Hered 74(4):305-6. [PubMed: 6886377]  [MGI Ref ID J:7171]

Yoshimura A; Fujii R; Watanabe Y; Okabe S; Fukui K; Takumi T. 2006. Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr Biol 16(23):2345-51. [PubMed: 17141617]  [MGI Ref ID J:117928]

P2rx7P451L related

Adriouch S; Dox C; Welge V; Seman M; Koch-Nolte F; Haag F. 2002. Cutting Edge: A Natural P451L Mutation in the Cytoplasmic Domain Impairs the Function of the Mouse P2X7 Receptor. J Immunol 169(8):4108-12. [PubMed: 12370338]  [MGI Ref ID J:79540]

Le Stunff H; Auger R; Kanellopoulos J; Raymond MN. 2004. The Pro-451 to Leu polymorphism within the C-terminal tail of P2X7 receptor impairs cell death but not phospholipase D activation in murine thymocytes. J Biol Chem 279(17):16918-26. [PubMed: 14761980]  [MGI Ref ID J:89513]

Sorge RE; Trang T; Dorfman R; Smith SB; Beggs S; Ritchie J; Austin JS; Zaykin DV; Meulen HV; Costigan M; Herbert TA; Yarkoni-Abitbul M; Tichauer D; Livneh J; Gershon E; Zheng M; Tan K; John SL; Slade GD; Jordan J; Woolf CJ; Peltz G; Maixner W; DiatchenkoL; Seltzer Z; Salter MW; Mogil JS. 2012. Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat Med 18(4):595-9. [PubMed: 22447075]  [MGI Ref ID J:183554]

Tyrp1isa related

Anderson MG; Smith RS; Savinova OV; Hawes NL; Chang B; Zabaleta A; Wilpan R; Heckenlively JR; Davisson M; John SW. 2001. Genetic modification of glaucoma associated phenotypes between AKXD-28/Ty and DBA/2J mice. BMC Genet 2(1):1. [PubMed: 11178107]  [MGI Ref ID J:82878]

Barabas P; Huang W; Chen H; Koehler CL; Howell G; John SW; Tian N; Renteria RC; Krizaj D. 2011. Missing optomotor head-turning reflex in the DBA/2J mouse. Invest Ophthalmol Vis Sci 52(9):6766-73. [PubMed: 21757588]  [MGI Ref ID J:181395]

Chang B; Hawes NL; Hurd RE; Wang J; Howell D; Davisson MT; Roderick TH; Nusinowitz S; Heckenlively JR. 2005. Mouse models of ocular diseases. Vis Neurosci 22(5):587-93. [PubMed: 16332269]  [MGI Ref ID J:156373]

Chang B; Smith RS; Hawes NL; Anderson MG; Zabaleta A; Savinova O ; Roderick TH ; Heckenlively JR ; Davisson MT ; John SW. 1999. Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 21(4):405-9. [PubMed: 10192392]  [MGI Ref ID J:54013]

Inman DM; Sappington RM; Horner PJ; Calkins DJ. 2006. Quantitative correlation of optic nerve pathology with ocular pressure and corneal thickness in the DBA/2 mouse model of glaucoma. Invest Ophthalmol Vis Sci 47(3):986-96. [PubMed: 16505033]  [MGI Ref ID J:108329]

Jakobs TC; Libby RT; Ben Y; John SW; Masland RH. 2005. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313-25. [PubMed: 16247030]  [MGI Ref ID J:104518]

John SW; Anderson MG; Smith RS. 1999. Mouse genetics: a tool to help unlock the mechanisms of glaucoma. J Glaucoma 8(6):400-12. [PubMed: 10604301]  [MGI Ref ID J:59796]

Libby RT; Li Y; Savinova OV; Barter J; Smith RS; Nickells RW; John SW. 2005. Susceptibility to neurodegeneration in a glaucoma is modified by bax gene dosage. PLoS Genet 1(1):e4. [PubMed: 16103918]  [MGI Ref ID J:100118]

Zhou X; Li F; Kong L; Tomita H; Li C; Cao W. 2005. Involvement of inflammation, degradation, and apoptosis in a mouse model of glaucoma. J Biol Chem 280(35):31240-8. [PubMed: 15985430]  [MGI Ref ID J:101163]

a related

Baba K; Sakakibara S; Setsu T; Terashima T. 2007. The superficial layers of the superior colliculus are cytoarchitectually and myeloarchitectually disorganized in the reelin-deficient mouse, reeler. Brain Res 1140:205-15. [PubMed: 17173877]  [MGI Ref ID J:120267]

Batchelor AL; Phillips RJ; Searle AG. 1966. A comparison of the mutagenic effectiveness of chronic neutron- and gamma-irradiation of mouse spermatogonia. Mutat Res 3(3):218-29. [PubMed: 5962396]  [MGI Ref ID J:5021]

Bjorbaek C; Elmquist JK; Frantz JD; Shoelson SE; Flier JS. 1998. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1(4):619-25. [PubMed: 9660946]  [MGI Ref ID J:119803]

Bultman SJ; Klebig ML; Michaud EJ; Sweet HO; Davisson MT; Woychik RP. 1994. Molecular analysis of reverse mutations from nonagouti (a) to black-and-tan (a(t)) and white-bellied agouti (Aw) reveals alternative forms of agouti transcripts. Genes Dev 8(4):481-90. [PubMed: 8125260]  [MGI Ref ID J:16984]

Bultman SJ; Michaud EJ; Woychik RP. 1992. Molecular characterization of the mouse agouti locus. Cell 71(7):1195-204. [PubMed: 1473152]  [MGI Ref ID J:3523]

Bultman SJ; Russell LB; Gutierrez-Espeleta GA; Woychik RP. 1991. Molecular characterization of a region of DNA associated with mutations at the agouti locus in the mouse. Proc Natl Acad Sci U S A 88(18):8062-6. [PubMed: 1896452]  [MGI Ref ID J:16567]

Bundschuh VG; Madry M. 1988. [atwp mutation in an albino mouse substrain (AB/Hum-1)] Z Versuchstierkd 31(6):249-54. [PubMed: 3227730]  [MGI Ref ID J:16568]

Butler AE; Janson J; Soeller WC; Butler PC. 2003. Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 52(9):2304-14. [PubMed: 12941770]  [MGI Ref ID J:132530]

Cattanach BM. 1961. A chemically-induced variegated-type position effect in the mouse. Z Vererbungsl 92:165-82. [PubMed: 13877379]  [MGI Ref ID J:160128]

Cropley JE; Suter CM; Beckman KB; Martin DI. 2006. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci U S A 103(46):17308-12. [PubMed: 17101998]  [MGI Ref ID J:117156]

De Souza J; Butler AA; Cone RD. 2000. Disproportionate inhibition of feeding in A(y) mice by certain stressors: a cautionary note. Neuroendocrinology 72(2):126-32. [PubMed: 10971147]  [MGI Ref ID J:102986]

Dickie MM. 1969. Mutations at the agouti locus in the mouse. J Hered 60(1):20-5. [PubMed: 5798139]  [MGI Ref ID J:30922]

Duchesnes CE; Naggert JK; Tatnell MA; Beckman N; Marnane RN; Rodrigues JA; Halim A; Pontre B; Stewart AW; Wolff GL; Elliott R; Mountjoy KG. 2009. New Zealand Ginger Mouse: Novel model that associates the tyrp1b pigmentation gene locus with regulation of lean body mass. Physiol Genomics 37(3):164-74. [PubMed: 19293329]  [MGI Ref ID J:146052]

Dunn LC. 1928. A Fifth Allelomorph in the Agouti Series of the House Mouse. Proc Natl Acad Sci U S A 14(10):816-9. [PubMed: 16587414]  [MGI Ref ID J:15011]

Dunn LC. 1945. A New Eye Color Mutant in the Mouse with Asymmetrical Expression. Proc Natl Acad Sci U S A 31(11):343-6. [PubMed: 16578176]  [MGI Ref ID J:13122]

Dunn LC; Macdowell EC; Lebedeff GA. 1937. Studies on Spotting Patterns III. Interaction between Genes Affecting White Spotting and Those Affecting Color in the House Mouse. Genetics 22(2):307-18. [PubMed: 17246842]  [MGI Ref ID J:12954]

Enshell-Seijffers D; Lindon C; Morgan BA. 2008. The serine protease Corin is a novel modifier of the Agouti pathway. Development 135(2):217-25. [PubMed: 18057101]  [MGI Ref ID J:130426]

Feuerer M; Herrero L; Cipolletta D; Naaz A; Wong J; Nayer A; Lee J; Goldfine AB; Benoist C; Shoelson S; Mathis D. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930-9. [PubMed: 19633656]  [MGI Ref ID J:152186]

Fujimoto W; Shiuchi T; Miki T; Minokoshi Y; Takahashi Y; Takeuchi A; Kimura K; Saito M; Iwanaga T; Seino S. 2007. Dmbx1 is essential in agouti-related protein action. Proc Natl Acad Sci U S A 104(39):15514-9. [PubMed: 17873059]  [MGI Ref ID J:125193]

Gajewska M; Krysiak E; Wirth-Dziecialowska E. 2010. New coat color mutation mapped in distal part MMU10 MGI Direct Data Submission :.  [MGI Ref ID J:162146]

Galbraith DB; Arceci RJ. 1974. Melanocyte populations of yellow and black hair bulbs in the mouse. J Hered 65(6):381-2. [PubMed: 4448905]  [MGI Ref ID J:5512]

Galbraith DB; Patrignani AM. 1976. Sulfhydryl compounds in melanocytes of yellow (Ay/a), nonagouti (a/a), and agouti (A/A) mice. Genetics 84(3):587-91. [PubMed: 1001879]  [MGI Ref ID J:5737]

Galbraith DB; Wolff GL; Brewer NL. 1980. Hair pigment patterns in different integumental environments of the mouse. Influence of the agouti suppressor (A<s>) mutation on expression of agouti locus alleles. J Hered 71:229-234.  [MGI Ref ID J:12033]

Galbraith DB; Wolff GL; Brewer NL. 1979. Tissue microenvironment and the genetic control of hair pigment patterns in mice Dev Genet 1(2):167-179.  [MGI Ref ID J:156092]

Geschwind II; Huseby RA; Nishioka R. 1972. The effect of melanocyte-stimulating hormone on coat color in the mouse. Recent Prog Horm Res 28:91-130. [PubMed: 4631622]  [MGI Ref ID J:5324]

Granholm DE; Reese RN; Granholm NH. 1996. Agouti alleles alter cysteine and glutathione concentrations in hair follicles and serum of mice (A y/a, A wJ/A wJ, and a/a). J Invest Dermatol 106(3):559-63. [PubMed: 8648194]  [MGI Ref ID J:32132]

Gruneberg H. 1952. . In: The Genetics of the Mouse. Martinus Nijhoff, The Hague.  [MGI Ref ID J:30758]

Heaney JD; Michelson MV; Youngren KK; Lam MY; Nadeau JH. 2009. Deletion of eIF2beta suppresses testicular cancer incidence and causes recessive lethality in agouti-yellow mice. Hum Mol Genet 18(8):1395-404. [PubMed: 19168544]  [MGI Ref ID J:146879]

Hearing VJ; Phillips P; Lutzner MA. 1973. The fine structure of melanogenesis in coat color mutants of the mouse. J Ultrastruct Res 43(1):88-106. [PubMed: 4634048]  [MGI Ref ID J:5346]

Hustad CM; Perry WL; Siracusa LD; Rasberry C; Cobb L; Cattanach BM; Kovatch R; Copeland NG; Jenkins NA. 1995. Molecular genetic characterization of six recessive viable alleles of the mouse agouti locus. Genetics 140(1):255-65. [PubMed: 7635290]  [MGI Ref ID J:24934]

Iwatsuka H; Shino A; Suzuoki Z. 1970. General survey of diabetic features of yellow KK mice. Endocrinol Jpn 17(1):23-35. [PubMed: 5468422]  [MGI Ref ID J:26460]

Jackson IJ; Budd PS; Keighren M; McKie L. 2007. Humanized MC1R transgenic mice reveal human specific receptor function. Hum Mol Genet 16(19):2341-8. [PubMed: 17652101]  [MGI Ref ID J:129904]

Kaelin CB; Xu X; Hong LZ; David VA; McGowan KA; Schmidt-Kuntzel A; Roelke ME; Pino J; Pontius J; Cooper GM; Manuel H; Swanson WF; Marker L; Harper CK; van Dyk A; Yue B; Mullikin JC; Warren WC; Eizirik E; Kos L; O'Brien SJ; Barsh GS; Menotti-Raymond M. 2012. Specifying and sustaining pigmentation patterns in domestic and wild cats. Science 337(6101):1536-41. [PubMed: 22997338]  [MGI Ref ID J:188277]

Kaminen-Ahola N; Ahola A; Maga M; Mallitt KA; Fahey P; Cox TC; Whitelaw E; Chong S. 2010. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6(1):e1000811. [PubMed: 20084100]  [MGI Ref ID J:156866]

Kappenman KE; Dvoracek MA; Harvison GA; Fuller BB; Granholm NH. 1992. Tyrosinase abundance and activity in murine hairbulb melanocytes of agouti mutants (C57BL/6J-a/a, Ay/a, and AwJ/AwJ). Pigment Cell Res Suppl 2:79-83. [PubMed: 1409442]  [MGI Ref ID J:1295]

Knisely AS; Gasser DL; Silvers WK. 1975. Expression in organ culture of agouti locus genes of the mouse. Genetics 79(3):471-5. [PubMed: 1126628]  [MGI Ref ID J:5533]

Lamoreux ML; Wakamatsu K; Ito S. 2001. Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Res 14(1):23-31. [PubMed: 11277491]  [MGI Ref ID J:103803]

Lane PW. 1989. Mottled agouti-J (am-J) Mouse News Lett 84:89.  [MGI Ref ID J:16570]

Leamy LJ; Hrubant HE. 1971. Effects of alleles at the agouti locus on odontometric traits in the C57BL-6 strain of house mice. Genetics 67(1):87-96. [PubMed: 5556294]  [MGI Ref ID J:16571]

Loosli R. 1963. Tanoid--a new agouti mutant in the mouse. J Hered 54:26-29.  [MGI Ref ID J:13082]

Markert CL; Silvers WK. 1956. The Effects of Genotype and Cell Environment on Melanoblast Differentiation in the House Mouse. Genetics 41(3):429-50. [PubMed: 17247639]  [MGI Ref ID J:12970]

Martin NM; Houston PA; Patterson M; Sajedi A; Carmignac DF; Ghatei MA; Bloom SR; Small CJ. 2006. Abnormalities of the somatotrophic axis in the obese agouti mouse. Int J Obes (Lond) 30(3):430-8. [PubMed: 16172617]  [MGI Ref ID J:151302]

Martinez HG; Quinones MP; Jimenez F; Estrada CA; Clark K; Muscogiuri G; Sorice G; Musi N; Reddick RL; Ahuja SS. 2011. Critical role of chemokine (C-C motif) receptor 2 (CCR2) in the KKAy + Apoe -/- mouse model of the metabolic syndrome. Diabetologia 54(10):2660-8. [PubMed: 21779871]  [MGI Ref ID J:177084]

Mayer TC; Fishbane JL. 1972. Mesoderm-ectoderm interaction in the production of the agouti pigmentation pattern in mice. Genetics 71(2):297-303. [PubMed: 4558326]  [MGI Ref ID J:5288]

Miller MW; Duhl DM; Vrieling H; Cordes SP; Ollmann MM; Winkes BM; Barsh GS. 1993. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev 7(3):454-67. [PubMed: 8449404]  [MGI Ref ID J:4186]

Miyazaki M; Sampath H; Liu X; Flowers MT; Chu K; Dobrzyn A; Ntambi JM. 2009. Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochem Biophys Res Commun 380(4):818-22. [PubMed: 19338759]  [MGI Ref ID J:147343]

Monroe DG; Wipf LP; Diggins MR; Matthees DP; Granholm NH. 1998. Agouti-related maturation and tissue distribution of alpha-Melanocyte Stimulating Hormone in wild-type (AwJ/AwJ) and mutant (Ay/a,a/a) mice. Pigment Cell Res 11(5):310-3. [PubMed: 9877102]  [MGI Ref ID J:52183]

Moore KJ; Swing DA; Copeland NG; Jenkins NA. 1990. Interaction of the murine dilute suppressor gene (dsu) with fourteen coat color mutations [published erratum appears in Genetics 1990 Sep;126(1):285] Genetics 125(2):421-30. [PubMed: 2379821]  [MGI Ref ID J:29467]

Moyer FH. 1966. Genetic variations in the fine structure and ontogeny of mouse melanin granules. Am Zool 6(1):43-66. [PubMed: 5902512]  [MGI Ref ID J:5001]

Novak EK; Gautam R; Reddington M; Collinson LM; Copeland NG; Jenkins NA; McGarry MP; Swank RT. 2002. The regulation of platelet-dense granules by Rab27a in the ashen mouse, a model of Hermansky-Pudlak and Griscelli syndromes, is granule-specific and dependent on genetic background. Blood 100(1):128-35. [PubMed: 12070017]  [MGI Ref ID J:77395]

Novak EK; Wieland F; Jahreis GP; Swank RT. 1980. Altered secretion of kidney lysosomal enzymes in the mouse pigment mutants ruby-eye, ruby-eye-2-J, and maroon. Biochem Genet 18(5-6):549-61. [PubMed: 6776948]  [MGI Ref ID J:6422]

Nuotio-Antar AM; Hachey DL; Hasty AH. 2007. Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. Am J Physiol Endocrinol Metab 293(6):E1517-28. [PubMed: 17878220]  [MGI Ref ID J:145108]

Papacleovoulou G; Abu-Hayyeh S; Nikolopoulou E; Briz O; Owen BM; Nikolova V; Ovadia C; Huang X; Vaarasmaki M; Baumann M; Jansen E; Albrecht C; Jarvelin MR; Marin JJ; Knisely AS; Williamson C. 2013. Maternal cholestasis during pregnancy programs metabolic disease in offspring. J Clin Invest 123(7):3172-81. [PubMed: 23934127]  [MGI Ref ID J:201610]

Pettitt SJ; Liang Q; Rairdan XY; Moran JL; Prosser HM; Beier DR; Lloyd KC; Bradley A; Skarnes WC. 2009. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods :. [PubMed: 19525957]  [MGI Ref ID J:149352]

Poole TW. 1975. Dermal-epidermal interactions and the action of alleles at the agouti locus in the mouse. Dev Biol 42(2):203-10. [PubMed: 1090472]  [MGI Ref ID J:5519]

Poole TW. 1982. The agouti suppressor (As) coat color mutation in mice: developmental effects on the expression of agouti locus alleles. J Exp Zool 220(1):57-64. [PubMed: 7077265]  [MGI Ref ID J:6763]

Quevedo WC Jr.; Chase HB. 1958. An analysis of the light mutation of coat color in mice. J Morphol 102:329-345.  [MGI Ref ID J:13094]

Quevedo WC Jr; Holstein TJ. 1992. The shift from physiological genetics to molecular genetics in the study of mouse tyrosinase. Pigment Cell Res Suppl 2:57-60. [PubMed: 1409439]  [MGI Ref ID J:3852]

RUSSELL ES. 1949. A quantitative histological study of the pigment found in the coat-color mutants of the house mouse; interdependence among the variable granule attributes. Genetics 34(2):133-45. [PubMed: 18117146]  [MGI Ref ID J:148461]

Rakyan VK; Chong S; Champ ME; Cuthbert PC; Morgan HD; Luu KV; Whitelaw E. 2003. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A 100(5):2538-43. [PubMed: 12601169]  [MGI Ref ID J:82396]

Rice RH; Bradshaw KM; Durbin-Johnson BP; Rocke DM; Eigenheer RA; Phinney BS; Sundberg JP. 2012. Differentiating inbred mouse strains from each other and those with single gene mutations using hair proteomics. PLoS One 7(12):e51956. [PubMed: 23251662]  [MGI Ref ID J:195664]

Rosenfeld CS; Sieli PT; Warzak DA; Ellersieck MR; Pennington KA; Roberts RM. 2013. Maternal exposure to bisphenol A and genistein has minimal effect on A(vy)/a offspring coat color but favors birth of agouti over nonagouti mice. Proc Natl Acad Sci U S A 110(2):537-42. [PubMed: 23267115]  [MGI Ref ID J:193279]

Russell ES. 1948. A Quantitative Histological Study of the Pigment Found in the Coat Color Mutants of the House Mouse. II. Estimates of the Total Volume of Pigment. Genetics 33(3):228-36. [PubMed: 17247280]  [MGI Ref ID J:148462]

Russell ES. 1946. A Quantitative Histological Study of the Pigment Found in the Coat-Color Mutants of the House Mouse. I. Variable Attributes of the Pigment Granules. Genetics 31(3):327-46. [PubMed: 17247200]  [MGI Ref ID J:148463]

Russell ES. 1949. A Quantitative Histological Study of the Pigment Found in the Coat-Color Mutants of the House Mouse. IV. the Nature of the Effects of Genic Substitution in Five Major Allelic Series. Genetics 34(2):146-66. [PubMed: 17247308]  [MGI Ref ID J:12958]

Russell LB. 1964. Genetic and Functional Mosaicism in the Mouse. In: The Role of the Chromosomes in Development. Academic Press, New York.  [MGI Ref ID J:29504]

Russell LB; Cupp McDaniel MN; Woodiel FN,. 1963. Crossing over within the a "locus" of the mouse Genetics 48:907 Abstr.  [MGI Ref ID J:174047]

SILVERS WK. 1958. An experimental approach to action of genes at the agouti locus in the mouse. III. Transplants of newborn Aw-, A-and at-skin to Ay-, Aw-, A-and aa hosts. J Exp Zool 137(1):189-96. [PubMed: 13563791]  [MGI Ref ID J:13013]

Sakurai T; Ochiai H; Takeuchi T. 1975. Ultrastructural change of melanosomes associated with agouti pattern formation in mouse hair. Dev Biol 47(2):466-71. [PubMed: 1204945]  [MGI Ref ID J:5606]

Silvers WK. 1979. The Coat Colors of Mice; A Model for Mammalian Gene Action and Interaction. In: The Coat Colors of Mice. Springer-Verlag, New York.  [MGI Ref ID J:78801]

Soeller WC; Janson J; Hart SE; Parker JC; Carty MD; Stevenson RW; Kreutter DK; Butler PC. 1998. Islet amyloid-associated diabetes in obese A(vy)/a mice expressing human islet amyloid polypeptide. Diabetes 47(5):743-50. [PubMed: 9588445]  [MGI Ref ID J:133694]

Staats J. 1985. Standardized Nomenclature for Inbred Strains of Mice: eighth listing. Cancer Res 45(3):945-77. [PubMed: 3971387]  [MGI Ref ID J:50296]

Suto J. 2008. Coincidence of loci for glucosuria and obesity in type 2 diabetes-prone KK-Ay mice. Med Sci Monit 14(2):CR65-74. [PubMed: 18227763]  [MGI Ref ID J:131439]

Suto J. 2009. Identification of multiple quantitative trait loci affecting the size and shape of the mandible in mice. Mamm Genome 20(1):1-13. [PubMed: 19067046]  [MGI Ref ID J:143893]

Suto J; Matsuura S; Imamura K; Yamanaka H; Sekikawa K. 1998. Genetics of obesity in KK mouse and effects of A(y) allele on quantitative regulation. Mamm Genome 9(7):506-10. [PubMed: 9657845]  [MGI Ref ID J:48704]

Suwa A; Yoshino M; Yamazaki C; Naitou M; Fujikawa R; Matsumoto S; Kurama T; Shimokawa T; Aramori I. 2010. RMI1 deficiency in mice protects from diet and genetic-induced obesity. FEBS J 277(3):677-86. [PubMed: 20050919]  [MGI Ref ID J:168271]

Sweet SE; Quevedo WC Jr. 1968. Role of melanocyte morphology in pigmentation of mouse hair. Anat Rec 162(2):243-54. [PubMed: 5726144]  [MGI Ref ID J:5095]

Tamate HB; Takeuchi T. 1981. Induction of the shift in melanin synthesis in lethal yellow (A<y>/a) mice in vitro. Dev Genet 2:349-356.  [MGI Ref ID J:11956]

Tanaka S; Kuwahara S; Nishijima K; Ohno T; Matsuzawa A. 2006. Genetic association of mutation at agouti locus with adrenal x zone morphology in BALB/c mice. Exp Anim 55(4):343-7. [PubMed: 16880681]  [MGI Ref ID J:111619]

Tanaka S; Nishimura M; Matsuzawa A. 1994. Genetic association between agouti locus and adrenal X zone morphology in SM/J mice. Acta Anat (Basel) 149(3):170-3. [PubMed: 7976166]  [MGI Ref ID J:19308]

The Jackson Laboratory Office of Genetic Resources. 1983. Registry of Remutation at The Jackson Laboratory, 1983-1984 MGI Direct Data Submission :.  [MGI Ref ID J:79402]

The Jackson Laboratory Office of Genetic Resourses. 1979. Registry of Remutations at The Jackson Laboratory, 1979-1980 MGI Direct Data Submission :.  [MGI Ref ID J:78474]

The Mammalian Genetics Unit at Harwell. 2004. Information obtained from the Mammalian Genetics Unit, Medical Research Council (MRC), Harwell, UK Unpublished :.  [MGI Ref ID J:90559]

Tsuruta Y; Yoshimatsu H; Hidaka S; Kondou S; Okamoto K; Sakata T. 2002. Hyperleptinemia in A(y)/a mice upregulates arcuate cocaine- and amphetamine-regulated transcript expression. Am J Physiol Endocrinol Metab 282(4):E967-73. [PubMed: 11882520]  [MGI Ref ID J:75872]

Vrieling H; Duhl DM; Millar SE; Miller KA; Barsh GS. 1994. Differences in dorsal and ventral pigmentation result from regional expression of the mouse agouti gene. Proc Natl Acad Sci U S A 91(12):5667-71. [PubMed: 8202545]  [MGI Ref ID J:18750]

Wolff GL. 1978. Influence of maternal phenotype on metabolic differentiation of agouti locus mutants in the mouse. Genetics 88(3):529-39. [PubMed: 640377]  [MGI Ref ID J:5964]

Woychik RP; Generoso WM; Russell LB; Cain KT; Cacheiro NL; Bultman SJ; Selby PB; Dickinson ME; Hogan BL; Rutledge JC. 1990. Molecular and genetic characterization of a radiation-induced structural rearrangement in mouse chromosome 2 causing mutations at the limb deformity and agouti loci. Proc Natl Acad Sci U S A 87(7):2588-92. [PubMed: 2320577]  [MGI Ref ID J:10399]

Wu Q; Howell MP; Cowley MA; Palmiter RD. 2008. Starvation after AgRP neuron ablation is independent of melanocortin signaling. Proc Natl Acad Sci U S A 105(7):2687-92. [PubMed: 18272480]  [MGI Ref ID J:132184]

asp2 related

Collins RL; Fuller JL. 1968. Audiogenic seizure prone (asp): a gene affecting behavior in linkage group 8 of the mouse. Science 162(858):1137-9. [PubMed: 5698855]  [MGI Ref ID J:5094]

Neumann PE; Collins RL. 1991. Genetic dissection of susceptibility to audiogenic seizures in inbred mice. Proc Natl Acad Sci U S A 88(12):5408-12. [PubMed: 2052619]  [MGI Ref ID J:11261]

Neumann PE; Seyfried TN. 1990. Mapping of two genes that influence susceptibility to audiogenic seizures in crosses of C57BL/6J and DBA/2J mice. Behav Genet 20(2):307-23. [PubMed: 2141254]  [MGI Ref ID J:10557]

Seyfried TN; Yu RK; Glaser GH. 1980. Genetic analysis of audiogenic seizure susceptibility in C57BL/6J X DBA/2J recombinant inbred strains of mice. Genetics 94(3):701-18. [PubMed: 7399258]  [MGI Ref ID J:6355]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX9
Room Number           MP14
Room Number           RB09
Room Number           RB11

Colony Maintenance

Mating SystemSibling x Sibling         (Female x Male)   01-MAR-06
Breeding Considerations This strain is a challenging breeder.
Diet Information New Diet as of April 7, 2014: Lab Diet® 5K0Q

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)Gender
3 weeks $27.60Female  
$25.40Male  
4 weeks $27.60Female  
$25.40Male  
5 weeks $27.60Female  
$25.40Male  
6 weeks $30.50Female  
$28.35Male  
7 weeks $34.20Female  
$34.05Male  
8 weeks $34.20Female  
$34.05Male  
9 weeks $34.20Female  
$34.05Male  
10 weeks $38.25Female  
$39.90Male  
11 weeks $38.25Female  
$39.90Male  
12 weeks $38.25Female  
$39.90Male  
13 weeks $40.70Female  
$42.70Male  
14 weeks $43.40Female  
$45.55Male  
15 weeks $46.00Female  
$48.40Male  

Standard Supply

Level 2. Up to 100 mice. Larger quantities or custom orders arranged upon request.

Supply Notes


JAX® Cells, Tissues & Products

Select the cell line of interest to go to the cell line data sheet
DBA/2J AC173/GrsrJ mES cells
DBA/2J AC203/GrsrJ mES cells
Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)Gender
3 weeks $35.90Female  
$33.10Male  
4 weeks $35.90Female  
$33.10Male  
5 weeks $35.90Female  
$33.10Male  
6 weeks $39.70Female  
$36.90Male  
7 weeks $44.50Female  
$44.30Male  
8 weeks $44.50Female  
$44.30Male  
9 weeks $44.50Female  
$44.30Male  
10 weeks $49.80Female  
$51.90Male  
11 weeks $49.80Female  
$51.90Male  
12 weeks $49.80Female  
$51.90Male  
13 weeks $53.00Female  
$55.60Male  
14 weeks $56.50Female  
$59.30Male  
15 weeks $59.80Female  
$63.00Male  

Standard Supply

Level 2. Up to 100 mice. Larger quantities or custom orders arranged upon request.

Supply Notes

  • Ordering mice five to six weeks and older is suggested to minimize the potential for death from audiogenic seizures, which is more common in young three to four week old DBA/2J mice.
  • Shipped at a specific age in weeks. Mice at a precise age in days, littermates and retired breeders are also available.
  • This strain is available from some international Charles River (CR) breeding facilities in Japan and/or Europe. For more information, see the Worldwide Distributor List for JAX® Mice.

JAX® Cells, Tissues & Products

Select the cell line of interest to go to the cell line data sheet
DBA/2J AC173/GrsrJ mES cells
DBA/2J AC203/GrsrJ mES cells
View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Level 2. Up to 100 mice. Larger quantities or custom orders arranged upon request.

Important Note

This strain is homozygous for Cdh23ahl, the age related hearing loss 1 mutation, which on this background results in progressive hearing loss that is already severe by three months of age.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.6)