Strain Name:

LP/J

Stock Number:

000676

Order this mouse

Availability:

Level 4

LP/J mice display a high susceptibility to audiogenic seizures, and have a fairly high incidence of tumors that develop later in life. LP/J mice are also homozygous for the spontaneous mutation piebald in the endothelin receptor type B gene (Ednrbs). The white areas of the coat are completely lacking in neural crest-derived melanocytes, and there is a reduction in the number of melanocytes in the choroid layer of the eye.

Description

Strain Information

Type Inbred Strain;
Additional information on Inbred Strains.
Visit our online Nomenclature tutorial.
Mating SystemSibling x Sibling         (Female x Male)   01-MAR-06
Breeding Considerations This strain is a challenging breeder.
Specieslaboratory mouse
H2 Haplotypebc (see, Fischer Lindahl K 1997)
GenerationF201pF208 (17-SEP-12)
Generation Definitions

Appearance
white-bellied agouti, piebald
Related Genotype: Aw/Aw Ednrbs/Ednrbs

Important Note
This strain is homozygous for Cdh23ahl, the age related hearing loss 1 mutation, which on this background results in progressive hearing loss with onset after 10 months of age.

Description
LP/J mice display a high susceptibility to audiogenic seizures. This strain is also reported to have a fairly high incidence of tumors that develop later in life, including mammary tumors, lymphoma, lung and soft-tissue sarcomas. LP/J mice are also homozygous for the spontaneous mutation piebald in the endothelin receptor type B gene (Ednrbs). The piebald spontaneous mutation is the result of a mutation in the endothelin receptor type B gene, Ednrb. Mice show irregular white spotting, the amount of which is greatly influenced by minor modifying genes. They also have dark eyes. The white areas of the coat are completely lacking in neural crest-derived melanocytes, and there is a reduction in the number of melanocytes in the choroid layer of the eye.

Development
Inbred strain developed by L.C. Dunn in 1928 from coat color stocks from English fanciers. The strain was obtained by The Jackson Laboratory in 1949.

Related Strains

Strains carrying   Ahrd allele
000690   129P3/J
000648   AKR/J
008599   B6.Cg-Cyp1a2/Cyp1a1tm2Dwn Ahrd Tg(CYP1A1,CYP1A2)1Dwn/DwnJ
002921   B6.D2N-Ahrd/J
000652   BDP/J
000928   CAST/EiJ
000671   DBA/2J
000674   I/LnJ
000675   LG/J
000684   NZB/BlNJ
000726   RBF/DnJ
000682   RF/J
000686   SJL/J
000688   ST/bJ
000689   SWR/J
000693   WC/ReJ KitlSl/J
000933   YBR/EiJ
View Strains carrying   Ahrd     (17 strains)

Strains carrying   Cdh23ahl allele
001137   129P1/ReJ
000690   129P3/J
000691   129X1/SvJ
000646   A/J
000647   A/WySnJ
003070   ALR/LtJ
003072   ALS/LtJ
004502   B6;AKR-Lxl2/GrsrJ
001026   BALB/cByJ
000653   BUB/BnJ
005494   C3.129S1(B6)-Grm1rcw/J
000664   C57BL/6J
004764   C57BL/6J-Cdh23v-8J/J
003129   C57BL/6J-Epha4rb-2J/GrsrJ
004820   C57BL/6J-Kcne12J/J
004703   C57BL/6J-Kcnq2Nmf134/J
004811   C57BL/6J-nmf110/J
004812   C57BL/6J-nmf111/J
004747   C57BL/6J-nmf118/J
004656   C57BL/6J-nmf88/J
004391   C57BL/6J-Chr 13A/J/NaJ
004385   C57BL/6J-Chr 7A/J/NaJ
000662   C57BLKS/J
000667   C57BR/cdJ
000668   C57L/J
000669   C58/J
010614   CBACa.B6-Cdh23ahl/Kjn
000657   CE/J
000670   DBA/1J
001140   DBA/1LacJ
000671   DBA/2J
007048   DBA/2J-Gpnmb+/SjJ
002106   KK/HlJ
000675   LG/J
000677   MA/MyJ
001976   NOD/ShiLtJ
002050   NOR/LtJ
000679   P/J
002747   SENCARB/PtJ
002335   SKH2/J
003392   STOCK Crb1rd8/J
View Strains carrying   Cdh23ahl     (41 strains)

Strains carrying   Disc1del allele
001137   129P1/ReJ
000690   129P3/J
001198   129P4/RrRkJ
002448   129S1/SvImJ
002064   129T2/SvEms
002065   129T2/SvEmsJ
000691   129X1/SvJ
002282   BTBR T+ Itpr3tf/J
002243   DDY/JclSidSeyFrkJ
001800   FVB/NJ
000686   SJL/J
000689   SWR/J
View Strains carrying   Disc1del     (12 strains)

Strains carrying   Ednrbs allele
000577   B6 x STOCK a Oca2p Hps5ru2 Ednrbs/J
000674   I/LnJ
003720   JF1/Ms
000308   SSL/LeJ
000275   V/LeJ
View Strains carrying   Ednrbs     (5 strains)

Strains carrying other alleles of Ahr
000645   A/HeJ
000646   A/J
002920   B6(D2N).Spretus-Ahrb-3/J
002831   B6.129-Ahrtm1Bra/J
000130   B6.C-H17c/(HW14)ByJ
000136   B6.C-H34c/(HW22)ByJ
000370   B6.C-H38c/(HW119)ByJ
002727   B6;129-Ahrtm1Bra/J
001026   BALB/cByJ
000653   BUB/BnJ
000659   C3H/HeJ
000663   C57BL/6By
001139   C57BL/6ByJ
000664   C57BL/6J
000662   C57BLKS/J
000667   C57BR/cdJ
000668   C57L/J
000669   C58/J
000926   CAROLI/EiJ
000656   CBA/J
000657   CE/J
000351   CXB1/ByJ
000352   CXB2/ByJ
000353   CXB3/ByJ
000354   CXB4/ByJ
000355   CXB5/ByJ
000356   CXB6/ByJ
000357   CXB7/ByJ
002937   D2.B6-Ahrb-1/J
000673   HRS/J
000677   MA/MyJ
000550   MOLF/EiJ
000679   P/J
000930   PERA/EiJ
000644   SEA/GnJ
000280   SF/CamEiJ
001146   SPRET/EiJ
006203   STOCK Ahrtm3.1Bra/J
View Strains carrying other alleles of Ahr     (38 strains)

Strains carrying other alleles of Cdh23
002552   B6(V)-Cdh23v-2J/J
002756   B6.CAST-Cdh23Ahl+/Kjn
010615   B6.CBACa-Cdh23CBA/CaJ/Kjn
002432   B6J x B6.C-H2-Kbm1/ByJ-Cdh23v-J/J
004764   C57BL/6J-Cdh23v-8J/J
004819   C57BL/6J-Cdh23v-9J/J
005016   CByJ;B6-Cdh23v-10J/J
000275   V/LeJ
View Strains carrying other alleles of Cdh23     (8 strains)

Strains carrying other alleles of Ednrb
011080   B6;129-Ednrbtm1.1Nat/J
003295   B6;129-Ednrbtm1Ywa/J
000308   SSL/LeJ
004711   STOCK Ednrbs-52Pub
009063   STOCK Ednrbtm1Nrd/J
View Strains carrying other alleles of Ednrb     (5 strains)

Additional Web Information

JAX® NOTES, April 1988; 433. H-2 Haplotypes of Mice from Jackson Laboratory Production Colonies.
JAX® NOTES, Winter 2006; 504. JAX® Mice: the Gold Standard Just Got Better.
Sequence data is available from the Mouse Genomes Project at the Wellcome Trust Sanger Institute

Phenotype

Phenotype Information

View Phenotypic Data

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Abcd Syndrome; ABCDS   (EDNRB)
Deafness, Autosomal Recessive 12; DFNB12   (CDH23)
Hirschsprung Disease, Susceptibility to, 2; HSCR2   (EDNRB)
Schizophrenia 9; SCZD9   (DISC1)
Schizophrenia; SCZD   (DISC1)
Usher Syndrome, Type ID; USH1D   (CDH23)
Waardenburg Syndrome, Type 4A; WS4A   (EDNRB)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cancer Research
Increased Tumor Incidence
      Other Tissues/Organs
      Other Tissues/Organs: multiple

Neurobiology Research
Epilepsy
      audiogenic seizures
Hearing Defects
      Age related hearing loss

Sensorineural Research
Hearing Defects
      Age related hearing loss

Ahrd related

Metabolism Research

Research Tools
Toxicology Research

Cdh23ahl related

Neurobiology Research
Hearing Defects
      Age related hearing loss

Sensorineural Research
Hearing Defects
      Age related hearing loss

Ednrbs related

Dermatology Research
Color and White Spotting Defects

Developmental Biology Research
Neural Crest Defects
Neurodevelopmental Defects

Neurobiology Research
Hearing Defects
Neurodevelopmental Defects
Receptor Defects

Sensorineural Research
Hearing Defects

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Ahrd
Allele Name d variant
Allele Type Not Applicable
Common Name(s) Ahd; Ahk; AhRd; Ahhn; ah; in;
Gene Symbol and Name Ahr, aryl-hydrocarbon receptor
Chromosome 12
Gene Common Name(s) Ah; Ahh; Ahre; In; aromatic hydrocarbon responsiveness; aryl hydrocarbon hydroxylase; bHLHe76; dioxin receptor; inflammatory reactivity;
General Note Compared with Ahrd/Ahrd mice, Ahrb/Ahrb individuals have a high inflammatory response to cutaneous application of dimethylbenzanthracene; a high susceptibility to methylcholanthrene- and benzopyrene-induced subcutaneous sarcomas and methylcholanthrene-induced lung tumors; an increased resistance to zoxazolamine-induced paralysis, lindane toxicity, and benzo[a]pyrene-induced aplastic anemia and leukemia; a high susceptibility to acetaminophen-induced hepatic necrosis and cataract formation; and an increased susceptibility to polycyclic hydrocarbon-induced birth defects, stillbirths, resorptions, decreased body weight, ovarian primordial oocyte depletion, and spermatozoal aberrations (J:5822). The Ahrballele is associated with increases in numerous metabolites of chemical carcinogens binding to DNA nucleotides (J:12156). The effectiveness of several mutagens for Salmonella in vitro is enhanced by presence of a liver fraction from Ahrb/Ahrb> mice treated with polycyclic hydrocarbons, but not from similarly treated Ahrd/Ahr mice (J:5564). In contrast, oral doses of benzopyrene cause a high rate of leukemia in Ahrd/Ahrd but not in Ahrd/Ahrd mice, probably because the carcinogenic metabolites produced in responsive Ahrb/Ahrd mice are rapidly degraded in the intestine and excreted in the feces (J:6074).

Strain of origin - this allele was found in DBA/2J, AKR/J, 129, SWR, RF, NZB strains

Molecular Note This allele encodes a 104 kDa receptor that is stabilized by molybdate and has an affinity for ligand 10-100 fold lower than that of the receptor produced by the C57BL/6J allele. PCR sequencing of cDNA revealed ten nucleotide differences between the coding sequences of the DBA/2J and C57BL/6J receptors. Five of the ten differences would cause amino acid changes. One of these, an apparent T to C transition replaces the opal termination codon in the C57BL/6J allele with an arginine codon in the DBA/2J allele. This change would extend translation of the DBA/2J mRNA by 43 amino acids, accounting for the larger size of the peptide produced by this allele (104 kDa vs 95 kDa for the C57BL/6J allele). A second T to C transition changes a leucine codon in the C57BL/6J allele to a proline codon in the DBA/2J allele, and would likely change secondary structure of the peptide and thus ligand affinity. [MGI Ref ID J:15153] [MGI Ref ID J:17460] [MGI Ref ID J:22144]
 
Allele Symbol Cdh23ahl
Allele Name age related hearing loss 1
Allele Type QTL
Common Name(s) Cdh23753A; mdfw;
Strain of Originmultiple strains
Gene Symbol and Name Cdh23, cadherin 23 (otocadherin)
Chromosome 10
Gene Common Name(s) 4930542A03Rik; CDHR23; RIKEN cDNA 4930542A03 gene; USH1D; W; age related hearing loss 1; ahl; bob; bobby; bus; bustling; mdfw; modifier of deaf waddler; neuroscience mutagenesis facility, 112; neuroscience mutagenesis facility, 181; neuroscience mutagenesis facility, 252; nmf112; nmf181; nmf252; sals; salsa; v; waltzer;
Molecular Note Genetic complementation tests have shown allelism between the mdfw (modifier of deaf waddler) locus and the ahl locus. Further analysis has identified an association between ahl and a G to A transition at nucleotide position 753 of Cdh23. This hypomorphic allele causes in frame skipping of exon 7 and reduced message stability. Twenty-seven strains classified with ahl and carrying the 753A allele include: CD1, RBF/DnJ, PL/J, AKR/J, RF/J, BALB/cBy, A/WySnJ, P/J, SENCARA/PtJ, DBA/1J, ALS/LtJ, C58/J, C57BLKS/J, 129P1/ReJ, C57BR/cd, SKH2/J, BUB/Bn, MA/MyJ, LP/J, 129X1/SvJ, NOR/LtJ, A/J, C57BL/6, NOD/LtJ, DBA/2J, ALR/LtJ, C57L/J. Strains classified with ahl that DO NOT carry this mutation include: C3H/HeSnJ, I/LnJ,YBR/Ei, MRL/MpJ. [MGI Ref ID J:86905]
 
Allele Symbol Disc1del
Allele Name deletion
Allele Type Spontaneous
Common Name(s) Disc1129S6; Disc1delta6;
Strain of Originvarious
Gene Symbol and Name Disc1, disrupted in schizophrenia 1
Chromosome 8
Gene Common Name(s) C1orf136; SCZD9;
General Note This deletion appears in multiple strains of the 129 superfamily, 101/RI, BTBR T+ tf/J, LP/J, FVB/NJ, SJL/J, SWR/J and DDY/JclSidSeyFrkJ (J:111837, J:195189).
Molecular Note A 25 bp deletion of the locus causes a frame shift in the reading frame, resulting in 13 novel amino acids and a premature stop codon at exon 7. [MGI Ref ID J:107244]
 
Allele Symbol Ednrbs
Allele Name piebald
Allele Type Spontaneous
Common Name(s) pied spotting; s;
Strain of Originold mutant of the mouse fancy
Gene Symbol and Name Ednrb, endothelin receptor type B
Chromosome 14
Gene Common Name(s) ABCDS; AU022549; ET-B; ET-BR; ETB; ETBR; ETR-b; ETRB; Ednra; HSCR; HSCR2; Sox10m1; WS4A; expressed sequence AU022549; piebald; s;
General Note Also called piebald spotting. This is a very old mutation of the mouse fancy, and was described in the scientific literature as early as 1920 (J23183). Some piebalds in existing stocks may be of independent origin. The white areas of the coat are completely lacking in melanocytes, and there is a reduction in the number of melanocytes in the choroid layer of the eye (J:15014, J:12970). There may also be defects in the structure of the iris, suggesting that pigment cells make some structural or inductive contribution to normal development (J:13123).
Molecular Note This mutation is allelic to a targeted mutation for this gene. Homozygous mice produce approximately 25% of the normal levels of transcript from this allele. RT-PCR analysis demonstrated that no alterations in the coding sequence would result in any alteration of the amino acid sequence. A 5.5 kb retrotransposon-like element is found in intron 1. About 75% of the mRNA produced is an aberrant 6.5 kb form lacking exons 2-6 but containing exon 1. The remaining 25% of the mRNA formed is of normal, 4.4 kb, size. [MGI Ref ID J:110573] [MGI Ref ID J:22206] [MGI Ref ID J:56133]

Genotyping

Genotyping Information

Inbred mouse strains are maintained through sibling (sister x brother) matings; no genotyping required.

Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Fischer Lindahl K. 1997. On naming H2 haplotypes: functional significance of MHC class Ib alleles. Immunogenetics 46(1):53-62. [PubMed: 9148789]  [MGI Ref ID J:41130]

Petkov PM; Cassell MA; Sargent EE; Donnelly CJ; Robinson P; Crew V; Asquith S; Haar RV; Wiles MV. 2004. Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse. Genomics 83(5):902-11. [PubMed: 15081119]  [MGI Ref ID J:89298]

Additional References

Baynash AG; Hosoda K; Giaid A; Richardson JA; Emoto N; Hammer RE; Yanagisawa M. 1994. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79(7):1277-85. [PubMed: 8001160]  [MGI Ref ID J:22207]

Clapcote SJ; Roder JC. 2007. Inbred mouse strains 101/RI, BTBR T tf/J and LP/J have a deletion in Disc1 MGI Direct Data Submission :.  [MGI Ref ID J:118317]

Fuller JL; Sjursen FH Jr. 1967. Audiogenic seizures in eleven mouse strains. J Hered 58(3):135-40. [PubMed: 6055327]  [MGI Ref ID J:24264]

Hosoda K; Hammer RE; Richardson JA; Baynash AG; Cheung JC; Giaid A; Yanagisawa M. 1994. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79(7):1267-76. [PubMed: 8001159]  [MGI Ref ID J:22206]

Keane TM; Goodstadt L; Danecek P; White MA; Wong K; Yalcin B; Heger A; Agam A; Slater G; Goodson M; Furlotte NA; Eskin E; Nellaker C; Whitley H; Cleak J; Janowitz D; Hernandez-Pliego P; Edwards A; Belgard TG; Oliver PL; McIntyre RE; Bhomra A; Nicod J; Gan X; Yuan W; van der Weyden L; Steward CA; Bala S; Stalker J; Mott R; Durbin R; Jackson IJ; Czechanski A; Guerra-Assuncao JA; Donahue LR; Reinholdt LG; Payseur BA; Ponting CP; Birney E; Flint J; Adams DJ. 2011. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477(7364):289-94. [PubMed: 21921910]  [MGI Ref ID J:177037]

Smith GS; Walford RL; Mickey MR. 1973. Lifespan and incidence of cancer and other diseases in selected long-lived inbred mice and their F 1 hybrids. J Natl Cancer Inst 50(5):1195-213. [PubMed: 4351393]  [MGI Ref ID J:22620]

Yamasaki K; Di Nardo A; Bardan A; Murakami M; Ohtake T; Coda A; Dorschner RA; Bonnart C; Descargues P; Hovnanian A; Morhenn VB; Gallo RL. 2007. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13(8):975-80. [PubMed: 17676051]  [MGI Ref ID J:125090]

Ahrd related

Benedict WF; Considine N; Nebert DW. 1973. Genetic differences in aryl hydrocarbon hydroxylase induction and benzo(a)pyrene-produced tumorigenesis in the mouse. Mol Pharmacol 9(2):266-77. [PubMed: 4123113]  [MGI Ref ID J:84312]

Boobis AR; Nebert DW. 1976. Genetic differences in the metabolism of carcinogens and in the binding of benzo (a) pyrene metabolites to DNA. Adv Enzyme Regul 15:339-62. [PubMed: 1030186]  [MGI Ref ID J:12156]

Castro DJ; Lohr CV; Fischer KA; Pereira CB; Williams DE. 2008. Lymphoma and lung cancer in offspring born to pregnant mice dosed with dibenzo[a,l]pyrene: the importance of in utero vs. lactational exposure. Toxicol Appl Pharmacol 233(3):454-8. [PubMed: 18848954]  [MGI Ref ID J:143604]

Chang C; Smith DR; Prasad VS; Sidman CL; Nebert DW; Puga A. 1993. Ten nucleotide differences, five of which cause amino acid changes, are associated with the Ah receptor locus polymorphism of C57BL/6 and DBA/2 mice. Pharmacogenetics 3(6):312-21. [PubMed: 8148872]  [MGI Ref ID J:17460]

Curran CP; Miller KA; Dalton TP; Vorhees CV; Miller ML; Shertzer HG; Nebert DW. 2006. Genetic differences in lethality of newborn mice treated in utero with coplanar versus non-coplanar hexabromobiphenyl. Toxicol Sci 89(2):454-64. [PubMed: 16291824]  [MGI Ref ID J:113285]

Felton JS; Nebert DW. 1975. Mutagenesis of certain activated carcinogens in vitro associated with genetically mediated increases in monooxygenase activity and cytochrome P 1-450. J Biol Chem 250(17):6769-78. [PubMed: 808546]  [MGI Ref ID J:5564]

Gielen JE; Goujon FM; Nebert DW. 1972. Genetic regulation of aryl hydrocarbon hydroxylase induction. II. Simple Mendelian expression in mouse tissues in vivo. J Biol Chem 247(4):1125-37. [PubMed: 4110756]  [MGI Ref ID J:84250]

Goujon FM; Nebert DW; Gielen JE. 1972. Genetic expression of aryl hydrocarbon hydroxylase induction. IV. Interaction of various compounds with different forms of cytochrome P-450 and the effect on benzo(a)pyrene metabolism in vitro. Mol Pharmacol 8(6):667-80. [PubMed: 4118365]  [MGI Ref ID J:84252]

Harper PA; Golas CL; Okey AB. 1991. Ah receptor in mice genetically nonresponsive for cytochrome P4501A1 induction: cytosolic Ah receptor, transformation to the nuclear binding state, and induction of aryl hydrocarbon hydroxylase by halogenated and nonhalogenated aromatic hydrocarbons in embryonic tissues and cells. Mol Pharmacol 40(5):818-26. [PubMed: 1658612]  [MGI Ref ID J:2134]

Kerley-Hamilton JS; Trask HW; Ridley CJ; Dufour E; Lesseur C; Ringelberg CS; Moodie KL; Shipman SL; Korc M; Gui J; Shworak NW; Tomlinson CR. 2012. Inherent and benzo[a]pyrene-induced differential aryl hydrocarbon receptor signaling greatly affects life span, atherosclerosis, cardiac gene expression, and body and heart growth in mice. Toxicol Sci 126(2):391-404. [PubMed: 22228805]  [MGI Ref ID J:183715]

Kouri RE; Rude TH; Joglekar R; Dansette PM; Jerina DM; Atlas SA; Owens IS; Nebert DW. 1978. 2,3,7,8-tetrachlorodibenzo-p-dioxin as cocarcinogen causing 3-methylcholanthrene-initiated subcutaneous tumors in mice genetically 'nonresponsive' at Ah locus. Cancer Res 38(9):2777-83. [PubMed: 679184]  [MGI Ref ID J:84318]

Levova K; Moserova M; Nebert DW; Phillips DH; Frei E; Schmeiser HH; Arlt VM; Stiborova M. 2012. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I. Toxicol Appl Pharmacol 265(3):360-7. [PubMed: 22982977]  [MGI Ref ID J:192865]

Lew BJ; Manickam R; Lawrence BP. 2011. Activation of the aryl hydrocarbon receptor during pregnancy in the mouse alters mammary development through direct effects on stromal and epithelial tissues. Biol Reprod 84(6):1094-102. [PubMed: 21270426]  [MGI Ref ID J:173706]

Moriguchi T; Motohashi H; Hosoya T; Nakajima O; Takahashi S; Ohsako S; Aoki Y; Nishimura N; Tohyama C; Fujii-Kuriyama Y; Yamamoto M. 2003. Distinct response to dioxin in an arylhydrocarbon receptor (AHR)-humanized mouse. Proc Natl Acad Sci U S A 100(10):5652-7. [PubMed: 12730383]  [MGI Ref ID J:132380]

Nebert DW; Atlas SA; Guenthner TM; Kouri RE. 1978. The Ah locus: genetic regulation of the enzymes which metabolize polycyclic hydrocarbons and the risk of cancer. In: Polycyclic Hydrocarbons and Cancer: Chemistry, Molecular Biology and Environment. Academic Press, New York.  [MGI Ref ID J:30693]

Nebert DW; Considine N; Owens IS. 1973. Genetic expression of aryl hydrocarbon hydroxylase induction. VI. Control of other aromatic hydrocarbon-inducible mono-oxygenase activities at or near the same genetic locus. Arch Biochem Biophys 157(1):148-59. [PubMed: 4716952]  [MGI Ref ID J:84313]

Nebert DW; Gelboin HV. 1969. The in vivo and in vitro induction of aryl hydrocarbon hydroxylase in mammalian cells of different species, tissues, strains, and developmental and hormonal states. Arch Biochem Biophys 134(1):76-89. [PubMed: 4981257]  [MGI Ref ID J:84248]

Nebert DW; Gielen JE. 1972. Genetic regulation of aryl hydrocarbon hydroxylase induction in the mouse. Fed Proc 31(4):1315-25. [PubMed: 4114109]  [MGI Ref ID J:5282]

Nebert DW; Gielen JE; Goujon FM. 1972. Genetic expression of aryl hydrocarbon hydroxylase induction. 3. Changes in the binding of n-octylamine to cytochrome P-450. Mol Pharmacol 8(6):651-66. [PubMed: 4118364]  [MGI Ref ID J:84251]

Nebert DW; Goujon FM; Gielen JE. 1972. Aryl hydrocarbon hydroxylase induction by polycyclic hydrocarbons: simple autosomal dominant trait in the mouse. Nat New Biol 236(65):107-10. [PubMed: 4502804]  [MGI Ref ID J:84249]

Nebert DW; Jensen NM. 1979. Benzo[a]pyrene-initiated leukemia in mice. Association with allelic differences at the Ah locus. Biochem Pharmacol 28(1):149-51. [PubMed: 758905]  [MGI Ref ID J:6074]

Nebert DW; Jensen NM; Shinozuka H; Kunz HW; Gill TJ 3rd. 1982. The Ah phenotype. Survey of forty-eight rat strains and twenty inbred mouse strains. Genetics 100(1):79-87. [PubMed: 7095422]  [MGI Ref ID J:6809]

Nebert DW; Kon H. 1973. Genetic regulation of aryl hydrocarbon hydroxylase induction. V. Specific changes in spin state of cytochrome P 450 from genetically responsive animals. J Biol Chem 248(1):169-78. [PubMed: 4348203]  [MGI Ref ID J:84311]

Nebert DW; Robinson JR; Niwa A; Kumaki K; Poland AP. 1975. Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. J Cell Physiol 85(2 Pt 2 Suppl 1):393-414. [PubMed: 1091656]  [MGI Ref ID J:84317]

Niwa A; Kumaki K; Nebert DW; Poland AP. 1975. Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. Distinction between the 'responsive' homozygote and heterozygote at the Ah locus. Arch Biochem Biophys 166(2):559-64. [PubMed: 1119809]  [MGI Ref ID J:84316]

Oesch F; Morris N; Daly JW. 1973. Genetic expression of the induction of epoxide hydrase and aryl hydrocarbon hydroxylase activities in the mouse by phenobarbital or 3-methylcholanthrene. Mol Pharmacol 9(5):629-6. [PubMed: 4788156]  [MGI Ref ID J:25852]

Okey AB; Vella LM; Harper PA. 1989. Detection and characterization of a low affinity form of cytosolic Ah receptor in livers of mice nonresponsive to induction of cytochrome P1-450 by 3-methylcholanthrene. Mol Pharmacol 35(6):823-30. [PubMed: 2543914]  [MGI Ref ID J:27899]

Poel WE; Stanton D; Peters E; Wade HO. 1958. Comparative susceptibilities of seven inbred strains of mice to qualified applications of 3, 4-benzpyrene Proc Am Assoc Cancer Res 2:335.  [MGI Ref ID J:84245]

Poland A; Bradfield C. 1992. A brief review of the Ah locus. Tohoku J Exp Med 168(2):83-7. [PubMed: 1339107]  [MGI Ref ID J:12546]

Poland A; Glover E. 1990. Characterization and strain distribution pattern of the murine Ah receptor specified by the Ahd and Ahb-3 alleles. Mol Pharmacol 38(3):306-12. [PubMed: 2169579]  [MGI Ref ID J:34840]

Poland A; Glover E; Kende AS. 1976. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem 251(16):4936-46. [PubMed: 956169]  [MGI Ref ID J:84247]

Poland A; Glover E; Taylor BA. 1987. The murine Ah locus: a new allele and mapping to chromosome 12. Mol Pharmacol 32(4):471-8. [PubMed: 2823093]  [MGI Ref ID J:8895]

Poland A; Palen D; Glover E. 1994. Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol 46(5):915-21. [PubMed: 7969080]  [MGI Ref ID J:22144]

Poland A; Teitelbaum P; Glover E; Kende A. 1989. Stimulation of in vivo hepatic uptake and in vitro hepatic binding of [125I]2-lodo-3,7,8-trichlorodibenzo-p-dioxin by the administration of agonist for the Ah receptor. Mol Pharmacol 36(1):121-7. [PubMed: 2546046]  [MGI Ref ID J:126377]

Poland AP; Glover E; Robinson JR; Nebert DW. 1974. Genetic expression of aryl hydrocarbon hydroxylase activity. Induction of monooxygenase activities and cytochrome P1-450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically 'nonresponsive' to other aromatic hydrocarbons. J Biol Chem 249(17):5599-606. [PubMed: 4370044]  [MGI Ref ID J:84314]

Quintana FJ; Basso AS; Iglesias AH; Korn T; Farez MF; Bettelli E; Caccamo M; Oukka M; Weiner HL. 2008. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453(7191):65-71. [PubMed: 18362915]  [MGI Ref ID J:136052]

Robinson JR; Considine N; Nebert DW. 1974. Genetic expression of aryl hydrocarbon hydroxylase induction. Evidence for the involvement of other genetic loci. J Biol Chem 249(18):5851-9. [PubMed: 4413562]  [MGI Ref ID J:84315]

Schmid FA; Demetriades MS; Schabel FM 3rd; Tarnowski GS. 1967. Toxicity of several cancerigenic polycyclic hydrocarbons and other agents in AKR and C57BL-6 mice. Cancer Res 27(3):563-7. [PubMed: 6021514]  [MGI Ref ID J:84246]

Schmid FA; Elmer I; Tarnowski GS. 1969. Genetic determination of differential inflammatory reactivity and subcutaneous tumor susceptibility of AKR-J and C57BL-6J mice to 7,12-dimethylbenz- [a]anthracene. Cancer Res 29(8):1585-9. [PubMed: 5807232]  [MGI Ref ID J:34134]

Schmid FA; Pena RC; Robinson W; Tarnowski GS. 1967. Toxicity of intraperitoneal injections of 7, 12-dimethylbenz[a]anthracene in inbred mice. Cancer Res 27(3):558-62. [PubMed: 6021513]  [MGI Ref ID J:26440]

Schmidt JV; Carver LA; Bradfield CA. 1993. Molecular characterization of the murine Ahr gene. Organization, promoter analysis, and chromosomal assignment. J Biol Chem 268(29):22203-9. [PubMed: 8408082]  [MGI Ref ID J:15153]

Shi Z; Chen Y; Dong H; Amos-Kroohs RM; Nebert DW. 2008. Generation of a 'humanized' hCYP1A1_1A2_Cyp1a1/1a2(-/-)_Ahrd mouse line harboring the poor-affinity aryl hydrocarbon receptor. Biochem Biophys Res Commun 376(4):775-80. [PubMed: 18814841]  [MGI Ref ID J:141523]

Shivanna B; Zhang W; Jiang W; Welty SE; Couroucli XI; Wang L; Moorthy B. 2013. Functional deficiency of aryl hydrocarbon receptor augments oxygen toxicity-induced alveolar simplification in newborn mice. Toxicol Appl Pharmacol 267(3):209-17. [PubMed: 23337360]  [MGI Ref ID J:193493]

Simonian PL; Wehrmann F; Roark CL; Born WK; O'Brien RL; Fontenot AP. 2010. gammadelta T cells protect against lung fibrosis via IL-22. J Exp Med 207(10):2239-53. [PubMed: 20855496]  [MGI Ref ID J:165803]

Smith AG; Clothier B; Robinson S; Scullion MJ; Carthew P; Edwards R; Luo J; Lim CK; Toledano M. 1998. Interaction between iron metabolism and 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice with variants of the Ahr gene: a hepatic oxidative mechanism. Mol Pharmacol 53(1):52-61. [PubMed: 9443932]  [MGI Ref ID J:45850]

Stiborova M; Levova K; Barta F; Shi Z; Frei E; Schmeiser HH; Nebert DW; Phillips DH; Arlt VM. 2012. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol Sci 125(2):345-58. [PubMed: 22086975]  [MGI Ref ID J:183662]

Tanos R; Murray IA; Smith PB; Patterson A; Perdew GH. 2012. Role of the ah receptor in homeostatic control of Fatty Acid synthesis in the liver. Toxicol Sci 129(2):372-9. [PubMed: 22696238]  [MGI Ref ID J:188164]

Taylor BA. 1971. Strain distribution and linkage tests of 7,12-dimethylbenzanthracene (DMBA) inflammatory response in mice. Life Sci I 10(19):1127-34. [PubMed: 5132702]  [MGI Ref ID J:5244]

Thomas PE; Hutton JJ; Taylor BA. 1973. Genetic relationship between aryl hydrocarbon hydroxylase inducibility and chemical carcinogen induced skin ulceration in mice. Genetics 74(4):655-9. [PubMed: 4750810]  [MGI Ref ID J:5387]

Thomas PE; Kouri RE; Hutton JJ. 1972. The genetics of aryl hydrocarbon hydroxylase induction in mice: a single gene difference between C57BL-6J and DBA-2J. Biochem Genet 6(2):157-68. [PubMed: 4666754]  [MGI Ref ID J:31977]

Thorgeirsson SS; Nebert DW. 1977. The Ah locus and the metabolism of chemical carcinogens and other foreign compounds. Adv Cancer Res 25:149-93. [PubMed: 405846]  [MGI Ref ID J:5822]

Walisser JA; Bunger MK; Glover E; Bradfield CA. 2004. Gestational exposure of Ahr and Arnt hypomorphs to dioxin rescues vascular development. Proc Natl Acad Sci U S A 101(47):16677-82. [PubMed: 15545609]  [MGI Ref ID J:94465]

Yeager RL; Reisman SA; Aleksunes LM; Klaassen CD. 2009. Introducing the 'TCDD-inducible AhR-Nrf2 gene battery'. Toxicol Sci 111(2):238-46. [PubMed: 19474220]  [MGI Ref ID J:154083]

Yu Z; Mahadevan B; Lohr CV; Fischer KA; Louderback MA; Krueger SK; Pereira CB; Albershardt DJ; Baird WM; Bailey GS; Williams DE. 2006. Indole-3-carbinol in the maternal diet provides chemoprotection for the fetus against transplacental carcinogenesis by the polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene. Carcinogenesis 27(10):2116-23. [PubMed: 16704990]  [MGI Ref ID J:113356]

Zhou Y; Tung HY; Tsai YM; Hsu SC; Chang HW; Kawasaki H; Tseng HC; Plunkett B; Gao P; Hung CH; Vonakis BM; Huang SK. 2013. Aryl hydrocarbon receptor controls murine mast cell homeostasis. Blood 121(16):3195-204. [PubMed: 23462117]  [MGI Ref ID J:197552]

Cdh23ahl related

Bosco A; Crish SD; Steele MR; Romero CO; Inman DM; Horner PJ; Calkins DJ; Vetter ML. 2012. Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 7(8):e43602. [PubMed: 22952717]  [MGI Ref ID J:191663]

Davis RR; Newlander JK; Ling X; Cortopassi GA; Krieg EF; Erway LC. 2001. Genetic basis for susceptibility to noise-induced hearing loss in mice. Hear Res 155(1-2):82-90. [PubMed: 11335078]  [MGI Ref ID J:69679]

Di Palma F; Pellegrino R; Noben-Trauth K. 2001. Genomic structure, alternative splice forms and normal and mutant alleles of cadherin 23 (Cdh23). Gene 281(1-2):31-41. [PubMed: 11750125]  [MGI Ref ID J:73941]

Fetoni AR; Picciotti PM; Paludetti G; Troiani D. 2011. Pathogenesis of presbycusis in animal models: a review. Exp Gerontol 46(6):413-25. [PubMed: 21211561]  [MGI Ref ID J:186964]

Han F; Yu H; Tian C; Chen HE; Benedict-Alderfer C; Zheng Y; Wang Q; Han X; Zheng QY. 2010. A new mouse mutant of the Cdh23 gene with early-onset hearing loss facilitates evaluation of otoprotection drugs. Pharmacogenomics J :. [PubMed: 20644563]  [MGI Ref ID J:174758]

Johnson KR; Erway LC; Cook SA; Willott JF; Zheng QY. 1997. A major gene affecting age-related hearing loss in C57BL/6J mice Hear Res 114(1-2):83-92. [PubMed: 9447922]  [MGI Ref ID J:44966]

Johnson KR; Longo-Guess C; Gagnon LH; Yu H; Zheng QY. 2008. A locus on distal chromosome 11 (ahl8) and its interaction with Cdh23 ahl underlie the early onset, age-related hearing loss of DBA/2J mice. Genomics 92(4):219-25. [PubMed: 18662770]  [MGI Ref ID J:139223]

Johnson KR; Yu H; Ding D; Jiang H; Gagnon LH; Salvi RJ. 2010. Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice. Hear Res 268(1-2):85-92. [PubMed: 20470874]  [MGI Ref ID J:163035]

Johnson KR; Zheng QY; Bykhovskaya Y; Spirina O; Fischel-Ghodsian N. 2001. A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice. Nat Genet 27(2):191-4. [PubMed: 11175788]  [MGI Ref ID J:67312]

Johnson KR; Zheng QY; Noben-Trauth K. 2006. Strain background effects and genetic modifiers of hearing in mice. Brain Res 1091(1):79-88. [PubMed: 16579977]  [MGI Ref ID J:110459]

Johnson KR; Zheng QY; Weston MD; Ptacek LJ; Noben-Trauth K. 2005. The Mass1(frings) mutation underlies early onset hearing impairment in BUB/BnJ mice, a model for the auditory pathology of Usher syndrome IIC. Genomics 85(5):582-90. [PubMed: 15820310]  [MGI Ref ID J:97534]

Kane KL; Longo-Guess CM; Gagnon LH; Ding D; Salvi RJ; Johnson KR. 2012. Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear Res 283(1-2):80-8. [PubMed: 22138310]  [MGI Ref ID J:183757]

Keithley EM; Canto C; Zheng QY; Fischel-Ghodsian N; Johnson KR. 2004. Age-related hearing loss and the ahl locus in mice. Hear Res 188(1-2):21-8. [PubMed: 14759567]  [MGI Ref ID J:87783]

Liu X; Bulgakov OV; Darrow KN; Pawlyk B; Adamian M; Liberman MC; Li T. 2007. Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A 104(11):4413-8. [PubMed: 17360538]  [MGI Ref ID J:118927]

Manji SS; Williams LH; Miller KA; Ooms LM; Bahlo M; Mitchell CA; Dahl HH. 2011. A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS One 6(3):e17607. [PubMed: 21423608]  [MGI Ref ID J:171701]

Mathews CE; Leiter EH. 1999. Resistance of ALR/Lt islets to free radical-mediated diabetogenic stress is inherited as a dominant trait. Diabetes 48(11):2189-96. [PubMed: 10535453]  [MGI Ref ID J:109893]

Nadeau JH. 2003. Modifier genes and protective alleles in humans and mice. Curr Opin Genet Dev 13(3):290-5. [PubMed: 12787792]  [MGI Ref ID J:88012]

Noben-Trauth K; Latoche JR; Neely HR; Bennett B. 2010. Phenotype and genetics of progressive sensorineural hearing loss (Snhl1) in the LXS set of recombinant inbred strains of mice. PLoS One 5(7):e11459. [PubMed: 20628639]  [MGI Ref ID J:163117]

Noben-Trauth K; Zheng QY; Johnson KR. 2003. Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35(1):21-3. [PubMed: 12910270]  [MGI Ref ID J:86905]

Noben-Trauth K; Zheng QY; Johnson KR; Nishina PM. 1997. mdfw: a deafness susceptibility locus that interacts with deaf waddler (dfw). Genomics 44(3):266-72. [PubMed: 9325047]  [MGI Ref ID J:38429]

Perrin BJ; Sonnemann KJ; Ervasti JM. 2010. beta-actin and gamma-actin are each dispensable for auditory hair cell development but required for Stereocilia maintenance. PLoS Genet 6(10):e1001158. [PubMed: 20976199]  [MGI Ref ID J:167543]

Perrin BJ; Strandjord DM; Narayanan P; Henderson DM; Johnson KR; Ervasti JM. 2013. beta-Actin and Fascin-2 Cooperate to Maintain Stereocilia Length. J Neurosci 33(19):8114-21. [PubMed: 23658152]  [MGI Ref ID J:197137]

Vazquez AE; Jimenez AM; Martin GK; Luebke AE; Lonsbury-Martin BL. 2004. Evaluating cochlear function and the effects of noise exposure in the B6.CAST+Ahl mouse with distortion product otoacoustic emissions. Hear Res 194(1-2):87-96. [PubMed: 15276680]  [MGI Ref ID J:117746]

Zheng QY; Johnson KR. 2001. Hearing loss associated with the modifier of deaf waddler (mdfw) locus corresponds with age-related hearing loss in 12 inbred strains of mice. Hear Res 154(1-2):45-53. [PubMed: 11423214]  [MGI Ref ID J:70964]

Zheng QY; Scarborough JD; Zheng Y; Yu H; Choi D; Gillespie PG. 2012. Digenic inheritance of deafness caused by 8J allele of myosin-VIIA and mutations in other Usher I genes. Hum Mol Genet 21(11):2588-98. [PubMed: 22381527]  [MGI Ref ID J:183898]

Zilberstein Y; Liberman MC; Corfas G. 2012. Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 32(2):405-10. [PubMed: 22238076]  [MGI Ref ID J:179911]

Disc1del related

Clapcote SJ; Roder JC. 2006. Deletion polymorphism of disc1 is common to all 129 mouse substrains: implications for gene-targeting studies of brain function. Genetics 173(4):2407-10. [PubMed: 16751659]  [MGI Ref ID J:111837]

Clapcote SJ; Roder JC. 2007. Inbred mouse strains 101/RI, BTBR T tf/J and LP/J have a deletion in Disc1 MGI Direct Data Submission :.  [MGI Ref ID J:118317]

Koike H; Arguello PA; Kvajo M; Karayiorgou M; Gogos JA. 2006. Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci U S A 103(10):3693-7. [PubMed: 16484369]  [MGI Ref ID J:107244]

Kuroda K; Yamada S; Tanaka M; Iizuka M; Yano H; Mori D; Tsuboi D; Nishioka T; Namba T; Iizuka Y; Kubota S; Nagai T; Ibi D; Wang R; Enomoto A; Isotani-Sakakibara M; Asai N; Kimura K; Kiyonari H; Abe T; Mizoguchi A; Sokabe M; Takahashi M; Yamada K; Kaibuchi K. 2011. Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum Mol Genet 20(23):4666-83. [PubMed: 21903668]  [MGI Ref ID J:177560]

Ritchie D; Clapcote S. 2013. Disc1 deletion is present in Swiss-derived inbred mouse strains: implications for transgenic studies of learning and memory. Lab Anim :. [PubMed: 23563120]  [MGI Ref ID J:195189]

Zou H; Yu Y; Sheikh AM; Malik M; Yang K; Wen G; Chadman KK; Brown WT; Li X. 2011. Association of upregulated Ras/Raf/ERK1/2 signaling with autism. Genes Brain Behav 10(5):615-24. [PubMed: 21595826]  [MGI Ref ID J:185685]

Ednrbs related

Asher JH Jr; Friedman TB. 1990. Mouse and hamster mutants as models for Waardenburg syndromes in humans. J Med Genet 27(10):618-26. [PubMed: 2246770]  [MGI Ref ID J:200892]

BIELSCHOWSKY M; SCHOFIELD GC. 1962. Studies on megacolon in piebald mice. Aust J Exp Biol Med Sci 40:395-403. [PubMed: 13968171]  [MGI Ref ID J:12312]

BILLINGHAM RE; SILVERS WK. 1960. The melanocytes of mammals. Q Rev Biol 35:1-40. [PubMed: 13800713]  [MGI Ref ID J:15014]

Cantrell VA; Owens SE; Chandler RL; Airey DC; Bradley KM; Smith JR; Southard-Smith EM. 2004. Interactions between Sox10 and EdnrB modulate penetrance and severity of aganglionosis in the Sox10Dom mouse model of Hirschsprung disease. Hum Mol Genet 13(19):2289-301. [PubMed: 15294878]  [MGI Ref ID J:93622]

Carrasquillo MM; McCallion AS; Puffenberger EG; Kashuk CS; Nouri N; Chakravarti A. 2002. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet 32(2):237-44. [PubMed: 12355085]  [MGI Ref ID J:112429]

Cattanach BM. 1961. A chemically-induced variegated-type position effect in the mouse. Z Vererbungsl 92:165-82. [PubMed: 13877379]  [MGI Ref ID J:160128]

Dang R; Sasaki N; Torigoe D; Agui T. 2012. Anatomic modifications in the enteric nervous system of JF1 mice with the classic piebald mutation. J Vet Med Sci 74(3):391-4. [PubMed: 22067082]  [MGI Ref ID J:193523]

Deol MS. 1971. Spotting genes and internal pigmentation patterns in the mouse. J Embryol Exp Morphol 26(1):123-33. [PubMed: 5565074]  [MGI Ref ID J:5220]

Dunn LC. 1920. Types of white spotting in mice Am Naturalist 54:465-95.  [MGI Ref ID J:23183]

Dunn LC; Charles DR. 1937. Studies on Spotting Patterns I. Analysis of Quantitative Variations in the Pied Spotting of the House Mouse. Genetics 22(1):14-42. [PubMed: 17246828]  [MGI Ref ID J:12952]

Dunn LC; Macdowell EC; Lebedeff GA. 1937. Studies on Spotting Patterns III. Interaction between Genes Affecting White Spotting and Those Affecting Color in the House Mouse. Genetics 22(2):307-18. [PubMed: 17246842]  [MGI Ref ID J:12954]

Dunn LC; Mohr J. 1952. An Association of Hereditary Eye Defects with White Spotting. Proc Natl Acad Sci U S A 38(10):872-5. [PubMed: 16589191]  [MGI Ref ID J:13123]

Eicher EM; Green MC. 1972. The T6 translocation in the mouse: its use in trisomy mapping, centromere localization, and cytological identification of linkage group 3. Genetics 71(4):621-32. [PubMed: 5055128]  [MGI Ref ID J:5291]

Gruneberg H. 1952. . In: The Genetics of the Mouse. Martinus Nijhoff, The Hague.  [MGI Ref ID J:30758]

Hauschka TS; Jacobs BB; Holdridge BA. 1968. Recessive yellow and its interaction with belted in the mouse. J Hered 59(6):339-41. [PubMed: 5713933]  [MGI Ref ID J:5110]

Hosoda K; Hammer RE; Richardson JA; Baynash AG; Cheung JC; Giaid A; Yanagisawa M. 1994. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79(7):1267-76. [PubMed: 8001159]  [MGI Ref ID J:22206]

Keeler CE. 1931. The Independence of Dominant Spotting and Recessive Spotting ('Piebald') in the House Mouse. Proc Natl Acad Sci U S A 17(2):101-2. [PubMed: 16587618]  [MGI Ref ID J:153352]

Koide T; Moriwaki K; Uchida K; Mita A; Sagai T; Yonekawa H; Katoh H; Miyashita N; Tsuchiya K; Nielsen TJ; Shiroishi T. 1998. A new inbred strain JF1 established from Japanese fancy mouse carrying the classic piebald allele [published erratum appears in Mamm Genome 1998 Apr;9(4):344] Mamm Genome 9(1):15-9. [PubMed: 9434939]  [MGI Ref ID J:42684]

Kumagai T; Wada A; Tsudzuki M; Nishimura M; Kunieda T. 1998. Nucleotide sequence of endothelin-B receptor gene reveals origin of piebald mutation in laboratory mouse. Exp Anim 47(4):265-9. [PubMed: 10067171]  [MGI Ref ID J:56133]

Kuwaki T; Ling GY; Onodera M; Ishii T; Nakamura A; Ju KH; Cao WH; Kumada M; Kurihara H; Kurihara Y; Yazaki Y; Ohuchi T; Yanagisawa M; Fukuda Y. 1999. Endothelin in the central control of cardiovascular and respiratory functions. Clin Exp Pharmacol Physiol 26(12):989-94. [PubMed: 10626068]  [MGI Ref ID J:60070]

Lamoreux ML. 1999. Strain-specific white-spotting patterns in laboratory mice Pigment Cell Res 12(6):383-90. [PubMed: 10614578]  [MGI Ref ID J:106083]

Markert CL; Silvers WK. 1956. The Effects of Genotype and Cell Environment on Melanoblast Differentiation in the House Mouse. Genetics 41(3):429-50. [PubMed: 17247639]  [MGI Ref ID J:12970]

Matsushima Y; Shinkai Y; Kobayashi Y; Sakamoto M; Kunieda T; Tachibana M. 2002. A mouse model of Waardenburg syndrome type 4 with a new spontaneous mutation of the endothelin-B receptor gene. Mamm Genome 13(1):30-5. [PubMed: 11773966]  [MGI Ref ID J:76584]

Mayer TC. 1977. Enhancement of melanocyte development from piebald neural crest by a favorable tissue environment. Dev Biol 56(2):255-62. [PubMed: 849800]  [MGI Ref ID J:5782]

Mayer TC. 1967. Pigment cell migration in piebald mice. Dev Biol 15(6):521-35. [PubMed: 5340422]  [MGI Ref ID J:5036]

Mayer TC. 1967. Temporal skin factors influencing the development of melanoblasts in piebald mice. J Exp Zool 166(3):397-403. [PubMed: 4868265]  [MGI Ref ID J:5060]

Mayer TC. 1965. The development of piebald spotting in mice. Dev Biol 11:319-334. [PubMed: 5320391]  [MGI Ref ID J:12725]

McCallion AS; Stames E; Conlon RA; Chakravarti A. 2003. Phenotype variation in two-locus mouse models of Hirschsprung disease: tissue-specific interaction between Ret and Ednrb. Proc Natl Acad Sci U S A 100(4):1826-31. [PubMed: 12574515]  [MGI Ref ID J:81970]

Metallinos DL; Oppenheimer AJ; Rinchik EM; Russell LB; Dietrich W; Tilghman SM. 1994. Fine structure mapping and deletion analysis of the murine piebald locus. Genetics 136(1):217-23. [PubMed: 8138159]  [MGI Ref ID J:16291]

Moore KJ; Swing DA; Copeland NG; Jenkins NA. 1990. Interaction of the murine dilute suppressor gene (dsu) with fourteen coat color mutations [published erratum appears in Genetics 1990 Sep;126(1):285] Genetics 125(2):421-30. [PubMed: 2379821]  [MGI Ref ID J:29467]

Nadler EP; Boyle P; Murdock AD; Dilorenzo C; Barksdale EM; Ford HR. 2003. Newborn endothelin receptor type B mutant (piebald) mice have a higher resting anal sphincter pressure than newborn C57BL/6 mice. Contemp Top Lab Anim Sci 42(6):36-8. [PubMed: 14615959]  [MGI Ref ID J:86743]

Oak Ridge National Laboratory. 2005. Information obtained from the Oak Ridge National Laboratory Mutant Mouse Database (ORNL), Oak Ridge, TN Unpublished :.  [MGI Ref ID J:100221]

Ohuchi T; Kuwaki T; Ling GY; Dewit D; Ju KH; Onodera M; Cao WH; Yanagisawa M; Kumada M. 1999. Elevation of blood pressure by genetic and pharmacological disruption of the ETB receptor in mice. Am J Physiol 276(4 Pt 2):R1071-7. [PubMed: 10198387]  [MGI Ref ID J:54703]

PIERRO LJ; CHASE HB. 1963. Slate--a new coat color mutant in the mouse. J Hered 54:47-50. [PubMed: 13943454]  [MGI Ref ID J:25388]

Pavan WJ; Mac S; Cheng M; Tilghman SM. 1995. Quantitative trait loci that modify the severity of spotting in piebald mice. Genome Res 5(1):29-41. [PubMed: 8717053]  [MGI Ref ID J:28905]

Ro S; Hwang SJ; Muto M; Jewett WK; Spencer NJ. 2006. Anatomic modifications in the enteric nervous system of piebald mice and physiological consequences to colonic motor activity. Am J Physiol Gastrointest Liver Physiol 290(4):G710-8. [PubMed: 16339294]  [MGI Ref ID J:109114]

Silvers WK. 1979. The Coat Colors of Mice; A Model for Mammalian Gene Action and Interaction. In: The Coat Colors of Mice. Springer-Verlag, New York.  [MGI Ref ID J:78801]

Sviderskaya EV; Easty DJ; Bennett DC. 1998. Impaired growth and differentiation of diploid but not immortal melanoblasts from endothelin receptor B mutant (piebald) mice. Dev Dyn 213(4):452-63. [PubMed: 9853966]  [MGI Ref ID J:51286]

Yamada T; Ohtani S; Sakurai T; Tsuji T; Kunieda T; Yanagisawa M. 2006. Reduced expression of the endothelin receptor type B gene in piebald mice caused by insertion of a retroposon-like element in intron 1. J Biol Chem 281(16):10799-807. [PubMed: 16500897]  [MGI Ref ID J:110573]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX29

Colony Maintenance

Mating SystemSibling x Sibling         (Female x Male)   01-MAR-06
Breeding Considerations This strain is a challenging breeder.
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)Gender
3 weeks $132.20Female or Male  
4 weeks $132.20Female or Male  
5 weeks $132.20Female or Male  
6 weeks $134.85Female or Male  
7 weeks $137.50Female or Male  
8 weeks $140.15Female or Male  
9 weeks $142.80Female or Male  
10 weeks $145.45Female or Male  

Standard Supply

Level 4. Up to 10 mice. Larger quantities or custom orders arranged upon request. Expected delivery up to one to three months.

Supply Notes

  • Shipped at a specific age in weeks. Mice at a precise age in days, littermates and retired breeders are also available.
Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)Gender
3 weeks $171.90Female or Male  
4 weeks $171.90Female or Male  
5 weeks $171.90Female or Male  
6 weeks $175.40Female or Male  
7 weeks $178.80Female or Male  
8 weeks $182.20Female or Male  
9 weeks $185.70Female or Male  
10 weeks $189.10Female or Male  

Standard Supply

Level 4. Up to 10 mice. Larger quantities or custom orders arranged upon request. Expected delivery up to one to three months.

Supply Notes

  • Shipped at a specific age in weeks. Mice at a precise age in days, littermates and retired breeders are also available.
View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Level 4. Up to 10 mice. Larger quantities or custom orders arranged upon request. Expected delivery up to one to three months.

Important Note

This strain is homozygous for Cdh23ahl, the age related hearing loss 1 mutation, which on this background results in progressive hearing loss with onset after 10 months of age.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)