Strain Name:

B6.Cg-Foxn1nu/J

Stock Number:

000819

Order this mouse

Availability:

Level 4

Foxn1nu (nude) mice are born with functional but faulty hair growth follicles, resulting in a hairless appearance. These mice are also athymic, and consequently homozygous nude mice lack T cells and suffer from a lack of cell-mediated immunity. They can be used in experiments otherwise requiring thymectomy in mice.

Description

Strain Information

Former Names Foxn1nu    (Changed: 15-DEC-04 )
Type Congenic; Mutant Strain; Spontaneous Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemHeterozygote x Heterozygote         (Female x Male)   21-AUG-08
Breeding Considerations This strain is a challenging breeder.
Specieslaboratory mouse
Background Strain C57BL/6J
Donor Strain Glasgow stock
H2 Haplotypeb
GenerationN50F14 (17-SEP-12)
Generation Definitions

Appearance
pigmented, without hair
Related Genotype: a/a Foxn1nu/Foxn1nu

black, unaffected
Related Genotype: a/a Foxn1nu/+ or a/a ?/+

Description
The two main defects of mice homozygous for the nude spontaneous mutation (Foxn1nu, formerly Hfh11nu) are abnormal hair growth and defective development of the thymic epithelium. Although the mice appear hairless, they are born with functional but faulty hair growth follicles. Hair growth cycles and patterns are evident especially in pigmented mice but the faulty follicles do not allow the hair to properly erupt. Homozygous pups can be identified as young as 24 hours by their lack of whiskers or poorly developed, crinkled whiskers. Nude mice are also athymic caused by a developmental failure of the thymic anlage. Consequently, homozygous nude mice lack T cells and suffer from a lack of cell-mediated immunity. However there is not a defect in T-cell precursors, and under the right conditions some functional mature T cells can be found especially in adult mice. Because of a defect in helper T-cell activity, responses to thymus-dependent antigens when detectable are primarily limited to IgM. Homozygous nude mice show partial defect in B cell development probably due to absence of functional T cells. Other endocrine and neurological deficiencies have been reported. The use of nude mice has reduced the number of thymectomy procedures required in research projects. Females are not effective breeders.Ovulation starts late at 2.5 months and ends early at four months.

For heterozygous mice only, this strain ships with a JAXTagTM affixed. Learn more about JAXTagTM.

Development
The Foxn1nu mutation was first recorded by Dr. N.R. Grist at the Virus Laboratory, Ruchill Hospital, Glasgow, Scotland. The mutation arose in a mouse stock that was closed but not inbred. The first seven backcrosses onto BALB were made using BALB/cN and the strain was imported to The Jackson Laboratory from NIH in 1975. It was bred brother (nu/nu) by sister (nu/+) for three generations before adopting the pattern of crossing a nu/nu male to a C57BL/6J female every other generation. The stock was cryopreserved in 1984 by mating nu/nu males at N14F1 to C57BL/6J females.

Control Information

  Control
   Heterozygote from the colony
   Untyped from the colony
   000664 C57BL/6J
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Foxn1nu allele
000711   CByJ.Cg-Foxn1nu/J
007850   J:NU
002019   NU/J
003118   STOCK Ces1ce Foxn1nu/J
View Strains carrying   Foxn1nu     (4 strains)

Strains carrying other alleles of Foxn1
000820   AKR/J-Foxn1nu-str/J
018448   B6(Cg)-Foxn1tm3(cre)Nrm/J
016195   B6(SJL)-Foxn1nu-2J/GrsrJ
012941   B6.129(SJL)-Foxn1tm1.1Dmsu/J
000521   B6.AK-Foxn1nu-str/J
View Strains carrying other alleles of Foxn1     (5 strains)

Additional Web Information

JAX® NOTES, Spring 1997; 469. Helicobacter Infections in Laboratory Mice.
JAX® NOTES, Spring 2006; 501. Choosing an Immunodeficient Mouse Model.

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Model with phenotypic similarity to human disease where etiologies involve orthologs. Human genes are associated with this disease. Orthologs of those genes appear in the mouse genotype(s).
T-Cell Immunodeficiency, Congenital Alopecia, and Nail Dystrophy
- Model with phenotypic similarity to human disease where etiologies are distinct. Human genes are associated with this disease. Orthologs of these genes do not appear in the mouse genotype(s).
DiGeorge Syndrome; DGS
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Foxn1nu/Foxn1+

        B6N.Cg-Foxn1nu
  • immune system phenotype
  • small thymus   (MGI Ref ID J:7330)
  • hematopoietic system phenotype
  • small thymus   (MGI Ref ID J:7330)

Foxn1nu/Foxn1nu

        B6.Cg-Foxn1nu
  • skeleton phenotype
  • abnormal compact bone morphology
    • reduced cortical bone structure   (MGI Ref ID J:145330)
  • abnormal trabecular bone morphology
    • reduced trabecular bone structure   (MGI Ref ID J:145330)
  • increased bone mineral density
    • increased at 4 weeks of age but declines later   (MGI Ref ID J:145330)

The following phenotype information may relate to a genetic background differing from this JAX® Mice strain.

Foxn1nu/Foxn1+

        C.Cg-Foxn1nu
  • immune system phenotype
  • small thymus   (MGI Ref ID J:7330)
  • hematopoietic system phenotype
  • small thymus   (MGI Ref ID J:7330)

Foxn1nu/Foxn1+

        involves: BALB/c
  • immune system phenotype
  • blepharitis
    • more severe and lasting longer following infection with HSV-1 strain CJ394 compared to controls   (MGI Ref ID J:12543)
  • increased incidence of corneal inflammation
    • develop stromal keratitis 8 days after infection with HSV-1 strain CJ394 while homozygous and wild-type mice display only slight corneal cloudiness   (MGI Ref ID J:12543)
  • increased susceptibility to viral infection
    • following infection with HSV-1 strain CJ394 young mice (7-10 weeks of age) develop more severe ocular disease and develop severe extra ocular disease not seen in controls   (MGI Ref ID J:12543)
    • extraocular disease is less severe than in homozygous mice   (MGI Ref ID J:12543)
    • extensive herpetiform spread is seen, in some cases the tissue damage is so severe that the skull is exposed   (MGI Ref ID J:12543)
  • vision/eye phenotype
  • blepharitis
    • more severe and lasting longer following infection with HSV-1 strain CJ394 compared to controls   (MGI Ref ID J:12543)
  • corneal vascularization
    • detected 8 to 14 days after infection with HSV-1 strain CJ394in heterozygotes but not in wild-type or homozygous mice   (MGI Ref ID J:12543)
  • increased incidence of corneal inflammation
    • develop stromal keratitis 8 days after infection with HSV-1 strain CJ394 while homozygous and wild-type mice display only slight corneal cloudiness   (MGI Ref ID J:12543)
  • cardiovascular system phenotype
  • corneal vascularization
    • detected 8 to 14 days after infection with HSV-1 strain CJ394in heterozygotes but not in wild-type or homozygous mice   (MGI Ref ID J:12543)

Foxn1nu/Foxn1+

        NFS.Cg-Foxn1nu
  • immune system phenotype
  • abnormal thymus morphology
    • thymus lobes are rimmed to a varying degree with brown fat tissue and often asymmetrical in shape   (MGI Ref ID J:7330)
    • small thymus
      • lobes are significantly smaller at P7 and P14   (MGI Ref ID J:7330)
      • difference in size compared to wild-type controls increases with age   (MGI Ref ID J:7330)
  • hematopoietic system phenotype
  • abnormal thymus morphology
    • thymus lobes are rimmed to a varying degree with brown fat tissue and often asymmetrical in shape   (MGI Ref ID J:7330)
    • small thymus
      • lobes are significantly smaller at P7 and P14   (MGI Ref ID J:7330)
      • difference in size compared to wild-type controls increases with age   (MGI Ref ID J:7330)

Foxn1nu/Foxn1+

        C3N.Cg-Foxn1nu
  • immune system phenotype
  • small thymus   (MGI Ref ID J:7330)
  • hematopoietic system phenotype
  • small thymus   (MGI Ref ID J:7330)

Foxn1nu/Foxn1nu

        involves: NMRI
  • integument phenotype
  • abnormal coat/ hair morphology
    • sulfur content of the hair fibers is reduced   (MGI Ref ID J:94187)
    • abnormal hair shaft morphology
      • hair shafts from the flank show multiple fractures, are twisted, crippled and bent, and locally thickened by numerous fusiform bulges   (MGI Ref ID J:466)
      • hair shafts below the epidermis are composed of globular and discontinuous conglomerates of horny material   (MGI Ref ID J:466)
      • most shafts fail to reach the epidermal surface and those that do are weak and fragile   (MGI Ref ID J:466)
      • abnormal hair cortex morphology
        • missing irregularly in the zone of final hardening   (MGI Ref ID J:466)
        • the cortex of the intrafollicular part of the hair shaft is always fragmented into globular and irregularly formed aggregates and includes unusual filamentous substances   (MGI Ref ID J:466)
        • abnormal hair cortex keratinization
          • impaired   (MGI Ref ID J:466)
      • abnormal hair cuticle
        • missing irregularly in the zone of final hardening   (MGI Ref ID J:466)
        • occupied by abnormal globular aggregates   (MGI Ref ID J:466)
        • either discontinuous or more frequently totally absent   (MGI Ref ID J:466)
      • reduced hair shaft melanin granule number
        • pigment granules are only randomly detected in the hair cortex   (MGI Ref ID J:466)
  • abnormal cutaneous collagen fibril morphology
    • fibrils are more tightly packed than in controls   (MGI Ref ID J:466)
  • abnormal epidermal layer morphology
    • half-desmosomes attaching basal cells to the subjacent basal lamina are irregularly spaced with only scantly tonofilaments attached to them   (MGI Ref ID J:466)
    • abnormal epidermis stratum basale morphology
      • cells contain only few and small bundles of tonofilaments   (MGI Ref ID J:466)
    • abnormal epidermis stratum corneum morphology
      • highly irregular, with areas of large piles of horny substances and projected corneocytes alternated with regions of only few and extremely attenuated corneous layers   (MGI Ref ID J:466)
      • the skin surface looks rough because of bizarrely formed and projected corneocytes   (MGI Ref ID J:466)
      • the lamellae are irregularly shaped and detached from one another, with intercellular contact lost over large areas   (MGI Ref ID J:466)
      • the interior of the corneocytes has an inhomogeneous appearance   (MGI Ref ID J:466)
      • the layer is loosened with increased distance from the granular layer   (MGI Ref ID J:466)
    • abnormal epidermis stratum granulosum morphology
      • markedly reduced number and thickness of tonofilament bundles   (MGI Ref ID J:466)
  • abnormal hair follicle morphology
    • hair follicles in the zone of final hardening show pronounced pathological changes   (MGI Ref ID J:466)
    • however, the number of hair bulbs is similar to controls   (MGI Ref ID J:466)
    • abnormal hair follicle inner root sheath morphology
      • missing irregularly in the zone of final hardening   (MGI Ref ID J:466)
  • abnormal nail morphology
    • there is a prominent granular layer between the upper layers of the stratum spinosum and the nail plate   (MGI Ref ID J:94187)
    • the nail bed epithelium does not appear to be abnormal   (MGI Ref ID J:94187)
    • abnormal nail matrix morphology
      • the matrix region is severely altered   (MGI Ref ID J:94187)
      • some suprabasal cells show increased cytoplasm often associated with multiple intracytoplasmic vacuoles   (MGI Ref ID J:94187)
      • keratinocytes high in the spinous layer show striped cytoplasm   (MGI Ref ID J:94187)
      • the matrix zone is thinner and extends farther toward the distal tip of the nail   (MGI Ref ID J:94187)
      • the ventral epithelium of the proximal nail fold and the suprabasal cells of the nail matrix lack keratin 1 immunoreactivity and show abnormal expression of filaggrin   (MGI Ref ID J:94187)
      • keratohyalin granules of irregular size and shape are present in the cytoplasm of the suprabasal keratinocytes and insert into the aggregated tonofilaments disturbing filament aggregation   (MGI Ref ID J:94187)
    • abnormal nail plate morphology
      • the nail plate is compact and narrows toward the tip of the nail   (MGI Ref ID J:94187)
      • the nail plate is markedly thinner at both the proximal nail fold and the tip of the nail   (MGI Ref ID J:94187)
      • nail plates consist of smaller, elongated superficial squames with slightly irregular surfaces and serrated borders   (MGI Ref ID J:94187)
      • the nail plate appears basophilic   (MGI Ref ID J:94187)
      • the dorsal nail plate separates from the hyponychium but bends toward the ventral side and breaks off   (MGI Ref ID J:94187)
      • sulfur content of the nail plate is reduced   (MGI Ref ID J:94187)
    • deformed nails
      • blunt, broken, irregularly formed ends   (MGI Ref ID J:94187)
    • nail dystrophy   (MGI Ref ID J:94187)
    • short nails
      • severely shortened nails   (MGI Ref ID J:94187)
      • in most mice the nails terminate at the junction of the nail plate and the hyponychium   (MGI Ref ID J:94187)
  • embryogenesis phenotype
  • abnormal embryonic tissue morphology
    • the cervical duct has not narrowed and the third cleft covers only the dorsal part of the third branchial pouch at E1.5   (MGI Ref ID J:6363)
    • the ectoderm of the third cleft covers only the distal extremity and a small part of the cranial and caudal walls of the third pouch at E11.5   (MGI Ref ID J:6363)
    • at the end of the 11th day the pharyngo-branchial duct is reduced to a thin cord of cells that later disappears and the cervical duct also degenerates   (MGI Ref ID J:6363)
  • endocrine/exocrine gland phenotype
  • *normal* endocrine/exocrine gland phenotype
    • the structure of the parathyroid is identical to controls at E16 and E17   (MGI Ref ID J:6363)
  • immune system phenotype
  • abnormal thymus development
    • at E12 the ectoderm covers only the mid-portion of the ventral and external surfaces of the endoderm   (MGI Ref ID J:6363)
    • at E12.5 the primitive thymus is essentially endodermal with the ectodermal portion confined to the cranial region   (MGI Ref ID J:6363)
    • between E12 and E14 the volume of the thymus merely doubles rather than growing exponentially as in controls and the epithelial mass does not increase from E14 to E16   (MGI Ref ID J:6363)
    • at no time is the epithelium invaded by lymphoid cells   (MGI Ref ID J:6363)
  • pigmentation phenotype
  • reduced hair shaft melanin granule number
    • pigment granules are only randomly detected in the hair cortex   (MGI Ref ID J:466)
  • hematopoietic system phenotype
  • abnormal thymus development
    • at E12 the ectoderm covers only the mid-portion of the ventral and external surfaces of the endoderm   (MGI Ref ID J:6363)
    • at E12.5 the primitive thymus is essentially endodermal with the ectodermal portion confined to the cranial region   (MGI Ref ID J:6363)
    • between E12 and E14 the volume of the thymus merely doubles rather than growing exponentially as in controls and the epithelial mass does not increase from E14 to E16   (MGI Ref ID J:6363)
    • at no time is the epithelium invaded by lymphoid cells   (MGI Ref ID J:6363)

Foxn1nu/Foxn1nu

        Background Not Specified
  • mortality/aging
  • partial postnatal lethality
    • some mice die within 1 week of birth   (MGI Ref ID J:5043)
    • 55% mortality within 2 weeks   (MGI Ref ID J:5043)
  • premature death
    • 100% mortality by 25 weeks   (MGI Ref ID J:5043)
    • most die within a few weeks of weaning   (MGI Ref ID J:30772)
  • endocrine/exocrine gland phenotype
  • small ovary   (MGI Ref ID J:5043)
  • growth/size/body phenotype
  • decreased body size   (MGI Ref ID J:5043)
    • decreased body weight   (MGI Ref ID J:5043)
  • postnatal growth retardation   (MGI Ref ID J:5043)
  • liver/biliary system phenotype
  • abnormal liver morphology
    • liver lobes were atrophied and covered with red scars   (MGI Ref ID J:5043)
    • variable degrees of severity, typically increasing with age at time of death   (MGI Ref ID J:5043)
  • reproductive system phenotype
  • abnormal estrous cycle
    • many females exhibited continuous dioestrus and metaoestrus phases   (MGI Ref ID J:5043)
  • asthenozoospermia   (MGI Ref ID J:5043)
  • coiled sperm flagellum
    • many sperm had coiled tails   (MGI Ref ID J:5043)
  • female infertility
    • severely reduced fertility   (MGI Ref ID J:5043)
  • reduced male fertility   (MGI Ref ID J:5043)
  • small ovary   (MGI Ref ID J:5043)
  • immune system phenotype
  • abnormal Peyer's patch germinal center morphology
  • abnormal lymph node T cell domain morphology
    • virtual absence of small lymphocytes in the thymus dependent area and the post-capillary venules are often thin walled and empty   (MGI Ref ID J:202296)
  • abnormal spleen morphology
    • the proportion of red to white pulp is greater than normal   (MGI Ref ID J:202296)
    • in some cases the Malpighian follicles are present but are fewer in number and smaller than in controls   (MGI Ref ID J:202296)
    • abnormal splenic cell ratio
      • in some cases an unusually high number of megakaryocytes is seen in the red pulp   (MGI Ref ID J:202296)
    • small spleen   (MGI Ref ID J:202296)
  • abnormal thymus morphology
    • a much smaller and dorsoventrally flattened thymic rudiment is present at E14-E15   (MGI Ref ID J:202297)
    • a thymic rudiment comprised of vesicles and lacking lymphoid cells is present at P1-P2   (MGI Ref ID J:202297)
  • decreased leukocyte cell number   (MGI Ref ID J:5059)
  • integument phenotype
  • absent vibrissae
    • absent at birth   (MGI Ref ID J:5043)
  • hairless
    • sparse hair growth around 5 weeks of age   (MGI Ref ID J:5043)
    • in some mice, cephalo-caudal migration of an irregular band of short sparse hair   (MGI Ref ID J:5043)
    • mice fail to grow a first coat of hair   (MGI Ref ID J:30772)
  • short vibrissae
    • older mice show repeated growth and loss of short and wavy vibrissae   (MGI Ref ID J:5043)
  • thin skin
    • reduction in skin thickness at 3 weeks of age, corresponding to the catagen stage of normal skin   (MGI Ref ID J:5043)
  • wavy vibrissae
    • older mice show repeated growth and loss of short and wavy vibrissae   (MGI Ref ID J:5043)
  • behavior/neurological phenotype
  • impaired spatial learning
    • longer latency during the acquisition and reversal phases in a Morris water maze   (MGI Ref ID J:90695)
    • in the extinction phase spend more time in the training quadrant and are less able to recall data from the previous day's training   (MGI Ref ID J:90695)
    • replenishing mice with T cells from wild-type mice improves performance in a Morris water maze   (MGI Ref ID J:90695)
  • cardiovascular system phenotype
  • abnormal venule morphology
    • in the thymus dependent area of the lymph nodes the post-capillary venules are often thin walled and empty   (MGI Ref ID J:202296)
  • hematopoietic system phenotype
  • abnormal spleen morphology
    • the proportion of red to white pulp is greater than normal   (MGI Ref ID J:202296)
    • in some cases the Malpighian follicles are present but are fewer in number and smaller than in controls   (MGI Ref ID J:202296)
    • abnormal splenic cell ratio
      • in some cases an unusually high number of megakaryocytes is seen in the red pulp   (MGI Ref ID J:202296)
    • small spleen   (MGI Ref ID J:202296)
  • abnormal thymus morphology
    • a much smaller and dorsoventrally flattened thymic rudiment is present at E14-E15   (MGI Ref ID J:202297)
    • a thymic rudiment comprised of vesicles and lacking lymphoid cells is present at P1-P2   (MGI Ref ID J:202297)
  • decreased leukocyte cell number   (MGI Ref ID J:5059)

Foxn1nu/Foxn1nu

        B6NTac.Cg-Foxn1nu/Tac
  • immune system phenotype
  • decreased susceptibility to parasitic infection
    • mice showed no sign of lesion development for up to 12 to 14 weeks post-infection; after 20 weeks, all lesions remain small   (MGI Ref ID J:64283)

Foxn1nu/Foxn1nu

        involves: BALB/c
  • mortality/aging
  • increased susceptibility to viral infection induced morbidity/mortality
    • only 2 mice survived for more than 10 days after infection and 90% of mice die by 14 days post infection   (MGI Ref ID J:12543)
  • immune system phenotype
  • abnormal circulating cytokine level
    • mice are resistant to Pseudomonas aerugiosa exotoxin-induced liver damage and decreased circulating cytokine levels, including TNF, unlike similarly treated wild-type mice   (MGI Ref ID J:50903)
    • decreased circulating interleukin-2 level
      • following exposure to Pseudomonas aerugiosa exotoxin   (MGI Ref ID J:50903)
    • decreased circulating interleukin-6 level
      • following exposure to Pseudomonas aerugiosa exotoxin   (MGI Ref ID J:50903)
    • decreased circulating tumor necrosis factor level
      • mice are resistant to Pseudomonas aerugiosa exotoxin-induced liver damage and circulating cytokine levels, including TNF, unlike similarly treated wild-type mice   (MGI Ref ID J:50903)
  • blepharitis
    • more severe following infection with HSV-1 strain CJ394 compared to controls   (MGI Ref ID J:12543)
  • decreased interferon-gamma secretion
    • following exposure to Pseudomonas aerugiosa exotoxin   (MGI Ref ID J:50903)
  • decreased susceptibility to bacterial infection
    • mice are resistant to Pseudomonas aerugiosa exotoxin-induced liver damage and decreased circulating cytokine levels, including TNF, unlike similarly treated wild-type mice   (MGI Ref ID J:50903)
  • increased susceptibility to viral infection
    • following infection with HSV-1 strain CJ394 young mice (7-10 weeks of age) develop more severe ocular disease and develop severe extra ocular disease not seen in controls   (MGI Ref ID J:12543)
    • extraocular disease is more severe than in heterozygous mice   (MGI Ref ID J:12543)
    • increased susceptibility to viral infection induced morbidity/mortality
      • only 2 mice survived for more than 10 days after infection and 90% of mice die by 14 days post infection   (MGI Ref ID J:12543)
  • homeostasis/metabolism phenotype
  • abnormal circulating cytokine level
    • mice are resistant to Pseudomonas aerugiosa exotoxin-induced liver damage and decreased circulating cytokine levels, including TNF, unlike similarly treated wild-type mice   (MGI Ref ID J:50903)
    • decreased circulating interleukin-2 level
      • following exposure to Pseudomonas aerugiosa exotoxin   (MGI Ref ID J:50903)
    • decreased circulating interleukin-6 level
      • following exposure to Pseudomonas aerugiosa exotoxin   (MGI Ref ID J:50903)
    • decreased circulating tumor necrosis factor level
      • mice are resistant to Pseudomonas aerugiosa exotoxin-induced liver damage and circulating cytokine levels, including TNF, unlike similarly treated wild-type mice   (MGI Ref ID J:50903)
  • ascites
    • develop within 4-8 weeks of plasma cell transplant; ascites contains many plasma cells, some of which are multinucleated and contain high levels of IgA   (MGI Ref ID J:40405)
  • decreased circulating alanine transaminase level
    • following exposure to Pseudomonas aerugiosa exotoxin   (MGI Ref ID J:50903)
  • integument phenotype
  • abnormal nail morphology
    • nail phenotype is 100% penetrant   (MGI Ref ID J:173664)
    • deformed nails
      • broken with blunt ends   (MGI Ref ID J:173664)
    • short nails   (MGI Ref ID J:173664)
  • tumorigenesis
  • increased plasmacytoma incidence
    • plasma cells isolated from BALB/c/C57BL/6 mice generate plasmacytomas in pristane-treated BALB/c nude mice within 4-8 weeks   (MGI Ref ID J:40405)
  • cellular phenotype
  • chromosomal instability
    • plasmacytomas generated are near-tetraploid and contain the t(12;15) translocation   (MGI Ref ID J:40405)
  • vision/eye phenotype
  • blepharitis
    • more severe following infection with HSV-1 strain CJ394 compared to controls   (MGI Ref ID J:12543)

Foxn1nu/Foxn1nu

        involves: C57BL/10Sn * C57BR/cd
  • immune system phenotype
  • abnormal thymus development
    • at E16 in the thymic rudiment TR3+ cells are absent and the number of TR4+ and TR5+ cells are reduced   (MGI Ref ID J:7898)
  • hematopoietic system phenotype
  • abnormal thymus development
    • at E16 in the thymic rudiment TR3+ cells are absent and the number of TR4+ and TR5+ cells are reduced   (MGI Ref ID J:7898)

Foxn1nu/Foxn1nu

        NU/J
  • integument phenotype
  • abnormal nail morphology
    • there is a prominent granular layer between the upper layers of the stratum spinosum and the nail plate   (MGI Ref ID J:94187)
    • the nail bed epithelium does not appear to be abnormal   (MGI Ref ID J:94187)
    • abnormal nail matrix morphology
      • the matrix region is severely altered   (MGI Ref ID J:94187)
      • some suprabasal cells show increased cytoplasm often associated with multiple intracytoplasmic vacuoles   (MGI Ref ID J:94187)
      • keratinocytes high in the spinous layer show striped cytoplasm   (MGI Ref ID J:94187)
      • the matrix zone is thinner and extends farther toward the distal tip of the nail   (MGI Ref ID J:94187)
      • the ventral epithelium of the proximal nail fold and the suprabasal cells of the nail matrix lack keratin 1 immunoreactivity and show abnormal expression of filaggrin   (MGI Ref ID J:94187)
      • keratohyalin granules of irregular size and shape are present in the cytoplasm of the suprabasal keratinocytes and insert into the aggregated tonofilaments disturbing filament aggregation   (MGI Ref ID J:94187)
    • abnormal nail plate morphology
      • the nail plate appears basophilic   (MGI Ref ID J:94187)
      • the dorsal nail plate separates from the hyponychium but bends toward the ventral side and breaks off   (MGI Ref ID J:94187)
    • nail dystrophy   (MGI Ref ID J:94187)

Foxn1nu/Foxn1nu

        involves: C57BL/10
  • muscle phenotype
  • abnormal muscle morphology
    • elevation in hydroxyproline in the tibialis anterior and soleus muscles on a per muscle and wet weight basis at 3 weeks of age but not at 24 weeks of age   (MGI Ref ID J:95776)
    • decreased skeletal muscle fiber size
      • in the tibialis anterior and soleus muscles at 3 weeks of age   (MGI Ref ID J:95776)
    • decreased skeletal muscle mass
      • in the limb muscles at 3 weeks of age   (MGI Ref ID J:95776)

Foxn1nu/Foxn1nu

        involves: CD-1
  • endocrine/exocrine gland phenotype
  • *normal* endocrine/exocrine gland phenotype
    • impact of immobilization stress on luteinizing hormone level is reduced compared to heterozygous controls   (MGI Ref ID J:106251)
  • homeostasis/metabolism phenotype
  • abnormal circulating gonadotropin level
    • impact of immobilization stress on luteinizing hormone level is reduced compared to heterozygous controls   (MGI Ref ID J:106251)
    • decreased circulating follicle stimulating hormone level   (MGI Ref ID J:106251)
    • decreased circulating luteinizing hormone level   (MGI Ref ID J:106251)
  • immune system phenotype
  • athymia   (MGI Ref ID J:106251)
  • hematopoietic system phenotype
  • athymia   (MGI Ref ID J:106251)

Foxn1nu/Foxn1nu

        involves: CBA
  • immune system phenotype
  • abnormal T cell activation
    • injection of phytohaemagglutinin does not result in an increase in popliteal or inguinal node weight   (MGI Ref ID J:202299)
    • fewer plaque forming cells per spleen and when normalized to the number of nucleated spleen cells following immunization with sheep red blood cells   (MGI Ref ID J:202299)
  • abnormal lymph node morphology
    • very few theta isoantigen expressing cells are detected in the lymph nodes   (MGI Ref ID J:202808)
  • abnormal spleen physiology
    • fewer plaque forming cells per spleen and when normalized to the number of nucleated spleen cells following immunization with sheep red blood cells   (MGI Ref ID J:202299)
  • decreased leukocyte cell number
    • decrease in the number of agranulocytes (lymphocytes plus monocytes) in the peripheral blood in older mice   (MGI Ref ID J:202299)
    • decreased lymphocyte cell number   (MGI Ref ID J:202299)
      • decreased T cell number
        • very few theta isoantigen expressing cells are detected in the lymph nodes   (MGI Ref ID J:202808)
        • no difference is detected in the number of theta antigen expressing cells in the brain   (MGI Ref ID J:202808)
  • increased length of allograft survival   (MGI Ref ID J:202299)
  • hematopoietic system phenotype
  • abnormal T cell activation
    • injection of phytohaemagglutinin does not result in an increase in popliteal or inguinal node weight   (MGI Ref ID J:202299)
    • fewer plaque forming cells per spleen and when normalized to the number of nucleated spleen cells following immunization with sheep red blood cells   (MGI Ref ID J:202299)
  • decreased leukocyte cell number
    • decrease in the number of agranulocytes (lymphocytes plus monocytes) in the peripheral blood in older mice   (MGI Ref ID J:202299)
    • decreased lymphocyte cell number   (MGI Ref ID J:202299)
      • decreased T cell number
        • very few theta isoantigen expressing cells are detected in the lymph nodes   (MGI Ref ID J:202808)
        • no difference is detected in the number of theta antigen expressing cells in the brain   (MGI Ref ID J:202808)

Foxn1nu/Foxn1nu

        involves: NIH Swiss
  • mortality/aging
  • premature death
    • when maintained under SPF conditions, mortality from 6 weeks to 12 months of age is similar to controls   (MGI Ref ID J:5583)
    • after 12 months, of age the mortality rate per month is about twice that of heterozygous controls   (MGI Ref ID J:5583)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Foxn1nu related

Dermatology Research
Skin and Hair Texture Defects

Endocrine Deficiency Research
Adrenal Cortex Defects
Skin Defects
Thyroid Defects

Immunology, Inflammation and Autoimmunity Research
Immunodeficiency
      T cell deficiency

Internal/Organ Research
Thymus Defects

Research Tools
Cancer Research
      xenograft/transplant host
Immunology, Inflammation and Autoimmunity Research
      T cell deficiency

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Foxn1nu
Allele Name nude
Allele Type Spontaneous
Common Name(s) Foxnlnu; Whn-; hairless; nu;
Strain of Originalbino stock
Gene Symbol and Name Foxn1, forkhead box N1
Chromosome 11
Gene Common Name(s) D11Bhm185e; DNA segment, Chr 11, Boehm 185, expressed; FKHL20; HNF-3/forkhead homolog 11; Hfh11; RONU; Rnu; WHN; nu; nude;
Molecular Note A single base pair (G) deletion in exon 3 introduces a frameshift and a premature stop codon. The encoded protein is predicted to terminate upstream of the DNA-binding domain. [MGI Ref ID J:21194]

Genotyping

Genotyping Information

Genotyping Protocols

Foxn1nu, End Point Analysis
Foxn1nu, Pyrosequencing
Foxn1nu, Restriction Enzyme Digest


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Cordier AC; Haumont SM. 1980. Development of thymus, parathyroids, and ultimo-branchial bodies in NMRI and nude mice. Am J Anat 157(3):227-63. [PubMed: 7405870]  [MGI Ref ID J:6363]

Dubey JP; Liddell S; Mattson D; Speert CA; Howe DK; Jenkins MC. 2001. Characterization of the Oregon isolate of Neospora hughesi from a horse. J Parasitol 87(2):345-53. [PubMed: 11318565]  [MGI Ref ID J:109880]

Flanagan SP. 1966. 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet Res 8(3):295-309. [PubMed: 5980117]  [MGI Ref ID J:5043]

Gonzalez M; Merino R; Gonzalez AL; Merino J. 1995. The ability of B cells to participate in allogeneic cognate T-B cell interactions in vitro depends on the presence of CD4+ T cells during their development. J Immunol 155(3):1091-100. [PubMed: 7636182]  [MGI Ref ID J:109914]

Hirasawa T; Yamashita H; Makino S. 1998. Genetic typing of the mouse and rat nude mutations by PCR and restriction enzyme analysis. Exp Anim 47(1):63-7. [PubMed: 9498115]  [MGI Ref ID J:46550]

Jenkinson EJ; Van Ewijk W; Owen JJ. 1981. Major histocompatibility complex antigen expression on the epithelium of the developing thymus in normal and nude mice. J Exp Med 153(2):280-92. [PubMed: 6940949]  [MGI Ref ID J:109960]

Kaestner KH; Knochel W; Martinez DE. 2000. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14(2):142-6. [PubMed: 10702024]  [MGI Ref ID J:59917]

Kaushik A; Kelsoe G; Jaton JC. 1995. The nude mutation results in impaired primary antibody repertoire. Eur J Immunol 25(2):631-634. [PubMed: 7875225]  [MGI Ref ID J:23271]

Nehls M; Pfeifer D; Schorpp M; Hedrich H; Boehm T. 1994. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372(6501):103-7. [PubMed: 7969402]  [MGI Ref ID J:21194]

Pantelouris EM. 1968. Absence of thymus in a mouse mutant. Nature 217(126):370-1. [PubMed: 5639157]  [MGI Ref ID J:5059]

Segre JA; Nemhauser JL; Taylor BA; Nadeau JH; Lander ES. 1995. Positional cloning of the nude locus: genetic, physical, and transcription maps of the region and mutations in the mouse and rat. Genomics 28(3):549-59. [PubMed: 7490093]  [MGI Ref ID J:28409]

Additional References

Balciunaite G; Keller MP; Balciunaite E; Piali L; Zuklys S; Mathieu YD; Gill J; Boyd R; Sussman DJ; Hollander GA. 2002. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 3(11):1102-8. [PubMed: 12379851]  [MGI Ref ID J:79949]

Carvalho TL; Mota-Santos T; Cumano A; Demengeot J; Vieira P. 2001. Arrested b lymphopoiesis and persistence of activated b cells in adult interleukin 7(-/)- mice. J Exp Med 194(8):1141-50. [PubMed: 11602642]  [MGI Ref ID J:72213]

Cui Z; Willingham MC; Hicks AM; Alexander-Miller MA; Howard TD; Hawkins GA; Miller MS; Weir HM; Du W; DeLong CJ. 2003. Spontaneous regression of advanced cancer: identification of a unique genetically determined, age-dependent trait in mice. Proc Natl Acad Sci U S A 100(11):6682-7. [PubMed: 12724523]  [MGI Ref ID J:83618]

VanCott JL; McNeal MM; Flint J; Bailey SA; Choi AH; Ward RL. 2001. Role for T cell-independent B cell activity in the resolution of primary rotavirus infection in mice. Eur J Immunol 31(11):3380-7. [PubMed: 11745356]  [MGI Ref ID J:72616]

Foxn1nu related

Aikawa T; Whipple CA; Lopez ME; Gunn J; Young A; Lander AD; Korc M. 2008. Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J Clin Invest 118(1):89-99. [PubMed: 18064304]  [MGI Ref ID J:130809]

Akiyama K; Chen C; Wang D; Xu X; Qu C; Yamaza T; Cai T; Chen W; Sun L; Shi S. 2012. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10(5):544-55. [PubMed: 22542159]  [MGI Ref ID J:185809]

Akiyama T; Maeda S; Yamane S; Ogino K; Kasai M; Kajiura F; Matsumoto M; Inoue J. 2005. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308(5719):248-51. [PubMed: 15705807]  [MGI Ref ID J:97344]

Alferink J; Schittek B; Schonrich G; Hammerling GJ; Arnold B. 1995. Long life span of tolerant T cells and the role of antigen in maintenance of peripheral tolerance. Int Immunol 7(2):331-6. [PubMed: 7734426]  [MGI Ref ID J:144163]

Andersen C; Jensen T; Nansen A; Marker O; Thomsen AR. 1999. CD4(+) T cell-mediated protection against a lethal outcome of systemic infection with vesicular stomatitis virus requires CD40 ligand expression, but not IFN-gamma or IL-4. Int Immunol 11(12):2035-42. [PubMed: 10590269]  [MGI Ref ID J:110491]

Anderson LH; Boulanger CA; Smith GH; Carmeliet P; Watson CJ. 2011. Stem cell marker prominin-1 regulates branching morphogenesis, but not regenerative capacity, in the mammary gland. Dev Dyn :. [PubMed: 21226063]  [MGI Ref ID J:168577]

Anderson MS; Venanzi ES; Chen Z; Berzins SP; Benoist C; Mathis D. 2005. The cellular mechanism of Aire control of T cell tolerance. Immunity 23(2):227-39. [PubMed: 16111640]  [MGI Ref ID J:100515]

Andoh M; Zhang G; Russell-Lodrigue KE; Shive HR; Weeks BR; Samuel JE. 2007. T Cells Are Essential for Bacterial Clearance, and Gamma Interferon, Tumor Necrosis Factor Alpha, and B Cells Are Crucial for Disease Development in Coxiella burnetii Infection in Mice. Infect Immun 75(7):3245-55. [PubMed: 17438029]  [MGI Ref ID J:122426]

Angeli V; Ginhoux F; Llodra J; Quemeneur L; Frenette PS; Skobe M; Jessberger R; Merad M; Randolph GJ. 2006. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24(2):203-15. [PubMed: 16473832]  [MGI Ref ID J:113320]

Anisimov VN; Zabezhinski MA; Rossolini G; Zaia A; Piantanelli A; Basso A; Piantanelli L. 2001. Long-live euthymic BALB/c-nu mice. II: spontaneous tumors and other pathologies. Mech Ageing Dev 122(5):477-89. [PubMed: 11292513]  [MGI Ref ID J:68465]

Ashkar S; Weber GF; Panoutsakopoulou V; Sanchirico ME; Jansson M; Zawaideh S; Rittling SR; Denhardt DT; Glimcher MJ; Cantor H. 2000. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287(5454):860-4. [PubMed: 10657301]  [MGI Ref ID J:60284]

Aufenvenne K; Larcher F; Hausser I; Duarte B; Oji V; Nikolenko H; Del Rio M; Dathe M; Traupe H. 2013. Topical enzyme-replacement therapy restores transglutaminase 1 activity and corrects architecture of transglutaminase-1-deficient skin grafts. Am J Hum Genet 93(4):620-30. [PubMed: 24055110]  [MGI Ref ID J:206675]

Augustin M; Klopp N; Ewald K; Jockusch H. 1998. A multicopy c-Myc transgene as a nuclear label: overgrowth of Myctg50 cells in allophenic mice. Cell Biol Int 22(6):401-11. [PubMed: 10328848]  [MGI Ref ID J:127669]

Bakalian A; Delhaye-Bouchaud N; Mariani J. 1995. Quantitative analysis of the Purkinje cell and the granule cell populations in the cerebellum of nude mice. J Neurogenet 9(4):207-18. [PubMed: 7760211]  [MGI Ref ID J:24071]

Bao L; Haas M; Pippin J; Wang Y; Miwa T; Chang A; Minto AW; Petkova M; Qiao G; Song WC; Alpers CE; Zhang J; Shankland SJ; Quigg RJ. 2009. Focal and segmental glomerulosclerosis induced in mice lacking decay-accelerating factor in T cells. J Clin Invest 119(5):1264-74. [PubMed: 19349693]  [MGI Ref ID J:149592]

Benner R; van Oudenaren A; Haaijman JJ. 1978. Deficient antibody formation in the bone marrow of nude mice. Immunology 35(4):619-26. [PubMed: 361546]  [MGI Ref ID J:202739]

Berebbi M; Martin PM; Berthois Y; Bernard AM; Blangy D. 1990. Estradiol dependence of the specific mammary tissue targeting of polyoma virus oncogenicity in nude mice. Oncogene 5(4):505-9. [PubMed: 1970153]  [MGI Ref ID J:72256]

Biyashev D; Veliceasa D; Topczewski J; Topczewska JM; Mizgirev I; Vinokour E; Reddi AL; Licht JD; Revskoy SY; Volpert OV. 2012. miR-27b controls venous specification and tip cell fate. Blood 119(11):2679-87. [PubMed: 22207734]  [MGI Ref ID J:182438]

Blackburn CC; Augustine CL; Li R; Harvey RP; Malin MA; Boyd RL; Miller JF; Morahan G. 1996. The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc Natl Acad Sci U S A 93(12):5742-6. [PubMed: 8650163]  [MGI Ref ID J:33588]

Blackburn CC; Griffith J; Morahan G. 1995. A high-resolution map of the chromosomal region surrounding the nude gene. Genomics 26(2):308-17. [PubMed: 7601457]  [MGI Ref ID J:24223]

Blais ME; Brochu S; Giroux M; Belanger MP; Dulude G; Sekaly RP; Perreault C. 2008. Why T cells of thymic versus extrathymic origin are functionally different. J Immunol 180(4):2299-312. [PubMed: 18250439]  [MGI Ref ID J:131997]

Blyth K; Vaillant F; Hanlon L; Mackay N; Bell M; Jenkins A; Neil JC; Cameron ER. 2006. Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res 66(4):2195-201. [PubMed: 16489021]  [MGI Ref ID J:106649]

Bonorino C; Nardi NB; Zhang X; Wysocki LJ. 1998. Characteristics of the strong antibody response to mycobacterial Hsp70: a primary, T cell-dependent IgG response with no evidence of natural priming or gamma delta T cell involvement. J Immunol 161(10):5210-6. [PubMed: 9820492]  [MGI Ref ID J:115026]

Borsutzky S; Kretschmer K; Becker PD; Muhlradt PF; Kirschning CJ; Weiss S; Guzman CA. 2005. The mucosal adjuvant macrophage-activating lipopeptide-2 directly stimulates B lymphocytes via the TLR2 without the need of accessory cells. J Immunol 174(10):6308-13. [PubMed: 15879130]  [MGI Ref ID J:99047]

Brandt CR. 1992. Susceptibility of +/+, +/nu and nu/nu BALB/c mice to ocular herpes simplex virus infection. Ophthalmic Res 24(6):332-7. [PubMed: 1287512]  [MGI Ref ID J:12543]

Brantley-Sieders DM; Zhuang G; Vaught D; Freeman T; Hwang Y; Hicks D; Chen J. 2009. Host deficiency in Vav2/3 guanine nucleotide exchange factors impairs tumor growth, survival, and angiogenesis in vivo. Mol Cancer Res 7(5):615-23. [PubMed: 19435813]  [MGI Ref ID J:205248]

Bressenot A; Marchal S; Bezdetnaya L; Garrier J; Guillemin F; Plenat F. 2009. Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma. J Histochem Cytochem 57(4):289-300. [PubMed: 19029405]  [MGI Ref ID J:154156]

Briat A; Vassaux G. 2008. A new transgenic mouse line to image chemically induced p53 activation in vivo. Cancer Sci 99(4):683-8. [PubMed: 18377420]  [MGI Ref ID J:140273]

Brickshawana A; Shapiro VS; Kita H; Pease LR. 2011. Lineage(-)Sca1+c-Kit(-)CD25+ cells are IL-33-responsive type 2 innate cells in the mouse bone marrow. J Immunol 187(11):5795-804. [PubMed: 22048767]  [MGI Ref ID J:179700]

Brissette JL; Li J; Kamimura J; Lee D; Dotto GP. 1996. The product of the mouse nude locus, Whn, regulates the balance between epithelial cell growth and differentiation. Genes Dev 10(17):2212-21. [PubMed: 8804315]  [MGI Ref ID J:35264]

Browning JL; Allaire N; Ngam-Ek A; Notidis E; Hunt J; Perrin S; Fava RA. 2005. Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23(5):539-50. [PubMed: 16286021]  [MGI Ref ID J:113284]

Bryson JL; Griffith AV; Hughes B 3rd; Saito F; Takahama Y; Richie ER; Manley NR. 2013. Cell-autonomous defects in thymic epithelial cells disrupt endothelial-perivascular cell interactions in the mouse thymus. PLoS One 8(6):e65196. [PubMed: 23750244]  [MGI Ref ID J:203143]

Burne MJ; Daniels F; El Ghandour A; Mauiyyedi S; Colvin RB; O'Donnell MP; Rabb H. 2001. Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest 108(9):1283-90. [PubMed: 11696572]  [MGI Ref ID J:118005]

Byrd LG. 1993. Regional localization of the nu mutation on mouse chromosome 11. Immunogenetics 37(2):157-9. [PubMed: 8423056]  [MGI Ref ID J:4562]

Byrom B; Barbet AF; Obwolo M; Mahan SM. 2000. CD8(+) T cell knockout mice are less susceptible to Cowdria ruminantium infection than athymic, CD4(+) T cell knockout, and normal C57BL/6 mice. Vet Parasitol 93(2):159-72. [PubMed: 11035234]  [MGI Ref ID J:106232]

Byun S; Lee KW; Jung SK; Lee EJ; Hwang MK; Lim SH; Bode AM; Lee HJ; Dong Z. 2010. Luteolin Inhibits Protein Kinase C{varepsilon} and c-Src Activities and UVB-Induced Skin Cancer. Cancer Res 70(6):2415-23. [PubMed: 20215519]  [MGI Ref ID J:157974]

Cai J; Lee J; Kopan R; Ma L. 2009. Genetic interplays between Msx2 and Foxn1 are required for Notch1 expression and hair shaft differentiation. Dev Biol 326(2):420-30. [PubMed: 19103190]  [MGI Ref ID J:145163]

Cai J; Ma L. 2011. Msx2 and Foxn1 regulate nail homeostasis. Genesis 49(6):449-59. [PubMed: 21387539]  [MGI Ref ID J:173664]

Campbell MR; Nation PN; Andrew SE. 2005. A lack of DNA mismatch repair on an athymic murine background predisposes to hematologic malignancy. Cancer Res 65(7):2626-35. [PubMed: 15805259]  [MGI Ref ID J:97357]

Cao L; Deleo JA. 2008. CNS-infiltrating CD4(+) T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain. Eur J Immunol 38(2):448-458. [PubMed: 18196515]  [MGI Ref ID J:131283]

Cappariello A; Berardi AC; Peruzzi B; Del Fattore A; Ugazio A; Bottazzo GF; Teti A. 2010. Committed osteoclast precursors colonize the bone and improve the phenotype of a mouse model of autosomal recessive osteopetrosis. J Bone Miner Res 25(1):106-13. [PubMed: 20091929]  [MGI Ref ID J:179860]

Chakkalath HR; Theodos CM; Markowitz JS; Grusby MJ; Glimcher LH; Titus RG. 1995. Class II major histocompatibility complex-deficient mice initially control an infection with Leishmania major but succumb to the disease. J Infect Dis 171(5):1302-8. [PubMed: 7751707]  [MGI Ref ID J:113036]

Chatterjea-Matthes D; Garcia-Ojeda ME; Dejbakhsh-Jones S; Jerabek L; Manz MG; Weissman IL; Strober S. 2003. Early defect prethymic in bone marrow T cell progenitors in athymic nu/nu mice. J Immunol 171(3):1207-15. [PubMed: 12874207]  [MGI Ref ID J:84656]

Chen L; Xiao S; Manley NR. 2009. Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113(3):567-74. [PubMed: 18978204]  [MGI Ref ID J:144045]

Cheng L; Guo J; Sun L; Fu J; Barnes PF; Metzger D; Chambon P; Oshima RG; Amagai T; Su DM. 2010. Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J Biol Chem 285(8):5836-47. [PubMed: 19955175]  [MGI Ref ID J:159773]

Cheng N; Bhowmick NA; Chytil A; Gorksa AE; Brown KA; Muraoka R; Arteaga CL; Neilson EG; Hayward SW; Moses HL. 2005. Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24(32):5053-68. [PubMed: 15856015]  [MGI Ref ID J:100115]

Cheng N; Chytil A; Shyr Y; Joly A; Moses HL. 2007. Enhanced hepatocyte growth factor signaling by type II transforming growth factor-beta receptor knockout fibroblasts promotes mammary tumorigenesis. Cancer Res 67(10):4869-77. [PubMed: 17495323]  [MGI Ref ID J:121735]

Chung AS; Wu X; Zhuang G; Ngu H; Kasman I; Zhang J; Vernes JM; Jiang Z; Meng YG; Peale FV; Ouyang W; Ferrara N. 2013. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19(9):1114-23. [PubMed: 23913124]  [MGI Ref ID J:201900]

Clape C; Fritz V; Henriquet C; Apparailly F; Fernandez PL; Iborra F; Avances C; Villalba M; Culine S; Fajas L. 2009. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4(10):e7542. [PubMed: 19855844]  [MGI Ref ID J:154036]

Clark EA; Shultz LD; Pollack SB. 1981. Mutations in mice that influence natural killer (NK) cell activity. Immunogenetics 12(5-6):601-13. [PubMed: 6971254]  [MGI Ref ID J:6485]

Clark R; Krishnan V; Schoof M; Rodriguez I; Theriault B; Chekmareva M; Rinker-Schaeffer C. 2013. Milky spots promote ovarian cancer metastatic colonization of peritoneal adipose in experimental models. Am J Pathol 183(2):576-91. [PubMed: 23885715]  [MGI Ref ID J:199289]

Clynes RA; Towers TL; Presta LG; Ravetch JV. 2000. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6(4):443-6. [PubMed: 10742152]  [MGI Ref ID J:118052]

Colino J; Duke L; Snapper CM. 2013. Noncovalent association of protein and capsular polysaccharide on bacteria-sized latex beads as a model for polysaccharide-specific humoral immunity to intact gram-positive extracellular bacteria. J Immunol 191(6):3254-63. [PubMed: 23926322]  [MGI Ref ID J:205790]

Collen T; Pullen L; Doel TR. 1989. T cell-dependent induction of antibody against foot-and-mouth disease virus in a mouse model. J Gen Virol 70(Pt 2):395-403. [PubMed: 2543745]  [MGI Ref ID J:27693]

Coughlin JJ; Stang SL; Dower NA; Stone JC. 2006. The role of RasGRPs in regulation of lymphocyte proliferation. Immunol Lett 105(1):77-82. [PubMed: 16530850]  [MGI Ref ID J:144136]

Cunliffe VT; Furley AJ; Keenan D. 2002. Complete rescue of the nude mutant phenotype by a wild-type Foxn1 transgene. Mamm Genome 13(5):245-52. [PubMed: 12016512]  [MGI Ref ID J:76560]

Dajani R; Sanlioglu S; Zhang Y; Li Q; Monick MM; Lazartigues E; Eggleston T; Davisson RL; Hunninghake GW; Engelhardt JF. 2007. Pleiotropic functions of TNF-alpha determine distinct IKKbeta-dependent hepatocellular fates in response to LPS. Am J Physiol Gastrointest Liver Physiol 292(1):G242-52. [PubMed: 16935850]  [MGI Ref ID J:120596]

Danilenko DM; Ring BD; Yanagihara D; Benson W; Wiemann B; Starnes CO; Pierce GF. 1995. Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am J Pathol 147(1):145-54. [PubMed: 7604876]  [MGI Ref ID J:27782]

Danzl NM; Donlin LT; Alexandropoulos K. 2010. Regulation of medullary thymic epithelial cell differentiation and function by the signaling protein Sin. J Exp Med 207(5):999-1013. [PubMed: 20404100]  [MGI Ref ID J:161238]

De Palma M; Venneri MA; Galli R; Sergi LS; Politi LS; Sampaolesi M; Naldini L. 2005. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211-26. [PubMed: 16169466]  [MGI Ref ID J:102241]

De Sousa MA; Parrott DM; Pantelouris EM. 1969. The lymphoid tissues in mice with congenital aplasia of the thymus. Clin Exp Immunol 4(6):637-44. [PubMed: 5784127]  [MGI Ref ID J:202296]

Defosse DL; Duray PH; Johnson RC. 1992. The NIH-3 immunodeficient mouse is a model for Lyme borreliosis myositis and carditis. Am J Pathol 141(1):3-10. [PubMed: 1632468]  [MGI Ref ID J:1423]

Desurmont C; Caillaud JM; Emmanuel F; Benoit P; Fruchart JC; Castro G; Branellec D; Heard JM; Duverger N. 2000. Complete atherosclerosis regression after human ApoE gene transfer in ApoE-Deficient/Nude mice Arterioscler Thromb Vasc Biol 20(2):435-42. [PubMed: 10669641]  [MGI Ref ID J:60479]

Djian P; Easley K; Green H. 2000. Targeted ablation of the murine involucrin gene J Cell Biol 151(2):381-8. [PubMed: 11038184]  [MGI Ref ID J:65192]

Dooley J; Erickson M; Roelink H; Farr AG. 2005. Nude thymic rudiment lacking functional foxn1 resembles respiratory epithelium. Dev Dyn 233(4):1605-12. [PubMed: 15986478]  [MGI Ref ID J:99631]

Drobits B; Holcmann M; Amberg N; Swiecki M; Grundtner R; Hammer M; Colonna M; Sibilia M. 2012. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest 122(2):575-85. [PubMed: 22251703]  [MGI Ref ID J:184497]

Duarte JH; Zelenay S; Bergman ML; Martins AC; Demengeot J. 2009. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol 39(4):948-55. [PubMed: 19291701]  [MGI Ref ID J:148179]

Dunn LL; Sekyere EO; Rahmanto YS; Richardson DR. 2006. The function of melanotransferrin: a role in melanoma cell proliferation and tumorigenesis. Carcinogenesis 27(11):2157-69. [PubMed: 16704991]  [MGI Ref ID J:114955]

Eaton GJ. 1976. Hair growth cycles and wave patterns in 'nude' mice. Transplantation 22(3):217-22. [PubMed: 788248]  [MGI Ref ID J:109965]

Economopoulos V; Noad JC; Krishnamoorthy S; Rutt BK; Foster PJ. 2011. Comparing the MRI appearance of the lymph nodes and spleen in wild-type and immuno-deficient mouse strains. PLoS One 6(11):e27508. [PubMed: 22096586]  [MGI Ref ID J:180968]

El Shikh ME; El Sayed RM; Szakal AK; Tew JG. 2009. T-independent antibody responses to T-dependent antigens: a novel follicular dendritic cell-dependent activity. J Immunol 182(6):3482-91. [PubMed: 19265126]  [MGI Ref ID J:145927]

Emoto Y; Emoto M; Miyamoto M; Yoshizawa I; Kaufmann SH. 2004. Functionally active CD8alphabeta+ TCRgammadelta intestinal intraepithelial lymphocytes in athymic nu/nu mice. Int Immunol 16(1):111-7. [PubMed: 14688066]  [MGI Ref ID J:87262]

Engel AM; Svane IM; Madsen MW; Pedersen M; Werdelin O. 1997. Molecular aberrations in the MHC class I-restricted pathway for antigen presentation in methylcholanthrene sarcomas from nude mice: discrepancies between MHC mRNA and surface protein. Clin Exp Immunol 109(2):323-31. [PubMed: 9276529]  [MGI Ref ID J:42024]

Engel AM; Svane IM; Mouritsen S; Rygaard J; Clausen J; Werdelin O. 1996. Methylcholanthrene-induced sarcomas in nude mice have short induction times and relatively low levels of surface MHC class I expression. APMIS 104(9):629-39. [PubMed: 8972687]  [MGI Ref ID J:37948]

Ericsson A; Kotarsky K; Svensson M; Sigvardsson M; Agace W. 2006. Functional characterization of the CCL25 promoter in small intestinal epithelial cells suggests a regulatory role for caudal-related homeobox (Cdx) transcription factors. J Immunol 176(6):3642-51. [PubMed: 16517733]  [MGI Ref ID J:129504]

Fernandez NC; Lozier A; Flament C; Ricciardi-Castagnoli P; Bellet D; Suter M; Perricaudet M; Tursz T; Maraskovsky E; Zitvogel L. 1999. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5(4):405-11. [PubMed: 10202929]  [MGI Ref ID J:54135]

Fischbein MP; Yun J; Laks H; Irie Y; Fishbein MC; Espejo M; Bonavida B; Ardehali A. 2001. CD8+ lymphocytes augment chronic rejection in a MHC class II mismatched model. Transplantation 71(8):1146-53. [PubMed: 11374417]  [MGI Ref ID J:69459]

Fischer K; Collins H; Taniguchi M; Kaufmann SH; Schaible UE. 2002. IL-4 and T cells are required for the generation of IgG1 isotype antibodies against cardiolipin. J Immunol 168(6):2689-94. [PubMed: 11884434]  [MGI Ref ID J:126854]

Foote JB; Mahmoud TI; Vale AM; Kearney JF. 2012. Long-term maintenance of polysaccharide-specific antibodies by IgM-secreting cells. J Immunol 188(1):57-67. [PubMed: 22116821]  [MGI Ref ID J:180440]

Friswell MK; Gika H; Stratford IJ; Theodoridis G; Telfer B; Wilson ID; McBain AJ. 2010. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. PLoS One 5(1):e8584. [PubMed: 20052418]  [MGI Ref ID J:157249]

Funda D; Smetana K Jr; Holub M; Sykora V. 1994. Hairlessness does not influence growth retardation in nude mice. Computer image analysis study. Folia Biol (Praha) 40(3):135-40. [PubMed: 7805935]  [MGI Ref ID J:20342]

Fyfe AI; Qiao JH; Lusis AJ. 1994. Immune-deficient mice develop typical atherosclerotic fatty streaks when fed an atherogenic diet. J Clin Invest 94(6):2516-20. [PubMed: 7989611]  [MGI Ref ID J:22138]

Gallagher SJ; Rambow F; Kumasaka M; Champeval D; Bellacosa A; Delmas V; Larue L. 2013. Beta-catenin inhibits melanocyte migration but induces melanoma metastasis. Oncogene 32(17):2230-8. [PubMed: 22665063]  [MGI Ref ID J:198029]

Gao Y; Grassi F; Ryan MR; Terauchi M; Page K; Yang X; Weitzmann MN; Pacifici R. 2007. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 117(1):122-32. [PubMed: 17173138]  [MGI Ref ID J:117462]

Gao Y; Qian WP; Dark K; Toraldo G; Lin AS; Guldberg RE; Flavell RA; Weitzmann MN; Pacifici R. 2004. Estrogen prevents bone loss through transforming growth factor beta signaling in T cells. Proc Natl Acad Sci U S A 101(47):16618-23. [PubMed: 15531637]  [MGI Ref ID J:94469]

Gawronska-Kozak B. 2011. Scarless skin wound healing in FOXN1 deficient (nude) mice is associated with distinctive matrix metalloproteinase expression. Matrix Biol 30(4):290-300. [PubMed: 21539913]  [MGI Ref ID J:173916]

Gawronska-Kozak B; Bogacki M; Rim JS; Monroe WT; Manuel JA. 2006. Scarless skin repair in immunodeficient mice. Wound Repair Regen 14(3):265-76. [PubMed: 16808805]  [MGI Ref ID J:135709]

Gershwin ME. 1977. DiGeorge syndrome: congenital thymic hypoplasia. Animal model: congenitally athymic (nude) mouse. Am J Pathol 89(3):809-12. [PubMed: 596425]  [MGI Ref ID J:202300]

Gershwin ME; Ahmed A; Ikeda RM; Shifrine M; Wilson F. 1978. Immunobiology of congenitally athymic-asplenic mice. Immunology 34(4):631-42. [PubMed: 721133]  [MGI Ref ID J:6062]

Gershwin ME; Merchant B; Gelfand MC; Vickers J; Steinberg AD; Hansen CT. 1975. The natural history and immunopathology of outbred athymic (nude) mice. Clin Immunol Immunopathol 4(3):324-40. [PubMed: 1104226]  [MGI Ref ID J:5583]

Gershwin ME; Ohsugi Y; Castles JJ; Ikeda RM; Ruebner B. 1983. Anti-mu induces lymphoma in germfree congenitally athymic (nude) but not in heterozygous (nu/+) mice. J Immunol 131(4):2069-73. [PubMed: 6413585]  [MGI Ref ID J:90067]

Ghasemlou N; Jeong SY; Lacroix S; David S. 2007. T cells contribute to lysophosphatidylcholine-induced macrophage activation and demyelination in the CNS. Glia 55(3):294-302. [PubMed: 17096403]  [MGI Ref ID J:156108]

Giannoni F; Shea A; Inglis C; Lee LN; Sarawar SR. 2008. CD40 engagement on dendritic cells, but not on B or T cells, is required for long-term control of murine gammaherpesvirus 68. J Virol 82(22):11016-22. [PubMed: 18768977]  [MGI Ref ID J:142958]

Giese NA; Giese T; Morse HC 3rd. 1994. Murine AIDS is an antigen-driven disease: requirements for major histocompatibility complex class II expression and CD4+ T cells. J Virol 68(9):5819-24. [PubMed: 7914549]  [MGI Ref ID J:19619]

Goya RG; Console GM; Sosa YE; Gomez Dumm CL; Dardenne M. 2001. Altered functional responses with preserved morphology of gonadotrophic cells in congenitally athymic mice. Brain Behav Immun 15(1):85-92. [PubMed: 11259083]  [MGI Ref ID J:106251]

Guerrero-Aspizua S; Garcia M; Murillas R; Retamosa L; Illera N; Duarte B; Holguin A; Puig S; Hernandez MI; Meana A; Jorcano JL; Larcher F; Carretero M; Del Rio M. 2010. Development of a bioengineered skin-humanized mouse model for psoriasis: dissecting epidermal-lymphocyte interacting pathways. Am J Pathol 177(6):3112-24. [PubMed: 20971736]  [MGI Ref ID J:167644]

Guilliams M; Oldenhove G; Noel W; Herin M; Brys L; Loi P; Flamand V; Moser M; De Baetselier P; Beschin A. 2007. African trypanosomiasis: naturally occurring regulatory T cells favor trypanotolerance by limiting pathology associated with sustained type 1 inflammation. J Immunol 179(5):2748-57. [PubMed: 17709488]  [MGI Ref ID J:151836]

Guo K; Mogen J; Struzzi S; Zhang Y. 2009. Preadipocyte transplantation: an in vivo study of direct leptin signaling on adipocyte morphogenesis and cell size. Am J Physiol Regul Integr Comp Physiol 296(5):R1339-47. [PubMed: 19193947]  [MGI Ref ID J:148045]

Guy-Grand D; Azogui O; Celli S; Darche S; Nussenzweig MC; Kourilsky P; Vassalli P. 2003. Extrathymic T cell lymphopoiesis: ontogeny and contribution to gut intraepithelial lymphocytes in athymic and euthymic mice. J Exp Med 197(3):333-41. [PubMed: 12566417]  [MGI Ref ID J:124688]

Guy-Grand D; Pardigon N; Darche S; Lantz O; Kourilsky P; Vassalli P. 2001. Contribution of double-negative thymic precursors to CD8alpha alpha (+) intraepithelial lymphocytes of the gut in mice bearing TCR transgenes. Eur J Immunol 31(9):2593-602. [PubMed: 11536157]  [MGI Ref ID J:115617]

Haaijman JJ; Slingerland-Teunissen J; Benner R; Van Oudenaren A. 1979. The distribution of cytoplasmic immunoglobulin containing cells over various lymphoid organs of congenitally athymic (nude) mice as a function of age. Immunology 36(2):271-8. [PubMed: 571405]  [MGI Ref ID J:202304]

Han JH; Akira S; Calame K; Beutler B; Selsing E; Imanishi-Kari T. 2007. Class switch recombination and somatic hypermutation in early mouse B Cells are mediated by B Cell and toll-like receptors. Immunity 27(1):64-75. [PubMed: 17658280]  [MGI Ref ID J:123630]

Hase K; Takahashi D; Ebisawa M; Kawano S; Itoh K; Ohno H. 2008. Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease. PLoS ONE 3(8):e3033. [PubMed: 18716662]  [MGI Ref ID J:139679]

Havarinasab S; Haggqvist B; Bjorn E; Pollard KM; Hultman P. 2005. Immunosuppressive and autoimmune effects of thimerosal in mice. Toxicol Appl Pharmacol 204(2):109-21. [PubMed: 15808517]  [MGI Ref ID J:97345]

Hayes SM; Sirr A; Jacob S; Sim GK; Augustin A. 1996. Role of IL-7 in the shaping of the pulmonary gamma delta T cell repertoire. J Immunol 156(8):2723-9. [PubMed: 8609389]  [MGI Ref ID J:32462]

Hioki K; Kuramochi T; Endoh S; Terada E; Ueyama Y; Ito M. 2001. Lack of B cell leakiness in BALB/cA-nu, scid double mutant mice. Exp Anim 50(1):67-72. [PubMed: 11326425]  [MGI Ref ID J:68089]

Hogan MB; Weissman DN; Hubbs AF; Gibson LF; Piktel D; Landreth KS. 2003. Regulation of eosinophilopoiesis in a murine model of asthma. J Immunol 171(5):2644-51. [PubMed: 12928418]  [MGI Ref ID J:85081]

Holodick NE; Tumang JR; Rothstein TL. 2010. Immunoglobulin secretion by B1 cells: differential intensity and IRF4-dependence of spontaneous IgM secretion by peritoneal and splenic B1 cells. Eur J Immunol 40(11):3007-16. [PubMed: 21061433]  [MGI Ref ID J:166129]

Holopainen T; Saharinen P; D'Amico G; Lampinen A; Eklund L; Sormunen R; Anisimov A; Zarkada G; Lohela M; Helotera H; Tammela T; Benjamin LE; Yla-Herttuala S; Leow CC; Koh GY; Alitalo K. 2012. Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst 104(6):461-75. [PubMed: 22343031]  [MGI Ref ID J:184937]

Holub M. 1989. . In: Immunology of Nude Mice. CRC Press, Inc., Boca Raton, FL.  [MGI Ref ID J:30766]

Horai R; Nakajima A; Habiro K; Kotani M; Nakae S; Matsuki T; Nambu A; Saijo S; Kotaki H; Sudo K; Okahara A; Tanioka H; Ikuse T; Ishii N; Schwartzberg PL; Abe R; Iwakura Y. 2004. TNF-alpha is crucial for the development of autoimmune arthritis in IL-1 receptor antagonist-deficient mice. J Clin Invest 114(11):1603-11. [PubMed: 15578092]  [MGI Ref ID J:94429]

Hsu DM; Agarwal S; Benham A; Coarfa C; Trahan DN; Chen Z; Stowers PN; Courtney AN; Lakoma A; Barbieri E; Metelitsa LS; Gunaratne P; Kim ES; Shohet JM. 2013. G-CSF Receptor Positive Neuroblastoma Subpopulations Are Enriched in Chemotherapy-Resistant or Relapsed Tumors and Are Highly Tumorigenic. Cancer Res 73(13):4134-46. [PubMed: 23687340]  [MGI Ref ID J:199119]

Htain WW; Leong SK; Ling EA. 1994. A comparative Mac-1 immunocytochemical and lectin histochemical study of microglial cells in the normal and athymic mice. Glia 12(1):44-51. [PubMed: 7843786]  [MGI Ref ID J:20954]

Huang W; Hu J; August A. 2013. Cutting Edge: Innate Memory CD8+ T Cells Are Distinct from Homeostatic Expanded CD8+ T Cells and Rapidly Respond to Primary Antigenic Stimuli. J Immunol 190(6):2490-4. [PubMed: 23408840]  [MGI Ref ID J:193676]

Huter EN; Natarajan K; Torgerson TR; Glass DD; Shevach EM. 2010. Autoantibodies in Scurfy mice and IPEX patients recognize keratin 14. J Invest Dermatol 130(5):1391-9. [PubMed: 20147963]  [MGI Ref ID J:160117]

Inoue N; Kuwae K; Ishida-Yamamoto A; Iizuka H; Shibata M; Yoshida S; Kato K; Shiosaka S. 1998. Expression of neuropsin in the keratinizing epithelial tissue-immunohistochemical analysis of wild-type and nude mice. J Invest Dermatol 110(6):923-31. [PubMed: 9620300]  [MGI Ref ID J:48104]

Isaacson JH; Cattanach BM. 1962. Two new 'hairless' mutants - Sha and Hfh11 Mouse News Lett 27:31.  [MGI Ref ID J:30772]

Iseki M; Omori-Miyake M; Xu W; Sun X; Takaki S; Rawlings DJ; Ziegler SF. 2012. Thymic stromal lymphopoietin (TSLP)-induced polyclonal B-cell activation and autoimmunity are mediated by CD4+ T cells and IL-4. Int Immunol 24(3):183-95. [PubMed: 22281511]  [MGI Ref ID J:182756]

Ishigaki Y; Hayakawa J; Hashimoto N; Nikaido H; Nikaido O. 1996. New immunodeficient mouse strains bred by introducing beige and xid mutations into the KSN nude strain. (Correction: 1996 Dec;46(6):691) Lab Anim Sci 46(4):418-24. [PubMed: 8872993]  [MGI Ref ID J:36125]

Ishigaki Y; Yasuda K; Hashimoto N; Hayakawa J; Hiai H; Nikaido O. 1998. A comparison of UVB-carcinogenesis between nude mice and nude beige mice. J Radiat Res (Tokyo) 39(2):119-27. [PubMed: 9735600]  [MGI Ref ID J:52659]

Ishigaki Y; Yasuda K; Hashimoto N; Nikaido H; Nikaido O; Hayakawa JI. 1998. Enhanced human tumor cell transplantability in a new congenic immunodeficient mouse; KSN-BNX. Folia Microbiol (Praha) 43(5):493-4. [PubMed: 9821307]  [MGI Ref ID J:52313]

Itoh M; Kokudo Y; Sakamoto Y; Takeuchi Y. 1997. Spontaneous degeneration of testicular germ cells in congenitally athymic nude mice of four strains: a light microscopical observation J Androl 18(6):672-80. [PubMed: 9432140]  [MGI Ref ID J:44971]

Jockusch H; Bertram K. 1987. A cross involving "arrested development of righting response", adr, and "nude", nu. Mouse News Lett 77:111-112.  [MGI Ref ID J:17790]

Johns SA; Soullier S; Rashbass P; Cunliffe VT. 2005. Foxn1 is required for tissue assembly and desmosomal cadherin expression in the hair shaft. Dev Dyn 232(4):1062-8. [PubMed: 15739220]  [MGI Ref ID J:104624]

Jones-Carson J; Vazquez-Torres A; Balish E. 1995. Defective killing of Candida albicans hyphae by neutrophils from beige mice. J Infect Dis 171(6):1664-7. [PubMed: 7769315]  [MGI Ref ID J:25930]

Kammertoens T; Qin Z; Briesemeister D; Bendelac A; Blankenstein T. 2012. B-cells and IL-4 promote methylcholanthrene-induced carcinogenesis but there is no evidence for a role of T/NKT-cells and their effector molecules (Fas-ligand, TNF-alpha, perforin). Int J Cancer 131(7):1499-508. [PubMed: 22212899]  [MGI Ref ID J:186111]

Karagogeos D; Rosenberg N; Wortis HH. 1986. Early arrest of B cell development in nude, X-linked immune-deficient mice. Eur J Immunol 16(9):1125-30. [PubMed: 3093247]  [MGI Ref ID J:76900]

Kataru RP; Kim H; Jang C; Choi DK; Koh BI; Kim M; Gollamudi S; Kim YK; Lee SH; Koh GY. 2011. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34(1):96-107. [PubMed: 21256057]  [MGI Ref ID J:168062]

Kawa K; Tsutsui H; Uchiyama R; Kato J; Matsui K; Iwakura Y; Matsumoto T; Nakanishi K. 2010. IFN-{gamma} is a master regulator of endotoxin shock syndrome in mice primed with heat-killed Propionibacterium acnes. Int Immunol 22(3):157-66. [PubMed: 20130231]  [MGI Ref ID J:157756]

Kim JI; Chung DI; Choi DW. 1992. Egg production of Clonorchis sinensis in different strains of inbred mice. Kisaengchunghak Chapchi 30(3):169-75. [PubMed: 1420029]  [MGI Ref ID J:27891]

Kim KD; Zhao J; Auh S; Yang X; Du P; Tang H; Fu YX. 2007. Adaptive immune cells temper initial innate responses. Nat Med 13(10):1248-52. [PubMed: 17891146]  [MGI Ref ID J:129989]

Kinoshita D; Hirota F; Kaisho T; Kasai M; Izumi K; Bando Y; Mouri Y; Matsushima A; Niki S; Han H; Oshikawa K; Kuroda N; Maegawa M; Irahara M; Takeda K; Akira S; Matsumoto M. 2006. Essential role of IkappaB kinase alpha in thymic organogenesis required for the establishment of self-tolerance. J Immunol 176(7):3995-4002. [PubMed: 16547234]  [MGI Ref ID J:129879]

Kipnis J; Cohen H; Cardon M; Ziv Y; Schwartz M. 2004. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci U S A 101(21):8180-5. [PubMed: 15141078]  [MGI Ref ID J:90695]

Kishimoto C; Kitazawa M; Takada H. 1998. Interstitial fibrin-fibronectin deposition with T cell infiltrates precedes fibrosis in murine viral myocarditis. Int J Exp Pathol 79(6):417-23. [PubMed: 10319022]  [MGI Ref ID J:51818]

Kodaira Y; Yokomuro K; Tanaka S; Miyazaki JI; Ikuta K. 1996. Developmental heterogeneity of V gamma 1.1 T cells in the mouse liver. Immunology 87(2):213-9. [PubMed: 8698382]  [MGI Ref ID J:31293]

Koh YJ; Kim HZ; Hwang SI; Lee JE; Oh N; Jung K; Kim M; Kim KE; Kim H; Lim NK; Jeon CJ; Lee GM; Jeon BH; Nam DH; Sung HK; Nagy A; Yoo OJ; Koh GY. 2010. Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell 18(2):171-84. [PubMed: 20708158]  [MGI Ref ID J:163671]

Kojima A; Saito M; Hioki K; Shimanura K; Habu S. 1984. NFS/N-nu/ + mice can macroscopically be distinguished from NFS/N- +/+ littermates by their thymic size and shape. Exp Cell Biol 52(1-2):107-10. [PubMed: 6698273]  [MGI Ref ID J:7330]

Kolb C; Di Pauli R; Weiler E. 1976. Induction of IgG in young nude mice by lipid A or thymus grafts. J Exp Med 144(4):1031-6. [PubMed: 978133]  [MGI Ref ID J:88834]

Kollmann K; Heller G; Schneckenleithner C; Warsch W; Scheicher R; Ott RG; Schafer M; Fajmann S; Schlederer M; Schiefer AI; Reichart U; Mayerhofer M; Hoeller C; Zochbauer-Muller S; Kerjaschki D; Bock C; Kenner L; Hoefler G; Freissmuth M; Green AR; MorigglR; Busslinger M; Malumbres M; Sexl V. 2013. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 24(2):167-81. [PubMed: 23948297]  [MGI Ref ID J:201595]

Kopf-Maier P; Mboneko VF; Merker HJ. 1990. Nude mice are not hairless. A morphological study. Acta Anat (Basel) 139(2):178-90. [PubMed: 2288204]  [MGI Ref ID J:466]

Krawczyk PM; Eppink B; Essers J; Stap J; Rodermond H; Odijk H; Zelensky A; van Bree C; Stalpers LJ; Buist MR; Soullie T; Rens J; Verhagen HJ; O'Connor MJ; Franken NA; Ten Hagen TL; Kanaar R; Aten JA. 2011. From the Cover: Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci U S A 108(24):9851-6. [PubMed: 21555554]  [MGI Ref ID J:173155]

Krueger A; von Boehmer H. 2007. Identification of a T lineage-committed progenitor in adult blood. Immunity 26(1):105-16. [PubMed: 17222572]  [MGI Ref ID J:118201]

Krug HE; Wietgrefe MM; Ytterberg SR; Taurog JD; Mahowald ML. 1997. Murine progressive ankylosis is not immunologically mediated. J Rheumatol 24(1):115-22. [PubMed: 9002021]  [MGI Ref ID J:109905]

Ku SK; Lee HS; Lee JH. 2006. The regional distribution and relative frequency of gastrointestinal endocrine cells in the nude mice, Balb/c-nu/nu: an immunohistochemical study. Anat Histol Embryol 35(2):104-10. [PubMed: 16542175]  [MGI Ref ID J:135760]

Kucerova R; Dora N; Mort RL; Wallace K; Leiper LJ; Lowes C; Neves C; Walczysko P; Bruce F; Fowler PA; Rajnicek AM; McCaig CD; Zhao M; West JD; Collinson JM. 2012. Interaction between hedgehog signalling and PAX6 dosage mediates maintenance and regeneration of the corneal epithelium. Mol Vis 18:139-50. [PubMed: 22275805]  [MGI Ref ID J:191495]

Kumar MJ; Ponvijay KS; Nandhini R; Nagarajan RS; Jose J; Srinivas G; Nagarajan P; Venkatesan R; Kumar K; Singh S. 2007. A mouse model for luminal epithelial like ER positive subtype of human breast cancer. BMC Cancer 7:180. [PubMed: 17880731]  [MGI Ref ID J:145107]

Kurooka H; Segre JA; Hirano Y; Nemhauser JL; Nishimura H; Yoneda K; Lander ES; Honjo T. 1996. Rescue of the hairless phenotype in nude mice by transgenic insertion of the wild-type Hfh11 genomic locus. Int Immunol 8(6):961-6. [PubMed: 8671685]  [MGI Ref ID J:33866]

Kusama Y; Takamoto M; Kasahara T; Takatsu K; Nariuchi H; Sugane K. 1995. Mechanisms of eosinophilia in BALB/c-nu/+ and congenitally athymic BALB/c-nu/nu mice infected with Toxocara canis. Immunology 84(3):461-8. [PubMed: 7751031]  [MGI Ref ID J:23610]

Kwok E; Everingham S; Zhang S; Greer PA; Allingham JS; Craig AW. 2012. FES kinase promotes mast cell recruitment to mammary tumors via the stem cell factor/KIT receptor signaling axis. Mol Cancer Res 10(7):881-91. [PubMed: 22589410]  [MGI Ref ID J:205388]

Lai YG; Hou MS; Hsu YW; Chang CL; Liou YH; Tsai MH; Lee F; Liao NS. 2008. IL-15 Does Not Affect IEL Development in the Thymus but Regulates Homeostasis of Putative Precursors and Mature CD8{alpha}{alpha}+ IELs in the Intestine. J Immunol 180(6):3757-65. [PubMed: 18322181]  [MGI Ref ID J:132904]

Lambolez F; Jooss K; Vasseur F; Sarukhan A. 2002. Tolerance induction to self antigens by peripheral dendritic cells. Eur J Immunol 32(9):2588-97. [PubMed: 12207343]  [MGI Ref ID J:78997]

Lauwen MM; Zwaveling S; de Quartel L; Ferreira Mota SC; Grashorn JA; Melief CJ; van der Burg SH; Offringa R. 2008. Self-tolerance does not restrict the CD4+ T-helper response against the p53 tumor antigen. Cancer Res 68(3):893-900. [PubMed: 18245492]  [MGI Ref ID J:131863]

Lee H; Lee H; Kwon Y; Lee JH; Kim J; Shin MK; Kim SH; Bae H. 2010. Methyl Gallate Exhibits Potent Antitumor Activities by Inhibiting Tumor Infiltration of CD4+CD25+ Regulatory T Cells. J Immunol 185(11):6698-705. [PubMed: 21048105]  [MGI Ref ID J:166132]

Lee H; Nho D; Chung HS; Lee H; Shin MK; Kim SH; Bae H. 2010. CD4+CD25+ regulatory T cells attenuate cisplatin-induced nephrotoxicity in mice. Kidney Int 78(11):1100-9. [PubMed: 20463654]  [MGI Ref ID J:184263]

Lee IP; Suzuki K. 1981. Differential DNA-repair activity in prespermiogenic cells of various mouse strains. Mutat Res 80(1):201-11. [PubMed: 7207482]  [MGI Ref ID J:35942]

Lee SK; Kadono Y; Okada F; Jacquin C; Koczon-Jaremko B; Gronowicz G; Adams DJ; Aguila HL; Choi Y; Lorenzo JA. 2006. T lymphocyte-deficient mice lose trabecular bone mass with ovariectomy. J Bone Miner Res 21(11):1704-12. [PubMed: 17002560]  [MGI Ref ID J:128101]

Leiter EH; Prochazka M; Shultz LD. 1987. Effect of immunodeficiency on diabetogenesis in genetically diabetic (db/db) mice. J Immunol 138(10):3224-9. [PubMed: 3553324]  [MGI Ref ID J:32752]

Lesma E; Eloisa C; Isaia E; Grande V; Ancona S; Orpianesi E; Di Giulio AM; Gorio A. 2012. Development of a lymphangioleiomyomatosis model by endonasal administration of human TSC2-/- smooth muscle cells in mice. Am J Pathol 181(3):947-60. [PubMed: 22770663]  [MGI Ref ID J:188546]

Lewis MT; Ross S; Strickland PA; Sugnet CW; Jimenez E; Hui Cc CC; Daniel CW. 2001. The gli2 transcription factor is required for normal mouse mammary gland development. Dev Biol 238(1):133-44. [PubMed: 11783999]  [MGI Ref ID J:72024]

Li S; Yan Y; Lin Y; Bullens DM; Rutgeerts O; Goebels J; Segers C; Boon L; Kasran A; De Vos R; Dewolf-Peeters C; Waer M; Billiau AD. 2007. Rapidly induced, T-cell independent xenoantibody production is mediated by marginal zone B cells and requires help from NK cells. Blood 110(12):3926-35. [PubMed: 17630353]  [MGI Ref ID J:149130]

Li X; Tjwa M; Van Hove I; Enholm B; Neven E; Paavonen K; Jeltsch M; Juan TD; Sievers RE; Chorianopoulos E; Wada H; Vanwildemeersch M; Noel A; Foidart JM; Springer ML; von Degenfeld G; Dewerchin M; Blau HM; Alitalo K; Eriksson U; Carmeliet P; Moons L. 2008. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler Thromb Vasc Biol 28(9):1614-20. [PubMed: 18511699]  [MGI Ref ID J:159808]

Li Y; Toraldo G; Li A; Yang X; Zhang H; Qian WP; Weitzmann MN. 2007. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109(9):3839-48. [PubMed: 17202317]  [MGI Ref ID J:145330]

Lin L; Brody SL; Peng SL. 2005. Restraint of B cell activation by Foxj1-mediated antagonism of NF-kappa B and IL-6. J Immunol 175(2):951-8. [PubMed: 16002694]  [MGI Ref ID J:100704]

Lin M; Yin N; Murphy B; Medof ME; Segerer S; Heeger PS; Schroppel B. 2010. Immune cell-derived c3 is required for autoimmune diabetes induced by multiple low doses of streptozotocin. Diabetes 59(9):2247-52. [PubMed: 20584999]  [MGI Ref ID J:169632]

Lindroth K; Troye-Blomberg M; Singh M; Dieli F; Ivanyi J; Fernandez C. 2002. The humoral response in TCR alpha-/- mice. Can gammadelta-T cells support the humoral immune response? Scand J Immunol 55(3):256-63. [PubMed: 11940232]  [MGI Ref ID J:103683]

Liu C; Saito F; Liu Z; Lei Y; Uehara S; Love P; Lipp M; Kondo S; Manley N; Takahama Y. 2006. Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood 108(8):2531-9. [PubMed: 16809609]  [MGI Ref ID J:139461]

Liu M; Chien CC; Burne-Taney M; Molls RR; Racusen LC; Colvin RB; Rabb H. 2006. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J Am Soc Nephrol 17(3):765-74. [PubMed: 16481417]  [MGI Ref ID J:135790]

Liu S; Fang X; Hall H; Yu S; Smith D; Lu Z; Fang D; Liu J; Stephens LC; Woodgett JR; Mills GB. 2008. Homozygous deletion of glycogen synthase kinase 3beta bypasses senescence allowing Ras transformation of primary murine fibroblasts. Proc Natl Acad Sci U S A 105(13):5248-53. [PubMed: 18367674]  [MGI Ref ID J:133569]

Liu Z; Farley A; Chen L; Kirby BJ; Kovacs CS; Blackburn CC; Manley NR. 2010. Thymus-associated parathyroid hormone has two cellular origins with distinct endocrine and immunological functions. PLoS Genet 6(12):e1001251. [PubMed: 21203493]  [MGI Ref ID J:167511]

Lomada D; Liu B; Coghlan L; Hu Y; Richie ER. 2007. Thymus medulla formation and central tolerance are restored in IKKalpha-/- mice that express an IKKalpha transgene in keratin 5+ thymic epithelial cells. J Immunol 178(2):829-37. [PubMed: 17202344]  [MGI Ref ID J:142630]

Lopez-Requena A; Bestagno M; Mateo de Acosta C; Cesco-Gaspere M; Vazquez AM; Perez R; Burrone OR. 2007. Gangliosides, Ab1 and Ab2 antibodies III. The idiotype of anti-ganglioside mAb P3 is immunogenic in a T cell-dependent manner. Mol Immunol 44(11):2915-22. [PubMed: 17316805]  [MGI Ref ID J:119832]

Lu P; Ewald AJ; Martin GR; Werb Z. 2008. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol 321(1):77-87. [PubMed: 18585375]  [MGI Ref ID J:138612]

Maeda A; Schneider SW; Kojima M; Beissert S; Schwarz T; Schwarz A. 2006. Enhanced photocarcinogenesis in interleukin-12-deficient mice. Cancer Res 66(6):2962-9. [PubMed: 16540644]  [MGI Ref ID J:107060]

Magee DM; Williams DM; Smith JG; Bleicker CA; Grubbs BG; Schachter J; Rank RG. 1995. Role of CD8 T cells in primary Chlamydia infection. Infect Immun 63(2):516-21. [PubMed: 7822016]  [MGI Ref ID J:111101]

Malek SN; Dordai DI; Reim J; Dintzis H; Desiderio S. 1998. Malignant transformation of early lymphoid progenitors in mice expressing an activated Blk tyrosine kinase. Proc Natl Acad Sci U S A 95(13):7351-6. [PubMed: 9636152]  [MGI Ref ID J:93840]

Malley R; Trzcinski K; Srivastava A; Thompson CM; Anderson PW; Lipsitch M. 2005. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc Natl Acad Sci U S A 102(13):4848-53. [PubMed: 15781870]  [MGI Ref ID J:97363]

Manjarrez-Orduno N; Moreno-Garcia ME; Fink K; Santos-Argumedo L. 2007. CD38 cross-linking enhances TLR-induced B cell proliferation but decreases IgM plasma cell differentiation. Eur J Immunol 37(2):358-67. [PubMed: 17274001]  [MGI Ref ID J:117900]

Mankan AK; Canli O; Schwitalla S; Ziegler P; Tschopp J; Korn T; Greten FR. 2011. TNF-{alpha}-dependent loss of IKK{beta}-deficient myeloid progenitors triggers a cytokine loop culminating in granulocytosis. Proc Natl Acad Sci U S A 108(16):6567-72. [PubMed: 21464320]  [MGI Ref ID J:171365]

Mannik J; Alzayady K; Ghazizadeh S. 2010. Regeneration of multilineage skin epithelia by differentiated keratinocytes. J Invest Dermatol 130(2):388-97. [PubMed: 19675579]  [MGI Ref ID J:159578]

Mannoor MK; Weerasinghe A; Halder RC; Reza S; Morshed M; Ariyasinghe A; Watanabe H; Sekikawa H; Abo T. 2001. Resistance to malarial infection is achieved by the cooperation of NK1.1(+) and NK1.1(-) subsets of intermediate TCR cells which are constituents of innate immunity. Cell Immunol 211(2):96-104. [PubMed: 11591113]  [MGI Ref ID J:115622]

Manuel JA; Gawronska-Kozak B. 2006. Matrix metalloproteinase 9 (MMP-9) is upregulated during scarless wound healing in athymic nude mice. Matrix Biol 25(8):505-14. [PubMed: 17010584]  [MGI Ref ID J:116052]

Marquis G; Montplaisir S; Pelletier M; Mousseau S; Auger P. 1985. Genetic resistance to murine cryptococcosis: the beige mutation (Chediak-Higashi syndrome) in mice. Infect Immun 47(1):288-93. [PubMed: 3965401]  [MGI Ref ID J:147940]

Martin-Manso G; Galli S; Ridnour LA; Tsokos M; Wink DA; Roberts DD. 2008. Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Res 68(17):7090-9. [PubMed: 18757424]  [MGI Ref ID J:155187]

Maruo K; Shimamura K; Hioki K; Itoh M; Ueyama Y; Tamaoki N. 1993. Role of X-linked immunodeficiency (xid) and NK activity in rejection of human tumor xenotransplants in nude mice. APMIS 101(5):345-52. [PubMed: 8329195]  [MGI Ref ID J:14379]

Matsumoto K; Huang J; Viswakarma N; Bai L; Jia Y; Zhu YT; Yang G; Borensztajn J; Rao MS; Zhu YJ; Reddy JK. 2010. Transcription coactivator PBP/MED1-deficient hepatocytes are not susceptible to diethylnitrosamine-induced hepatocarcinogenesis in the mouse. Carcinogenesis 31(2):318-25. [PubMed: 20007298]  [MGI Ref ID J:156765]

Matsumoto M; Zhou Y; Matsuo S; Nakanishi H; Hirose K; Oura H; Arase S; Ishida-Yamamoto A; Bando Y; Izumi K; Kiyonari H; Oshima N; Nakayama R; Matsushima A; Hirota F; Mouri Y; Kuroda N; Sano S; Chaplin DD. 2008. Targeted deletion of the murine corneodesmosin gene delineates its essential role in skin and hair physiology. Proc Natl Acad Sci U S A 105(18):6720-4. [PubMed: 18436651]  [MGI Ref ID J:134613]

Matsuno Y; Ishii Y; Yoh K; Morishima Y; Haraguchi N; Kikuchi N; Iizuka T; Kiwamoto T; Homma S; Nomura A; Sakamoto T; Ohtsuka M; Hizawa N; Takahashi S. 2007. Overexpression of GATA-3 protects against the development of hypersensitivity pneumonitis. Am J Respir Crit Care Med 176(10):1015-25. [PubMed: 17717199]  [MGI Ref ID J:147530]

Maurer KJ; Rao VP; Ge Z; Rogers AB; Oura TJ; Carey MC; Fox JG. 2007. T-cell function is critical for murine cholesterol gallstone formation. Gastroenterology 133(4):1304-15. [PubMed: 17919501]  [MGI Ref ID J:128456]

McCoy KD; Harris NL; Diener P; Hatak S; Odermatt B; Hangartner L; Senn BM; Marsland BJ; Geuking MB; Hengartner H; Macpherson AJ; Zinkernagel RM. 2006. Natural IgE production in the absence of MHC Class II cognate help. Immunity 24(3):329-39. [PubMed: 16546101]  [MGI Ref ID J:113324]

McLennan IS; Koishi K. 2004. Fetal and maternal transforming growth factor-beta 1 may combine to maintain pregnancy in mice. Biol Reprod 70(6):1614-8. [PubMed: 14766723]  [MGI Ref ID J:96993]

Mecklenburg L; Paus R; Halata Z; Bechtold LS; Fleckman P; Sundberg JP. 2004. FOXN1 is critical for onycholemmal terminal differentiation in nude (Foxn1) mice. J Invest Dermatol 123(6):1001-11. [PubMed: 15610506]  [MGI Ref ID J:94187]

Medema JP; de Jong J; van Hall T; Melief CJ; Offringa R. 1999. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 190(7):1033-8. [PubMed: 10510093]  [MGI Ref ID J:115086]

Miceli AP; Saporita AJ; Weber JD. 2012. Hypergrowth mTORC1 signals translationally activate the ARF tumor suppressor checkpoint. Mol Cell Biol 32(2):348-64. [PubMed: 22064482]  [MGI Ref ID J:183671]

Militzer K. 2001. Hair growth pattern in nude mice. Cells Tissues Organs 168(4):285-94. [PubMed: 11275695]  [MGI Ref ID J:68366]

Mishra A; Schlotman J; Wang M; Rothenberg ME. 2007. Critical role for adaptive T cell immunity in experimental eosinophilic esophagitis in mice. J Leukoc Biol 81(4):916-24. [PubMed: 17194734]  [MGI Ref ID J:121455]

Montaner S; Sodhi A; Molinolo A; Bugge TH; Sawai ET; He Y; Li Y; Ray PE; Gutkind JS. 2003. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3(1):23-36. [PubMed: 12559173]  [MGI Ref ID J:132381]

Monteiro JP; Benjamin A; Costa ES; Barcinski MA; Bonomo A. 2005. Normal hematopoiesis is maintained by activated bone marrow CD4+ T cells. Blood 105(4):1484-91. [PubMed: 15514013]  [MGI Ref ID J:96600]

Mori K; Itoi M; Tsukamoto N; Amagai T. 2010. Foxn1 is essential for vascularization of the murine thymus anlage. Cell Immunol 260(2):66-9. [PubMed: 19853842]  [MGI Ref ID J:155348]

Moro K; Yamada T; Tanabe M; Takeuchi T; Ikawa T; Kawamoto H; Furusawa J; Ohtani M; Fujii H; Koyasu S. 2010. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463(7280):540-4. [PubMed: 20023630]  [MGI Ref ID J:156764]

Morris ZS; McClatchey AI. 2009. Aberrant epithelial morphology and persistent epidermal growth factor receptor signaling in a mouse model of renal carcinoma. Proc Natl Acad Sci U S A 106(24):9767-72. [PubMed: 19487675]  [MGI Ref ID J:150071]

Morrison J; Lu QL; Pastoret C; Partridge T; Bou-Gharios G. 2000. T-cell-dependent fibrosis in the mdx dystrophic mouse. Lab Invest 80(6):881-91. [PubMed: 10879739]  [MGI Ref ID J:62881]

Morrison J; Partridge T; Bou-Gharios G. 2005. Nude mutation influences limb skeletal muscle development. Matrix Biol 23(8):535-42. [PubMed: 15694130]  [MGI Ref ID J:95776]

Mota BE; Gallardo-Romero N; Trindade G; Keckler MS; Karem K; Carroll D; Campos MA; Vieira LQ; da Fonseca FG; Ferreira PC; Bonjardim CA; Damon IK; Kroon EG. 2011. Adverse Events Post Smallpox-Vaccination: Insights from Tail Scarification Infection in Mice with Vaccinia virus. PLoS One 6(4):e18924. [PubMed: 21526210]  [MGI Ref ID J:172270]

Muller AJ; DuHadaway JB; Jaller D; Curtis P; Metz R; Prendergast GC. 2010. Immunotherapeutic suppression of indoleamine 2,3-dioxygenase and tumor growth with ethyl pyruvate. Cancer Res 70(5):1845-53. [PubMed: 20160032]  [MGI Ref ID J:158003]

Muraoka D; Kato T; Wang L; Maeda Y; Noguchi T; Harada N; Takeda K; Yagita H; Guillaume P; Luescher I; Old LJ; Shiku H; Nishikawa H. 2010. Peptide Vaccine Induces Enhanced Tumor Growth Associated with Apoptosis Induction in CD8+ T Cells. J Immunol 185(6):3768-76. [PubMed: 20733202]  [MGI Ref ID J:163531]

Nagayama Y; Horie I; Saitoh O; Nakahara M; Abiru N. 2007. CD4(+)CD25(+) naturally occurring regulatory T cells and not lymphopenia play a role in the pathogenesis of iodide-induced autoimmune thyroiditis in NOD-H2(h4) mice. J Autoimmun 29(2-3):195-202. [PubMed: 17826032]  [MGI Ref ID J:125178]

Nakamichi Y; Udagawa N; Kobayashi Y; Nakamura M; Yamamoto Y; Yamashita T; Mizoguchi T; Sato M; Mogi M; Penninger JM; Takahashi N. 2007. Osteoprotegerin reduces the serum level of receptor activator of NF-kappaB ligand derived from osteoblasts. J Immunol 178(1):192-200. [PubMed: 17182555]  [MGI Ref ID J:141939]

Nakamura M; Nishimura M; Koide Y; Yoshida TO. 1996. Analysis of pathogenesis of autoimmune insulitis in NOD mice: adoptive transfer experiments of insulitis in ILI and NOD nude mice. Exp Anim 45(3):233-8. [PubMed: 8840139]  [MGI Ref ID J:34763]

Nakamura Y; Ichinohe M; Hirata M; Matsuura H; Fujiwara T; Igarashi T; Nakahara M; Yamaguchi H; Yasugi S; Takenawa T; Fukami K. 2008. Phospholipase C-delta1 is an essential molecule downstream of Foxn1, the gene responsible for the nude mutation, in normal hair development. FASEB J 22(3):841-9. [PubMed: 17938256]  [MGI Ref ID J:134887]

Nansen A; Jensen T; Christensen JP; Andreasen SO; Ropke C; Marker O; Thomsen AR. 1999. Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus. J Immunol 163(11):6114-22. [PubMed: 10570301]  [MGI Ref ID J:58651]

Narhi K; Jarvinen E; Birchmeier W; Taketo MM; Mikkola ML; Thesleff I. 2008. Sustained epithelial {beta}-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation. Development 135(6):1019-28. [PubMed: 18256193]  [MGI Ref ID J:131961]

Nedjic J; Aichinger M; Emmerich J; Mizushima N; Klein L. 2008. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455(7211):396-400. [PubMed: 18701890]  [MGI Ref ID J:140583]

Nijhof JG; Braun KM; Giangreco A; van Pelt C; Kawamoto H; Boyd RL; Willemze R; Mullenders LH; Watt FM; de Gruijl FR; van Ewijk W. 2006. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133(15):3027-37. [PubMed: 16818453]  [MGI Ref ID J:119029]

Nishikawa H; Kato T; Tawara I; Takemitsu T; Saito K; Wang L; Ikarashi Y; Wakasugi H; Nakayama T; Taniguchi M; Kuribayashi K; Old LJ; Shiku H. 2005. Accelerated chemically induced tumor development mediated by CD4+CD25+ regulatory T cells in wild-type hosts. Proc Natl Acad Sci U S A 102(26):9253-7. [PubMed: 15961541]  [MGI Ref ID J:99871]

Nishimura EK; Jordan SA; Oshima H; Yoshida H; Osawa M; Moriyama M; Jackson IJ; Barrandon Y; Miyachi Y; Nishikawa S. 2002. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416(6883):854-60. [PubMed: 11976685]  [MGI Ref ID J:130556]

Noben-Trauth N; Hu-Li J; Paul WE. 2000. Conventional, naive CD4+ T cells provide an initial source of IL-4 during Th2 differentiation. J Immunol 165(7):3620-5. [PubMed: 11034364]  [MGI Ref ID J:119587]

Nonaka S; Naito T; Chen H; Yamamoto M; Moro K; Kiyono H; Hamada H; Ishikawa H. 2005. Intestinal gammadelta T cells develop in mice lacking thymus, all lymph nodes, Peyer's patches, and isolated lymphoid follicles. J Immunol 174(4):1906-12. [PubMed: 15699117]  [MGI Ref ID J:96579]

Nonoyama S; Smith FO; Bernstein ID; Ochs HD. 1993. Strain-dependent leakiness of mice with severe combined immune deficiency. J Immunol 150(9):3817-24. [PubMed: 8473734]  [MGI Ref ID J:4610]

Oida T; Suzuki K; Nanno M; Kanamori Y; Saito H; Kubota E; Kato S; Itoh M; Kaminogawa S; Ishikawa H. 2000. Role of gut cryptopatches in early extrathymic maturation of intestinal intraepithelial T cells. J Immunol 164(7):3616-26. [PubMed: 10725718]  [MGI Ref ID J:112139]

Ott RG; Simma O; Kollmann K; Weisz E; Zebedin EM; Schorpp-Kistner M; Heller G; Zochbauer S; Wagner EF; Freissmuth M; Sexl V. 2007. JunB is a gatekeeper for B-lymphoid leukemia. Oncogene 26(33):4863-71. [PubMed: 17297445]  [MGI Ref ID J:125545]

Owens WE; Berg RD. 1980. Bacterial translocation from the gastrointestinal tract of athymic (nu/nu) mice. Infect Immun 27(2):461-7. [PubMed: 6966611]  [MGI Ref ID J:202303]

Paciorkowski N; Porte P; Shultz LD; Rajan TV. 2000. B1 B lymphocytes play a critical role in host protection against lymphatic filarial parasites. J Exp Med 191(4):731-6. [PubMed: 10684864]  [MGI Ref ID J:112016]

Pantelouris EM. 1973. Athymic development in the mouse. Differentiation 1(6):437-50. [PubMed: 4547146]  [MGI Ref ID J:11959]

Pantelouris EM; Hair J. 1970. Thymus dysgenesis in nude (nu nu) mice. J Embryol Exp Morphol 24(3):615-23. [PubMed: 5493276]  [MGI Ref ID J:202297]

Papagiannakopoulos T; Friedmann-Morvinski D; Neveu P; Dugas JC; Gill RM; Huillard E; Liu C; Zong H; Rowitch DH; Barres BA; Verma IM; Kosik KS. 2012. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 31(15):1884-95. [PubMed: 21874051]  [MGI Ref ID J:186143]

Papiernik M; de Moraes ML; Pontoux C; Vasseur F; Penit C. 1998. Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol 10(4):371-8. [PubMed: 9620592]  [MGI Ref ID J:110541]

Pechloff K; Holch J; Ferch U; Schweneker M; Brunner K; Kremer M; Sparwasser T; Quintanilla-Martinez L; Zimber-Strobl U; Streubel B; Gewies A; Peschel C; Ruland J. 2010. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J Exp Med 207(5):1031-44. [PubMed: 20439541]  [MGI Ref ID J:160931]

Penttila JM; Anttila M; Varkila K; Puolakkainen M; Sarvas M; Makela PH; Rautonen N. 1999. Depletion of CD8+ cells abolishes memory in acquired immunity against Chlamydia pneumoniae in BALB/c mice. Immunology 97(3):490-6. [PubMed: 10447772]  [MGI Ref ID J:56333]

Piantanelli L; Zaia A; Rossolini G; Piantanelli A; Basso A; Anisimov VN. 2001. Long-live euthymic BALB/c-nu mice. I. Survival study suggests body weight as a life span predictor. Mech Ageing Dev 122(5):463-75. [PubMed: 11292512]  [MGI Ref ID J:68818]

Pihlgren M; Silva AB; Madani R; Giriens V; Waeckerle-Men Y; Fettelschoss A; Hickman DT; Lopez-Deber MP; Ndao DM; Vukicevic M; Buccarello AL; Gafner V; Chuard N; Reis P; Piorkowska K; Pfeifer A; Kundig TM; Muhs A; Johansen P. 2013. TLR4- and TRIF-dependent stimulation of B lymphocytes by peptide liposomes enables T cell-independent isotype switch in mice. Blood 121(1):85-94. [PubMed: 23144170]  [MGI Ref ID J:192819]

Podd BS; Thoits J; Whitley N; Cheng HY; Kudla KL; Taniguchi H; Halkias J; Goth K; Camerini V. 2006. T cells in cryptopatch aggregates share TCR gamma variable region junctional sequences with gamma delta T cells in the small intestinal epithelium of mice. J Immunol 176(11):6532-42. [PubMed: 16709810]  [MGI Ref ID J:131773]

Potter CS; Pruett ND; Kern MJ; Baybo MA; Godwin AR; Potter KA; Peterson RL; Sundberg JP; Awgulewitsch A. 2011. The nude mutant gene Foxn1 is a HOXC13 regulatory target during hair follicle and nail differentiation. J Invest Dermatol 131(4):828-37. [PubMed: 21191399]  [MGI Ref ID J:182085]

Power KA; Chen JM; Saarinen NM; Thompson LU. 2008. Changes in biomarkers of estrogen receptor and growth factor signaling pathways in MCF-7 tumors after short- and long-term treatment with soy and flaxseed. J Steroid Biochem Mol Biol 112(1-3):13-9. [PubMed: 18703142]  [MGI Ref ID J:142181]

Pritchard H; Micklem HS. 1973. Haemopoietic stem cells and progenitors of functional T-lymphocytes in the bone marrow of 'nude' mice. Clin Exp Immunol 14(4):597-607. [PubMed: 4583780]  [MGI Ref ID J:202306]

Pritchard H; Micklem HS. 1972. Immune responses in congenitally thymus-less mice. I. Absence of response to oxazolone. Clin Exp Immunol 10(1):151-61. [PubMed: 5017366]  [MGI Ref ID J:202302]

Pritchard H; Riddaway J; Micklem HS. 1973. Immune responses in congenitally thymus-less mice. II. Quantitative studies of serum immunoglobulins, the antibody response to sheep erythrocytes, and the effect of thymus allografting. Clin Exp Immunol 13(1):125-38. [PubMed: 4202946]  [MGI Ref ID J:202301]

Radzikowski C; Rygaard J; Budzynski W; Stenvang JP; Schou M; Vangsted A; Zeuthen J. 1994. Strain- and age-dependent natural and activated in vitro cytotoxicity in athymic nude mice. APMIS 102(7):481-8. [PubMed: 7917216]  [MGI Ref ID J:20682]

Raff MC; Wortis HH. 1970. Thymus dependence of theta-bearing cells in the peripheral lymphoid tissues of mice. Immunology 18(6):931-42. [PubMed: 5428870]  [MGI Ref ID J:202808]

Read S; Hogan TV; Zwar TD; Gleeson PA; Van Driel IR. 2007. Prevention of autoimmune gastritis in mice requires extra-thymic T-cell deletion and suppression by regulatory T cells. Gastroenterology 133(2):547-58. [PubMed: 17603058]  [MGI Ref ID J:128303]

Rebar RW; Morandini IC; Petze JE; Erickson GF. 1982. Hormonal basis of reproductive defects in athymic mice: reduced gonadotropins and testosterone in males. Biol Reprod 27(5):1267-76. [PubMed: 6819011]  [MGI Ref ID J:202738]

Reddy N; Ong GL; Behr TM; Sharkey RM; Goldenberg DM; Mattes MJ. 1998. Rapid blood clearance of mouse IgG2a and human IgG1 in many nude and nu/+ mouse strains is due to low IgG2a serum concentrations. Cancer Immunol Immunother 46(1):25-33. [PubMed: 9520289]  [MGI Ref ID J:46350]

Ren X; Ye F; Jiang Z; Chu Y; Xiong S; Wang Y. 2007. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4(+)CD25(+) regulatory T cells. Cell Death Differ 14(12):2076-84. [PubMed: 17762882]  [MGI Ref ID J:142172]

Rival C; Samy E; Setiady Y; Tung K. 2013. Cutting edge: Ly49C/I(-) neonatal NK cells predispose newborns to autoimmune ovarian disease induced by maternal autoantibody. J Immunol 191(6):2865-9. [PubMed: 23960238]  [MGI Ref ID J:205867]

Rodriguez A; Friman T; Kowanetz M; van Wieringen T; Gustafsson R; Sundberg C. 2013. Phenotypical Differences in Connective Tissue Cells Emerging from Microvascular Pericytes in Response to Overexpression of PDGF-B and TGF-beta1 in Normal Skin in Vivo. Am J Pathol 182(6):2132-46. [PubMed: 23570836]  [MGI Ref ID J:197370]

Roggia C; Gao Y; Cenci S; Weitzmann MN; Toraldo G; Isaia G; Pacifici R. 2001. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A 98(24):13960-5. [PubMed: 11717453]  [MGI Ref ID J:125464]

Romano R; Palamaro L; Fusco A; Iannace L; Maio S; Vigliano I; Giardino G; Pignata C. 2012. From murine to human nude/SCID: the thymus, T-cell development and the missing link. Clin Dev Immunol 2012:467101. [PubMed: 22474479]  [MGI Ref ID J:202222]

Rygaard J; Friis CW. 1974. The husbandry of mice with congenital absence of the thymus (nude mice). Z Versuchstierkd 16(1):1-10. [PubMed: 4824478]  [MGI Ref ID J:5440]

Rygaard J; Povlsen CO. 1974. Effects of homozygosity of the nude (NU) gene in three inbred strains of mice. A detailed study of mice of three genetic backgrounds (BALB-c, C3H, C57-BL-6) with congenital absence of the thymus (nude mice) at a stage in the gene transfer. Acta Pathol Microbiol Scand [A] 82(1):48-70. [PubMed: 4827351]  [MGI Ref ID J:11938]

Rygaard J; Povlsen CO. 1974. The mouse mutant nude does not develop spontaneous tumours. An argument against immunological surveillance. Acta Pathol Microbiol Scand B Microbiol Immunol 82(1):99-106. [PubMed: 4597815]  [MGI Ref ID J:202811]

Sakaguchi S; Sakaguchi N; Asano M; Itoh M; Toda M. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151-64. [PubMed: 7636184]  [MGI Ref ID J:27186]

Sakai H; Sato T; Sakurai H; Yamamoto T; Hanaoka K; Montarras D; Sehara-Fujisawa A. 2013. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice. PLoS One 8(5):e63016. [PubMed: 23671652]  [MGI Ref ID J:202131]

Sakita K; Hoshi S; Ninomiya H; Inomata T. 1999. Underdevelopment of fetal thyroid follicular cells in athymic nude mouse (BALB/cAnNCrj-nu/nu) observed by electron microscopic morphometry. Exp Anim 48(1):47-50. [PubMed: 10067206]  [MGI Ref ID J:115224]

Saraswathy S; Nguyen AM; Rao NA. 2010. The role of TLR4 in photoreceptor {alpha}a crystallin upregulation during early experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 51(7):3680-6. [PubMed: 20207969]  [MGI Ref ID J:164096]

Saville SP; Lazzell AL; Chaturvedi AK; Monteagudo C; Lopez-Ribot JL. 2008. Use of a genetically engineered strain to evaluate the pathogenic potential of yeast cell and filamentous forms during Candida albicans systemic infection in immunodeficient mice. Infect Immun 76(1):97-102. [PubMed: 17967861]  [MGI Ref ID J:130296]

Schnell S; Demolliere C; van den Berk P; Kirberg J; Jacobs H. 2006. Constitutive expression of the pre-TCR enables development of mature T cells. Int Immunol 18(6):911-20. [PubMed: 16641111]  [MGI Ref ID J:109138]

Schoppy DW; Ragland RL; Gilad O; Shastri N; Peters AA; Murga M; Fernandez-Capetillo O; Diehl JA; Brown EJ. 2012. Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J Clin Invest 122(1):241-52. [PubMed: 22133876]  [MGI Ref ID J:184414]

Schumann J; Angermuller S; Bang R; Lohoff M; Tiegs G. 1998. Acute hepatotoxicity of Pseudomonas aeruginosa exotoxin A in mice depends on T cells and TNF. J Immunol 161(10):5745-54. [PubMed: 9820556]  [MGI Ref ID J:50903]

Seeley EJ; Barry SS; Narala S; Matthay MA; Wolters PJ. 2013. Noradrenergic Neurons Regulate Monocyte Trafficking and Mortality during Gram-Negative Peritonitis in Mice. J Immunol 190(9):4717-24. [PubMed: 23543756]  [MGI Ref ID J:195507]

Sentman CL; Olsson MY; Salcedo M; Hoglund P; Lendahl U; Kare K. 1994. H-2 allele-specific protection from NK cell lysis in vitro for lymphoblasts but not tumor targets. Protection mediated by alpha 1/alpha 2 domains. J Immunol 153(12):5482-90. [PubMed: 7989750]  [MGI Ref ID J:180044]

Sharara LI; Andersson A; Guy-Grand D; Fischer A; DiSanto JP. 1997. Deregulated TCR alpha beta T cell population provokes extramedullary hematopoiesis in mice deficient in the common gamma chain. Eur J Immunol 27(4):990-8. [PubMed: 9130655]  [MGI Ref ID J:40236]

Sharkey FE; Fogh J. 1979. Incidence and pathological features of spontaneous tumors in athymic nude mice. Cancer Res 39(3):833-9. [PubMed: 427772]  [MGI Ref ID J:91184]

Shen XD; Ke B; Zhai Y; Gao F; Anselmo D; Lassman CR; Busuttil RW; Kupiec-Weglinski JW. 2003. Stat4 and Stat6 signaling in hepatic ischemia/reperfusion injury in mice: HO-1 dependence of Stat4 disruption-mediated cytoprotection. Hepatology 37(2):296-303. [PubMed: 12540779]  [MGI Ref ID J:105818]

Shimamura K; Kawamura H; Nagura T; Kato T; Naito T; Kameyama H; Hatakeyama K; Abo T. 2005. Association of NKT cells and granulocytes with liver injury after reperfusion of the portal vein. Cell Immunol 234(1):31-8. [PubMed: 15963482]  [MGI Ref ID J:100654]

Shimo Y; Yanai H; Ohshima D; Qin J; Motegi H; Maruyama Y; Hori S; Inoue J; Akiyama T. 2011. TRAF6 directs commitment to regulatory T cells in thymocytes. Genes Cells 16(4):437-47. [PubMed: 21401811]  [MGI Ref ID J:186956]

Shisa H; Kojima A; Hiai H. 1986. Accelerating effect of nude gene heterozygosity on spontaneous AKR thymic lymphomagenesis. Jpn J Cancer Res 77(6):568-71. [PubMed: 3089990]  [MGI Ref ID J:91177]

Shultz LD; Ishikawa F; Greiner DL. 2007. Humanized mice in translational biomedical research. Nat Rev Immunol 7(2):118-30. [PubMed: 17259968]  [MGI Ref ID J:142414]

Smetana K Jr; Holub M; Funda D. 1991. Ossification in nude mice. 2. A histological, histochemical and immunohistochemical study [published erratum appears in APMIS 1992 Jan;100(1):70] APMIS 99(11):1024-30. [PubMed: 1793459]  [MGI Ref ID J:12665]

Smith E; von Vietinghoff S; Stark MA; Zarbock A; Sanders JM; Duley A; Rivera-Nieves J; Bender TP; Ley K. 2009. T-lineage cells require the thymus but not VDJ recombination to produce IL-17A and regulate granulopoiesis in vivo. J Immunol 183(9):5685-93. [PubMed: 19843951]  [MGI Ref ID J:156790]

Sodhi A; Chaisuparat R; Hu J; Ramsdell AK; Manning BD; Sausville EA; Sawai ET; Molinolo A; Gutkind JS; Montaner S. 2006. The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell 10(2):133-43. [PubMed: 16904612]  [MGI Ref ID J:112705]

Soong L; Chang CH; Sun J; Longley BJ Jr; Ruddle NH; Flavell RA; McMahon-Pratt D. 1997. Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. J Immunol 158(11):5374-83. [PubMed: 9164958]  [MGI Ref ID J:64283]

Sprecher E; Becker Y; Kraal G; Hall E; Shultz LD. 1990. Effect of genetically determined immunodeficiency on epidermal dendritic cell populations in C57BL/6J mice. Arch Dermatol Res 282(3):188-93. [PubMed: 2196000]  [MGI Ref ID J:116957]

Springfeld C; von Messling V; Frenzke M; Ungerechts G; Buchholz CJ; Cattaneo R. 2006. Oncolytic efficacy and enhanced safety of measles virus activated by tumor-secreted matrix metalloproteinases. Cancer Res 66(15):7694-700. [PubMed: 16885371]  [MGI Ref ID J:112101]

Squatrito M; Vanoli F; Schultz N; Jasin M; Holland EC. 2012. 53BP1 is a haploinsufficient tumor suppressor and protects cells from radiation response in glioma. Cancer Res 72(20):5250-60. [PubMed: 22915756]  [MGI Ref ID J:191806]

Stamatovic SM; Keep RF; Mostarica-Stojkovic M; Andjelkovic AV. 2006. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 177(4):2651-61. [PubMed: 16888027]  [MGI Ref ID J:138350]

Stecca B; Mas C; Clement V; Zbinden M; Correa R; Piguet V; Beermann F; Ruiz I Altaba A. 2007. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci U S A 104(14):5895-900. [PubMed: 17392427]  [MGI Ref ID J:120371]

Stewart TJ; Abrams SI. 2007. Altered immune function during long-term host-tumor interactions can be modulated to retard autochthonous neoplastic growth. J Immunol 179(5):2851-9. [PubMed: 17709499]  [MGI Ref ID J:128726]

Strait RT; Morris SC; Smiley K; Urban JF Jr; Finkelman FD. 2003. IL-4 exacerbates anaphylaxis. J Immunol 170(7):3835-42. [PubMed: 12646651]  [MGI Ref ID J:125442]

Stutman O. 1979. Spontaneous tumors in nude mice: effect of the viable yellow gene. Exp Cell Biol 47(2):129-35. [PubMed: 446837]  [MGI Ref ID J:101552]

Suematsu S; Matsusaka T; Matsuda T; Ohno S; Miyazaki J; Yamamura K; Hirano T; Kishimoto T. 1992. Generation of plasmacytomas with the chromosomal translocation t(12;15) in interleukin 6 transgenic mice. Proc Natl Acad Sci U S A 89(1):232-5. [PubMed: 1729694]  [MGI Ref ID J:40405]

Sundberg JP (ed.). 1994. Handbook of Mouse Mutations with Skin and Hair Abnormalities: Animal Models and Biomedical Tools. In: Handbook of Mouse Mutations with Skin and Hair Abnormalities: Animal Models and Biomedical Tools. CRC Press, Boca Raton.  [MGI Ref ID J:30359]

Suzuki H; Jeong KI; Doi K. 2001. Regional variations in the distributions of small intestinal intraepithelial lymphocytes (IELs) in BALB/c +/+, nu/+, and nu/nu mice. Comp Med 51(2):127-33. [PubMed: 11922175]  [MGI Ref ID J:115568]

Suzuki S; Matsubara S. 1975. Isolation of Friend leukemia virus resistant line from non-inbred mouse colony. Jpn J Exp Med 45(6):467-71. [PubMed: 1232463]  [MGI Ref ID J:93701]

Svane IM; Engel AM; Nielsen MB; Ljunggren HG; Rygaard J; Werdelin O. 1996. Chemically induced sarcomas from nude mice are more immunogenic than similar sarcomas from congenic normal mice. Eur J Immunol 26(8):1844-50. [PubMed: 8765030]  [MGI Ref ID J:34591]

Taguchi O; Takahashi T. 1996. Mouse models of autoimmune disease suggest that self-tolerance is maintained by unresponsive autoreactive T cells. Immunology 89(1):13-9. [PubMed: 8911134]  [MGI Ref ID J:35160]

Taieb J; Chaput N; Menard C; Apetoh L; Ullrich E; Bonmort M; Pequignot M; Casares N; Terme M; Flament C; Opolon P; Lecluse Y; Metivier D; Tomasello E; Vivier E; Ghiringhelli F; Martin F; Klatzmann D; Poynard T; Tursz T; Raposo G; Yagita H; Ryffel B; Kroemer G; Zitvogel L. 2006. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 12(2):214-9. [PubMed: 16444265]  [MGI Ref ID J:105774]

Takahama Y; Shores EW; Singer A. 1992. Negative selection of precursor thymocytes before their differentiation into CD4+CD8+ cells. Science 258(5082):653-6. [PubMed: 1357752]  [MGI Ref ID J:127343]

Takahashi Y; Shimizu A; Sakai T; Endo Y; Osawa N; Shisa H; Honjo T. 1992. Mapping of the nu gene using congenic nude strains and in situ hybridization. J Exp Med 175(3):873-6. [PubMed: 1346798]  [MGI Ref ID J:1905]

Takeuchi T; Ueki T; Sasaki Y; Kajiwara T; Li B; Moriyama N; Kawabe K. 1997. Th2-like response and antitumor effect of anti-interleukin-4 mAb in mice bearing renal cell carcinoma. Cancer Immunol Immunother 43(6):375-81. [PubMed: 9067410]  [MGI Ref ID J:38994]

Tavares D; Ferreira P; Arala-Chaves M. 2000. Increased resistance to systemic candidiasis in athymic or interleukin-10-depleted mice. J Infect Dis 182(1):266-73. [PubMed: 10882606]  [MGI Ref ID J:135875]

Tchaicha JH; Mobley AK; Hossain MG; Aldape KD; McCarty JH. 2010. A mosaic mouse model of astrocytoma identifies alphavbeta8 integrin as a negative regulator of tumor angiogenesis. Oncogene 29(31):4460-72. [PubMed: 20531304]  [MGI Ref ID J:168377]

Teitz T; Stanke JJ; Federico S; Bradley CL; Brennan R; Zhang J; Johnson MD; Sedlacik J; Inoue M; Zhang ZM; Frase S; Rehg JE; Hillenbrand CM; Finkelstein D; Calabrese C; Dyer MA; Lahti JM. 2011. Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS One 6(4):e19133. [PubMed: 21559450]  [MGI Ref ID J:172448]

Terabe M; Hatabu T; Takahashi H; Ito M; Onodera T; Matsumoto Y. 1999. Leishmania amazonensis infection in nude mice. Exp Anim 48(2):119-23. [PubMed: 10374074]  [MGI Ref ID J:55663]

Terme M; Ullrich E; Aymeric L; Meinhardt K; Desbois M; Delahaye N; Viaud S; Ryffel B; Yagita H; Kaplanski G; Prevost-Blondel A; Kato M; Schultze JL; Tartour E; Kroemer G; Chaput N; Zitvogel L. 2011. IL-18 Induces PD-1-Dependent Immunosuppression in Cancer. Cancer Res 71(16):5393-5399. [PubMed: 21724589]  [MGI Ref ID J:175445]

Tessmer MS; Reilly EC; Brossay L. 2011. Salivary gland NK cells are phenotypically and functionally unique. PLoS Pathog 7(1):e1001254. [PubMed: 21249177]  [MGI Ref ID J:172475]

Tiberghien F; Ceredig R; Loor F. 1994. Influence of the lpr environment on the lymph node cell phenotypes in C57BL/6 nubg and nulpr chimeras. Immunology 83(4):552-61. [PubMed: 7875735]  [MGI Ref ID J:21826]

Tsukamoto N; Itoi M; Nishikawa M; Amagai T. 2005. Lack of Delta like 1 and 4 expressions in nude thymus anlages. Cell Immunol 234(2):77-80. [PubMed: 16095582]  [MGI Ref ID J:100511]

Van Oudenaren A; Haaijman JJ; Benner R. 1984. Frequencies of background cytoplasmic Ig-containing cells in various lymphoid organs of athymic and euthymic mice as a function of age and immune status. Immunology 51(4):735-42. [PubMed: 6231241]  [MGI Ref ID J:202308]

Van Oudenaren A; Haaijman JJ; Benner R. 1981. Frequencies of background cytoplasmic Ig-containing cells in various lymphoid organs of athymic asplenic (lasat), athymic, asplenic and normal BALB/c mice. Immunology 42(3):437-44. [PubMed: 7009414]  [MGI Ref ID J:202307]

Van Vilet E; Jenkinson EJ; Kingston R; Owen JJ; Van Ewijk W. 1985. Stromal cell types in the developing thymus of the normal and nude mouse embryo. Eur J Immunol 15(7):675-81. [PubMed: 4007044]  [MGI Ref ID J:7898]

VanCott JL; McNeal MM; Flint J; Bailey SA; Choi AH; Ward RL. 2001. Role for T cell-independent B cell activity in the resolution of primary rotavirus infection in mice. Eur J Immunol 31(11):3380-7. [PubMed: 11745356]  [MGI Ref ID J:72616]

Veinotte LL; Greenwood CP; Mohammadi N; Parachoniak CA; Takei F. 2006. Expression of rearranged TCRgamma genes in natural killer cells suggests a minor thymus-dependent pathway of lineage commitment. Blood 107(7):2673-9. [PubMed: 16317098]  [MGI Ref ID J:131242]

Veinotte LL; Halim TY; Takei F. 2008. Unique subset of natural killer cells develops from progenitors in lymph node. Blood 111(8):4201-8. [PubMed: 18227350]  [MGI Ref ID J:134359]

Veiseh M; Gabikian P; Bahrami SB; Veiseh O; Zhang M; Hackman RC; Ravanpay AC; Stroud MR; Kusuma Y; Hansen SJ; Kwok D; Munoz NM; Sze RW; Grady WM; Greenberg NM; Ellenbogen RG; Olson JM. 2007. Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 67(14):6882-8. [PubMed: 17638899]  [MGI Ref ID J:123166]

Vosshenrich CA; Sharara LI; Guy-Grand D; Rajewsky K; Muller W; Di Santo JP. 2000. Common cytokine receptor gamma chain (gammac)-deficient B cells persist in T cell-deficient gammac-mice and respond to a T-independent antigen. Eur J Immunol 30(6):1614-22. [PubMed: 10898497]  [MGI Ref ID J:62730]

Wang L; Whang N; Wuerffel R; Kenter AL. 2006. AID-dependent histone acetylation is detected in immunoglobulin S regions. J Exp Med 203(1):215-26. [PubMed: 16418396]  [MGI Ref ID J:118787]

Wang Q; Huang C; Zeng F; Xue M; Zhang X. 2010. Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair. Am J Pathol 177(6):3100-11. [PubMed: 20971735]  [MGI Ref ID J:167645]

Warner T; Balish E. 1995. Pulmonary alveolar proteinosis. A spontaneous and inducible disease in immunodeficient germ-free mice. Am J Pathol 146(4):1017-24. [PubMed: 7717446]  [MGI Ref ID J:24415]

Weiner L; Han R; Scicchitano BM; Li J; Hasegawa K; Grossi M; Lee D; Brissette JL. 2007. Dedicated epithelial recipient cells determine pigmentation patterns. Cell 130(5):932-42. [PubMed: 17803914]  [MGI Ref ID J:145115]

Wiedemeyer WR; Dunn IF; Quayle SN; Zhang J; Chheda MG; Dunn GP; Zhuang L; Rosenbluh J; Chen S; Xiao Y; Shapiro GI; Hahn WC; Chin L. 2010. Pattern of retinoblastoma pathway inactivation dictates response to CDK4/6 inhibition in GBM. Proc Natl Acad Sci U S A 107(25):11501-6. [PubMed: 20534551]  [MGI Ref ID J:161377]

Williams CL; Schilling MM; Cho SH; Lee K; Wei M; Aditi; Boothby M. 2013. STAT4 and T-bet are required for the plasticity of IFN-gamma expression across Th2 ontogeny and influence changes in Ifng promoter DNA methylation. J Immunol 191(2):678-87. [PubMed: 23761633]  [MGI Ref ID J:204820]

Woo SH; Stumpfova M; Jensen UB; Lumpkin EA; Owens DM. 2010. Identification of epidermal progenitors for the Merkel cell lineage. Development 137(23):3965-71. [PubMed: 21041368]  [MGI Ref ID J:166901]

Wortis HH. 1971. Immunological responses of 'nude' mice. Clin Exp Immunol 8(2):305-17. [PubMed: 4929778]  [MGI Ref ID J:202299]

Wuthrich M; Filutowicz HI; Warner T; Klein BS. 2002. Requisite elements in vaccine immunity to Blastomyces dermatitidis: plasticity uncovers vaccine potential in immune-deficient hosts. J Immunol 169(12):6969-76. [PubMed: 12471131]  [MGI Ref ID J:118419]

Yamashita M; Kuwahara M; Suzuki A; Hirahara K; Shinnaksu R; Hosokawa H; Hasegawa A; Motohashi S; Iwama A; Nakayama T. 2008. Bmi1 regulates memory CD4 T cell survival via repression of the Noxa gene. J Exp Med 205(5):1109-20. [PubMed: 18411339]  [MGI Ref ID J:136278]

Yoshida S; Mohamed RH; Kajikawa M; Koizumi J; Tanaka M; Fugo K; Otsuka N; Maenaka K; Yagita H; Chiba H; Kasahara M. 2012. Involvement of an NKG2D ligand H60c in epidermal dendritic T cell-mediated wound repair. J Immunol 188(8):3972-9. [PubMed: 22403443]  [MGI Ref ID J:184082]

Yoshimatsu M; Kitaura H; Fujimura Y; Eguchi T; Kohara H; Morita Y; Yoshida N. 2009. IL-12 inhibits TNF-alpha induced osteoclastogenesis via a T cell-independent mechanism in vivo. Bone 45(5):1010-6. [PubMed: 19651258]  [MGI Ref ID J:154391]

Young NP; Crowley D; Jacks T. 2011. Uncoupling Cancer Mutations Reveals Critical Timing of p53 Loss in Sarcomagenesis. Cancer Res 71(11):4040-7. [PubMed: 21512139]  [MGI Ref ID J:172206]

Zhang G; Peng Y; Schoenlaub L; Elliott A; Mitchell W; Zhang Y. 2013. Formalin-inactivated Coxiella burnetii phase I vaccine-induced protection depends on B cells to produce protective IgM and IgG. Infect Immun 81(6):2112-22. [PubMed: 23545296]  [MGI Ref ID J:199523]

Zhang H; Li H; Li Y; Zou Y; Dong X; Song W; Jia C; Li S; Xi H; Liu D; Wang Y. 2013. IL-17 plays a central role in initiating experimental Candida albicans infection in mouse corneas. Eur J Immunol 43(10):2671-82. [PubMed: 23843112]  [MGI Ref ID J:201669]

Zhang L; Tinkle SS. 2000. Chemical activation of innate and specific immunity in contact dermatitis. J Invest Dermatol 115(2):168-76. [PubMed: 10951232]  [MGI Ref ID J:63936]

Zhang S; Chitu V; Stanley ER; Elliott BE; Greer PA. 2011. Fes tyrosine kinase expression in the tumor niche correlates with enhanced tumor growth, angiogenesis, circulating tumor cells, metastasis, and infiltrating macrophages. Cancer Res 71(4):1465-73. [PubMed: 21159660]  [MGI Ref ID J:169322]

Zhang Z; Burnley P; Coder B; Su DM. 2012. Insights on FoxN1 biological significance and usages of the "nude" mouse in studies of T-lymphopoiesis. Int J Biol Sci 8(8):1156-67. [PubMed: 23091413]  [MGI Ref ID J:202298]

Zhao L; Hart S; Cheng J; Melenhorst JJ; Bierie B; Ernst M; Stewart C; Schaper F; Heinrich PC; Ullrich A; Robinson GW; Hennighausen L. 2004. Mammary gland remodeling depends on gp130 signaling through Stat3 and MAPK. J Biol Chem 279(42):44093-100. [PubMed: 15292206]  [MGI Ref ID J:93986]

Zhu M; Chin RK; Christiansen PA; Lo JC; Liu X; Ware C; Siebenlist U; Fu YX. 2006. NF-kappaB2 is required for the establishment of central tolerance through an Aire-dependent pathway. J Clin Invest 116(11):2964-71. [PubMed: 17039258]  [MGI Ref ID J:115011]

Zwar TD; Read S; van Driel IR; Gleeson PA. 2006. CD4+CD25+ regulatory T cells inhibit the antigen-dependent expansion of self-reactive T cells in vivo. J Immunol 176(3):1609-17. [PubMed: 16424190]  [MGI Ref ID J:126622]

del Real G; Llorente M; Lucas P; Kremer L; Toran JL; Martinez-A C. 1999. Antibody repertoire against HIV-1 gp120 triggered in nude and normal mice by GM-CSF/gp120 immunization. Mol Immunol 36(11-12):721-31. [PubMed: 10593511]  [MGI Ref ID J:58360]

von Herrath MG; Dockter J; Oldstone MB. 1994. How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1(3):231-42. [PubMed: 7889411]  [MGI Ref ID J:81287]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX30

Colony Maintenance

Breeding & HusbandryThe immunodeficiencies of homozygous Foxn1nu make them highly susceptible to disease and indigenous organisms. Consequently it is preferable to maintain them in defined-flora or pathogen-free environments. Using proper housing techniques can increase the lifespan of nude to one similar to that of normal littermates. Culling extra normal littermates may increase the survival rate of the homozygous Foxn1nu. However, do not decrease litter size below five (or it may cause a decrease in lactation of nursing female). Homozygotes can be distinguished from heterozygous siblings by whisker formation.
Mating SystemHeterozygote x Heterozygote         (Female x Male)   21-AUG-08
Breeding Considerations This strain is a challenging breeder.
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)GenderGenotypes Provided
6 weeks $203.50Female or MaleHeterozygous for Foxn1nu  
7 weeks $207.55Female or MaleHeterozygous for Foxn1nu  
8 weeks $211.65Female or MaleHeterozygous for Foxn1nu  
9 weeks $215.75Female or MaleHeterozygous for Foxn1nu  
10 weeks $219.80Female or MaleHeterozygous for Foxn1nu  
11 weeks $223.90Female or MaleHeterozygous for Foxn1nu  
12 weeks $228.00Female or MaleHeterozygous for Foxn1nu  
4 weeks $199.40Female or MaleHomozygous for Foxn1nu  
5 weeks $199.40Female or MaleHomozygous for Foxn1nu  
6 weeks $203.50Female or MaleHomozygous for Foxn1nu  
7 weeks $207.55Female or MaleHomozygous for Foxn1nu  
8 weeks $211.65Female or MaleHomozygous for Foxn1nu  
9 weeks $215.75Female or MaleHomozygous for Foxn1nu  
10 weeks $219.80Female or MaleHomozygous for Foxn1nu  
11 weeks $223.90Female or MaleHomozygous for Foxn1nu  
12 weeks $228.00Female or MaleHomozygous for Foxn1nu  
Price per Pair (US dollars $)Pair Genotype
$407.00Heterozygous for Foxn1nu x Heterozygous for Foxn1nu  

Standard Supply

Level 4. Up to 10 mice. Larger quantities or custom orders arranged upon request. Expected delivery up to one to three months.

Supply Notes

  • For Heterozygous mice only, this strain ships with a JAXTagTM affixed. Learn more about JAXTagTM.
  • Shipped at a specific age in weeks. Mice at a precise age in days, littermates and retired breeders are also available.
Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)GenderGenotypes Provided
6 weeks $264.60Female or MaleHeterozygous for Foxn1nu  
7 weeks $269.90Female or MaleHeterozygous for Foxn1nu  
8 weeks $275.20Female or MaleHeterozygous for Foxn1nu  
9 weeks $280.50Female or MaleHeterozygous for Foxn1nu  
10 weeks $285.80Female or MaleHeterozygous for Foxn1nu  
11 weeks $291.10Female or MaleHeterozygous for Foxn1nu  
12 weeks $296.40Female or MaleHeterozygous for Foxn1nu  
4 weeks $259.30Female or MaleHomozygous for Foxn1nu  
5 weeks $259.30Female or MaleHomozygous for Foxn1nu  
6 weeks $264.60Female or MaleHomozygous for Foxn1nu  
7 weeks $269.90Female or MaleHomozygous for Foxn1nu  
8 weeks $275.20Female or MaleHomozygous for Foxn1nu  
9 weeks $280.50Female or MaleHomozygous for Foxn1nu  
10 weeks $285.80Female or MaleHomozygous for Foxn1nu  
11 weeks $291.10Female or MaleHomozygous for Foxn1nu  
12 weeks $296.40Female or MaleHomozygous for Foxn1nu  
Price per Pair (US dollars $)Pair Genotype
$529.10Heterozygous for Foxn1nu x Heterozygous for Foxn1nu  

Standard Supply

Level 4. Up to 10 mice. Larger quantities or custom orders arranged upon request. Expected delivery up to one to three months.

Supply Notes

  • For Heterozygous mice only, this strain ships with a JAXTagTM affixed. Learn more about JAXTagTM.
  • Strains that require genotyping are only offered at five weeks of age and older. The time required for sample collection, assay, reporting, and completion of USDA documentation required for international purchases make distribution of younger mice prohibitive. Mice at a precise age in days, littermates and retired breeders are also available. Mice older than 10 weeks of age can be requested by contacting JAX® Mice & Services.
View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Level 4. Up to 10 mice. Larger quantities or custom orders arranged upon request. Expected delivery up to one to three months.

Control Information

  Control
   Heterozygote from the colony
   Untyped from the colony
   000664 C57BL/6J
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.5)