Strain Name:

B6C3Fe a/a-Agtpbp1pcd/J

Stock Number:

001037

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names B6C3Fe-a/a-Agtpbp1pcd/+    (Changed: 15-DEC-04 )
B6C3Fe-a/a-Nna1pcd/+    (Changed: 15-DEC-04 )
Type Mutant Strain; Spontaneous Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Specieslaboratory mouse
GenerationN14 F2p
Generation Definitions

Appearance
black, ataxic
Related Genotype: a/a Agtpbp1pcd/Agtpbp1pcd

black, unaffected
Related Genotype: a/a Agtpbp1pcd/+ or a/a ?/+

Description
Mice homozygous for the Purkinje cell degeneration spontaneous mutation (pcd) show a moderate ataxia beginning at 3 to 4 weeks. Homozygous mutant mice are somewhat smaller than normal but may live a fairly normal life span. Males have abnormal sperm and are sterile. Females are fertile but are poor breeders. There is rapid degeneration of nearly all Purkinje cells beginning at 15 to 18 days, and a slower degeneration of the photoreceptor cells of the retina and mitral cells of the olfactory bulb. Degeneration of Purkinje cells is followed by partial loss of granule cells. Discrete serotonin-immunoreactive fibers, which ascend to all three layers of the cerebellar cortex in normal controls, are of much higher density and form multidirectional contours in homozygotes. In the retina of homozygous mutant mice, pycnotic nuclei begin to appear in the photoreceptor cells between 18 and 25 days, and the outer rod segments become disorganized. Degeneration of the photoreceptor cells proceeds slowly to completeness over the course of a year.

Control Information

  Control
   Untyped from the colony
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Agtpbp1pcd allele
000537   B6.BR-Agtpbp1pcd/J
View Strains carrying   Agtpbp1pcd     (1 strain)

Strains carrying   a allele
003879   B10;TFLe-a/a T Itpr3tf/+ Itpr3tf/J
001538   B6 x B6C3Sn a/A-T(1;9)27H/J
000916   B6 x B6C3Sn a/A-T(5;12)31H/J
000602   B6 x B6C3Sn a/A-T(8;16)17H/J
000618   B6 x FSB/GnEi a/a Ctslfs/J
000577   B6 x STOCK a Oca2p Hps5ru2 Ednrbs/J
000601   B6 x STOCK a/a T(7;18)50H/J
000592   B6 x STOCK T(2;4)13H a/J
014608   B6;129S1-a Kitlsl-24J/GrsrJ
000231   B6;C3Fe a/a-Csf1op/J
000785   B6;D2-a Ces1ce/EiJ
000604   B6C3 a/A-T(10;13)199H +/+ Lystbg-J/J or Lystbg-2J/J
001750   B6C3Fe a/a-Eif3cXs-J/J
002807   B6C3Fe a/a-Meox2fla/J
000506   B6C3Fe a/a-Qkqk-v/J
000224   B6C3Fe a/a-Scyl1mdf/J
003020   B6C3Fe a/a-Zdhhc21dep/J
000221   B6C3Fe a/a-Alx4lst-J/J
002062   B6C3Fe a/a-Atp7aMo-8J/J
001756   B6C3Fe a/a-Cacng2stg/J
001815   B6C3Fe a/a-Col1a2oim/J
000209   B6C3Fe a/a-Dh/J
000211   B6C3Fe a/a-Dstdt-J/J
000210   B6C3Fe a/a-Edardl-J/J
000207   B6C3Fe a/a-Edaraddcr/J
000182   B6C3Fe a/a-Eef1a2wst/J
001278   B6C3Fe a/a-Glra1spd/J
000241   B6C3Fe a/a-Glrbspa/J
002875   B6C3Fe a/a-Hoxd13spdh/J
000304   B6C3Fe a/a-Krt71Ca Scn8amed-J/J
000226   B6C3Fe a/a-Largemyd/J
000636   B6C3Fe a/a-Lmx1adr-J/J
001280   B6C3Fe a/a-Lse/J
001573   B6C3Fe a/a-MitfMi/J
001035   B6C3Fe a/a-Napahyh/J
000181   B6C3Fe a/a-Otogtwt/J
000278   B6C3Fe a/a-Papss2bm Hps1ep Hps6ru/J
000205   B6C3Fe a/a-Papss2bm/J
002078   B6C3Fe a/a-Pcdh15av-2J/J
000246   B6C3Fe a/a-Pitpnavb/J
001430   B6C3Fe a/a-Ptch1mes/J
000235   B6C3Fe a/a-Relnrl/J
000237   B6C3Fe a/a-Rorasg/J
000290   B6C3Fe a/a-Sox10Dom/J
000230   B6C3Fe a/a-Tcirg1oc/J
003612   B6C3Fe a/a-Trak1hyrt/J
001512   B6C3Fe a/a-Ttnmdm/J
001607   B6C3Fe a/a-Unc5crcm/J
000005   B6C3Fe a/a-Wc/J
000243   B6C3Fe a/a-Wnt1sw/J
000248   B6C3Fe a/a-Xpl/J
000624   B6C3Fe a/a-anx/J
008044   B6C3Fe a/a-bpck/J
002018   B6C3Fe a/a-din/J
002339   B6C3Fe a/a-nma/J
000240   B6C3Fe a/a-soc/J
000063   B6C3Fe a/a-sy/J
001055   B6C3Fe a/a-tip/J
000245   B6C3Fe a/a-tn/J
000296   B6C3Fe-a/a Hoxa13Hd Mcoln3Va-J/J
000019   B6C3Fe-a/a-Itpr1opt/J
001022   B6C3FeF1/J a/a
006450   B6EiC3 a/A-Vss/GrsrJ
000971   B6EiC3 a/A-Och/J
000551   B6EiC3 a/A-Tbx15de-H/J
000557   B6EiC3-+ a/LnpUl A/J
000503   B6EiC3Sn a/A-Gy/J
001811   B6EiC3Sn a/A-Otcspf-ash/J
002343   B6EiC3Sn a/A-Otcspf/J
000391   B6EiC3Sn a/A-Pax6Sey-Dey/J
001923   B6EiC3Sn a/A-Ts(417)2Lws TimT(4;17)3Lws/J
000225   C3FeLe.B6 a/a-Ptpn6me/J
000198   C3FeLe.B6-a/J
000291   C3FeLe.Cg-a/a Hm KitlSl Krt71Ca-J/J
001886   C3HeB/FeJLe a/a-gnd/J
000584   C57BL/6J-+ T(1;2)5Ca/a +/J
000670   DBA/1J
000671   DBA/2J
001057   HPT/LeJ
000260   JGBF/LeJ
000265   MY/HuLeJ
000308   SSL/LeJ
000994   STOCK a Myo5ad Mregdsu/J
000064   STOCK a Tyrp1b Pmelsi/J
002238   STOCK a Tyrp1b shmy/J
001433   STOCK a skt/J
000579   STOCK a tp/J
000319   STOCK a us/J
002648   STOCK a/a Cln6nclf/J
000317   STOCK a/a Egfrwa2/J
000302   STOCK a/a MitfMi-wh +/+ Itpr1opt/J
000286   STOCK a/a Myo5ad fd/+ +/J
000281   STOCK a/a Tmem79ma Flgft/J
000206   STOCK a/a Tyrc-h/J
001432   STOCK a/a Tyrp1b Ndc1sks/Tyrp1b +/J
000312   STOCK stb + a/+ Fignfi a/J
000596   STOCK T(2;11)30H/+ x AEJ-a Gdf5bp-H/J or A/J-a Gdf5bp-J/J
000970   STOCK T(2;16)28H A/T(2;16)28H a/J
000590   STOCK T(2;4)1Sn a/J
000594   STOCK T(2;8)26H a/T(2;8)26H a Tyrp1+/Tyrp1b/J
000623   TR/DiEiJ
View Strains carrying   a     (101 strains)

Strains carrying other alleles of Agtpbp1
005348   BALB/cByJ Agtpbp1pcd-3J-Bmp5cfe-se6J/GrsrJ
003237   BALB/cByJ-Agtpbp1pcd-3J/J
005011   C57BL/6J-Agtpbp1pcd-6J/J
004518   DBA/2J-Agtpbp1pcd-5J/GrsrJ
View Strains carrying other alleles of Agtpbp1     (4 strains)

Strains carrying other alleles of a
002655   Mus pahari/EiJ
000251   AEJ.Cg-ae +/a Gdf5bp-H/J
000202   AEJ/Gn-bd/J
000199   AEJ/GnLeJ
000433   B10.C-H3c H13? A/(28NX)SnJ
000427   B10.CE-H13b Aw/(30NX)SnJ
000423   B10.KR-H13? A/SnJ
000420   B10.LP-H13b Aw/Sn
000477   B10.PA-Bloc1s6pa H3e at/SnJ
000419   B10.UW-H3b we Pax1un at/SnJ
000593   B6 x B6CBCa Aw-J/A-Grid2Lc T(2;6)7Ca MitfMi-wh/J
000502   B6 x B6CBCa Aw-J/A-Myo5aflr Gnb5flr/J
000599   B6 x B6CBCa Aw-J/A-T(5;13)264Ca KitW-v/J
002083   B6 x B6EiC3 a/A-T(7;16)235Dn/J
000507   B6 x B6EiC3 a/A-Otcspf/J
003759   B6 x B6EiC3Sn a/A-T(10;16)232Dn/J
002071   B6 x B6EiC3Sn a/A-T(11;17)202Dn/J
002113   B6 x B6EiC3Sn a/A-T(11A2;16B3)238Dn/J
002068   B6 x B6EiC3Sn a/A-T(11B1;16B5)233Dn/J
002069   B6 x B6EiC3Sn a/A-T(14E4or5;16B5)225Dn/J
001926   B6 x B6EiC3Sn a/A-T(15;16)198Dn/J
001832   B6 x B6EiC3Sn a/A-T(15E;16B1)60Dn/J
003758   B6 x B6EiC3Sn a/A-T(16C3-4;17A2)65Dn/J
001833   B6 x B6EiC3Sn a/A-T(1C2;16C3)45Dn/J
001903   B6 x B6EiC3Sn a/A-T(6F;18C)57Dn/J
001535   B6 x B6EiC3Sn a/A-T(8A4;12D1)69Dn/J
001831   B6 x B6EiC3Sn a/A-T(8C3;16B5)164Dn/J
002016   B6(Cg)-Aw-J EdaTa-6J Chr YB6-Sxr/EiJ
000600   B6-Gpi1b x B6CBCa Aw-J/A-T(7;15)9H Gpi1a/J
000769   B6.C/(HZ18)By-at-44J/J
000203   B6.C3-Aiy/a/J
000017   B6.C3-Avy/J
001572   B6.C3-am-J/J
000628   B6.CE-A Amy1b Amy2a5b/J
001809   B6.Cg-Aw-J EdaTa-6J +/+ ArTfm/J
000552   B6.Cg-Aw-J EdaTa-6J Sxr
001730   B6.Cg-Aw-J EdaTa-6J Sxrb Hya-/J
000841   B6.Cg-Aw-J EdaTa-By/J
000021   B6.Cg-Ay/J
100409   B6129PF1/J-Aw-J/Aw
004200   B6;CBACa Aw-J/A-Npr2cn-2J/GrsrJ
000505   B6C3 Aw-J/A-Bloc1s5mu/J
000604   B6C3 a/A-T(10;13)199H +/+ Lystbg-J/J or Lystbg-2J/J
000065   B6C3Fe a/a-we Pax1un at/J
003301   B6C3FeF1 a/A-Eya1bor/J
000314   B6CBACa Aw-J/A-EdaTa/J-XO
000501   B6CBACa Aw-J/A-Aifm1Hq/J
001046   B6CBACa Aw-J/A-Grid2Lc/J
000500   B6CBACa Aw-J/A-Gs/J
002703   B6CBACa Aw-J/A-Hydinhy3/J
000247   B6CBACa Aw-J/A-Kcnj6wv/J
000287   B6CBACa Aw-J/A-Plp1jp EdaTa/J
000515   B6CBACa Aw-J/A-SfnEr/J
000242   B6CBACa Aw-J/A-spc/J
000288   B6CBACa Aw-J/A-we a Mafbkr/J
001201   B6CBACaF1/J-Aw-J/A
006450   B6EiC3 a/A-Vss/GrsrJ
000557   B6EiC3-+ a/LnpUl A/J
000504   B6EiC3Sn a/A-Cacnb4lh/J
000553   B6EiC3Sn a/A-Egfrwa2 Wnt3avt/J
001811   B6EiC3Sn a/A-Otcspf-ash/J
002343   B6EiC3Sn a/A-Otcspf/J
001923   B6EiC3Sn a/A-Ts(417)2Lws TimT(4;17)3Lws/J
001875   B6EiC3SnF1/J
000638   C3FeB6 A/Aw-J-Sptbn4qv-J/J
000200   C3FeB6 A/Aw-J-Ankank/J
001203   C3FeB6F1/J A/Aw-J
001272   C3H/HeSnJ-Ahvy/J
000099   C3HeB/FeJ-Avy/J
000338   C57BL/6J Aw-J-EdaTa-6J/J
000258   C57BL/6J-Ai/a/J
000774   C57BL/6J-Asy/a/J
000569   C57BL/6J-Aw-J-EdaTa +/+ ArTfm/J
000051   C57BL/6J-Aw-J/J
000055   C57BL/6J-at-33J/J
000070   C57BL/6J-atd/J
002468   KK.Cg-Ay/J
000262   LS/LeJ
000283   LT.CAST-A/J
001759   STOCK A Tyrc Sha/J
001427   STOCK Aw us/J
001145   WSB/EiJ
View Strains carrying other alleles of a     (82 strains)

Phenotype

Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Agtpbp1pcd/Agtpbp1pcd

        involves: C57BR/cdJ * CBA
  • behavior/neurological phenotype
  • ataxia
    • age of onset, 3 - 4 weeks   (MGI Ref ID J:5613)
  • nervous system phenotype
  • abnormal cerebellar Purkinje cell layer
    • symmetrical regions of more resistant cells but most disappear eventually   (MGI Ref ID J:106414)
    • climbing fibers never contact Purkinje cells   (MGI Ref ID J:23733)
    • Purkinje cell degeneration
      • age of onset, 15 - 18 days   (MGI Ref ID J:5613)
    • abnormal Purkinje cell dendrite morphology
      • atrophic dendritic trees   (MGI Ref ID J:23733)
    • decreased Purkinje cell number
      • cell loss begins at 3 weeks of age and progresses rapidly   (MGI Ref ID J:106414)
      • about 1% of initial population remains at 2 months of age   (MGI Ref ID J:106414)
  • abnormal cerebellar granule layer morphology
    • granule cell degeneration, partial loss following Purkinje cell degeneration   (MGI Ref ID J:5613)
  • abnormal olfactory bulb morphology
    • olfactory mitral cell degeneration, slow and progressive   (MGI Ref ID J:5613)
  • abnormal thalamus morphology
    • thalamic neuronal degeneration, age of onset 50 - 60 days   (MGI Ref ID J:5613)
  • retinal photoreceptor degeneration
    • photoreceptor cell degeneration, age of onset, 18 - 25 days   (MGI Ref ID J:5613)
    • complete over the course of 1 year   (MGI Ref ID J:5613)
  • vision/eye phenotype
  • retinal photoreceptor degeneration
    • photoreceptor cell degeneration, age of onset, 18 - 25 days   (MGI Ref ID J:5613)
    • complete over the course of 1 year   (MGI Ref ID J:5613)
  • reproductive system phenotype
  • abnormal male germ cell morphology
    • of the few sperm found, these were degenerated   (MGI Ref ID J:5613)
    • oligozoospermia   (MGI Ref ID J:5613)
  • asthenozoospermia   (MGI Ref ID J:5613)
  • male infertility   (MGI Ref ID J:5613)
  • reduced female fertility
    • females were poor breeders   (MGI Ref ID J:5613)

Agtpbp1pcd/Agtpbp1pcd

        involves: C57BR/cdJ
  • nervous system phenotype
  • abnormal cochlear VIII nucleus morphology
    • few cartwheel cells in the dorsal cochlear nucleus   (MGI Ref ID J:121314)
  • decreased Purkinje cell number
    • few Purkinje cell   (MGI Ref ID J:121314)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Agtpbp1pcd related

Neurobiology Research
Ataxia (Movement) Defects
Cerebellar Defects
      Purkinje cell defect
Neurodegeneration

Sensorineural Research
Retinal Degeneration

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Agtpbp1pcd
Allele Name Purkinje cell degeneration
Allele Type Spontaneous (Not Specified)
Common Name(s) Nna1pcd; pcd; pcd1J;
Strain of OriginC57BR/cdJ
Gene Symbol and Name Agtpbp1, ATP/GTP binding protein 1
Chromosome 13
Gene Common Name(s) 1700020N17Rik; 2310001G17Rik; 2900054O13Rik; 4930445M19Rik; 5730402G09Rik; BB114605; CCP1; NNA1; Purkinje cell degeneration; RIKEN cDNA 1700020N17 gene; RIKEN cDNA 2310001G17 gene; RIKEN cDNA 2900054O13 gene; RIKEN cDNA 4930445M19 gene; RIKEN cDNA 5730402G09 gene; expressed sequence BB114605; nmf243; pcd;
Molecular Note No overt mutations were noted in the coding region for this allele. Northern analysis failed to detect transcript in all tissues except for testis, where reduced levels were noted. Authors note that the mutation is likely in a regulatory region of the gene. [MGI Ref ID J:74929]
 
Allele Symbol a
Allele Name nonagouti
Allele Type Spontaneous
Strain of Originold mutant of the mouse fancy
Gene Symbol and Name a, nonagouti
Chromosome 2
Gene Common Name(s) AGSW; AGTI; AGTIL; ASP; As; SHEP9; agouti; agouti signal protein; agouti suppressor;
General Note Phenotypic Similarity to Human Syndrome: Metabolic Syndrome in mice homozygous for Apoetm1Unc and heterozygous for Ay and a (J:177084)
Molecular Note Characterization of this allele shows an insertion of DNA comprised of a 5.5kb virus-like element, VL30, into the first intron of the agouti gene. The VL30 element itself contains an additional 5.5 kb sequence, flanked by 526 bp of direct repeats. The host integration site is the same as for at-2Gso and Aw-38J and includes a duplication of four nucleotides of host DNA and a deletion of 2 bp from the end of each repeat. Northern analysis of mRNA from skin of homozygotes shows a smaller agouti message and levels 8 fold lower than found in wild-type. [MGI Ref ID J:16984] [MGI Ref ID J:24934]

Genotyping

Genotyping Information


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Additional References

Chang B; Hawes NL; Hurd RE; Davisson MT; Nusinowitz S; Heckenlively JR. 2002. Retinal degeneration mutants in the mouse. Vision Res 42(4):517-25. [PubMed: 11853768]  [MGI Ref ID J:75095]

Fernandez-Gonzalez A; La Spada AR; Treadaway J; Higdon JC; Harris BS; Sidman RL; Morgan JI; Zuo J. 2002. Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295(5561):1904-6. [PubMed: 11884758]  [MGI Ref ID J:74929]

Harris A; Morgan JI; Pecot M; Soumare A; Osborne A; Soares HD. 2000. Regenerating motor neurons express Nna1, a novel ATP/GTP-binding protein related to zinc carboxypeptidases. Mol Cell Neurosci 16(5):578-96. [PubMed: 11083920]  [MGI Ref ID J:74936]

Mullen RJ; Eicher EM; Sidman RL. 1976. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci U S A 73(1):208-12. [PubMed: 1061118]  [MGI Ref ID J:5613]

O'Gorman S. 1985. Degeneration of thalamic neurons in Purkinje cell degeneration mutant mice. II. Cytology of neuron loss. J Comp Neurol 234(3):298-316. [PubMed: 3988986]  [MGI Ref ID J:7820]

Rotter A; Rath S; Evans JE; Frostholm A. 2000. Modulation of GABA(A) receptor subunit mRNA levels in olivocerebellar neurons of purkinje cell degeneration and weaver mutant mice. J Neurochem 74(5):2190-200. [PubMed: 10800965]  [MGI Ref ID J:61537]

Agtpbp1pcd related

Bakalian A; Kopmels B; Messer A; Fradelizi D; Delhaye-Bouchaud N; Wollman E; Mariani J. 1992. Peripheral macrophage abnormalities in mutant mice with spinocerebellar degeneration. Res Immunol 143(1):129-39. [PubMed: 1565842]  [MGI Ref ID J:2228]

Baltanas FC; Berciano MT; Valero J; Gomez C; Diaz D; Alonso JR; Lafarga M; Weruaga E. 2013. Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia 61(2):254-72. [PubMed: 23047288]  [MGI Ref ID J:191138]

Baltanas FC; Casafont I; Lafarga V; Weruaga E; Alonso JR; Berciano MT; Lafarga M. 2011. Purkinje cell degeneration in pcd mice reveals large scale chromatin reorganization and gene silencing linked to defective DNA repair. J Biol Chem 286(32):28287-302. [PubMed: 21700704]  [MGI Ref ID J:175919]

Bartolomei JC; Greer CA. 1998. The organization of piriform cortex and the lateral olfactory tract following the loss of mitral cells in PCD mice. Exp Neurol 154(2):537-50. [PubMed: 9878189]  [MGI Ref ID J:52050]

Baurle J; Grover BG; Grusser-Cornehls U. 1992. Plasticity of GABAergic terminals in Deiters' nucleus of weaver mutant and normal mice: a quantitative light microscopic study. Brain Res 591(2):305-18. [PubMed: 1446244]  [MGI Ref ID J:2651]

Baurle J; Grusser-Cornehls U. 1994. Calbindin D-28k in the lateral vestibular nucleus of mutant mice as a tool to reveal Purkinje cell plasticity. Neurosci Lett 167(1-2):85-8. [PubMed: 8177535]  [MGI Ref ID J:19042]

Baurle J; Grusser-Cornehls U. 1997. Differential number of glycine- and GABA-immunopositive neurons and terminals in the deep cerebellar nuclei of normal and Purkinje cell degeneration mutant mice. J Comp Neurol 382(4):443-58. [PubMed: 9184992]  [MGI Ref ID J:41323]

Baurle J; Guldin W. 1998. Vestibular ganglion neurons survive the loss of their cerebellar targets. Neuroreport 9(18):4119-22. [PubMed: 9926858]  [MGI Ref ID J:54045]

Baurle J; Helmchen C; Grusser-Cornehls U. 1997. Diverse effects of Purkinje cell loss on deep cerebellar and vestibular nuclei neurons in Purkinje cell degeneration mutant mice: a possible compensatory mechanism. J Comp Neurol 384(4):580-96. [PubMed: 9259491]  [MGI Ref ID J:42546]

Baurle J; Oestreicher AB; Gispen WH; Grusser-Cornehls U. 1994. Lesion-specific pattern of immunocytochemical distribution of growth-associated protein B-50 (GAP-43) in the cerebellum of Weaver and PCD-mutant mice: lack of B-50 involvement in neuroplasticity of Purkinje cell terminals? J Neurosci Res 38(3):327-35. [PubMed: 7932867]  [MGI Ref ID J:18698]

Baurle J; Vogten H; Grusser-Cornehls U. 1998. Course and targets of the calbindin D-28k subpopulation of primary vestibular afferents. J Comp Neurol 402(1):111-28. [PubMed: 9831049]  [MGI Ref ID J:118430]

Berrebi AS; Morgan JI; Mugnaini E. 1990. The Purkinje cell class may extend beyond the cerebellum. J Neurocytol 19(5):643-54. [PubMed: 2077109]  [MGI Ref ID J:121314]

Blanks JC; Mullen RJ; LaVail MM. 1982. Retinal degeneration in the pcd cerebellar mutant mouse. II. Electron microscopic analysis. J Comp Neurol 212(3):231-46. [PubMed: 7153375]  [MGI Ref ID J:6948]

Blanks JC; Spee C. 1992. Retinal degeneration in the pcd/pcd mutant mouse: accumulation of spherules in the interphotoreceptor space. Exp Eye Res 54(5):637-44. [PubMed: 1623950]  [MGI Ref ID J:12219]

Brown KL; Agelan A; Woodruff-Pak DS. 2010. Unimpaired trace classical eyeblink conditioning in Purkinje cell degeneration (pcd) mutant mice. Neurobiol Learn Mem 93(3):303-11. [PubMed: 19931625]  [MGI Ref ID J:166100]

Cabraja M; Baurle J. 2007. Vestibular ganglion neurons survive hair cell defects in jerker, shaker, and Varitint-waddler mutants and downregulate calretinin expression. J Comp Neurol 504(4):418-26. [PubMed: 17663432]  [MGI Ref ID J:132913]

Campbell DB; Hess EJ. 1996. Chromosomal localization of the neurological mouse mutations tottering (tg), Purkinje cell degeneration (pcd), and nervous (nr). Brain Res Mol Brain Res 37(1-2):79-84. [PubMed: 8738138]  [MGI Ref ID J:33012]

Campbell DB; North JB; Hess EJ. 1999. Tottering mouse motor dysfunction is abolished on the Purkinje cell degeneration (pcd) mutant background. Exp Neurol 160(1):268-78. [PubMed: 10630211]  [MGI Ref ID J:58539]

Chang AC; Ghetti B. 1993. Embryonic cerebellar graft development during acute phase of gliosis in the cerebellum of pcd mutant mice [published erratum appears in Chin J Physiol 1993;36(4):255] Chin J Physiol 36(3):141-9. [PubMed: 8194390]  [MGI Ref ID J:19591]

Chang B; Hawes NL; Hurd RE; Davisson MT; Nusinowitz S; Heckenlively JR. 2002. Retinal degeneration mutants in the mouse. Vision Res 42(4):517-25. [PubMed: 11853768]  [MGI Ref ID J:75095]

Chang B; Hawes NL; Hurd RE; Wang J; Howell D; Davisson MT; Roderick TH; Nusinowitz S; Heckenlively JR. 2005. Mouse models of ocular diseases. Vis Neurosci 22(5):587-93. [PubMed: 16332269]  [MGI Ref ID J:156373]

Chen L; Bao S; Lockard JM; Kim JK; Thompson RF. 1996. Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice. J Neurosci 16(8):2829-38. [PubMed: 8786457]  [MGI Ref ID J:32197]

Chen L; Bao S; Thompson RF. 1999. Bilateral lesions of the interpositus nucleus completely prevent eyeblink conditioning in Purkinje cell-degeneration mutant mice. Behav Neurosci 113(1):204-10. [PubMed: 10197920]  [MGI Ref ID J:54145]

Chou DKH; Jungalwala FB. 1996. N-Acetylglucosaminyl transferase regulates the expression of the sulfoglucuronyl glycolipids in specific cell types in cerebellum during development. J Biol Chem 271(46):28868-74. [PubMed: 8910533]  [MGI Ref ID J:37189]

Delis F; Mitsacos A; Giompres P. 2004. Dopamine receptor and transporter levels are altered in the brain of Purkinje Cell Degeneration mutant mice. Neuroscience 125(1):255-68. [PubMed: 15051164]  [MGI Ref ID J:89977]

Doulazmi M; Hadj-Sahraoui N; Frederic F; Mariani J. 2002. Diminishing Purkinje cell populations in the cerebella of aging heterozygous Purkinje cell degeneration but not heterozygous nervous mice. J Neurogenet 16(2):111-23. [PubMed: 12479378]  [MGI Ref ID J:78159]

Fernandez-Gonzalez A; La Spada AR; Treadaway J; Higdon JC; Harris BS; Sidman RL; Morgan JI; Zuo J. 2002. Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295(5561):1904-6. [PubMed: 11884758]  [MGI Ref ID J:74929]

Fujigasaki H; Song SY; Kobayashi T; Yamakuni T. 1996. Murine central neurons express a novel member of the cdc10/SWI6 motif-containing protein superfamily. Brain Res Mol Brain Res 40(2):203-13. [PubMed: 8872304]  [MGI Ref ID J:35715]

Gambarana C; Loria CJ; Siegel RE. 1993. GABAA receptor messenger RNA expression in the deep cerebellar nuclei of Purkinje cell degeneration mutants is maintained following the loss of innervating Purkinje neurons. Neuroscience 52(1):63-71. [PubMed: 8381926]  [MGI Ref ID J:21352]

Garin N; Hornung JP; Escher G. 2002. Distribution of postsynaptic GABA(A) receptor aggregates in the deep cerebellar nuclei of normal and mutant mice. J Comp Neurol 447(3):210-7. [PubMed: 11984816]  [MGI Ref ID J:77036]

Ghetti B; Alyea CJ; Muller J. 1978. Studies on the Purkinje Cell degeneration (pcd) mutant: Primary pathology and transneuronal changes J Neuropathol Exp Neurol 37:617 (Abstr 109).  [MGI Ref ID J:28476]

Ghetti B; Triarhou LC; Alyea CJ; Dlouhy SR; Karn RC. 1991. Unique cerebellar phenotype combining granule and Purkinje cell loss: morphological evidence for weaver* pcd double mutant mice. J Neurocytol 20(1):27-38. [PubMed: 2027034]  [MGI Ref ID J:121260]

Ghetti B; Triarhou LC; Fuller RW. 1993. Cerebellar Monoamines in the Purkinje Cell Degeneration Mutant Mouse. In: Serotonin, the Cerebellum, and Ataxia. Raven Press, New York.  [MGI Ref ID J:14367]

Gillardon F; Baurle J; Grusser-Cornehls U; Zimmermann M. 1995. DNA fragmentation and activation of c-Jun in the cerebellum of mutant mice (weaver, Purkinje cell degeneration). Neuroreport 6(13):1766-8. [PubMed: 8541477]  [MGI Ref ID J:29492]

Gillardon F; Baurle J; Wickert H; Grusser-Cornehls U; Zimmermann M. 1995. Differential regulation of bcl-2, bax, c-fos, junB, and krox-24 expression in the cerebellum of Purkinje cell degeneration mutant mice. J Neurosci Res 41(5):708-15. [PubMed: 7563251]  [MGI Ref ID J:27470]

Gomez C; Curto GG; Baltanas FC; Valero J; O'Shea E; Colado MI; Diaz D; Weruaga E; Alonso JR. 2012. Changes in the serotonergic system and in brain-derived neurotrophic factor distribution in the main olfactory bulb of pcd mice before and after mitral cell loss. Neuroscience 201:20-33. [PubMed: 22133893]  [MGI Ref ID J:184410]

Goodlett CR; Hamre KM; West JR. 1992. Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice. Behav Brain Res 47(2):129-41. [PubMed: 1590945]  [MGI Ref ID J:1129]

Greer CA; Shepherd GM. 1982. Mitral cell degeneration and sensory function in the neurological mutant mouse Purkinje cell degeneration (PCD). Brain Res 235(1):156-61. [PubMed: 7188319]  [MGI Ref ID J:7473]

Handel MA; Dawson M. 1981. Effects on spermiogenesis in the mouse of a male sterile neurological mutation, Purkinje cell degeneration. Gamete Res 4:185-192.  [MGI Ref ID J:12097]

Hawes NL; Smith RS; Chang B; Davisson M; Heckenlively JR; John SW. 1999. Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Mol Vis 5:22. [PubMed: 10493779]  [MGI Ref ID J:59481]

Heckenlively JR; Chang B; Erway LC; Peng C; Hawes NL; Hageman GS; Roderick TH. 1995. Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome 11p15. Proc Natl Acad Sci U S A 92(24):11100-4. [PubMed: 7479945]  [MGI Ref ID J:121993]

Ikeda M; Morita I; Murota S; Sekiguchi F; Yuasa T; Miyatake T. 1993. Cerebellar nitric oxide synthase activity is reduced in nervous and Purkinje cell degeneration mutants but not in climbing fiber-lesioned mice. Neurosci Lett 155(2):148-50. [PubMed: 7690917]  [MGI Ref ID J:21353]

Jones BW; Watt CB; Frederick JM; Baehr W; Chen CK; Levine EM; Milam AH; Lavail MM; Marc RE. 2003. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 464(1):1-16. [PubMed: 12866125]  [MGI Ref ID J:84675]

Kambouris M; Sangameswaran L; Dlouhy SR; Hodes ME; Ghetti B; Triarhou LC. 1993. Cellular distribution of the RNA transcripts of a newly discovered gene in the brain of normal, weaver, Purkinje cell degeneration and reeler mutant mice as evidenced by in situ hybridization histochemistry. Brain Res Mol Brain Res 18(4):321-8. [PubMed: 8326827]  [MGI Ref ID J:11897]

Killian JE; Baker JF. 2002. Horizontal vestibuloocular reflex (VOR) head velocity estimation in Purkinje cell degeneration (pcd/pcd) mutant mice. J Neurophysiol 87(2):1159-64. [PubMed: 11826084]  [MGI Ref ID J:103198]

Kopmels B; Wollman EE; Guastavino JM; Delhaye-Bouchaud N; Fradelizi D; Mariani J. 1990. Interleukin-1 hyperproduction by in vitro activated peripheral macrophages from cerebellar mutant mice. J Neurochem 55(6):1980-5. [PubMed: 2230805]  [MGI Ref ID J:28095]

Kyuhou S; Gemba H. 2007. Fast cortical oscillation after thalamic degeneration: pivotal role of NMDA receptor. Biochem Biophys Res Commun 356(1):187-92. [PubMed: 17349613]  [MGI Ref ID J:121449]

Kyuhou S; Kato N; Gemba H. 2006. Emergence of endoplasmic reticulum stress and activated microglia in Purkinje cell degeneration mice. Neurosci Lett 396(2):91-6. [PubMed: 16356646]  [MGI Ref ID J:107944]

LaVail MM; Blanks JC; Mullen RJ. 1982. Retinal degeneration in the pcd cerebellar mutant mouse. I. Light microscopic and autoradiographic analysis. J Comp Neurol 212(3):217-30. [PubMed: 7153374]  [MGI Ref ID J:6947]

LaVail MM; Gorrin GM; Yasumura D; Matthes MT. 1999. Increased susceptibility to constant light in nr and pcd mice with inherited retinal degenerations. Invest Ophthalmol Vis Sci 40(5):1020-4. [PubMed: 10102304]  [MGI Ref ID J:53937]

LaVail MW; Yasumura D; Matthes MT; Lau-Villacorta C; Unoki K; Sung CH; Steinberg RH. 1998. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39(3):592-602. [PubMed: 9501871]  [MGI Ref ID J:46230]

Lalonde R; Strazielle C. 2007. Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res 1140:51-74. [PubMed: 16499884]  [MGI Ref ID J:120621]

Landis SC; Mullen RJ. 1978. The development and degeneration of Purkinje cells in pcd mutant mice. J Comp Neurol 177(1):125-43. [PubMed: 200636]  [MGI Ref ID J:5892]

Le Marec N; Lalonde R. 1997. Sensorimotor learning and retention during equilibrium tests in Purkinje cell degeneration mutant mice. Brain Res 768(1-2):310-6. [PubMed: 9369330]  [MGI Ref ID J:43580]

Luntz-Leybman V; Frostholm A; Fernando L; De Blas A; Rotter A. 1993. GABAA/benzodiazepine receptor gamma 2 subunit gene expression in developing normal and mutant mouse cerebellum. Brain Res Mol Brain Res 19(1-2):9-21. [PubMed: 8395631]  [MGI Ref ID J:12910]

Maeda N; Niinobe M; Inoue Y; Mikoshiba K. 1989. Developmental expression and intracellular location of P400 protein characteristic of Purkinje cells in the mouse cerebellum. Dev Biol 133(1):67-76. [PubMed: 2707487]  [MGI Ref ID J:16062]

Marchena M; Lara J; Aijon J; Germain F; de la Villa P; Velasco A. 2011. The retina of the PCD/PCD mouse as a model of photoreceptor degeneration. A structural and functional study. Exp Eye Res 93(5):607-17. [PubMed: 21824473]  [MGI Ref ID J:189268]

Matsuda K; Kondo T; Iijima T; Matsuda S; Watanabe M; Yuzaki M. 2009. Cbln1 binds to specific postsynaptic sites at parallel fiber-Purkinje cell synapses in the cerebellum. Eur J Neurosci 29(4):707-17. [PubMed: 19200061]  [MGI Ref ID J:146470]

Matsui K; Kato N; Watanabe N; Ando K. 1988. [Elevated immunoreactive-somatostatin levels in the brain of ataxic mutant mice] Jikken Dobutsu 37(3):263-8. [PubMed: 2901364]  [MGI Ref ID J:28478]

Matsui K; Masui A; Kato N; Adachi K. 1993. Levels of somatostatin and cholecystokinin in the brain of ataxic mutant mice. Life Sci 53(4):333-40. [PubMed: 8100981]  [MGI Ref ID J:14712]

Matsui K; Wada K; Kwak S. 1994. Ataxia-ameliorating effects of YM-14673, a potent analog of thyrotropin releasing hormone, in ataxic mutant mice. Eur J Pharmacol 254(3):295-7. [PubMed: 8013566]  [MGI Ref ID J:18435]

Milner TE; Cadoret G; Lessard L; Smith AM. 1995. EMG analysis of harmaline-induced tremor in normal and three strains of mutant mice with Purkinje cell degeneration and the role of the inferior olive. J Neurophysiol 73(6):2568-77. [PubMed: 7666163]  [MGI Ref ID J:29602]

Miret-Duvaux O; Frederic F; Simon D; Guenet JL; Hanauer A; Delhaye-Bouchaud N; Mariani J. 1990. Glutamate dehydrogenase in cerebellar mutant mice: gene localization and enzyme activity in different tissues. J Neurochem 54(1):23-9. [PubMed: 2293612]  [MGI Ref ID J:10148]

Mitsuma T; Adachi K; Mukoyama M; Ando K. 1990. Pro-thyrotropin-releasing hormone concentrations in the brain of ataxic mice. J Neurol Sci 98(2-3):163-7. [PubMed: 2123001]  [MGI Ref ID J:28467]

Mullen RJ. 1977. Site of pcd gene action and Purkinje cell mosaicism in cerebella of chimaeric mice. Nature 270(5634):245-7. [PubMed: 593342]  [MGI Ref ID J:5907]

Mullen RJ; Eicher EM; Sidman RL. 1976. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci U S A 73(1):208-12. [PubMed: 1061118]  [MGI Ref ID J:5613]

Mullen RJ; LaVail M. 1975. Two types of retinal degeneration in cerebellar mutant mice. Nature 258(5535):528-30. [PubMed: 1196386]  [MGI Ref ID J:5597]

O'Gorman S. 1985. Degeneration of thalamic neurons in Purkinje cell degeneration mutant mice. II. Cytology of neuron loss. J Comp Neurol 234(3):298-316. [PubMed: 3988986]  [MGI Ref ID J:7820]

O'Gorman S; Sidman RL. 1985. Degeneration of thalamic neurons in Purkinje cell degeneration mutant mice. I. Distribution of neuron loss. J Comp Neurol 234(3):277-97. [PubMed: 3988985]  [MGI Ref ID J:7819]

Roffler-Tarlov S; Landis SC; Zigmond MJ. 1984. Effects of Purkinje cell degeneration on the noradrenergic projection to mouse cerebellar cortex. Brain Res 298(2):303-11. [PubMed: 6144362]  [MGI Ref ID J:7434]

Rosenfeld JV; Richards LJ; Bartlett PF. 1993. Mutant mouse cerebellum does not provide specific signals for the selective migration and development of transplanted Purkinje cells. Neurosci Lett 155(1):19-23. [PubMed: 8361659]  [MGI Ref ID J:22001]

Rossi F; Jankovski A; Sotelo C. 1995. Target neuron controls the integrity of afferent axon phenotype: a study on the Purkinje cell-climbing fiber system in cerebellar mutant mice. J Neurosci 15(3 Pt 1):2040-56. [PubMed: 7891151]  [MGI Ref ID J:23733]

Rotter A; Rath S; Evans JE; Frostholm A. 2000. Modulation of GABA(A) receptor subunit mRNA levels in olivocerebellar neurons of purkinje cell degeneration and weaver mutant mice. J Neurochem 74(5):2190-200. [PubMed: 10800965]  [MGI Ref ID J:61537]

Ryo Y; Miyawaki A; Furuichi T; Mikoshiba K. 1993. Expression of the metabotropic glutamate receptor mGluR1 alpha and the ionotropic glutamate receptor GluR1 in the brain during the postnatal development of normal mouse and in the cerebellum from mutant mice. J Neurosci Res 36(1):19-32. [PubMed: 8230318]  [MGI Ref ID J:14425]

Sotelo C; Alvarado-Mallart RM. 1987. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature 327(6121):421-3. [PubMed: 3587363]  [MGI Ref ID J:28470]

Sotelo C; Alvarado-Mallart RM. 1986. Growth and differentiation of cerebellar suspensions transplanted into the adult cerebellum of mice with heredodegenerative ataxia. Proc Natl Acad Sci U S A 83(4):1135-9. [PubMed: 3456566]  [MGI Ref ID J:28472]

Stasi K; Mitsacos A; Triarhou LC; Kouvelas ED. 1997. Cerebellar grafts partially reverse amino acid receptor changes observed in the cerebellum of mice with hereditary ataxia: quantitative autoradiographic studies. Cell Transplant 6(3):347-59. [PubMed: 9171167]  [MGI Ref ID J:41906]

Strazielle C; Lalonde R; Hebert C; Reader TA. 1999. Regional brain distribution of noradrenaline uptake sites, and of alpha1-alpha2- and beta-adrenergic receptors in PCD mutant mice: a quantitative autoradiographic study. Neuroscience 94(1):287-304. [PubMed: 10613519]  [MGI Ref ID J:118446]

Takeda H; Yoshiki A; Nishikawa S; Nishikawa S; Kunisada T; Sakakura T; Amanuma H; Kusakabe M. 1992. Expression of c-kit, a proto-oncogene of the murine W locus, in cerebella of normal and neurological mutant mice: immunohistochemical and in situ hybridization analysis. Differentiation 51(2):121-7. [PubMed: 1282111]  [MGI Ref ID J:2865]

Triarhou LC; Ghetti B. 1991. Serotonin-immunoreactivity in the cerebellum of two neurological mutant mice and the corresponding wild-type genetic stocks. J Chem Neuroanat 4(6):421-8. [PubMed: 1781951]  [MGI Ref ID J:805]

Triarhou LC; Low WC; Ghetti B. 1987. Transplantation of cerebellar anlagen to hosts with genetic cerebellocortical atrophy. Anat Embryol (Berl) 176(2):145-54. [PubMed: 3619071]  [MGI Ref ID J:28471]

Triarhou LC; Zhang W; Lee WH. 1996. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant 5(2):269-77. [PubMed: 8689037]  [MGI Ref ID J:32972]

Vaccarino FM; Ghetti B; Nurnberger JI Sr. 1985. Residual benzodiazepine (BZ) binding in the cortex of pcd mutant cerebella and qualitative BZ binding in the deep cerebellar nuclei of control and mutant mice: an autoradiographic study. Brain Res 343(1):70-8. [PubMed: 2994831]  [MGI Ref ID J:8014]

Valero J; Berciano MT; Weruaga E; Lafarga M; Alonso JR. 2006. Pre-neurodegeneration of mitral cells in the pcd mutant mouse is associated with DNA damage, transcriptional repression, and reorganization of nuclear speckles and Cajal bodies. Mol Cell Neurosci 33(3):283-95. [PubMed: 16978877]  [MGI Ref ID J:116561]

Varecka L; Wu CH; Rotter A; Frostholm A. 1994. GABAA/benzodiazepine receptor alpha 6 subunit mRNA in granule cells of the cerebellar cortex and cochlear nuclei: expression in developing and mutant mice. J Comp Neurol 339(3):341-52. [PubMed: 8132866]  [MGI Ref ID J:16213]

Wang T; Morgan JI. 2007. The Purkinje cell degeneration (pcd) mouse: an unexpected molecular link between neuronal degeneration and regeneration. Brain Res 1140:26-40. [PubMed: 16942761]  [MGI Ref ID J:120628]

Wassef M; Sotelo C; Cholley B; Brehier A; Thomasset M. 1987. Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. Dev Biol 124(2):379-89. [PubMed: 3678603]  [MGI Ref ID J:106414]

Won J; Shi LY; Hicks W; Wang J; Hurd R; Naggert JK; Chang B; Nishina PM. 2011. Mouse model resources for vision research. J Ophthalmol 2011:391384. [PubMed: 21052544]  [MGI Ref ID J:166679]

Zhang W; Ghetti B; Lee WH. 1997. Decreased IGF-I gene expression during the apoptosis of Purkinje cells in pcd mice. Brain Res Dev Brain Res 98(2):164-76. [PubMed: 9051257]  [MGI Ref ID J:38345]

Zhang W; Lee WH; Triarhou LC. 1996. Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF-I system genes and partially restore behavioral function. Nat Med 2(1):65-71. [PubMed: 8564845]  [MGI Ref ID J:30905]

a related

Baba K; Sakakibara S; Setsu T; Terashima T. 2007. The superficial layers of the superior colliculus are cytoarchitectually and myeloarchitectually disorganized in the reelin-deficient mouse, reeler. Brain Res 1140:205-15. [PubMed: 17173877]  [MGI Ref ID J:120267]

Batchelor AL; Phillips RJ; Searle AG. 1966. A comparison of the mutagenic effectiveness of chronic neutron- and gamma-irradiation of mouse spermatogonia. Mutat Res 3(3):218-29. [PubMed: 5962396]  [MGI Ref ID J:5021]

Bjorbaek C; Elmquist JK; Frantz JD; Shoelson SE; Flier JS. 1998. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1(4):619-25. [PubMed: 9660946]  [MGI Ref ID J:119803]

Bultman SJ; Klebig ML; Michaud EJ; Sweet HO; Davisson MT; Woychik RP. 1994. Molecular analysis of reverse mutations from nonagouti (a) to black-and-tan (a(t)) and white-bellied agouti (Aw) reveals alternative forms of agouti transcripts. Genes Dev 8(4):481-90. [PubMed: 8125260]  [MGI Ref ID J:16984]

Bultman SJ; Michaud EJ; Woychik RP. 1992. Molecular characterization of the mouse agouti locus. Cell 71(7):1195-204. [PubMed: 1473152]  [MGI Ref ID J:3523]

Bultman SJ; Russell LB; Gutierrez-Espeleta GA; Woychik RP. 1991. Molecular characterization of a region of DNA associated with mutations at the agouti locus in the mouse. Proc Natl Acad Sci U S A 88(18):8062-6. [PubMed: 1896452]  [MGI Ref ID J:16567]

Bundschuh VG; Madry M. 1988. [atwp mutation in an albino mouse substrain (AB/Hum-1)] Z Versuchstierkd 31(6):249-54. [PubMed: 3227730]  [MGI Ref ID J:16568]

Butler AE; Janson J; Soeller WC; Butler PC. 2003. Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 52(9):2304-14. [PubMed: 12941770]  [MGI Ref ID J:132530]

Cattanach BM. 1961. A chemically-induced variegated-type position effect in the mouse. Z Vererbungsl 92:165-82. [PubMed: 13877379]  [MGI Ref ID J:160128]

Cropley JE; Suter CM; Beckman KB; Martin DI. 2006. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci U S A 103(46):17308-12. [PubMed: 17101998]  [MGI Ref ID J:117156]

De Souza J; Butler AA; Cone RD. 2000. Disproportionate inhibition of feeding in A(y) mice by certain stressors: a cautionary note. Neuroendocrinology 72(2):126-32. [PubMed: 10971147]  [MGI Ref ID J:102986]

Dickie MM. 1969. Mutations at the agouti locus in the mouse. J Hered 60(1):20-5. [PubMed: 5798139]  [MGI Ref ID J:30922]

Duchesnes CE; Naggert JK; Tatnell MA; Beckman N; Marnane RN; Rodrigues JA; Halim A; Pontre B; Stewart AW; Wolff GL; Elliott R; Mountjoy KG. 2009. New Zealand Ginger Mouse: Novel model that associates the tyrp1b pigmentation gene locus with regulation of lean body mass. Physiol Genomics 37(3):164-74. [PubMed: 19293329]  [MGI Ref ID J:146052]

Dunn LC. 1928. A Fifth Allelomorph in the Agouti Series of the House Mouse. Proc Natl Acad Sci U S A 14(10):816-9. [PubMed: 16587414]  [MGI Ref ID J:15011]

Dunn LC. 1945. A New Eye Color Mutant in the Mouse with Asymmetrical Expression. Proc Natl Acad Sci U S A 31(11):343-6. [PubMed: 16578176]  [MGI Ref ID J:13122]

Dunn LC; Macdowell EC; Lebedeff GA. 1937. Studies on Spotting Patterns III. Interaction between Genes Affecting White Spotting and Those Affecting Color in the House Mouse. Genetics 22(2):307-18. [PubMed: 17246842]  [MGI Ref ID J:12954]

Enshell-Seijffers D; Lindon C; Morgan BA. 2008. The serine protease Corin is a novel modifier of the Agouti pathway. Development 135(2):217-25. [PubMed: 18057101]  [MGI Ref ID J:130426]

Feuerer M; Herrero L; Cipolletta D; Naaz A; Wong J; Nayer A; Lee J; Goldfine AB; Benoist C; Shoelson S; Mathis D. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930-9. [PubMed: 19633656]  [MGI Ref ID J:152186]

Fujimoto W; Shiuchi T; Miki T; Minokoshi Y; Takahashi Y; Takeuchi A; Kimura K; Saito M; Iwanaga T; Seino S. 2007. Dmbx1 is essential in agouti-related protein action. Proc Natl Acad Sci U S A 104(39):15514-9. [PubMed: 17873059]  [MGI Ref ID J:125193]

Gajewska M; Krysiak E; Wirth-Dziecialowska E. 2010. New coat color mutation mapped in distal part MMU10 MGI Direct Data Submission :.  [MGI Ref ID J:162146]

Galbraith DB; Arceci RJ. 1974. Melanocyte populations of yellow and black hair bulbs in the mouse. J Hered 65(6):381-2. [PubMed: 4448905]  [MGI Ref ID J:5512]

Galbraith DB; Patrignani AM. 1976. Sulfhydryl compounds in melanocytes of yellow (Ay/a), nonagouti (a/a), and agouti (A/A) mice. Genetics 84(3):587-91. [PubMed: 1001879]  [MGI Ref ID J:5737]

Galbraith DB; Wolff GL; Brewer NL. 1980. Hair pigment patterns in different integumental environments of the mouse. Influence of the agouti suppressor (A<s>) mutation on expression of agouti locus alleles. J Hered 71:229-234.  [MGI Ref ID J:12033]

Galbraith DB; Wolff GL; Brewer NL. 1979. Tissue microenvironment and the genetic control of hair pigment patterns in mice Dev Genet 1(2):167-179.  [MGI Ref ID J:156092]

Geschwind II; Huseby RA; Nishioka R. 1972. The effect of melanocyte-stimulating hormone on coat color in the mouse. Recent Prog Horm Res 28:91-130. [PubMed: 4631622]  [MGI Ref ID J:5324]

Granholm DE; Reese RN; Granholm NH. 1996. Agouti alleles alter cysteine and glutathione concentrations in hair follicles and serum of mice (A y/a, A wJ/A wJ, and a/a). J Invest Dermatol 106(3):559-63. [PubMed: 8648194]  [MGI Ref ID J:32132]

Gruneberg H. 1952. . In: The Genetics of the Mouse. Martinus Nijhoff, The Hague.  [MGI Ref ID J:30758]

Heaney JD; Michelson MV; Youngren KK; Lam MY; Nadeau JH. 2009. Deletion of eIF2beta suppresses testicular cancer incidence and causes recessive lethality in agouti-yellow mice. Hum Mol Genet 18(8):1395-404. [PubMed: 19168544]  [MGI Ref ID J:146879]

Hearing VJ; Phillips P; Lutzner MA. 1973. The fine structure of melanogenesis in coat color mutants of the mouse. J Ultrastruct Res 43(1):88-106. [PubMed: 4634048]  [MGI Ref ID J:5346]

Hustad CM; Perry WL; Siracusa LD; Rasberry C; Cobb L; Cattanach BM; Kovatch R; Copeland NG; Jenkins NA. 1995. Molecular genetic characterization of six recessive viable alleles of the mouse agouti locus. Genetics 140(1):255-65. [PubMed: 7635290]  [MGI Ref ID J:24934]

Iwatsuka H; Shino A; Suzuoki Z. 1970. General survey of diabetic features of yellow KK mice. Endocrinol Jpn 17(1):23-35. [PubMed: 5468422]  [MGI Ref ID J:26460]

Jackson IJ; Budd PS; Keighren M; McKie L. 2007. Humanized MC1R transgenic mice reveal human specific receptor function. Hum Mol Genet 16(19):2341-8. [PubMed: 17652101]  [MGI Ref ID J:129904]

Kaelin CB; Xu X; Hong LZ; David VA; McGowan KA; Schmidt-Kuntzel A; Roelke ME; Pino J; Pontius J; Cooper GM; Manuel H; Swanson WF; Marker L; Harper CK; van Dyk A; Yue B; Mullikin JC; Warren WC; Eizirik E; Kos L; O'Brien SJ; Barsh GS; Menotti-Raymond M. 2012. Specifying and sustaining pigmentation patterns in domestic and wild cats. Science 337(6101):1536-41. [PubMed: 22997338]  [MGI Ref ID J:188277]

Kaminen-Ahola N; Ahola A; Maga M; Mallitt KA; Fahey P; Cox TC; Whitelaw E; Chong S. 2010. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6(1):e1000811. [PubMed: 20084100]  [MGI Ref ID J:156866]

Kappenman KE; Dvoracek MA; Harvison GA; Fuller BB; Granholm NH. 1992. Tyrosinase abundance and activity in murine hairbulb melanocytes of agouti mutants (C57BL/6J-a/a, Ay/a, and AwJ/AwJ). Pigment Cell Res Suppl 2:79-83. [PubMed: 1409442]  [MGI Ref ID J:1295]

Knisely AS; Gasser DL; Silvers WK. 1975. Expression in organ culture of agouti locus genes of the mouse. Genetics 79(3):471-5. [PubMed: 1126628]  [MGI Ref ID J:5533]

Lamoreux ML; Wakamatsu K; Ito S. 2001. Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Res 14(1):23-31. [PubMed: 11277491]  [MGI Ref ID J:103803]

Lane PW. 1989. Mottled agouti-J (am-J) Mouse News Lett 84:89.  [MGI Ref ID J:16570]

Leamy LJ; Hrubant HE. 1971. Effects of alleles at the agouti locus on odontometric traits in the C57BL-6 strain of house mice. Genetics 67(1):87-96. [PubMed: 5556294]  [MGI Ref ID J:16571]

Loosli R. 1963. Tanoid--a new agouti mutant in the mouse. J Hered 54:26-29.  [MGI Ref ID J:13082]

Markert CL; Silvers WK. 1956. The Effects of Genotype and Cell Environment on Melanoblast Differentiation in the House Mouse. Genetics 41(3):429-50. [PubMed: 17247639]  [MGI Ref ID J:12970]

Martin NM; Houston PA; Patterson M; Sajedi A; Carmignac DF; Ghatei MA; Bloom SR; Small CJ. 2006. Abnormalities of the somatotrophic axis in the obese agouti mouse. Int J Obes (Lond) 30(3):430-8. [PubMed: 16172617]  [MGI Ref ID J:151302]

Martinez HG; Quinones MP; Jimenez F; Estrada CA; Clark K; Muscogiuri G; Sorice G; Musi N; Reddick RL; Ahuja SS. 2011. Critical role of chemokine (C-C motif) receptor 2 (CCR2) in the KKAy + Apoe -/- mouse model of the metabolic syndrome. Diabetologia 54(10):2660-8. [PubMed: 21779871]  [MGI Ref ID J:177084]

Mayer TC; Fishbane JL. 1972. Mesoderm-ectoderm interaction in the production of the agouti pigmentation pattern in mice. Genetics 71(2):297-303. [PubMed: 4558326]  [MGI Ref ID J:5288]

Miller MW; Duhl DM; Vrieling H; Cordes SP; Ollmann MM; Winkes BM; Barsh GS. 1993. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev 7(3):454-67. [PubMed: 8449404]  [MGI Ref ID J:4186]

Miyazaki M; Sampath H; Liu X; Flowers MT; Chu K; Dobrzyn A; Ntambi JM. 2009. Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochem Biophys Res Commun 380(4):818-22. [PubMed: 19338759]  [MGI Ref ID J:147343]

Monroe DG; Wipf LP; Diggins MR; Matthees DP; Granholm NH. 1998. Agouti-related maturation and tissue distribution of alpha-Melanocyte Stimulating Hormone in wild-type (AwJ/AwJ) and mutant (Ay/a,a/a) mice. Pigment Cell Res 11(5):310-3. [PubMed: 9877102]  [MGI Ref ID J:52183]

Moore KJ; Swing DA; Copeland NG; Jenkins NA. 1990. Interaction of the murine dilute suppressor gene (dsu) with fourteen coat color mutations [published erratum appears in Genetics 1990 Sep;126(1):285] Genetics 125(2):421-30. [PubMed: 2379821]  [MGI Ref ID J:29467]

Moyer FH. 1966. Genetic variations in the fine structure and ontogeny of mouse melanin granules. Am Zool 6(1):43-66. [PubMed: 5902512]  [MGI Ref ID J:5001]

Novak EK; Gautam R; Reddington M; Collinson LM; Copeland NG; Jenkins NA; McGarry MP; Swank RT. 2002. The regulation of platelet-dense granules by Rab27a in the ashen mouse, a model of Hermansky-Pudlak and Griscelli syndromes, is granule-specific and dependent on genetic background. Blood 100(1):128-35. [PubMed: 12070017]  [MGI Ref ID J:77395]

Novak EK; Wieland F; Jahreis GP; Swank RT. 1980. Altered secretion of kidney lysosomal enzymes in the mouse pigment mutants ruby-eye, ruby-eye-2-J, and maroon. Biochem Genet 18(5-6):549-61. [PubMed: 6776948]  [MGI Ref ID J:6422]

Nuotio-Antar AM; Hachey DL; Hasty AH. 2007. Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. Am J Physiol Endocrinol Metab 293(6):E1517-28. [PubMed: 17878220]  [MGI Ref ID J:145108]

Papacleovoulou G; Abu-Hayyeh S; Nikolopoulou E; Briz O; Owen BM; Nikolova V; Ovadia C; Huang X; Vaarasmaki M; Baumann M; Jansen E; Albrecht C; Jarvelin MR; Marin JJ; Knisely AS; Williamson C. 2013. Maternal cholestasis during pregnancy programs metabolic disease in offspring. J Clin Invest 123(7):3172-81. [PubMed: 23934127]  [MGI Ref ID J:201610]

Pettitt SJ; Liang Q; Rairdan XY; Moran JL; Prosser HM; Beier DR; Lloyd KC; Bradley A; Skarnes WC. 2009. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods :. [PubMed: 19525957]  [MGI Ref ID J:149352]

Poole TW. 1975. Dermal-epidermal interactions and the action of alleles at the agouti locus in the mouse. Dev Biol 42(2):203-10. [PubMed: 1090472]  [MGI Ref ID J:5519]

Poole TW. 1982. The agouti suppressor (As) coat color mutation in mice: developmental effects on the expression of agouti locus alleles. J Exp Zool 220(1):57-64. [PubMed: 7077265]  [MGI Ref ID J:6763]

Quevedo WC Jr.; Chase HB. 1958. An analysis of the light mutation of coat color in mice. J Morphol 102:329-345.  [MGI Ref ID J:13094]

Quevedo WC Jr; Holstein TJ. 1992. The shift from physiological genetics to molecular genetics in the study of mouse tyrosinase. Pigment Cell Res Suppl 2:57-60. [PubMed: 1409439]  [MGI Ref ID J:3852]

RUSSELL ES. 1949. A quantitative histological study of the pigment found in the coat-color mutants of the house mouse; interdependence among the variable granule attributes. Genetics 34(2):133-45. [PubMed: 18117146]  [MGI Ref ID J:148461]

Rakyan VK; Chong S; Champ ME; Cuthbert PC; Morgan HD; Luu KV; Whitelaw E. 2003. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A 100(5):2538-43. [PubMed: 12601169]  [MGI Ref ID J:82396]

Rice RH; Bradshaw KM; Durbin-Johnson BP; Rocke DM; Eigenheer RA; Phinney BS; Sundberg JP. 2012. Differentiating inbred mouse strains from each other and those with single gene mutations using hair proteomics. PLoS One 7(12):e51956. [PubMed: 23251662]  [MGI Ref ID J:195664]

Rosenfeld CS; Sieli PT; Warzak DA; Ellersieck MR; Pennington KA; Roberts RM. 2013. Maternal exposure to bisphenol A and genistein has minimal effect on A(vy)/a offspring coat color but favors birth of agouti over nonagouti mice. Proc Natl Acad Sci U S A 110(2):537-42. [PubMed: 23267115]  [MGI Ref ID J:193279]

Russell ES. 1948. A Quantitative Histological Study of the Pigment Found in the Coat Color Mutants of the House Mouse. II. Estimates of the Total Volume of Pigment. Genetics 33(3):228-36. [PubMed: 17247280]  [MGI Ref ID J:148462]

Russell ES. 1946. A Quantitative Histological Study of the Pigment Found in the Coat-Color Mutants of the House Mouse. I. Variable Attributes of the Pigment Granules. Genetics 31(3):327-46. [PubMed: 17247200]  [MGI Ref ID J:148463]

Russell ES. 1949. A Quantitative Histological Study of the Pigment Found in the Coat-Color Mutants of the House Mouse. IV. the Nature of the Effects of Genic Substitution in Five Major Allelic Series. Genetics 34(2):146-66. [PubMed: 17247308]  [MGI Ref ID J:12958]

Russell LB. 1964. Genetic and Functional Mosaicism in the Mouse. In: The Role of the Chromosomes in Development. Academic Press, New York.  [MGI Ref ID J:29504]

Russell LB; Cupp McDaniel MN; Woodiel FN,. 1963. Crossing over within the a "locus" of the mouse Genetics 48:907 Abstr.  [MGI Ref ID J:174047]

SILVERS WK. 1958. An experimental approach to action of genes at the agouti locus in the mouse. III. Transplants of newborn Aw-, A-and at-skin to Ay-, Aw-, A-and aa hosts. J Exp Zool 137(1):189-96. [PubMed: 13563791]  [MGI Ref ID J:13013]

Sakurai T; Ochiai H; Takeuchi T. 1975. Ultrastructural change of melanosomes associated with agouti pattern formation in mouse hair. Dev Biol 47(2):466-71. [PubMed: 1204945]  [MGI Ref ID J:5606]

Silvers WK. 1979. The Coat Colors of Mice; A Model for Mammalian Gene Action and Interaction. In: The Coat Colors of Mice. Springer-Verlag, New York.  [MGI Ref ID J:78801]

Soeller WC; Janson J; Hart SE; Parker JC; Carty MD; Stevenson RW; Kreutter DK; Butler PC. 1998. Islet amyloid-associated diabetes in obese A(vy)/a mice expressing human islet amyloid polypeptide. Diabetes 47(5):743-50. [PubMed: 9588445]  [MGI Ref ID J:133694]

Staats J. 1985. Standardized Nomenclature for Inbred Strains of Mice: eighth listing. Cancer Res 45(3):945-77. [PubMed: 3971387]  [MGI Ref ID J:50296]

Suto J. 2008. Coincidence of loci for glucosuria and obesity in type 2 diabetes-prone KK-Ay mice. Med Sci Monit 14(2):CR65-74. [PubMed: 18227763]  [MGI Ref ID J:131439]

Suto J. 2009. Identification of multiple quantitative trait loci affecting the size and shape of the mandible in mice. Mamm Genome 20(1):1-13. [PubMed: 19067046]  [MGI Ref ID J:143893]

Suto J; Matsuura S; Imamura K; Yamanaka H; Sekikawa K. 1998. Genetics of obesity in KK mouse and effects of A(y) allele on quantitative regulation. Mamm Genome 9(7):506-10. [PubMed: 9657845]  [MGI Ref ID J:48704]

Suwa A; Yoshino M; Yamazaki C; Naitou M; Fujikawa R; Matsumoto S; Kurama T; Shimokawa T; Aramori I. 2010. RMI1 deficiency in mice protects from diet and genetic-induced obesity. FEBS J 277(3):677-86. [PubMed: 20050919]  [MGI Ref ID J:168271]

Sweet SE; Quevedo WC Jr. 1968. Role of melanocyte morphology in pigmentation of mouse hair. Anat Rec 162(2):243-54. [PubMed: 5726144]  [MGI Ref ID J:5095]

Tamate HB; Takeuchi T. 1981. Induction of the shift in melanin synthesis in lethal yellow (A<y>/a) mice in vitro. Dev Genet 2:349-356.  [MGI Ref ID J:11956]

Tanaka S; Kuwahara S; Nishijima K; Ohno T; Matsuzawa A. 2006. Genetic association of mutation at agouti locus with adrenal x zone morphology in BALB/c mice. Exp Anim 55(4):343-7. [PubMed: 16880681]  [MGI Ref ID J:111619]

Tanaka S; Nishimura M; Matsuzawa A. 1994. Genetic association between agouti locus and adrenal X zone morphology in SM/J mice. Acta Anat (Basel) 149(3):170-3. [PubMed: 7976166]  [MGI Ref ID J:19308]

The Jackson Laboratory Office of Genetic Resources. 1983. Registry of Remutation at The Jackson Laboratory, 1983-1984 MGI Direct Data Submission :.  [MGI Ref ID J:79402]

The Jackson Laboratory Office of Genetic Resourses. 1979. Registry of Remutations at The Jackson Laboratory, 1979-1980 MGI Direct Data Submission :.  [MGI Ref ID J:78474]

The Mammalian Genetics Unit at Harwell. 2004. Information obtained from the Mammalian Genetics Unit, Medical Research Council (MRC), Harwell, UK Unpublished :.  [MGI Ref ID J:90559]

Tsuruta Y; Yoshimatsu H; Hidaka S; Kondou S; Okamoto K; Sakata T. 2002. Hyperleptinemia in A(y)/a mice upregulates arcuate cocaine- and amphetamine-regulated transcript expression. Am J Physiol Endocrinol Metab 282(4):E967-73. [PubMed: 11882520]  [MGI Ref ID J:75872]

Vrieling H; Duhl DM; Millar SE; Miller KA; Barsh GS. 1994. Differences in dorsal and ventral pigmentation result from regional expression of the mouse agouti gene. Proc Natl Acad Sci U S A 91(12):5667-71. [PubMed: 8202545]  [MGI Ref ID J:18750]

Wolff GL. 1978. Influence of maternal phenotype on metabolic differentiation of agouti locus mutants in the mouse. Genetics 88(3):529-39. [PubMed: 640377]  [MGI Ref ID J:5964]

Woychik RP; Generoso WM; Russell LB; Cain KT; Cacheiro NL; Bultman SJ; Selby PB; Dickinson ME; Hogan BL; Rutledge JC. 1990. Molecular and genetic characterization of a radiation-induced structural rearrangement in mouse chromosome 2 causing mutations at the limb deformity and agouti loci. Proc Natl Acad Sci U S A 87(7):2588-92. [PubMed: 2320577]  [MGI Ref ID J:10399]

Wu Q; Howell MP; Cowley MA; Palmiter RD. 2008. Starvation after AgRP neuron ablation is independent of melanocortin signaling. Proc Natl Acad Sci U S A 105(7):2687-92. [PubMed: 18272480]  [MGI Ref ID J:132184]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3300.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery of Strains Needing Progeny Testing
    At least two untested males and two untested females (two pairs) will be recovered (eight or more mice is typical). The total number of animals provided, their gender and genotype will vary. Untested animals typically are available to ship between 10 and 14 weeks from the date of your order. If the first recovery attempt is unsuccessful, a second recovery will be done, extending the overall recovery time to approximately 25 weeks. Progeny testing is required to identify the genotype of mice of this strain, as a genotyping assay is not available. This type of testing involves breeding the recovered animals and assessing the phenotype of the offspring in order to identify animals carrying the mutation of interest. We can perform the progeny testing for you as a service or we can ship all recovered animals to you for progeny testing at your facility. If you perform the progeny testing, there is no guarantee that a carrier will be identified. If we perform progeny testing as a service, additional breeding time will be required. In this case, when a male and female (one pair) are identified that carry the mutation, they and their offspring will be shipped. Delivery time for strains requiring progeny testing often exceeds 25 weeks and may take 12 months or more due to the difficulties in breeding some strains. The progeny testing cost is in addition to the recovery cost and is based on the number of boxes used and the time taken to produce the mice identified as carrying the mutation.
    Please note that identified pairs may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation of the strain. Mating schemes are sometimes modified for successful cryopreservation.

    Please contact Customer Service for more information on the cost of progeny testing for a strain, tel: 1-800-422-6423 or 1-207-288-5845 (from any location). The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice.
    Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $4290.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery of Strains Needing Progeny Testing
    At least two untested males and two untested females (two pairs) will be recovered (eight or more mice is typical). The total number of animals provided, their gender and genotype will vary. Untested animals typically are available to ship between 10 and 14 weeks from the date of your order. If the first recovery attempt is unsuccessful, a second recovery will be done, extending the overall recovery time to approximately 25 weeks. Progeny testing is required to identify the genotype of mice of this strain, as a genotyping assay is not available. This type of testing involves breeding the recovered animals and assessing the phenotype of the offspring in order to identify animals carrying the mutation of interest. We can perform the progeny testing for you as a service or we can ship all recovered animals to you for progeny testing at your facility. If you perform the progeny testing, there is no guarantee that a carrier will be identified. If we perform progeny testing as a service, additional breeding time will be required. In this case, when a male and female (one pair) are identified that carry the mutation, they and their offspring will be shipped. Delivery time for strains requiring progeny testing often exceeds 25 weeks and may take 12 months or more due to the difficulties in breeding some strains. The progeny testing cost is in addition to the recovery cost and is based on the number of boxes used and the time taken to produce the mice identified as carrying the mutation.
    Please note that identified pairs may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation of the strain. Mating schemes are sometimes modified for successful cryopreservation.

    Please contact Customer Service for more information on the cost of progeny testing for a strain, tel: 1-800-422-6423 or 1-207-288-5845 (from any location). The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice.
    Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

General Supply Notes

  • View the complete collection of spontaneous mutants in the Mouse Mutant Resource.

Control Information

  Control
   Untyped from the colony
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.6)