Strain Name:

B6CBACa Aw-J/A-Grid2Lc/J

Stock Number:

001046

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names B6CBACa-Aw-J/A-Grid2Lc    (Changed: 15-DEC-04 )
Type Mutant Strain; Spontaneous Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Specieslaboratory mouse
GenerationN60p
Generation Definitions

Appearance
white-bellied agouti, ataxic
Related Genotype: Aw-J/? Grid2Lc/+

agouti, ataxic
Related Genotype: A/A Grid2Lc/+

white-bellied agouti, unaffected
Related Genotype: Aw-J/? +/+

agouti, unaffected
Related Genotype: A/A +/+

Description
Mice heterozygous for the lurcher spontaneous mutation (GridLc) show a characteristic swaying of the hindquarters and a jerky up and down movement. They are identifiable with sureness by their behavior at 12 to 14 days of age. Homozygous mutant micedie shortly after birth but have no visible abnormalities and show severe postnatal loss of Purkinje cells and granule cells. Virtually no Purkinje cells are found in adults and granule cells are reduced to about 10% of normal. The number of neurons in the inferior olivary nucleus falls to about 25% of normal. Other cell populations are normal. The Lc mutation induces apoptotic programmed death of the cerebellar cortical Purkinje cells. Homozygous mutant mice are reproducibly deficient in defined cell populations and thus have been used to study cerebellar function and the distribution of various brain components on cerebellar cells.

Control Information

  Control
   Wild-type from the colony
 
  Considerations for Choosing Controls

Related Strains

View Strains carrying   Aw-J     (30 strains)

Strains carrying   Grid2Lc allele
000593   B6 x B6CBCa Aw-J/A-Grid2Lc T(2;6)7Ca MitfMi-wh/J
View Strains carrying   Grid2Lc     (1 strain)

Strains carrying other alleles of Grid2
002440   B6 x BALB/cByJ-Grid2Lc-J/J
024550   B6(Cg)-Grid2ho-20J/GrsrJ
021782   B6.Cg-Grid2ho-18J/GrsrJ
005447   C57BL/6J-Grid2ho-16J/J
005718   C57BL/6J-Grid2ho-17J/J
017687   C57BL/6J-Grid2ho-19J/GrsrJ
024577   C57BL/6J-Grid2ho-21J/GrsrJ
000527   C57BL/6J-Grid2ho-5J/J
000548   DBA/2J-Grid2ho-4J/J
View Strains carrying other alleles of Grid2     (9 strains)

Strains carrying other alleles of a
002655   Mus pahari/EiJ
000251   AEJ.Cg-ae +/a Gdf5bp-H/J
000202   AEJ/Gn-bd/J
000199   AEJ/GnLeJ
000433   B10.C-H3c H13? A/(28NX)SnJ
000427   B10.CE-H13b Aw/(30NX)SnJ
000423   B10.KR-H13? A/SnJ
000420   B10.LP-H13b Aw/Sn
000477   B10.PA-Bloc1s6pa H3e at/SnJ
000419   B10.UW-H3b we Pax1un at/SnJ
003879   B10;TFLe-a/a T Itpr3tf/+ Itpr3tf/J
001538   B6 x B6C3Sn a/A-T(1;9)27H/J
000916   B6 x B6C3Sn a/A-T(5;12)31H/J
000602   B6 x B6C3Sn a/A-T(8;16)17H/J
002083   B6 x B6EiC3 a/A-T(7;16)235Dn/J
000507   B6 x B6EiC3 a/A-Otcspf/J
003759   B6 x B6EiC3Sn a/A-T(10;16)232Dn/J
002071   B6 x B6EiC3Sn a/A-T(11;17)202Dn/J
002113   B6 x B6EiC3Sn a/A-T(11A2;16B3)238Dn/J
002068   B6 x B6EiC3Sn a/A-T(11B1;16B5)233Dn/J
002069   B6 x B6EiC3Sn a/A-T(14E4or5;16B5)225Dn/J
001926   B6 x B6EiC3Sn a/A-T(15;16)198Dn/J
001832   B6 x B6EiC3Sn a/A-T(15E;16B1)60Dn/J
003758   B6 x B6EiC3Sn a/A-T(16C3-4;17A2)65Dn/J
001833   B6 x B6EiC3Sn a/A-T(1C2;16C3)45Dn/J
001903   B6 x B6EiC3Sn a/A-T(6F;18C)57Dn/J
001535   B6 x B6EiC3Sn a/A-T(8A4;12D1)69Dn/J
001831   B6 x B6EiC3Sn a/A-T(8C3;16B5)164Dn/J
000618   B6 x FSB/GnEi a/a Ctslfs/J
000577   B6 x STOCK a Oca2p Hps5ru2 Ednrbs/J
000601   B6 x STOCK a/a T(7;18)50H/J
000592   B6 x STOCK T(2;4)13H a/J
000769   B6.C/(HZ18)By-at-44J/J
000203   B6.C3-Aiy/a/J
000017   B6.C3-Avy/J
001572   B6.C3-am-J/J
000628   B6.CE-A Amy1b Amy2a5b/J
000021   B6.Cg-Ay/J
014608   B6;129S1-a Kitlsl-24J/GrsrJ
000231   B6;C3Fe a/a-Csf1op/J
004200   B6;CBACa Aw-J/A-Npr2cn-2J/GrsrJ
000785   B6;D2-a Ces1ce/EiJ
000604   B6C3 a/A-T(10;13)199H +/+ Lystbg-J/J or Lystbg-2J/J
001750   B6C3Fe a/a-Eif3cXs-J/J
002807   B6C3Fe a/a-Meox2fla/J
000506   B6C3Fe a/a-Qkqk-v/J
000224   B6C3Fe a/a-Scyl1mdf/J
003020   B6C3Fe a/a-Zdhhc21dep/J
001037   B6C3Fe a/a-Agtpbp1pcd/J
000221   B6C3Fe a/a-Alx4lst-J/J
002062   B6C3Fe a/a-Atp7aMo-8J/J
001756   B6C3Fe a/a-Cacng2stg/J
001815   B6C3Fe a/a-Col1a2oim/J
000209   B6C3Fe a/a-Dh/J
000211   B6C3Fe a/a-Dstdt-J/J
000210   B6C3Fe a/a-Edardl-J/J
000207   B6C3Fe a/a-Edaraddcr/J
000182   B6C3Fe a/a-Eef1a2wst/J
001278   B6C3Fe a/a-Glra1spd/J
000241   B6C3Fe a/a-Glrbspa/J
002875   B6C3Fe a/a-Hoxd13spdh/J
000304   B6C3Fe a/a-Krt71Ca Scn8amed-J/J
000226   B6C3Fe a/a-Largemyd/J
000636   B6C3Fe a/a-Lmx1adr-J/J
001280   B6C3Fe a/a-Lse/J
001573   B6C3Fe a/a-MitfMi/J
001035   B6C3Fe a/a-Napahyh/J
000181   B6C3Fe a/a-Otogtwt/J
000278   B6C3Fe a/a-Papss2bm Hps1ep Hps6ru/J
000205   B6C3Fe a/a-Papss2bm/J
002078   B6C3Fe a/a-Pcdh15av-2J/J
000246   B6C3Fe a/a-Pitpnavb/J
001430   B6C3Fe a/a-Ptch1mes/J
000235   B6C3Fe a/a-Relnrl/J
000237   B6C3Fe a/a-Rorasg/J
000290   B6C3Fe a/a-Sox10Dom/J
000230   B6C3Fe a/a-Tcirg1oc/J
003612   B6C3Fe a/a-Trak1hyrt/J
001512   B6C3Fe a/a-Ttnmdm/J
001607   B6C3Fe a/a-Unc5crcm/J
000005   B6C3Fe a/a-Wc/J
000243   B6C3Fe a/a-Wnt1sw/J
000248   B6C3Fe a/a-Xpl/J
000624   B6C3Fe a/a-anx/J
008044   B6C3Fe a/a-bpck/J
002018   B6C3Fe a/a-din/J
002339   B6C3Fe a/a-nma/J
000240   B6C3Fe a/a-soc/J
000063   B6C3Fe a/a-sy/J
001055   B6C3Fe a/a-tip/J
000245   B6C3Fe a/a-tn/J
000065   B6C3Fe a/a-we Pax1un at/J
000296   B6C3Fe-a/a Hoxa13Hd Mcoln3Va-J/J
000019   B6C3Fe-a/a-Itpr1opt/J
003301   B6C3FeF1 a/A-Eya1bor/J
001022   B6C3FeF1/J a/a
000314   B6CBACa Aw-J/A-EdaTa/J-XO
006450   B6EiC3 a/A-Vss/GrsrJ
000971   B6EiC3 a/A-Och/J
000551   B6EiC3 a/A-Tbx15de-H/J
000557   B6EiC3-+ a/LnpUl A/J
000504   B6EiC3Sn a/A-Cacnb4lh/J
000553   B6EiC3Sn a/A-Egfrwa2 Wnt3avt/J
000503   B6EiC3Sn a/A-Gy/J
001811   B6EiC3Sn a/A-Otcspf-ash/J
002343   B6EiC3Sn a/A-Otcspf/J
000391   B6EiC3Sn a/A-Pax6Sey-Dey/J
001923   B6EiC3Sn a/A-Ts(417)2Lws TimT(4;17)3Lws/J
001875   B6EiC3SnF1/J
000638   C3FeB6 A/Aw-J-Sptbn4qv-J/J
000200   C3FeB6 A/Aw-J-Ankank/J
000225   C3FeLe.B6 a/a-Ptpn6me/J
000198   C3FeLe.B6-a/J
000291   C3FeLe.Cg-a/a Hm KitlSl Krt71Ca-J/J
001272   C3H/HeSnJ-Ahvy/J
000099   C3HeB/FeJ-Avy/J
001886   C3HeB/FeJLe a/a-gnd/J
000584   C57BL/6J-+ T(1;2)5Ca/a +/J
000258   C57BL/6J-Ai/a/J
000774   C57BL/6J-Asy/a/J
000055   C57BL/6J-at-33J/J
000070   C57BL/6J-atd/J
000284   CWD/LeJ
000670   DBA/1J
000671   DBA/2J
001057   HPT/LeJ
000260   JGBF/LeJ
002468   KK.Cg-Ay/J
000262   LS/LeJ
000283   LT.CAST-A/J
000265   MY/HuLeJ
000308   SSL/LeJ
001759   STOCK A Tyrc Sha/J
001427   STOCK Aw us/J
000994   STOCK a Myo5ad Mregdsu/J
000064   STOCK a Tyrp1b Pmelsi/J
002238   STOCK a Tyrp1b shmy/J
001433   STOCK a skt/J
000579   STOCK a tp/J
000319   STOCK a us/J
002648   STOCK a/a Cln6nclf/J
000317   STOCK a/a Egfrwa2/J
000302   STOCK a/a MitfMi-wh +/+ Itpr1opt/J
000286   STOCK a/a Myo5ad fd/+ +/J
000281   STOCK a/a Tmem79ma Flgft/J
000206   STOCK a/a Tyrc-h/J
001432   STOCK a/a Tyrp1b Ndc1sks/Tyrp1b +/J
000312   STOCK stb + a/+ Fignfi a/J
000596   STOCK T(2;11)30H/+ x AEJ-a Gdf5bp-H/J or A/J-a Gdf5bp-J/J
000970   STOCK T(2;16)28H A/T(2;16)28H a/J
000590   STOCK T(2;4)1Sn a/J
000594   STOCK T(2;8)26H a/T(2;8)26H a Tyrp1+/Tyrp1b/J
000623   TR/DiEiJ
001145   WSB/EiJ
View Strains carrying other alleles of a     (154 strains)

Phenotype

Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Grid2Lc/Grid2+

        B6CBACa Aw-J/A-Grid2Lc/J
  • behavior/neurological phenotype
  • abnormal grooming behavior
    • the number and duration of several grooming components (licking the forelimb, the abdomen, the back, and the hindlimb) is decreased compared to in wild-type mice   (MGI Ref ID J:50315)
    • however, the number and duration of body-shaking episodes is normal as is the serial organization of grooming   (MGI Ref ID J:50315)
  • ataxia
    • due to progressive loss of Purkinje cells   (MGI Ref ID J:39109)
  • hearing/vestibular/ear phenotype
  • reduced linear vestibular evoked potential
    • elevated threshold and reduced amplitudes   (MGI Ref ID J:116914)
  • nervous system phenotype
  • Purkinje cell degeneration
    • occurs within the first three weeks of life   (MGI Ref ID J:39109)

Grid2Lc/Grid2+

        involves: C57BL/6 * CBA
  • behavior/neurological phenotype
  • decreased exploration in new environment
    • mice exhibit reduced hole pokes and frequency of hole poking compared with wild-type mice   (MGI Ref ID J:107881)
    • however, walking time is normal and exploration is normally decreased by cerebellectomization   (MGI Ref ID J:107881)
  • hyperactivity
    • mice exhibit increased spontaneous activity compared with wild-type mice   (MGI Ref ID J:107881)
  • homeostasis/metabolism phenotype
  • increased circulating adrenocorticotropin level
    • after 15 minutes, LPS-stressed mice exhibit an 8-fold increase in plasma adrenocorticotropin (ACTH) levels compared with similarly treated wild-type mice   (MGI Ref ID J:44206)
    • mice exposed to a novel environment exhibit a 3.5-fold increased ACTH levels compared with similarly wild-type mice   (MGI Ref ID J:44206)
    • a IL1 receptor antagonist-treated mice treated with LPS or exposed to novelty exhibit increased ACTH levels compared with similarly treated wild-type mice   (MGI Ref ID J:44206)
    • pre-treatment with corticotropin-releasing hormone attenuates the abnormal surge in ACTH levels   (MGI Ref ID J:44206)
    • however, basal ACTH levels are normal   (MGI Ref ID J:44206)
  • increased circulating corticosterone level
    • after 15 minutes, LPS-stressed mice exhibit a 1.8-fold increase in plasma corticosterone levels compared with similarly treated wild-type mice   (MGI Ref ID J:44206)
    • mice exposed to a novel environment exhibit a 2-fold increased corticosterone levels compared with similarly wild-type mice   (MGI Ref ID J:44206)
    • a IL1 receptor antagonist-treated mice treated with LPS or exposed to novelty exhibit increased corticosterone levels compared with similarly treated wild-type mice   (MGI Ref ID J:44206)
    • pre-treatment with corticotropin-releasing hormone attenuates the abnormal surge in corticosterone levels   (MGI Ref ID J:44206)
    • however, basal corticosterone levels are normal   (MGI Ref ID J:44206)

Grid2Lc/Grid2+

        involves: C57BL/6 * CBA/CaGnLe
  • behavior/neurological phenotype
  • abnormal optokinetic reflex
    • do not display OKR adaptation in response to continuous oscillation of a screen at 0.4 Hz +/- 1.8 degrees unlike wild-type mice   (MGI Ref ID J:101081)
  • abnormal vestibuloocular reflex
    • exhibit higher VOR dark (VORD) gains   (MGI Ref ID J:101081)
    • VORD phase differs from wild-type and Grid2 tm1Mim homozygous mice at rotations frequencies higher and lower than 0.4 Hz   (MGI Ref ID J:101081)
    • increases in VOR light with synchronously moving visual stimuli (VORS) gains at high frequencies or high amplitudes are larger than in wild-type controls   (MGI Ref ID J:101081)
    • adaptive changes to VORD gains from training are not seen, unlike in wild-type mice   (MGI Ref ID J:101081)
  • hearing/vestibular/ear phenotype
  • abnormal vestibuloocular reflex
    • exhibit higher VOR dark (VORD) gains   (MGI Ref ID J:101081)
    • VORD phase differs from wild-type and Grid2 tm1Mim homozygous mice at rotations frequencies higher and lower than 0.4 Hz   (MGI Ref ID J:101081)
    • increases in VOR light with synchronously moving visual stimuli (VORS) gains at high frequencies or high amplitudes are larger than in wild-type controls   (MGI Ref ID J:101081)
    • adaptive changes to VORD gains from training are not seen, unlike in wild-type mice   (MGI Ref ID J:101081)

Grid2Lc/Grid2Lc

        B6CBACa Aw-J/A-Grid2Lc/J
  • mortality/aging
  • complete neonatal lethality
    • mice are dead or dying within the first 12 hours after birth   (MGI Ref ID J:39109)
  • growth/size/body phenotype
  • decreased birth weight
    • mice weigh significantly less than heterozygous or wild-type siblings at birth   (MGI Ref ID J:39109)
    • explained by lack of nutrition   (MGI Ref ID J:39109)
  • nervous system phenotype
  • abnormal hindbrain morphology
    • there is a general loss of neurons between E15.5 and birth   (MGI Ref ID J:39109)
    • abnormal cerebellum development
      • conspicuous absence of Purkinje cells   (MGI Ref ID J:39109)
    • abnormal trigeminal motor nucleus morphology
      • there is a conspicuous absence of large neurons   (MGI Ref ID J:39109)
      • beginning at E15.5 large numbers of pyknotic cells are evident and an obvious increase in the number of pyknotic neurons in E16.5 mice is evident   (MGI Ref ID J:39109)
      • results in loss of muscle control required for suckling   (MGI Ref ID J:39109)
      • abnormalities occur after its formation   (MGI Ref ID J:39109)
  • abnormal midbrain morphology
    • there is a general loss of neurons between E15.5 and birth   (MGI Ref ID J:39109)
  • behavior/neurological phenotype
  • abnormal suckling behavior
    • suckling is compromised by degeneration of trigeminal motor nucleus that controls required muscles   (MGI Ref ID J:39109)
  • absent gastric milk in neonates
    • no evidence of a milk spot in newborns is the only gross observation associated with death of pups   (MGI Ref ID J:39109)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Grid2Lc/Grid2+

        involves: STOCK MitfMi-wh
  • behavior/neurological phenotype
  • abnormal discrimination learning
    • mice exhibit impaired visual discrimination learning in a water escape test compared with wild-type mice   (MGI Ref ID J:13161)
  • abnormal motor coordination/ balance
    • in an Erasmus ladder test step time and overall walking pattern are abnormal   (MGI Ref ID J:158918)
    • ataxia   (MGI Ref ID J:158918)
    • impaired coordination
      • decrease in latency to fall of a rotarod   (MGI Ref ID J:158918)
  • abnormal spatial learning
    • mice exhibit impaired spatial learning in a Z-maze filled with water compared with wild-type mice   (MGI Ref ID J:30686)
  • nervous system phenotype
  • abnormal cochlear VIII nucleus morphology
    • loss of cartwheel cells in the dorsal cochlear nucleus   (MGI Ref ID J:121314)
  • decreased Purkinje cell number
    • Purkinje cell loss   (MGI Ref ID J:121314)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Grid2Lc related

Developmental Biology Research
Embryonic Lethality (Homozygous)

Neurobiology Research
Ataxia (Movement) Defects
Cerebellar Defects
      Purkinje cell defect
Receptor Defects
      glutamate receptor: ionotropic
Vestibular Defects

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Aw-J
Allele Name white bellied agouti Jackson
Allele Type Spontaneous
Common Name(s) AWJ;
Strain of OriginC57BL/6J
Gene Symbol and Name a, nonagouti
Chromosome 2
Gene Common Name(s) AGSW; AGTI; AGTIL; ASP; As; SHEP9; agouti; agouti signal protein; agouti suppressor;
 
Allele Symbol Grid2Lc
Allele Name lurcher
Allele Type Spontaneous
Common Name(s) GluD2LC; Grid2-Lc; lc;
Strain of OriginSTOCK Mitf
Gene Symbol and Name Grid2, glutamate receptor, ionotropic, delta 2
Chromosome 6
Gene Common Name(s) B230104L07Rik; GluD2; GluRdelta2; Lc; LcJ; RIKEN cDNA B230104L07 gene; cpr; creeper; ho; hotfoot; lurcher; lurcher Jackson; neuroscience mutagenesis facility, 408; nmf408; tapdancer; tpr;
Molecular Note This allele comprises a nucleotide substitution that causes a change in an amino acid in the third transmembrane domain of Grid2. [MGI Ref ID J:42431]

Genotyping

Genotyping Information


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Additional References

Belzung C; Chapillon P; Lalonde R. 2001. The effects of the lurcher mutation on object localization, T-maze discrimination, and radial arm maze tasks. Behav Genet 31(2):151-5. [PubMed: 11545532]  [MGI Ref ID J:71079]

Le Marec N; Lalonde R. 2000. Treadmill performance of mice with cerebellar lesions: 2. Lurcher mutant mice. Neurobiol Learn Mem 73(3):195-206. [PubMed: 10775492]  [MGI Ref ID J:61897]

Norman DJ; Feng L; Cheng SS; Gubbay J; Chan E; Heintz N. 1995. The lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development 121(4):1183-93. [PubMed: 7743930]  [MGI Ref ID J:24329]

Zuo J; De Jager PL; Takahashi KA; Jiang W; Linden DJ; Heintz N. 1997. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene [see comments] Nature 388(6644):769-73. [PubMed: 9285588]  [MGI Ref ID J:42431]

Aw-J related

Aberg T; Wang XP; Kim JH; Yamashiro T; Bei M; Rice R; Ryoo HM; Thesleff I. 2004. Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol 270(1):76-93. [PubMed: 15136142]  [MGI Ref ID J:92174]

Banerjee H; Das A; Srivastava S; Mattoo HR; Thyagarajan K; Khalsa JK; Tanwar S; Das DS; Majumdar SS; George A; Bal V; Durdik JM; Rath S. 2012. A role for apoptosis-inducing factor in T cell development. J Exp Med 209(9):1641-53. [PubMed: 22869892]  [MGI Ref ID J:191446]

Barsh GS; Epstein CJ. 1989. Physical and genetic characterization of a 75-kilobase deletion associated with al, a recessive lethal allele at the mouse agouti locus. Genetics 121(4):811-8. [PubMed: 2566558]  [MGI Ref ID J:9799]

Baurle J; Vogten H; Grusser-Cornehls U. 1998. Course and targets of the calbindin D-28k subpopulation of primary vestibular afferents. J Comp Neurol 402(1):111-28. [PubMed: 9831049]  [MGI Ref ID J:118430]

Boran T; Lesot H; Peterka M; Peterkova R. 2005. Increased apoptosis during morphogenesis of the lower cheek teeth in tabby/EDA mice. J Dent Res 84(3):228-33. [PubMed: 15723861]  [MGI Ref ID J:112546]

Chinta SJ; Rane A; Yadava N; Andersen JK; Nicholls DG; Polster BM. 2009. Reactive oxygen species regulation by AIF- and complex I-depleted brain mitochondria. Free Radic Biol Med 46(7):939-47. [PubMed: 19280713]  [MGI Ref ID J:145908]

Cui CY; Hashimoto T; Grivennikov SI; Piao Y; Nedospasov SA; Schlessinger D. 2006. Ectodysplasin regulates the lymphotoxin-beta pathway for hair differentiation. Proc Natl Acad Sci U S A 103(24):9142-7. [PubMed: 16738056]  [MGI Ref ID J:111051]

Cui CY; Kunisada M; Esibizione D; Grivennikov SI; Piao Y; Nedospasov SA; Schlessinger D. 2007. Lymphotoxin-beta regulates periderm differentiation during embryonic skin development. Hum Mol Genet 16(21):2583-90. [PubMed: 17673451]  [MGI Ref ID J:129949]

Cunningham D; Spychala K; McLarren KW; Garza LA; Boerkoel CF; Herman GE. 2009. Developmental expression pattern of the cholesterogenic enzyme NSDHL and negative selection of NSDHL-deficient cells in the heterozygous Bpa(1H)/+ mouse. Mol Genet Metab 98(4):356-66. [PubMed: 19631568]  [MGI Ref ID J:155028]

Dickie MM. 1969. Mutations at the agouti locus in the mouse. J Hered 60(1):20-5. [PubMed: 5798139]  [MGI Ref ID J:30922]

Esibizione D; Cui CY; Schlessinger D. 2008. Candidate EDA targets revealed by expression profiling of primary keratinocytes from Tabby mutant mice. Gene 427(1-2):42-6. [PubMed: 18848976]  [MGI Ref ID J:143603]

Granholm DE; Reese RN; Granholm NH. 1996. Agouti alleles alter cysteine and glutathione concentrations in hair follicles and serum of mice (A y/a, A wJ/A wJ, and a/a). J Invest Dermatol 106(3):559-63. [PubMed: 8648194]  [MGI Ref ID J:32132]

Granholm DE; Reese RN; Granholm NH. 1995. Agouti alleles influence thiol concentrations in hair follicles and extrafollicular tissues of mice (Ay/a, AwJ/AwJ, a/a). Pigment Cell Res 8(6):302-6. [PubMed: 8789738]  [MGI Ref ID J:31403]

Hisatomi T; Nakao S; Murakami Y; Noda K; Nakazawa T; Notomi S; Connolly E; She H; Almulki L; Ito Y; Vavvas DG; Ishibashi T; Miller JW. 2012. The regulatory roles of apoptosis-inducing factor in the formation and regression processes of ocular neovascularization. Am J Pathol 181(1):53-61. [PubMed: 22613025]  [MGI Ref ID J:185543]

Jones JM; Huang JD; Mermall V; Hamilton BA; Mooseker MS; Escayg A; Copeland NG; Jenkins NA; Meisler MH. 2000. The mouse neurological mutant flailer expresses a novel hybrid gene derived by exon shuffling between Gnb5 and Myo5a. Hum Mol Genet 9(5):821-8. [PubMed: 10749990]  [MGI Ref ID J:61324]

Kappenman KE; Dvoracek MA; Harvison GA; Fuller BB; Granholm NH. 1992. Tyrosinase abundance and activity in murine hairbulb melanocytes of agouti mutants (C57BL/6J-a/a, Ay/a, and AwJ/AwJ). Pigment Cell Res Suppl 2:79-83. [PubMed: 1409442]  [MGI Ref ID J:1295]

Katoh A; Yoshida T; Himeshima Y; Mishina M; Hirano T. 2005. Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate receptor delta2 subunit or Purkinje cells. Eur J Neurosci 21(5):1315-26. [PubMed: 15813941]  [MGI Ref ID J:101081]

Knapp PE; Adjan VV; Hauser KF. 2009. Cell-specific loss of kappa-opioid receptors in oligodendrocytes of the dysmyelinating jimpy mouse. Neurosci Lett 451(2):114-8. [PubMed: 19110031]  [MGI Ref ID J:146365]

Lee M; Kim A; Chua SC Jr; Obici S; Wardlaw SL. 2007. Transgenic MSH overexpression attenuates the metabolic effects of a high-fat diet. Am J Physiol Endocrinol Metab 293(1):E121-31. [PubMed: 17374695]  [MGI Ref ID J:126508]

Lu W; Tsirka SE. 2002. Partial rescue of neural apoptosis in the Lurcher mutant mouse through elimination of tissue plasminogen activator. Development 129(8):2043-50. [PubMed: 11934869]  [MGI Ref ID J:111363]

Martin LA; Goldowitz D; Mittleman G. 2010. Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur J Neurosci 31(3):544-55. [PubMed: 20105240]  [MGI Ref ID J:159466]

Mayer TC; Fishbane JL. 1972. Mesoderm-ectoderm interaction in the production of the agouti pigmentation pattern in mice. Genetics 71(2):297-303. [PubMed: 4558326]  [MGI Ref ID J:5288]

Mitsumori K; Yasuhara K; Mori I; Hayashi S; Shimo T; Onodera H; Nomura T; Hayashi Y. 1998. Pulmonary fibrosis caused by N-methyl-N-nitrosourethane inhibits lung tumorigenesis by urethane in transgenic mice carrying the human prototype c-Ha-ras gene. Cancer Lett 129(2):181-90. [PubMed: 9719460]  [MGI Ref ID J:52138]

Monroe DG; Wipf LP; Diggins MR; Matthees DP; Granholm NH. 1998. Agouti-related maturation and tissue distribution of alpha-Melanocyte Stimulating Hormone in wild-type (AwJ/AwJ) and mutant (Ay/a,a/a) mice. Pigment Cell Res 11(5):310-3. [PubMed: 9877102]  [MGI Ref ID J:52183]

Mullen RJ. 1974. A<w-J> - white-bellied agouti-J Mouse News Lett 50:38.  [MGI Ref ID J:64104]

Mustonen T; Ilmonen M; Pummila M; Kangas AT; Laurikkala J; Jaatinen R; Pispa J; Gaide O; Schneider P; Thesleff I; Mikkola ML. 2004. Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 131(20):4907-19. [PubMed: 15371307]  [MGI Ref ID J:128256]

O'donnell SM; Hansberger MW; Connolly JL; Chappell JD; Watson MJ; Pierce JM; Wetzel JD; Han W; Barton ES; Forrest JC; Valyi-Nagy T; Yull FE; Blackwell TS; Rottman JN; Sherry B; Dermody TS. 2005. Organ-specific roles for transcription factor NF-kappaB in reovirus-induced apoptosis and disease. J Clin Invest 115(9):2341-2350. [PubMed: 16100570]  [MGI Ref ID J:100906]

Peng J; Wu Z; Wu Y; Hsu M; Stevenson FF; Boonplueang R; Roffler-Tarlov SK; Andersen JK. 2002. Inhibition of caspases protects cerebellar granule cells of the weaver mouse from apoptosis and improves behavioral phenotype. J Biol Chem 277(46):44285-91. [PubMed: 12221097]  [MGI Ref ID J:119427]

Peng J; Xie L; Stevenson FF; Melov S; Di Monte DA; Andersen JK. 2006. Nigrostriatal dopaminergic neurodegeneration in the weaver mouse is mediated via neuroinflammation and alleviated by minocycline administration. J Neurosci 26(45):11644-51. [PubMed: 17093086]  [MGI Ref ID J:114943]

Poole TW. 1975. Dermal-epidermal interactions and the action of alleles at the agouti locus in the mouse. Dev Biol 42(2):203-10. [PubMed: 1090472]  [MGI Ref ID J:5519]

Probst FJ; Cooper ML; Cheung SW; Justice MJ. 2008. Genotype, phenotype, and karyotype correlation in the XO mouse model of Turner Syndrome. J Hered 99(5):512-7. [PubMed: 18499648]  [MGI Ref ID J:138994]

Prtenjaca A; Hill KA. 2011. Mutation frequency is not elevated in the cerebellum of harlequin/Big Blue((R)) mice but Class II deletions occur preferentially in young harlequin cerebellum. Mutat Res 707(1-2):53-60. [PubMed: 21195094]  [MGI Ref ID J:168461]

Smith DE; Xu SG. 2003. Ultrastructural organization of GABA-like immunoreactive profiles in the weaver substantia nigra. J Neurocytol 32(3):293-303. [PubMed: 14724391]  [MGI Ref ID J:121345]

Vandenput L; Swinnen JV; Boonen S; Van Herck E; Erben RG; Bouillon R; Vanderschueren D. 2004. Role of the androgen receptor in skeletal homeostasis: the androgen-resistant testicular feminized male mouse model. J Bone Miner Res 19(9):1462-70. [PubMed: 15312246]  [MGI Ref ID J:111491]

Wu Q; Miller RH; Ransohoff RM; Robinson S; Bu J; Nishiyama A. 2000. Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant. J Neurosci 20(7):2609-17. [PubMed: 10729341]  [MGI Ref ID J:109469]

Yamago G; Takata Y; Furuta I; Urase K; Momoi T; Huh N. 2001. Suppression of hair follicle development inhibits induction of sonic hedgehog, patched, and patched-2 in hair germs in mice. Arch Dermatol Res 293(9):435-41. [PubMed: 11758785]  [MGI Ref ID J:116953]

Yoshida T; Katoh A; Ohtsuki G; Mishina M; Hirano T. 2004. Oscillating Purkinje neuron activity causing involuntary eye movement in a mutant mouse deficient in the glutamate receptor delta2 subunit. J Neurosci 24(10):2440-8. [PubMed: 15014119]  [MGI Ref ID J:97010]

Zhang M; Su YQ; Sugiura K; Xia G; Eppig JJ. 2010. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 330(6002):366-9. [PubMed: 20947764]  [MGI Ref ID J:164870]

van Empel VP; Bertrand AT; van der Nagel R; Kostin S; Doevendans PA; Crijns HJ; de Wit E; Sluiter W; Ackerman SL; De Windt LJ. 2005. Downregulation of apoptosis-inducing factor in harlequin mutant mice sensitizes the myocardium to oxidative stress-related cell death and pressure overload-induced decompensation. Circ Res 96(12):e92-e101. [PubMed: 15933268]  [MGI Ref ID J:110278]

Grid2Lc related

Bakalian A; Kopmels B; Messer A; Fradelizi D; Delhaye-Bouchaud N; Wollman E; Mariani J. 1992. Peripheral macrophage abnormalities in mutant mice with spinocerebellar degeneration. Res Immunol 143(1):129-39. [PubMed: 1565842]  [MGI Ref ID J:2228]

Baurle J; Frischmuth S; Kranda K. 2004. TRAIL-related death receptors in normal, Lurcher and weaver mutant mouse brain. Neurosci Lett 372(1-2):46-51. [PubMed: 15531086]  [MGI Ref ID J:107527]

Baurle J; Guldin W. 1998. Vestibular ganglion neurons survive the loss of their cerebellar targets. Neuroreport 9(18):4119-22. [PubMed: 9926858]  [MGI Ref ID J:54045]

Baurle J; Hoshi M; Grusser-Cornehls U. 1998. Dependence of parvalbumin expression on Purkinje cell input in the deep cerebellar nuclei. J Comp Neurol 392(4):499-514. [PubMed: 9514513]  [MGI Ref ID J:118391]

Baurle J; Vogten H; Grusser-Cornehls U. 1998. Course and targets of the calbindin D-28k subpopulation of primary vestibular afferents. J Comp Neurol 402(1):111-28. [PubMed: 9831049]  [MGI Ref ID J:118430]

Belzung C; Chapillon P; Lalonde R. 2001. The effects of the lurcher mutation on object localization, T-maze discrimination, and radial arm maze tasks. Behav Genet 31(2):151-5. [PubMed: 11545532]  [MGI Ref ID J:71079]

Berrebi AS; Morgan JI; Mugnaini E. 1990. The Purkinje cell class may extend beyond the cerebellum. J Neurocytol 19(5):643-54. [PubMed: 2077109]  [MGI Ref ID J:121314]

Bluthe RM; Michaud B; Delhaye-Bouchaud N; Mariani J; Dantzer R. 1997. Hypersensitivity of lurcher mutant mice to the depressing effects of lipopolysaccharide and interleukin-1 on behaviour. Neuroreport 8(5):1119-22. [PubMed: 9175096]  [MGI Ref ID J:40880]

Bouillet P; Robati M; Adams JM; Strasser A. 2003. Loss of pro-apoptotic BH3-only Bcl-2 family member Bim does not protect mutant Lurcher mice from neurodegeneration. J Neurosci Res 74(5):777-81. [PubMed: 14635229]  [MGI Ref ID J:104975]

Cabraja M; Baurle J. 2007. Vestibular ganglion neurons survive hair cell defects in jerker, shaker, and Varitint-waddler mutants and downregulate calretinin expression. J Comp Neurol 504(4):418-26. [PubMed: 17663432]  [MGI Ref ID J:132913]

Caddy KW; Biscoe TJ. 1979. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond B Biol Sci 287(1020):167-201. [PubMed: 41272]  [MGI Ref ID J:6232]

Caddy KW; Vozeh F. 1997. The effect of 3-acetylpyridine on inferior olivary neuron degeneration in Lurcher mutant and wild-type mice. Eur J Pharmacol 330(2-3):139-42. [PubMed: 9253946]  [MGI Ref ID J:43327]

Caston J; Chianale C; Delhaye-Bouchaud N; Mariani J. 1998. Role of the cerebellum in exploration behavior. Brain Res 808(2):232-7. [PubMed: 9767169]  [MGI Ref ID J:107881]

Caston J; Vasseur F; Stelz T; Chianale C; Delhaye-Bouchaud N; Mariani J. 1995. Differential roles of cerebellar cortex and deep cerebellar nuclei in the learning of the equilibrium behavior: studies in intact and cerebellectomized lurcher mutant mice. Brain Res Dev Brain Res 86(1-2):311-6. [PubMed: 7656422]  [MGI Ref ID J:25957]

Cendelin J; Korelusova I; Vozeh F. 2008. The effect of repeated rotarod training on motor skills and spatial learning ability in Lurcher mutant mice. Behav Brain Res 189(1):65-74. [PubMed: 18243354]  [MGI Ref ID J:132610]

Cheng SS; Heintz N. 1997. Massive loss of mid- and hindbrain neurons during embryonic development of homozygous lurcher mice. J Neurosci 17(7):2400-7. [PubMed: 9065501]  [MGI Ref ID J:39109]

Chou DKH; Jungalwala FB. 1996. N-Acetylglucosaminyl transferase regulates the expression of the sulfoglucuronyl glycolipids in specific cell types in cerebellum during development. J Biol Chem 271(46):28868-74. [PubMed: 8910533]  [MGI Ref ID J:37189]

Christensen HM; Dikranian K; Li A; Baysac KC; Walls KC; Olney JW; Roth KA; Harris DA. 2010. A highly toxic cellular prion protein induces a novel, nonapoptotic form of neuronal death. Am J Pathol 176(6):2695-706. [PubMed: 20472884]  [MGI Ref ID J:161315]

Chu T; Hullinger H; Schilling K; Oberdick J. 2000. Spatial and temporal changes in natural and target deprivation-induced cell death in the mouse inferior olive. J Neurobiol 43(1):18-30. [PubMed: 10756063]  [MGI Ref ID J:62391]

De Jager PL; Heintz N. 1998. The lurcher mutation and ionotropic glutamate receptors: contributions to programmed neuronal death in vivo. Brain Pathol 8(4):795-807. [PubMed: 9804384]  [MGI Ref ID J:53640]

Diaz E; Ge Y; Yang YH; Loh KC; Serafini TA; Okazaki Y; Hayashizaki Y; Speed TP; Ngai J; Scheiffele P. 2002. Molecular analysis of gene expression in the developing pontocerebellar projection system. Neuron 36(3):417-34. [PubMed: 12408845]  [MGI Ref ID J:107729]

Dickson PE; Rogers TD; Del Mar N; Martin LA; Heck D; Blaha CD; Goldowitz D; Mittleman G. 2010. Behavioral flexibility in a mouse model of developmental cerebellar Purkinje cell loss. Neurobiol Learn Mem 94(2):220-8. [PubMed: 20566377]  [MGI Ref ID J:166096]

Doughty ML; Lohof A; Selimi F; Delhaye-Bouchaud N; Mariani J. 1999. Afferent-target cell interactions in the cerebellum: negative effect of granule cells on Purkinje cell development in lurcher mice. J Neurosci 19(9):3448-56. [PubMed: 10212305]  [MGI Ref ID J:54690]

Doughty ML; Patterson L; Caddy KW. 1995. Cerebellar Purkinje cells from the lurcher mutant and wild-type mouse grown in vitro: a light and electron microscope study. J Comp Neurol 357(1):161-79. [PubMed: 7673465]  [MGI Ref ID J:26917]

Dumesnil-Bousez N; Sotelo C. 1992. Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis. J Neurocytol 21(7):506-29. [PubMed: 1500948]  [MGI Ref ID J:3357]

Dumesnil-Bousez N; Sotelo C. 1993. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience 55(1):1-21. [PubMed: 8350981]  [MGI Ref ID J:16367]

Dumesnil-Bousez N; Sotelo C. 1993. The dorsal cochlear nucleus of the adult lurcher mouse is specifically invaded by embryonic grafted Purkinje cells. Brain Res 622(1-2):343-7. [PubMed: 8242378]  [MGI Ref ID J:15257]

Epstein CJ; Epstein LB. 1981. Genetic control of the response to interferon. Tex Rep Biol Med 41:324-31. [PubMed: 6184821]  [MGI Ref ID J:6931]

Faulstich M; van Alphen AM; Luo C; du Lac S; De Zeeuw CI. 2006. Oculomotor plasticity during vestibular compensation does not depend on cerebellar LTD. J Neurophysiol 96(3):1187-95. [PubMed: 16723418]  [MGI Ref ID J:129293]

Frederic F; Chautard T; Brochard R; Chianale C; Wollman E; Oliver C; Delhaye-Bouchaud N; Mariani J. 1997. Enhanced endocrine response to novel environment stress and endotoxin in Lurcher mutant mice. Neuroendocrinology 66(5):341-7. [PubMed: 9387853]  [MGI Ref ID J:44206]

Garin N; Hornung JP; Escher G. 2002. Distribution of postsynaptic GABA(A) receptor aggregates in the deep cerebellar nuclei of normal and mutant mice. J Comp Neurol 447(3):210-7. [PubMed: 11984816]  [MGI Ref ID J:77036]

Grunwald GB; Eisenman LM. 1993. Analysis of protein variations in adult and postnatal day 11 staggerer and lurcher mutant mice. Brain Res Dev Brain Res 73(1):146-50. [PubMed: 8513552]  [MGI Ref ID J:11841]

Heckroth JA. 1994. A quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. II. Volumetric changes in cytological components. J Comp Neurol 343(1):183-92. [PubMed: 8027435]  [MGI Ref ID J:17783]

Heckroth JA. 1992. Development of glutamic acid decarboxylase-immunoreactive elements in the cerebellar cortex of normal and lurcher mutant mice. J Comp Neurol 315(1):85-97. [PubMed: 1541724]  [MGI Ref ID J:1858]

Heckroth JA. 1994. Quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. I. Morphology and cell number. J Comp Neurol 343(1):173-82. [PubMed: 8027434]  [MGI Ref ID J:17784]

Hilber P; Caston J. 2001. Motor skills and motor learning in Lurcher mutant mice during aging. Neuroscience 102(3):615-23. [PubMed: 11226698]  [MGI Ref ID J:109400]

Hilber P; Lorivel T; Delarue C; Caston J. 2004. Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res 1003(1-2):108-12. [PubMed: 15019569]  [MGI Ref ID J:107787]

Hisatsune C; Miyamoto H; Hirono M; Yamaguchi N; Sugawara T; Ogawa N; Ebisui E; Ohshima T; Yamada M; Hensch TK; Hattori M; Mikoshiba K. 2013. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice. Front Neural Circuits 7:156. [PubMed: 24109434]  [MGI Ref ID J:202815]

Jones SM; Johnson KR; Yu H; Erway LC; Alagramam KN; Pollak N; Jones TA. 2005. A quantitative survey of gravity receptor function in mutant mouse strains. J Assoc Res Otolaryngol 6(4):297-310. [PubMed: 16235133]  [MGI Ref ID J:116914]

Katoh A; Yoshida T; Himeshima Y; Mishina M; Hirano T. 2005. Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate receptor delta2 subunit or Purkinje cells. Eur J Neurosci 21(5):1315-26. [PubMed: 15813941]  [MGI Ref ID J:101081]

Klein RM; Howe JR. 2004. Effects of the lurcher mutation on GluR1 desensitization and activation kinetics. J Neurosci 24(21):4941-51. [PubMed: 15163686]  [MGI Ref ID J:96906]

Kopmels B; Mariani J; Taupin V; Delhaye-Bouchaud N; Wollman EE. 1991. Differential IL-6 mRNA expression by stimulated peripheral macrophages of Staggerer and Lurcher cerebellar mutant mice. Eur Cytokine Netw 2(5):345-53. [PubMed: 1804324]  [MGI Ref ID J:11652]

Kopmels B; Wollman EE; Guastavino JM; Delhaye-Bouchaud N; Fradelizi D; Mariani J. 1990. Interleukin-1 hyperproduction by in vitro activated peripheral macrophages from cerebellar mutant mice. J Neurochem 55(6):1980-5. [PubMed: 2230805]  [MGI Ref ID J:28095]

Krizkova A; Vozeh F. 2004. Development of early motor learning and topical motor skills in a model of cerebellar degeneration. Behav Brain Res 150(1-2):65-72. [PubMed: 15033280]  [MGI Ref ID J:95932]

Lalonde R. 1998. Immobility responses in Lurcher mutant mice. Behav Genet 28(4):309-14. [PubMed: 9803023]  [MGI Ref ID J:50663]

Lalonde R. 1994. Motor learning in lurcher mutant mice. Brain Res 639(2):351-3. [PubMed: 8205489]  [MGI Ref ID J:17180]

Lalonde R; Botez MI; Bontemps R; Loron P. 1994. Effects of an ectodermal microceptor preparation on motor coordination in cerebellar mutant mice. Pharmacol Biochem Behav 49(4):777-9. [PubMed: 7886086]  [MGI Ref ID J:22067]

Lalonde R; Botez MI; Joyal CC; Caumartin M. 1992. Motor abnormalities in lurcher mutant mice. Physiol Behav 51(3):523-5. [PubMed: 1523229]  [MGI Ref ID J:990]

Lalonde R; Filali M; Bensoula AN; Lestienne F. 1996. Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem 65(2):113-20. [PubMed: 8833100]  [MGI Ref ID J:31867]

Lalonde R; Filali M; Bensoula AN; Monnier C; Guastavino JM. 1996. Spatial learning in a Z-maze by cerebellar mutant mice. Physiol Behav 59(1):83-6. [PubMed: 8848495]  [MGI Ref ID J:30686]

Lalonde R; Hayzoun K; Selimi F; Mariani J; Strazielle C. 2003. Motor coordination in mice with hotfoot, Lurcher, and double mutations of the Grid2 gene encoding the delta-2 excitatory amino acid receptor. Physiol Behav 80(2-3):333-9. [PubMed: 14637233]  [MGI Ref ID J:96320]

Lalonde R; Joyal CC; Cote C; Botez MI. 1993. Delayed spontaneous alternation in lurcher mutant mice Psychobiology 21(2):139-41.  [MGI Ref ID J:15997]

Lalonde R; Joyal CC; Cote C; Botez MI. 1993. Simultaneous visual discrimination learning in lurcher mutant mice. Brain Res 618(1):19-22. [PubMed: 8402174]  [MGI Ref ID J:13161]

Lalonde R; Joyal CC; Guastavino JM; Botez MI. 1993. Hole poking and motor coordination in lurcher mutant mice. Physiol Behav 54(1):41-4. [PubMed: 8327607]  [MGI Ref ID J:15999]

Lalonde R; Joyal CC; Guastavino JM; Cote C; Botez MI. 1993. Amantadine and Ketamine-Induced Improvement of Motor Coordination in Lurcher Mutant Mice Restorative Neurol Neurosci 5(5-6):367-370.  [MGI Ref ID J:16008]

Lalonde R; Joyal CC; Thifault S. 1996. Beam sensorimotor learning and habituation to motor activity in lurcher mutant mice. Behav Brain Res 74(1-2):213-6. [PubMed: 8851932]  [MGI Ref ID J:37367]

Lalonde R; Strazielle C. 2007. Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res 1140:51-74. [PubMed: 16499884]  [MGI Ref ID J:120621]

Lalonde R; Thifault S. 1994. Absence of an association between motor coordination and spatial orientation in lurcher mutant mice. Behav Genet 24(6):497-501. [PubMed: 7872930]  [MGI Ref ID J:22285]

Le Marec N; Caston J; Lalonde R. 1997. Impaired motor skills on static and mobile beams in lurcher mutant mice. Exp Brain Res 116(1):131-8. [PubMed: 9305822]  [MGI Ref ID J:42849]

Le Marec N; Hebert C; Botez MI; Botez-Marquard T; Marchand L; Reader TA. 1999. Serotonin innervation of Lurcher mutant mice: basic data and manipulation with a combination of amantadine, thiamine and L-tryptophan. Brain Res Bull 48(2):195-201. [PubMed: 10230710]  [MGI Ref ID J:57218]

Le Marec N; Lalonde R. 2000. Treadmill performance of mice with cerebellar lesions: 2. Lurcher mutant mice. Neurobiol Learn Mem 73(3):195-206. [PubMed: 10775492]  [MGI Ref ID J:61897]

Lorivel T; Hilber P. 2006. Effects of chlordiazepoxide on the emotional reactivity and motor capacities in the cerebellar Lurcher mutant mice. Behav Brain Res 173(1):122-128. [PubMed: 16860885]  [MGI Ref ID J:111836]

Lu W; Tsirka SE. 2002. Partial rescue of neural apoptosis in the Lurcher mutant mouse through elimination of tissue plasminogen activator. Development 129(8):2043-50. [PubMed: 11934869]  [MGI Ref ID J:111363]

Luntz-Leybman V; Frostholm A; Fernando L; De Blas A; Rotter A. 1993. GABAA/benzodiazepine receptor gamma 2 subunit gene expression in developing normal and mutant mouse cerebellum. Brain Res Mol Brain Res 19(1-2):9-21. [PubMed: 8395631]  [MGI Ref ID J:12910]

Markvartova V; Cendelin J; Vozeh F. 2010. Changes of motor abilities during ontogenetic development in Lurcher mutant mice. Neuroscience 168(3):646-51. [PubMed: 20417257]  [MGI Ref ID J:161464]

Markvartova V; Cendelin J; Vozeh F. 2013. Effect of dimethyl sulfoxide in cerebellar mutant Lurcher mice. Neurosci Lett 543:142-5. [PubMed: 23570728]  [MGI Ref ID J:199940]

Martin LA; Escher T; Goldowitz D; Mittleman G. 2004. A relationship between cerebellar Purkinje cells and spatial working memory demonstrated in a lurcher/chimera mouse model system. Genes Brain Behav 3(3):158-66. [PubMed: 15140011]  [MGI Ref ID J:104903]

Martin LA; Goldowitz D; Mittleman G. 2010. Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur J Neurosci 31(3):544-55. [PubMed: 20105240]  [MGI Ref ID J:159466]

Milner TE; Cadoret G; Lessard L; Smith AM. 1995. EMG analysis of harmaline-induced tremor in normal and three strains of mutant mice with Purkinje cell degeneration and the role of the inferior olive. J Neurophysiol 73(6):2568-77. [PubMed: 7666163]  [MGI Ref ID J:29602]

Monfort V; Chapillon P; Mellier D; Lalonde R; Caston J. 1998. Timed active avoidance learning in lurcher mutant mice. Behav Brain Res 91(1-2):165-72. [PubMed: 9578449]  [MGI Ref ID J:47221]

Monnier C; Lalonde R. 1995. Elevated (+)-maze and hole-board exploration in lurcher mutant mice. Brain Res 702(1-2):169-72. [PubMed: 8846072]  [MGI Ref ID J:30680]

Morii E; Hirota S; Kim HM; Mikoshiba K; Nishimune Y; Kitamura Y; Nomura S. 1992. Spatial expression of genes encoding c-kit receptors and their ligands in mouse cerebellum as revealed by in situ hybridization. Brain Res Dev Brain Res 65(1):123-6. [PubMed: 1372540]  [MGI Ref ID J:2006]

Nogradi A; Jonsson N; Walker R; Caddy K; Carter N; Kelly C. 1997. Carbonic anhydrase II and carbonic anhydrase-related protein in the cerebellar cortex of normal and lurcher mice. Brain Res Dev Brain Res 98(1):91-101. [PubMed: 9027408]  [MGI Ref ID J:37700]

Norman DJ; Feng L; Cheng SS; Gubbay J; Chan E; Heintz N. 1995. The lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development 121(4):1183-93. [PubMed: 7743930]  [MGI Ref ID J:24329]

Norman DJ; Fletcher C; Heintz N. 1991. Genetic mapping of the lurcher locus on mouse chromosome 6 using an intersubspecific backcross. Genomics 9(1):147-53. [PubMed: 1672287]  [MGI Ref ID J:11037]

Oldenbeuving AW; Eisenman LM; De Zeeuw CI; Ruigrok TJ. 1999. Inferior olivary-induced expression of Fos-like immunoreactivity in the cerebellar nuclei of wild-type and Lurcher mice. Eur J Neurosci 11(11):3809-22. [PubMed: 10583470]  [MGI Ref ID J:108088]

Phillips RJS. 1960. "Lurcher", a new gene in linkage group XI of the house mouse J Genet 57:35-42.  [MGI Ref ID J:289]

Porras-Garcia E; Cendelin J; Dominguez-del-Toro E; Vozeh F; Delgado-Garcia JM. 2005. Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur J Neurosci 21(4):979-88. [PubMed: 15787704]  [MGI Ref ID J:101082]

Rabacchi SA; Bailly Y; Delhaye-Bouchaud N; Herrup K; Mariani J. 1992. Role of the target in synapse elimination: studies in cerebellum of developing lurcher mutants and adult chimeric mice. J Neurosci 12(12):4712-20. [PubMed: 1464763]  [MGI Ref ID J:3428]

Reader TA; Hebert C; Ase AR; Le Marec N. 2001. Distribution of serotonin, its metabolites and 5-HT transporters in the neostriatum of Lurcher and weaver mutant mice. Neurochem Int 39(3):169-77. [PubMed: 11434974]  [MGI Ref ID J:103122]

Reader TA; Strazielle C; Botez MI; Lalonde R. 1998. Brain dopamine and amino acid concentrations in Lurcher mutant mice. Brain Res Bull 45(5):489-93. [PubMed: 9570718]  [MGI Ref ID J:47222]

Renier N; Schonewille M; Giraudet F; Badura A; Tessier-Lavigne M; Avan P; De Zeeuw CI; Chedotal A. 2010. Genetic dissection of the function of hindbrain axonal commissures. PLoS Biol 8(3):e1000325. [PubMed: 20231872]  [MGI Ref ID J:158918]

Resibois A; Cuvelier L; Goffinet AM. 1997. Abnormalities in the cerebellum and brainstem in homozygous lurcher mice. Neuroscience 80(1):175-90. [PubMed: 9252230]  [MGI Ref ID J:42550]

Rossi F; Jankovski A; Sotelo C. 1995. Target neuron controls the integrity of afferent axon phenotype: a study on the Purkinje cell-climbing fiber system in cerebellar mutant mice. J Neurosci 15(3 Pt 1):2040-56. [PubMed: 7891151]  [MGI Ref ID J:23733]

Ryo Y; Miyawaki A; Furuichi T; Mikoshiba K. 1993. Expression of the metabotropic glutamate receptor mGluR1 alpha and the ionotropic glutamate receptor GluR1 in the brain during the postnatal development of normal mouse and in the cerebellum from mutant mice. J Neurosci Res 36(1):19-32. [PubMed: 8230318]  [MGI Ref ID J:14425]

Sassa T; Gomi H; Itohara S. 2004. Postnatal expression of Cdkl2 in mouse brain revealed by LacZ inserted into the Cdkl2 locus. Cell Tissue Res 315(2):147-56. [PubMed: 14605869]  [MGI Ref ID J:105081]

Selimi F; Doughty M; Delhaye-Bouchaud N; Mariani J. 2000. Target-related and intrinsic neuronal death in Lurcher mutant mice are both mediated by caspase-3 activation. J Neurosci 20(3):992-1000. [PubMed: 10648704]  [MGI Ref ID J:59973]

Selimi F; Lohof AM; Heitz S; Lalouette A; Jarvis CI; Bailly Y; Mariani J. 2003. Lurcher GRID2-induced death and depolarization can be dissociated in cerebellar Purkinje cells. Neuron 37(5):813-9. [PubMed: 12628171]  [MGI Ref ID J:82240]

Selimi F; Vogel MW; Mariani J. 2000. Bax inactivation in lurcher mutants rescues cerebellar granule cells but not purkinje cells or inferior olivary neurons. J Neurosci 20(14):5339-45. [PubMed: 10884318]  [MGI Ref ID J:63483]

Soha JM; Herrup K. 1993. Purkinje cell dendrites in staggerer<-->wild type mouse chimeras lack the aberrant morphologies found in lurcher<-->wild type chimeras. J Comp Neurol 331(4):540-50. [PubMed: 8509510]  [MGI Ref ID J:12149]

Soha JM; Herrup K. 1995. Stunted morphologies of cerebellar Purkinje cells in lurcher and staggerer mice are cell-intrinsic effects of the mutant genes. J Comp Neurol 357(1):65-75. [PubMed: 7673468]  [MGI Ref ID J:26094]

Strazielle C; Kremarik P; Ghersi-Egea JF; Lalonde R. 1998. Regional brain variations of cytochrome oxidase activity and motor coordination in Lurcher mutant mice. Exp Brain Res 121(1):35-45. [PubMed: 9698188]  [MGI Ref ID J:49021]

Strazielle C; Lalonde R. 1998. Grooming in Lurcher mutant mice. Physiol Behav 64(1):57-61. [PubMed: 9661982]  [MGI Ref ID J:50315]

Strazielle C; Lalonde R; Amdiss F; Botez MI; Hebert C; Reader TA. 1998. Distribution of dopamine transporters in basal ganglia of cerebellar ataxic mice by [125I] RTI-121 quantitative autoradiography. Neurochem Int 32(1):61-8. [PubMed: 9460703]  [MGI Ref ID J:47901]

Strazielle C; Lalonde R; Reader TA. 2000. Autoradiography of glutamate receptor binding in adult Lurcher mutant mice. J Neuropathol Exp Neurol 59(8):707-22. [PubMed: 10952061]  [MGI Ref ID J:104936]

Sultan F; Konig T; Mock M; Thier P. 2002. Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol 452(4):311-23. [PubMed: 12355415]  [MGI Ref ID J:126831]

Swisher DA; Wilson DB. 1977. Cerebellar histogenesis in the lurcher (Lc) mutant mouse. J Comp Neurol 173(1):205-18. [PubMed: 845284]  [MGI Ref ID J:5786]

Tano D; Napieralski JA; Eisenman LM; Messer A; Plummer J; Hawkes R. 1992. Novel developmental boundary in the cerebellum revealed by zebrin expression in the lurcher (Lc/+) mutant mouse. J Comp Neurol 323(1):128-36. [PubMed: 1430312]  [MGI Ref ID J:2083]

Thifault S; Girouard N; Lalonde R. 1996. Climbing sensorimotor skills in Lurcher mutant mice. Brain Res Bull 41(6):385-90. [PubMed: 8973844]  [MGI Ref ID J:38014]

Thullier F; Lalonde R; Cousin X; Lestienne F. 1997. Neurobehavioral evaluation of lurcher mutant mice during ontogeny. Brain Res Dev Brain Res 100(1):22-8. [PubMed: 9174242]  [MGI Ref ID J:40361]

Thullier F; Lalonde R; Lestienne F. 1999. Effects of dopaminergic agents and of an NMDA receptor antagonist on motor coordination in Lurcher mutant mice. Pharmacol Biochem Behav 63(2):213-9. [PubMed: 10371649]  [MGI Ref ID J:55809]

Tomey DA; Heckroth JA. 1993. Transplantation of normal embryonic cerebellar cell suspensions into the cerebellum of lurcher mutant mice. Exp Neurol 122(1):165-70. [PubMed: 8339786]  [MGI Ref ID J:14032]

Van Der Giessen RS; Koekkoek SK; van Dorp S; De Gruijl JR; Cupido A; Khosrovani S; Dortland B; Wellershaus K; Degen J; Deuchars J; Fuchs EC; Monyer H; Willecke K; De Jeu MT; De Zeeuw CI. 2008. Role of olivary electrical coupling in cerebellar motor learning. Neuron 58(4):599-612. [PubMed: 18498740]  [MGI Ref ID J:145292]

Vernet-der Garabedian B; Lemaigre-Dubreuil Y; Delhaye-Bouchaud N ; Mariani J. 1998. Abnormal IL-1beta cytokine expression in the cerebellum of the ataxic mutant mice staggerer and lurcher. Brain Res Mol Brain Res 62(2):224-7. [PubMed: 9813341]  [MGI Ref ID J:51056]

Vig PJ; Desaiah D; Joshi P; Subramony SH; Fratkin JD; Currier RD. 1994. Decreased insulin-like growth factor I-mediated protein tyrosine phosphorylation in human olivopontocerebellar atrophy and lurcher mutant mouse. J Neurol Sci 124(1):38-44. [PubMed: 7931420]  [MGI Ref ID J:18719]

Vig PJ; Desaiah D; Subramony SH; Fratkin JD. 1995. Developmental changes in cerebellar endothelin-1 receptors in the neurologic mouse lurcher mutant. Res Commun Mol Pathol Pharmacol 89(3):307-16. [PubMed: 8680799]  [MGI Ref ID J:29595]

Vig PJ; Subramony SH; Currier RD; Desaiah D. 1992. Inositol 1,4,5-trisphosphate metabolism in the cerebella of Lurcher mutant mice and patients with olivopontocerebellar atrophy. J Neurol Sci 110(1-2):139-43. [PubMed: 1506853]  [MGI Ref ID J:1412]

Vogel MW; Caston J; Yuzaki M; Mariani J. 2007. The Lurcher mouse: fresh insights from an old mutant. Brain Res 1140:4-18. [PubMed: 16412991]  [MGI Ref ID J:120633]

Vogel MW; McInnes M; Zanjani HS; Herrup K. 1991. Cerebellar Purkinje cells provide target support over a limited spatial range: evidence from lurcher chimeric mice. Brain Res Dev Brain Res 64(1-2):87-94. [PubMed: 1786651]  [MGI Ref ID J:12661]

Vogel MW; Prittie J. 1994. Topographic spinocerebellar mossy fiber projections are maintained in the lurcher mutant. J Comp Neurol 343(2):341-51. [PubMed: 7517964]  [MGI Ref ID J:17831]

Wang QJ; Ding Y; Kohtz S; Mizushima N; Cristea IM; Rout MP; Chait BT; Zhong Y; Heintz N; Yue Z. 2006. Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 26(31):8057-68. [PubMed: 16885219]  [MGI Ref ID J:111138]

Wetts R; Herrup K. 1982. Cerebellar Purkinje cells are descended from a small number of progenitors committed during early development: quantitative analysis of lurcher chimeric mice. J Neurosci 2(10):1494-8. [PubMed: 7119869]  [MGI Ref ID J:6866]

Wetts R; Herrup K. 1983. Direct correlation between Purkinje and granule cell number in the cerebella of lurcher chimeras and wild-type mice. Brain Res Dev Brain Res 312(1):41-7. [PubMed: 6652508]  [MGI Ref ID J:12731]

Wetts R; Herrup K. 1982. Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimaeric mice. I. Qualitative studies. J Embryol Exp Morphol 68:87-98. [PubMed: 7108427]  [MGI Ref ID J:6841]

Wetts R; Herrup K. 1982. Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II. Granule cell death. Brain Res 250(2):358-62. [PubMed: 7171994]  [MGI Ref ID J:6913]

Wullner U; Isenmann S; Gleichmann M; Klockgether T; Bahr M. 1998. Expression of neurotrophins and neurotrophin receptors in the cerebellum of mutant weaver and lurcher mice. Brain Res Dev Brain Res 110(1):1-6. [PubMed: 9733904]  [MGI Ref ID J:109191]

Wullner U; Loschmann PA; Weller M; Klockgether T. 1995. Apoptotic cell death in the cerebellum of mutant weaver and lurcher mice. Neurosci Lett 200(2):109-12. [PubMed: 8614556]  [MGI Ref ID J:33895]

Wullner U; Weller M; Schulz JB; Krajewski S; Reed JC; Klockgether T. 1998. Bcl-2, Bax and Bcl-x expression in neuronal apoptosis: a study of mutant weaver and lurcher mice. Acta Neuropathol (Berl) 96(3):233-8. [PubMed: 9754955]  [MGI Ref ID J:56232]

Yoshida T; Katoh A; Ohtsuki G; Mishina M; Hirano T. 2004. Oscillating Purkinje neuron activity causing involuntary eye movement in a mutant mouse deficient in the glutamate receptor delta2 subunit. J Neurosci 24(10):2440-8. [PubMed: 15014119]  [MGI Ref ID J:97010]

Yue Z; Horton A; Bravin M; DeJager P; Selimi F; Heintz N. 2002. A Novel Protein Complex Linking the delta2 Glutamate Receptor and Autophagy. Implications for Neurodegeneration in Lurcher Mice. Neuron 35(5):921-933. [PubMed: 12372286]  [MGI Ref ID J:78719]

Zanjani HS; Vogel MW; Martinou JC; Delhaye-Bouchaud N; Mariani J. 1998. Postnatal expression of Hu-bcl-2 gene in Lurcher mutant mice fails to rescue Purkinje cells but protects inferior olivary neurons from target-related cell death. J Neurosci 18(1):319-27. [PubMed: 9412510]  [MGI Ref ID J:119889]

Zuo J; De Jager PL; Norman DJ; Heintz N. 1995. Generation of a high-resolution genetic map and a YAC contig of the Lurcher locus on mouse chromosome 6. Genome Res 5(4):381-92. [PubMed: 8750197]  [MGI Ref ID J:30546]

Zuo J; De Jager PL; Takahashi KA; Jiang W; Linden DJ; Heintz N. 1997. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene [see comments] Nature 388(6644):769-73. [PubMed: 9285588]  [MGI Ref ID J:42431]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3300.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $4290.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

General Supply Notes

  • View the complete collection of spontaneous mutants in the Mouse Mutant Resource.

Control Information

  Control
   Wild-type from the colony
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)