Strain Name:

C3HeB/FeJ-Mc1rE-so Gli3Xt-J/J

Stock Number:


Order this mouse


Cryopreserved - Ready for recovery


The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Type Coisogenic; Spontaneous Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Specieslaboratory mouse

dark black
Related Genotype: A/A Mc1rE-so/Mc1rE-so +/+

dark black with white belly spot and extra toes
Related Genotype: A/A Mc1rE-so/Mc1rE-so Gli3Xt-J/+

Important Note
This strain is homozygous for Mc1rE-so and Pde6brd1 and segregating for Gli3Xt-J.

Mice heterozygous for the extra toes-J spontaneous mutation (Gli3Xt-J) have varying numbers of extra digits on preaxial side of feet. Homozygous mutant mice die in utero with multiple abnormalities. Excessively large pharyngeal arches and an open neural tube are evident at E9. Homologous to Grieg's cephalopoly-syndactyly, a rare multi-system syndrome in humans. This strain is homozygous for the sombre mutation (Mc1rE-so).

Control Information

   Wild-type from the colony Homozygous for MclrE-so and wild-type for Gli3Xt-J
   000658 C3HeB/FeJ
  Considerations for Choosing Controls

Related Strains

Strains carrying   Gli3Xt-J allele
000026   B6.C3-Gli3Xt-J/J
001434   C3HeB/FeJ x STX/Le-Mc1rE-so Gli3Xt-J Zeb1Tw/J
View Strains carrying   Gli3Xt-J     (2 strains)

Strains carrying   Mc1rE-so allele
001434   C3HeB/FeJ x STX/Le-Mc1rE-so Gli3Xt-J Zeb1Tw/J
View Strains carrying   Mc1rE-so     (1 strain)

Strains carrying   Pde6brd1 allele
004202   B6.C3 Pde6brd1 Hps4le/+ +-Lmx1adr-8J/J
000002   B6.C3-Pde6brd1 Hps4le/J
001022   B6C3FeF1/J a/a
000652   BDP/J
000653   BUB/BnJ
002439   C3.129P2(B6)-B2mtm1Unc/J
005494   C3.129S1(B6)-Grm1rcw/J
000509   C3.Cg-Lystbg-2J/J
000480   C3.MRL-Faslpr/J
001957   C3A Pde6brd1.O20/A-Prph2Rd2/J
004326   C3Bir.129P2(B6)-Il10tm1Cgn/Lt
003968   C3Bir.129P2(B6)-Il10tm1Cgn/LtJ
006435   C3Fe.SW-Soaa/MonJ
001904   C3H-Atcayji-hes/J
000659   C3H/HeJ
000511   C3H/HeJ-Ap3d1mh-2J/J
000784   C3H/HeJ-Faslgld/J
002433   C3H/HeJ-Sptbn4qv-lnd2J/J
005972   C3H/HeJBirLtJ
001824   C3H/HeJSxJ
000635   C3H/HeOuJ
000474   C3H/HeSn
001431   C3H/HeSn-ocd/J
000661   C3H/HeSnJ
002333   C3H/HeSnJ-gri/J
001576   C3He-Atp7btx-J/J
000658   C3HeB/FeJ
002588   C3HeB/FeJ-Eya1bor/J
001908   C3HfB/BiJ
001502   C3Sn.B6-Epha4rb/EiGrsrJ
002235   C3Sn.C3-Ctnna2cdf/J
001547   C3Sn.Cg-Cm/J
001906   C3fBAnl.Cg-Catb/AnlJ
000656   CBA/J
000813   CBA/J-Atp7aMo-pew/J
000660   DA/HuSnJ
000023   FL/1ReJ
000025   FL/4ReJ
003024   FVB.129P2(B6)-Fmr1tm1Cgr/J
002539   FVB.129P2-Abcb4tm1Bor/J
002935   FVB.129S2(B6)-Ccnd1tm1Wbg/J
002953   FVB.Cg-Tg(MMTVTGFA)254Rjc/J
003170   FVB.Cg-Tg(Myh6-tTA)6Smbf/J
003078   FVB.Cg-Tg(WapIgf1)39Dlr/J
003487   FVB.Cg-Tg(XGFAP-lacZ)3Mes/J
003257   FVB/N-Tg(GFAPGFP)14Mes/J
002856   FVB/N-Tg(TIE2-lacZ)182Sato/J
002384   FVB/N-Tg(UcpDta)1Kz/J
001800   FVB/NJ
001491   FVB/NMob
000804   HPG/BmJ
000734   MOLD/RkJ
000550   MOLF/EiJ
002423   NON/ShiLtJ
000679   P/J
000680   PL/J
000268   RSV/LeJ
000269   SB/LeJ
010968   SB;C3Sn-Lrp4mdig-2J/GrsrJ
005651   SJL.AK-Thy1a/TseJ
000686   SJL/J
000688   ST/bJ
004808   STOCK Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
002648   STOCK a/a Cln6nclf/J
000279   STOCK gr +/+ Ap3d1mh/J
005965   STOCK Tg(Pomc1-cre)16Lowl/J
004770   SW.B6-Soab/J
002023   SWR.M-Emv21 Emv22/J
000689   SWR/J
000939   SWR/J-Clcn1adr-mto/J
000692   WB/ReJ KitW/J
100410   WBB6F1/J-KitW/KitW-v/J
000693   WC/ReJ KitlSl/J
View Strains carrying   Pde6brd1     (73 strains)

Strains carrying other alleles of Gli3
008873   STOCK Gli3tm1Alj/J
013124   STOCK Gt(ROSA)26Sortm3(Gli3)Amc/J
View Strains carrying other alleles of Gli3     (2 strains)

Strains carrying other alleles of Mc1r
003625   B6.C-H2-Ab1bm12/KhEg-Mc1re-J/J
000060   C57BL/6J-Mc1re/J
001000   RBD/DnJ
000726   RBF/DnJ
000807   RBJ/DnJ
View Strains carrying other alleles of Mc1r     (5 strains)

View Strains carrying other alleles of Pde6b     (15 strains)


Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Model with phenotypic similarity to human disease where etiologies involve orthologs. Human genes are associated with this disease. Orthologs of those genes appear in the mouse genotype(s).
Greig Cephalopolysyndactyly Syndrome; GCPS
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Albinism, Oculocutaneous, Type II; OCA2   (MC1R)
Hypothalamic Hamartomas   (GLI3)
Melanoma, Cutaneous Malignant, Susceptibility to, 5; CMM5   (MC1R)
Pallister-Hall Syndrome; PHS   (GLI3)
Polydactyly, Postaxial, Type A1; PAPA1   (GLI3)
Polydactyly, Preaxial IV   (GLI3)
Tracheoesophageal Fistula with or without Esophageal Atresia   (GLI3)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype


        involves: C3H/HeJ
  • limbs/digits/tail phenotype
  • polydactyly
    • distal truncations of the forelimb skeleton and loss of the autopod at E14.5   (MGI Ref ID J:159210)


  • pigmentation phenotype
  • abnormal skin pigmentation   (MGI Ref ID J:13077)
  • darkened coat color
    • at maturity flanks are flecked with yellow hairs and bellies may appear dark gray   (MGI Ref ID J:13077)
    • appearance is similar to homozygous non-agouti mice   (MGI Ref ID J:13077)
    • yellow perineal hairs are present in the first coat distinguishing heterozygotes from homozygotes by 12 days of age   (MGI Ref ID J:13077)
    • shows epistatic supression of light bellies in mice heterozygous for Aw. white bellied agouti   (MGI Ref ID J:13077)
  • hyperpigmentation
    • skin is dark, ears and nipples are especially obvious   (MGI Ref ID J:13077)
  • integument phenotype
  • abnormal skin pigmentation   (MGI Ref ID J:13077)
  • darkened coat color
    • at maturity flanks are flecked with yellow hairs and bellies may appear dark gray   (MGI Ref ID J:13077)
    • appearance is similar to homozygous non-agouti mice   (MGI Ref ID J:13077)
    • yellow perineal hairs are present in the first coat distinguishing heterozygotes from homozygotes by 12 days of age   (MGI Ref ID J:13077)
    • shows epistatic supression of light bellies in mice heterozygous for Aw. white bellied agouti   (MGI Ref ID J:13077)


  • pigmentation phenotype
  • abnormal skin pigmentation
    • all skin surfaces are startlingly black   (MGI Ref ID J:13077)
  • darkened coat color
    • all black except for a few yellow hairs on the perineum   (MGI Ref ID J:13077)
  • hyperpigmentation   (MGI Ref ID J:13077)
  • integument phenotype
  • abnormal skin pigmentation
    • all skin surfaces are startlingly black   (MGI Ref ID J:13077)
  • darkened coat color
    • all black except for a few yellow hairs on the perineum   (MGI Ref ID J:13077)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.


        involves: C3H * CD-1
  • limbs/digits/tail phenotype
  • abnormal foot plate morphology
    • at day 12 of gestation, footpads are enlarged at the area destined to become digit 1   (MGI Ref ID J:4086)
  • polydactyly
    • display mild preaxial polydactyly in both fore- and hindlimbs   (MGI Ref ID J:38381)


        involves: 129/Sv * C3H/HeJ * C57BL/6
  • limbs/digits/tail phenotype
  • polyphalangy
    • there is an extra phalange in the first digit   (MGI Ref ID J:121609)
  • skeleton phenotype
  • polyphalangy
    • there is an extra phalange in the first digit   (MGI Ref ID J:121609)


        involves: C3H/HeJ * C57BL/6J * C57BL/6NHsd
  • limbs/digits/tail phenotype
  • polydactyly
    • 12% with unilateral anterior polydactyly involving the hind limbs only   (MGI Ref ID J:42445)


        involves: C3H/HeJ
  • limbs/digits/tail phenotype
  • polydactyly
    • in 4 of 17 forelimbs   (MGI Ref ID J:207959)


        involves: C3H * CD-1
  • mortality/aging
  • complete perinatal lethality
    • animals that survive to birth die within 2 days after birth   (MGI Ref ID J:4086)
  • partial prenatal lethality
    • many mutants die embryonically with a wide range of defects   (MGI Ref ID J:4086)
  • craniofacial phenotype
  • abnormal craniofacial development
    • enlarged maxillary arch   (MGI Ref ID J:4086)
    • reduced external nasal process   (MGI Ref ID J:4086)
    • abnormal tooth development
      • occurs in some mice   (MGI Ref ID J:38381)
  • abnormal cranium morphology
    • external nasal processes are reduced   (MGI Ref ID J:38381)
    • abnormal maxilla morphology
      • the maxillary region is enlarged   (MGI Ref ID J:38381)
    • abnormal neurocranium morphology
      • skull vault fails to form   (MGI Ref ID J:38381)
  • abnormal ear position
    • misplaced ears   (MGI Ref ID J:4086)
  • cleft palate
    • occurs in some mice   (MGI Ref ID J:38381)
  • skeleton phenotype
  • abnormal cranium morphology
    • external nasal processes are reduced   (MGI Ref ID J:38381)
    • abnormal maxilla morphology
      • the maxillary region is enlarged   (MGI Ref ID J:38381)
    • abnormal neurocranium morphology
      • skull vault fails to form   (MGI Ref ID J:38381)
  • abnormal long bone morphology   (MGI Ref ID J:38381)
    • increased diameter of humerus
      • slight thickening of the humerus   (MGI Ref ID J:38381)
    • increased diameter of radius
      • slight thickening of the radius   (MGI Ref ID J:38381)
    • increased diameter of ulna
      • slight thickening of the ulna   (MGI Ref ID J:38381)
    • short humerus
      • slight shortening of the humerus   (MGI Ref ID J:38381)
    • short radius
      • slight shortening of the radius   (MGI Ref ID J:38381)
    • short tibia
      • severe truncation of the tibia is observed   (MGI Ref ID J:38381)
    • short ulna
      • slight shortening of the ulna   (MGI Ref ID J:38381)
  • abnormal sternum morphology
    • sternum is unfused   (MGI Ref ID J:38381)
  • abnormal vertebral arch morphology
    • C1 and C2 neural arches are fused   (MGI Ref ID J:38381)
    • neural arches of other cervical vertebrae are expanded and have irregular shapes   (MGI Ref ID J:38381)
  • limbs/digits/tail phenotype
  • abnormal foot plate morphology
    • at E12, mutant embryos show a widening in the preaxial and postaxial areas of the footplates, resulting in a paddle-shaped foot with polydactyly   (MGI Ref ID J:4086)
  • increased diameter of humerus
    • slight thickening of the humerus   (MGI Ref ID J:38381)
  • increased diameter of radius
    • slight thickening of the radius   (MGI Ref ID J:38381)
  • increased diameter of ulna
    • slight thickening of the ulna   (MGI Ref ID J:38381)
  • polydactyly
    • forelimb exhibits severe polydactyly (7-8 digits) and hindlimb exhibits milder polydactyly (6 digits)   (MGI Ref ID J:38381)
    • present on all feet   (MGI Ref ID J:4086)
  • short humerus
    • slight shortening of the humerus   (MGI Ref ID J:38381)
  • short radius
    • slight shortening of the radius   (MGI Ref ID J:38381)
  • short tibia
    • severe truncation of the tibia is observed   (MGI Ref ID J:38381)
  • short ulna
    • slight shortening of the ulna   (MGI Ref ID J:38381)
  • syndactyly
    • present on all feet   (MGI Ref ID J:4086)
  • nervous system phenotype
  • abnormal brain morphology
    • gross malformations of the brain   (MGI Ref ID J:4086)
    • exencephaly
      • midbrain exencephaly   (MGI Ref ID J:4086)
  • incomplete rostral neuropore closure
    • neural tube closure is largely normal, although an opening around the midbrain region is seen   (MGI Ref ID J:4086)
  • hearing/vestibular/ear phenotype
  • abnormal ear position
    • misplaced ears   (MGI Ref ID J:4086)
  • homeostasis/metabolism phenotype
  • edema   (MGI Ref ID J:4086)
  • vision/eye phenotype
  • abnormal eye development
    • poorly developed eyes   (MGI Ref ID J:4086)
  • digestive/alimentary phenotype
  • cleft palate
    • occurs in some mice   (MGI Ref ID J:38381)
  • embryogenesis phenotype
  • incomplete rostral neuropore closure
    • neural tube closure is largely normal, although an opening around the midbrain region is seen   (MGI Ref ID J:4086)
  • integument phenotype
  • abnormal coat/ hair morphology
    • anomalous number and patterns of supra-orbital hair (eyelashes)   (MGI Ref ID J:4086)
  • abnormal vibrissa number
    • anomalous number and patterns of mystacial hair (vibrissae)   (MGI Ref ID J:4086)
  • growth/size/body region phenotype
  • abnormal ear position
    • misplaced ears   (MGI Ref ID J:4086)
  • abnormal tooth development
    • occurs in some mice   (MGI Ref ID J:38381)
  • cleft palate
    • occurs in some mice   (MGI Ref ID J:38381)


        involves: 129/Sv * C3H/HeJ * C57BL/6J
  • limbs/digits/tail phenotype
  • polydactyly
    • similar to the phenotype seen in Gli3Xt-J Gas1tm2Fan double homozygotes   (MGI Ref ID J:121554)


        involves: 129/Sv * C3H/HeJ * C57BL/6
  • limbs/digits/tail phenotype
  • abnormal digit morphology
    • digits have lost their identity with some digits consisting of three phalanges that are usually undivided and longer than those in Gli3tm2Blnw homozygotes   (MGI Ref ID J:121609)
    • abnormal phalanx morphology
      • phalanges in some digits are undivided and longer than those in Gli3tm2Blnw homozygotes   (MGI Ref ID J:121609)
      • rarely extra phalanges element branch from the metatarsals   (MGI Ref ID J:121609)
      • however, ossification occurs at most proximal and distal phalanges   (MGI Ref ID J:121609)
    • polydactyly
      • at E16.5, some mice have 6 to 8 digits that lacked identity   (MGI Ref ID J:121609)
  • absent tibia
    • at E16.5, in some mice   (MGI Ref ID J:121609)
  • skeleton phenotype
  • abnormal phalanx morphology
    • phalanges in some digits are undivided and longer than those in Gli3tm2Blnw homozygotes   (MGI Ref ID J:121609)
    • rarely extra phalanges element branch from the metatarsals   (MGI Ref ID J:121609)
    • however, ossification occurs at most proximal and distal phalanges   (MGI Ref ID J:121609)
  • absent tibia
    • at E16.5, in some mice   (MGI Ref ID J:121609)


        involves: C3H/HeJ * CD-1
  • homeostasis/metabolism phenotype
  • edema
  • limbs/digits/tail phenotype
  • polydactyly
  • nervous system phenotype
  • exencephaly
  • skeleton phenotype
  • abnormal sternum morphology   (MGI Ref ID J:152259)
    • abnormal xiphoid process morphology
      • enlarged at E18.5   (MGI Ref ID J:152259)


        involves: C3H/HeJ * NMRI
  • limbs/digits/tail phenotype
  • polydactyly
    • additional anterior digits are formed but the anterior most digit 1 is lost   (MGI Ref ID J:184012)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Gli3Xt-J related

Developmental Biology Research
Neural Tube Defects
Skeletal Defects

Neurobiology Research
Neural Tube Defects

Sensorineural Research
Eye Defects

Mc1rE-so related

Dermatology Research
Color and White Spotting Defects
      red hair color

Pde6brd1 related

Sensorineural Research
Retinal Degeneration

Genes & Alleles

Gene & Allele Information provided by MGI

Allele Symbol Gli3Xt-J
Allele Name extra toes Jackson
Allele Type Spontaneous
Common Name(s) Gli3-; Gli3Xt; Gli3XtJ; Gli3delta; XtJ; XtJ; extra-toes J; xt;
Strain of OriginC3H/HeJ
Gene Symbol and Name Gli3, GLI-Kruppel family member GLI3
Chromosome 13
Gene Common Name(s) ACLS; AI854843; AU023367; Bph; GCPS; GLI3-190; GLI3FL; PAP-A; PAPA; PAPA1; PAPB; PHS; PPDIV; Pdn; Xt; add; anterior digit pattern deformity; brachyphalangy; expressed sequence AI854843; expressed sequence AU023367; extra toes; polydactyly Nagoya;
General Note Genbank ID for this allele: AF418601
Phenotypic Similarity to Human Syndrome: lambdoid suture craniosynostosis in homozygous mice (J:163175)
Molecular Note Genomic sequencing and PCR analysis identified the mutation as a 51.5 kb deletion. The deleted region contains all Gli3 coding sequences 3' to exon 9, which includes sequences encoding some, but not all, of the zinc finger domains. This deletion resultsin the expression of an abnormal transcript that fuses Gli3 sequences to an exon belonging to an apparent LTR/MaLR repetitive element. However, this transcript lacks the sequences required for normal GLI3 activity. [MGI Ref ID J:4086] [MGI Ref ID J:48982] [MGI Ref ID J:76587]
Allele Symbol Mc1rE-so
Allele Name sombre
Allele Type Spontaneous
Common Name(s) Eso; So;
Strain of OriginC3H
Gene Symbol and Name Mc1r, melanocortin 1 receptor
Chromosome 8
Gene Common Name(s) CMM5; MSH-R; Mshra; SHEP2; Tob; e; extension recessive yellow; extension, recessive yellow; melanocyte hormone receptor alpha; tobacco darkening;
Molecular Note A T-to-C mutation in codon 96 is predicted to result in a leucine to proline alteration at this position. [MGI Ref ID J:4636]
Allele Symbol Pde6brd1
Allele Name retinal degeneration 1
Allele Type Spontaneous
Common Name(s) Pdebrd1; rd; rd-1; rd1; rodless retina;
Strain of Originvarious
Gene Symbol and Name Pde6b, phosphodiesterase 6B, cGMP, rod receptor, beta polypeptide
Chromosome 5
Gene Common Name(s) CSNB3; CSNBAD2; PDEB; Pdeb; RP40; nmf137; phosphodiesterase, cGMP, rod receptor, beta polypeptide; r; rd; rd-1; rd1; rd10; retinal degeneration; retinal degeneration 1; retinal degeneration 10;
General Note The following inbred strains are known to be homozygous for Pde6b: C3H sublines, CBA/J, FVB/NJ, PL/J, SB, SJL/J, and SWR/J.
Molecular Note Two mutations have been identified in rd1 mice. A murine leukimia virus (Xmv-28) insertion in reverse orientation in intron 1 is found in all mouse strains with the rd1 phenotype. Further, a nonsense mutation (C to A transversion) in codon 347 that results in a truncation eliminating more than half of the predicted encoded protein, including the catalytic domain has also been identified in all rd1 strains of mice. A specific degradation of mutant transcript during or after pre-mRNA splicing is suggested. [MGI Ref ID J:11513] [MGI Ref ID J:4366] [MGI Ref ID J:51361]


Genotyping Information

Helpful Links

Genotyping resources and troubleshooting


References provided by MGI

Additional References

Buttitta L; Mo R; Hui CC; Fan CM. 2003. Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development 130(25):6233-43. [PubMed: 14602680]  [MGI Ref ID J:87223]

Ernest S; Christensen B; Gilfix BM; Mamer OA; Hosack A; Rodier M; Colmenares C; McGrath J; Bale A; Balling R; Sankoff D; Rosenblatt DS; Nadeau JH. 2002. Genetic and molecular control of folate-homocysteine metabolism in mutant mice. Mamm Genome 13(5):259-67. [PubMed: 12016514]  [MGI Ref ID J:76559]

Johnson DR. 1967. Extra-toes: a new mutant gene causing multiple abnormalities in the mouse. J Embryol Exp Morphol 17(3):543-81. [PubMed: 6049666]  [MGI Ref ID J:5049]

Rallu M; Machold R; Gaiano N; Corbin JG; McMahon AP; Fishell G. 2002. Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 and Hedgehog signaling. Development 129(21):4963-74. [PubMed: 12397105]  [MGI Ref ID J:79856]

Schimmang T; Lemaistre M; Vortkamp A; Ruther U. 1992. Expression of the zinc finger gene Gli3 is affected in the morphogenetic mouse mutant extra-toes (Xt). Development 116(3):799-804. [PubMed: 1289066]  [MGI Ref ID J:3333]

Yada Y; Makino S; Chigusa-Ishiwa S; Shiroishi T. 2002. The mouse polydactylous mutation, luxate (lx), causes anterior shift of the anteroposterior border in the developing hindlimb bud. Int J Dev Biol 46(7):975-82. [PubMed: 12455637]  [MGI Ref ID J:81331]

Gli3Xt-J related

Ahn S; Joyner AL. 2004. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118(4):505-16. [PubMed: 15315762]  [MGI Ref ID J:92507]

Akiyama R; Kawakami H; Wong J; Oishi I; Nishinakamura R; Kawakami Y. 2015. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements. Proc Natl Acad Sci U S A 112(16):5075-80. [PubMed: 25848055]  [MGI Ref ID J:220960]

Alt B; Elsalini OA; Schrumpf P; Haufs N; Lawson ND; Schwabe GC; Mundlos S; Gruters A; Krude H; Rohr KB. 2006. Arteries define the position of the thyroid gland during its developmental relocalisation. Development 133(19):3797-804. [PubMed: 16968815]  [MGI Ref ID J:119563]

Anderson C; Williams VC; Moyon B; Daubas P; Tajbakhsh S; Buckingham ME; Shiroishi T; Hughes SM; Borycki AG. 2012. Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity. Genes Dev 26(18):2103-17. [PubMed: 22987640]  [MGI Ref ID J:187740]

Aoto K; Shikata Y; Imai H; Matsumaru D; Tokunaga T; Shioda S; Yamada G; Motoyama J. 2009. Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis. Dev Biol 327(1):106-20. [PubMed: 19103193]  [MGI Ref ID J:145732]

Aruga J; Mizugishi K; Koseki H; Imai K; Balling R; Noda T; Mikoshiba K. 1999. Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mech Dev 89(1-2):141-50. [PubMed: 10559489]  [MGI Ref ID J:58623]

Bai CB; Joyner AL. 2001. Gli1 can rescue the in vivo function of Gli2. Development 128(24):5161-72. [PubMed: 11748151]  [MGI Ref ID J:73074]

Balaskas N; Ribeiro A; Panovska J; Dessaud E; Sasai N; Page KM; Briscoe J; Ribes V. 2012. Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the vertebrate neural tube. Cell 148(1-2):273-84. [PubMed: 22265416]  [MGI Ref ID J:181293]

Balmer CW; LaMantia AS. 2004. Loss of Gli3 and Shh function disrupts olfactory axon trajectories. J Comp Neurol 472(3):292-307. [PubMed: 15065125]  [MGI Ref ID J:109287]

Barna M; Pandolfi PP; Niswander L. 2005. Gli3 and Plzf cooperate in proximal limb patterning at early stages of limb development. Nature 436(7048):277-81. [PubMed: 16015334]  [MGI Ref ID J:99990]

Blaess S; Corrales JD; Joyner AL. 2006. Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region. Development 133(9):1799-809. [PubMed: 16571630]  [MGI Ref ID J:108509]

Bok J; Dolson DK; Hill P; Ruther U; Epstein DJ; Wu DK. 2007. Opposing gradients of Gli repressor and activators mediate Shh signaling along the dorsoventral axis of the inner ear. Development 134(9):1713-22. [PubMed: 17395647]  [MGI Ref ID J:121232]

Bowers M; Eng L; Lao Z; Turnbull RK; Bao X; Riedel E; Mackem S; Joyner AL. 2012. Limb anterior-posterior polarity integrates activator and repressor functions of GLI2 as well as GLI3. Dev Biol 370(1):110-24. [PubMed: 22841643]  [MGI Ref ID J:188038]

Buscher D; Grotewold L; Ruther U. 1998. The XtJ allele generates a Gli3 fusion transcript. Mamm Genome 9(8):676-8. [PubMed: 9680393]  [MGI Ref ID J:48982]

Buttitta L; Mo R; Hui CC; Fan CM. 2003. Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development 130(25):6233-43. [PubMed: 14602680]  [MGI Ref ID J:87223]

Cain JE; Islam E; Haxho F; Blake J; Rosenblum ND. 2011. GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 121(3):1199-206. [PubMed: 21339645]  [MGI Ref ID J:172032]

Cain JE; Islam E; Haxho F; Chen L; Bridgewater D; Nieuwenhuis E; Hui CC; Rosenblum ND. 2009. GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS One 4(10):e7313. [PubMed: 19809516]  [MGI Ref ID J:154102]

Chen MH; Wilson CW; Li YJ; Law KK; Lu CS; Gacayan R; Zhang X; Hui CC; Chuang PT. 2009. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev 23(16):1910-28. [PubMed: 19684112]  [MGI Ref ID J:151923]

Chen Y; Knezevic V; Ervin V; Hutson R; Ward Y; Mackem S. 2004. Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh. Development 131(10):2339-47. [PubMed: 15102708]  [MGI Ref ID J:98432]

Cheung HO; Zhang X; Ribeiro A; Mo R; Makino S; Puviindran V; Law KK; Briscoe J; Hui CC. 2009. The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal 2(76):ra29. [PubMed: 19549984]  [MGI Ref ID J:152259]

Christopher KJ; Wang B; Kong Y; Weatherbee SD. 2012. Forward genetics uncovers Transmembrane protein 107 as a novel factor required for ciliogenesis and Sonic hedgehog signaling. Dev Biol 368(2):382-92. [PubMed: 22698544]  [MGI Ref ID J:186552]

Dai P; Shinagawa T; Nomura T; Harada J; Kaul SC; Wadhwa R; Khan MM; Akimaru H; Sasaki H; Colmenares C; Ishii S. 2002. Ski is involved in transcriptional regulation by the repressor and full-length forms of Gli3. Genes Dev 16(22):2843-8. [PubMed: 12435627]  [MGI Ref ID J:80205]

Dakubo GD; Mazerolle C; Furimsky M; Yu C; St-Jacques B; McMahon AP; Wallace VA. 2008. Indian hedgehog signaling from endothelial cells is required for sclera and retinal pigment epithelium development in the mouse eye. Dev Biol 320(1):242-55. [PubMed: 18582859]  [MGI Ref ID J:139168]

Dickie MM. 1967. Presumed recurrences of mutations Mouse News Lett 36:60.  [MGI Ref ID J:78286]

Doles J; Cook C; Shi X; Valosky J; Lipinski R; Bushman W. 2006. Functional compensation in Hedgehog signaling during mouse prostate development. Dev Biol 295(1):13-25. [PubMed: 16707121]  [MGI Ref ID J:144902]

Dunn NR; Winnier GE; Hargett LK; Schrick JJ; Fogo AB; Hogan BL. 1997. Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188(2):235-47. [PubMed: 9268572]  [MGI Ref ID J:42445]

Eggenschwiler JT; Bulgakov OV; Qin J; Li T; Anderson KV. 2006. Mouse Rab23 regulates Hedgehog signaling from Smoothened to Gli proteins. Dev Biol 290(1):1-12. [PubMed: 16364285]  [MGI Ref ID J:104803]

Ernest S; Christensen B; Gilfix BM; Mamer OA; Hosack A; Rodier M; Colmenares C; McGrath J; Bale A; Balling R; Sankoff D; Rosenblatt DS; Nadeau JH. 2002. Genetic and molecular control of folate-homocysteine metabolism in mutant mice. Mamm Genome 13(5):259-67. [PubMed: 12016514]  [MGI Ref ID J:76559]

Fotaki V; Price DJ; Mason JO. 2011. Wnt/beta-catenin signaling is disrupted in the extra-toes (Gli3(Xt/Xt) ) mutant from early stages of forebrain development, concomitant with anterior neural plate patterning defects. J Comp Neurol 519(9):1640-57. [PubMed: 21452227]  [MGI Ref ID J:174727]

Friedrichs M; Larralde O; Skutella T; Theil T. 2008. Lamination of the cerebral cortex is disturbed in Gli3 mutant mice. Dev Biol 318(1):203-14. [PubMed: 18448089]  [MGI Ref ID J:136720]

Furimsky M; Wallace VA. 2006. Complementary Gli activity mediates early patterning of the mouse visual system. Dev Dyn 235(3):594-605. [PubMed: 16342201]  [MGI Ref ID J:106158]

Galli A; Robay D; Osterwalder M; Bao X; Benazet JD; Tariq M; Paro R; Mackem S; Zeller R. 2010. Distinct roles of Hand2 in initiating polarity and posterior Shh expression during the onset of mouse limb bud development. PLoS Genet 6(4):e1000901. [PubMed: 20386744]  [MGI Ref ID J:159210]

Gonzalez-Martin MC; Mallo M; Ros MA. 2014. Long bone development requires a threshold of Hox function. Dev Biol 392(2):454-65. [PubMed: 24930703]  [MGI Ref ID J:214984]

Grindley JC; Bellusci S; Perkins D; Hogan BL. 1997. Evidence for the involvement of the Gli gene family in embryonic mouse lung development. Dev Biol 188(2):337-48. [PubMed: 9268579]  [MGI Ref ID J:42454]

Grove EA; Tole S. 1999. Patterning events and specification signals in the developing hippocampus. Cereb Cortex 9(6):551-61. [PubMed: 10498273]  [MGI Ref ID J:102085]

Grove EA; Tole S; Limon J; Yip L; Ragsdale CW. 1998. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125(12):2315-25. [PubMed: 9584130]  [MGI Ref ID J:48569]

Gutin G; Fernandes M; Palazzolo L; Paek H; Yu K; Ornitz DM; McConnell SK; Hebert JM. 2006. FGF signalling generates ventral telencephalic cells independently of SHH. Development 133(15):2937-46. [PubMed: 16818446]  [MGI Ref ID J:119019]

Hager-Theodorides AL; Dessens JT; Outram SV; Crompton T. 2005. The transcription factor Gli3 regulates differentiation of fetal CD4- CD8- double-negative thymocytes. Blood 106(4):1296-304. [PubMed: 15855276]  [MGI Ref ID J:117284]

Hager-Theodorides AL; Furmanski AL; Ross SE; Outram SV; Rowbotham NJ; Crompton T. 2009. The Gli3 transcription factor expressed in the thymus stroma controls thymocyte negative selection via Hedgehog-dependent and -independent mechanisms. J Immunol 183(5):3023-32. [PubMed: 19667090]  [MGI Ref ID J:151855]

Hanashima C; Fernandes M; Hebert JM; Fishell G. 2007. The role of Foxg1 and dorsal midline signaling in the generation of Cajal-Retzius subtypes. J Neurosci 27(41):11103-11. [PubMed: 17928452]  [MGI Ref ID J:125693]

Haraguchi R; Motoyama J; Sasaki H; Satoh Y; Miyagawa S; Nakagata N; Moon A; Yamada G. 2007. Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling. Development 134(3):525-33. [PubMed: 17202190]  [MGI Ref ID J:119913]

Hardcastle Z; Mo R; Hui CC; Sharpe PT. 1998. The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development 125(15):2803-11. [PubMed: 9655803]  [MGI Ref ID J:49252]

Hasenpusch-Theil K; Magnani D; Amaniti EM; Han L; Armstrong D; Theil T. 2012. Transcriptional analysis of Gli3 mutants identifies Wnt target genes in the developing hippocampus. Cereb Cortex 22(12):2878-93. [PubMed: 22235033]  [MGI Ref ID J:203028]

Hatsell SJ; Cowin P. 2006. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development 133(18):3661-70. [PubMed: 16914490]  [MGI Ref ID J:112460]

Haycraft CJ; Banizs B; Aydin-Son Y; Zhang Q; Michaud EJ; Yoder BK. 2005. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1(4):e53. [PubMed: 16254602]  [MGI Ref ID J:115756]

Hill P; Gotz K; Ruther U. 2009. A SHH-independent regulation of Gli3 is a significant determinant of anteroposterior patterning of the limb bud. Dev Biol 328(2):506-16. [PubMed: 19248778]  [MGI Ref ID J:149502]

Hong M; Schachter KA; Jiang G; Krauss RS. 2012. Neogenin regulates sonic hedgehog pathway activity during digit patterning. Dev Dyn 241(3):627-37. [PubMed: 22275192]  [MGI Ref ID J:181269]

Hopyan S; Nadesan P; Yu C; Wunder J; Alman BA. 2005. Dysregulation of hedgehog signalling predisposes to synovial chondromatosis. J Pathol 206(2):143-50. [PubMed: 15834844]  [MGI Ref ID J:98387]

Huang X; Goudy SL; Ketova T; Litingtung Y; Chiang C. 2008. Gli3-deficient mice exhibit cleft palate associated with abnormal tongue development. Dev Dyn 237(10):3079-3087. [PubMed: 18816854]  [MGI Ref ID J:139635]

Huangfu D; Anderson KV. 2005. Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A 102(32):11325-30. [PubMed: 16061793]  [MGI Ref ID J:100466]

Huangfu D; Liu A; Rakeman AS; Murcia NS; Niswander L; Anderson KV. 2003. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426(6962):83-7. [PubMed: 14603322]  [MGI Ref ID J:86437]

Hui CC; Joyner AL. 1993. A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 3(3):241-6. [PubMed: 8387379]  [MGI Ref ID J:4086]

Joeng KS; Long F. 2009. The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization. Development 136(24):4177-85. [PubMed: 19906844]  [MGI Ref ID J:154905]

Kawakami Y; Uchiyama Y; Rodriguez Esteban C; Inenaga T; Koyano-Nakagawa N; Kawakami H; Marti M; Kmita M; Monaghan-Nichols P; Nishinakamura R; Izpisua Belmonte JC. 2009. Sall genes regulate region-specific morphogenesis in the mouse limb by modulating Hox activities. Development 136(4):585-94. [PubMed: 19168674]  [MGI Ref ID J:144018]

Kawasaki T; Ito K; Hirata T. 2006. Netrin 1 regulates ventral tangential migration of guidepost neurons in the lateral olfactory tract. Development 133(5):845-53. [PubMed: 16439477]  [MGI Ref ID J:106022]

Kim JH; Huang Z; Mo R. 2005. Gli3 null mice display glandular overgrowth of the developing stomach. Dev Dyn 234(4):984-91. [PubMed: 16247775]  [MGI Ref ID J:102853]

Kim JW; Lemke G. 2006. Hedgehog-regulated localization of Vax2 controls eye development. Genes Dev 20(20):2833-47. [PubMed: 17043310]  [MGI Ref ID J:113403]

Kim PC; Mo R; Hui Cc C. 2001. Murine models of VACTERL syndrome: Role of sonic hedgehog signaling pathway. J Pediatr Surg 36(2):381-4. [PubMed: 11172440]  [MGI Ref ID J:113186]

Kimmel SG; Mo R; Hui CC; Kim PC. 2000. New mouse models of congenital anorectal malformations J Pediatr Surg 35(2):227-31. [PubMed: 10693670]  [MGI Ref ID J:60446]

Ko HW; Norman RX; Tran J; Fuller KP; Fukuda M; Eggenschwiler JT. 2010. Broad-minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction. Dev Cell 18(2):237-47. [PubMed: 20159594]  [MGI Ref ID J:158583]

Koziel L; Wuelling M; Schneider S; Vortkamp A. 2005. Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development 132(23):5249-60. [PubMed: 16284117]  [MGI Ref ID J:102948]

Kucerova R; Dora N; Mort RL; Wallace K; Leiper LJ; Lowes C; Neves C; Walczysko P; Bruce F; Fowler PA; Rajnicek AM; McCaig CD; Zhao M; West JD; Collinson JM. 2012. Interaction between hedgehog signalling and PAX6 dosage mediates maintenance and regeneration of the corneal epithelium. Mol Vis 18:139-50. [PubMed: 22275805]  [MGI Ref ID J:191495]

Kuijper S; Beverdam A; Kroon C; Brouwer A; Candille S; Barsh G; Meijlink F. 2005. Genetics of shoulder girdle formation: roles of Tbx15 and aristaless-like genes. Development 132(7):1601-10. [PubMed: 15728667]  [MGI Ref ID J:101708]

Kuijper S; Feitsma H; Sheth R; Korving J; Reijnen M; Meijlink F. 2005. Function and regulation of Alx4 in limb development: complex genetic interactions with Gli3 and Shh. Dev Biol 285(2):533-44. [PubMed: 16039644]  [MGI Ref ID J:101265]

Kuschel S; Ruther U; Theil T. 2003. A disrupted balance between Bmp/Wnt and Fgf signaling underlies the ventralization of the Gli3 mutant telencephalon. Dev Biol 260(2):484-95. [PubMed: 12921747]  [MGI Ref ID J:84901]

Lebel M; Mo R; Shimamura K; Hui CC. 2007. Gli2 and Gli3 play distinct roles in the dorsoventral patterning of the mouse hindbrain. Dev Biol 302(1):345-55. [PubMed: 17026983]  [MGI Ref ID J:119875]

Lee MY; Racine V; Jagadpramana P; Sun L; Yu W; Du T; Spencer-Dene B; Rubin N; Le L; Ndiaye D; Bellusci S; Kratochwil K; Veltmaat JM. 2011. Ectodermal influx and cell hypertrophy provide early growth for all murine mammary rudiments, and are differentially regulated among them by Gli3. PLoS One 6(10):e26242. [PubMed: 22046263]  [MGI Ref ID J:179712]

Lei Q; Jeong Y; Misra K; Li S; Zelman AK; Epstein DJ; Matise MP. 2006. Wnt signaling inhibitors regulate the transcriptional response to morphogenetic Shh-Gli signaling in the neural tube. Dev Cell 11(3):325-37. [PubMed: 16950124]  [MGI Ref ID J:112802]

Lei Q; Zelman AK; Kuang E; Li S; Matise MP. 2004. Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord. Development 131(15):3593-604. [PubMed: 15215207]  [MGI Ref ID J:92067]

Li Q; Lewandowski JP; Powell MB; Norrie JL; Cho SH; Vokes SA. 2014. A Gli silencer is required for robust repression of gremlin in the vertebrate limb bud. Development 141(9):1906-14. [PubMed: 24700818]  [MGI Ref ID J:207959]

Li Y; Zhang H; Choi SC; Litingtung Y; Chiang C. 2004. Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis. Dev Biol 270(1):214-31. [PubMed: 15136151]  [MGI Ref ID J:92194]

Lieven O; Ruther U. 2011. The Dkk1 dose is critical for eye development. Dev Biol 355(1):124-37. [PubMed: 21539829]  [MGI Ref ID J:173635]

Litingtung Y; Chiang C. 2000. Specification of ventral neuron types is mediated by an antagonistic interaction between shh and gli3 Nat Neurosci 3(10):979-85. [PubMed: 11017169]  [MGI Ref ID J:64758]

Litingtung Y; Dahn RD; Li Y; Fallon JF; Chiang C. 2002. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418(6901):979-83. [PubMed: 12198547]  [MGI Ref ID J:78941]

Liu J; Heydeck W; Zeng H; Liu A. 2012. Dual function of suppressor of fused in Hh pathway activation and mouse spinal cord patterning. Dev Biol 362(2):141-53. [PubMed: 22182519]  [MGI Ref ID J:180775]

Liu J; Li Q; Kuehn MR; Litingtung Y; Vokes SA; Chiang C. 2013. Sonic hedgehog signaling directly targets Hyaluronic Acid Synthase 2, an essential regulator of phalangeal joint patterning. Dev Biol 375(2):160-71. [PubMed: 23313125]  [MGI Ref ID J:194283]

Lopez-Rios J; Speziale D; Robay D; Scotti M; Osterwalder M; Nusspaumer G; Galli A; Hollander GA; Kmita M; Zeller R. 2012. GLI3 constrains digit number by controlling both progenitor proliferation and BMP-dependent exit to chondrogenesis. Dev Cell 22(4):837-48. [PubMed: 22465667]  [MGI Ref ID J:184012]

Madison BB; McKenna LB; Dolson D; Epstein DJ; Kaestner KH. 2009. FoxF1 and FoxL1 link hedgehog signaling and the control of epithelial proliferation in the developing stomach and intestine. J Biol Chem 284(9):5936-44. [PubMed: 19049965]  [MGI Ref ID J:190291]

Martin B; Lapouble E; Chaix Y. 2007. Involvement of the Gli3 (extra-toes) gene region in body weight in mice. ScientificWorldJournal 7:83-6. [PubMed: 17334602]  [MGI Ref ID J:122515]

Martinelli DC; Fan CM. 2007. Gas1 extends the range of Hedgehog action by facilitating its signaling. Genes Dev 21(10):1231-43. [PubMed: 17504940]  [MGI Ref ID J:121554]

Masuya H; Sagai T; Moriwaki K; Shiroishi T. 1997. Multigenic control of the localization of the zone of polarizing activity in limb morphogenesis in the mouse. Dev Biol 182(1):42-51. [PubMed: 9073443]  [MGI Ref ID J:38196]

Masuya H; Sagai T; Wakana S; Moriwaki K; Shiroishi T. 1995. A duplicated zone of polarizing activity in polydactylous mouse mutants. Genes Dev 9(13):1645-53. [PubMed: 7628698]  [MGI Ref ID J:27442]

Matera I; Watkins-Chow DE; Loftus SK; Hou L; Incao A; Silver DL; Rivas C; Elliott EC; Baxter LL; Pavan WJ. 2008. A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy. Hum Mol Genet 17(14):2118-31. [PubMed: 18397875]  [MGI Ref ID J:136642]

Matsumaru D; Haraguchi R; Miyagawa S; Motoyama J; Nakagata N; Meijlink F; Yamada G. 2011. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation. PLoS One 6(1):e16260. [PubMed: 21283718]  [MGI Ref ID J:169568]

Mau E; Whetstone H; Yu C; Hopyan S; Wunder JS; Alman BA. 2007. PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms. Dev Biol 305(1):28-39. [PubMed: 17328886]  [MGI Ref ID J:121301]

Maynard TM; Jain MD; Balmer CW; LaMantia AS. 2002. High-resolution mapping of the Gli3 mutation extra-toes<J> reveals a 51.5-kb deletion. Mamm Genome 13(1):58-61. [PubMed: 11773971]  [MGI Ref ID J:76587]

McDermott A; Gustafsson M; Elsam T; Hui CC; Emerson CP Jr; Borycki AG. 2005. Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development 132(2):345-57. [PubMed: 15604102]  [MGI Ref ID J:95326]

McGlinn E; Richman JM; Metzis V; Town L; Butterfield NC; Wainwright BJ; Wicking C. 2008. Expression of the NET family member Zfp503 is regulated by hedgehog and BMP signaling in the limb. Dev Dyn 237(4):1172-82. [PubMed: 18351672]  [MGI Ref ID J:132977]

McGlinn E; van Bueren KL; Fiorenza S; Mo R; Poh AM; Forrest A; Soares MB; Bonaldo Mde F; Grimmond S; Hui CC; Wainwright B; Wicking C. 2005. Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development. Mech Dev 122(11):1218-33. [PubMed: 16169709]  [MGI Ref ID J:102872]

McNeill B; Mazerolle C; Bassett EA; Mears AJ; Ringuette R; Lagali P; Picketts DJ; Paes K; Rice D; Wallace VA. 2013. Hedgehog regulates Norrie disease protein to drive neural progenitor self-renewal. Hum Mol Genet 22(5):1005-16. [PubMed: 23201751]  [MGI Ref ID J:192563]

McNeill B; Perez-Iratxeta C; Mazerolle C; Furimsky M; Mishina Y; Andrade-Navarro MA; Wallace VA. 2012. Comparative genomics identification of a novel set of temporally regulated hedgehog target genes in the retina. Mol Cell Neurosci 49(3):333-40. [PubMed: 22281533]  [MGI Ref ID J:196757]

Mill P; Mo R; Fu H; Grachtchouk M; Kim PC; Dlugosz AA; Hui CC. 2003. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 17(2):282-94. [PubMed: 12533516]  [MGI Ref ID J:81295]

Mill P; Mo R; Hu MC; Dagnino L; Rosenblum ND; Hui CC. 2005. Shh controls epithelial proliferation via independent pathways that converge on N-Myc. Dev Cell 9(2):293-303. [PubMed: 16054035]  [MGI Ref ID J:100687]

Miyagawa S; Matsumaru D; Murashima A; Omori A; Satoh Y; Haraguchi R; Motoyama J; Iguchi T; Nakagata N; Hui CC; Yamada G. 2011. The role of sonic hedgehog-gli2 pathway in the masculinization of external genitalia. Endocrinology 152(7):2894-903. [PubMed: 21586556]  [MGI Ref ID J:174885]

Miyagawa S; Moon A; Haraguchi R; Inoue C; Harada M; Nakahara C; Suzuki K; Matsumaru D; Kaneko T; Matsuo I; Yang L; Taketo MM; Iguchi T; Evans SM; Yamada G. 2009. Dosage-dependent hedgehog signals integrated with Wnt/{beta}-catenin signaling regulate external genitalia formation as an appendicular program. Development 136(23):3969-78. [PubMed: 19906864]  [MGI Ref ID J:154979]

Mo R; Freer AM; Zinyk DL; Crackower MA; Michaud J; Heng HH; Chik KW; Shi XM; Tsui LC; Cheng SH; Joyner AL; Hui C. 1997. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124(1):113-23. [PubMed: 9006072]  [MGI Ref ID J:38381]

Mo R; Kim JH; Zhang J; Chiang C; Hui CC; Kim PC. 2001. Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol 159(2):765-74. [PubMed: 11485934]  [MGI Ref ID J:70870]

Moribe H; Takagi T; Kondoh H; Higashi Y. 2000. Suppression of polydactyly of the Gli3 mutant (extra toes) by deltaEF1 homozygous mutation. Dev Growth Differ 42(4):367-76. [PubMed: 10969736]  [MGI Ref ID J:103158]

Motoyama J; Liu J; Mo R; Ding Q; Post M; Hui CC. 1998. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus [see comments] Nat Genet 20(1):54-7. [PubMed: 9731531]  [MGI Ref ID J:49603]

Motoyama J; Milenkovic L; Iwama M; Shikata Y; Scott MP; Hui CC. 2003. Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification. Dev Biol 259(1):150-61. [PubMed: 12812795]  [MGI Ref ID J:84056]

Ocbina PJ; Eggenschwiler JT; Moskowitz I; Anderson KV. 2011. Complex interactions between genes controlling trafficking in primary cilia. Nat Genet 43(6):547-53. [PubMed: 21552265]  [MGI Ref ID J:188764]

Oh S; Huang X; Chiang C. 2005. Specific requirements of sonic hedgehog signaling during oligodendrocyte development. Dev Dyn 234(3):489-96. [PubMed: 15880651]  [MGI Ref ID J:119850]

Oh S; Huang X; Liu J; Litingtung Y; Chiang C. 2009. Shh and Gli3 activities are required for timely generation of motor neuron progenitors. Dev Biol 331(2):261-9. [PubMed: 19433083]  [MGI Ref ID J:150755]

Ohba S; Kawaguchi H; Kugimiya F; Ogasawara T; Kawamura N; Saito T; Ikeda T; Fujii K; Miyajima T; Kuramochi A; Miyashita T; Oda H; Nakamura K; Takato T; Chung UI. 2008. Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity. Dev Cell 14(5):689-99. [PubMed: 18477452]  [MGI Ref ID J:135169]

Okada T; Okumura Y; Motoyama J; Ogawa M. 2008. FGF8 signaling patterns the telencephalic midline by regulating putative key factors of midline development. Dev Biol 320(1):92-101. [PubMed: 18547559]  [MGI Ref ID J:139160]

Palma V; Ruiz i Altaba A. 2004. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131(2):337-45. [PubMed: 14681189]  [MGI Ref ID J:90384]

Panman L; Drenth T; Tewelscher P; Zuniga A; Zeller R. 2005. Genetic interaction of Gli3 and Alx4 during limb development. Int J Dev Biol 49(4):443-8. [PubMed: 15968591]  [MGI Ref ID J:101476]

Park HL; Bai C; Platt KA; Matise MP; Beeghly A; Hui CC; Nakashima M; Joyner AL. 2000. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127(8):1593-605. [PubMed: 10725236]  [MGI Ref ID J:60986]

Patterson VL; Damrau C; Paudyal A; Reeve B; Grimes DT; Stewart ME; Williams DJ; Siggers P; Greenfield A; Murdoch JN. 2009. Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway. Hum Mol Genet 18(10):1719-39. [PubMed: 19223390]  [MGI Ref ID J:147584]

Persson M; Stamataki D; te Welscher P; Andersson E; Bose J; Ruther U; Ericson J; Briscoe J. 2002. Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev 16(22):2865-78. [PubMed: 12435629]  [MGI Ref ID J:80207]

Quinn ME; Haaning A; Ware SM. 2012. Preaxial polydactyly caused by Gli3 haploinsufficiency is rescued by Zic3 loss of function in mice. Hum Mol Genet 21(8):1888-96. [PubMed: 22234993]  [MGI Ref ID J:181884]

Rallu M; Machold R; Gaiano N; Corbin JG; McMahon AP; Fishell G. 2002. Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 and Hedgehog signaling. Development 129(21):4963-74. [PubMed: 12397105]  [MGI Ref ID J:79856]

Rash BG; Grove EA. 2007. Patterning the dorsal telencephalon: a role for sonic hedgehog? J Neurosci 27(43):11595-603. [PubMed: 17959802]  [MGI Ref ID J:127039]

Rash BG; Grove EA. 2011. Shh and Gli3 regulate formation of the telencephalic-diencephalic junction and suppress an isthmus-like signaling source in the forebrain. Dev Biol 359(2):242-50. [PubMed: 21925158]  [MGI Ref ID J:178496]

Renault MA; Roncalli J; Tongers J; Misener S; Thorne T; Jujo K; Ito A; Clarke T; Fung C; Millay M; Kamide C; Scarpelli A; Klyachko E; Losordo DW. 2009. The Hedgehog transcription factor Gli3 modulates angiogenesis. Circ Res 105(8):818-26. [PubMed: 19729595]  [MGI Ref ID J:169960]

Rice DP; Connor EC; Veltmaat JM; Lana-Elola E; Veistinen L; Tanimoto Y; Bellusci S; Rice R. 2010. Gli3Xt-J/Xt-J mice exhibit lambdoid suture craniosynostosis which results from altered osteoprogenitor proliferation and differentiation. Hum Mol Genet 19(17):3457-67. [PubMed: 20570969]  [MGI Ref ID J:163175]

Rutter M; Wang J; Huang Z; Kuliszewski M; Post M. 2010. Gli2 influences proliferation in the developing lung through regulation of cyclin expression. Am J Respir Cell Mol Biol 42(5):615-25. [PubMed: 19574535]  [MGI Ref ID J:171486]

Ruzhynsky VA; McClellan KA; Vanderluit JL; Jeong Y; Furimsky M; Park DS; Epstein DJ; Wallace VA; Slack RS. 2007. Cell cycle regulator E2F4 is essential for the development of the ventral telencephalon. J Neurosci 27(22):5926-35. [PubMed: 17537963]  [MGI Ref ID J:121968]

Sheth R; Bastida MF; Ros M. 2007. Hoxd and Gli3 interactions modulate digit number in the amniote limb. Dev Biol 310(2):430-41. [PubMed: 17714700]  [MGI Ref ID J:128015]

Sheth R; Gregoire D; Dumouchel A; Scotti M; Pham JM; Nemec S; Bastida MF; Ros MA; Kmita M. 2013. Decoupling the function of Hox and Shh in developing limb reveals multiple inputs of Hox genes on limb growth. Development 140(10):2130-8. [PubMed: 23633510]  [MGI Ref ID J:197026]

Sheth R; Marcon L; Bastida MF; Junco M; Quintana L; Dahn R; Kmita M; Sharpe J; Ros MA. 2012. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338(6113):1476-80. [PubMed: 23239739]  [MGI Ref ID J:192010]

Shibukawa Y; Young B; Wu C; Yamada S; Long F; Pacifici M; Koyama E. 2007. Temporomandibular joint formation and condyle growth require Indian hedgehog signaling. Dev Dyn 236(2):426-34. [PubMed: 17191253]  [MGI Ref ID J:117221]

Sugito H; Shibukawa Y; Kinumatsu T; Yasuda T; Nagayama M; Yamada S; Minugh-Purvis N; Pacifici M; Koyama E. 2011. Ihh signaling regulates mandibular symphysis development and growth. J Dent Res 90(5):625-31. [PubMed: 21297010]  [MGI Ref ID J:171003]

Tan M; Hu X; Qi Y; Park J; Cai J; Qiu M. 2006. Gli3 mutation rescues the generation, but not the differentiation, of oligodendrocytes in Shh mutants. Brain Res 1067(1):158-63. [PubMed: 16336945]  [MGI Ref ID J:105340]

Tanimoto Y; Veistinen L; Alakurtti K; Takatalo M; Rice DP. 2012. Prevention of premature fusion of calvarial suture in GLI-Kruppel family member 3 (Gli3)-deficient mice by removing one allele of Runt-related transcription factor 2 (Runx2). J Biol Chem 287(25):21429-38. [PubMed: 22547067]  [MGI Ref ID J:186504]

Theil T. 2005. Gli3 is required for the specification and differentiation of preplate neurons. Dev Biol 286(2):559-71. [PubMed: 16168404]  [MGI Ref ID J:103594]

Theil T; Alvarez-Bolado G; Walter A; Ruther U. 1999. Gli3 is required for Emx gene expression during dorsal telencephalon development. Development 126(16):3561-71. [PubMed: 10409502]  [MGI Ref ID J:53903]

Theil T; Aydin S; Koch S; Grotewold L; Ruther U. 2002. Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 129(13):3045-54. [PubMed: 12070081]  [MGI Ref ID J:79849]

Tole S; Ragsdale CW; Grove EA. 2000. Dorsoventral patterning of the telencephalon is disrupted in the mouse mutant extra-toes(J). Dev Biol 217(2):254-65. [PubMed: 10625551]  [MGI Ref ID J:59923]

Tomioka N; Osumi N; Sato Y; Inoue T; Nakamura S; Fujisawa H; Hirata T. 2000. Neocortical origin and tangential migration of guidepost neurons in the lateral olfactory tract. J Neurosci 20(15):5802-12. [PubMed: 10908621]  [MGI Ref ID J:63610]

Town L; McGlinn E; Fiorenza S; Metzis V; Butterfield NC; Richman JM; Wicking C. 2009. The metalloendopeptidase gene Pitrm1 is regulated by hedgehog signaling in the developing mouse limb and is expressed in muscle progenitors. Dev Dyn 238(12):3175-3184. [PubMed: 19877269]  [MGI Ref ID J:154373]

Veltmaat JM; Relaix F; Le LT; Kratochwil K; Sala FG; van Veelen W; Rice R; Spencer-Dene B; Mailleux AA; Rice DP; Thiery JP; Bellusci S. 2006. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133(12):2325-35. [PubMed: 16720875]  [MGI Ref ID J:109476]

Vierkotten J; Dildrop R; Peters T; Wang B; Ruther U. 2007. Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134(14):2569-77. [PubMed: 17553904]  [MGI Ref ID J:122745]

Vyas A; Saha B; Lai E; Tole S. 2003. Paleocortex is specified in mice in which dorsal telencephalic patterning is severely disrupted. J Comp Neurol 466(4):545-53. [PubMed: 14566948]  [MGI Ref ID J:86254]

Wang C; Pan Y; Wang B. 2007. A hypermorphic mouse Gli3 allele results in a polydactylous limb phenotype. Dev Dyn 236(3):769-76. [PubMed: 17266131]  [MGI Ref ID J:118340]

Wang C; Ruther U; Wang B. 2007. The Shh-independent activator function of the full-length Gli3 protein and its role in vertebrate limb digit patterning. Dev Biol 305(2):460-9. [PubMed: 17400206]  [MGI Ref ID J:121609]

Wang H; Ge G; Uchida Y; Luu B; Ahn S. 2011. Gli3 is required for maintenance and fate specification of cortical progenitors. J Neurosci 31(17):6440-8. [PubMed: 21525285]  [MGI Ref ID J:171423]

Willaredt MA; Hasenpusch-Theil K; Gardner HA; Kitanovic I; Hirschfeld-Warneken VC; Gojak CP; Gorgas K; Bradford CL; Spatz J; Wolfl S; Theil T; Tucker KL. 2008. A crucial role for primary cilia in cortical morphogenesis. J Neurosci 28(48):12887-900. [PubMed: 19036983]  [MGI Ref ID J:142500]

Wuelling M; Kaiser FJ; Buelens LA; Braunholz D; Shivdasani RA; Depping R; Vortkamp A. 2009. Trps1, a regulator of chondrocyte proliferation and differentiation, interacts with the activator form of Gli3. Dev Biol 328(1):40-53. [PubMed: 19389374]  [MGI Ref ID J:149459]

Yu K; McGlynn S; Matise MP. 2013. Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord. Development 140(7):1594-604. [PubMed: 23482494]  [MGI Ref ID J:194893]

Yu T; Fotaki V; Mason JO; Price DJ. 2009. Analysis of early ventral telencephalic defects in mice lacking functional Gli3 protein. J Comp Neurol 512(5):613-27. [PubMed: 19048639]  [MGI Ref ID J:145009]

Yu W; McDonnell K; Taketo MM; Bai CB. 2008. Wnt signaling determines ventral spinal cord cell fates in a time-dependent manner. Development 135(22):3687-96. [PubMed: 18927156]  [MGI Ref ID J:143585]

Yu W; Wang Y; McDonnell K; Stephen D; Bai CB. 2009. Patterning of ventral telencephalon requires positive function of Gli transcription factors. Dev Biol 334(1):264-75. [PubMed: 19632216]  [MGI Ref ID J:153550]

Zakany J; Zacchetti G; Duboule D. 2007. Interactions between HOXD and Gli3 genes control the limb apical ectodermal ridge via Fgf10. Dev Biol 306(2):883-93. [PubMed: 17467687]  [MGI Ref ID J:122561]

Zhulyn O; Hui CC. 2015. Sufu and Kif7 in limb patterning and development. Dev Dyn 244(3):468-78. [PubMed: 25581370]  [MGI Ref ID J:219584]

Zimmer C; Lee J; Griveau A; Arber S; Pierani A; Garel S; Guillemot F. 2010. Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells. Development 137(2):293-302. [PubMed: 20040495]  [MGI Ref ID J:157253]

Zuniga A; Laurent F; Lopez-Rios J; Klasen C; Matt N; Zeller R. 2012. Conserved cis-regulatory regions in a large genomic landscape control SHH and BMP-regulated Gremlin1 expression in mouse limb buds. BMC Dev Biol 12(1):23. [PubMed: 22888807]  [MGI Ref ID J:187726]

Zuniga A; Zeller R. 1999. Gli3 (Xt) and formin (ld) participate in the positioning of the polarising region and control of posterior limb-bud identity. Development 126(1):13-21. [PubMed: 9834182]  [MGI Ref ID J:49322]

te Welscher P; Zuniga A; Kuijper S; Drenth T; Goedemans HJ; Meijlink F; Zeller R. 2002. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298(5594):827-30. [PubMed: 12215652]  [MGI Ref ID J:79710]

van Tuyl M; Groenman F; Wang J; Kuliszewski M; Liu J; Tibboel D; Post M. 2007. Angiogenic factors stimulate tubular branching morphogenesis of sonic hedgehog-deficient lungs. Dev Biol 303(2):514-526. [PubMed: 17187775]  [MGI Ref ID J:119174]

Mc1rE-so related

Bateman N. 1961. Sombre, a viable dominant mutant in the house mouse. J Hered 52:186-189.  [MGI Ref ID J:13077]

Lamoreux ML; Wakamatsu K; Ito S. 2001. Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Res 14(1):23-31. [PubMed: 11277491]  [MGI Ref ID J:103803]

Renault MA; Roncalli J; Tongers J; Misener S; Thorne T; Jujo K; Ito A; Clarke T; Fung C; Millay M; Kamide C; Scarpelli A; Klyachko E; Losordo DW. 2009. The Hedgehog transcription factor Gli3 modulates angiogenesis. Circ Res 105(8):818-26. [PubMed: 19729595]  [MGI Ref ID J:169960]

Robbins LS; Nadeau JH; Johnson KR; Kelly MA; Roselli-Rehfuss L; Baack E; Mountjoy KG; Cone RD. 1993. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72(6):827-34. [PubMed: 8458079]  [MGI Ref ID J:4636]

Silvers WK. 1979. The Coat Colors of Mice; A Model for Mammalian Gene Action and Interaction. In: The Coat Colors of Mice. Springer-Verlag, New York.  [MGI Ref ID J:78801]

Wolff GL; Galbraith DB; Domon OE; Row JM. 1978. Phaeomelanin synthesis and obesity in mice. Interaction of the viable yellow (Avy) and sombre (eso) mutations. J Hered 69(5):295-8. [PubMed: 744871]  [MGI Ref ID J:6103]

Pde6brd1 related

Acosta ML; Fletcher EL; Azizoglu S; Foster LE; Farber DB; Kalloniatis M. 2005. Early markers of retinal degeneration in rd/rd mice. Mol Vis 11:717-28. [PubMed: 16163270]  [MGI Ref ID J:103970]

Aftab U; Jiang C; Tucker B; Kim JY; Klassen H; Miljan E; Sinden J; Young M. 2009. Growth kinetics and transplantation of human retinal progenitor cells. Exp Eye Res 89(3):301-10. [PubMed: 19524569]  [MGI Ref ID J:151412]

Ahuja S; Ahuja-Jensen P; Johnson LE; Caffe AR; Abrahamson M; Ekstrom PA; van Veen T. 2008. rd1 Mouse retina shows an imbalance in the activity of cysteine protease cathepsins and their endogenous inhibitor cystatin C. Invest Ophthalmol Vis Sci 49(3):1089-96. [PubMed: 18326735]  [MGI Ref ID J:133024]

Ahuja-Jensen P; Johnsen-Soriano S; Ahuja S; Bosch-Morell F; Sancho-Tello M; Romero FJ; Abrahamson M; van Veen T. 2007. Low glutathione peroxidase in rd1 mouse retina increases oxidative stress and proteases. Neuroreport 18(8):797-801. [PubMed: 17471069]  [MGI Ref ID J:122802]

Alavi MV; Bette S; Schimpf S; Schuettauf F; Schraermeyer U; Wehrl HF; Ruttiger L; Beck SC; Tonagel F; Pichler BJ; Knipper M; Peters T; Laufs J; Wissinger B. 2007. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 130(Pt 4):1029-42. [PubMed: 17314202]  [MGI Ref ID J:154966]

Allen AE; Brown TM; Lucas RJ. 2011. A distinct contribution of short-wavelength-sensitive cones to light-evoked activity in the mouse pretectal olivary nucleus. J Neurosci 31(46):16833-43. [PubMed: 22090509]  [MGI Ref ID J:177906]

Allen AE; Cameron MA; Brown TM; Vugler AA; Lucas RJ. 2010. Visual responses in mice lacking critical components of all known retinal phototransduction cascades. PLoS One 5(11):e15063. [PubMed: 21124780]  [MGI Ref ID J:167121]

Alvarez-Lopez C; Cernuda-Cernuda R; Alcorta E; Alvarez-Viejo M; Manuel Garcia-Fernandez J. 2004. Altered endogenous activation of CREB in the suprachiasmatic nucleus of mice with retinal degeneration. Brain Res 1024(1-2):137-45. [PubMed: 15451375]  [MGI Ref ID J:92980]

Alvarez-Lopez C; Cernuda-Cernuda R; Garcia-Fernandez JM. 2006. The mPer1 clock gene expression in the rd mouse suprachiasmatic nucleus is affected by the retinal degeneration. Brain Res 1087(1):134-41. [PubMed: 16626665]  [MGI Ref ID J:109668]

Alvarez-Lopez C; Cernuda-Cernuda R; Paniagua MA; Alvarez-Viejo M; Fernandez-Lopez A; Garcia-Fernandez JM. 2004. The transcription factor CREB is phosphorylated in neurons of the piriform cortex of blind mice in response to illumination of the retina. Neurosci Lett 357(3):223-6. [PubMed: 15003290]  [MGI Ref ID J:121036]

Ardayfio P; Moon J; Leung KK; Youn-Hwang D; Kim KS. 2008. Impaired learning and memory in Pitx3 deficient aphakia mice: A genetic model for striatum-dependent cognitive symptoms in Parkinson's disease. Neurobiol Dis :. [PubMed: 18573342]  [MGI Ref ID J:136304]

Ash J; McLeod DS; Lutty GA. 2005. Transgenic expression of leukemia inhibitory factor (LIF) blocks normal vascular development but not pathological neovascularization in the eye. Mol Vis 11:298-308. [PubMed: 15889014]  [MGI Ref ID J:98579]

Ash JA; Velazquez R; Kelley CM; Powers BE; Ginsberg SD; Mufson EJ; Strupp BJ. 2014. Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice. Neurobiol Dis 70:32-42. [PubMed: 24932939]  [MGI Ref ID J:218355]

Audo I; Bujakowska K; Orhan E; Poloschek CM; Defoort-Dhellemmes S; Drumare I; Kohl S; Luu TD; Lecompte O; Zrenner E; Lancelot ME; Antonio A; Germain A; Michiels C; Audier C; Letexier M; Saraiva JP; Leroy BP; Munier FL; Mohand-Said S; Lorenz B; Friedburg C; Preising M; Kellner U; Renner AB; Moskova-Doumanova V; Berger W; Wissinger B; Hamel CP; Schorderet DF; De Baere E; Sharon D; Banin E; Jacobson SG; Bonneau D; Zanlonghi X; Le Meur G; Casteels I; Koenekoop R; Long VW; Meire F; Prescott K; de Ravel T; Simm. 2012. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 90(2):321-30. [PubMed: 22325361]  [MGI Ref ID J:196741]

Azadi S; Paquet-Durand F; Medstrand P; van Veen T; Ekstrom PA. 2006. Up-regulation and increased phosphorylation of protein kinase C (PKC) delta, mu and theta in the degenerating rd1 mouse retina. Mol Cell Neurosci 31(4):759-73. [PubMed: 16503160]  [MGI Ref ID J:108601]

BRUCKNER R. 1951. [Slit-lamp microscopy and ophthalmoscopy in rat and mouse.] Doc Ophthalmol 5-6:452-554. [PubMed: 14896883]  [MGI Ref ID J:25576]

Ball SL; Powers PA; Shin HS; Morgans CW; Peachey NS; Gregg RG. 2002. Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest Ophthalmol Vis Sci 43(5):1595-603. [PubMed: 11980879]  [MGI Ref ID J:80080]

Barabas P; Liu A; Xing W; Chen CK; Tong Z; Watt CB; Jones BW; Bernstein PS; Krizaj D. 2013. Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc Natl Acad Sci U S A 110(13):5181-6. [PubMed: 23479632]  [MGI Ref ID J:194246]

Barber AC; Hippert C; Duran Y; West EL; Bainbridge JW; Warre-Cornish K; Luhmann UF; Lakowski J; Sowden JC; Ali RR; Pearson RA. 2013. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A 110(1):354-9. [PubMed: 23248312]  [MGI Ref ID J:192521]

Bi A; Cui J; Ma YP; Olshevskaya E; Pu M; Dizhoor AM; Pan ZH. 2006. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50(1):23-33. [PubMed: 16600853]  [MGI Ref ID J:122947]

Blanks JC; Bok D. 1977. An autoradiographic analysis of postnatal cell proliferation in the normal and degenerative mouse retina. J Comp Neurol 174(2):317-27. [PubMed: 864040]  [MGI Ref ID J:5812]

Borowska J; Trenholm S; Awatramani GB. 2011. An intrinsic neural oscillator in the degenerating mouse retina. J Neurosci 31(13):5000-12. [PubMed: 21451038]  [MGI Ref ID J:171202]

Bowes C; Danciger M; Kozak CA; Farber DB. 1989. Isolation of a candidate cDNA for the gene causing retinal degeneration in the rd mouse [published erratum appears in Proc Natl Acad Sci U S A 1990 Feb;87(4):1625] Proc Natl Acad Sci U S A 86(24):9722-6. [PubMed: 2481314]  [MGI Ref ID J:10184]

Bowes C; Li T; Danciger M; Baxter LC; Applebury ML; Farber DB. 1990. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase [see comments] Nature 347(6294):677-80. [PubMed: 1977087]  [MGI Ref ID J:10777]

Bowes C; Li T; Frankel WN; Danciger M; Coffin JM; Applebury ML; Farber DB. 1993. Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc Natl Acad Sci U S A 90(7):2955-9. [PubMed: 8385352]  [MGI Ref ID J:4366]

Bramall AN; Szego MJ; Pacione LR; Chang I; Diez E; D'Orleans-Juste P; Stewart DJ; Hauswirth WW; Yanagisawa M; McInnes RR. 2013. Endothelin-2-mediated protection of mutant photoreceptors in inherited photoreceptor degeneration. PLoS One 8(2):e58023. [PubMed: 23469133]  [MGI Ref ID J:198395]

Brown TM; Gias C; Hatori M; Keding SR; Semo M; Coffey PJ; Gigg J; Piggins HD; Panda S; Lucas RJ. 2010. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biol 8(12):e1000558. [PubMed: 21151887]  [MGI Ref ID J:170401]

Buhr ED; Van Gelder RN. 2014. Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin. Proc Natl Acad Sci U S A 111(23):8625-30. [PubMed: 24843129]  [MGI Ref ID J:211359]

Bumsted KM; Rizzolo LJ; Barnstable CJ. 2001. Defects in the MITF(mi/mi) apical surface are associated with a failure of outer segment elongation. Exp Eye Res 73(3):383-92. [PubMed: 11520113]  [MGI Ref ID J:115620]

Busskamp V; Duebel J; Balya D; Fradot M; Viney TJ; Siegert S; Groner AC; Cabuy E; Forster V; Seeliger M; Biel M; Humphries P; Paques M; Mohand-Said S; Trono D; Deisseroth K; Sahel JA; Picaud S; Roska B. 2010. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329(5990):413-7. [PubMed: 20576849]  [MGI Ref ID J:162017]

Caley DW; Johnson C; Liebelt RA. 1972. The postnatal development of the retina in the normal and rodless CBA mouse: a light and electron microscopic study. Am J Anat 133(2):179-212. [PubMed: 5009246]  [MGI Ref ID J:5250]

Cameron MA; Pozdeyev N; Vugler AA; Cooper H; Iuvone PM; Lucas RJ. 2009. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 29(4):761-7. [PubMed: 19200071]  [MGI Ref ID J:146469]

Carter-Dawson LD; LaVail MM; Sidman RL. 1978. Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci 17(6):489-98. [PubMed: 659071]  [MGI Ref ID J:5988]

Cayouette M; Gravel C. 1997. Adenovirus-mediated gene transfer of ciliary neurotrophic factor can prevent photoreceptor degeneration in the retinal degeneration (rd) mouse. Hum Gene Ther 8(4):423-30. [PubMed: 9054517]  [MGI Ref ID J:39262]

Cayouette M; Smith SB; Becerra SP; Gravel C. 1999. Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 6(6):523-32. [PubMed: 10600408]  [MGI Ref ID J:59343]

Chang B; Hawes NL; Hurd RE; Davisson MT; Nusinowitz S; Heckenlively JR. 2002. Retinal degeneration mutants in the mouse. Vision Res 42(4):517-25. [PubMed: 11853768]  [MGI Ref ID J:75095]

Chang B; Hawes NL; Hurd RE; Wang J; Howell D; Davisson MT; Roderick TH; Nusinowitz S; Heckenlively JR. 2005. Mouse models of ocular diseases. Vis Neurosci 22(5):587-93. [PubMed: 16332269]  [MGI Ref ID J:156373]

Chang B; Hurd R; Wang J; Nishina P. 2013. Survey of common eye diseases in laboratory mouse strains. Invest Ophthalmol Vis Sci 54(7):4974-81. [PubMed: 23800770]  [MGI Ref ID J:198916]

Charbel Issa P; Singh MS; Lipinski DM; Chong NV; Delori FC; Barnard AR; MacLaren RE. 2012. Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration. Invest Ophthalmol Vis Sci 53(2):1066-75. [PubMed: 22169101]  [MGI Ref ID J:191520]

Chen B; Cepko CL. 2009. HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323(5911):256-9. [PubMed: 19131628]  [MGI Ref ID J:143166]

Chen Q; Khoury M; Chen J. 2009. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A :. [PubMed: 19966223]  [MGI Ref ID J:155817]

Chua J; Nivison-Smith L; Fletcher EL; Trenholm S; Awatramani GB; Kalloniatis M. 2013. Early remodeling of Muller cells in the rd/rd mouse model of retinal dystrophy. J Comp Neurol 521(11):2439-53. [PubMed: 23348616]  [MGI Ref ID J:200732]

Cohen AI; Blazynski C. 1990. Dopamine and its agonists reduce a light-sensitive pool of cyclic AMP in mouse photoreceptors. Vis Neurosci 4(1):43-52. [PubMed: 1702315]  [MGI Ref ID J:78184]

Cornett A; Sucic JF; Hillsburg D; Cyr L; Johnson C; Polanco A; Figuereo J; Cabine K; Russo N; Sturtevant A; Jarvinen MK. 2011. Altered glial gene expression, density, and architecture in the visual cortex upon retinal degeneration. Brain Res 1422:46-56. [PubMed: 21983206]  [MGI Ref ID J:179028]

Danciger M; Bowes C; Kozak CA; LaVail MM; Farber DB. 1990. Fine mapping of a putative rd cDNA and its co-segregation with rd expression. Invest Ophthalmol Vis Sci 31(8):1427-32. [PubMed: 1974892]  [MGI Ref ID J:10689]

Daniels DM; Stoddart CW; Martin-Iverson MT; Lai CM; Redmond TM; Rakoczy PE. 2003. Entrainment of circadian rhythm to a photoperiod reversal shows retinal dystrophy in RPE65(-/-) mice. Physiol Behav 79(4-5):701-11. [PubMed: 12954412]  [MGI Ref ID J:96439]

Davies VJ; Powell KA; White KE; Yip W; Hogan V; Hollins AJ; Davies JR; Piechota M; Brownstein DG; Moat SJ; Nichols PP; Wride MA; Boulton ME; Votruba M. 2008. A missense mutation in the murine Opa3 gene models human Costeff syndrome. Brain 131(Pt 2):368-80. [PubMed: 18222992]  [MGI Ref ID J:181670]

Davis RJ; Tosi J; Janisch KM; Kasanuki JM; Wang NK; Kong J; Tsui I; Cilluffo M; Woodruff ML; Fain GL; Lin CS; Tsang SH. 2008. Functional rescue of degenerating photoreceptors in mice homozygous for a hypomorphic cGMP phosphodiesterase 6 b allele (Pde6bH620Q). Invest Ophthalmol Vis Sci 49(11):5067-76. [PubMed: 18658088]  [MGI Ref ID J:141984]

Del Rio P; Irmler M; Arango-Gonzalez B; Favor J; Bobe C; Bartsch U; Vecino E; Beckers J; Hauck SM; Ueffing M. 2011. GDNF-induced osteopontin from Muller glial cells promotes photoreceptor survival in the Pde6b(rd1) mouse model of retinal degeneration. Glia 59(5):821-32. [PubMed: 21360756]  [MGI Ref ID J:169746]

Delyfer MN; Forster V; Neveux N; Picaud S; Leveillard T; Sahel JA. 2005. Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis 11:688-96. [PubMed: 16163266]  [MGI Ref ID J:103968]

Demos C; Bandyopadhyay M; Rohrer B. 2008. Identification of candidate genes for human retinal degeneration loci using differentially expressed genes from mouse photoreceptor dystrophy models. Mol Vis 14:1639-49. [PubMed: 18776951]  [MGI Ref ID J:140115]

Doonan F; Donovan M; Cotter TG. 2003. Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. J Neurosci 23(13):5723-31. [PubMed: 12843276]  [MGI Ref ID J:84389]

Drager UC; Hubel DH. 1978. Studies of visual function and its decay in mice with hereditary retinal degeneration. J Comp Neurol 180(1):85-114. [PubMed: 649791]  [MGI Ref ID J:5980]

Du Y; Davisson MT; Kafadar K; Gardiner K. 2006. A-to-I pre-mRNA editing of the serotonin 2C receptor: comparisons among inbred mouse strains. Gene 382:39-46. [PubMed: 16904273]  [MGI Ref ID J:115050]

Ekstrom P; Sanyal S; Narfstrom K; Chader GJ; van Veen T. 1988. Accumulation of glial fibrillary acidic protein in Muller radial glia during retinal degeneration. Invest Ophthalmol Vis Sci 29(9):1363-71. [PubMed: 3417421]  [MGI Ref ID J:27850]

Feng BS; He SH; Zheng PY; Wu L; Yang PC. 2007. Mast cells play a crucial role in Staphylococcus aureus peptidoglycan-induced diarrhea. Am J Pathol 171(2):537-47. [PubMed: 17600127]  [MGI Ref ID J:123928]

Fletcher RT; Sanyal S; Krishna G; Aguirre G; Chader GJ. 1986. Genetic expression of cyclic GMP phosphodiesterase activity defines abnormal photoreceptor differentiation in neurological mutants of inherited retinal degeneration. J Neurochem 46(4):1240-5. [PubMed: 3005510]  [MGI Ref ID J:12044]

Foster RG; Argamaso S; Coleman S; Colwell CS; Lederman A; Provencio I. 1993. Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythms 8 Suppl:S17-23. [PubMed: 8274758]  [MGI Ref ID J:17940]

Foster RG; Provencio I; Hudson D; Fiske S; De Grip W; Menaker M. 1991. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol [A] 169(1):39-50. [PubMed: 1941717]  [MGI Ref ID J:83743]

Frasson M; Picaud S; Leveillard T; Simonutti M; Mohand-Said S; Dreyfus H; Hicks D; Sabel J. 1999. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 40(11):2724-34. [PubMed: 10509671]  [MGI Ref ID J:57866]

Frasson M; Sahel JA; Fabre M; Simonutti M; Dreyfus H; Picaud S. 1999. Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med 5(10):1183-7. [PubMed: 10502823]  [MGI Ref ID J:57986]

Gao H; Hollyfield JG. 1995. Basic fibroblast growth factor in retinal development: differential levels of bFGF expression and content in normal and retinal degeneration (rd) mutant mice. Dev Biol 169(1):168-184. [PubMed: 7750636]  [MGI Ref ID J:25273]

Garcia-Fernandez JM; Jimenez AJ; Foster RG. 1995. The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (rd/rd): implications for circadian organization. Neurosci Lett 187(1):33-6. [PubMed: 7617296]  [MGI Ref ID J:25157]

Gaub BM; Berry MH; Holt AE; Reiner A; Kienzler MA; Dolgova N; Nikonov S; Aguirre GD; Beltran WA; Flannery JG; Isacoff EY. 2014. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc Natl Acad Sci U S A 111(51):E5574-83. [PubMed: 25489083]  [MGI Ref ID J:216941]

Gimenez E; Montoliu L. 2001. A simple polymerase chain reaction assay for genotyping the retinal degeneration mutation (Pdeb(rd1)) in FVB/N-derived transgenic mice. Lab Anim 35(2):153-6. [PubMed: 11315164]  [MGI Ref ID J:69558]

Goel M; Dhingra NK. 2012. Muller glia express rhodopsin in a mouse model of inherited retinal degeneration. Neuroscience 225:152-61. [PubMed: 22967839]  [MGI Ref ID J:192477]

Golub MS; Germann SL; Mercer M; Gordon MN; Morgan DG; Mayer LP; Hoyer PB. 2008. Behavioral consequences of ovarian atrophy and estrogen replacement in the APPswe mouse. Neurobiol Aging 29(10):1512-23. [PubMed: 17451844]  [MGI Ref ID J:140912]

Gouras P; Du J; Kjeldbye H; Kwun R; Lopez R; Zack DJ. 1991. Transplanted photoreceptors identified in dystrophic mouse retina by a transgenic reporter gene. Invest Ophthalmol Vis Sci 32(13):3167-74. [PubMed: 1748547]  [MGI Ref ID J:607]

Gouras P; Du J; Kjeldbye H; Yamamoto S; Zack DJ. 1994. Long-term photoreceptor transplants in dystrophic and normal mouse retina. Invest Ophthalmol Vis Sci 35(8):3145-53. [PubMed: 8045709]  [MGI Ref ID J:20769]

Grafstein B; Murray M; Ingoglia NA. 1972. Protein synthesis and axonal transport in retinal ganglion cells of mice lacking visual receptors. Brain Res 44(1):37-48. [PubMed: 4115728]  [MGI Ref ID J:5292]

Graham DR; Overbeek PA; Ash JD. 2005. Leukemia inhibitory factor blocks expression of crx and nrl transcription factors to inhibit photoreceptor differentiation. Invest Ophthalmol Vis Sci 46(7):2601-10. [PubMed: 15980254]  [MGI Ref ID J:99409]

Greferath U; Goh HC; Chua PY; Astrand E; O'Brien EE; Fletcher EL; Murphy M. 2009. Mapping retinal degeneration and loss-of-function in Rd-FTL mice. Invest Ophthalmol Vis Sci 50(12):5955-64. [PubMed: 19661224]  [MGI Ref ID J:158255]

Grimm C; Wenzel A; Stanescu D; Samardzija M; Hotop S; Groszer M; Naash M; Gassmann M; Reme C. 2004. Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration. J Neurosci 24(25):5651-8. [PubMed: 15215287]  [MGI Ref ID J:133235]

Hackam AS; Strom R; Liu D; Qian J; Wang C; Otteson D; Gunatilaka T; Farkas RH; Chowers I; Kageyama M; Leveillard T; Sahel JA; Campochiaro PA; Parmigiani G; Zack DJ. 2004. Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse. Invest Ophthalmol Vis Sci 45(9):2929-42. [PubMed: 15326104]  [MGI Ref ID J:92921]

Hafezi F; Abegg M; Grimm C; Wenzel A; Munz K; Sturmer J; Farber DB; Reme CE. 1998. Retinal degeneration in the rd mouse in the absence of c-fos. Invest Ophthalmol Vis Sci 39(12):2239-44. [PubMed: 9804131]  [MGI Ref ID J:112088]

Hanno Y; Nakahira M; Jishage K; Noda T; Yoshihara Y. 2003. Tracking mouse visual pathways with WGA transgene. Eur J Neurosci 18(10):2910-4. [PubMed: 14656342]  [MGI Ref ID J:128266]

Hart AW; McKie L; Morgan JE; Gautier P; West K; Jackson IJ; Cross SH. 2005. Genotype-phenotype correlation of mouse pde6b mutations. Invest Ophthalmol Vis Sci 46(9):3443-50. [PubMed: 16123450]  [MGI Ref ID J:101336]

Hatori M; Le H; Vollmers C; Keding SR; Tanaka N; Schmedt C; Jegla T; Panda S. 2008. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3(6):e2451. [PubMed: 18545654]  [MGI Ref ID J:137151]

Hawes NL; Smith RS; Chang B; Davisson M; Heckenlively JR; John SW. 1999. Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Mol Vis 5:22. [PubMed: 10493779]  [MGI Ref ID J:59481]

Heckenlively JR; Chang B; Erway LC; Peng C; Hawes NL; Hageman GS; Roderick TH. 1995. Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome 11p15. Proc Natl Acad Sci U S A 92(24):11100-4. [PubMed: 7479945]  [MGI Ref ID J:121993]

Heynen SR; Tanimoto N; Joly S; Seeliger MW; Samardzija M; Grimm C. 2011. Retinal degeneration modulates intracellular localization of CDC42 in photoreceptors. Mol Vis 17:2934-46. [PubMed: 22128240]  [MGI Ref ID J:179662]

Hopp RM; Ransom N; Hilsenbeck SG; Papermaster DS; Windle JJ. 1998. Apoptosis in the murine rd1 retinal degeneration is predominantly p53-independent. Mol Vis 4:5. [PubMed: 9485488]  [MGI Ref ID J:47520]

Horev G; Benjamini Y; Sakov A; Golani I. 2007. Estimating wall guidance and attraction in mouse free locomotor behavior. Genes Brain Behav 6(1):30-41. [PubMed: 17233639]  [MGI Ref ID J:132656]

Hsiao FC; Liao YH; Tsai LL. 2013. Differential effects of retinal degeneration on sleep and wakefulness responses to short light-dark cycles in albino mice. Neuroscience 248C:459-468. [PubMed: 23811394]  [MGI Ref ID J:207054]

Huber G; Beck SC; Grimm C; Sahaboglu-Tekgoz A; Paquet-Durand F; Wenzel A; Humphries P; Redmond TM; Seeliger MW; Fischer MD. 2009. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 50(12):5888-95. [PubMed: 19661229]  [MGI Ref ID J:158254]

Huerta JJ; Llamosas MM; Cernuda-Cernuda R; Garcia-Fernandez JM. 1997. Fos expression in the retina of rd/rd mice during the light/dark cycle. Neurosci Lett 232(3):143-6. [PubMed: 9310300]  [MGI Ref ID J:43873]

Huerta JJ; Llamosas MM; Cernuda-Cernuda R; Garcia-Fernandez JM. 1999. Spatio-temporal analysis of light-induced Fos expression in the retina of rd mutant mice. Brain Res 834(1-2):122-7. [PubMed: 10407100]  [MGI Ref ID J:56973]

Hughes S; Pothecary CA; Jagannath A; Foster RG; Hankins MW; Peirson SN. 2012. Profound defects in pupillary responses to light in TRPM-channel null mice: a role for TRPM channels in non-image-forming photoreception. Eur J Neurosci 35(1):34-43. [PubMed: 22211741]  [MGI Ref ID J:184336]

Hussain AA; Willmott NJ; Voaden MJ. 1992. Cyclic GMP, calcium and photoreceptor sensitivity in mice heterozygous for the rod dysplasia gene designated rd. Vision Res 32(1):29-36. [PubMed: 1323896]  [MGI Ref ID J:611]

Hwang DY; Fleming SM; Ardayfio P; Moran-Gates T; Kim H; Tarazi FI; Chesselet MF; Kim KS. 2005. 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson's disease. J Neurosci 25(8):2132-7. [PubMed: 15728853]  [MGI Ref ID J:98209]

Ionita MA; Pittler SJ. 2007. Focus on molecules: rod cGMP phosphodiesterase type 6. Exp Eye Res 84(1):1-2. [PubMed: 16563379]  [MGI Ref ID J:123170]

Jia L; Oh EC; Ng L; Srinivas M; Brooks M; Swaroop A; Forrest D. 2009. Retinoid-related orphan nuclear receptor RORbeta is an early-acting factor in rod photoreceptor development. Proc Natl Acad Sci U S A 106(41):17534-9. [PubMed: 19805139]  [MGI Ref ID J:153683]

Johnson LE; van Veen T; Ekstrom PA. 2005. Differential Akt activation in the photoreceptors of normal and rd1 mice. Cell Tissue Res 320(2):213-22. [PubMed: 15789220]  [MGI Ref ID J:105103]

Jomary C; Cullen J; Jones SE. 2006. Inactivation of the Akt survival pathway during photoreceptor apoptosis in the retinal degeneration mouse. Invest Ophthalmol Vis Sci 47(4):1620-9. [PubMed: 16565401]  [MGI Ref ID J:108445]

Jomary C; Thomas M; Grist J; Milbrandt J; Neal MJ; Jones SE. 1999. Expression patterns of neurturin and its receptor components in developing and degenerative mouse retina. Invest Ophthalmol Vis Sci 40(3):568-74. [PubMed: 10067959]  [MGI Ref ID J:53298]

Jones BW; Watt CB; Frederick JM; Baehr W; Chen CK; Levine EM; Milam AH; Lavail MM; Marc RE. 2003. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 464(1):1-16. [PubMed: 12866125]  [MGI Ref ID J:84675]

Jones SE; Jomary C; Grist J; Stewart HJ; Neal MJ. 2000. Identification by array screening of altered nm23-M2/PuF mRNA expression in mouse retinal degeneration. Mol Cell Biol Res Commun 4(1):20-5. [PubMed: 11152623]  [MGI Ref ID J:66982]

Jones SE; Jomary C; Grist J; Thomas MR; Neal MJ. 1998. Expression of Pax-6 mRNA in the retinal degeneration (rd) mouse. Biochem Biophys Res Commun 252(1):236-40. [PubMed: 9813176]  [MGI Ref ID J:50978]

Jones SE; Jomary C; Grist J; Thomas MR; Neal MJ. 1998. Expression of alphaB-crystallin in a mouse model of inherited retinal degeneration. Neuroreport 9(18):4161-5. [PubMed: 9926867]  [MGI Ref ID J:52955]

Joseph RM; Li T. 1996. Overexpression of Bcl-2 or Bcl-XL transgenes and photoreceptor degeneration. Invest Ophthalmol Vis Sci 37(12):2434-46. [PubMed: 8933760]  [MGI Ref ID J:37285]

Kahle M; Horsch M; Fridrich B; Seelig A; Schultheiss J; Leonhardt J; Irmler M; Beckers J; Rathkolb B; Wolf E; Franke N; Gailus-Durner V; Fuchs H; de Angelis MH; Neschen S. 2013. Phenotypic comparison of common mouse strains developing high-fat diet-induced hepatosteatosis. Mol Metab 2(4):435-46. [PubMed: 24327959]  [MGI Ref ID J:220415]

Kanan Y; Hoffhines A; Rauhauser A; Murray A; Al-Ubaidi MR. 2009. Protein tyrosine-O-sulfation in the retina. Exp Eye Res 89(4):559-67. [PubMed: 19523945]  [MGI Ref ID J:154498]

Kaneko H; Nishiguchi KM; Nakamura M; Kachi S; Terasaki H. 2008. Retardation of photoreceptor degeneration in the detached retina of rd1 mouse. Invest Ophthalmol Vis Sci 49(2):781-7. [PubMed: 18235028]  [MGI Ref ID J:132586]

Karasawa K; Tanaka A; Jung K; Matsuda A; Okamoto N; Oida K; Ebihara N; Ohmori K; Matsuda H. 2011. Retinal degeneration and rd1 mutation in NC/Tnd mice-a human atopic dermatitis model. Curr Eye Res 36(4):350-7. [PubMed: 21275519]  [MGI Ref ID J:179794]

Katti C; Butler R; Sekaran S. 2013. Diurnal and circadian regulation of connexin 36 transcript and protein in the mammalian retina. Invest Ophthalmol Vis Sci 54(1):821-9. [PubMed: 23307963]  [MGI Ref ID J:214563]

Keady BT; Le YZ; Pazour GJ. 2011. IFT20 is required for opsin trafficking and photoreceptor outer segment development. Mol Biol Cell 22(7):921-30. [PubMed: 21307337]  [MGI Ref ID J:183002]

Keeler C. 1966. Retinal degeneration in the mouse is rodless retina. J Hered 57(2):47-50. [PubMed: 5916892]  [MGI Ref ID J:5007]

Keeler CE. 1926. On the Occurrence in the House Mouse of Mendelizing Structural Defect of the Retina Producing Blindness. Proc Natl Acad Sci U S A 12(4):255-8. [PubMed: 16576989]  [MGI Ref ID J:153354]

Keeler CE. 1924. The inheritance of a retinal abnormality in white mice Proc Natl Acad Sci U S A 10(7):329-33. [PubMed: 16576828]  [MGI Ref ID J:24999]

Keeler CE; Sutcliffe E; Chaffee EL. 1928. Normal and 'Rodless' Retinae of the House Mouse with Respect to the Electromotive Force Generated through Stimulation by Light. Proc Natl Acad Sci U S A 14(6):477-84. [PubMed: 16577134]  [MGI Ref ID J:153353]

Kida E; Rabe A; Walus M; Albertini G; Golabek AA. 2013. Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn. Exp Neurol 240:178-89. [PubMed: 23201095]  [MGI Ref ID J:196979]

Kirschman LT; Kolandaivelu S; Frederick JM; Dang L; Goldberg AF; Baehr W; Ramamurthy V. 2010. The Leber congenital amaurosis protein, AIPL1, is needed for the viability and functioning of cone photoreceptor cells. Hum Mol Genet 19(6):1076-87. [PubMed: 20042464]  [MGI Ref ID J:157652]

Klein SL; Kriegsfeld LJ; Hairston JE; Rau V; Nelson RJ; Yarowsky PJ. 1996. Characterization of sensorimotor performance, reproductive and aggressive behaviors in segmental trisomic 16 (Ts65Dn) mice. Physiol Behav 60(4):1159-64. [PubMed: 8884947]  [MGI Ref ID J:174274]

Kokkinopoulos I; Pearson RA; Macneil A; Dhomen NS; Maclaren RE; Ali RR; Sowden JC. 2008. Isolation and characterisation of neural progenitor cells from the adult Chx10(orJ/orJ) central neural retina. Mol Cell Neurosci 38(3):359-73. [PubMed: 18514541]  [MGI Ref ID J:137047]

Kolandaivelu S; Chang B; Ramamurthy V. 2011. Rod Phosphodiesterase-6 (PDE6) Catalytic Subunits Restore Cone Function in a Mouse Model Lacking Cone PDE6 Catalytic Subunit. J Biol Chem 286(38):33252-9. [PubMed: 21799013]  [MGI Ref ID J:176734]

Kolandaivelu S; Huang J; Hurley JB; Ramamurthy V. 2009. AIPL1, a protein associated with childhood blindness, interacts with alpha-subunit of rod phosphodiesterase (PDE6) and is essential for its proper assembly. J Biol Chem 284(45):30853-61. [PubMed: 19758987]  [MGI Ref ID J:156330]

Komeima K; Rogers BS; Lu L; Campochiaro PA. 2006. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A 103(30):11300-5. [PubMed: 16849425]  [MGI Ref ID J:111826]

Komeima K; Usui S; Shen J; Rogers BS; Campochiaro PA. 2008. Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa. Free Radic Biol Med 45(6):905-12. [PubMed: 18634866]  [MGI Ref ID J:142007]

Kranz K; Paquet-Durand F; Weiler R; Janssen-Bienhold U; Dedek K. 2013. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones. PLoS One 8(2):e57163. [PubMed: 23468924]  [MGI Ref ID J:199394]

Kucharska J; Del Rio P; Arango-Gonzalez B; Gorza M; Feuchtinger A; Hauck SM; Ueffing M. 2014. Cyr61 activates retinal cells and prolongs photoreceptor survival in rd1 mouse model of retinitis pigmentosa. J Neurochem 130(2):227-40. [PubMed: 24593181]  [MGI Ref ID J:213667]

Kuenzi F; Rosahl TW; Morton RA; Fitzjohn SM; Collingridge GL; Seabrook GR. 2003. Hippocampal synaptic plasticity in mice carrying the rd mutation in the gene encoding cGMP phosphodiesterase type 6 (PDE6). Brain Res 967(1-2):144-51. [PubMed: 12650975]  [MGI Ref ID J:82830]

LaVail MM; Matthes MT; Yasumura D; Steinberg RH. 1997. Variability in rate of cone degeneration in the retinal degeneration (rd/rd) mouse. Exp Eye Res 65(1):45-50. [PubMed: 9237863]  [MGI Ref ID J:42223]

LaVail MM; Mullen RJ. 1976. Role of the pigment epithelium in inherited retinal degeneration analyzed with experimental mouse chimeras. Exp Eye Res 23(2):227-45. [PubMed: 976367]  [MGI Ref ID J:5708]

LaVail MW; Yasumura D; Matthes MT; Lau-Villacorta C; Unoki K; Sung CH; Steinberg RH. 1998. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39(3):592-602. [PubMed: 9501871]  [MGI Ref ID J:46230]

Lahdenranta J; Pasqualini R; Schlingemann RO; Hagedorn M; Stallcup WB; Bucana CD; Sidman RL; Arap W. 2001. An anti-angiogenic state in mice and humans with retinal photoreceptor cell degeneration. Proc Natl Acad Sci U S A 98(18):10368-73. [PubMed: 11526242]  [MGI Ref ID J:126744]

Langmann T; Di Gioia SA; Rau I; Stohr H; Maksimovic NS; Corbo JC; Renner AB; Zrenner E; Kumaramanickavel G; Karlstetter M; Arsenijevic Y; Weber BH; Gal A; Rivolta C. 2010. Nonsense mutations in FAM161A cause RP28-associated recessive retinitis pigmentosa. Am J Hum Genet 87(3):376-81. [PubMed: 20705278]  [MGI Ref ID J:169189]

Lavail MM; Nishikawa S; Duncan JL; Yang H; Matthes MT; Yasumura D; Vollrath D; Overbeek PA; Ash JD; Robinson ML. 2008. Sustained delivery of NT-3 from lens fiber cells in transgenic mice reveals specificity of neuroprotection in retinal degenerations. J Comp Neurol 511(6):724-35. [PubMed: 18925574]  [MGI Ref ID J:176641]

Lin B; Koizumi A; Tanaka N; Panda S; Masland RH. 2008. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A 105(41):16009-14. [PubMed: 18836071]  [MGI Ref ID J:141434]

Lin B; Masland RH; Strettoi E. 2009. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res 88(3):589-99. [PubMed: 19087876]  [MGI Ref ID J:146569]

Lin B; Peng EB. 2013. Retinal ganglion cells are resistant to photoreceptor loss in retinal degeneration. PLoS One 8(6):e68084. [PubMed: 23840814]  [MGI Ref ID J:204325]

Liu SH; Gottsch JD; Vinores SA; Derevjanik NL; McLeod DS; Lutty GA. 2001. EMAP cytokine expression in developing retinas of normal and retinal degeneration (rd) mutant mice. J Neuroimmunol 114(1-2):28-34. [PubMed: 11240012]  [MGI Ref ID J:102963]

Lohr HR; Kuntchithapautham K; Sharma AK; Rohrer B. 2006. Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Eye Res 83(2):380-9. [PubMed: 16626700]  [MGI Ref ID J:116326]

Louros SR; Hooks BM; Litvina L; Carvalho AL; Chen C. 2014. A role for stargazin in experience-dependent plasticity. Cell Rep 7(5):1614-25. [PubMed: 24882000]  [MGI Ref ID J:211786]

Lu B; Coffey P; Lund R. 2004. Increased c-fos-like immunoreactivity in the superior colliculus and lateral geniculate nucleus of the rd mouse. Brain Res 1025(1-2):220-5. [PubMed: 15464763]  [MGI Ref ID J:107774]

Lucas RJ; Freedman MS; Munoz M; Garcia-Fernandez JM; Foster RG. 1999. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284(5413):505-7. [PubMed: 10205062]  [MGI Ref ID J:128478]

Lupi D; Oster H; Thompson S; Foster RG. 2008. The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci :. [PubMed: 18711396]  [MGI Ref ID J:141041]

Lupi D; Semo M; Foster RG. 2012. Impact of age and retinal degeneration on the light input to circadian brain structures. Neurobiol Aging 33(2):383-92. [PubMed: 20409612]  [MGI Ref ID J:188243]

Marc RE; Jones BW; Anderson JR; Kinard K; Marshak DW; Wilson JH; Wensel T; Lucas RJ. 2007. Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci 48(7):3364-71. [PubMed: 17591910]  [MGI Ref ID J:123271]

Margolis DJ; Gartland AJ; Singer JH; Detwiler PB. 2014. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration. PLoS One 9(1):e86253. [PubMed: 24489706]  [MGI Ref ID J:212697]

Masana MI; Sumaya IC; Becker-Andre M; Dubocovich ML. 2007. Behavioral characterization and modulation of circadian rhythms by light and melatonin in C3H/HeN mice homozygous for the RORbeta knockout. Am J Physiol Regul Integr Comp Physiol 292(6):R2357-67. [PubMed: 17303680]  [MGI Ref ID J:121989]

Matynia A; Parikh S; Chen B; Kim P; McNeill DS; Nusinowitz S; Evans C; Gorin MB. 2012. Intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion. Exp Eye Res 105:60-9. [PubMed: 23078956]  [MGI Ref ID J:203664]

May A; Nimtschke U; May CA. 2009. The architecture of the mouse ciliary processes and their changes during retinal degeneration. Exp Eye Res 88(3):561-5. [PubMed: 19059237]  [MGI Ref ID J:146578]

May CA. 2009. Fibrae medullares in the retina of the RD mouse: a case report. Curr Eye Res 34(5):411-3. [PubMed: 19401885]  [MGI Ref ID J:149565]

McFadyen MP; Kusek G; Bolivar VJ; Flaherty L. 2003. Differences among eight inbred strains of mice in motor ability and motor learning on a rotorod. Genes Brain Behav 2(4):214-9. [PubMed: 12953787]  [MGI Ref ID J:104873]

McKenzie JA; Fruttiger M; Abraham S; Lange CA; Stone J; Gandhi P; Wang X; Bainbridge J; Moss SE; Greenwood J. 2012. Apelin is required for non-neovascular remodeling in the retina. Am J Pathol 180(1):399-409. [PubMed: 22067912]  [MGI Ref ID J:180164]

Meng R; Wu J; Harper DC; Wang Y; Kowalska MA; Abrams CS; Brass LF; Poncz M; Stalker TJ; Marks MS. 2015. Defective release of alpha granule and lysosome contents from platelets in mouse Hermansky-Pudlak syndrome models. Blood 125(10):1623-32. [PubMed: 25477496]  [MGI Ref ID J:221384]

Menu dit Huart L; Lorentz O; Goureau O; Leveillard T; Sahel JA. 2004. DNA repair in the degenerating mouse retina. Mol Cell Neurosci 26(3):441-9. [PubMed: 15234348]  [MGI Ref ID J:109747]

Menzler J; Channappa L; Zeck G. 2014. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas. PLoS One 9(8):e106047. [PubMed: 25153888]  [MGI Ref ID J:219242]

Menzler J; Zeck G. 2011. Network oscillations in rod-degenerated mouse retinas. J Neurosci 31(6):2280-91. [PubMed: 21307264]  [MGI Ref ID J:169452]

Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T. 2014. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mol Vis 20:1527-44. [PubMed: 25489226]  [MGI Ref ID J:220255]

Mohand-Said S; Deudon-Combe A; Hicks D; Simonutti M; Forster V ; Fintz AC ; Leveillard T ; Dreyfus H ; Sahel JA. 1998. Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proc Natl Acad Sci U S A 95(14):8357-62. [PubMed: 9653191]  [MGI Ref ID J:48731]

Montana CL; Kolesnikov AV; Shen SQ; Myers CA; Kefalov VJ; Corbo JC. 2013. Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc Natl Acad Sci U S A 110(5):1732-7. [PubMed: 23319618]  [MGI Ref ID J:193697]

Morin LP; Studholme KM. 2011. Separation of function for classical and ganglion cell photoreceptors with respect to circadian rhythm entrainment and induction of photosomnolence. Neuroscience 199:213-24. [PubMed: 21985934]  [MGI Ref ID J:184037]

Mrosovsky N; Foster RG; Salmon PA. 1999. Thresholds for masking responses to light in three strains of retinally degenerate mice. J Comp Physiol [A] 184(4):423-8. [PubMed: 10377976]  [MGI Ref ID J:56471]

Mrosovsky N; Hampton RR. 1997. Spatial responses to light in mice with severe retinal degeneration. Neurosci Lett 222(3):204-6. [PubMed: 9148250]  [MGI Ref ID J:40689]

Nakamura K; Harada C; Okumura A; Namekata K; Mitamura Y; Yoshida K; Ohno S; Yoshida H; Harada T. 2005. Effect of p75NTR on the regulation of photoreceptor apoptosis in the rd mouse. Mol Vis 11:1229-35. [PubMed: 16402023]  [MGI Ref ID J:136765]

Namekata K; Okumura A; Harada C; Nakamura K; Yoshida H; Harada T. 2006. Effect of photoreceptor degeneration on RNA splicing and expression of AMPA receptors. Mol Vis 12:1586-93. [PubMed: 17200657]  [MGI Ref ID J:117332]

Nishiguchi KM; Nakamura M; Kaneko H; Kachi S; Terasaki H. 2007. The role of VEGF and VEGFR2/Flk1 in proliferation of retinal progenitor cells in murine retinal degeneration. Invest Ophthalmol Vis Sci 48(9):4315-20. [PubMed: 17724222]  [MGI Ref ID J:126933]

Nishikawa S; LaVail MM. 1998. Neovascularization of the RPE: temporal differences in mice with rod photoreceptor gene defects. Exp Eye Res 67(5):509-15. [PubMed: 9878212]  [MGI Ref ID J:52112]

Nuhn JS; Fuerst PG. 2014. Developmental localization of adhesion and scaffolding proteins at the cone synapse. Gene Expr Patterns 16(1):36-50. [PubMed: 25176525]  [MGI Ref ID J:216508]

O'Leary TP; Brown RE. 2009. Visuo-spatial learning and memory deficits on the Barnes maze in the 16-month-old APPswe/PS1dE9 mouse model of Alzheimer's disease. Behav Brain Res 201(1):120-7. [PubMed: 19428625]  [MGI Ref ID J:148386]

Ogilvie JM; Hakenewerth AM; Gardner RR; Martak JG; Maggio VM. 2009. Dopamine receptor loss of function is not protective of rd1 rod photoreceptors in vivo. Mol Vis 15:2868-78. [PubMed: 20038975]  [MGI Ref ID J:157088]

Otani A; Kojima H; Guo C; Oishi A; Yoshimura N. 2012. Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa. Am J Pathol 180(1):328-36. [PubMed: 22074737]  [MGI Ref ID J:180155]

Owens L; Buhr E; Tu DC; Lamprecht TL; Lee J; Van Gelder RN. 2012. Effect of circadian clock gene mutations on nonvisual photoreception in the mouse. Invest Ophthalmol Vis Sci 53(1):454-60. [PubMed: 22159024]  [MGI Ref ID J:191526]

Panda S; Provencio I; Tu DC; Pires SS; Rollag MD; Castrucci AM; Pletcher MT; Sato TK; Wiltshire T; Andahazy M; Kay SA; Van Gelder RN; Hogenesch JB. 2003. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301(5632):525-7. [PubMed: 12829787]  [MGI Ref ID J:165769]

Panda S; Sato TK; Castrucci AM; Rollag MD; DeGrip WJ; Hogenesch JB; Provencio I; Kay SA. 2002. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298(5601):2213-6. [PubMed: 12481141]  [MGI Ref ID J:81501]

Pang J; Cheng M; Haire SE; Barker E; Planelles V; Blanks JC. 2006. Efficiency of lentiviral transduction during development in normal and rd mice. Mol Vis 12:756-67. [PubMed: 16862069]  [MGI Ref ID J:111621]

Paper W; Kroeber M; Heersink S; Stephan DA; Fuchshofer R; Russell P; Tamm ER. 2008. Elevated amounts of myocilin in the aqueous humor of transgenic mice cause significant changes in ocular gene expression. Exp Eye Res 87(3):257-67. [PubMed: 18602390]  [MGI Ref ID J:141881]

Paquet-Durand F ; Hauck SM ; van Veen T ; Ueffing M ; Ekstrom P. 2009. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J Neurochem 108(3):796-810. [PubMed: 19187097]  [MGI Ref ID J:146653]

Paquet-Durand F; Azadi S; Hauck SM; Ueffing M; van Veen T; Ekstrom P. 2006. Calpain is activated in degenerating photoreceptors in the rd1 mouse. J Neurochem 96(3):802-14. [PubMed: 16405498]  [MGI Ref ID J:106017]

Paquet-Durand F; Beck S; Michalakis S; Goldmann T; Huber G; Muhlfriedel R; Trifunovic D; Fischer MD; Fahl E; Duetsch G; Becirovic E; Wolfrum U; van Veen T; Biel M; Tanimoto N; Seeliger MW. 2011. A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa. Hum Mol Genet 20(5):941-7. [PubMed: 21149284]  [MGI Ref ID J:169039]

Park H; Tan CC; Faulkner A; Jabbar SB; Schmid G; Abey J; Iuvone PM; Pardue MT. 2013. Retinal degeneration increases susceptibility to myopia in mice. Mol Vis 19:2068-79. [PubMed: 24146540]  [MGI Ref ID J:205341]

Park SJ; Lee DS; Lim EJ; Choi SH; Kang WS; Kim IB; Chun MH. 2008. The absence of the clathrin-dependent endocytosis in rod bipolar cells of the FVB/N mouse retina. Neurosci Lett 439(2):165-9. [PubMed: 18514403]  [MGI Ref ID J:137049]

Peirson SN; Oster H; Jones SL; Leitges M; Hankins MW; Foster RG. 2007. Microarray analysis and functional genomics identify novel components of melanopsin signaling. Curr Biol 17(16):1363-72. [PubMed: 17702581]  [MGI Ref ID J:128396]

Peng GH; Chen S. 2007. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation. Hum Mol Genet 16(20):3433-52. [PubMed: 17656371]  [MGI Ref ID J:129889]

Pennesi ME; Michaels KV; Magee SS; Maricle A; Davin SP; Garg AK; Gale MJ; Tu DC; Wen Y; Erker LR; Francis PJ. 2012. Long-term characterization of retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(8):4644-56. [PubMed: 22562504]  [MGI Ref ID J:213983]

Petrasch-Parwez E; Habbes HW; Weickert S; Lobbecke-Schumacher M; Striedinger K; Wieczorek S; Dermietzel R; Epplen JT. 2004. Fine-structural analysis and connexin expression in the retina of a transgenic model of Huntington's disease. J Comp Neurol 479(2):181-97. [PubMed: 15452853]  [MGI Ref ID J:135880]

Phelan JK; Bok D. 2000. Analysis and quantitation of mRNAs encoding the alpha- and beta-subunits of rod photoreceptor cGMP phosphodiesterase in neonatal retinal degeneration (rd) mouse retinas. Exp Eye Res 71(2):119-28. [PubMed: 10930317]  [MGI Ref ID J:63861]

Pickard GE; Baver SB; Ogilvie MD; Sollars PJ. 2009. Light-induced fos expression in intrinsically photosensitive retinal ganglion cells in melanopsin knockout (opn4) mice. PLoS ONE 4(3):e4984. [PubMed: 19319185]  [MGI Ref ID J:147460]

Pittler SJ; Baehr W. 1991. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A 88(19):8322-6. [PubMed: 1656438]  [MGI Ref ID J:11513]

Pittler SJ; Keeler CE; Sidman RL; Baehr W. 1993. PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. Proc Natl Acad Sci U S A 90(20):9616-9. [PubMed: 8415750]  [MGI Ref ID J:15231]

Popper P; Farber DB; Micevych PE; Minoofar K; Bronstein JM. 1997. TRPM-2 expression and tunel staining in neurodegenerative diseases: studies in wobbler and rd mice. Exp Neurol 143(2):246-54. [PubMed: 9056387]  [MGI Ref ID J:38831]

Portera-Cailliau C; Sung CH; Nathans J; Adler R. 1994. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 91(3):974-8. [PubMed: 8302876]  [MGI Ref ID J:16708]

Provencio I; Cooper HM; Foster RG. 1998. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol 395(4):417-39. [PubMed: 9619497]  [MGI Ref ID J:47756]

Provencio I; Foster RG. 1995. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res 694(1-2):183-90. [PubMed: 8974643]  [MGI Ref ID J:29236]

Provencio I; Wong S; Lederman AB; Argamaso SM; Foster RG. 1994. Visual and circadian responses to light in aged retinally degenerate mice. Vision Res 34(14):1799-806. [PubMed: 7941382]  [MGI Ref ID J:19843]

Punzo C; Cepko C. 2007. Cellular responses to photoreceptor death in the rd1 mouse model of retinal degeneration. Invest Ophthalmol Vis Sci 48(2):849-57. [PubMed: 17251487]  [MGI Ref ID J:123282]

Punzo C; Kornacker K; Cepko CL. 2009. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44-52. [PubMed: 19060896]  [MGI Ref ID J:144720]

Qiao X; Pennesi M; Seong E; Gao H; Burmeister M; Wu SM. 2003. Photoreceptor degeneration and rd1 mutation in the grizzled/mocha mouse strain. Vision Res 43(8):859-65. [PubMed: 12668055]  [MGI Ref ID J:88031]

RIKEN BioResource Center/RIKEN Genomic Sciences Center. 2008. A Large Scale Mutagenesis Program in RIKEN GSC PhenoSITE, World Wide Web (URL: :.  [MGI Ref ID J:133634]

Rao A; Dallman R; Henderson S; Chen CK. 2007. Gbeta5 is required for normal light responses and morphology of retinal ON-bipolar cells. J Neurosci 27(51):14199-204. [PubMed: 18094259]  [MGI Ref ID J:129267]

Read DS; McCall MA; Gregg RG. 2002. Absence of voltage-dependent calcium channels delays photoreceptor degeneration in rd mice. Exp Eye Res 75(4):415-20. [PubMed: 12387789]  [MGI Ref ID J:79923]

Rich KA; Zhan Y; Blanks JC. 1997. Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. J Comp Neurol 388(1):47-63. [PubMed: 9364238]  [MGI Ref ID J:44100]

Roesch K; Stadler MB; Cepko CL. 2012. Gene expression changes within Muller glial cells in retinitis pigmentosa. Mol Vis 18:1197-214. [PubMed: 22665967]  [MGI Ref ID J:191614]

Rohrer B; Demos C; Frigg R; Grimm C. 2007. Classical complement activation and acquired immune response pathways are not essential for retinal degeneration in the rd1 mouse. Exp Eye Res 84(1):82-91. [PubMed: 17069800]  [MGI Ref ID J:123183]

Rossi C; Strettoi E; Galli-Resta L. 2003. The spatial order of horizontal cells is not affected by massive alterations in the organization of other retinal cells. J Neurosci 23(30):9924-8. [PubMed: 14586022]  [MGI Ref ID J:120041]

Ruan GX; Allen GC; Yamazaki S; McMahon DG. 2008. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol 6(10):e249. [PubMed: 18959477]  [MGI Ref ID J:141081]

Ruggiero L; Allen CN; Lane Brown R; Robinson DW. 2009. The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration. Eur J Neurosci 29(2):359-67. [PubMed: 19200239]  [MGI Ref ID J:146465]

Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH. 2010. Temporal response properties of retinal ganglion cells in rd1 mice evoked by amplitude-modulated electrical pulse trains. Invest Ophthalmol Vis Sci 51(12):6762-9. [PubMed: 20671284]  [MGI Ref ID J:171389]


Sahaboglu A; Tanimoto N; Kaur J; Sancho-Pelluz J; Huber G; Fahl E; Arango-Gonzalez B; Zrenner E; Ekstrom P; Lowenheim H; Seeliger M; Paquet-Durand F. 2010. PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function. PLoS One 5(11):e15495. [PubMed: 21124852]  [MGI Ref ID J:167317]

Samardzija M; Wenzel A; Aufenberg S; Thiersch M; Reme C; Grimm C. 2006. Differential role of Jak-STAT signaling in retinal degenerations. FASEB J 20(13):2411-3. [PubMed: 16966486]  [MGI Ref ID J:114638]

Samardzija M; Wenzel A; Thiersch M; Frigg R; Reme C; Grimm C. 2006. Caspase-1 ablation protects photoreceptors in a model of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 47(12):5181-90. [PubMed: 17122101]  [MGI Ref ID J:123100]

Sancho-Pelluz J; Wunderlich KA; Rauch U; Romero FJ; van Veen T; Limb GA; Crocker PR; Perez MT. 2008. Sialoadhesin expression in intact degenerating retinas and following transplantation. Invest Ophthalmol Vis Sci 49(12):5602-10. [PubMed: 18641281]  [MGI Ref ID J:142000]

Sanz MM; Johnson LE; Ahuja S; Ekstrom PA; Romero J; van Veen T. 2007. Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration. Neuroscience 145(3):1120-9. [PubMed: 17293057]  [MGI Ref ID J:121644]

Sasahara M; Otani A; Oishi A; Kojima H; Yodoi Y; Kameda T; Nakamura H; Yoshimura N. 2008. Activation of bone marrow-derived microglia promotes photoreceptor survival in inherited retinal degeneration. Am J Pathol 172(6):1693-703. [PubMed: 18483210]  [MGI Ref ID J:136339]

Schmidt SY; Lolley RN. 1973. Cyclic-nucleotide phosphodiesterase: an early defect in inherited retinal degeneration of C3H mice. J Cell Biol 57(1):117-23. [PubMed: 4347974]  [MGI Ref ID J:5332]

Scott A; Powner MB; Fruttiger M. 2014. Quantification of vascular tortuosity as an early outcome measure in oxygen induced retinopathy (OIR). Exp Eye Res 120:55-60. [PubMed: 24418725]  [MGI Ref ID J:210367]

Selby CP; Thompson C; Schmitz TM; Van Gelder RN; Sancar A. 2000. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice Proc Natl Acad Sci U S A 97(26):14697-702. [PubMed: 11114194]  [MGI Ref ID J:66580]

Semo M; Gias C; Ahmado A; Sugano E; Allen AE; Lawrence JM; Tomita H; Coffey PJ; Vugler AA. 2010. Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception. PLoS One 5(11):e15009. [PubMed: 21124784]  [MGI Ref ID J:167120]

Semo M; Lupi D; Peirson SN; Butler JN; Foster RG. 2003. Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 18(11):3007-17. [PubMed: 14656296]  [MGI Ref ID J:89691]

Semo M; Peirson S; Lupi D; Lucas RJ; Jeffery G; Foster RG. 2003. Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 17(9):1793-801. [PubMed: 12752778]  [MGI Ref ID J:128149]

Sharma AK; Rohrer B. 2007. Sustained elevation of intracellular cGMP causes oxidative stress triggering calpain-mediated apoptosis in photoreceptor degeneration. Curr Eye Res 32(3):259-69. [PubMed: 17453946]  [MGI Ref ID J:121112]

Sheedlo HJ; Jaynes D; Bolan AL; Turner JE. 1995. Mullerian glia in dystrophic rodent retinas: an immunocytochemical analysis. Brain Res Dev Brain Res 85(2):171-80. [PubMed: 7600664]  [MGI Ref ID J:24543]

Srinivasan Y; Lovicu FJ; Overbeek PA. 1998. Lens-specific expression of transforming growth factor beta1 in transgenic mice causes anterior subcapsular cataracts. J Clin Invest 101(3):625-34. [PubMed: 9449696]  [MGI Ref ID J:135895]

Stone C; Pinto LH. 1993. Response properties of ganglion cells in the isolated mouse retina. Vis Neurosci 10(1):31-9. [PubMed: 8424927]  [MGI Ref ID J:116795]

Strettoi E; Pignatelli V. 2000. Modifications of retinal neurons in a mouse model of retinitis pigmentosa Proc Natl Acad Sci U S A 97(20):11020-5. [PubMed: 10995468]  [MGI Ref ID J:64742]

Strettoi E; Pignatelli V; Rossi C; Porciatti V; Falsini B. 2003. Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Res 43(8):867-77. [PubMed: 12668056]  [MGI Ref ID J:92316]

Strettoi E; Porciatti V; Falsini B; Pignatelli V; Rossi C. 2002. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J Neurosci 22(13):5492-504. [PubMed: 12097501]  [MGI Ref ID J:109225]

Sumaya IC; Masana MI; Dubocovich ML. 2005. The antidepressant-like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MT1 melatonin receptors. J Pineal Res 39(2):170-7. [PubMed: 16098095]  [MGI Ref ID J:114318]

Takahashi M; Miyoshi H; Verma IM; Gage FH. 1999. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 73(9):7812-6. [PubMed: 10438872]  [MGI Ref ID J:56759]

Tansley K. 1954. An inherited retinal degeneration in the mouse J Hered 45:123-27.  [MGI Ref ID J:15333]

Thaung C; Arnold K; Jackson IJ; Coffey PJ. 2002. Presence of visual head tracking differentiates normal sighted from retinal degenerate mice. Neurosci Lett 325(1):21-4. [PubMed: 12023058]  [MGI Ref ID J:107978]

Thompson CL; Selby CP; Partch CL; Plante DT; Thresher RJ; Araujo F; Sancar A. 2004. Further evidence for the role of cryptochromes in retinohypothalamic photoreception/phototransduction. Brain Res Mol Brain Res 122(2):158-66. [PubMed: 15010208]  [MGI Ref ID J:88468]

Thompson S; Foster RG; Stone EM; Sheffield VC; Mrosovsky N. 2008. Classical and melanopsin photoreception in irradiance detection: negative masking of locomotor activity by light. Eur J Neurosci 27(8):1973-9. [PubMed: 18412618]  [MGI Ref ID J:136825]

Thompson S; Lupi D; Hankins MW; Peirson SN; Foster RG. 2008. The effects of rod and cone loss on the photic regulation of locomotor activity and heart rate. Eur J Neurosci 28(4):724-9. [PubMed: 18702692]  [MGI Ref ID J:140577]

Thompson S; Mullins RF; Philp AR; Stone EM; Mrosovsky N. 2008. Divergent phenotypes of vision and accessory visual function in mice with visual cycle dysfunction (Rpe65 rd12) or retinal degeneration (rd/rd). Invest Ophthalmol Vis Sci 49(6):2737-42. [PubMed: 18515598]  [MGI Ref ID J:137044]

Thompson S; Stasheff SF; Hernandez J; Nylen E; East JS; Kardon RH; Pinto LH; Mullins RF; Stone EM. 2011. Different inner retinal pathways mediate rod-cone input in irradiance detection for the pupillary light reflex and regulation of behavioral state in mice. Invest Ophthalmol Vis Sci 52(1):618-23. [PubMed: 20847113]  [MGI Ref ID J:171559]

Thyagarajan S; van Wyk M; Lehmann K; Lowel S; Feng G; Wassle H. 2010. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci 30(26):8745-58. [PubMed: 20592196]  [MGI Ref ID J:161847]

Tochitsky I; Polosukhina A; Degtyar VE; Gallerani N; Smith CM; Friedman A; Van Gelder RN; Trauner D; Kaufer D; Kramer RH. 2014. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81(4):800-13. [PubMed: 24559673]  [MGI Ref ID J:220643]

Tsang SH; Gouras P; Yamashita CK; Kjeldbye H; Fisher J; Farber DB; Goff SP. 1996. Retinal degeneration in mice lacking the gamma subunit of the rod cGMP phosphodiesterase. Science 272(5264):1026-9. [PubMed: 8638127]  [MGI Ref ID J:33048]

Tu DC; Owens LA; Anderson L; Golczak M; Doyle SE; McCall M; Menaker M; Palczewski K; Van Gelder RN. 2006. Inner retinal photoreception independent of the visual retinoid cycle. Proc Natl Acad Sci U S A 103(27):10426-31. [PubMed: 16788071]  [MGI Ref ID J:111700]

Tu DC; Zhang D; Demas J; Slutsky EB; Provencio I; Holy TE; Van Gelder RN. 2005. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48(6):987-99. [PubMed: 16364902]  [MGI Ref ID J:107606]

Tucker B; Klassen H; Yang L; Chen DF; Young MJ. 2008. Elevated MMP Expression in the MRL Mouse Retina Creates a Permissive Environment for Retinal Regeneration. Invest Ophthalmol Vis Sci 49(4):1686-95. [PubMed: 18385092]  [MGI Ref ID J:136153]

Usui S; Oveson BC; Lee SY; Jo YJ; Yoshida T; Miki A; Miki K; Iwase T; Lu L; Campochiaro PA. 2009. NADPH oxidase plays a central role in cone cell death in retinitis pigmentosa. J Neurochem 110(3):1028-37. [PubMed: 19493169]  [MGI Ref ID J:152819]

Van Gelder RN; Wee R; Lee JA; Tu DC. 2003. Reduced pupillary light responses in mice lacking cryptochromes. Science 299(5604):222. [PubMed: 12522242]  [MGI Ref ID J:81500]

Vazquez-Chona FR; Clark AM; Levine EM. 2009. Rlbp1 promoter drives robust Muller glial GFP expression in transgenic mice. Invest Ophthalmol Vis Sci 50(8):3996-4003. [PubMed: 19324864]  [MGI Ref ID J:154561]

Viczian A; Sanyal S; Toffenetti J; Chader GJ; Farber DB. 1992. Photoreceptor-specific mRNAs in mice carrying different allelic combinations at the rd and rds loci. Exp Eye Res 54(6):853-60. [PubMed: 1381682]  [MGI Ref ID J:2579]

Vlachantoni D; Bramall AN; Murphy MP; Taylor RW; Shu X; Tulloch B; Van Veen T; Turnbull DM; McInnes RR; Wright AF. 2011. Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. Hum Mol Genet 20(2):322-35. [PubMed: 21051333]  [MGI Ref ID J:166898]

Wahlin KJ; Adler R; Zack DJ; Campochiaro PA. 2001. Neurotrophic signaling in normal and degenerating rodent retinas. Exp Eye Res 73(5):693-701. [PubMed: 11747369]  [MGI Ref ID J:73377]

Wang Y; Wang ZY; Zhou MN; Cai J; Sun LY; Liu XY; Daugherty BL; Pestka S. 1997. Sequencing and bacterial expression of a novel murine alpha interferon gene. Sci China C Life Sci 40(3):277-283.  [MGI Ref ID J:41297]

Warthen DM; Wiltgen BJ; Provencio I. 2011. Light enhances learned fear. Proc Natl Acad Sci U S A 108(33):13788-93. [PubMed: 21808002]  [MGI Ref ID J:175610]

Welge-Lussen U; Wilsch C; Neuhardt T; Wayne Streilein J; Lutjen-Drecoll E. 1999. Loss of anterior chamber-associated immune deviation (ACAID) in aged retinal degeneration (rd) mice. Invest Ophthalmol Vis Sci 40(13):3209-14. [PubMed: 10586944]  [MGI Ref ID J:58745]

Won J; Shi LY; Hicks W; Wang J; Hurd R; Naggert JK; Chang B; Nishina PM. 2011. Mouse model resources for vision research. J Ophthalmol 2011:391384. [PubMed: 21052544]  [MGI Ref ID J:166679]

Wong P; Borst DE; Farber D; Danciger JS; Tenniswood M; Chader GJ; van Veen T. 1994. Increased TRPM-2/clusterin mRNA levels during the time of retinal degeneration in mouse models of retinitis pigmentosa. Biochem Cell Biol 72(9-10):439-46. [PubMed: 7605616]  [MGI Ref ID J:24128]

Wu J; Trogadis J; Bremner R. 2001. Rod and cone degeneration in the rd mouse is p53 independent. Mol Vis 7:101-6. [PubMed: 11344337]  [MGI Ref ID J:126023]

Wunderlich KA; Leveillard T; Penkowa M; Zrenner E; Perez MT. 2010. Altered expression of metallothionein-I and -II and their receptor megalin in inherited photoreceptor degeneration. Invest Ophthalmol Vis Sci 51(9):4809-20. [PubMed: 20357188]  [MGI Ref ID J:164094]

Yamada H; Yamada E; Hackett SF; Ozaki H; Okamoto N; Campochiaro PA. 1999. Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. J Cell Physiol 179(2):149-56. [PubMed: 10199554]  [MGI Ref ID J:54326]

Yan W; Lewin A; Hauswirth W. 1998. Selective degradation of nonsense beta-phosphodiesterase mRNA in the heterozygous rd mouse. Invest Ophthalmol Vis Sci 39(13):2529-36. [PubMed: 9856762]  [MGI Ref ID J:51361]

Yang LP; Wu LM; Guo XJ; Tso MO. 2007. Activation of endoplasmic reticulum stress in degenerating photoreceptors of the rd1 mouse. Invest Ophthalmol Vis Sci 48(11):5191-8. [PubMed: 17962473]  [MGI Ref ID J:127157]

Yazulla S; Studholme KM; Pinto LH. 1997. Differences in the retinal GABA system among control, spastic mutant and retinal degeneration mutant mice. Vision Res 37(24):3471-82. [PubMed: 9425524]  [MGI Ref ID J:45280]

Yi H; Nakamura RE; Mohamed O; Dufort D; Hackam AS. 2007. Characterization of Wnt signaling during photoreceptor degeneration. Invest Ophthalmol Vis Sci 48(12):5733-41. [PubMed: 18055826]  [MGI Ref ID J:132500]

Yoshimura T; Ebihara S. 1998. Decline of circadian photosensitivity associated with retinal degeneration in CBA/J-rd/rd mice. Brain Res 779(1-2):188-93. [PubMed: 9473668]  [MGI Ref ID J:45462]

Yoshimura T; Ebihara S. 1996. Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+)mice. J Comp Physiol [A] 178(6):797-802. [PubMed: 8667293]  [MGI Ref ID J:33685]

Yoshimura T; Nishio M; Goto M; Ebihara S. 1994. Differences in circadian photosensitivity between retinally degenerate CBA/J mice (rd/rd) and normal CBA/N mice (+/+). J Biol Rhythms 9(1):51-60. [PubMed: 7949306]  [MGI Ref ID J:19351]

Yoshimura T; Yokota Y; Ishikawa A; Yasuo S; Hayashi N; Suzuki T; Okabayashi N; Namikawa T; Ebihara S. 2002. Mapping quantitative trait loci affecting circadian photosensitivity in retinally degenerate mice. J Biol Rhythms 17(6):512-9. [PubMed: 12465884]  [MGI Ref ID J:80788]

Zeiss CJ; Johnson EA. 2004. Proliferation of microglia, but not photoreceptors, in the outer nuclear layer of the rd-1 mouse. Invest Ophthalmol Vis Sci 45(3):971-6. [PubMed: 14985319]  [MGI Ref ID J:109731]

Zeiss CJ; Neal J; Johnson EA. 2004. Caspase-3 in postnatal retinal development and degeneration. Invest Ophthalmol Vis Sci 45(3):964-70. [PubMed: 14985318]  [MGI Ref ID J:88367]

Zencak D; Crippa SV; Tekaya M; Tanger E; Schorderet DE; Munier FL; van Lohuizen M; Arsenijevic Y. 2006. BMI1 loss delays photoreceptor degeneration in Rd1 mice. Bmi1 loss and neuroprotection in Rd1 mice. Adv Exp Med Biol 572:209-15. [PubMed: 17249577]  [MGI Ref ID J:154016]

Zencak D; Schouwey K; Chen D; Ekstrom P; Tanger E; Bremner R; van Lohuizen M; Arsenijevic Y. 2013. Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins. Proc Natl Acad Sci U S A 110(7):E593-601. [PubMed: 23359713]  [MGI Ref ID J:194322]

Zeng H; Ding M; Chen XX; Lu Q. 2014. Microglial NADPH oxidase activation mediates rod cell death in the retinal degeneration in rd mice. Neuroscience 275:54-61. [PubMed: 24929065]  [MGI Ref ID J:215397]

Zeng HY; Lu QJ; Liu Q; Liu KG; Wang NL. 2011. The role of CCR1 expression in the retinal degeneration in rd mice. Curr Eye Res 36(3):264-9. [PubMed: 21275605]  [MGI Ref ID J:179793]

Zhang N; Kolesnikov AV; Jastrzebska B; Mustafi D; Sawada O; Maeda T; Genoud C; Engel A; Kefalov VJ; Palczewski K. 2013. Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization. J Clin Invest 123(1):121-37. [PubMed: 23221340]  [MGI Ref ID J:194158]

Zhu Y; Tu DC; Denner D; Shane T; Fitzgerald CM; Van Gelder RN. 2007. Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses. Invest Ophthalmol Vis Sci 48(3):1268-75. [PubMed: 17325172]  [MGI Ref ID J:123259]

Health & husbandry

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Colony Maintenance

Breeding & HusbandryGli3Xt-J/+ may have a white belly spot.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls

Pricing for USA, Canada and Mexico shipping destinations View International Pricing


Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2625.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing


Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3412.50
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

General Supply Notes

  • View the complete collection of spontaneous mutants in the Mouse Mutant Resource.

Control Information

   Wild-type from the colony Homozygous for MclrE-so and wild-type for Gli3Xt-J
   000658 C3HeB/FeJ
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.

Important Note

This strain is homozygous for Mc1rE-so and Pde6brd1 and segregating for Gli3Xt-J.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

See Terms of Use tab for General Terms and Conditions

The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use

General Terms and Conditions

Contact information

General inquiries regarding Terms of Use

Contracts Administration


JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty


In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.