Strain Name:

B6SJL-Tg(SOD1)2Gur/J

Stock Number:

002297

Order this mouse

Availability:

Repository- Live

Use Restrictions Apply, see Terms of Use
This transgenic strain carries the normal allele of the human SOD1 gene, and may be useful for studies relating to Amyotrophic Lateral Sclerosis (ALS).

Description

Strain Information

Type Mutant Strain; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Mating SystemF1 x Hemizygote         (Female x Male)   01-MAR-06
Specieslaboratory mouse
GenerationN?+N15 (27-DEC-13)
Generation Definitions
 
Donating InvestigatorDr. Mark E. Gurney,   Tetra Discovery Partners

Appearance
multiple coat colors
Related Genotype: segregating for a, A, Oca2p, Tyrc and Pde6brd1

Description
This transgenic strain carries the normal allele of the human SOD1 gene. Originally published as N1029, it has been reported that the SOD1 protein level is the same as in the transgenic strain carrying the SOD1*G93A transgene (002726), even though the copy number in the SOD1*G93A transgenic is higher. This strain serves as a control for the B6SJL-Tg(SOD1*G93A)1Gur/J (002726) and the B6SJL-Tg(SOD1*G93A)dl1Gur/J (002300) strains.

Control Information

  Control
   Noncarrier
 
  Considerations for Choosing Controls

Related Strains

View Amyotrophic Lateral Sclerosis (ALS)     (30 strains)

Strains carrying   Tg(SOD1)2Gur allele
002298   B6.Cg-Tg(SOD1)2Gur/J
View Strains carrying   Tg(SOD1)2Gur     (1 strain)

View Strains carrying other alleles of SOD1     (16 strains)

Additional Web Information

Working with ALS Mice manual [.pdf]
This resource was prepared by scientists with Prize4Life and The Jackson Laboratory.

Visit the Amyotrophic Lateral Sclerosis (ALS) Mouse Model Resource site for helpful information on ALS Disease and research resources.

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on transgenic expression of an ortholog of a human gene that is associated with this disease. Phenotypic similarity to the human disease has not been tested.
Amyotrophic Lateral Sclerosis 1; ALS1   (SOD1)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Tg(SOD1)2Gur/0

        involves: C57BL/6 * SJL
  • nervous system phenotype
  • abnormal axon morphology
    • mild swelling of axons traveling toward the anterior roots at 232 days of age   (MGI Ref ID J:78629)
    • numerous small vacuoles in the axoplasm of some swollen axons   (MGI Ref ID J:78629)
    • never show any clinical signs of disease at up to 300 days of age   (MGI Ref ID J:78630)
  • abnormal spinal cord morphology
    • develop neurofilament-rich spheroids in the spinal cords at much later time (132 days of age) points than Tg(SOD1-G93A)1Gur mutants, however do not appear to develop motor neuron disease   (MGI Ref ID J:76718)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Tg(SOD1)2Gur/0

        involves: C57BL/6 * CBA * SJL
  • nervous system phenotype
  • abnormal oligodendrocyte morphology
    • ubiquinated SOD1 aggregates accumulate in oligodendrocytes of spinal cords of aged mice (>70 weeks) but a much lower density than in double transgenic T3/SOD1 animals   (MGI Ref ID J:134095)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Metabolism Research

Neurobiology Research
Amyotrophic Lateral Sclerosis (ALS)
Metabolic Defects
Neurodegeneration

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tg(SOD1)2Gur
Allele Name transgene insertion 2, Mark E Gurney
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) N1029; N29; SOD1WT; WT SOD1; WTSOD1; tg-SOD1;
Mutation Made ByDr. Mark Gurney,   Tetra Discovery Partners
Strain of Origin(C57BL/6 x SJL)F1
Expressed Gene SOD1, superoxide dismutase 1, soluble, human
Promoter SOD1, superoxide dismutase 1, soluble, human
General Note Expression level of the wild-type transgene in transgenic animals is comparable to that in transgenic mice carrying the original highest expressing line Tg(SOD1*G93A)2Gur.
Molecular Note The transgene contains the normal allele of the human superoxide dismutase 1 gene (SOD1). Transgene expression in brain was confirmed by enzyme immunoassay using antibodies that recognize human SOD1 protein. [MGI Ref ID J:32665]
 

Genotyping

Genotyping Information

Genotyping Protocols

Tg(SOD), Melt Curve Analysis
Tg(SOD1), Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Gurney ME; Pu H; Chiu AY; Dal Canto MC; Polchow CY; Alexander DD; Caliendo J; Hentati A; Kwon YW; Deng HX; Chen W; Zhai P; Sufit RL; Siddique T. 1994. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation [see comments] [published erratum appears in Science 1995 Jul 14;269(5221):149] Science 264(5166):1772-5. [PubMed: 8209258]  [MGI Ref ID J:32665]

Additional References

Chiu AY; Zhai P; Dal Canto MC; Peters TM; Kwon YW; Prattis SM; Gurney ME. 1995. Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol Cell Neurosci 6(4):349-62. [PubMed: 8846004]  [MGI Ref ID J:80625]

Giess R; Holtmann B; Braga M; Grimm T; Muller-Myhsok B; Toyka KV; Sendtner M. 2002. Early onset of severe familial amyotrophic lateral sclerosis with a SOD-1 mutation: potential impact of CNTF as a candidate modifier gene. Am J Hum Genet 70(5):1277-86. [PubMed: 11951178]  [MGI Ref ID J:76257]

Kabashi E; Agar JN; Taylor DM; Minotti S; Durham HD. 2004. Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J Neurochem 89(6):1325-35. [PubMed: 15189335]  [MGI Ref ID J:92215]

Kilic E; Weishaupt JH; Kilic U; Rohde G; Yulug B; Peters K; Hermann DM; Bahr M. 2004. The superoxide dismutase1 (sod1) G93A mutation does not promote neuronal injury after focal brain ischemia and optic nerve transection in mice. Neuroscience 128(2):359-64. [PubMed: 15350647]  [MGI Ref ID J:92468]

Kruidenier L; van Meeteren ME; Kuiper I; Jaarsma D; Lamers CB; Zijlstra FJ; Verspaget HW. 2003. Attenuated mild colonic inflammation and improved survival from severe DSS-colitis of transgenic Cu/Zn-SOD mice. Free Radic Biol Med 34(6):753-65. [PubMed: 12633752]  [MGI Ref ID J:82695]

Tu PH; Raju P; Robinson KA; Gurney ME; Trojanowski JQ; Lee VM. 1996. Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci U S A 93(7):3155-60. [PubMed: 8610185]  [MGI Ref ID J:76718]

Tg(SOD1)2Gur related

Alexianu ME; Kozovska M; Appel SH. 2001. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 57(7):1282-9. [PubMed: 11591849]  [MGI Ref ID J:78936]

Almer G; Vukosavic S; Romero N; Przedborski S. 1999. Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 72(6):2415-25. [PubMed: 10349851]  [MGI Ref ID J:55026]

Ammassari-Teule M; Restivo L; Pietteur V; Passino E. 2001. Learning about the context in genetically-defined mice. Behav Brain Res 125(1-2):195-204. [PubMed: 11682111]  [MGI Ref ID J:92773]

Basso M; Massignan T; Samengo G; Cheroni C; De Biasi S; Salmona M; Bendotti C; Bonetto V. 2006. Insoluble mutant SOD1 is partly oligoubiquitinated in amyotrophic lateral sclerosis mice. J Biol Chem 281(44):33325-35. [PubMed: 16943203]  [MGI Ref ID J:117191]

Bilsland LG; Sahai E; Kelly G; Golding M; Greensmith L; Schiavo G. 2010. Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci U S A 107(47):20523-8. [PubMed: 21059924]  [MGI Ref ID J:166591]

Boston-Howes W; Gibb SL; Williams EO; Pasinelli P; Brown RH Jr; Trotti D. 2006. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem 281(20):14076-84. [PubMed: 16567804]  [MGI Ref ID J:113480]

Brotherton TE; Li Y; Cooper D; Gearing M; Julien JP; Rothstein JD; Boylan K; Glass JD. 2012. Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. Proc Natl Acad Sci U S A 109(14):5505-10. [PubMed: 22431618]  [MGI Ref ID J:182654]

Browne SE; Yang L; DiMauro JP; Fuller SW; Licata SC; Beal MF. 2006. Bioenergetic abnormalities in discrete cerebral motor pathways presage spinal cord pathology in the G93A SOD1 mouse model of ALS. Neurobiol Dis 22(3):599-610. [PubMed: 16616851]  [MGI Ref ID J:111280]

Bucher S; Braunstein KE; Niessen HG; Kaulisch T; Neumaier M; Boeckers TM; Stiller D; Ludolph AC. 2007. Vacuolization correlates with spin-spin relaxation time in motor brainstem nuclei and behavioural tests in the transgenic G93A-SOD1 mouse model of ALS. Eur J Neurosci 26(7):1895-901. [PubMed: 17868365]  [MGI Ref ID J:127265]

Caioli S; Curcio L; Pieri M; Antonini A; Marolda R; Severini C; Zona C. 2011. Substance P receptor activation induces downregulation of the AMPA receptor functionality in cortical neurons from a genetic model of Amyotrophic Lateral Sclerosis. Neurobiol Dis 44(1):92-101. [PubMed: 21726643]  [MGI Ref ID J:178565]

Carunchio I; Curcio L; Pieri M; Pica F; Caioli S; Viscomi MT; Molinari M; Canu N; Bernardi G; Zona C. 2010. Increased levels of p70S6 phosphorylation in the G93A mouse model of Amyotrophic Lateral Sclerosis and in valine-exposed cortical neurons in culture. Exp Neurol 226(1):218-30. [PubMed: 20832409]  [MGI Ref ID J:165265]

Chang Q; Martin LJ. 2009. Glycinergic innervation of motoneurons is deficient in amyotrophic lateral sclerosis mice: a quantitative confocal analysis. Am J Pathol 174(2):574-85. [PubMed: 19116365]  [MGI Ref ID J:144199]

Chen X; Zhang X; Li C; Guan T; Shang H; Cui L; Li XM; Kong J. 2013. S-nitrosylated protein disulfide isomerase contributes to mutant SOD1 aggregates in amyotrophic lateral sclerosis. J Neurochem 124(1):45-58. [PubMed: 23043510]  [MGI Ref ID J:191002]

Cheroni C; Marino M; Tortarolo M; Veglianese P; De Biasi S; Fontana E; Zuccarello LV; Maynard CJ; Dantuma NP; Bendotti C. 2009. Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis. Hum Mol Genet 18(1):82-96. [PubMed: 18826962]  [MGI Ref ID J:142811]

Chiu AY; Zhai P; Dal Canto MC; Peters TM; Kwon YW; Prattis SM; Gurney ME. 1995. Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol Cell Neurosci 6(4):349-62. [PubMed: 8846004]  [MGI Ref ID J:80625]

Chiu IM; Chen A; Zheng Y; Kosaras B; Tsiftsoglou SA; Vartanian TK; Brown RH Jr; Carroll MC. 2008. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A 105(46):17913-8. [PubMed: 18997009]  [MGI Ref ID J:143173]

Chung YH; Joo KM; Lee YJ; Lee WB; Lee KH; Cha CI. 2004. Enhanced expression of erythropoietin in the central nervous system of SOD1(G93A) transgenic mice. Brain Res 1016(2):272-80. [PubMed: 15246865]  [MGI Ref ID J:91260]

Chung YH; Joo KM; Lim HC; Cho MH; Kim D; Lee WB; Cha CI. 2005. Immunohistochemical study on the distribution of phosphorylated extracellular signal-regulated kinase (ERK) in the central nervous system of SOD1(G93A) transgenic mice. Brain Res 1050(1-2):203-9. [PubMed: 15978558]  [MGI Ref ID J:99567]

Craven PA; Melhem MF; Phillips SL; DeRubertis FR. 2001. Overexpression of Cu2+/Zn2+ superoxide dismutase protects against early diabetic glomerular injury in transgenic mice. Diabetes 50(9):2114-25. [PubMed: 11522679]  [MGI Ref ID J:107377]

Dal Canto MC; Gurney ME. 1994. Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 145(6):1271-9. [PubMed: 7992831]  [MGI Ref ID J:78629]

Dal Canto MC; Gurney ME. 1995. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res 676(1):25-40. [PubMed: 7796176]  [MGI Ref ID J:78630]

Damiano M; Starkov AA; Petri S; Kipiani K; Kiaei M; Mattiazzi M; Flint Beal M; Manfredi G. 2006. Neural mitochondrial Ca capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J Neurochem 96(5):1349-61. [PubMed: 16478527]  [MGI Ref ID J:106152]

De Vos KJ; Chapman AL; Tennant ME; Manser C; Tudor EL; Lau KF; Brownlees J; Ackerley S; Shaw PJ; McLoughlin DM; Shaw CE; Leigh PN; Miller CC; Grierson AJ. 2007. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 16(22):2720-8. [PubMed: 17725983]  [MGI Ref ID J:129976]

De Winter F; Vo T; Stam FJ; Wisman LA; Bar PR; Niclou SP; van Muiswinkel FL; Verhaagen J. 2006. The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol Cell Neurosci 32(1-2):102-17. [PubMed: 16677822]  [MGI Ref ID J:111941]

DeRubertis FR; Craven PA; Melhem MF; Salah EM. 2004. Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction. Diabetes 53(3):762-8. [PubMed: 14988262]  [MGI Ref ID J:88385]

Deng HX; Shi Y; Furukawa Y; Zhai H; Fu R; Liu E; Gorrie GH; Khan MS; Hung WY; Bigio EH; Lukas T; Dal Canto MC; O'Halloran TV; Siddique T. 2006. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci U S A 103(18):7142-7. [PubMed: 16636275]  [MGI Ref ID J:109458]

Dewil M; Schurmans C; Starckx S; Opdenakker G; Van Den Bosch L; Robberecht W. 2005. Role of matrix metalloproteinase-9 in a mouse model for amyotrophic lateral sclerosis. Neuroreport 16(4):321-4. [PubMed: 15729130]  [MGI Ref ID J:103535]

Dewil M; dela Cruz VF; Van Den Bosch L; Robberecht W. 2007. Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1(G93A)-induced motor neuron death. Neurobiol Dis 26(2):332-41. [PubMed: 17346981]  [MGI Ref ID J:134849]

Di Giorgio FP; Boulting GL; Bobrowicz S; Eggan KC. 2008. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3(6):637-48. [PubMed: 19041780]  [MGI Ref ID J:149862]

Di Giorgio FP; Carrasco MA; Siao MC; Maniatis T; Eggan K. 2007. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10(5):608-14. [PubMed: 17435754]  [MGI Ref ID J:121861]

Elliott JL. 2001. Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. Brain Res Mol Brain Res 95(1-2):172-8. [PubMed: 11687290]  [MGI Ref ID J:72854]

Gal J; Strom AL; Kilty R; Zhang F; Zhu H. 2007. p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J Biol Chem 282(15):11068-77. [PubMed: 17296612]  [MGI Ref ID J:121167]

Geracitano R; Paolucci E; Prisco S; Guatteo E; Zona C; Longone P; Ammassari-Teule M; Bernardi G; Berretta N; Mercuri NB. 2003. Altered long-term corticostriatal synaptic plasticity in transgenic mice overexpressing human CU/ZN superoxide dismutase (GLY(93)-->ALA) mutation. Neuroscience 118(2):399-408. [PubMed: 12699776]  [MGI Ref ID J:109423]

Gibb SL; Boston-Howes W; Lavina ZS; Gustincich S; Brown RH Jr; Pasinelli P; Trotti D. 2007. A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem 282(44):32480-90. [PubMed: 17823119]  [MGI Ref ID J:126836]

Gilchrist CA; Gray DA; Stieber A; Gonatas NK; Kopito RR. 2005. Effect of ubiquitin expression on neuropathogenesis in a mouse model of familial amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 31(1):20-33. [PubMed: 15634228]  [MGI Ref ID J:128568]

Giribaldi F; Milanese M; Bonifacino T; Anna Rossi PI; Di Prisco S; Pittaluga A; Tacchetti C; Puliti A; Usai C; Bonanno G. 2013. Group I metabotropic glutamate autoreceptors induce abnormal glutamate exocytosis in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology 66:253-63. [PubMed: 22634363]  [MGI Ref ID J:192685]

Gowing G; Philips T; Van Wijmeersch B; Audet JN; Dewil M; Van Den Bosch L; Billiau AD; Robberecht W; Julien JP. 2008. Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase. J Neurosci 28(41):10234-44. [PubMed: 18842883]  [MGI Ref ID J:141126]

Guatteo E; Carunchio I; Pieri M; Albo F; Canu N; Mercuri NB; Zona C. 2007. Altered calcium homeostasis in motor neurons following AMPA receptor but not voltage-dependent calcium channels' activation in a genetic model of amyotrophic lateral sclerosis. Neurobiol Dis 28(1):90-100. [PubMed: 17706428]  [MGI Ref ID J:134834]

Harraz MM; Marden JJ; Zhou W; Zhang Y; Williams A; Sharov VS; Nelson K; Luo M; Paulson H; Schoneich C; Engelhardt JF. 2008. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest 118(2):659-70. [PubMed: 18219391]  [MGI Ref ID J:131850]

Hegedus J; Putman CT; Gordon T. 2007. Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 28(2):154-64. [PubMed: 17766128]  [MGI Ref ID J:134803]

Jaarsma D; Haasdijk ED; Grashorn JA; Hawkins R; van Duijn W; Verspaget HW; London J; Holstege JC. 2000. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 7(6 Pt B):623-43. [PubMed: 11114261]  [MGI Ref ID J:66700]

Jaarsma D; Teuling E; Haasdijk ED; De Zeeuw CI; Hoogenraad CC. 2008. Neuron-specific expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic mice. J Neurosci 28(9):2075-88. [PubMed: 18305242]  [MGI Ref ID J:134095]

Kawamata H; Magrane J; Kunst C; King MP; Manfredi G. 2008. Lysyl-tRNA synthetase is a target for mutant SOD1 toxicity in mitochondria. J Biol Chem 283(42):28321-8. [PubMed: 18715867]  [MGI Ref ID J:142289]

Kawamata H; Ng SK; Diaz N; Burstein S; Morel L; Osgood A; Sider B; Higashimori H; Haydon PG; Manfredi G; Yang Y. 2014. Abnormal intracellular calcium signaling and SNARE-dependent exocytosis contributes to SOD1G93A astrocyte-mediated toxicity in amyotrophic lateral sclerosis. J Neurosci 34(6):2331-48. [PubMed: 24501372]  [MGI Ref ID J:206946]

Kikuchi H; Almer G; Yamashita S; Guegan C; Nagai M; Xu Z; Sosunov AA; McKhann GM 2nd; Przedborski S. 2006. Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci U S A 103(15):6025-30. [PubMed: 16595634]  [MGI Ref ID J:108290]

Kilic E; Weishaupt JH; Kilic U; Rohde G; Yulug B; Peters K; Hermann DM; Bahr M. 2004. The superoxide dismutase1 (sod1) G93A mutation does not promote neuronal injury after focal brain ischemia and optic nerve transection in mice. Neuroscience 128(2):359-64. [PubMed: 15350647]  [MGI Ref ID J:92468]

Kirkinezos IG; Bacman SR; Hernandez D; Oca-Cossio J; Arias LJ; Perez-Pinzon MA; Bradley WG; Moraes CT. 2005. Cytochrome c association with the inner mitochondrial membrane is impaired in the CNS of G93A-SOD1 mice. J Neurosci 25(1):164-72. [PubMed: 15634778]  [MGI Ref ID J:96714]

Kong J; Xu Z. 1999. Peripheral axotomy slows motoneuron degeneration in a transgenic mouse line expressing mutant SOD1 G93A. J Comp Neurol 412(2):373-80. [PubMed: 10441762]  [MGI Ref ID J:56912]

Kruidenier L; van Meeteren ME; Kuiper I; Jaarsma D; Lamers CB; Zijlstra FJ; Verspaget HW. 2003. Attenuated mild colonic inflammation and improved survival from severe DSS-colitis of transgenic Cu/Zn-SOD mice. Free Radic Biol Med 34(6):753-65. [PubMed: 12633752]  [MGI Ref ID J:82695]

Kunishige M; Hill KA; Riemer AM; Farwell KD; Halangoda A; Heinmoller E; Moore SR; Turner DM; Sommer SS. 2001. Mutation frequency is reduced in the cerebellum of Big Blue mice overexpressing a human wild type SOD1 gene. Mutat Res 473(2):139-49. [PubMed: 11166032]  [MGI Ref ID J:126863]

Kuzmenok OI; Sanberg PR; Desjarlais TG; Bennett SP; Garbuzova-Davis SN. 2006. Lymphopenia and spontaneous autorosette formation in SOD1 mouse model of ALS. J Neuroimmunol 172(1-2):132-6. [PubMed: 16376995]  [MGI Ref ID J:129215]

Lee JK; Shin JH; Hwang SG; Gwag BJ; McKee AC; Lee J; Kowall NW; Ryu H; Lim DS; Choi EJ. 2013. MST1 functions as a key modulator of neurodegeneration in a mouse model of ALS. Proc Natl Acad Sci U S A 110(29):12066-71. [PubMed: 23818595]  [MGI Ref ID J:198804]

Levine JB; Kong J; Nadler M; Xu Z. 1999. Astrocytes interact intimately with degenerating motor neurons in mouse amyotrophic lateral sclerosis (ALS). Glia 28(3):215-24. [PubMed: 10559780]  [MGI Ref ID J:59666]

Liebl MP; Kaya AM; Tenzer S; Mittenzwei R; Koziollek-Drechsler I; Schild H; Moosmann B; Behl C; Clement AM. 2014. Dimerization of visinin-like protein 1 is regulated by oxidative stress and calcium and is a pathological hallmark of amyotrophic lateral sclerosis. Free Radic Biol Med 72:41-54. [PubMed: 24742816]  [MGI Ref ID J:212114]

Liu D; Wen J; Liu J; Li L. 1999. The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. FASEB J 13(15):2318-28. [PubMed: 10593879]  [MGI Ref ID J:58839]

Liu JQ; Zelko IN; Folz RJ. 2004. Reoxygenation-induced constriction in murine coronary arteries: the role of endothelial NADPH oxidase (gp91phox) and intracellular superoxide. J Biol Chem 279(23):24493-7. [PubMed: 15070892]  [MGI Ref ID J:123986]

Lu L; Zheng L; Viera L; Suswam E; Li Y; Li X; Estevez AG; King PH. 2007. Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. J Neurosci 27(30):7929-38. [PubMed: 17652584]  [MGI Ref ID J:123248]

Magrane J; Cortez C; Gan WB; Manfredi G. 2014. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 23(6):1413-24. [PubMed: 24154542]  [MGI Ref ID J:206221]

Marcuzzo S; Kapetis D; Mantegazza R; Baggi F; Bonanno S; Barzago C; Cavalcante P; Kerlero de Rosbo N; Bernasconi P. 2014. Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells. Exp Neurol 253:91-101. [PubMed: 24365539]  [MGI Ref ID J:211479]

Marinkovic P; Reuter MS; Brill MS; Godinho L; Kerschensteiner M; Misgeld T. 2012. Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 109(11):4296-301. [PubMed: 22371592]  [MGI Ref ID J:182236]

Martin LJ; Chen K; Liu Z. 2005. Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked by DNA damage and p53 activation. J Neurosci 25(27):6449-59. [PubMed: 16000635]  [MGI Ref ID J:99428]

Martin LJ; Gertz B; Pan Y; Price AC; Molkentin JD; Chang Q. 2009. The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice. Exp Neurol 218(2):333-46. [PubMed: 19272377]  [MGI Ref ID J:151275]

Martinez JA; Francis GJ; Liu WQ; Pradzinsky N; Fine J; Wilson M; Hanson LR; Frey WH 2nd; Zochodne D; Gordon T; Toth C. 2008. Intranasal delivery of insulin and a nitric oxide synthase inhibitor in an experimental model of amyotrophic lateral sclerosis. Neuroscience 157(4):908-25. [PubMed: 18951954]  [MGI Ref ID J:144873]

Mattiazzi M; D'Aurelio M; Gajewski CD; Martushova K; Kiaei M; Beal MF; Manfredi G. 2002. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 277(33):29626-33. [PubMed: 12050154]  [MGI Ref ID J:132838]

Morfini GA; Bosco DA; Brown H; Gatto R; Kaminska A; Song Y; Molla L; Baker L; Marangoni MN; Berth S; Tavassoli E; Bagnato C; Tiwari A; Hayward LJ; Pigino GF; Watterson DM; Huang CF; Banker G; Brown RH Jr; Brady ST. 2013. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLoS One 8(6):e65235. [PubMed: 23776455]  [MGI Ref ID J:203308]

Morimoto N; Nagai M; Ohta Y; Miyazaki K; Kurata T; Morimoto M; Murakami T; Takehisa Y; Ikeda Y; Kamiya T; Abe K. 2007. Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res 1167:112-7. [PubMed: 17689501]  [MGI Ref ID J:124927]

Nguyen KT; Barrett JN; Garcia-Chacon L; David G; Barrett EF. 2011. Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice. Neurobiol Dis 42(3):381-90. [PubMed: 21310237]  [MGI Ref ID J:172765]

Nguyen KT; Zhang Z; Barrett EF; David G. 2012. Morphological and functional changes in innervation of a fast forelimb muscle in SOD1-G85R mice. Neurobiol Dis 48(3):399-408. [PubMed: 22813866]  [MGI Ref ID J:197508]

Niessen HG; Angenstein F; Sander K; Kunz WS; Teuchert M; Ludolph AC; Heinze HJ; Scheich H; Vielhaber S. 2006. In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion coefficient. Exp Neurol 201(2):293-300. [PubMed: 16740261]  [MGI Ref ID J:114432]

Niessen HG; Debska-Vielhaber G; Sander K; Angenstein F; Ludolph AC; Hilfert L; Willker W; Leibfritz D; Heinze HJ; Kunz WS; Vielhaber S. 2007. Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 25(6):1669-77. [PubMed: 17432958]  [MGI Ref ID J:122876]

Ozdinler PH; Benn S; Yamamoto TH; Guzel M; Brown RH Jr; Macklis JD. 2011. Corticospinal Motor Neurons and Related Subcerebral Projection Neurons Undergo Early and Specific Neurodegeneration in hSOD1G93A Transgenic ALS Mice. J Neurosci 31(11):4166-4177. [PubMed: 21411657]  [MGI Ref ID J:170453]

Pesaresi MG; Amori I; Giorgi C; Ferri A; Fiorenzo P; Gabanella F; Salvatore AM; Giorgio M; Pelicci PG; Pinton P; Carri MT; Cozzolino M. 2011. Mitochondrial redox signalling by p66Shc mediates ALS-like disease through Rac1 inactivation. Hum Mol Genet 20(21):4196-208. [PubMed: 21828072]  [MGI Ref ID J:176680]

Pieri M; Carunchio I; Curcio L; Mercuri NB; Zona C. 2009. Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis. Exp Neurol 215(2):368-79. [PubMed: 19071115]  [MGI Ref ID J:144363]

Prudencio M; Durazo A; Whitelegge JP; Borchelt DR. 2010. An examination of wild-type SOD1 in modulating the toxicity and aggregation of ALS-associated mutant SOD1. Hum Mol Genet 19(24):4774-89. [PubMed: 20871097]  [MGI Ref ID J:166552]

Pullen AH ; Athanasiou D. 2009. Increase in presynaptic territory of C-terminals on lumbar motoneurons of G93A SOD1 mice during disease progression. Eur J Neurosci 29(3):551-61. [PubMed: 19187267]  [MGI Ref ID J:146652]

Puttaparthi K; Wojcik C; Rajendran B; DeMartino GN; Elliott JL. 2003. Aggregate formation in the spinal cord of mutant SOD1 transgenic mice is reversible and mediated by proteasomes. J Neurochem 87(4):851-60. [PubMed: 14622116]  [MGI Ref ID J:86631]

Quinlan KA; Schuster JE; Fu R; Siddique T; Heckman CJ. 2011. Altered postnatal maturation of electrical properties in spinal motoneurons in a mouse model of amyotrophic lateral sclerosis. J Physiol 589(Pt 9):2245-60. [PubMed: 21486770]  [MGI Ref ID J:185250]

Raiteri L; Stigliani S; Zappettini S; Mercuri NB; Raiteri M; Bonanno G. 2004. Excessive and precocious glutamate release in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology 46(6):782-92. [PubMed: 15033338]  [MGI Ref ID J:179571]

Reinholz MM; Merkle CM; Poduslo JF. 1999. Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp Neurol 159(1):204-16. [PubMed: 10486188]  [MGI Ref ID J:57736]

Saxena S; Cabuy E; Caroni P. 2009. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12(5):627-36. [PubMed: 19330001]  [MGI Ref ID J:150509]

Shi P; Strom AL; Gal J; Zhu H. 2010. Effects of ALS-related SOD1 mutants on dynein- and KIF5-mediated retrograde and anterograde axonal transport. Biochim Biophys Acta 1802(9):707-16. [PubMed: 20510358]  [MGI Ref ID J:165462]

Smittkamp SE; Brown JW; Stanford JA. 2008. Time-course and characterization of orolingual motor deficits in B6SJL-Tg(SOD1-G93A)1Gur/J mice. Neuroscience 151(2):613-21. [PubMed: 18061359]  [MGI Ref ID J:130811]

Son M; Puttaparthi K; Kawamata H; Rajendran B; Boyer PJ; Manfredi G; Elliott JL. 2007. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology. Proc Natl Acad Sci U S A 104(14):6072-7. [PubMed: 17389365]  [MGI Ref ID J:120361]

Stifanese R; Averna M; De Tullio R; Pedrazzi M; Beccaria F; Salamino F; Milanese M; Bonanno G; Pontremoli S; Melloni E. 2010. Adaptive modifications in the calpain/calpastatin system in brain cells after persistent alteration in Ca2+ homeostasis. J Biol Chem 285(1):631-43. [PubMed: 19880516]  [MGI Ref ID J:158306]

Tateno M; Kato S; Sakurai T; Nukina N; Takahashi R; Araki T. 2009. Mutant SOD1 impairs axonal transport of choline acetyltransferase and acetylcholine release by sequestering KAP3. Hum Mol Genet 18(5):942-55. [PubMed: 19088126]  [MGI Ref ID J:145001]

Taylor DM; Gibbs BF; Kabashi E; Minotti S; Durham HD; Agar JN. 2007. Tryptophan 32 potentiates aggregation and cytotoxicity of a copper/zinc superoxide dismutase mutant associated with familial amyotrophic lateral sclerosis. J Biol Chem 282(22):16329-35. [PubMed: 17389599]  [MGI Ref ID J:122717]

Thireau J; Poisson D; Zhang BL; Gillet L; Le Pecheur M; Andres C; London J; Babuty D. 2008. Increased heart rate variability in mice overexpressing the Cu/Zn superoxide dismutase. Free Radic Biol Med 45(4):396-403. [PubMed: 18513493]  [MGI Ref ID J:137769]

Tokuda E; Okawa E; Ono S. 2009. Dysregulation of intracellular copper trafficking pathway in a mouse model of mutant copper/zinc superoxide dismutase-linked familial amyotrophic lateral sclerosis. J Neurochem 111(1):181-91. [PubMed: 19656261]  [MGI Ref ID J:153644]

Tokuda E; Okawa E; Watanabe S; Ono S. 2014. Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1. Hum Mol Genet 23(5):1271-85. [PubMed: 24163136]  [MGI Ref ID J:206215]

Tu PH; Raju P; Robinson KA; Gurney ME; Trojanowski JQ; Lee VM. 1996. Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci U S A 93(7):3155-60. [PubMed: 8610185]  [MGI Ref ID J:76718]

Turner BJ; Parkinson NJ; Davies KE; Talbot K. 2009. Survival motor neuron deficiency enhances progression in an amyotrophic lateral sclerosis mouse model. Neurobiol Dis 34(3):511-7. [PubMed: 19332122]  [MGI Ref ID J:150474]

Vlug AS; Teuling E; Haasdijk ED; French P; Hoogenraad CC; Jaarsma D. 2005. ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation. Eur J Neurosci 22(8):1881-94. [PubMed: 16262628]  [MGI Ref ID J:102918]

Vukosavic S; Dubois-Dauphin M; Romero N; Przedborski S. 1999. Bax and Bcl-2 interaction in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 73(6):2460-8. [PubMed: 10582606]  [MGI Ref ID J:58488]

Wang L; Deng HX; Grisotti G; Zhai H; Siddique T; Roos RP. 2009. Wild type SOD1 overexpression accelerates disease onset of a G85R SOD1 mouse. Hum Mol Genet 18(9):1642-51. [PubMed: 19233858]  [MGI Ref ID J:147156]

Wang Y; Mao XO; Xie L; Banwait S; Marti HH; Greenberg DA; Jin K. 2007. Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. J Neurosci 27(2):304-7. [PubMed: 17215390]  [MGI Ref ID J:117304]

Wootz H; Hansson I; Korhonen L; Lindholm D. 2006. XIAP decreases caspase-12 cleavage and calpain activity in spinal cord of ALS transgenic mice. Exp Cell Res 312(10):1890-8. [PubMed: 16566922]  [MGI Ref ID J:111367]

Wootz H; Hansson I; Korhonen L; Napankangas U; Lindholm D. 2004. Caspase-12 cleavage and increased oxidative stress during motoneuron degeneration in transgenic mouse model of ALS. Biochem Biophys Res Commun 322(1):281-6. [PubMed: 15313203]  [MGI Ref ID J:92029]

Xu W; Chi L; Row BW; Xu R; Ke Y; Xu B; Luo C; Kheirandish L; Gozal D; Liu R. 2004. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 126(2):313-23. [PubMed: 15207349]  [MGI Ref ID J:91264]

Zhao P; Ignacio S; Beattie EC; Abood ME. 2008. Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity. Eur J Neurosci 27(3):572-9. [PubMed: 18279310]  [MGI Ref ID J:132266]

Zhao W; Varghese M; Vempati P; Dzhun A; Cheng A; Wang J; Lange D; Bilski A; Faravelli I; Pasinetti GM. 2012. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease. PLoS One 7(11):e49191. [PubMed: 23145119]  [MGI Ref ID J:195027]

Zhao Z; Lange DJ; Voustianiouk A; MacGrogan D; Ho L; Suh J; Humala N; Thiyagarajan M; Wang J; Pasinetti GM. 2006. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci 7:29. [PubMed: 16584562]  [MGI Ref ID J:111122]

Zona C; Pieri M; Carunchio I. 2006. Voltage-dependent sodium channels in spinal cord motor neurons display rapid recovery from fast inactivation in a mouse model of amyotrophic lateral sclerosis. J Neurophysiol 96(6):3314-22. [PubMed: 16899637]  [MGI Ref ID J:136461]

van Zundert B; Peuscher MH; Hynynen M; Chen A; Neve RL; Brown RH Jr; Constantine-Paton M; Bellingham MC. 2008. Neonatal neuronal circuitry shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Neurosci 28(43):10864-74. [PubMed: 18945894]  [MGI Ref ID J:143558]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX11

Colony Maintenance

Mating SystemF1 x Hemizygote         (Female x Male)   01-MAR-06
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $239.00Female or MaleHemizygous for Tg(SOD1)2Gur  
Price per Pair (US dollars $)Pair Genotype
$256.35B6SJLF1/J (100012) x Hemizygous for Tg(SOD1)2Gur  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $310.70Female or MaleHemizygous for Tg(SOD1)2Gur  
Price per Pair (US dollars $)Pair Genotype
$333.30B6SJLF1/J (100012) x Hemizygous for Tg(SOD1)2Gur  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

  Control
   Noncarrier
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.6)