Strain Name:

B6.129S-Cybbtm1Din/J

Stock Number:

002365

Order this mouse

Availability:

Level 4

Other products are available, see Purchasing Information for Cryopreserved Embryos

Affected hemizygous male mice lack phagocyte superoxide production, manifest an increased susceptibility to infection with Staphylococcus aureus and Aspergillus fumigatus and have an altered inflammatory response in thioglycollate peritonitis. This animal model should aid in developing new treatments for chronic granulomatous disease and in evaluating the role of phagocyte-derived oxidants in inflammation.

Description

Strain Information

Former Names B6.129S6-Cybbtm1Din/J    (Changed: 18-MAR-10 )
Type Congenic; Mutant Strain; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemHomozygote x Hemizygote         (Female x Male)   01-MAR-06
Breeding Considerations This strain is a good breeder.
Specieslaboratory mouse
Background Strain C57BL/6
Donor Strain 129S6 via EK.CCE ES cell line
GenerationN13F37 (05-AUG-14)
Generation Definitions
 
Donating InvestigatorDr. M. Dinauer,   Indiana University School of Medicine

Appearance
black
Related Genotype: a/a

Description
Chronic granulomatous disease (CGD) is a recessive disorder characterized by a defective phagocyte respiratory burst oxidase, life-threatening pyogenic infections and inflammatory granulomas. Gene targeting was used to generate mice with a null allele of the gene involved in X-linked CGD, which encodes the 91 kD subunit of the oxidase cytochrome b. Affected hemizygous male mice lack phagocyte superoxide production, manifest an increased susceptibility to infection with Staphylococcus aureus and Aspergillus fumigatus and have an altered inflammatory response in thioglycollate peritonitis. This animal model should aid in developing new treatments for CGD and in evaluating the role of phagocyte-derived oxidants in inflammation.

Development
A 4.8 kilobase Ncol genomic fragment containing the second and third exons of Cybb gene was used to construct a targeting vector by placing the expression cassette for neomycin-resistance into the third exon and attaching a flanking herpes thymidine kinase gene. A correctly targeted selected clone from electroporated ES cells (strain of origin unspecified) produced chimeric males, hemizygous for the disrupted gene. The strain was backcrossed to C57BL/6.

Control Information

  Control
   See control note: C57BL/6J (Stock No. 000664) mice may be used as controls.
   000664 C57BL/6J
 
  Considerations for Choosing Controls

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Model with phenotypic similarity to human disease where etiologies involve orthologs. Human genes are associated with this disease. Orthologs of those genes appear in the mouse genotype(s).
Granulomatous Disease, Chronic, X-Linked; CGD
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Immunodeficiency 34; IMD34   (CYBB)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Cybbtm1Din/Cybbtm1Din

        B6.129S-Cybbtm1Din
  • immune system phenotype
  • *normal* immune system phenotype
    • mice exhibit a normal local Shwartman response namely thrombohemorrhagic vasculitis   (MGI Ref ID J:113463)
    • granulomatous inflammation
      • zymosan injection into the peritoneal cavity results in an exaggerated influx of polymorphonuclear cells with declining numbers over the next 96 hours   (MGI Ref ID J:146231)
      • macrophage numbers also become elevated and remain elevated for 96 hours   (MGI Ref ID J:146231)
    • increased acute inflammation
      • increased infiltration of leukocytes into gelatin sponge implanted along with QR-32 fibrosarcoma cells   (MGI Ref ID J:110181)
  • nervous system phenotype
  • decreased post-tetanic potentiation
    • significantly decreased   (MGI Ref ID J:111410)
    • synaptic fatigue is normal   (MGI Ref ID J:111410)
  • reduced long term potentiation
    • completely abrogated in hippocampal slices   (MGI Ref ID J:111410)
  • behavior/neurological phenotype
  • abnormal spatial learning
    • small but significant deficits in early training trials in water maze tests   (MGI Ref ID J:111410)
    • spatial learning impairments   (MGI Ref ID J:111410)
  • decreased vertical activity
    • less rearing in open field tests   (MGI Ref ID J:111410)
  • impaired coordination
    • very slightly impaired motor coordination in a rotarod test   (MGI Ref ID J:111410)
  • tumorigenesis
  • decreased metastatic potential
    • decreased metastasis of QR-32 fibrosarcoma cells implanted with a gelatin sponge to induce inflammation   (MGI Ref ID J:110181)
    • greatly decreased metastasis of B16BL6 melanoma cells after implantation although cell growth was similar to that seen in controls   (MGI Ref ID J:110181)
  • decreased tumor growth/size
    • reduced growth of QR-32 fibrosarcoma cells implanted with a gelatin sponge to induce inflammation   (MGI Ref ID J:110181)

Cybbtm1Din/Cybbtm1Din

        B6.129S-Cybbtm1Din/J
  • homeostasis/metabolism phenotype
  • *normal* homeostasis/metabolism phenotype
    • wounded colonic epithelium exhibit normal phagocytic reactive oxygen species generation   (MGI Ref ID J:194294)

Cybbtm1Din/Y

        B6.129S-Cybbtm1Din
  • growth/size/body phenotype
  • decreased body weight   (MGI Ref ID J:135786)
  • nervous system phenotype
  • abnormal long term potentiation
    • chronic intermittent hypoxia fails to evoke sensory long-term facilitation in the carotid body   (MGI Ref ID J:147954)
  • renal/urinary system phenotype
  • *normal* renal/urinary system phenotype
    • anesthetized males exhibit no significant differences in baseline glomerular filtration rate (GFR), urine flow, sodium excretion, and potassium excretion relative to wild-type controls   (MGI Ref ID J:101981)
    • decreased renal plasma flow rate
      • proportionately greater decrease in renal blood flow after L-NAME administration than in controls   (MGI Ref ID J:138704)
    • decreased renal vascular resistance
      • after L-NAME administration relative to controls   (MGI Ref ID J:138704)
      • anesthetized males exhibit significantly lower baseline renal vascular resistance (RVR) relative to wild-type controls (16+/-1.3 versus 29+/-2.3 mm Hg/mL/min per gram, respectively)   (MGI Ref ID J:101981)
      • in response to i.v. infusion of Ang II, anesthetized males show a smaller % of increase in RVR relative to wild-type controls (+73% versus +173%, respectively)   (MGI Ref ID J:101981)
    • decreased urine sodium level
      • after L-NAME administration relative to controls   (MGI Ref ID J:138704)
    • increased renal glomerular filtration rate
      • in response to i.v. infusion of Ang II, anesthetized males show a 43% increase in GFR, unlike wild-type controls where GFR is not significantly altered   (MGI Ref ID J:101981)
    • increased renal plasma flow rate
      • anesthetized males exhibit significantly higher baseline renal blood flow (RBF) relative to wild-type controls (4.3+/-0.4 versus 2.5+/-0.2 mL/min per gram, respectively)   (MGI Ref ID J:101981)
      • in response to i.v. infusion of Ang II, anesthetized males show a smaller % of reduction in RBF relative to wild-type controls (-8% versus -33%, respectively)   (MGI Ref ID J:101981)
    • increased urine creatinine level
      • conscious males exhibit a higher excretion rate of creatinine relative to wild-type controls (1.4+/-0.4 versus 1.0+/-0.2 mg/day per gram, respectively)   (MGI Ref ID J:101981)
    • increased urine nitrite level
      • conscious males exhibit significantly higher urinary excretion of nitrate/nitrite relative to wild-type controls (23.7+/-3.0 versus 13.3+/-2.5 umol/day per gram, respectively)   (MGI Ref ID J:101981)
    • increased urine sodium level
      • conscious males exhibit a higher basal level of urinary sodium excretion relative to wild-type controls (807+/-69 versus 545+/-94 umol/day per gram, respectively)   (MGI Ref ID J:101981)
      • however, the basal level of 24-hour urine flow is normal in conscious males   (MGI Ref ID J:101981)
    • oliguria
      • reduced urine volume after L-NAME administration relative to controls   (MGI Ref ID J:138704)
  • cardiovascular system phenotype
  • *normal* cardiovascular system phenotype
    • anesthetized males exhibit no significant differences in baseline mean arterial pressure relative to wild-type controls   (MGI Ref ID J:101981)
    • conscious males show no significant differences in mean systolic arterial pressure relative to wild-type controls   (MGI Ref ID J:101981)
    • i.v. administration of Ang II causes similar increments in mean arterial pressure in both genotypes   (MGI Ref ID J:101981)
    • abnormal blood circulation   (MGI Ref ID J:138704)
      • decreased renal plasma flow rate
        • proportionately greater decrease in renal blood flow after L-NAME administration than in controls   (MGI Ref ID J:138704)
      • decreased renal vascular resistance
        • after L-NAME administration relative to controls   (MGI Ref ID J:138704)
        • anesthetized males exhibit significantly lower baseline renal vascular resistance (RVR) relative to wild-type controls (16+/-1.3 versus 29+/-2.3 mm Hg/mL/min per gram, respectively)   (MGI Ref ID J:101981)
        • in response to i.v. infusion of Ang II, anesthetized males show a smaller % of increase in RVR relative to wild-type controls (+73% versus +173%, respectively)   (MGI Ref ID J:101981)
      • increased renal plasma flow rate
        • anesthetized males exhibit significantly higher baseline renal blood flow (RBF) relative to wild-type controls (4.3+/-0.4 versus 2.5+/-0.2 mL/min per gram, respectively)   (MGI Ref ID J:101981)
        • in response to i.v. infusion of Ang II, anesthetized males show a smaller % of reduction in RBF relative to wild-type controls (-8% versus -33%, respectively)   (MGI Ref ID J:101981)
    • abnormal myocardial fiber morphology   (MGI Ref ID J:135786)
    • decreased right ventricle systolic pressure
      • right ventricular systolic pressure is not increased by intermittent hypoxic stress as it is in controls   (MGI Ref ID J:135786)
  • homeostasis/metabolism phenotype
  • abnormal nitric oxide homeostasis
    • conscious males exhibit a significantly higher 24-hour urinary excretion of NO metabolites, nitrate/nitrite, relative to wild-type controls, indicating an increase in NO bioavailability   (MGI Ref ID J:101981)
    • however, no significant changes in urinary excretion of 8-isoprostane (an indirect marker for oxidative stress) are observed   (MGI Ref ID J:101981)
  • decreased urine sodium level
    • after L-NAME administration relative to controls   (MGI Ref ID J:138704)
  • increased urine creatinine level
    • conscious males exhibit a higher excretion rate of creatinine relative to wild-type controls (1.4+/-0.4 versus 1.0+/-0.2 mg/day per gram, respectively)   (MGI Ref ID J:101981)
  • increased urine nitrite level
    • conscious males exhibit significantly higher urinary excretion of nitrate/nitrite relative to wild-type controls (23.7+/-3.0 versus 13.3+/-2.5 umol/day per gram, respectively)   (MGI Ref ID J:101981)
  • increased urine sodium level
    • conscious males exhibit a higher basal level of urinary sodium excretion relative to wild-type controls (807+/-69 versus 545+/-94 umol/day per gram, respectively)   (MGI Ref ID J:101981)
    • however, the basal level of 24-hour urine flow is normal in conscious males   (MGI Ref ID J:101981)
  • muscle phenotype
  • abnormal myocardial fiber morphology   (MGI Ref ID J:135786)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Cybbtm1Din/Cybbtm1Din

        involves: 129S/SvEv * C57BL/6
  • growth/size/body phenotype
  • decreased body weight
    • body weight is slightly but significantly reduced at 10-12 weeks of age   (MGI Ref ID J:115614)
  • digestive/alimentary phenotype
  • *normal* digestive/alimentary phenotype
    • susceptibility to indomethacin-induced changes in mucosa permeability is significantly attenuated relative to wild-type controls or Rag2-deficient mice   (MGI Ref ID J:64232)
    • abnormal intestinal mucosa morphology
      • when given 10-20 mg/kg indomethacin, mice have markedly less damage to integrity of the small bowel mucosa than controls or Rag2-null mice which develop small nonhemorrhagic lesions in the jejunum   (MGI Ref ID J:64232)
    • abnormal stomach mucosa morphology
      • when given 10-20 mg/kg indomethacin, mice have markedly less damage to integrity of the gastric mucosa than controls or Rag2-null mice which develop extensive hemorrhagic lesions of the gastric mucosa   (MGI Ref ID J:64232)
  • immune system phenotype
  • *normal* immune system phenotype
    • mice develop minimal inflammation in response to indomethacin treatement compared to wild-type controls or Rag2-null animals   (MGI Ref ID J:64232)
  • cardiovascular system phenotype
  • abnormal aorta tunica media morphology
    • medial area of the aorta is unaffected by angiotensin II infusion whereas it increases in controls   (MGI Ref ID J:115614)
  • decreased systemic arterial blood pressure
    • baseline blood pressure is significantly reduced at 10-12 weeks of age   (MGI Ref ID J:115614)

Cybbtm1Din/Y

        involves: 129S/SvEv * C57BL/6
  • growth/size/body phenotype
  • decreased body weight
    • body weight is slightly but significantly reduced at 10-12 weeks of age   (MGI Ref ID J:115614)
  • immune system phenotype
  • abnormal immune system physiology   (MGI Ref ID J:22868)
    • abnormal macrophage physiology
      • macrophages lacked respiratory burst activity   (MGI Ref ID J:22868)
    • abnormal neutrophil physiology
      • neutrophils lacked respiratory burst activity   (MGI Ref ID J:22868)
    • increased inflammatory response
      • dysregulated inflammatory response; increased numbers of peritoneal exudate neutrophils in chemical peritonitis induced by thioglycollate   (MGI Ref ID J:22868)
    • increased susceptibility to infection
      • increased frequency of spontaneously occurring infections   (MGI Ref ID J:22868)
      • increased susceptibility to bacterial infection
        • increased susceptibility to S. aureus infection and A. fumigatus infection   (MGI Ref ID J:22868)
  • cardiovascular system phenotype
  • abnormal aorta tunica media morphology
    • medial area of the aorta is unaffected by angiotensin II infusion whereas it increases in controls   (MGI Ref ID J:115614)
  • cardiac hypertrophy
    • Angiotensin II infusion causes a 5% cardiac mass change as compared to a 20% change in controls   (MGI Ref ID J:115652)
  • decreased systemic arterial blood pressure
    • baseline blood pressure is significantly reduced at 10-12 weeks of age   (MGI Ref ID J:115614)
    • decreased systemic arterial systolic blood pressure
      • lower baseline systolic pressure   (MGI Ref ID J:115652)
  • hematopoietic system phenotype
  • abnormal macrophage physiology
    • macrophages lacked respiratory burst activity   (MGI Ref ID J:22868)
  • abnormal neutrophil physiology
    • neutrophils lacked respiratory burst activity   (MGI Ref ID J:22868)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cybbtm1Din related

Hematological Research
Immunological Defects
Neutrophil Defects

Immunology, Inflammation and Autoimmunity Research
Immunodeficiency
      Chronic Granulomatous Disease
      Macrophage defects
      Neutrophil Defects
Inflammation
      Neutrophil defects

Metabolism Research
Chronic Granulomatous Disease

Research Tools
Immunology, Inflammation and Autoimmunity Research
      Macrophage Deficiency
      neutrophil NADPH oxydase deficiency

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Cybbtm1Din
Allele Name targeted mutation 1, Mary C Dinauer
Allele Type Targeted (Null/Knockout)
Common Name(s) Cybb KO; Cybbtm1; Cybbtm1Din; NOX2-; Nox-2-; PHOX-; X-CGD; gp91-; gp91phox-; gp91phox; gp91phox-;
Mutation Made ByDr. M. Dinauer,   Indiana University School of Medicine
Strain of Origin129S/SvEv-Gpi1
ES Cell Line NameCCE/EK.CCE
ES Cell Line Strain129S/SvEv-Gpi1
Gene Symbol and Name Cybb, cytochrome b-245, beta polypeptide
Chromosome X
Gene Common Name(s) AMCBX2; C88302; CGD; Cgd; GP91-1; GP91-PHOX; GP91PHOX; IMD34; NOX2; expressed sequence C88302; gp91phox; p91-PHOX;
Molecular Note A neomycin resistance gene was inserted into exon 3. Western blot analysis on extracts of neutrophil-rich peritoneal exudate cells from hemizygous male mice confirmed that no detectable protein was expressed. [MGI Ref ID J:22868]

Genotyping

Genotyping Information

Genotyping Protocols

Cybbtm1Din, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Pollock JD; Williams DA; Gifford MA; Li LL; Du X; Fisherman J; Orkin SH; Doerschuk CM; Dinauer MC. 1995. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9(2):202-9. [PubMed: 7719350]  [MGI Ref ID J:22868]

Additional References

Gao HM; Liu B; Hong JS. 2003. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23(15):6181-7. [PubMed: 12867501]  [MGI Ref ID J:84474]

Hayashi T; Rao SP; Takabayashi K; Van Uden JH; Kornbluth RS; Baird SM; Taylor MW; Carson DA; Catanzaro A; Raz E. 2001. Enhancement of Innate Immunity against Mycobacterium avium Infection by Immunostimulatory DNA Is Mediated by Indoleamine 2,3-Dioxygenase. Infect Immun 69(10):6156-64. [PubMed: 11553555]  [MGI Ref ID J:71646]

Jackson SH; Devadas S; Kwon J; Pinto LA; Williams MS. 2004. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat Immunol 5(8):818-27. [PubMed: 15258578]  [MGI Ref ID J:91766]

Ko J; Gendron-Fitzpatrick A; Splitter GA. 2002. Susceptibility of IFN regulatory factor-1 and IFN consensus sequence binding protein-deficient mice to brucellosis. J Immunol 168(5):2433-40. [PubMed: 11859135]  [MGI Ref ID J:74725]

Yang S; Porter VA; Cornfield DN; Milla C; Panoskaltsis-Mortari A; Blazar BR; Haddad IY. 2001. Effects of oxidant stress on inflammation and survival of iNOS knockout mice after marrow transplantation. Am J Physiol Lung Cell Mol Physiol 281(4):L922-30. [PubMed: 11557596]  [MGI Ref ID J:72096]

Cybbtm1Din related

Abramov AY; Jacobson J; Wientjes F; Hothersall J; Canevari L; Duchen MR. 2005. Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci 25(40):9176-84. [PubMed: 16207877]  [MGI Ref ID J:123045]

Al-Shabrawey M; Rojas M; Sanders T; Behzadian A; El-Remessy A; Bartoli M; Parpia AK; Liou G; Caldwell RB. 2008. Role of NADPH oxidase in retinal vascular inflammation. Invest Ophthalmol Vis Sci 49(7):3239-44. [PubMed: 18378574]  [MGI Ref ID J:136896]

Alizadeh D; Trad M; Hanke NT; Larmonier CB; Janikashvili N; Bonnotte B; Katsanis E; Larmonier N. 2014. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res 74(1):104-18. [PubMed: 24197130]  [MGI Ref ID J:206599]

Anderson KE; Boyle KB; Davidson K; Chessa TA; Kulkarni S; Jarvis GE; Sindrilaru A; Scharffetter-Kochanek K; Rausch O; Stephens LR; Hawkins PT. 2008. CD18-dependent activation of the neutrophil NADPH oxidase during phagocytosis of Escherichia coli or Staphylococcus aureus is regulated by class III but not class I or II PI3Ks. Blood 112(13):5202-11. [PubMed: 18755982]  [MGI Ref ID J:143800]

Anderson MM; Heinecke JW. 2003. Production of N(epsilon)-(carboxymethyl)lysine is impaired in mice deficient in NADPH oxidase: a role for phagocyte-derived oxidants in the formation of advanced glycation end products during inflammation. Diabetes 52(8):2137-43. [PubMed: 12882933]  [MGI Ref ID J:107193]

Aratani Y; Kura F; Watanabe H; Akagawa H; Takano Y; Suzuki K; Dinauer MC; Maeda N; Koyama H. 2002. Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J Infect Dis 185(12):1833-7. [PubMed: 12085336]  [MGI Ref ID J:126007]

Archer SL; Reeve HL; Michelakis E; Puttagunta L; Waite R; Nelson DP; Dinauer MC; Weir EK. 1999. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci U S A 96(14):7944-9. [PubMed: 10393927]  [MGI Ref ID J:77781]

Bae YS; Lee JH; Choi SH; Kim S; Almazan F; Witztum JL; Miller YI. 2009. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res 104(2):210-8, 21p following 218. [PubMed: 19096031]  [MGI Ref ID J:156427]

Balish E; Warner TF; Nicholas PJ; Paulling EE; Westwater C; Schofield DA. 2005. Susceptibility of germfree phagocyte oxidase- and nitric oxide synthase 2-deficient mice, defective in the production of reactive metabolites of both oxygen and nitrogen, to mucosal and systemic candidiasis of endogenous origin. Infect Immun 73(3):1313-20. [PubMed: 15731028]  [MGI Ref ID J:96573]

Banerjee R; Anguita J; Fikrig E. 2000. Granulocytic ehrlichiosis in mice deficient in phagocyte oxidase or inducible nitric oxide synthase. Infect Immun 68(7):4361-2. [PubMed: 10858261]  [MGI Ref ID J:90886]

Barry-Lane PA; Patterson C; van der Merwe M; Hu Z; Holland SM; Yeh ET; Runge MS. 2001. p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 108(10):1513-22. [PubMed: 11714743]  [MGI Ref ID J:111638]

Bast A; Erttmann SF; Walther R; Steinmetz I. 2010. Influence of iNOS and COX on peroxiredoxin gene expression in primary macrophages. Free Radic Biol Med 49(12):1881-91. [PubMed: 20869433]  [MGI Ref ID J:167094]

Bauernfeind F; Bartok E; Rieger A; Franchi L; Nunez G; Hornung V. 2011. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol 187(2):613-7. [PubMed: 21677136]  [MGI Ref ID J:178032]

Bayer SB; Maghzal G; Stocker R; Hampton MB; Winterbourn CC. 2013. Neutrophil-mediated oxidation of erythrocyte peroxiredoxin 2 as a potential marker of oxidative stress in inflammation. FASEB J 27(8):3315-22. [PubMed: 23603832]  [MGI Ref ID J:203573]

Beck PL; Xavier R; Lu N; Nanda NN; Dinauer M; Podolsky DK; Seed B. 2000. Mechanisms of NSAID-induced gastrointestinal injury defined using mutant mice Gastroenterology 119(3):699-705. [PubMed: 10982764]  [MGI Ref ID J:64232]

Becker JS; Adler A; Schneeberger A; Huang H; Wang Z; Walsh E; Koller A; Hintze TH. 2005. Hyperhomocysteinemia, a cardiac metabolic disease: role of nitric oxide and the p22phox subunit of NADPH oxidase. Circulation 111(16):2112-8. [PubMed: 15851618]  [MGI Ref ID J:109692]

Behrens MM; Ali SS; Dugan LL. 2008. Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci 28(51):13957-66. [PubMed: 19091984]  [MGI Ref ID J:143515]

Bendall JK; Cave AC; Heymes C; Gall N; Shah AM. 2002. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105(3):293-6. [PubMed: 11804982]  [MGI Ref ID J:103177]

Berger SB; Romero X; Ma C; Wang G; Faubion WA; Liao G; Compeer E; Keszei M; Rameh L; Wang N; Boes M; Regueiro JR; Reinecker HC; Terhorst C. 2010. SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat Immunol 11(10):920-7. [PubMed: 20818396]  [MGI Ref ID J:164685]

Bingel SA. 2002. Pathology of a mouse model of x-linked chronic granulomatous disease. Contemp Top Lab Anim Sci 41(5):33-8. [PubMed: 12213046]  [MGI Ref ID J:79195]

Bjorgvinsdottir H; Ding C; Pech N; Gifford MA; Li LL; Dinauer MC. 1997. Retroviral-mediated gene transfer of gp91phox into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease. Blood 89(1):41-8. [PubMed: 8978275]  [MGI Ref ID J:38041]

Blanchard TG; Yu F; Hsieh CL; Redline RW. 2003. Severe inflammation and reduced bacteria load in murine helicobacter infection caused by lack of phagocyte oxidase activity. J Infect Dis 187(10):1609-15. [PubMed: 12721941]  [MGI Ref ID J:120653]

Block ML; Li G; Qin L; Wu X; Pei Z; Wang T; Wilson B; Yang J; Hong JS. 2006. Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin. FASEB J 20(2):251-8. [PubMed: 16449797]  [MGI Ref ID J:105782]

Bonnett CR; Cornish EJ; Harmsen AG; Burritt JB. 2006. Early neutrophil recruitment and aggregation in the murine lung inhibit germination of Aspergillus fumigatus Conidia. Infect Immun 74(12):6528-39. [PubMed: 16920786]  [MGI Ref ID J:115978]

Breitbach K; Klocke S; Tschernig T; van Rooijen N; Baumann U; Steinmetz I. 2006. Role of Inducible Nitric Oxide Synthase and NADPH Oxidase in Early Control of Burkholderia pseudomallei Infection in Mice. Infect Immun 74(11):6300-6309. [PubMed: 17000727]  [MGI Ref ID J:113561]

Bulua AC; Simon A; Maddipati R; Pelletier M; Park H; Kim KY; Sack MN; Kastner DL; Siegel RM. 2011. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208(3):519-33. [PubMed: 21282379]  [MGI Ref ID J:176847]

Byrne JA; Grieve DJ; Bendall JK; Li JM; Gove C; Lambeth JD; Cave AC; Shah AM. 2003. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93(9):802-5. [PubMed: 14551238]  [MGI Ref ID J:115652]

Campbell EL; Bruyninckx WJ; Kelly CJ; Glover LE; McNamee EN; Bowers BE; Bayless AJ; Scully M; Saeedi BJ; Golden-Mason L; Ehrentraut SF; Curtis VF; Burgess A; Garvey JF; Sorensen A; Nemenoff R; Jedlicka P; Taylor CT; Kominsky DJ; Colgan SP. 2014. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40(1):66-77. [PubMed: 24412613]  [MGI Ref ID J:209394]

Carlstrom M; Lai EY; Ma Z; Patzak A; Brown RD; Persson AE. 2009. Role of NOX2 in the regulation of afferent arteriole responsiveness. Am J Physiol Regul Integr Comp Physiol 296(1):R72-9. [PubMed: 18987286]  [MGI Ref ID J:148627]

Carnesecchi S; Deffert C; Pagano A; Garrido-Urbani S; Metrailler-Ruchonnet I; Schappi M; Donati Y; Matthay MA; Krause KH; Barazzone Argiroffo C. 2009. NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice. Am J Respir Crit Care Med 180(10):972-81. [PubMed: 19661248]  [MGI Ref ID J:167959]

Chan EC; van Wijngaarden P; Liu GS; Jiang F; Peshavariya H; Dusting GJ. 2013. Involvement of Nox2 NADPH oxidase in retinal neovascularization. Invest Ophthalmol Vis Sci 54(10):7061-7. [PubMed: 24106122]  [MGI Ref ID J:214873]

Chandra R; Federici S; Nemeth ZH; Horvath B; Pacher P; Hasko G; Deitch EA; Spolarics Z. 2011. Female X-Chromosome Mosaicism for NOX2 Deficiency Presents Unique Inflammatory Phenotype and Improves Outcome in Polymicrobial Sepsis. J Immunol 186(11):6465-73. [PubMed: 21502376]  [MGI Ref ID J:173218]

Chatterjee S; Browning EA; Hong N; DeBolt K; Sorokina EM; Liu W; Birnbaum MJ; Fisher AB. 2012. Membrane depolarization is the trigger for PI3K/Akt activation and leads to the generation of ROS. Am J Physiol Heart Circ Physiol 302(1):H105-14. [PubMed: 22003059]  [MGI Ref ID J:181582]

Chatterjee S; Lardinois O; Bhattacharjee S; Tucker J; Corbett J; Deterding L; Ehrenshaft M; G Bonini M; Mason RP. 2011. Oxidative stress induces protein and DNA radical formation in follicular dendritic cells of the germinal center and modulates its cell death patterns in late sepsis. Free Radic Biol Med 50(8):988-99. [PubMed: 21215311]  [MGI Ref ID J:170663]

Chatterjee S; Lardinois O; Bonini MG; Bhattacharjee S; Stadler K; Corbett J; Deterding LJ; Tomer KB; Kadiiska M; Mason RP. 2009. Site-specific carboxypeptidase B1 tyrosine nitration and pathophysiological implications following its physical association with nitric oxide synthase-3 in experimental sepsis. J Immunol 183(6):4055-66. [PubMed: 19717511]  [MGI Ref ID J:152293]

Chatterjee S; Rana R; Corbett J; Kadiiska MB; Goldstein J; Mason RP. 2012. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radic Biol Med 52(9):1666-79. [PubMed: 22343416]  [MGI Ref ID J:183259]

Chehata VJ; Domeier PP; Weilnau JN; Lappas CM. 2011. Adenosine A(2A) receptor activation limits chronic granulomatous disease-induced hyperinflammation. Cell Immunol 267(1):39-49. [PubMed: 21130984]  [MGI Ref ID J:168701]

Chen H; Kim GS; Okami N; Narasimhan P; Chan PH. 2011. NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis 42(3):341-8. [PubMed: 21303700]  [MGI Ref ID J:172767]

Chen Z; Keaney JF Jr; Schulz E; Levison B; Shan L; Sakuma M; Zhang X; Shi C; Hazen SL; Simon DI. 2004. Decreased neointimal formation in Nox2-deficient mice reveals a direct role for NADPH oxidase in the response to arterial injury. Proc Natl Acad Sci U S A 101(35):13014-9. [PubMed: 15316118]  [MGI Ref ID J:92447]

Cheng P; Corzo CA; Luetteke N; Yu B; Nagaraj S; Bui MM; Ortiz M; Nacken W; Sorg C; Vogl T; Roth J; Gabrilovich DI. 2008. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235-49. [PubMed: 18809714]  [MGI Ref ID J:140101]

Cheret C; Gervais A; Lelli A; Colin C; Amar L; Ravassard P; Mallet J; Cumano A; Krause KH; Mallat M. 2008. Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci 28(46):12039-51. [PubMed: 19005069]  [MGI Ref ID J:142401]

Chiang E; Dang O; Anderson K; Matsuzawa A; Ichijo H; David M. 2006. Cutting edge: apoptosis-regulating signal kinase 1 is required for reactive oxygen species-mediated activation of IFN regulatory factor 3 by lipopolysaccharide. J Immunol 176(10):5720-4. [PubMed: 16670275]  [MGI Ref ID J:131688]

Clavarino G; Claudio N; Dalet A; Terawaki S; Couderc T; Chasson L; Ceppi M; Schmidt EK; Wenger T; Lecuit M; Gatti E; Pierre P. 2012. Protein phosphatase 1 subunit Ppp1r15a/GADD34 regulates cytokine production in polyinosinic:polycytidylic acid-stimulated dendritic cells. Proc Natl Acad Sci U S A 109(8):3006-11. [PubMed: 22315398]  [MGI Ref ID J:182014]

Coffey MJ; Serezani CH; Phare SM; Flamand N; Peters-Golden M. 2007. NADPH oxidase deficiency results in reduced alveolar macrophage 5-lipoxygenase expression and decreased leukotriene synthesis. J Leukoc Biol 82(6):1585-91. [PubMed: 17761955]  [MGI Ref ID J:129968]

Cornish EJ; Hurtgen BJ; McInnerney K; Burritt NL; Taylor RM; Jarvis JN; Wang SY; Burritt JB. 2008. Reduced nicotinamide adenine dinucleotide phosphate oxidase-independent resistance to Aspergillus fumigatus in alveolar macrophages. J Immunol 180(10):6854-67. [PubMed: 18453606]  [MGI Ref ID J:134869]

Corzo CA; Cotter MJ; Cheng P; Cheng F; Kusmartsev S; Sotomayor E; Padhya T; McCaffrey TV; McCaffrey JC; Gabrilovich DI. 2009. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693-701. [PubMed: 19380816]  [MGI Ref ID J:147709]

Costford SR; Castro-Alves J; Chan KL; Bailey LJ; Woo M; Belsham DD; Brumell JH; Klip A. 2014. Mice lacking NOX2 are hyperphagic and store fat preferentially in the liver. Am J Physiol Endocrinol Metab 306(12):E1341-53. [PubMed: 24760992]  [MGI Ref ID J:214768]

Crandall H; Ma Y; Dunn DM; Sundsbak RS; Zachary JF; Olofsson P; Holmdahl R; Weis JH; Weiss RB; Teuscher C; Weis JJ. 2005. Bb2Bb3 Regulation of Murine Lyme Arthritis Is Distinct from Ncf1 and Independent of the Phagocyte Nicotinamide Adenine Dinucleotide Phosphate Oxidase. Am J Pathol 167(3):775-85. [PubMed: 16127156]  [MGI Ref ID J:100689]

Dacci P; Dina G; Cerri F; Previtali SC; Lopez ID; Lauria G; Feltri ML; Bolino A; Comi G; Wrabetz L; Quattrini A. 2010. Foot pad skin biopsy in mouse models of hereditary neuropathy. Glia 58(16):2005-16. [PubMed: 20878767]  [MGI Ref ID J:167389]

Davis MJ; Gregorka B; Gestwicki JE; Swanson JA. 2012. Inducible renitence limits Listeria monocytogenes escape from vacuoles in macrophages. J Immunol 189(9):4488-95. [PubMed: 23002437]  [MGI Ref ID J:190625]

Deng S; Kruger A; Kleschyov AL; Kalinowski L; Daiber A; Wojnowski L. 2007. Gp91phox-containing NAD(P)H oxidase increases superoxide formation by doxorubicin and NADPH. Free Radic Biol Med 42(4):466-73. [PubMed: 17275678]  [MGI Ref ID J:118370]

Devi S; Li A; Westhorpe CL; Lo CY; Abeynaike LD; Snelgrove SL; Hall P; Ooi JD; Sobey CG; Kitching AR; Hickey MJ. 2013. Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat Med 19(1):107-12. [PubMed: 23242472]  [MGI Ref ID J:194847]

Diebold I; Petry A; Sabrane K; Djordjevic T; Hess J; Gorlach A. 2012. The HIF1 target gene NOX2 promotes angiogenesis through urotensin-II. J Cell Sci 125(Pt 4):956-64. [PubMed: 22399808]  [MGI Ref ID J:197690]

Dinauer MC; Deck MB; Unanue ER. 1997. Mice lacking reduced nicotinamide adenine dinucleotide phosphate oxidase activity show increased susceptibility to early infection with Listeria monocytogenes. J Immunol 158(12):5581-3. [PubMed: 9190903]  [MGI Ref ID J:40899]

Dinauer MC; Gifford MA; Pech N; Li LL; Emshwiller P. 2001. Variable correction of host defense following gene transfer and bone marrow transplantation in murine X-linked chronic granulomatous disease. Blood 97(12):3738-45. [PubMed: 11389011]  [MGI Ref ID J:69962]

Distasi MR; Case J; Ziegler MA; Dinauer MC; Yoder MC; Haneline LS; Dalsing MC; Miller SJ; Labarrere CA; Murphy MP; Ingram DA; Unthank JL. 2009. Suppressed hindlimb perfusion in Rac2-/- and Nox2-/- mice does not result from impaired collateral growth. Am J Physiol Heart Circ Physiol 296(3):H877-86. [PubMed: 19151256]  [MGI Ref ID J:146529]

Dostert C; Guarda G; Romero JF; Menu P; Gross O; Tardivel A; Suva ML; Stehle JC; Kopf M; Stamenkovic I; Corradin G; Tschopp J. 2009. Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One 4(8):e6510. [PubMed: 19652710]  [MGI Ref ID J:152483]

Doyle T; Esposito E; Bryant L; Cuzzocrea S; Salvemini D. 2013. NADPH-oxidase 2 activation promotes opioid-induced antinociceptive tolerance in mice. Neuroscience 241:1-9. [PubMed: 23454539]  [MGI Ref ID J:201366]

Dugan LL; Ali SS; Shekhtman G; Roberts AJ; Lucero J; Quick KL; Behrens MM. 2009. IL-6 mediated degeneration of forebrain GABAergic interneurons and cognitive impairment in aged mice through activation of neuronal NADPH oxidase. PLoS ONE 4(5):e5518. [PubMed: 19436757]  [MGI Ref ID J:148881]

Ebrahimian TG; Heymes C; You D; Blanc-Brude O; Mees B; Waeckel L; Duriez M; Vilar J; Brandes RP; Levy BI; Shah AM; Silvestre JS. 2006. NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes. Am J Pathol 169(2):719-28. [PubMed: 16877369]  [MGI Ref ID J:111988]

Fan J; Frey RS; Rahman A; Malik AB. 2002. Role of neutrophil NADPH oxidase in the mechanism of tumor necrosis factor-alpha -induced NF-kappa B activation and intercellular adhesion molecule-1 expression in endothelial cells. J Biol Chem 277(5):3404-11. [PubMed: 11729200]  [MGI Ref ID J:74318]

Fattouh R; Guo CH; Lam GY; Gareau MG; Ngan BY; Glogauer M; Muise AM; Brumell JH. 2013. Rac2-deficiency leads to exacerbated and protracted colitis in response to Citrobacter rodentium infection. PLoS One 8(4):e61629. [PubMed: 23613889]  [MGI Ref ID J:200110]

Felmy B; Songhet P; Slack EM; Muller AJ; Kremer M; Van Maele L; Cayet D; Heikenwalder M; Sirard JC; Hardt WD. 2013. NADPH oxidase deficient mice develop colitis and bacteremia upon infection with normally avirulent, TTSS-1- and TTSS-2-deficient Salmonella Typhimurium. PLoS One 8(10):e77204. [PubMed: 24143212]  [MGI Ref ID J:209119]

Feng HM; Walker DH. 2004. Mechanisms of immunity to Ehrlichia muris: a model of monocytotropic ehrlichiosis. Infect Immun 72(2):966-71. [PubMed: 14742542]  [MGI Ref ID J:87862]

Fernandez-Boyanapalli R; Frasch SC; Riches DW; Vandivier RW; Henson PM; Bratton DL. 2010. PPARgamma activation normalizes resolution of acute sterile inflammation in murine chronic granulomatous disease. Blood 116(22):4512-22. [PubMed: 20693431]  [MGI Ref ID J:166653]

Fernandez-Boyanapalli RF; Frasch SC; McPhillips K; Vandivier RW; Harry BL; Riches DW; Henson PM; Bratton DL. 2009. Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4. Blood 113(9):2047-55. [PubMed: 18952895]  [MGI Ref ID J:146093]

Frasch SC; Berry KZ; Fernandez-Boyanapalli R; Jin HS; Leslie C; Henson PM; Murphy RC; Bratton DL. 2008. NADPH oxidase-dependent generation of lysophosphatidylserine enhances clearance of activated and dying neutrophils via G2A. J Biol Chem 283(48):33736-49. [PubMed: 18824544]  [MGI Ref ID J:143317]

Frasch SC; Fernandez-Boyanapalli RF; Berry KA; Murphy RC; Leslie CC; Nick JA; Henson PM; Bratton DL. 2013. Neutrophils regulate tissue Neutrophilia in inflammation via the oxidant-modified lipid lysophosphatidylserine. J Biol Chem 288(7):4583-93. [PubMed: 23293064]  [MGI Ref ID J:196000]

Fraszczak J; Trad M; Janikashvili N; Cathelin D; Lakomy D; Granci V; Morizot A; Audia S; Micheau O; Lagrost L; Katsanis E; Solary E; Larmonier N; Bonnotte B. 2010. Peroxynitrite-dependent killing of cancer cells and presentation of released tumor antigens by activated dendritic cells. J Immunol 184(4):1876-84. [PubMed: 20089706]  [MGI Ref ID J:159469]

Frazziano G; Al Ghouleh I; Baust J; Shiva S; Champion HC; Pagano PJ. 2014. Nox-derived ROS are acutely activated in pressure overload pulmonary hypertension: indications for a seminal role for mitochondrial Nox4. Am J Physiol Heart Circ Physiol 306(2):H197-205. [PubMed: 24213612]  [MGI Ref ID J:208721]

Fresquet F; Pourageaud F; Leblais V; Brandes RP; Savineau JP; Marthan R; Muller B. 2006. Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. Br J Pharmacol 148(5):714-23. [PubMed: 16715116]  [MGI Ref ID J:135722]

Fu P; Mohan V; Mansoor S; Tiruppathi C; Sadikot RT; Natarajan V. 2013. Role of nicotinamide adenine dinucleotide phosphate-reduced oxidase proteins in Pseudomonas aeruginosa-induced lung inflammation and permeability. Am J Respir Cell Mol Biol 48(4):477-88. [PubMed: 23306835]  [MGI Ref ID J:210132]

Fu XW; Wang D; Nurse CA; Dinauer MC; Cutz E. 2000. NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc Natl Acad Sci U S A 97(8):4374-9. [PubMed: 10760304]  [MGI Ref ID J:61676]

Fukuda Y; Tsai HF; Myers TG; Bennett JE. 2013. Transcriptional Profiling of Candida glabrata during Phagocytosis by Neutrophils and in the Infected Mouse Spleen. Infect Immun 81(4):1325-33. [PubMed: 23403555]  [MGI Ref ID J:194047]

Gao HM; Liu B; Hong JS. 2003. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23(15):6181-7. [PubMed: 12867501]  [MGI Ref ID J:84474]

Gao HM; Zhou H; Zhang F; Wilson BC; Kam W; Hong JS. 2011. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci 31(3):1081-92. [PubMed: 21248133]  [MGI Ref ID J:168559]

Gao XP; Standiford TJ; Rahman A; Newstead M; Holland SM; Dinauer MC; Liu QH; Malik AB. 2002. Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox-/- and gp91phox-/- mice. J Immunol 168(8):3974-82. [PubMed: 11937554]  [MGI Ref ID J:126179]

George-Chandy A; Nordstrom I; Nygren E; Jonsson IM; Postigo J; Collins LV; Eriksson K. 2008. Th17 development and autoimmune arthritis in the absence of reactive oxygen species. Eur J Immunol 38(4):1118-26. [PubMed: 18383034]  [MGI Ref ID J:133769]

Girouard H; Wang G; Gallo EF; Anrather J; Zhou P; Pickel VM; Iadecola C. 2009. NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci 29(8):2545-52. [PubMed: 19244529]  [MGI Ref ID J:145943]

Godoy HE; Khan AN; Vethanayagam RR; Grimm MJ; Singel KL; Kolomeyevskaya N; Sexton KJ; Parameswaran A; Abrams SI; Odunsi K; Segal BH. 2013. Myeloid-derived suppressor cells modulate immune responses independently of NADPH oxidase in the ovarian tumor microenvironment in mice. PLoS One 8(7):e69631. [PubMed: 23922763]  [MGI Ref ID J:204369]

Goebel WS; Mark LA; Billings SD; Meyers JL; Pech N; Travers JB; Dinauer MC. 2005. Gene correction reduces cutaneous inflammation and granuloma formation in murine X-linked chronic granulomatous disease. J Invest Dermatol 125(4):705-10. [PubMed: 16185269]  [MGI Ref ID J:101778]

Goebel WS; Pech NK; Dinauer MC. 2004. Stable long-term gene correction with low-dose radiation conditioning in murine X-linked chronic granulomatous disease. Blood Cells Mol Dis 33(3):365-71. [PubMed: 15528159]  [MGI Ref ID J:95009]

Goodson P; Kumar A; Jain L; Kundu K; Murthy N; Koval M; Helms MN. 2012. Nadph oxidase regulates alveolar epithelial sodium channel activity and lung fluid balance in vivo via O(-)(2) signaling. Am J Physiol Lung Cell Mol Physiol 302(4):L410-9. [PubMed: 22160304]  [MGI Ref ID J:183450]

Graham DB; Stephenson LM; Lam SK; Brim K; Lee HM; Bautista J; Gilfillan S; Akilesh S; Fujikawa K; Swat W. 2007. An ITAM-signaling pathway controls cross-presentation of particulate but not soluble antigens in dendritic cells. J Exp Med 204(12):2889-97. [PubMed: 17984307]  [MGI Ref ID J:128521]

Grahl N; Puttikamonkul S; Macdonald JM; Gamcsik MP; Ngo LY; Hohl TM; Cramer RA. 2011. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog 7(7):e1002145. [PubMed: 21811407]  [MGI Ref ID J:183133]

Grant AJ; Restif O; McKinley TJ; Sheppard M; Maskell DJ; Mastroeni P. 2008. Modelling within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biol 6(4):e74. [PubMed: 18399718]  [MGI Ref ID J:136287]

Gupte SA; Kaminski PM; George S; Kouznestova L; Olson SC; Mathew R; Hintze TH; Wolin MS. 2009. Peroxide generation by p47phox-Src activation of Nox2 has a key role in protein kinase C-induced arterial smooth muscle contraction. Am J Physiol Heart Circ Physiol 296(4):H1048-57. [PubMed: 19168729]  [MGI Ref ID J:150905]

Haddad P; Dussault S; Groleau J; Turgeon J; Michaud SE; Menard C; Perez G; Maingrette F; Rivard A. 2009. Nox2-containing NADPH oxidase deficiency confers protection from hindlimb ischemia in conditions of increased oxidative stress. Arterioscler Thromb Vasc Biol 29(10):1522-8. [PubMed: 19574557]  [MGI Ref ID J:167811]

Haque MZ; Majid DS. 2004. Assessment of renal functional phenotype in mice lacking gp91PHOX subunit of NAD(P)H oxidase. Hypertension 43(2):335-40. [PubMed: 14718366]  [MGI Ref ID J:101981]

Haque MZ; Majid DS. 2008. Reduced renal responses to nitric oxide synthase inhibition in mice lacking the gene for gp91phox subunit of NAD(P)H oxidase. Am J Physiol Renal Physiol 295(3):F758-64. [PubMed: 18596078]  [MGI Ref ID J:138704]

Harraz MM; Marden JJ; Zhou W; Zhang Y; Williams A; Sharov VS; Nelson K; Luo M; Paulson H; Schoneich C; Engelhardt JF. 2008. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest 118(2):659-70. [PubMed: 18219391]  [MGI Ref ID J:131850]

Harrison CB; Selemidis S; Guida E; King PT; Sobey CG; Drummond GR. 2012. NOX2beta: A novel splice variant of NOX2 that regulates NADPH oxidase activity in macrophages. PLoS One 7(10):e48326. [PubMed: 23118986]  [MGI Ref ID J:192279]

Hayashi T; Yamashita C; Matsumoto C; Kwak CJ; Fujii K; Hirata T; Miyamura M; Mori T; Ukimura A; Okada Y; Matsumura Y; Kitaura Y. 2008. Role of gp91phox-containing NADPH oxidase in left ventricular remodeling induced by intermittent hypoxic stress. Am J Physiol Heart Circ Physiol 294(5):H2197-203. [PubMed: 18326795]  [MGI Ref ID J:135786]

He L; Chen J; Dinger B; Sanders K; Sundar K; Hoidal J; Fidone S. 2002. Characteristics of carotid body chemosensitivity in NADPH oxidase-deficient mice. Am J Physiol Cell Physiol 282(1):C27-33. [PubMed: 11742795]  [MGI Ref ID J:75608]

Henriet SS; Hermans PW; Verweij PE; Simonetti E; Holland SM; Sugui JA; Kwon-Chung KJ; Warris A. 2011. Human leukocytes kill Aspergillus nidulans by reactive oxygen species-independent mechanisms. Infect Immun 79(2):767-73. [PubMed: 21078850]  [MGI Ref ID J:168602]

Hirahashi J; Mekala D; Van Ziffle J; Xiao L; Saffaripour S; Wagner DD; Shapiro SD; Lowell C; Mayadas TN. 2006. Mac-1 signaling via Src-family and Syk kinases results in elastase-dependent thrombohemorrhagic vasculopathy. Immunity 25(2):271-83. [PubMed: 16872848]  [MGI Ref ID J:113463]

Ho-Tin-Noe B; Carbo C; Demers M; Cifuni SM; Goerge T; Wagner DD. 2009. Innate immune cells induce hemorrhage in tumors during thrombocytopenia. Am J Pathol 175(4):1699-708. [PubMed: 19729481]  [MGI Ref ID J:153057]

Hong NJ; Garvin JL. 2012. NADPH oxidase 4 mediates flow-induced superoxide production in thick ascending limbs. Am J Physiol Renal Physiol 303(8):F1151-6. [PubMed: 22896039]  [MGI Ref ID J:189801]

Horiuchi K; Miyamoto T; Takaishi H; Hakozaki A; Kosaki N; Miyauchi Y; Furukawa M; Takito J; Kaneko H; Matsuzaki K; Morioka H; Blobel CP; Toyama Y. 2007. Cell surface colony-stimulating factor 1 can be cleaved by TNF-alpha converting enzyme or endocytosed in a clathrin-dependent manner. J Immunol 179(10):6715-24. [PubMed: 17982061]  [MGI Ref ID J:153864]

Hung K; Hayashi R; Lafond-Walker A; Lowenstein C; Pardoll D; Levitsky H. 1998. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188(12):2357-68. [PubMed: 9858522]  [MGI Ref ID J:51677]

Jackson SH; Devadas S; Kwon J; Pinto LA; Williams MS. 2004. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat Immunol 5(8):818-27. [PubMed: 15258578]  [MGI Ref ID J:91766]

Jann NJ; Schmaler M; Kristian SA; Radek KA; Gallo RL; Nizet V; Peschel A; Landmann R. 2009. Neutrophil antimicrobial defense against Staphylococcus aureus is mediated by phagolysosomal but not extracellular trap-associated cathelicidin. J Leukoc Biol 86(5):1159-69. [PubMed: 19638500]  [MGI Ref ID J:155026]

Jiang L; Salao K; Li H; Rybicka JM; Yates RM; Luo XW; Shi XX; Kuffner T; Tsai VW; Husaini Y; Wu L; Brown DA; Grewal T; Brown LJ; Curmi PM; Breit SN. 2012. Intracellular chloride channel protein CLIC1 regulates macrophage function through modulation of phagosomal acidification. J Cell Sci 125(Pt 22):5479-88. [PubMed: 22956539]  [MGI Ref ID J:200280]

Johar S; Cave AC; Narayanapanicker A; Grieve DJ; Shah AM. 2006. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 20(9):1546-8. [PubMed: 16720735]  [MGI Ref ID J:111378]

Judkins CP; Diep H; Broughton BR; Mast AE; Hooker EU; Miller AA; Selemidis S; Dusting GJ; Sobey CG; Drummond GR. 2010. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice. Am J Physiol Heart Circ Physiol 298(1):H24-32. [PubMed: 19837950]  [MGI Ref ID J:158487]

Jung YJ; LaCourse R; Ryan L; North RJ. 2002. Virulent but not avirulent Mycobacterium tuberculosis can evade the growth inhibitory action of a T helper 1-dependent, nitric oxide Synthase 2-independent defense in mice. J Exp Med 196(7):991-8. [PubMed: 12370260]  [MGI Ref ID J:119257]

Kampfrath T; Maiseyeu A; Ying Z; Shah Z; Deiuliis JA; Xu X; Kherada N; Brook RD; Reddy KM; Padture NP; Parthasarathy S; Chen LC; Moffatt-Bruce S; Sun Q; Morawietz H; Rajagopalan S. 2011. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ Res 108(6):716-26. [PubMed: 21273555]  [MGI Ref ID J:183599]

Kantrow SP; Shen Z; Jagneaux T; Zhang P; Nelson S. 2009. Neutrophil-mediated lung permeability and host defense proteins. Am J Physiol Lung Cell Mol Physiol 297(4):L738-45. [PubMed: 19648288]  [MGI Ref ID J:154221]

Kassim SY; Fu X; Liles WC; Shapiro SD; Parks WC; Heinecke JW. 2005. NADPH oxidase restrains the matrix metalloproteinase activity of macrophages. J Biol Chem 280(34):30201-5. [PubMed: 15983040]  [MGI Ref ID J:101039]

Kazama K; Anrather J; Zhou P; Girouard H; Frys K; Milner TA; Iadecola C. 2004. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res 95(10):1019-26. [PubMed: 15499027]  [MGI Ref ID J:103853]

Kazemian P; Stephenson R; Yeger H; Cutz E. 2001. Respiratory control in neonatal mice with NADPH oxidase deficiency. Respir Physiol 126(2):89-101. [PubMed: 11348637]  [MGI Ref ID J:106249]

Keenan JI; Peterson RA 2nd; Hampton MB. 2005. NADPH oxidase involvement in the pathology of Helicobacter pylori infection. Free Radic Biol Med 38(9):1188-96. [PubMed: 15808416]  [MGI Ref ID J:97448]

Kim D; You B; Jo EK; Han SK; Simon MI; Lee SJ. 2010. NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A 107(33):14851-6. [PubMed: 20679217]  [MGI Ref ID J:163708]

Kim HA; Brait VH; Lee S; De Silva TM; Diep H; Eisenhardt A; Drummond GR; Sobey CG. 2012. Brain infarct volume after permanent focal ischemia is not dependent on Nox2 expression. Brain Res 1483:105-11. [PubMed: 23000198]  [MGI Ref ID J:193569]

Kim HS; Loughran PA; Rao J; Billiar TR; Zuckerbraun BS. 2008. Carbon monoxide activates NF-kappaB via ROS generation and Akt pathways to protect against cell death of hepatocytes. Am J Physiol Gastrointest Liver Physiol 295(1):G146-G152. [PubMed: 18497334]  [MGI Ref ID J:137836]

Kim YS; Choi DH; Block ML; Lorenzl S; Yang L; Kim YJ; Sugama S; Cho BP; Hwang O; Browne SE; Kim SY; Hong JS; Beal MF; Joh TH. 2007. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J 21(1):179-87. [PubMed: 17116747]  [MGI Ref ID J:129758]

Kinugawa S; Zhang J; Messina E; Walsh E; Huang H; Kaminski PM; Wolin MS; Hintze TH. 2005. gp91phox-containing NAD(P)H oxidase mediates attenuation of nitric oxide-dependent control of myocardial oxygen consumption by ANG II. Am J Physiol Heart Circ Physiol 289(2):H862-7. [PubMed: 15778277]  [MGI Ref ID J:100315]

Kishida KT; Hoeffer CA; Hu D; Pao M; Holland SM; Klann E. 2006. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol 26(15):5908-20. [PubMed: 16847341]  [MGI Ref ID J:111410]

Kleinschnitz C; Grund H; Wingler K; Armitage ME; Jones E; Mittal M; Barit D; Schwarz T; Geis C; Kraft P; Barthel K; Schuhmann MK; Herrmann AM; Meuth SG; Stoll G; Meurer S; Schrewe A; Becker L; Gailus-Durner V; Fuchs H; Klopstock T; de Angelis MH; Jandeleit-Dahm K; Shah AM; Weissmann N; Schmidt HH. 2010. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 8(9):. [PubMed: 20877715]  [MGI Ref ID J:166948]

Ko J; Gendron-Fitzpatrick A; Splitter GA. 2002. Susceptibility of IFN regulatory factor-1 and IFN consensus sequence binding protein-deficient mice to brucellosis. J Immunol 168(5):2433-40. [PubMed: 11859135]  [MGI Ref ID J:74725]

Kobayashi T; Ogawa Y; Watanabe Y; Furuya M; Kataoka S; Garcia del Saz E; Tsunawaki S; Dinauer MC; Seguchi H. 2004. Mitochondrial transmembrane potential is diminished in phorbol myristate acetate-stimulated peritoneal resident macrophages isolated from wild-type mice, but not in those from gp91-phox-deficient mice. Histochem Cell Biol 122(4):323-32. [PubMed: 15243751]  [MGI Ref ID J:102741]

Kong X; Thimmulappa R; Kombairaju P; Biswal S. 2010. NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice. J Immunol 185(1):569-77. [PubMed: 20511556]  [MGI Ref ID J:161435]

Kunz A; Abe T; Hochrainer K; Shimamura M; Anrather J; Racchumi G; Zhou P; Iadecola C. 2008. Nuclear factor-kappaB activation and postischemic inflammation are suppressed in CD36-null mice after middle cerebral artery occlusion. J Neurosci 28(7):1649-58. [PubMed: 18272685]  [MGI Ref ID J:132279]

Kurtz S; McKinnon KP; Runge MS; Ting JP; Braunstein M. 2006. The SecA2 secretion factor of Mycobacterium tuberculosis promotes growth in macrophages and inhibits the host immune response. Infect Immun 74(12):6855-64. [PubMed: 17030572]  [MGI Ref ID J:116072]

Lammermann T; Afonso PV; Angermann BR; Wang JM; Kastenmuller W; Parent CA; Germain RN. 2013. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498(7454):371-5. [PubMed: 23708969]  [MGI Ref ID J:198733]

Lee I; Dodia C; Chatterjee S; Feinstein SI; Fisher AB. 2014. Protection against LPS-induced acute lung injury by a mechanism-based inhibitor of NADPH oxidase (type 2). Am J Physiol Lung Cell Mol Physiol 306(7):L635-44. [PubMed: 24487388]  [MGI Ref ID J:210184]

Lee K; Won HY; Bae MA; Hong JH; Hwang ES. 2011. Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and Th/Treg cells. Proc Natl Acad Sci U S A 108(23):9548-53. [PubMed: 21593419]  [MGI Ref ID J:173349]

Lelli A; Gervais A; Colin C; Cheret C; Ruiz de Almodovar C; Carmeliet P; Krause KH; Boillee S; Mallat M. 2013. The NADPH oxidase Nox2 regulates VEGFR1/CSF-1R-mediated microglial chemotaxis and promotes early postnatal infiltration of phagocytes in the subventricular zone of the mouse cerebral cortex. Glia 61(9):1542-55. [PubMed: 23836548]  [MGI Ref ID J:199445]

Leoni G; Alam A; Neumann PA; Lambeth JD; Cheng G; McCoy J; Hilgarth RS; Kundu K; Murthy N; Kusters D; Reutelingsperger C; Perretti M; Parkos CA; Neish AS; Nusrat A. 2013. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 123(1):443-54. [PubMed: 23241962]  [MGI Ref ID J:194294]

Leskov IL; Whitsett J; Vasquez-Vivar J; Stokes KY. 2011. NAD(P)H oxidase and eNOS play differential roles in cytomegalovirus infection-induced microvascular dysfunction. Free Radic Biol Med 51(12):2300-8. [PubMed: 22033010]  [MGI Ref ID J:179407]

Lewis CJ; Cobb BA. 2011. Adaptive immune defects against glycoantigens in chronic granulomatous disease via dysregulated nitric oxide production. Eur J Immunol 41(9):2562-72. [PubMed: 21630251]  [MGI Ref ID J:177626]

Li G; Scull C; Ozcan L; Tabas I. 2010. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol 191(6):1113-25. [PubMed: 21135141]  [MGI Ref ID J:168801]

Li J; Baud O; Vartanian T; Volpe JJ; Rosenberg PA. 2005. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 102(28):9936-41. [PubMed: 15998743]  [MGI Ref ID J:99857]

Li JM; Fan LM; George VT; Brooks G. 2007. Nox2 regulates endothelial cell cycle arrest and apoptosis via p21(cip1) and p53. Free Radic Biol Med 43(6):976-86. [PubMed: 17697942]  [MGI Ref ID J:124355]

Li N; Li B; Brun T; Deffert-Delbouille C; Mahiout Z; Daali Y; Ma XJ; Krause KH; Maechler P. 2012. NADPH oxidase NOX2 defines a new antagonistic role for reactive oxygen species and cAMP/PKA in the regulation of insulin secretion. Diabetes 61(11):2842-50. [PubMed: 22933115]  [MGI Ref ID J:208488]

Li S; Vana AC; Ribeiro R; Zhang Y. 2011. Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis. Neuroscience 184:107-19. [PubMed: 21511012]  [MGI Ref ID J:173939]

Li X; McKinstry KK; Swain SL; Dalton DK. 2007. IFN-gamma acts directly on activated CD4+ T cells during mycobacterial infection to promote apoptosis by inducing components of the intracellular apoptosis machinery and by inducing extracellular proapoptotic signals. J Immunol 179(2):939-49. [PubMed: 17617585]  [MGI Ref ID J:149401]

Liu G; Vogel SM; Gao X; Javaid K; Hu G; Danilov SM; Malik AB; Minshall RD. 2011. Src phosphorylation of endothelial cell surface intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism of lung inflammation. Arterioscler Thromb Vasc Biol 31(6):1342-50. [PubMed: 21474822]  [MGI Ref ID J:191473]

Liu JQ; Zelko IN; Erbynn EM; Sham JS; Folz RJ. 2006. Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 290(1):L2-10. [PubMed: 16085672]  [MGI Ref ID J:104796]

Liu JQ; Zelko IN; Folz RJ. 2004. Reoxygenation-induced constriction in murine coronary arteries: the role of endothelial NADPH oxidase (gp91phox) and intracellular superoxide. J Biol Chem 279(23):24493-7. [PubMed: 15070892]  [MGI Ref ID J:123986]

Liu W; Yan M; Sugui JA; Li H; Xu C; Joo J; Kwon-Chung KJ; Coleman WG; Rodgers GP. 2013. Olfm4 deletion enhances defense against Staphylococcus aureus in chronic granulomatous disease. J Clin Invest 123(9):3751-5. [PubMed: 23908114]  [MGI Ref ID J:201632]

Liu Y; Hernandez-Ochoa EO; Randall WR; Schneider MF. 2012. NOX2-dependent ROS is required for HDAC5 nuclear efflux and contributes to HDAC4 nuclear efflux during intense repetitive activity of fast skeletal muscle fibers. Am J Physiol Cell Physiol 303(3):C334-47. [PubMed: 22648949]  [MGI Ref ID J:191350]

Lo W; Bravo T; Jadhav V; Titova E; Zhang JH; Tang J. 2007. NADPH oxidase inhibition improves neurological outcomes in surgically-induced brain injury. Neurosci Lett 414(3):228-32. [PubMed: 17317004]  [MGI Ref ID J:119831]

Lomas-Neira J; Chung CS; Perl M; Gregory S; Biffl W; Ayala A. 2006. Role of alveolar macrophage and migrating neutrophils in hemorrhage-induced priming for ALI subsequent to septic challenge. Am J Physiol Lung Cell Mol Physiol 290(1):L51-8. [PubMed: 16157517]  [MGI Ref ID J:104798]

Loot AE; Schreiber JG; Fisslthaler B; Fleming I. 2009. Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. J Exp Med 206(13):2889-96. [PubMed: 19934023]  [MGI Ref ID J:155685]

Madenspacher JH; Azzam KM; Gowdy KM; Malcolm KC; Nick JA; Dixon D; Aloor JJ; Draper DW; Guardiola JJ; Shatz M; Menendez D; Lowe J; Lu J; Bushel P; Li L; Merrick BA; Resnick MA; Fessler MB. 2013. p53 Integrates host defense and cell fate during bacterial pneumonia. J Exp Med 210(5):891-904. [PubMed: 23630228]  [MGI Ref ID J:198948]

Mantegazza AR; Guttentag SH; El-Benna J; Sasai M; Iwasaki A; Shen H; Laufer TM; Marks MS. 2012. Adaptor protein-3 in dendritic cells facilitates phagosomal toll-like receptor signaling and antigen presentation to CD4(+) T cells. Immunity 36(5):782-94. [PubMed: 22560444]  [MGI Ref ID J:187323]

Martinon F; Chen X; Lee AH; Glimcher LH. 2010. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11(5):411-8. [PubMed: 20351694]  [MGI Ref ID J:158967]

Mastroeni P; Vazquez-Torres A; Fang FC; Xu Y; Khan S; Hormaeche CE; Dougan G. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192(2):237-48. [PubMed: 10899910]  [MGI Ref ID J:63489]

Matsushima S; Kuroda J; Ago T; Zhai P; Ikeda Y; Oka S; Fong GH; Tian R; Sadoshima J. 2013. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1alpha and upregulation of peroxisome proliferator-activated receptor-alpha. Circ Res 112(8):1135-49. [PubMed: 23476056]  [MGI Ref ID J:213317]

Matsuzaki I; Chatterjee S; Debolt K; Manevich Y; Zhang Q; Fisher AB. 2005. Membrane depolarization and NADPH oxidase activation in aortic endothelium during ischemia reflect altered mechanotransduction. Am J Physiol Heart Circ Physiol 288(1):H336-43. [PubMed: 15331375]  [MGI Ref ID J:95576]

Maytin M; Siwik DA; Ito M; Xiao L; Sawyer DB; Liao R; Colucci WS. 2004. Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation 109(9):1168-71. [PubMed: 14981002]  [MGI Ref ID J:131488]

McCrann DJ; Eliades A; Makitalo M; Matsuno K; Ravid K. 2009. Differential expression of NADPH oxidases in megakaryocytes and their role in polyploidy. Blood 114(6):1243-9. [PubMed: 19471020]  [MGI Ref ID J:151729]

Meissner F; Molawi K; Zychlinsky A. 2008. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat Immunol 9(8):866-72. [PubMed: 18604212]  [MGI Ref ID J:137865]

Miller AA; Maxwell KF; Chrissobolis S; Bullen ML; Ku JM; Michael De Silva T; Selemidis S; Hooker EU; Drummond GR; Sobey CG; Kemp-Harper BK. 2013. Nitroxyl (HNO) suppresses vascular Nox2 oxidase activity. Free Radic Biol Med 60:264-71. [PubMed: 23459072]  [MGI Ref ID J:201233]

Milovanova T; Chatterjee S; Hawkins BJ; Hong N; Sorokina EM; Debolt K; Moore JS; Madesh M; Fisher AB. 2008. Caveolae are an essential component of the pathway for endothelial cell signaling associated with abrupt reduction of shear stress. Biochim Biophys Acta 1783(10):1866-75. [PubMed: 18573285]  [MGI Ref ID J:140780]

Milovanova T; Chatterjee S; Manevich Y; Kotelnikova I; Debolt K; Madesh M; Moore JS; Fisher AB. 2006. Lung endothelial cell proliferation with decreased shear stress is mediated by reactive oxygen species. Am J Physiol Cell Physiol 290(1):C66-76. [PubMed: 16107509]  [MGI Ref ID J:115726]

Monfregola J; Johnson JL; Meijler MM; Napolitano G; Catz SD. 2012. MUNC13-4 protein regulates the oxidative response and is essential for phagosomal maturation and bacterial killing in neutrophils. J Biol Chem 287(53):44603-18. [PubMed: 23115246]  [MGI Ref ID J:193760]

Mori M; Stokes KY; Vowinkel T; Watanabe N; Elrod JW; Harris NR; Lefer DJ; Hibi T; Granger DN. 2005. Colonic blood flow responses in experimental colitis: time course and underlying mechanisms. Am J Physiol Gastrointest Liver Physiol 289(6):G1024-9. [PubMed: 16081759]  [MGI Ref ID J:104795]

Munks MW; McKee AS; Macleod MK; Powell RL; Degen JL; Reisdorph NA; Kappler JW; Marrack P. 2010. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood 116(24):5191-9. [PubMed: 20876456]  [MGI Ref ID J:167390]

Murray HW; Lu CM; Brooks EB; Fichtl RE; DeVecchio JL; Heinzel FP. 2003. Modulation of T-cell costimulation as immunotherapy or immunochemotherapy in experimental visceral leishmaniasis. Infect Immun 71(11):6453-62. [PubMed: 14573667]  [MGI Ref ID J:86275]

Murray HW; Nathan CF. 1999. Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med 189(4):741-6. [PubMed: 9989990]  [MGI Ref ID J:110956]

Murray HW; Xiang Z; Ma X. 2006. Responses to Leishmania donovani in mice deficient in both phagocyte oxidase and inducible nitric oxide synthase. Am J Trop Med Hyg 74(6):1013-5. [PubMed: 16760512]  [MGI Ref ID J:135733]

Mutunga M; Graham S; De Hormaeche RD; Musson JA; Robinson JH; Mastroeni P; Khan CM; Hormaeche CE. 2004. Attenuated Salmonella typhimurium htrA mutants cause fatal infections in mice deficient in NADPH oxidase and destroy NADPH oxidase-deficient macrophage monolayers. Vaccine 22(29-30):4124-31. [PubMed: 15364466]  [MGI Ref ID J:105621]

Nair D; Dayyat EA; Zhang SX; Wang Y; Gozal D. 2011. Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea. PLoS One 6(5):e19847. [PubMed: 21625437]  [MGI Ref ID J:172584]

Nair D; Ramesh V; Gozal D. 2012. Adverse cognitive effects of high-fat diet in a murine model of sleep apnea are mediated by NADPH oxidase activity. Neuroscience 227:361-9. [PubMed: 23064009]  [MGI Ref ID J:193550]

Nguyen HX; Tidball JG. 2003. Null mutation of gp91phox reduces muscle membrane lysis during muscle inflammation in mice. J Physiol 553(Pt 3):833-41. [PubMed: 14555723]  [MGI Ref ID J:105498]

Nicholson SC; Grobmyer SR; Shiloh MU; Brause JE; Potter S; MacMicking JD; Dinauer MC; Nathan CF. 1999. Lethality of endotoxin in mice genetically deficient in the respiratory burst oxidase, inducible nitric oxide synthase, or both. Shock 11(4):253-8. [PubMed: 10220301]  [MGI Ref ID J:56229]

Nisbet RE; Graves AS; Kleinhenz DJ; Rupnow HL; Reed AL; Fan TH; Mitchell PO; Sutliff RL; Hart CM. 2009. The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. Am J Respir Cell Mol Biol 40(5):601-9. [PubMed: 18952568]  [MGI Ref ID J:160866]

Noel J; Wang H; Hong N; Tao JQ; Yu K; Sorokina EM; Debolt K; Heayn M; Rizzo V; Delisser H; Fisher AB; Chatterjee S. 2013. PECAM-1 and caveolae form the mechanosensing complex necessary for NOX2 activation and angiogenic signaling with stopped flow in pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 305(11):L805-18. [PubMed: 24077950]  [MGI Ref ID J:210194]

Okada F; Kobayashi M; Tanaka H; Kobayashi T; Tazawa H; Iuchi Y; Onuma K; Hosokawa M; Dinauer MC; Hunt NH. 2006. The role of nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species in the acquisition of metastatic ability of tumor cells. Am J Pathol 169(1):294-302. [PubMed: 16816381]  [MGI Ref ID J:110181]

Ostanin DV; Barlow S; Shukla D; Grisham MB. 2007. NADPH oxidase but not myeloperoxidase protects lymphopenic mice from spontaneous infections. Biochem Biophys Res Commun 355(3):801-6. [PubMed: 17316569]  [MGI Ref ID J:118594]

Paiva CN; Feijo DF; Dutra FF; Carneiro VC; Freitas GB; Alves LS; Mesquita J; Fortes GB; Figueiredo RT; Souza HS; Fantappie MR; Lannes-Vieira J; Bozza MT. 2012. Oxidative stress fuels Trypanosoma cruzi infection in mice. J Clin Invest 122(7):2531-42. [PubMed: 22728935]  [MGI Ref ID J:190766]

Park L; Anrather J; Zhou P; Frys K; Pitstick R; Younkin S; Carlson GA; Iadecola C. 2005. NADPH oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid beta peptide. J Neurosci 25(7):1769-77. [PubMed: 15716413]  [MGI Ref ID J:98244]

Park L; Zhou P; Pitstick R; Capone C; Anrather J; Norris EH; Younkin L; Younkin S; Carlson G; McEwen BS; Iadecola C. 2008. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci U S A 105(4):1347-52. [PubMed: 18202172]  [MGI Ref ID J:131374]

Patel VB; Wang Z; Fan D; Zhabyeyev P; Basu R; Das SK; Wang W; Desaulniers J; Holland SM; Kassiri Z; Oudit GY. 2013. Loss of p47phox subunit enhances susceptibility to biomechanical stress and heart failure because of dysregulation of cortactin and actin filaments. Circ Res 112(12):1542-56. [PubMed: 23553616]  [MGI Ref ID J:213301]

Pei Z; Pang H; Qian L; Yang S; Wang T; Zhang W; Wu X; Dallas S; Wilson B; Reece JM; Miller DS; Hong JS; Block ML. 2007. MAC1 mediates LPS-induced production of superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 55(13):1362-73. [PubMed: 17654704]  [MGI Ref ID J:156303]

Peng T; Lu X; Feng Q. 2005. Pivotal role of gp91phox-containing NADH oxidase in lipopolysaccharide-induced tumor necrosis factor-alpha expression and myocardial depression. Circulation 111(13):1637-44. [PubMed: 15795323]  [MGI Ref ID J:108990]

Peng YJ; Nanduri J; Yuan G; Wang N; Deneris E; Pendyala S; Natarajan V; Kumar GK; Prabhakar NR. 2009. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci 29(15):4903-10. [PubMed: 19369559]  [MGI Ref ID J:147954]

Pepping JK; Freeman LR; Gupta S; Keller JN; Bruce-Keller AJ. 2013. NOX2 deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet. Am J Physiol Endocrinol Metab 304(4):E392-404. [PubMed: 23233541]  [MGI Ref ID J:195935]

Petersen JE; Hiran TS; Goebel WS; Johnson C; Murphy RC; Azmi FH; Hood AF; Travers JB; Dinauer MC. 2002. Enhanced cutaneous inflammatory reactions to Aspergillus fumigatus in a murine model of chronic granulomatous disease. J Invest Dermatol 118(3):424-9. [PubMed: 11874480]  [MGI Ref ID J:75716]

Petnehazy T; Cooper D; Stokes KY; Russell J; Wood KC; Granger DN. 2006. Angiotensin II type 1 receptors and the intestinal microvascular dysfunction induced by ischemia and reperfusion. Am J Physiol Gastrointest Liver Physiol 290(6):G1203-10. [PubMed: 16469824]  [MGI Ref ID J:111088]

Potter SM; Mitchell AJ; Cowden WB; Sanni LA; Dinauer M; de Haan JB; Hunt NH. 2005. Phagocyte-derived reactive oxygen species do not influence the progression of murine blood-stage malaria infections. Infect Immun 73(8):4941-7. [PubMed: 16041008]  [MGI Ref ID J:100436]

Purushothaman D; Marcel N; Garg M; Venkataraman R; Sarin A. 2013. Apoptotic Programs Are Determined during Lineage Commitment of CD4+ T Effectors: Selective Regulation of T Effector-Memory Apoptosis by Inducible Nitric Oxide Synthase. J Immunol 190(1):97-105. [PubMed: 23225886]  [MGI Ref ID J:190816]

Purushothaman D; Sarin A. 2009. Cytokine-dependent regulation of NADPH oxidase activity and the consequences for activated T cell homeostasis. J Exp Med 206(7):1515-23. [PubMed: 19546249]  [MGI Ref ID J:150270]

Qian L; Wei SJ; Zhang D; Hu X; Xu Z; Wilson B; El-Benna J; Hong JS; Flood PM. 2008. Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia. J Immunol 181(1):660-8. [PubMed: 18566433]  [MGI Ref ID J:137172]

Qin L; Li G; Qian X; Liu Y; Wu X; Liu B; Hong JS; Block ML. 2005. Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 52(1):78-84. [PubMed: 15920727]  [MGI Ref ID J:156156]

Qin L; Liu Y; Hong JS; Crews FT. 2013. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 61(6):855-68. [PubMed: 23536230]  [MGI Ref ID J:195271]

Qin L; Liu Y; Wang T; Wei SJ; Block ML; Wilson B; Liu B; Hong JS. 2004. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279(2):1415-21. [PubMed: 14578353]  [MGI Ref ID J:135116]

Qiu H; Kuolee R; Harris G; Chen W. 2009. Role of NADPH phagocyte oxidase in host defense against acute respiratory Acinetobacter baumannii infection in mice. Infect Immun 77(3):1015-21. [PubMed: 19103777]  [MGI Ref ID J:145717]

Rajakariar R; Newson J; Jackson EK; Sawmynaden P; Smith A; Rahman F; Yaqoob MM; Gilroy DW. 2009. Nonresolving inflammation in gp91(phox-/-) mice, a model of human chronic granulomatous disease, has lower adenosine and cyclic adenosine 5'-monophosphate. J Immunol 182(5):3262-9. [PubMed: 19234224]  [MGI Ref ID J:146231]

Rey FE; Li XC; Carretero OA; Garvin JL; Pagano PJ. 2002. Perivascular superoxide anion contributes to impairment of endothelium-dependent relaxation: role of gp91(phox). Circulation 106(19):2497-502. [PubMed: 12417549]  [MGI Ref ID J:103372]

Richards SM; Clark EA. 2009. BCR-induced superoxide negatively regulates B-cell proliferation and T-cell-independent type 2 Ab responses. Eur J Immunol 39(12):3395-403. [PubMed: 19877015]  [MGI Ref ID J:155459]

Rocha FJ; Schleicher U; Mattner J; Alber G; Bogdan C. 2007. Cytokines, signaling pathways, and effector molecules required for the control of Leishmania (Viannia) braziliensis in mice. Infect Immun 75(8):3823-32. [PubMed: 17517868]  [MGI Ref ID J:123377]

Rojas M; Zhang W; Xu Z; Lemtalsi T; Chandler P; Toque HA; Caldwell RW; Caldwell RB. 2013. Requirement of NOX2 expression in both retina and bone marrow for diabetes-induced retinal vascular injury. PLoS One 8(12):e84357. [PubMed: 24358357]  [MGI Ref ID J:209855]

Rowlands DJ; Islam MN; Das SR; Huertas A; Quadri SK; Horiuchi K; Inamdar N; Emin MT; Lindert J; Ten VS; Bhattacharya S; Bhattacharya J. 2011. Activation of TNFR1 ectodomain shedding by mitochondrial Ca2+ determines the severity of inflammation in mouse lung microvessels. J Clin Invest 121(5):1986-99. [PubMed: 21519143]  [MGI Ref ID J:173932]

Roy A; Rozanov C; Mokashi A; Daudu P; Al-mehdi AB; Shams H; Lahiri S. 2000. Mice lacking in gp91 phox subunit of NAD(P)H oxidase showed glomus cell [Ca(2+)](i) and respiratory responses to hypoxia. Brain Res 872(1-2):188-93. [PubMed: 10924691]  [MGI Ref ID J:63733]

Ryan SO; Johnson JL; Cobb BA. 2013. Neutrophils confer T cell resistance to myeloid-derived suppressor cell-mediated suppression to promote chronic inflammation. J Immunol 190(10):5037-47. [PubMed: 23576679]  [MGI Ref ID J:202566]

Rybicka JM; Balce DR; Chaudhuri S; Allan ER; Yates RM. 2012. Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. EMBO J 31(4):932-44. [PubMed: 22157818]  [MGI Ref ID J:181760]

Sakai J; Li J; Subramanian KK; Mondal S; Bajrami B; Hattori H; Jia Y; Dickinson BC; Zhong J; Ye K; Chang CJ; Ho YS; Zhou J; Luo HR. 2012. Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immunity 37(6):1037-49. [PubMed: 23159440]  [MGI Ref ID J:191075]

Sasaki H; Yamamoto H; Tominaga K; Masuda K; Kawai T; Teshima-Kondo S; Matsuno K; Yabe-Nishimura C; Rokutan K. 2009. Receptor activator of nuclear factor-kappaB ligand-induced mouse osteoclast differentiation is associated with switching between NADPH oxidase homologues. Free Radic Biol Med 47(2):189-99. [PubMed: 19409483]  [MGI Ref ID J:150599]

Savina A; Peres A; Cebrian I; Carmo N; Moita C; Hacohen N; Moita LF; Amigorena S. 2009. The small GTPase Rac2 controls phagosomal alkalinization and antigen crosspresentation selectively in CD8(+) dendritic cells. Immunity 30(4):544-55. [PubMed: 19328020]  [MGI Ref ID J:147980]

Schappi M; Deffert C; Fiette L; Gavazzi G; Herrmann F; Belli D; Krause KH. 2008. Branched fungal beta-glucan causes hyperinflammation and necrosis in phagocyte NADPH oxidase-deficient mice. J Pathol 214(4):434-44. [PubMed: 18098349]  [MGI Ref ID J:131826]

Schilling JD; Machkovech HM; He L; Diwan A; Schaffer JE. 2013. TLR4 activation under lipotoxic conditions leads to synergistic macrophage cell death through a TRIF-dependent pathway. J Immunol 190(3):1285-96. [PubMed: 23275600]  [MGI Ref ID J:193036]

Schroder K; Kohnen A; Aicher A; Liehn EA; Buchse T; Stein S; Weber C; Dimmeler S; Brandes RP. 2009. NADPH oxidase Nox2 is required for hypoxia-induced mobilization of endothelial progenitor cells. Circ Res 105(6):537-44. [PubMed: 19679834]  [MGI Ref ID J:169970]

Schroder K; Zhang M; Benkhoff S; Mieth A; Pliquett R; Kosowski J; Kruse C; Luedike P; Michaelis UR; Weissmann N; Dimmeler S; Shah AM; Brandes RP. 2012. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110(9):1217-25. [PubMed: 22456182]  [MGI Ref ID J:212519]

Schroeter MR; Stein S; Heida NM; Leifheit-Nestler M; Cheng IF; Gogiraju R; Christiansen H; Maier LS; Shah AM; Hasenfuss G; Konstantinides S; Schafer K. 2012. Leptin promotes the mobilization of vascular progenitor cells and neovascularization by NOX2-mediated activation of MMP9. Cardiovasc Res 93(1):170-80. [PubMed: 22065732]  [MGI Ref ID J:194875]

Segal BH; Han W; Bushey JJ; Joo M; Bhatti Z; Feminella J; Dennis CG; Vethanayagam RR; Yull FE; Capitano M; Wallace PK; Minderman H; Christman JW; Sporn MB; Chan J; Vinh DC; Holland SM; Romani LR; Gaffen SL; Freeman ML; Blackwell TS. 2010. NADPH oxidase limits innate immune responses in the lungs in mice. PLoS One 5(3):e9631. [PubMed: 20300512]  [MGI Ref ID J:158908]

Seimon TA; Nadolski MJ; Liao X; Magallon J; Nguyen M; Feric NT; Koschinsky ML; Harkewicz R; Witztum JL; Tsimikas S; Golenbock D; Moore KJ; Tabas I. 2010. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab 12(5):467-82. [PubMed: 21035758]  [MGI Ref ID J:167910]

Serezani CH; Aronoff DM; Jancar S; Mancuso P; Peters-Golden M. 2005. Leukotrienes enhance the bactericidal activity of alveolar macrophages against Klebsiella pneumoniae through the activation of NADPH oxidase. Blood 106(3):1067-75. [PubMed: 15718414]  [MGI Ref ID J:117309]

Shatynski KE; Chen H; Kwon J; Williams MS. 2012. Decreased STAT5 phosphorylation and GATA-3 expression in NOX2-deficient T cells: Role in T helper development. Eur J Immunol 42(12):3202-11. [PubMed: 22930452]  [MGI Ref ID J:190354]

Shiloh MU; MacMicking JD; Nicholson S; Brause JE; Potter S; Marino M; Fang F; Dinauer M; Nathan C. 1999. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10(1):29-38. [PubMed: 10023768]  [MGI Ref ID J:54749]

Shimada K; Crother TR; Karlin J; Chen S; Chiba N; Ramanujan VK; Vergnes L; Ojcius DM; Arditi M. 2011. Caspase-1 Dependent IL-1beta Secretion Is Critical for Host Defense in a Mouse Model of Chlamydia pneumoniae Lung Infection. PLoS One 6(6):e21477. [PubMed: 21731762]  [MGI Ref ID J:174428]

Shvedova AA; Kisin ER; Murray AR; Kommineni C; Castranova V; Fadeel B; Kagan VE. 2008. Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol 231(2):235-40. [PubMed: 18534653]  [MGI Ref ID J:140070]

Slack E; Hapfelmeier S; Stecher B; Velykoredko Y; Stoel M; Lawson MA; Geuking MB; Beutler B; Tedder TF; Hardt WD; Bercik P; Verdu EF; McCoy KD; Macpherson AJ. 2009. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325(5940):617-20. [PubMed: 19644121]  [MGI Ref ID J:150933]

Snelgrove RJ; Edwards L; Williams AE; Rae AJ; Hussell T. 2006. In the absence of reactive oxygen species, T cells default to a Th1 phenotype and mediate protection against pulmonary Cryptococcus neoformans infection. J Immunol 177(8):5509-16. [PubMed: 17015737]  [MGI Ref ID J:139435]

Sokolovska A; Becker CE; Ip WK; Rathinam VA; Brudner M; Paquette N; Tanne A; Vanaja SK; Moore KJ; Fitzgerald KA; Lacy-Hulbert A; Stuart LM. 2013. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol 14(6):543-53. [PubMed: 23644505]  [MGI Ref ID J:197318]

Sonati T; Reimann RR; Falsig J; Baral PK; O'Connor T; Hornemann S; Yaganoglu S; Li B; Herrmann US; Wieland B; Swayampakula M; Rahman MH; Das D; Kav N; Riek R; Liberski PP; James MN; Aguzzi A. 2013. The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 501(7465):102-6. [PubMed: 23903654]  [MGI Ref ID J:205018]

Sorce S; Schiavone S; Tucci P; Colaianna M; Jaquet V; Cuomo V; Dubois-Dauphin M; Trabace L; Krause KH. 2010. The NADPH oxidase NOX2 controls glutamate release: a novel mechanism involved in psychosis-like ketamine responses. J Neurosci 30(34):11317-25. [PubMed: 20739552]  [MGI Ref ID J:163526]

Sousa SA; Ulrich M; Bragonzi A; Burke M; Worlitzsch D; Leitao JH; Meisner C; Eberl L; Sa-Correia I; Doring G. 2007. Virulence of Burkholderia cepacia complex strains in gp91phox-/- mice. Cell Microbiol 9(12):2817-25. [PubMed: 17627623]  [MGI Ref ID J:147932]

Souza HP; Laurindo FR; Ziegelstein RC; Berlowitz CO; Zweier JL. 2001. Vascular NAD(P)H oxidase is distinct from the phagocytic enzyme and modulates vascular reactivity control. Am J Physiol Heart Circ Physiol 280(2):H658-67. [PubMed: 11158964]  [MGI Ref ID J:107847]

Spencer NY; Yan Z; Boudreau RL; Zhang Y; Luo M; Li Q; Tian X; Shah AM; Davisson RL; Davidson B; Banfi B; Engelhardt JF. 2011. Control of hepatic nuclear superoxide production by glucose 6-phosphate dehydrogenase and NADPH oxidase-4. J Biol Chem 286(11):8977-87. [PubMed: 21212270]  [MGI Ref ID J:170529]

Spencer NY; Zhou W; Li Q; Zhang Y; Luo M; Yan Z; Lynch TJ; Abbott D; Banfi B; Engelhardt JF. 2013. Hepatocytes produce TNF-alpha following hypoxia-reoxygenation and liver ischemia-reperfusion in a NADPH oxidase- and c-Src-dependent manner. Am J Physiol Gastrointest Liver Physiol 305(1):G84-94. [PubMed: 23639811]  [MGI Ref ID J:202785]

Stadler K; Bonini MG; Dallas S; Duma D; Mason RP; Kadiiska MB. 2008. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis. Am J Physiol Endocrinol Metab 295(2):E456-62. [PubMed: 18559982]  [MGI Ref ID J:139996]

Starr A; Graepel R; Keeble J; Schmidhuber S; Clark N; Grant A; Shah AM; Brain SD. 2008. A reactive oxygen species-mediated component in neurogenic vasodilatation. Cardiovasc Res 78(1):139-47. [PubMed: 18203709]  [MGI Ref ID J:161908]

Stokes KY; Russell JM; Jennings MH; Alexander JS; Granger DN. 2007. Platelet-associated NAD(P)H oxidase contributes to the thrombogenic phenotype induced by hypercholesterolemia. Free Radic Biol Med 43(1):22-30. [PubMed: 17561090]  [MGI Ref ID J:122384]

Sun K; Gan Y; Metzger DW. 2011. Analysis of murine genetic predisposition to pneumococcal infection reveals a critical role of alveolar macrophages in maintaining the sterility of the lower respiratory tract. Infect Immun 79(5):1842-7. [PubMed: 21321074]  [MGI Ref ID J:171962]

Sun K; Metzger DW. 2014. Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary methicillin-resistant Staphylococcus aureus infection. J Immunol 192(7):3301-7. [PubMed: 24563256]  [MGI Ref ID J:209891]

Sun QA; Hess DT; Nogueira L; Yong S; Bowles DE; Eu J; Laurita KR; Meissner G; Stamler JS. 2011. Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel by NADPH oxidase 4. Proc Natl Acad Sci U S A 108(38):16098-103. [PubMed: 21896730]  [MGI Ref ID J:176588]

Swain SD; Wright TW; Degel PM; Gigliotti F; Harmsen AG. 2004. Neither neutrophils nor reactive oxygen species contribute to tissue damage during Pneumocystis pneumonia in mice. Infect Immun 72(10):5722-32. [PubMed: 15385471]  [MGI Ref ID J:93116]

Tarallo V; Hirano Y; Gelfand BD; Dridi S; Kerur N; Kim Y; Cho WG; Kaneko H; Fowler BJ; Bogdanovich S; Albuquerque RJ; Hauswirth WW; Chiodo VA; Kugel JF; Goodrich JA; Ponicsan SL; Chaudhuri G; Murphy MP; Dunaief JL; Ambati BK; Ogura Y; Yoo JW; Lee DK; Provost P; Hinton DR; Nunez G; Baffi JZ; Kleinman ME; Ambati J. 2012. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149(4):847-59. [PubMed: 22541070]  [MGI Ref ID J:186198]

Tawfik A; Sanders T; Kahook K; Akeel S; Elmarakby A; Al-Shabrawey M. 2009. Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Invest Ophthalmol Vis Sci 50(2):878-84. [PubMed: 18806296]  [MGI Ref ID J:146688]

Taylor PR; Roy S; Leal SM Jr; Sun Y; Howell SJ; Cobb BA; Li X; Pearlman E. 2014. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nat Immunol 15(2):143-51. [PubMed: 24362892]  [MGI Ref ID J:209279]

TeKippe M; Harrison DE; Chen J. 2003. Expansion of hematopoietic stem cell phenotype and activity in Trp53-null mice. Exp Hematol 31(6):521-7. [PubMed: 12829028]  [MGI Ref ID J:115677]

Thompson RJ; Farragher SM; Cutz E; Nurse CA. 2002. Developmental regulation of O(2) sensing in neonatal adrenal chromaffin cells from wild-type and NADPH-oxidase-deficient mice. Pflugers Arch 444(4):539-48. [PubMed: 12136274]  [MGI Ref ID J:106185]

Tickner J; Fan LM; Du J; Meijles D; Li JM. 2011. Nox2-derived ROS in PPARgamma signaling and cell-cycle progression of lung alveolar epithelial cells. Free Radic Biol Med 51(3):763-72. [PubMed: 21664456]  [MGI Ref ID J:174696]

Tojo T; Ushio-Fukai M; Yamaoka-Tojo M; Ikeda S; Patrushev N; Alexander RW. 2005. Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia. Circulation 111(18):2347-55. [PubMed: 15867174]  [MGI Ref ID J:111596]

Toller IM; Neelsen KJ; Steger M; Hartung ML; Hottiger MO; Stucki M; Kalali B; Gerhard M; Sartori AA; Lopes M; Muller A. 2011. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci U S A 108(36):14944-9. [PubMed: 21896770]  [MGI Ref ID J:176577]

Touyz RM; Mercure C; He Y; Javeshghani D; Yao G; Callera GE; Yogi A; Lochard N; Reudelhuber TL. 2005. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension 45(4):530-7. [PubMed: 15753233]  [MGI Ref ID J:134741]

Ueno S; Campbell J; Fausto N. 2006. Reactive oxygen species derived from NADPH oxidase system is not essential for liver regeneration after partial hepatectomy. J Surg Res 136(2):260-5. [PubMed: 17046793]  [MGI Ref ID J:117642]

Underhill DM; Rossnagle E; Lowell CA; Simmons RM. 2005. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106(7):2543-50. [PubMed: 15956283]  [MGI Ref ID J:119368]

Uppington H; Menager N; Boross P; Wood J; Sheppard M; Verbeek S; Mastroeni P. 2006. Effect of immune serum and role of individual Fcgamma receptors on the intracellular distribution and survival of Salmonella enterica serovar Typhimurium in murine macrophages. Immunology 119(2):147-58. [PubMed: 16836651]  [MGI Ref ID J:118526]

Urao N; Inomata H; Razvi M; Kim HW; Wary K; McKinney R; Fukai T; Ushio-Fukai M. 2008. Role of nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circ Res 103(2):212-20. [PubMed: 18583711]  [MGI Ref ID J:151370]

Urao N; McKinney RD; Fukai T; Ushio-Fukai M. 2012. NADPH oxidase 2 regulates bone marrow microenvironment following hindlimb ischemia: role in reparative mobilization of progenitor cells. Stem Cells 30(5):923-34. [PubMed: 22290850]  [MGI Ref ID J:190507]

Valencia A; Sapp E; Kimm JS; McClory H; Reeves PB; Alexander J; Ansong KA; Masso N; Frosch MP; Kegel KB; Li X; Difiglia M. 2013. Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington's disease. Hum Mol Genet 22(6):1112-31. [PubMed: 23223017]  [MGI Ref ID J:193291]

Vasilevsky S; Liu Q; Koontz SM; Kastenmayer R; Shea K; Jackson SH. 2011. Role of p47phox in Antigen-Presenting Cell-Mediated Regulation of Humoral Immunity in Mice. Am J Pathol 178(6):2774-82. [PubMed: 21641399]  [MGI Ref ID J:173472]

Vazquez-Torres A; Jones-Carson J; Mastroeni P; Ischiropoulos H; Fang FC. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192(2):227-36. [PubMed: 10899909]  [MGI Ref ID J:63490]

Vlahos R; Stambas J; Bozinovski S; Broughton BR; Drummond GR; Selemidis S. 2011. Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced lung inflammation. PLoS Pathog 7(2):e1001271. [PubMed: 21304882]  [MGI Ref ID J:172473]

Wang HD; Xu S; Johns DG; Du Y; Quinn MT; Cayatte AJ; Cohen RA. 2001. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res 88(9):947-53. [PubMed: 11349005]  [MGI Ref ID J:115614]

Wang Z; Rui T; Yang M; Valiyeva F; Kvietys PR. 2008. Alveolar macrophages from septic mice promote polymorphonuclear leukocyte transendothelial migration via an endothelial cell Src kinase/NADPH oxidase pathway. J Immunol 181(12):8735-44. [PubMed: 19050294]  [MGI Ref ID J:142048]

Wang Z; Wei X; Liu K; Zhang X; Yang F; Zhang H; He Y; Zhu T; Li F; Shi W; Zhang Y; Xu H; Liu J; Yi F. 2013. NOX2 deficiency ameliorates cerebral injury through reduction of complexin II-mediated glutamate excitotoxicity in experimental stroke. Free Radic Biol Med 65:942-51. [PubMed: 23982049]  [MGI Ref ID J:205296]

Weissmann N; Zeller S; Schafer RU; Turowski C; Ay M; Quanz K; Ghofrani HA; Schermuly RT; Fink L; Seeger W; Grimminger F. 2006. Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol 34(4):505-13. [PubMed: 16357364]  [MGI Ref ID J:120187]

Westphalen K; Monma E; Islam MN; Bhattacharya J. 2012. Acid contact in the rodent pulmonary alveolus causes proinflammatory signaling by membrane pore formation. Am J Physiol Lung Cell Mol Physiol 303(2):L107-16. [PubMed: 22561462]  [MGI Ref ID J:191154]

White JK; Mastroeni P; Popoff JF; Evans CA; Blackwell JM. 2005. Slc11a1-mediated resistance to Salmonella enterica serovar Typhimurium and Leishmania donovani infections does not require functional inducible nitric oxide synthase or phagocyte oxidase activity. J Leukoc Biol 77(3):311-20. [PubMed: 15601666]  [MGI Ref ID J:97453]

Wiese M; Gerlach RG; Popp I; Matuszak J; Mahapatro M; Castiglione K; Chakravortty D; Willam C; Hensel M; Bogdan C; Jantsch J. 2012. Hypoxia-mediated impairment of the mitochondrial respiratory chain inhibits the bactericidal activity of macrophages. Infect Immun 80(4):1455-66. [PubMed: 22252868]  [MGI Ref ID J:182549]

Wilkie RP; Vissers MC; Dragunow M; Hampton MB. 2007. A functional NADPH oxidase prevents caspase involvement in the clearance of phagocytic neutrophils. Infect Immun 75(7):3256-63. [PubMed: 17438039]  [MGI Ref ID J:122425]

Williams CD; Bajt ML; Sharpe MR; McGill MR; Farhood A; Jaeschke H. 2014. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol Appl Pharmacol 275(2):122-33. [PubMed: 24440789]  [MGI Ref ID J:211933]

Wipke BT; Allen PM. 2001. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol 167(3):1601-8. [PubMed: 11466382]  [MGI Ref ID J:120467]

Woo H; Okamoto S; Guiney D; Gunn JS; Fierer J. 2008. A Model of Salmonella Colitis with Features of Diarrhea in SLC11A1 Wild-Type Mice. PLoS ONE 3(2):e1603. [PubMed: 18270590]  [MGI Ref ID J:132186]

Wood KC; Hebbel RP; Granger DN. 2005. Endothelial cell NADPH oxidase mediates the cerebral microvascular dysfunction in sickle cell transgenic mice. FASEB J 19(8):989-91. [PubMed: 15923406]  [MGI Ref ID J:128246]

Woods LT; Camden JM; Batek JM; Petris MJ; Erb L; Weisman GA. 2012. P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. Am J Physiol Cell Physiol 303(7):C790-801. [PubMed: 22875784]  [MGI Ref ID J:192784]

Wu DC; Re DB; Nagai M; Ischiropoulos H; Przedborski S. 2006. The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci U S A 103(32):12132-7. [PubMed: 16877542]  [MGI Ref ID J:111782]

Wu J; Xu H; Yang M; Martin CM; Kvietys PR; Rui T. 2009. NADPH oxidase contributes to conversion of cardiac myocytes to a proinflammatory phenotype in sepsis. Free Radic Biol Med 46(10):1338-45. [PubMed: 19249346]  [MGI Ref ID J:147879]

Wu J; Yan Z; Schwartz DE; Yu J; Malik AB; Hu G. 2013. Activation of NLRP3 Inflammasome in Alveolar Macrophages Contributes to Mechanical Stretch-Induced Lung Inflammation and Injury. J Immunol 190(7):3590-9. [PubMed: 23436933]  [MGI Ref ID J:194745]

Wuthrich M; Filutowicz HI; Warner T; Klein BS. 2002. Requisite elements in vaccine immunity to Blastomyces dermatitidis: plasticity uncovers vaccine potential in immune-deficient hosts. J Immunol 169(12):6969-76. [PubMed: 12471131]  [MGI Ref ID J:118419]

Xiang FL; Lu X; Strutt B; Hill DJ; Feng Q. 2010. NOX2 deficiency protects against streptozotocin-induced beta-cell destruction and development of diabetes in mice. Diabetes 59(10):2603-11. [PubMed: 20627937]  [MGI Ref ID J:169344]

Xiang M; Shi X; Li Y; Xu J; Yin L; Xiao G; Scott MJ; Billiar TR; Wilson MA; Fan J. 2011. Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J Immunol 187(9):4809-17. [PubMed: 21940680]  [MGI Ref ID J:179453]

Xu W; Xin L; Soong L; Zhang K. 2011. Sphingolipid degradation by Leishmania major is required for its resistance to acidic pH in the mammalian host. Infect Immun 79(8):3377-87. [PubMed: 21576322]  [MGI Ref ID J:175272]

Xue B; Beltz TG; Johnson RF; Guo F; Hay M; Johnson AK. 2012. PVN adenovirus-siRNA injections silencing either NOX2 or NOX4 attenuate aldosterone/NaCl-induced hypertension in mice. Am J Physiol Heart Circ Physiol 302(3):H733-41. [PubMed: 22140041]  [MGI Ref ID J:182464]

Xue X; Pech NK; Shelley WC; Srour EF; Yoder MC; Dinauer MC. 2010. Antibody targeting KIT as pretransplantation conditioning in immunocompetent mice. Blood 116(24):5419-22. [PubMed: 20813896]  [MGI Ref ID J:167421]

Yang CS; Kim JJ; Lee SJ; Hwang JH; Lee CH; Lee MS; Jo EK. 2013. TLR3-triggered reactive oxygen species contribute to inflammatory responses by activating signal transducer and activator of transcription-1. J Immunol 190(12):6368-77. [PubMed: 23670194]  [MGI Ref ID J:204850]

Yang CW; Strong BS; Miller MJ; Unanue ER. 2010. Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants. J Immunol 185(5):2927-34. [PubMed: 20679530]  [MGI Ref ID J:163248]

Yang S; Porter VA; Cornfield DN; Milla C; Panoskaltsis-Mortari A; Blazar BR; Haddad IY. 2001. Effects of oxidant stress on inflammation and survival of iNOS knockout mice after marrow transplantation. Am J Physiol Lung Cell Mol Physiol 281(4):L922-30. [PubMed: 11557596]  [MGI Ref ID J:72096]

Yao H; Edirisinghe I; Yang SR; Rajendrasozhan S; Kode A; Caito S; Adenuga D; Rahman I. 2008. Genetic ablation of NADPH oxidase enhances susceptibility to cigarette smoke-induced lung inflammation and emphysema in mice. Am J Pathol 172(5):1222-37. [PubMed: 18403597]  [MGI Ref ID J:134306]

Yeligar SM; Harris FL; Hart CM; Brown LA. 2012. Ethanol induces oxidative stress in alveolar macrophages via upregulation of NADPH oxidases. J Immunol 188(8):3648-57. [PubMed: 22412195]  [MGI Ref ID J:184073]

Yi L; Liu Q; Orandle MS; Sadiq-Ali S; Koontz SM; Choi U; Torres-Velez FJ; Jackson SH. 2012. p47(phox) directs murine macrophage cell fate decisions. Am J Pathol 180(3):1049-58. [PubMed: 22222227]  [MGI Ref ID J:181955]

Yokota H; Narayanan SP; Zhang W; Liu H; Rojas M; Xu Z; Lemtalsi T; Nagaoka T; Yoshida A; Brooks SE; Caldwell RW; Caldwell RB. 2011. Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. Invest Ophthalmol Vis Sci 52(11):8123-31. [PubMed: 21917939]  [MGI Ref ID J:189492]

Youn JY; Gao L; Cai H. 2012. The p47phox- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 55(7):2069-79. [PubMed: 22549734]  [MGI Ref ID J:186449]

Yu G; Bolon M; Laird DW; Tyml K. 2010. Hypoxia and reoxygenation-induced oxidant production increase in microvascular endothelial cells depends on connexin40. Free Radic Biol Med 49(6):1008-13. [PubMed: 20541007]  [MGI Ref ID J:164462]

Zhang A; Jia Z; Wang N; Tidwell TJ; Yang T. 2011. Relative contributions of mitochondria and NADPH oxidase to deoxycorticosterone acetate-salt hypertension in mice. Kidney Int 80(1):51-60. [PubMed: 21368743]  [MGI Ref ID J:194724]

Zhang C; Hu JJ; Xia M; Boini KM; Brimson CA; Laperle LA; Li PL. 2010. Protection of podocytes from hyperhomocysteinemia-induced injury by deletion of the gp91phox gene. Free Radic Biol Med 48(8):1109-17. [PubMed: 20116427]  [MGI Ref ID J:158832]

Zhang Q; Matsuzaki I; Chatterjee S; Fisher AB. 2005. Activation of endothelial NADPH oxidase during normoxic lung ischemia is KATP channel dependent. Am J Physiol Lung Cell Mol Physiol 289(6):L954-61. [PubMed: 16280460]  [MGI Ref ID J:105015]

Zhang W; Baban B; Rojas M; Tofigh S; Virmani SK; Patel C; Behzadian MA; Romero MJ; Caldwell RW; Caldwell RB. 2009. Arginase activity mediates retinal inflammation in endotoxin-induced uveitis. Am J Pathol 175(2):891-902. [PubMed: 19590038]  [MGI Ref ID J:150788]

Zhang WJ; Wei H; Frei B. 2009. Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo. Free Radic Biol Med 46(6):791-8. [PubMed: 19124074]  [MGI Ref ID J:145980]

Zhang WJ; Wei H; Tien YT; Frei B. 2011. Genetic ablation of phagocytic NADPH oxidase in mice limits TNFalpha-induced inflammation in the lungs but not other tissues. Free Radic Biol Med 50(11):1517-25. [PubMed: 21376114]  [MGI Ref ID J:172087]

Zhao Y; McLaughlin D; Robinson E; Harvey AP; Hookham MB; Shah AM; McDermott BJ; Grieve DJ. 2010. Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Res 70(22):9287-97. [PubMed: 20884632]  [MGI Ref ID J:166074]

Zhu H; Shan L; Peng T. 2009. Rac1 mediates sex difference in cardiac tumor necrosis factor-alpha expression via NADPH oxidase-ERK1/2/p38 MAPK pathway in endotoxemia. J Mol Cell Cardiol 47(2):264-74. [PubMed: 19450605]  [MGI Ref ID J:151343]

Zoller EE; Lykens JE; Terrell CE; Aliberti J; Filipovich AH; Henson PM; Jordan MB. 2011. Hemophagocytosis causes a consumptive anemia of inflammation. J Exp Med 208(6):1203-14. [PubMed: 21624938]  [MGI Ref ID J:176823]

van de Loo FA; Bennink MB; Arntz OJ; Smeets RL; Lubberts E; Joosten LA; van Lent PL; Coenen-de Roo CJ; Cuzzocrea S; Segal BH; Holland SM; van den Berg WB. 2003. Deficiency of NADPH oxidase components p47phox and gp91phox caused granulomatous synovitis and increased connective tissue destruction in experimental arthritis models. Am J Pathol 163(4):1525-37. [PubMed: 14507659]  [MGI Ref ID J:109364]

von Bargen K; Wohlmann J; Taylor GA; Utermohlen O; Haas A. 2011. Nitric Oxide-Mediated Intracellular Growth Restriction of Pathogenic Rhodococcus equi Can Be Prevented by Iron. Infect Immun 79(5):2098-111. [PubMed: 21383050]  [MGI Ref ID J:171938]

von Loewenich FD; Scorpio DG; Reischl U; Dumler JS; Bogdan C. 2004. Frontline: control of Anaplasma phagocytophilum, an obligate intracellular pathogen, in the absence of inducible nitric oxide synthase, phagocyte NADPH oxidase, tumor necrosis factor, Toll-like receptor (TLR)2 and TLR4, or the TLR adaptor molecule MyD88. Eur J Immunol 34(7):1789-97. [PubMed: 15214027]  [MGI Ref ID J:90727]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX30

Colony Maintenance

Mating SystemHomozygote x Hemizygote         (Female x Male)   01-MAR-06
Breeding Considerations This strain is a good breeder.
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)GenderGenotypes Provided
3 weeks $120.80MaleHemizygous for Cybbtm1Din  
4 weeks $120.80MaleHemizygous for Cybbtm1Din  
5 weeks $120.80MaleHemizygous for Cybbtm1Din  
6 weeks $126.25MaleHemizygous for Cybbtm1Din  
7 weeks $131.70MaleHemizygous for Cybbtm1Din  
8 weeks $137.15MaleHemizygous for Cybbtm1Din  
3 weeks $120.80FemaleHomozygous for Cybbtm1Din  
4 weeks $120.80FemaleHomozygous for Cybbtm1Din  
5 weeks $120.80FemaleHomozygous for Cybbtm1Din  
6 weeks $126.25FemaleHomozygous for Cybbtm1Din  
7 weeks $131.70FemaleHomozygous for Cybbtm1Din  
8 weeks $137.15FemaleHomozygous for Cybbtm1Din  
Price per Pair (US dollars $)Pair Genotype
$252.50Homozygous for Cybbtm1Din x Hemizygous for Cybbtm1Din  

Standard Supply

Level 4. Up to 10 mice. Larger quantities or custom orders arranged upon request. Expected delivery up to one to three months.

Supply Notes

  • Shipped at a specific age in weeks. Mice at a precise age in days, littermates and retired breeders are also available.

Cryopreserved

Frozen Products

Price (US dollars $)
Frozen Embryo $1650.00

Standard Supply

Level 4. Up to 10 mice. Larger quantities or custom orders arranged upon request. Expected delivery up to one to three months.

Supply Notes

  • Cryopreserved Embryos
    Available to most shipping destinations1
    This strain is also available as cryopreserved embryos2. Orders for cryopreserved embryos may be placed with our Customer Service Department. Experienced technicians at The Jackson Laboratory have recovered frozen embryos of this strain successfully. We will provide you enough embryos to perform two embryo transfers. The Jackson Laboratory does not guarantee successful recovery at your facility. For complete information on purchasing embryos, please visit our Cryopreserved Embryos web page.

    1 Shipments cannot be made to Australia due to Australian government import restrictions.
    2 Embryos for most strains are cryopreserved at the two cell stage while some strains are cryopreserved at the eight cell stage. If this information is important to you, please contact Customer Service.
Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Weeks of AgePrice per mouse (US dollars $)GenderGenotypes Provided
3 weeks $157.10MaleHemizygous for Cybbtm1Din  
4 weeks $157.10MaleHemizygous for Cybbtm1Din  
5 weeks $157.10MaleHemizygous for Cybbtm1Din  
6 weeks $164.20MaleHemizygous for Cybbtm1Din  
7 weeks $171.30MaleHemizygous for Cybbtm1Din  
8 weeks $178.30MaleHemizygous for Cybbtm1Din  
3 weeks $157.10FemaleHomozygous for Cybbtm1Din  
4 weeks $157.10FemaleHomozygous for Cybbtm1Din  
5 weeks $157.10FemaleHomozygous for Cybbtm1Din  
6 weeks $164.20FemaleHomozygous for Cybbtm1Din  
7 weeks $171.30FemaleHomozygous for Cybbtm1Din  
8 weeks $178.30FemaleHomozygous for Cybbtm1Din  
Price per Pair (US dollars $)Pair Genotype
$328.30Homozygous for Cybbtm1Din x Hemizygous for Cybbtm1Din  

Standard Supply

Level 4. Up to 10 mice. Larger quantities or custom orders arranged upon request. Expected delivery up to one to three months.

Supply Notes

  • Shipped at a specific age in weeks. Mice at a precise age in days, littermates and retired breeders are also available.

Cryopreserved

Frozen Products

Price (US dollars $)
Frozen Embryo $2145.00

Standard Supply

Level 4. Up to 10 mice. Larger quantities or custom orders arranged upon request. Expected delivery up to one to three months.

Supply Notes

  • Cryopreserved Embryos
    Available to most shipping destinations1
    This strain is also available as cryopreserved embryos2. Orders for cryopreserved embryos may be placed with our Customer Service Department. Experienced technicians at The Jackson Laboratory have recovered frozen embryos of this strain successfully. We will provide you enough embryos to perform two embryo transfers. The Jackson Laboratory does not guarantee successful recovery at your facility. For complete information on purchasing embryos, please visit our Cryopreserved Embryos web page.

    1 Shipments cannot be made to Australia due to Australian government import restrictions.
    2 Embryos for most strains are cryopreserved at the two cell stage while some strains are cryopreserved at the eight cell stage. If this information is important to you, please contact Customer Service.
View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Level 4. Up to 10 mice. Larger quantities or custom orders arranged upon request. Expected delivery up to one to three months.

Control Information

  Control
   See control note: C57BL/6J (Stock No. 000664) mice may be used as controls.
   000664 C57BL/6J
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)