Strain Name:

129-Ifngr1tm1Agt/J

Stock Number:

002702

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Use Restrictions Apply, see Terms of Use

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names 129-Ifngrtm1Agt/J    (Changed: 03-JAN-05 )
Type Mutant Strain; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Specieslaboratory mouse
 
Donating InvestigatorDr. Michel Aguet,   Swiss Inst. for Experimental Cancer Res.

Appearance
white-bellied agouti
Related Genotype: Aw/Aw

Description
Mice homozygous for the Ifngr1tm1Agt targeted mutation are viable and fertile with no overt abnormalities. They have normal T cell responses but are defective in natural resistance, evidenced by an increased susceptibility to infection by Listeria monocytogenes; and vaccinia virus.

Development
A targeting vector containing a neo cassette was used to disrupt exon 5. The construct was electroporated into 129S7/SvEvBrd-Hprt1+ derived AB1 embryonic stem (ES) cells. Correctly targeted ES cells were injected into recipient blastocysts. The resulting chimeric male animals were crossed to 129SvEv female mice.

Control Information

  Control
   002448 129S1/SvImJ (approximate)
 
  Considerations for Choosing Controls

Related Strains

View Strains carrying   Ifngr1tm1Agt     (3 strains)

Strains carrying other alleles of Ifngr1
025394   C57BL/6N-Ifngr1tm1.1Rds/J
025545   C57BL/6N-Ifngr1tm1.2Rds/J
View Strains carrying other alleles of Ifngr1     (2 strains)

Additional Web Information

New 129 Nomenclature Bulletin

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Helicobacter Pylori Infection, Susceptibility to   (IFNGR1)
Hepatitis B Virus, Susceptibility to   (IFNGR1)
Immunodeficiency 27a; IMD27A   (IFNGR1)
Immunodeficiency 27b; IMD27B   (IFNGR1)
Mycobacterium Tuberculosis, Susceptibility to   (IFNGR1)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Ifngr1tm1Agt/Ifngr1tm1Agt

        involves: 129S7/SvEvBrd
  • mortality/aging
  • increased sensitivity to induced morbidity/mortality
    • in MOG35-55-treated mice   (MGI Ref ID J:38363)
  • increased susceptibility to bacterial infection induced morbidity/mortality
    • in mice infected with Listeria monocytogenes   (MGI Ref ID J:174397)
  • increased susceptibility to viral infection induced morbidity/mortality
    • MCMV-treated mice exhibit a 5-fold lower LD50 compared with similarly treated wild-type mice   (MGI Ref ID J:115139)
  • immune system phenotype
  • abnormal immunoglobulin level
    • levels of IgG2a and IgG2b neutralizing antibodies are reduced relative to controls after secondary infection with Ectromelia virus   (MGI Ref ID J:101427)
    • the ratio of IgG1 to IgG2a is increased in MOG35-55-treated mice compared to in similarly treated wild-type mice   (MGI Ref ID J:38363)
    • decreased IgG2a level
      • in MOG35-55-treated mice   (MGI Ref ID J:38363)
  • abnormal response to infection
    • MCMV-infected mice develop chronic arteritis/aortitis, chronic productive infection, and reactivation of latency in spleen and lung explants unlike similarly treated wild-type mice   (MGI Ref ID J:115139)
    • increased susceptibility to bacterial infection
      • mice infected with Listeria monocytogenes (Lm) exhibit decreased survival, increased bacterial burden in the spleen and liver, increased IL6 serum levels, and increased numbers of inflammatory abscesses in the liver with parenchyma destruction and necrosis in perivascular regions compared with similarly treated wild-type mice   (MGI Ref ID J:174397)
      • increased susceptibility to bacterial infection induced morbidity/mortality
        • in mice infected with Listeria monocytogenes   (MGI Ref ID J:174397)
    • increased susceptibility to parasitic infection
      • T. gondii-exposed mice exhibit increased bacterial load, decreased activation of cerebral blood vessel endothelial cells, and reduced microglial activation compared with similarly treated wild-type mice   (MGI Ref ID J:114203)
      • however, recruitment and intracerebral cell movement is normal in T. gondii-exposed mice   (MGI Ref ID J:114203)
    • increased susceptibility to viral infection
      • slightly more susceptible to MCMV viral infection than controls   (MGI Ref ID J:81243)
      • increased susceptibility to Ectromelia virus   (MGI Ref ID J:101427)
      • 100% mortality by day 6-12 after primary infection infection   (MGI Ref ID J:101427)
      • elevated virus titers in all organs tested after primary infection but much improved after secondary infections   (MGI Ref ID J:101427)
      • survive secondary infections   (MGI Ref ID J:101427)
      • increased susceptibility to viral infection induced morbidity/mortality
        • MCMV-treated mice exhibit a 5-fold lower LD50 compared with similarly treated wild-type mice   (MGI Ref ID J:115139)
  • abnormal uterine NK cell morphology
    • the golgi apparatus is poorly developed, the rough ER is disorganized, and numerous mitochondria are seen in uNK cell at implantation sites at gestational day 12   (MGI Ref ID J:56503)
    • increased uterine NK cell number
      • after day 10 of gestation increased numbers of uNK cells are found around the metrial gland compared to wild-type controls   (MGI Ref ID J:56503)
  • abnormal uterine NK cell physiology
    • decrease in the number of apoptotic uNK cells in the metrial gland afte day 10 of gestation   (MGI Ref ID J:56503)
    • uNK cells at implantation sites fail to become heavily granulated and have poorly developed golgi apparati   (MGI Ref ID J:56503)
  • arteritis
    • chronic in MCMV-infected mice   (MGI Ref ID J:115139)
    • aortitis
      • chronic in MCMV-infected mice   (MGI Ref ID J:115139)
  • decreased circulating tumor necrosis factor level
    • 10-fold in mice treated with LPS and D-GalN   (MGI Ref ID J:17878)
  • decreased susceptibility to endotoxin shock
    • mice tolerate up to 100 ug of LPS without demonstrating clinical symptoms unlike wild-type mice   (MGI Ref ID J:17878)
    • LPS-treated mice exhibit a faster recovery of total leukocyte counts compared with similarly treated wild-type mice   (MGI Ref ID J:17878)
    • mice treated with LPS and D-GalN exhibit resistance to endotoxic shock, including reduced serum TNF levels (10-fold) and hepatocellular necrosis, compared with similarly treated wild-type mice   (MGI Ref ID J:17878)
  • increased circulating interleukin-6 level
    • in mice infected with Listeria monocytogenes   (MGI Ref ID J:174397)
  • increased interferon-gamma secretion
    • in the spleen cells of MOG35-55-treated mice   (MGI Ref ID J:38363)
  • increased susceptibility to experimental autoimmune encephalomyelitis
    • including increased mortality, spleen cell proliferation, spleen cell levels of IFN-gamma and TNF, and IgG1 to IgG2a ratio following treatment with MOG35-55   (MGI Ref ID J:38363)
  • increased tumor necrosis factor secretion
    • in the spleen cells of MOG35-55-treated mice   (MGI Ref ID J:38363)
  • reproductive system phenotype
  • abnormal uterine NK cell physiology
    • decrease in the number of apoptotic uNK cells in the metrial gland afte day 10 of gestation   (MGI Ref ID J:56503)
    • uNK cells at implantation sites fail to become heavily granulated and have poorly developed golgi apparati   (MGI Ref ID J:56503)
  • abnormal uterus morphology
    • metrial glands are enlarged compared to wild-type controls   (MGI Ref ID J:56503)
    • abnormal maternal decidual layer morphology
      • after gestational day 10 the entire mesometrial decidua becomes progressively necrotic   (MGI Ref ID J:56503)
      • by gestational day 14 only a thin layer of tissue remains   (MGI Ref ID J:56503)
      • abnormal uterine NK cell morphology
        • the golgi apparatus is poorly developed, the rough ER is disorganized, and numerous mitochondria are seen in uNK cell at implantation sites at gestational day 12   (MGI Ref ID J:56503)
        • increased uterine NK cell number
          • after day 10 of gestation increased numbers of uNK cells are found around the metrial gland compared to wild-type controls   (MGI Ref ID J:56503)
  • liver/biliary system phenotype
  • increased hepatocyte proliferation
    • in the spleen cells of MOG35-55-treated mice   (MGI Ref ID J:38363)
  • liver abscess
    • greater in mice infected with Listeria monocytogenes than in similarly treated wild-type mice   (MGI Ref ID J:174397)
  • cardiovascular system phenotype
  • abnormal tumor vascularization
    • mice fail to reject transplanted tumor cells originating from Ifngr1tm1Agt homozygotes or prevent blood vessel formation into the tumor mass unlike similarly treated wild-type mice   (MGI Ref ID J:63089)
    • however, T cell responses to the tumors are normal   (MGI Ref ID J:63089)
  • abnormal vascular endothelial cell physiology
    • T. gondii-exposed mice exhibit decreased activation of cerebral blood vessel endothelial cells compared with similarly treated wild-type mice   (MGI Ref ID J:114203)
    • however, recruitment and intracerebral cell movement is normal in T. gondii-exposed mice   (MGI Ref ID J:114203)
  • arteritis
    • chronic in MCMV-infected mice   (MGI Ref ID J:115139)
    • aortitis
      • chronic in MCMV-infected mice   (MGI Ref ID J:115139)
  • tumorigenesis
  • abnormal tumor vascularization
    • mice fail to reject transplanted tumor cells originating from Ifngr1tm1Agt homozygotes or prevent blood vessel formation into the tumor mass unlike similarly treated wild-type mice   (MGI Ref ID J:63089)
    • however, T cell responses to the tumors are normal   (MGI Ref ID J:63089)
  • altered tumor susceptibility
    • mice fail to prevent blood vessel formation into tumor masses from tumor cells originating from Ifngr1tm1Agt homozygotes unlike similarly treated wild-type mice   (MGI Ref ID J:63089)
  • embryogenesis phenotype
  • abnormal maternal decidual layer morphology
    • after gestational day 10 the entire mesometrial decidua becomes progressively necrotic   (MGI Ref ID J:56503)
    • by gestational day 14 only a thin layer of tissue remains   (MGI Ref ID J:56503)
    • abnormal uterine NK cell morphology
      • the golgi apparatus is poorly developed, the rough ER is disorganized, and numerous mitochondria are seen in uNK cell at implantation sites at gestational day 12   (MGI Ref ID J:56503)
      • increased uterine NK cell number
        • after day 10 of gestation increased numbers of uNK cells are found around the metrial gland compared to wild-type controls   (MGI Ref ID J:56503)
  • hematopoietic system phenotype
  • abnormal immunoglobulin level
    • levels of IgG2a and IgG2b neutralizing antibodies are reduced relative to controls after secondary infection with Ectromelia virus   (MGI Ref ID J:101427)
    • the ratio of IgG1 to IgG2a is increased in MOG35-55-treated mice compared to in similarly treated wild-type mice   (MGI Ref ID J:38363)
    • decreased IgG2a level
      • in MOG35-55-treated mice   (MGI Ref ID J:38363)
  • abnormal uterine NK cell morphology
    • the golgi apparatus is poorly developed, the rough ER is disorganized, and numerous mitochondria are seen in uNK cell at implantation sites at gestational day 12   (MGI Ref ID J:56503)
    • increased uterine NK cell number
      • after day 10 of gestation increased numbers of uNK cells are found around the metrial gland compared to wild-type controls   (MGI Ref ID J:56503)
  • abnormal uterine NK cell physiology
    • decrease in the number of apoptotic uNK cells in the metrial gland afte day 10 of gestation   (MGI Ref ID J:56503)
    • uNK cells at implantation sites fail to become heavily granulated and have poorly developed golgi apparati   (MGI Ref ID J:56503)
  • homeostasis/metabolism phenotype
  • decreased circulating tumor necrosis factor level
    • 10-fold in mice treated with LPS and D-GalN   (MGI Ref ID J:17878)
  • increased circulating interleukin-6 level
    • in mice infected with Listeria monocytogenes   (MGI Ref ID J:174397)
  • cellular phenotype
  • increased hepatocyte proliferation
    • in the spleen cells of MOG35-55-treated mice   (MGI Ref ID J:38363)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Ifngr1tm1Agt/Ifngr1tm1Agt

        involves: 129S7/SvEvBrd * C57BL/6
  • mortality/aging
  • increased susceptibility to viral infection induced morbidity/mortality
    • in vesicular somatitis virus (VSV)-infected mice   (MGI Ref ID J:63815)
  • immune system phenotype
  • abnormal cytotoxic T cell physiology
    • mice exhibit a slightly reduced CTL response against lymphocytic choriomeningitis virus (LCMV) infection with enhanced viral replication compared with similarly treated wild-type mice   (MGI Ref ID J:63815)
  • decreased IgG2a level
    • in trinitrophenyl-conjugated ovalbumin-treated mice   (MGI Ref ID J:63815)
  • decreased IgG3 level
    • in trinitrophenyl-conjugated ovalbumin-treated mice   (MGI Ref ID J:63815)
  • decreased susceptibility to experimental autoimmune myasthenia gravis
    • following induction of experimental myasthenia gravis, mice exhibit less severe disease compared with wild-type mice   (MGI Ref ID J:53577)
  • increased interferon-gamma secretion
    • stimulation of splenocytes with an antigen or a mitogen induces a higher production of IFN-gamma than in wild-type   (MGI Ref ID J:99347)
  • increased interleukin-6 secretion
    • stimulation of splenocytes with an antigen induces a higher production of IL-4, IL-6, IL-13 and IFN-gamma than in wild-type   (MGI Ref ID J:99347)
    • stimulation of splenocytes with a mitogen induces a higher production of IL-13   (MGI Ref ID J:99347)
  • increased splenocyte proliferation
    • splenocytes proliferate against the antigen and a mitogen more vigorously than those from wild-type   (MGI Ref ID J:99347)
  • increased susceptibility to bacterial infection
    • following infection with Listeria monocytogenes, mice exhibit 100-fold increase in bacterial titers in the liver and 10-fold in the spleen compared to in similarly treated wild-type mice   (MGI Ref ID J:63815)
  • increased susceptibility to experimental autoimmune uveoretinitis
    • exhibit increased incidence and severity of induced experimental autoimmune uveoretinitis compared to wild-type (59.3% vs. 40% of wild-type)   (MGI Ref ID J:99347)
    • upon uveoretinitis induction, see a significant infiltration of eosinophils into the eyes compared to wild-type   (MGI Ref ID J:99347)
  • increased susceptibility to viral infection
    • mice infected with vesicular somatitis virus (VSV) exhibit a 100- to 1000-fold increase in viral titers and increased lethality compared with similarly treated wild-type mice   (MGI Ref ID J:63815)
    • mice exhibit a slightly reduced CTL response against lymphocytic choriomeningitis virus (LCMV) infection with enhanced viral replication compared with similarly treated wild-type mice   (MGI Ref ID J:63815)
    • increased susceptibility to viral infection induced morbidity/mortality
      • in vesicular somatitis virus (VSV)-infected mice   (MGI Ref ID J:63815)
  • tumorigenesis
  • altered tumor susceptibility
    • tumor growth in tumor-bearing mice treated with Th-17-polarized cells from Tg(Tcra,Tcrb)9Rest cells is minimally delayed, and develop progressive disease   (MGI Ref ID J:138466)
  • liver/biliary system phenotype
  • *normal* liver/biliary system phenotype
    • mice show no liver injury on treatment with HBsAg-specific Th1 cells and HBsAg   (MGI Ref ID J:120559)
  • hematopoietic system phenotype
  • abnormal cytotoxic T cell physiology
    • mice exhibit a slightly reduced CTL response against lymphocytic choriomeningitis virus (LCMV) infection with enhanced viral replication compared with similarly treated wild-type mice   (MGI Ref ID J:63815)
  • decreased IgG2a level
    • in trinitrophenyl-conjugated ovalbumin-treated mice   (MGI Ref ID J:63815)
  • decreased IgG3 level
    • in trinitrophenyl-conjugated ovalbumin-treated mice   (MGI Ref ID J:63815)
  • increased splenocyte proliferation
    • splenocytes proliferate against the antigen and a mitogen more vigorously than those from wild-type   (MGI Ref ID J:99347)
  • cellular phenotype
  • increased splenocyte proliferation
    • splenocytes proliferate against the antigen and a mitogen more vigorously than those from wild-type   (MGI Ref ID J:99347)

Ifngr1tm1Agt/Ifngr1tm1Agt

        B6.129S7-Ifngr1tm1Agt/J
  • mortality/aging
  • increased sensitivity to induced morbidity/mortality
    • after induction of graft versus host disease   (MGI Ref ID J:138728)
  • immune system phenotype
  • abnormal circulating chemokine level
    • alphaGalCer-treated mice fail to exhibit an increase in circulating CXCL9 unlike similarly treated wild-type mice   (MGI Ref ID J:152785)
  • abnormal lymphopoiesis
    • after induction of graft versus host disease, mice exhibit reduced numbers and proliferation of CD8+, CD4+, CD11b+, and CD19+ cells in the spleen compared with similarly treated wild-type cells   (MGI Ref ID J:138728)
  • decreased circulating interleukin-12 level
    • 6 hours following treatment with alphaGalCer compared to in similarly treated wild-type mice   (MGI Ref ID J:152785)
  • decreased lymphocyte cell number
    • after induction of graft versus host disease, mice exhibit reduced numbers of CD8+, CD4+, CD11b+, and CD19+ cells in the spleen compared with similarly treated wild-type cells   (MGI Ref ID J:138728)
    • decreased CD4-positive, alpha beta T cell number
      • after induction of graft versus host disease   (MGI Ref ID J:138728)
    • decreased CD8-positive, alpha-beta T cell number
      • after induction of graft versus host disease   (MGI Ref ID J:138728)
  • decreased susceptibility to bacterial infection
    • bacille Calmette-Guerin (BCG)-inoculated mice exhibit reduced depressive-like behavior in a forced swim and tail suspension tests and indoleamine 2,3-dioxygenase (IDO) activity compared with similarly treated wild-type mice   (MGI Ref ID J:147443)
  • increased interferon-gamma secretion
    • in the spleen and bone marrow after induction of graft versus host disease   (MGI Ref ID J:138728)
  • increased susceptibility to graft versus host disease
    • after induction of graft versus host disease, mice exhibit early mortality, increased lung and skin pathology but decreased intestine pathology, increased IFN-gamma production in the spleen and bone marrow, increased spleen and bone marrow aplasia, decreased proliferation of hematopoietic stem/progenitor cells, and decreased lymphopoiesis compared with similarly treated wild-type mice   (MGI Ref ID J:138728)
  • spleen hypoplasia
    • after induction of graft versus host disease   (MGI Ref ID J:138728)
  • tumorigenesis
  • increased metastatic potential
    • following treatment with alphaGalCer, mice fail to exhibit a reduction in the number of B16F10 tumors metastasizing to the lungs unlike similarly treated wild-type mice   (MGI Ref ID J:152785)
    • mice exhibit increased metastasis of B16F10 tumors to the lungs compared with wild-type mice   (MGI Ref ID J:152785)
  • homeostasis/metabolism phenotype
  • abnormal circulating chemokine level
    • alphaGalCer-treated mice fail to exhibit an increase in circulating CXCL9 unlike similarly treated wild-type mice   (MGI Ref ID J:152785)
  • decreased circulating interleukin-12 level
    • 6 hours following treatment with alphaGalCer compared to in similarly treated wild-type mice   (MGI Ref ID J:152785)
  • hematopoietic system phenotype
  • abnormal hematopoietic system physiology
    • after induction of graft versus host disease, proliferation of hematopoietic stem/progenitor cells compared to in similarly treated wild-type mice   (MGI Ref ID J:138728)
  • abnormal lymphopoiesis
    • after induction of graft versus host disease, mice exhibit reduced numbers and proliferation of CD8+, CD4+, CD11b+, and CD19+ cells in the spleen compared with similarly treated wild-type cells   (MGI Ref ID J:138728)
  • decreased bone marrow cell number
    • after induction of graft versus host disease   (MGI Ref ID J:138728)
  • decreased lymphocyte cell number
    • after induction of graft versus host disease, mice exhibit reduced numbers of CD8+, CD4+, CD11b+, and CD19+ cells in the spleen compared with similarly treated wild-type cells   (MGI Ref ID J:138728)
    • decreased CD4-positive, alpha beta T cell number
      • after induction of graft versus host disease   (MGI Ref ID J:138728)
    • decreased CD8-positive, alpha-beta T cell number
      • after induction of graft versus host disease   (MGI Ref ID J:138728)
  • spleen hypoplasia
    • after induction of graft versus host disease   (MGI Ref ID J:138728)
  • behavior/neurological phenotype
  • abnormal depression-related behavior
    • bacille Calmette-Guerin (BCG)-inoculated mice exhibit reduced depressive-like behavior in a forced swim and tail suspension tests compared with similarly treated wild-type mice   (MGI Ref ID J:147443)

Ifngr1tm1Agt/Ifngr1tm1Agt

        involves: 129S7/SvEvBrd * DBA/1OlaHsd
  • immune system phenotype
  • decreased IgG2a level
    • mice treated with collagen type 2 exhibit a 2- to 3-fold decrease early and 5- to 10-fold decrease at day 54 and 96, respectively, in anti-collagen type 2 IgG2a isotypes compared to in similarly treated wild-type mice   (MGI Ref ID J:40634)
  • increased susceptibility to induced arthritis
    • with increased incidence, mean arthritic score, and maximal arthritic score and decreased anti-collagen type 2 IgG2a isotypes   (MGI Ref ID J:40634)
    • however, T cell response to induced arthritis is normal   (MGI Ref ID J:40634)
  • skeleton phenotype
  • increased susceptibility to induced arthritis
    • with increased incidence, mean arthritic score, and maximal arthritic score and decreased anti-collagen type 2 IgG2a isotypes   (MGI Ref ID J:40634)
    • however, T cell response to induced arthritis is normal   (MGI Ref ID J:40634)
  • hematopoietic system phenotype
  • decreased IgG2a level
    • mice treated with collagen type 2 exhibit a 2- to 3-fold decrease early and 5- to 10-fold decrease at day 54 and 96, respectively, in anti-collagen type 2 IgG2a isotypes compared to in similarly treated wild-type mice   (MGI Ref ID J:40634)

Ifngr1tm1Agt/Ifngr1tm1Agt

        B6.129S7-Ifngr1tm1Agt
  • homeostasis/metabolism phenotype
  • decreased physiological sensitivity to xenobiotic
    • cuprizone-treated mice exhibit decreased initial demyelination, enhanced remyelination, decreased loss of mature oligodendrocyte, increased early appearance of oligodendroglial precursor cells, and delayed macrophage/microglia infiltration compared with similarly treated wild-type mice   (MGI Ref ID J:108669)
    • however, by the end of the toxic insult demyelination is normal   (MGI Ref ID J:108669)
  • nervous system phenotype
  • abnormal myelination
    • initially, cuprizone-treated mice exhibit decreased demyelination compared with similarly treated wild-type mice   (MGI Ref ID J:108669)
    • remyelination following cuprizone treatment is enhanced compared to in similarly treated wild-type mice   (MGI Ref ID J:108669)
    • however, by the end of the toxic insult demyelination is normal   (MGI Ref ID J:108669)
  • behavior/neurological phenotype
  • abnormal pain threshold
    • following sciatic nerve injury, mice exhibit less mechanical allodynia compared with similarly treated wild-type mice   (MGI Ref ID J:158280)
  • integument phenotype
  • abnormal pain threshold
    • following sciatic nerve injury, mice exhibit less mechanical allodynia compared with similarly treated wild-type mice   (MGI Ref ID J:158280)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Ifngr1tm1Agt related

Cancer Research
Growth Factors/Receptors/Cytokines

Immunology, Inflammation and Autoimmunity Research
Growth Factors/Receptors/Cytokines

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Ifngr1tm1Agt
Allele Name targeted mutation 1, Michel Aguet
Allele Type Targeted (Null/Knockout)
Common Name(s) G129; IFN-gamma R-; IFN-gamma R0; IFN-gamma-R KO; IFN-gammaR KO; IFN-gammaR-; IFN-gammaR1-; IFN-gammaR0; IFN-gammaRalpha_; IFNgR KO; IFNgammaR KO; IFn type II receptor; Ifngr-; Ifngr1-;
Mutation Made ByDr. Michel Aguet,   Swiss Inst. for Experimental Cancer Res.
Strain of Origin129S7/SvEvBrd-Hprt<+>
ES Cell Line NameAB1
ES Cell Line Strain129S7/SvEvBrd-Hprt<+>
Gene Symbol and Name Ifngr1, interferon gamma receptor 1
Chromosome 10
Gene Common Name(s) CD119; IFN-gamma R; IFN-gammaR; IFNGR; IMD27A; IMD27B; Ifgr; Nktar;
Molecular Note Insertion of a neomycin cassette into exon V, which encodes an extracellular membrane-proximal portion of the receptor. [MGI Ref ID J:61321] [MGI Ref ID J:63815] [MGI Ref ID J:96036]

Genotyping

Genotyping Information

Genotyping Protocols

Ifngr1tm1Agt, High Resolution Melting


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Huang S; Hendriks W; Althage A; Hemmi S; Bluethmann H; Kamijo R; Vilcek J; Zinkernagel RM; Aguet M. 1993. Immune response in mice that lack the interferon-gamma receptor [see comments] Science 259(5102):1742-5. [PubMed: 8456301]  [MGI Ref ID J:63815]

Additional References

Halloran PF; Afrouzian M; Ramassar V; Urmson J; Zhu LF; Helms LM; Solez K; Kneteman NM. 2001. Interferon-gamma acts directly on rejecting renal allografts to prevent graft necrosis. Am J Pathol 158(1):215-26. [PubMed: 11141495]  [MGI Ref ID J:68439]

Kamijo R; Le J; Shapiro D; Havell EA; Huang S; Aguet M; Bosland M; Vilcek J. 1993. Mice that lack the interferon-gamma receptor have profoundly altered responses to infection with Bacillus Calmette-Guerin and subsequent challenge with lipopolysaccharide. J Exp Med 178(4):1435-40. [PubMed: 8376946]  [MGI Ref ID J:47412]

Wiseman AC; Pietra BA; Kelly BP; Rayat GR; Rizeq M; Gill RG. 2001. Donor IFN-gamma receptors are critical for acute CD4(+) T cell-mediated cardiac allograft rejection. J Immunol 167(9):5457-63. [PubMed: 11673565]  [MGI Ref ID J:72664]

Ifngr1tm1Agt related

Abbas K; Breton J; Picot CR; Quesniaux V; Bouton C; Drapier JC. 2009. Signaling events leading to peroxiredoxin 5 up-regulation in immunostimulated macrophages. Free Radic Biol Med 47(6):794-802. [PubMed: 19540914]  [MGI Ref ID J:152566]

Abril C; Engels M; Liman A; Hilbe M; Albini S; Franchini M; Suter M; Ackermann M. 2004. Both viral and host factors contribute to neurovirulence of bovine herpesviruses 1 and 5 in interferon receptor-deficient mice. J Virol 78(7):3644-53. [PubMed: 15016885]  [MGI Ref ID J:89073]

Alimi E; Huang S; Brazillet MP; Charreire J. 1998. Experimental autoimmune thyroiditis (EAT) in mice lacking the IFN-gamma receptor gene. Eur J Immunol 28(1):201-8. [PubMed: 9485200]  [MGI Ref ID J:45901]

Alsharifi M; Lobigs M; Simon MM; Kersten A; Muller K; Koskinen A; Lee E; Mullbacher A. 2006. NK cell-mediated immunopathology during an acute viral infection of the CNS. Eur J Immunol 36(4):887-96. [PubMed: 16541469]  [MGI Ref ID J:114787]

Aly S; Laskay T; Mages J; Malzan A; Lang R; Ehlers S. 2007. Interferon-gamma-dependent mechanisms of mycobacteria-induced pulmonary immunopathology: the role of angiostasis and CXCR3-targeted chemokines for granuloma necrosis. J Pathol 212(3):295-305. [PubMed: 17534845]  [MGI Ref ID J:122272]

Amani V; Vigario AM; Belnoue E; Marussig M; Fonseca L; Mazier D; Renia L. 2000. Involvement of IFN-gamma receptor-medicated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection Eur J Immunol 30(6):1646-55. [PubMed: 10898501]  [MGI Ref ID J:62732]

Andersson A; Dai WJ; Di Santo JP; Brombacher F. 1998. Early IFN-gamma production and innate immunity during Listeria monocytogenes infection in the absence of NK cells. J Immunol 161(10):5600-6. [PubMed: 9820538]  [MGI Ref ID J:115035]

Anguita J; Thomas V; Samanta S; Persinski R; Hernanz C; Barthold SW; Fikrig E. 2001. Borrelia burgdorferi-induced inflammation facilitates spirochete adaptation and variable major protein-like sequence locus recombination. J Immunol 167(6):3383-90. [PubMed: 11544329]  [MGI Ref ID J:118032]

Arnold CN; Pirie E; Dosenovic P; McInerney GM; Xia Y; Wang N; Li X; Siggs OM; Karlsson Hedestam GB; Beutler B. 2012. A forward genetic screen reveals roles for Nfkbid, Zeb1, and Ruvbl2 in humoral immunity. Proc Natl Acad Sci U S A :. [PubMed: 22761313]  [MGI Ref ID J:185495]

Ashkar AA; Croy BA. 1999. Interferon-gamma contributes to the normalcy of murine pregnancy. Biol Reprod 61(2):493-502. [PubMed: 10411532]  [MGI Ref ID J:56503]

Ashkar AA; Di Santo JP; Croy BA. 2000. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy [see comments] J Exp Med 192(2):259-70. [PubMed: 10899912]  [MGI Ref ID J:63645]

Axtell RC; de Jong BA; Boniface K; van der Voort LF; Bhat R; De Sarno P; Naves R; Han M; Zhong F; Castellanos JG; Mair R; Christakos A; Kolkowitz I; Katz L; Killestein J; Polman CH; de Waal Malefyt R; Steinman L; Raman C. 2010. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 16(4):406-12. [PubMed: 20348925]  [MGI Ref ID J:159305]

Baldridge MT; King KY; Boles NC; Weksberg DC; Goodell MA. 2010. Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 465(7299):793-7. [PubMed: 20535209]  [MGI Ref ID J:161947]

Barber EM; Fazzari M; Pollard JW. 2005. Th1 cytokines are essential for placental immunity to Listeria monocytogenes. Infect Immun 73(10):6322-31. [PubMed: 16177303]  [MGI Ref ID J:104232]

Barkhuizen M; Magez S; Atkinson RA; Brombacher F. 2007. Interleukin-12p70-dependent interferon- gamma production is crucial for resistance in African trypanosomiasis. J Infect Dis 196(8):1253-60. [PubMed: 17955445]  [MGI Ref ID J:145097]

Barton ES; Lutzke ML; Rochford R; Virgin HW 4th. 2005. Alpha/beta interferons regulate murine gammaherpesvirus latent gene expression and reactivation from latency. J Virol 79(22):14149-60. [PubMed: 16254350]  [MGI Ref ID J:102489]

Batten M; Li J; Yi S; Kljavin NM; Danilenko DM; Lucas S; Lee J; de Sauvage FJ; Ghilardi N. 2006. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 7(9):929-36. [PubMed: 16906167]  [MGI Ref ID J:112662]

Becskei A; Grusby MJ. 2007. Contribution of IL-12R mediated feedback loop to Th1 cell differentiation. FEBS Lett 581(27):5199-206. [PubMed: 17950290]  [MGI Ref ID J:127745]

Belyaev NN; Brown DE; Diaz AI; Rae A; Jarra W; Thompson J; Langhorne J; Potocnik AJ. 2010. Induction of an IL7-R(+)c-Kit(hi) myelolymphoid progenitor critically dependent on IFN-gamma signaling during acute malaria. Nat Immunol 11(6):477-85. [PubMed: 20431620]  [MGI Ref ID J:160614]

Berner V; Liu H; Zhou Q; Alderson KL; Sun K; Weiss JM; Back TC; Longo DL; Blazar BR; Wiltrout RH; Welniak LA; Redelman D; Murphy WJ. 2007. IFN-gamma mediates CD4+ T-cell loss and impairs secondary antitumor responses after successful initial immunotherapy. Nat Med 13(3):354-60. [PubMed: 17334371]  [MGI Ref ID J:121706]

Bezbradica JS; Rosenstein RK; DeMarco RA; Brodsky I; Medzhitov R. 2014. A role for the ITAM signaling module in specifying cytokine-receptor functions. Nat Immunol 15(4):333-42. [PubMed: 24608040]  [MGI Ref ID J:209615]

Biondo C; Midiri A; Gambuzza M; Gerace E; Falduto M; Galbo R; Bellantoni A; Beninati C; Teti G; Leanderson T; Mancuso G. 2008. IFN-alpha/beta signaling is required for polarization of cytokine responses toward a protective type 1 pattern during experimental cryptococcosis. J Immunol 181(1):566-73. [PubMed: 18566423]  [MGI Ref ID J:137360]

Bitsaktsis C; Huntington J; Winslow G. 2004. Production of IFN-gamma by CD4 T cells is essential for resolving ehrlichia infection. J Immunol 172(11):6894-901. [PubMed: 15153508]  [MGI Ref ID J:90518]

Blais ME; Brochu S; Giroux M; Belanger MP; Dulude G; Sekaly RP; Perreault C. 2008. Why T cells of thymic versus extrathymic origin are functionally different. J Immunol 180(4):2299-312. [PubMed: 18250439]  [MGI Ref ID J:131997]

Blasius AL; Giurisato E; Cella M; Schreiber RD; Shaw AS; Colonna M. 2006. Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol 177(5):3260-5. [PubMed: 16920966]  [MGI Ref ID J:139501]

Bohatschek M; Kloss CU; Hristova M; Pfeffer K; Raivich G. 2004. Microglial major histocompatibility complex glycoprotein-1 in the axotomized facial motor nucleus: regulation and role of tumor necrosis factor receptors 1 and 2. J Comp Neurol 470(4):382-99. [PubMed: 14961564]  [MGI Ref ID J:109424]

Bold TD; Ernst JD. 2012. CD4+ T cell-dependent IFN-gamma production by CD8+ effector T cells in Mycobacterium tuberculosis infection. J Immunol 189(5):2530-6. [PubMed: 22837486]  [MGI Ref ID J:189869]

Boyman O; Hefti HP; Conrad C; Nickoloff BJ; Suter M; Nestle FO. 2004. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J Exp Med 199(5):731-6. [PubMed: 14981113]  [MGI Ref ID J:90470]

Briesemeister D; Friese C; Isern CC; Dietz E; Blankenstein T; Thoene-Reineke C; Kammertoens T. 2012. Differences in serum cytokine levels between wild type mice and mice with a targeted mutation suggests necessity of using control littermates. Cytokine 60(3):626-33. [PubMed: 22902947]  [MGI Ref ID J:192770]

Brillard E; Pallandre JR; Chalmers D; Ryffel B; Radlovic A; Seilles E; Rohrlich PS; Pivot X; Tiberghien P; Saas P; Borg C. 2007. Natural killer cells prevent CD28-mediated Foxp3 transcription in CD4+CD25- T lymphocytes. Exp Hematol 35(3):416-25. [PubMed: 17309822]  [MGI Ref ID J:123184]

Brisebois M; Zehntner SP; Estrada J; Owens T; Fournier S. 2006. A pathogenic role for CD8+ T cells in a spontaneous model of demyelinating disease. J Immunol 177(4):2403-11. [PubMed: 16888002]  [MGI Ref ID J:138386]

Britto CJ; Liu Q; Curran DR; Patham B; Dela Cruz CS; Cohn L. 2013. Short palate, lung, and nasal epithelial clone-1 is a tightly regulated airway sensor in innate and adaptive immunity. Am J Respir Cell Mol Biol 48(6):717-24. [PubMed: 23470624]  [MGI Ref ID J:211747]

Brown N; Jacobs M; Parida SK; Botha T; Santos A; Fick L; Gicquel B; Jackson M; Quesniaux V; Ryffel B. 2005. Reduced local growth and spread but preserved pathogenicity of a DeltapurC Mycobacterium tuberculosis auxotrophic mutant in gamma interferon receptor-deficient mice after aerosol infection. Infect Immun 73(1):666-70. [PubMed: 15618214]  [MGI Ref ID J:94835]

Burdeinick-Kerr R; Wind J; Griffin DE. 2007. Synergistic roles of antibody and interferon in noncytolytic clearance of Sindbis virus from different regions of the central nervous system. J Virol 81(11):5628-36. [PubMed: 17376910]  [MGI Ref ID J:153321]

Burman AC; Banovic T; Kuns RD; Clouston AD; Stanley AC; Morris ES; Rowe V; Bofinger H; Skoczylas R; Raffelt N; Fahy O; McColl SR; Engwerda CR; McDonald KP; Hill GR. 2007. IFNgamma differentially controls the development of idiopathic pneumonia syndrome and GVHD of the gastrointestinal tract. Blood 110(3):1064-72. [PubMed: 17449800]  [MGI Ref ID J:145394]

Cantin E; Tanamachi B; Openshaw H; Mann J; Clarke K. 1999. Gamma interferon (IFN-gamma) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-gamma ligand null-mutant mice. J Virol 73(6):5196-200. [PubMed: 10233988]  [MGI Ref ID J:54949]

Capitini CM; Herby S; Milliron M; Anver MR; Mackall CL; Fry TJ. 2009. Bone marrow deficient in IFN-{gamma} signaling selectively reverses GVHD-associated immunosuppression and enhances a tumor-specific GVT effect. Blood 113(20):5002-9. [PubMed: 19258593]  [MGI Ref ID J:148958]

Car BD; Eng VM; Schnyder B; Ozmen L; Huang S; Gallay P; Heumann D; Aguet M; Ryffel B. 1994. Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med 179(5):1437-44. [PubMed: 8163930]  [MGI Ref ID J:17878]

Carow B; Ye X; Gavier-Widen D; Bhuju S; Oehlmann W; Singh M; Skold M; Ignatowicz L; Yoshimura A; Wigzell H; Rottenberg ME. 2011. Silencing suppressor of cytokine signaling-1 (SOCS1) in macrophages improves Mycobacterium tuberculosis control in an interferon-gamma (IFN-gamma)-dependent manner. J Biol Chem 286(30):26873-87. [PubMed: 21622562]  [MGI Ref ID J:175389]

Carter SL; Muller M; Manders PM; Campbell IL. 2007. Induction of the genes for Cxcl9 and Cxcl10 is dependent on IFN-gamma but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia in vitro. Glia 55(16):1728-39. [PubMed: 17902170]  [MGI Ref ID J:156296]

Caturegli P; Hejazi M; Suzuki K; Dohan O; Carrasco N; Kohn LD; Rose NR. 2000. Hypothyroidism in transgenic mice expressing IFN-gamma in the thyroid. Proc Natl Acad Sci U S A 97(4):1719-24. [PubMed: 10677524]  [MGI Ref ID J:126141]

Cenci E; Mencacci A; Del Sero G; d'Ostiani CF; Mosci P; Bacci A; Montagnoli C; Kopf M; Romani L. 1998. IFN-gamma is required for IL-12 responsiveness in mice with Candida albicans infection. J Immunol 161(7):3543-50. [PubMed: 9759875]  [MGI Ref ID J:115201]

Chan JM; Bhinder G; Sham HP; Ryz N; Huang T; Bergstrom KS; Vallance BA. 2013. CD4+ T Cells Drive Goblet Cell Depletion during Citrobacter rodentium Infection. Infect Immun 81(12):4649-58. [PubMed: 24101690]  [MGI Ref ID J:202672]

Chang PP; Lee SK; Hu X; Davey G; Duan G; Cho JH; Karupiah G; Sprent J; Heath WR; Bertram EM; Vinuesa CG. 2012. Breakdown in repression of IFN-gamma mRNA leads to accumulation of self-reactive effector CD8+ T cells. J Immunol 189(2):701-10. [PubMed: 22685317]  [MGI Ref ID J:189550]

Chen GH; McDonald RA; Wells JC; Huffnagle GB; Lukacs NW; Toews GB. 2005. The gamma interferon receptor is required for the protective pulmonary inflammatory response to Cryptococcus neoformans. Infect Immun 73(3):1788-96. [PubMed: 15731080]  [MGI Ref ID J:96679]

Chen ML; Yan BS; Kozoriz D; Weiner HL. 2009. Novel CD8+ Treg suppress EAE by TGF-beta- and IFN-gamma-dependent mechanisms. Eur J Immunol 39(12):3423-35. [PubMed: 19768696]  [MGI Ref ID J:155492]

Ching S; He L; Lai W; Quan N. 2005. IL-1 type I receptor plays a key role in mediating the recruitment of leukocytes into the central nervous system. Brain Behav Immun 19(2):127-37. [PubMed: 15664785]  [MGI Ref ID J:105351]

Choi BK; Kim YH; Kim CH; Kim MS; Kim KH; Oh HS; Lee MJ; Lee DK; Vinay DS; Kwon BS. 2010. Peripheral 4-1BB signaling negatively regulates NK cell development through IFN-gamma. J Immunol 185(3):1404-11. [PubMed: 20610645]  [MGI Ref ID J:162245]

Choi J; Ziga ED; Ritchey J; Collins L; Prior JL; Cooper ML; Piwnica-Worms D; DiPersio JF. 2012. IFNgammaR signaling mediates alloreactive T-cell trafficking and GVHD. Blood 120(19):4093-103. [PubMed: 22972985]  [MGI Ref ID J:191286]

Christensen JE; Simonsen S; Fenger C; Sorensen MR; Moos T; Christensen JP; Finsen B; Thomsen AR. 2009. Fulminant lymphocytic choriomeningitis virus-induced inflammation of the CNS involves a cytokine-chemokine-cytokine-chemokine cascade. J Immunol 182(2):1079-87. [PubMed: 19124751]  [MGI Ref ID J:143550]

Coers J; Gondek DC; Olive AJ; Rohlfing A; Taylor GA; Starnbach MN. 2011. Compensatory T cell responses in IRG-deficient mice prevent sustained Chlamydia trachomatis infections. PLoS Pathog 7(6):e1001346. [PubMed: 21731484]  [MGI Ref ID J:182190]

Cohn L; Herrick C; Niu N; Homer R; Bottomly K. 2001. IL-4 promotes airway eosinophilia by suppressing IFN-gamma production: defining a novel role for IFN-gamma in the regulation of allergic airway inflammation. J Immunol 166(4):2760-7. [PubMed: 11160342]  [MGI Ref ID J:126916]

Collazo CM; Meierovics AI; De Pascalis R; Wu TH; Lyons CR; Elkins KL. 2009. T cells from lungs and livers of Francisella tularensis-immune mice control the growth of intracellular bacteria. Infect Immun 77(5):2010-21. [PubMed: 19237526]  [MGI Ref ID J:148524]

Cone RE; Li X; Sharafieh R; O'Rourke J; Vella AT. 2007. The suppression of delayed-type hypersensitivity by CD8+ regulatory T cells requires interferon-gamma. Immunology 120(1):112-9. [PubMed: 17052246]  [MGI Ref ID J:122316]

Conrad C; Boyman O; Tonel G; Tun-Kyi A; Laggner U; de Fougerolles A; Kotelianski V; Gardner H; Nestle FO. 2007. Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat Med 13(7):836-42. [PubMed: 17603494]  [MGI Ref ID J:125083]

Costigan M; Moss A; Latremoliere A; Johnston C; Verma-Gandhu M; Herbert TA; Barrett L; Brenner GJ; Vardeh D; Woolf CJ; Fitzgerald M. 2009. T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J Neurosci 29(46):14415-22. [PubMed: 19923276]  [MGI Ref ID J:158280]

Cowley SC; Hamilton E; Frelinger JA; Su J; Forman J; Elkins KL. 2005. CD4-CD8- T cells control intracellular bacterial infections both in vitro and in vivo. J Exp Med 202(2):309-19. [PubMed: 16027239]  [MGI Ref ID J:100513]

Coyle AJ; Tsuyuki S; Bertrand C; Huang S; Aguet M; Alkan SS; Anderson GP. 1996. Mice lacking the IFN-gamma receptor have impaired ability to resolve a lung eosinophilic inflammatory response associated with a prolonged capacity of T cells to exhibit a Th2 cytokine profile. J Immunol 156(8):2680-5. [PubMed: 8609383]  [MGI Ref ID J:110684]

Crow AR; Song S; Semple JW; Freedman J; Lazarus AH. 2007. A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood 109(1):155-8. [PubMed: 16954498]  [MGI Ref ID J:142178]

Curtsinger JM; Agarwal P; Lins DC; Mescher MF. 2012. Autocrine IFN-gamma promotes naive CD8 T cell differentiation and synergizes with IFN-alpha to stimulate strong function. J Immunol 189(2):659-68. [PubMed: 22706089]  [MGI Ref ID J:189538]

Dai WJ; Bartens W; Kohler G; Hufnagel M; Kopf M; Brombacher F. 1997. Impaired macrophage listericidal and cytokine activities are responsible for the rapid death of Listeria monocytogenes-infected IFN-gamma receptor-deficient mice. J Immunol 158(11):5297-304. [PubMed: 9164949]  [MGI Ref ID J:40632]

Day SL; Ramshaw IA; Ramsay AJ; Ranasinghe C. 2008. Differential effects of the type I interferons alpha4, beta, and epsilon on antiviral activity and vaccine efficacy. J Immunol 180(11):7158-66. [PubMed: 18490714]  [MGI Ref ID J:136349]

Deal EM; Lahl K; Narvaez CF; Butcher EC; Greenberg HB. 2013. Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses. J Clin Invest 123(6):2464-74. [PubMed: 23635775]  [MGI Ref ID J:201445]

Deckert-Schluter M; Bluethmann H; Kaefer N; Rang A; Schluter D. 1999. Interferon-gamma receptor-mediated but not tumor necrosis factor receptor type 1- or type 2-mediated signaling is crucial for the activation of cerebral blood vessel endothelial cells and microglia in murine Toxoplasma encephalitis. Am J Pathol 154(5):1549-61. [PubMed: 10329607]  [MGI Ref ID J:114203]

Delisle JS; Gaboury L; Belanger MP; Tasse E; Yagita H; Perreault C. 2008. Graft-versus-host disease causes failure of donor hematopoiesis and lymphopoiesis in interferon-gamma receptor-deficient hosts. Blood 112(5):2111-9. [PubMed: 18552211]  [MGI Ref ID J:138728]

Desvignes L; Ernst JD. 2009. Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31(6):974-85. [PubMed: 20064452]  [MGI Ref ID J:156175]

Desvignes L; Wolf AJ; Ernst JD. 2012. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J Immunol 188(12):6205-15. [PubMed: 22566567]  [MGI Ref ID J:188884]

Dibra D; Cutrera JJ; Li S. 2012. Coordination between TLR9 signaling in macrophages and CD3 signaling in T cells induces robust expression of IL-30. J Immunol 188(8):3709-15. [PubMed: 22407920]  [MGI Ref ID J:184078]

Do JS; Asosingh K; Baldwin WM 3rd; Min B. 2014. Cutting edge: IFN-gammaR signaling in non-T cell targets regulates T cell-mediated intestinal inflammation through multiple mechanisms. J Immunol 192(6):2537-41. [PubMed: 24523506]  [MGI Ref ID J:209920]

Do JS; Visperas A; Oh K; Stohlman SA; Min B. 2012. Memory CD4 T cells induce selective expression of IL-27 in CD8+ dendritic cells and regulate homeostatic naive T cell proliferation. J Immunol 188(1):230-7. [PubMed: 22116827]  [MGI Ref ID J:180589]

Drennan MB; Stijlemans B; Van den Abbeele J; Quesniaux VJ; Barkhuizen M; Brombacher F; De Baetselier P; Ryffel B; Magez S. 2005. The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88 dependent. J Immunol 175(4):2501-9. [PubMed: 16081822]  [MGI Ref ID J:107495]

Duley AK; Ploquin MJ; Eksmond U; Ammann CG; Messer RJ; Myers L; Hasenkrug KJ; Kassiotis G. 2012. Negative impact of IFN-gamma on early host immune responses to retroviral infection. J Immunol 189(5):2521-9. [PubMed: 22821964]  [MGI Ref ID J:189729]

Dunn GP; Bruce AT; Sheehan KC; Shankaran V; Uppaluri R; Bui JD; Diamond MS; Koebel CM; Arthur C; White JM; Schreiber RD. 2005. A critical function for type I interferons in cancer immunoediting. Nat Immunol 6(7):722-9. [PubMed: 15951814]  [MGI Ref ID J:99146]

Durbin JE; Fernandez-Sesma A; Lee CK; Rao TD; Frey AB; Moran TM; Vukmanovic S; Garcia-Sastre A; Levy DE. 2000. Type I IFN modulates innate and specific antiviral immunity. J Immunol 164(8):4220-8. [PubMed: 10754318]  [MGI Ref ID J:123432]

Durbin JE; Johnson TR; Durbin RK; Mertz SE; Morotti RA; Peebles RS; Graham BS. 2002. The role of IFN in respiratory syncytial virus pathogenesis. J Immunol 168(6):2944-52. [PubMed: 11884466]  [MGI Ref ID J:126678]

Ebrahimi B; Dutia BM; Brownstein DG; Nash AA. 2001. Murine gammaherpesvirus-68 infection causes multi-organ fibrosis and alters leukocyte trafficking in interferon-gamma receptor knockout mice. Am J Pathol 158(6):2117-25. [PubMed: 11395389]  [MGI Ref ID J:114409]

Echtenacher B; Freudenberg MA; Jack RS; Mannel DN. 2001. Differences in innate defense mechanisms in endotoxemia and polymicrobial septic peritonitis. Infect Immun 69(12):7271-6. [PubMed: 11705897]  [MGI Ref ID J:73132]

Eisenring M; vom Berg J; Kristiansen G; Saller E; Becher B. 2010. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat Immunol 11(11):1030-8. [PubMed: 20935648]  [MGI Ref ID J:166535]

El Fakhry Y; Achbarou A; Desportes I; Mazier D. 2001. Resistance to Encephalitozoon intestinalis is associated with interferon-gamma and interleukin-2 cytokines in infected mice. Parasite Immunol 23(6):297-303. [PubMed: 11412382]  [MGI Ref ID J:103905]

Eng VM; Car BD; Schnyder B; Lorenz M; Lugli S; Aguet M; Anderson TD; Ryffel B; Quesniaux VF. 1995. The stimulatory effects of interleukin (IL)-12 on hematopoiesis are antagonized by IL-12-induced interferon gamma in vivo. J Exp Med 181(5):1893-8. [PubMed: 7722464]  [MGI Ref ID J:24954]

Eriksson U; Kurrer MO; Bingisser R; Eugster HP; Saremaslani P; Follath F; Marsch S; Widmer U. 2001. Lethal autoimmune myocarditis in interferon-gamma receptor-deficient mice: enhanced disease severity by impaired inducible nitric oxide synthase induction. Circulation 103(1):18-21. [PubMed: 11136679]  [MGI Ref ID J:133483]

Espejo C; Penkowa M; Saez-Torres I; Hidalgo J; Garcia A; Montalban X; Martinez-Caceres EM. 2002. Interferon-gamma regulates oxidative stress during experimental autoimmune encephalomyelitis. Exp Neurol 177(1):21-31. [PubMed: 12429207]  [MGI Ref ID J:79181]

Evans AG; Moser JM; Krug LT; Pozharskaya V; Mora AL; Speck SH. 2008. A gammaherpesvirus-secreted activator of Vbeta4+ CD8+ T cells regulates chronic infection and immunopathology. J Exp Med 205(3):669-84. [PubMed: 18332178]  [MGI Ref ID J:133376]

Everitt AR; Clare S; McDonald JU; Kane L; Harcourt K; Ahras M; Lall A; Hale C; Rodgers A; Young DB; Haque A; Billker O; Tregoning JS; Dougan G; Kellam P. 2013. Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model. PLoS One 8(11):e80723. [PubMed: 24278312]  [MGI Ref ID J:209781]

Fabis MJ; Scott GS; Kean RB; Koprowski H; Hooper DC. 2007. Loss of blood-brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models. Proc Natl Acad Sci U S A 104(13):5656-61. [PubMed: 17372191]  [MGI Ref ID J:120115]

Fang C; Miwa T; Shen H; Song WC. 2007. Complement-dependent enhancement of CD8+ T cell immunity to lymphocytic choriomeningitis virus infection in decay-accelerating factor-deficient mice. J Immunol 179(5):3178-86. [PubMed: 17709533]  [MGI Ref ID J:151828]

Fankhauser SC; Starnbach MN. 2014. PD-L1 limits the mucosal CD8+ T cell response to Chlamydia trachomatis. J Immunol 192(3):1079-90. [PubMed: 24353266]  [MGI Ref ID J:207317]

Feng N; Kim B; Fenaux M; Nguyen H; Vo P; Omary MB; Greenberg HB. 2008. Role of interferon in homologous and heterologous rotavirus infection in the intestines and extraintestinal organs of suckling mice. J Virol 82(15):7578-90. [PubMed: 18495762]  [MGI Ref ID J:153415]

Feuerer M; Eulenburg K; Loddenkemper C; Hamann A; Huehn J. 2006. Self-limitation of Th1-mediated inflammation by IFN-gamma. J Immunol 176(5):2857-63. [PubMed: 16493042]  [MGI Ref ID J:129422]

Fiette L; Aubert C; Muller U; Huang S; Aguet M; Brahic M; Bureau JF. 1995. Theiler's virus infection of 129Sv mice that lack the interferon alpha/beta or interferon gamma receptors. J Exp Med 181(6):2069-76. [PubMed: 7759999]  [MGI Ref ID J:25679]

Fisher Y; Strominger I; Biton S; Nemirovsky A; Baron R; Monsonego A. 2014. Th1 polarization of T cells injected into the cerebrospinal fluid induces brain immunosurveillance. J Immunol 192(1):92-102. [PubMed: 24307730]  [MGI Ref ID J:207169]

Florido M; Pearl JE; Solache A; Borges M; Haynes L; Cooper AM; Appelberg R. 2005. Gamma interferon-induced T-cell loss in virulent Mycobacterium avium infection. Infect Immun 73(6):3577-86. [PubMed: 15908387]  [MGI Ref ID J:99143]

Foulds KE; Rotte MJ; Paley MA; Singh B; Douek DC; Hill BJ; O'Shea JJ; Watford WT; Seder RA; Wu CY. 2008. IFN-gamma mediates the death of Th1 cells in a paracrine manner. J Immunol 180(2):842-9. [PubMed: 18178823]  [MGI Ref ID J:130963]

Frazer LC; Sullivan JE; Zurenski MA; Mintus M; Tomasak TE; Prantner D; Nagarajan UM; Darville T. 2013. CD4+ T cell expression of MyD88 is essential for normal resolution of Chlamydia muridarum genital tract infection. J Immunol 191(8):4269-79. [PubMed: 24038087]  [MGI Ref ID J:206277]

Fukushima A; Yamaguchi T; Ishida W; Fukata K; Udaka K; Ueno H. 2005. Mice lacking the IFN-gamma receptor or fyn develop severe experimental autoimmune uveoretinitis characterized by different immune responses. Immunogenetics 57(5):337-43. [PubMed: 15902435]  [MGI Ref ID J:99347]

Gangadharan B; Hoeve MA; Allen JE; Ebrahimi B; Rhind SM; Dutia BM; Nash AA. 2008. Murine gammaherpesvirus-induced fibrosis is associated with the development of alternatively activated macrophages. J Leukoc Biol 84(1):50-8. [PubMed: 18436582]  [MGI Ref ID J:137747]

Gao Y; Grassi F; Ryan MR; Terauchi M; Page K; Yang X; Weitzmann MN; Pacifici R. 2007. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 117(1):122-32. [PubMed: 17173138]  [MGI Ref ID J:117462]

Ge J; Gong YN; Xu Y; Shao F. 2012. Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. Proc Natl Acad Sci U S A 109(16):6193-8. [PubMed: 22474394]  [MGI Ref ID J:183609]

Geng D; Zheng L; Srivastava R; Asprodites N; Velasco-Gonzalez C; Davila E. 2010. When Toll-like receptor and T-cell receptor signals collide: a mechanism for enhanced CD8 T-cell effector function. Blood 116(18):3494-504. [PubMed: 20696947]  [MGI Ref ID J:166648]

Geserick P; Kaiser F; Klemm U; Kaufmann SH; Zerrahn J. 2004. Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif. Int Immunol 16(10):1535-48. [PubMed: 15351786]  [MGI Ref ID J:93660]

Gil MP; Bohn E; O'Guin AK; Ramana CV; Levine B; Stark GR; Virgin HW; Schreiber RD. 2001. Biologic consequences of Stat1-independent IFN signaling. Proc Natl Acad Sci U S A 98(12):6680-5. [PubMed: 11390995]  [MGI Ref ID J:81243]

Glickstein L; Edelstein M; Dong JZ. 2001. Gamma interferon is not required for arthritis resistance in the murine lyme disease model. Infect Immun 69(6):3737-43. [PubMed: 11349038]  [MGI Ref ID J:69540]

Globisch T; Steiner N; Fulle L; Lukacs-Kornek V; Degrandi D; Dresing P; Alferink J; Lang R; Pfeffer K; Beyer M; Weighardt H; Kurts C; Ulas T; Schultze JL; Forster I. 2014. Cytokine-dependent regulation of dendritic cell differentiation in the splenic microenvironment. Eur J Immunol 44(2):500-10. [PubMed: 24136200]  [MGI Ref ID J:208732]

Glomski IJ; Corre JP; Mock M; Goossens PL. 2007. Cutting Edge: IFN-gamma-producing CD4 T lymphocytes mediate spore-induced immunity to capsulated Bacillus anthracis. J Immunol 178(5):2646-50. [PubMed: 17312104]  [MGI Ref ID J:144120]

Goes N; Urmson J; Hobart M; Halloran PF. 1996. The unique role of interferon-gamma in the regulation of MHC expression on arterial endothelium. Transplantation 62(12):1889-94. [PubMed: 8990382]  [MGI Ref ID J:37405]

Goldszmid RS; Caspar P; Rivollier A; White S; Dzutsev A; Hieny S; Kelsall B; Trinchieri G; Sher A. 2012. NK cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 36(6):1047-59. [PubMed: 22749354]  [MGI Ref ID J:187406]

Gondek DC; Roan NR; Starnbach MN. 2009. T cell responses in the absence of IFN-gamma exacerbate uterine infection with Chlamydia trachomatis. J Immunol 183(2):1313-9. [PubMed: 19561106]  [MGI Ref ID J:151656]

Grabie N; Gotsman I; DaCosta R; Pang H; Stavrakis G; Butte MJ; Keir ME; Freeman GJ; Sharpe AH; Lichtman AH. 2007. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation 116(18):2062-71. [PubMed: 17938288]  [MGI Ref ID J:142996]

Green AM; Difazio R; Flynn JL. 2013. IFN-gamma from CD4 T Cells Is Essential for Host Survival and Enhances CD8 T Cell Function during Mycobacterium tuberculosis Infection. J Immunol 190(1):270-7. [PubMed: 23233724]  [MGI Ref ID J:190810]

Grob P; Schijns VE; van den Broek MF; Cox SP; Ackermann M; Suter M. 1999. Role of the individual interferon systems and specific immunity in mice in controlling systemic dissemination of attenuated pseudorabies virus infection. J Virol 73(6):4748-54. [PubMed: 10233935]  [MGI Ref ID J:110066]

Guo X; Stroup SE; Houpt ER. 2008. Persistence of Entamoeba histolytica infection in CBA mice owes to intestinal IL-4 production and inhibition of protective IFN-gamma. Mucosal Immunol 1(2):139-46. [PubMed: 19079171]  [MGI Ref ID J:191927]

Gupta S; Pablo AM; Jiang Xc; Wang N; Tall AR; Schindler C. 1997. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 99(11):2752-61. [PubMed: 9169506]  [MGI Ref ID J:40921]

Guy-Grand D; DiSanto JP; Henchoz P; Malassis-Seris M; Vassalli P. 1998. Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL-12, IFN-gamma, TNF) in the induction of epithelial cell death and renewal. Eur J Immunol 28(2):730-44. [PubMed: 9521083]  [MGI Ref ID J:114275]

Gysemans CA; Pavlovic D; Bouillon R; Eizirik DL; Mathieu C. 2001. Dual role of interferon-gamma signalling pathway in sensitivity of pancreatic beta cells to immune destruction. Diabetologia 44(5):567-74. [PubMed: 11380074]  [MGI Ref ID J:107148]

Haas C; Ryffel B; Le Hir M. 1997. IFN-gamma is essential for the development of autoimmune glomerulonephritis in MRL/Ipr mice. J Immunol 158(11):5484-91. [PubMed: 9164971]  [MGI Ref ID J:40633]

Haas C; Ryffel B; Le Hir M. 1998. IFN-gamma receptor deletion prevents autoantibody production and glomerulonephritis in lupus-prone (NZB x NZW)F1 mice. J Immunol 160(8):3713-8. [PubMed: 9558072]  [MGI Ref ID J:111168]

Haas C; Ryffel B; LeHir M. 1995. Crescentic glomerulonephritis in interferon-gamma receptor deficient mice. J Inflamm 47(4):206-213. [PubMed: 9144077]  [MGI Ref ID J:40531]

Hall AO; Beiting DP; Tato C; John B; Oldenhove G; Lombana CG; Pritchard GH; Silver JS; Bouladoux N; Stumhofer JS; Harris TH; Grainger J; Wojno ED; Wagage S; Roos DS; Scott P; Turka LA; Cherry S; Reiner SL; Cua D; Belkaid Y; Elloso MM; Hunter CA. 2012. The Cytokines Interleukin 27 and Interferon-gamma Promote Distinct Treg Cell Populations Required to Limit Infection-Induced Pathology. Immunity 37(3):511-23. [PubMed: 22981537]  [MGI Ref ID J:187660]

Hancock WW; Szaba FM; Berggren KN; Parent MA; Mullarky IK; Pearl J; Cooper AM; Ely KH; Woodland DL; Kim IJ; Blackman MA; Johnson LL; Smiley ST. 2004. Intact type 1 immunity and immune-associated coagulative responses in mice lacking IFN gamma-inducible fibrinogen-like protein 2. Proc Natl Acad Sci U S A 101(9):3005-10. [PubMed: 14976252]  [MGI Ref ID J:88648]

Haring JS; Badovinac VP; Olson MR; Varga SM; Harty JT. 2005. In vivo generation of pathogen-specific Th1 cells in the absence of the IFN-gamma receptor. J Immunol 175(5):3117-22. [PubMed: 16116201]  [MGI Ref ID J:113254]

Haring JS; Harty JT. 2006. Aberrant contraction of antigen-specific CD4 T cells after infection in the absence of gamma interferon or its receptor. Infect Immun 74(11):6252-63. [PubMed: 16966404]  [MGI Ref ID J:113551]

Harrington LE; Hatton RD; Mangan PR; Turner H; Murphy TL; Murphy KM; Weaver CT. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123-32. [PubMed: 16200070]  [MGI Ref ID J:112601]

Harris DP; Goodrich S; Gerth AJ; Peng SL; Lund FE. 2005. Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J Immunol 174(11):6781-90. [PubMed: 15905519]  [MGI Ref ID J:99038]

He D; Li H; Yusuf N; Elmets CA; Li J; Mountz JD; Xu H. 2010. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol 184(5):2281-8. [PubMed: 20118280]  [MGI Ref ID J:159654]

He D; Wu L; Kim HK; Li H; Elmets CA; Xu H. 2009. IL-17 and IFN-gamma mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. J Immunol 183(2):1463-70. [PubMed: 19553527]  [MGI Ref ID J:151406]

Hegazy AN; Peine M; Helmstetter C; Panse I; Frohlich A; Bergthaler A; Flatz L; Pinschewer DD; Radbruch A; Lohning M. 2010. Interferons direct Th2 cell reprogramming to generate a stable GATA-3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions. Immunity 32(1):116-28. [PubMed: 20079668]  [MGI Ref ID J:157702]

Hermans IF; Silk JD; Gileadi U; Salio M; Mathew B; Ritter G; Schmidt R; Harris AL; Old L; Cerundolo V. 2003. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171(10):5140-7. [PubMed: 14607913]  [MGI Ref ID J:119212]

Hess C; Winkler A; Lorenz AK; Holecska V; Blanchard V; Eiglmeier S; Schoen AL; Bitterling J; Stoehr AD; Petzold D; Schommartz T; Mertes MM; Schoen CT; Tiburzy B; Herrmann A; Kohl J; Manz RA; Madaio MP; Berger M; Wardemann H; Ehlers M. 2013. T cell-independent B cell activation induces immunosuppressive sialylated IgG antibodies. J Clin Invest 123(9):3788-96. [PubMed: 23979161]  [MGI Ref ID J:201583]

Hess J; Ladel C; Miko D; Kaufmann SH. 1996. Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol 156(9):3321-6. [PubMed: 8617956]  [MGI Ref ID J:32521]

Hofer MJ; Li W; Lim SL; Campbell IL. 2010. The type I interferon-alpha mediates a more severe neurological disease in the absence of the canonical signaling molecule interferon regulatory factor 9. J Neurosci 30(3):1149-57. [PubMed: 20089923]  [MGI Ref ID J:157694]

Howe CL; Ure D; Adelson JD; LaFrance-Corey R; Johnson A; Rodriguez M. 2007. CD8+ T cells directed against a viral peptide contribute to loss of motor function by disrupting axonal transport in a viral model of fulminant demyelination. J Neuroimmunol 188(1-2):13-21. [PubMed: 17493690]  [MGI Ref ID J:128863]

Hron JD; Peng SL. 2004. Type I IFN protects against murine lupus. J Immunol 173(3):2134-42. [PubMed: 15265950]  [MGI Ref ID J:92084]

Huang L; Li L; Klonowski KD; Tompkins SM; Tripp RA; Mellor AL. 2013. Induction and role of indoleamine 2,3 dioxygenase in mouse models of influenza a virus infection. PLoS One 8(6):e66546. [PubMed: 23785507]  [MGI Ref ID J:203475]

Ishii KJ; Ito S; Tamura T; Hemmi H; Conover J; Ozato K; Akira S; Klinman DM. 2005. CpG-activated Thy1.2+ dendritic cells protect against lethal Listeria monocytogenes infection. Eur J Immunol 35(8):2397-405. [PubMed: 16047338]  [MGI Ref ID J:100431]

Ito T; Nishiyama C; Nakano N; Nishiyama M; Usui Y; Takeda K; Kanada S; Fukuyama K; Akiba H; Tokura T; Hara M; Tsuboi R; Ogawa H; Okumura K. 2009. Roles of PU.1 in monocyte- and mast cell-specific gene regulation: PU.1 transactivates CIITA pIV in cooperation with IFN-gamma. Int Immunol 21(7):803-16. [PubMed: 19502584]  [MGI Ref ID J:150283]

Iwai Y; Hemmi H; Mizenina O; Kuroda S; Suda K; Steinman RM. 2008. An IFN-gamma-IL-18 signaling loop accelerates memory CD8+ T cell proliferation. PLoS ONE 3(6):e2404. [PubMed: 18545704]  [MGI Ref ID J:137144]

Jasperson LK; Bucher C; Panoskaltsis-Mortari A; Mellor AL; Munn DH; Blazar BR. 2009. Inducing the tryptophan catabolic pathway, indoleamine 2,3-dioxygenase (IDO), for suppression of graft-versus-host disease (GVHD) lethality. Blood 114(24):5062-70. [PubMed: 19828695]  [MGI Ref ID J:155467]

Jeitziner SM; Walton SM; Torti N; Oxenius A. 2013. Adoptive transfer of cytomegalovirus-specific effector CD4(+) T cells provides antiviral protection from murine CMV infection. Eur J Immunol 43(11):2886-95. [PubMed: 23921569]  [MGI Ref ID J:203005]

Jeon S; St Leger AJ; Cherpes TL; Sheridan BS; Hendricks RL. 2013. PD-L1/B7-H1 regulates the survival but not the function of CD8+ T cells in herpes simplex virus type 1 latently infected trigeminal ganglia. J Immunol 190(12):6277-86. [PubMed: 23656736]  [MGI Ref ID J:204865]

Jeon SB; Yoon HJ; Chang CY; Koh HS; Jeon SH; Park EJ. 2010. Galectin-3 Exerts Cytokine-Like Regulatory Actions through the JAK-STAT Pathway. J Immunol 185(11):7037-46. [PubMed: 20980634]  [MGI Ref ID J:166149]

Johnson TR; Mertz SE; Gitiban N; Hammond S; Legallo R; Durbin RK; Durbin JE. 2005. Role for innate IFNs in determining respiratory syncytial virus immunopathology. J Immunol 174(11):7234-41. [PubMed: 15905569]  [MGI Ref ID J:99027]

Jupelli M; Guentzel MN; Meier PA; Zhong G; Murthy AK; Arulanandam BP. 2008. Endogenous IFN-{gamma} Production Is Induced and Required for Protective Immunity against Pulmonary Chlamydial Infection in Neonatal Mice. J Immunol 180(6):4148-55. [PubMed: 18322226]  [MGI Ref ID J:132958]

Kageyama Y; Koide Y; Yoshida A; Uchijima M; Arai T; Miyamoto S; Ozeki T; Hiyoshi M; Kushida K; Inoue T. 1998. Reduced susceptibility to collagen-induced arthritis in mice deficient in IFN-gamma receptor. J Immunol 161(3):1542-8. [PubMed: 9686622]  [MGI Ref ID J:119066]

Kamijo R; Le J; Shapiro D; Havell EA; Huang S; Aguet M; Bosland M; Vilcek J. 1993. Mice that lack the interferon-gamma receptor have profoundly altered responses to infection with Bacillus Calmette-Guerin and subsequent challenge with lipopolysaccharide. J Exp Med 178(4):1435-40. [PubMed: 8376946]  [MGI Ref ID J:47412]

Kamijo R; Shapiro D; Le J; Huang S; Aguet M; Vilcek J. 1993. Generation of nitric oxide and induction of major histocompatibility complex class II antigen in macrophages from mice lacking the interferon gamma receptor. Proc Natl Acad Sci U S A 90(14):6626-30. [PubMed: 8341679]  [MGI Ref ID J:111372]

Kania G; Blyszczuk P; Valaperti A; Dieterle T; Leimenstoll B; Dirnhofer S; Zulewski H; Eriksson U. 2008. Prominin-1+/CD133+ bone marrow-derived heart-resident cells suppress experimental autoimmune myocarditis. Cardiovasc Res 80(2):236-45. [PubMed: 18621802]  [MGI Ref ID J:161890]

Kania G; Siegert S; Behnke S; Prados-Rosales R; Casadevall A; Luscher TF; Luther SA; Kopf M; Eriksson U; Blyszczuk P. 2013. Innate signaling promotes formation of regulatory nitric oxide-producing dendritic cells limiting T-cell expansion in experimental autoimmune myocarditis. Circulation 127(23):2285-94. [PubMed: 23671208]  [MGI Ref ID J:211390]

Kano S; Sato K; Morishita Y; Vollstedt S; Kim S; Bishop K; Honda K; Kubo M; Taniguchi T. 2008. The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and TH1 versus TH-17 differentiation of CD4+ T cells. Nat Immunol 9(1):34-41. [PubMed: 18059273]  [MGI Ref ID J:130476]

Kelchtermans H; Struyf S; De Klerck B; Mitera T; Alen M; Geboes L; Van Balen M; Dillen C; Put W; Gysemans C; Billiau A; Van Damme J; Matthys P. 2007. Protective role of IFN-gamma in collagen-induced arthritis conferred by inhibition of mycobacteria-induced granulocyte chemotactic protein-2 production. J Leukoc Biol 81(4):1044-53. [PubMed: 17200147]  [MGI Ref ID J:121452]

Kerkar SP; Goldszmid RS; Muranski P; Chinnasamy D; Yu Z; Reger RN; Leonardi AJ; Morgan RA; Wang E; Marincola FM; Trinchieri G; Rosenberg SA; Restifo NP. 2011. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 121(12):4746-57. [PubMed: 22056381]  [MGI Ref ID J:184027]

Khong WX; Yan B; Yeo H; Tan EL; Lee JJ; Ng JK; Chow VT; Alonso S. 2012. A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J Virol 86(4):2121-31. [PubMed: 22130542]  [MGI Ref ID J:181145]

Kim JH; Chung DH. 2011. CD1d-restricted IFN-gamma-secreting NKT cells promote immune complex-induced acute lung injury by regulating macrophage-inflammatory protein-1alpha production and activation of macrophages and dendritic cells. J Immunol 186(3):1432-41. [PubMed: 21191075]  [MGI Ref ID J:168903]

Kimura MY; Pobezinsky LA; Guinter TI; Thomas J; Adams A; Park JH; Tai X; Singer A. 2013. IL-7 signaling must be intermittent, not continuous, during CD8(+) T cell homeostasis to promote cell survival instead of cell death. Nat Immunol 14(2):143-51. [PubMed: 23242416]  [MGI Ref ID J:192537]

King KY; Baldridge MT; Weksberg DC; Chambers SM; Lukov GL; Wu S; Boles NC; Jung SY; Qin J; Liu D; Songyang Z; Eissa NT; Taylor GA; Goodell MA. 2011. Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling. Blood 118(6):1525-33. [PubMed: 21633090]  [MGI Ref ID J:176943]

Kitamura H; Sedlik C; Jacquet A; Zaragoza B; Dusseaux M; Premel V; Sastre-Garau X; Lantz O. 2010. Long peptide vaccination can lead to lethality through CD4+ T cell-mediated cytokine storm. J Immunol 185(2):892-901. [PubMed: 20543102]  [MGI Ref ID J:161944]

Klebanoff CA; Yu Z; Hwang LN; Palmer DC; Gattinoni L; Restifo NP. 2009. Programming tumor-reactive effector memory CD8+ T cells in vitro obviates the requirement for in vivo vaccination. Blood 114(9):1776-83. [PubMed: 19561320]  [MGI Ref ID J:152256]

Klein MA; Frigg R; Flechsig E; Raeber AJ; Kalinke U; Bluethmann H; Bootz F; Suter M; Zinkernagel RM; Aguzzi A. 1997. A crucial role for B cells in neuroinvasive scrapie [see comments] Nature 390(6661):687-90. [PubMed: 9414161]  [MGI Ref ID J:44933]

Kline J; Zhang L; Battaglia L; Cohen KS; Gajewski TF. 2012. Cellular and molecular requirements for rejection of b16 melanoma in the setting of regulatory T cell depletion and homeostatic proliferation. J Immunol 188(6):2630-42. [PubMed: 22312128]  [MGI Ref ID J:181862]

Knowles H; Heizer JW; Li Y; Chapman K; Ogden CA; Andreasen K; Shapland E; Kucera G; Mogan J; Humann J; Lenz LL; Morrison AD; Perraud AL. 2011. Transient Receptor Potential Melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. Proc Natl Acad Sci U S A 108(28):11578-83. [PubMed: 21709234]  [MGI Ref ID J:174397]

Koch MA; Thomas KR; Perdue NR; Smigiel KS; Srivastava S; Campbell DJ. 2012. T-bet(+) Treg Cells Undergo Abortive Th1 Cell Differentiation due to Impaired Expression of IL-12 Receptor beta2. Immunity 37(3):501-10. [PubMed: 22960221]  [MGI Ref ID J:187671]

Koch MA; Tucker-Heard G; Perdue NR; Killebrew JR; Urdahl KB; Campbell DJ. 2009. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10(6):595-602. [PubMed: 19412181]  [MGI Ref ID J:149556]

Kohlmeier JE; Cookenham T; Roberts AD; Miller SC; Woodland DL. 2010. Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. Immunity 33(1):96-105. [PubMed: 20637658]  [MGI Ref ID J:162550]

Kolokoltsova OA; Yun NE; Poussard AL; Smith JK; Smith JN; Salazar M; Walker A; Tseng CT; Aronson JF; Paessler S. 2010. Mice lacking alpha/beta and gamma interferon receptors are susceptible to junin virus infection. J Virol 84(24):13063-7. [PubMed: 20926559]  [MGI Ref ID J:166539]

Kopf M; Brombacher F; Kohler G; Kienzle G; Widmann KH; Lefrang K; Humborg C; Ledermann B; Solbach W. 1996. IL-4-deficient Balb/c mice resist infection with Leishmania major. J Exp Med 184(3):1127-36. [PubMed: 9064329]  [MGI Ref ID J:35236]

Krebs P; Barnes MJ; Lampe K; Whitley K; Bahjat KS; Beutler B; Janssen E; Hoebe K. 2009. NK cell-mediated killing of target cells triggers robust antigen-specific T cell-mediated and humoral responses. Blood 113(26):6593-602. [PubMed: 19406986]  [MGI Ref ID J:150150]

Krebs P; Crozat K; Popkin D; Oldstone MB; Beutler B. 2011. Disruption of MyD88 signaling suppresses hemophagocytic lymphohistiocytosis in mice. Blood 117(24):6582-8. [PubMed: 21551232]  [MGI Ref ID J:174800]

Kreutzfeldt M; Bergthaler A; Fernandez M; Bruck W; Steinbach K; Vorm M; Coras R; Blumcke I; Bonilla WV; Fleige A; Forman R; Muller W; Becher B; Misgeld T; Kerschensteiner M; Pinschewer DD; Merkler D. 2013. Neuroprotective intervention by interferon-gamma blockade prevents CD8+ T cell-mediated dendrite and synapse loss. J Exp Med 210(10):2087-103. [PubMed: 23999498]  [MGI Ref ID J:202844]

Krug LT; Torres-Gonzalez E; Qin Q; Sorescu D; Rojas M; Stecenko A; Speck SH; Mora AL. 2010. Inhibition of NF-kappaB signaling reduces virus load and gammaherpesvirus-induced pulmonary fibrosis. Am J Pathol 177(2):608-21. [PubMed: 20566741]  [MGI Ref ID J:163397]

Kugler DG; Mittelstadt PR; Ashwell JD; Sher A; Jankovic D. 2013. CD4+ T cells are trigger and target of the glucocorticoid response that prevents lethal immunopathology in toxoplasma infection. J Exp Med 210(10):1919-27. [PubMed: 23980098]  [MGI Ref ID J:202852]

Kusmartsev S; Nefedova Y; Yoder D; Gabrilovich DI. 2004. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989-99. [PubMed: 14707072]  [MGI Ref ID J:108162]

LaCasse CJ; Janikashvili N; Larmonier CB; Alizadeh D; Hanke N; Kartchner J; Situ E; Centuori S; Har-Noy M; Bonnotte B; Katsanis E; Larmonier N. 2011. Th-1 lymphocytes induce dendritic cell tumor killing activity by an IFN-gamma-dependent mechanism. J Immunol 187(12):6310-7. [PubMed: 22075702]  [MGI Ref ID J:180408]

Lang KS; Georgiev P; Recher M; Navarini AA; Bergthaler A; Heikenwalder M; Harris NL; Junt T; Odermatt B; Clavien PA; Pircher H; Akira S; Hengartner H; Zinkernagel RM. 2006. Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling. J Clin Invest 116(9):2456-63. [PubMed: 16955143]  [MGI Ref ID J:114665]

Lang KS; Recher M; Junt T; Navarini AA; Harris NL; Freigang S; Odermatt B; Conrad C; Ittner LM; Bauer S; Luther SA; Uematsu S; Akira S; Hengartner H; Zinkernagel RM. 2005. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat Med 11(2):138-45. [PubMed: 15654326]  [MGI Ref ID J:96036]

Lawrence CE; Paterson JC; Higgins LM; MacDonald TT; Kennedy MW; Garside P. 1998. IL-4-regulated enteropathy in an intestinal nematode infection. Eur J Immunol 28(9):2672-84. [PubMed: 9754555]  [MGI Ref ID J:49897]

Lee CK; Gimeno R; Levy DE. 1999. Differential regulation of constitutive major histocompatibility complex class I expression in T and B lymphocytes. J Exp Med 190(10):1451-64. [PubMed: 10562320]  [MGI Ref ID J:58494]

Lee CK; Rao DT; Gertner R; Gimeno R; Frey AB; Levy DE. 2000. Distinct requirements for IFNs and STAT1 in NK cell function. J Immunol 165(7):3571-7. [PubMed: 11034357]  [MGI Ref ID J:119588]

Lee CK; Smith E; Gimeno R; Gertner R; Levy DE. 2000. STAT1 affects lymphocyte survival and proliferation partially independent of its role downstream of IFN-gamma J Immunol 164(3):1286-92. [PubMed: 10640742]  [MGI Ref ID J:59955]

Lee EY; Schultz KL; Griffin DE. 2013. Mice deficient in interferon-gamma or interferon-gamma receptor 1 have distinct inflammatory responses to acute viral encephalomyelitis. PLoS One 8(10):e76412. [PubMed: 24204622]  [MGI Ref ID J:209188]

Lee KS; Groshong SD; Cool CD; Kleinschmidt-DeMasters BK; van Dyk LF. 2009. Murine gammaherpesvirus 68 infection of IFNgamma unresponsive mice: a small animal model for gammaherpesvirus-associated B-cell lymphoproliferative disease. Cancer Res 69(13):5481-9. [PubMed: 19531651]  [MGI Ref ID J:150350]

Lees JR; Golumbek PT; Sim J; Dorsey D; Russell JH. 2008. Regional CNS responses to IFN-gamma determine lesion localization patterns during EAE pathogenesis. J Exp Med 205(11):2633-42. [PubMed: 18852291]  [MGI Ref ID J:141105]

Lexberg MH; Taubner A; Forster A; Albrecht I; Richter A; Kamradt T; Radbruch A; Chang HD. 2008. Th memory for interleukin-17 expression is stable in vivo. Eur J Immunol 38(10):2654-64. [PubMed: 18825747]  [MGI Ref ID J:142817]

Li C; Corraliza I; Langhorne J. 1999. A defect in interleukin-10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect Immun 67(9):4435-42. [PubMed: 10456884]  [MGI Ref ID J:57118]

Li W; Murthy AK; Guentzel MN; Seshu J; Forsthuber TG; Zhong G; Arulanandam BP. 2008. Antigen-Specific CD4+ T Cells Produce Sufficient IFN-{gamma} to Mediate Robust Protective Immunity against Genital Chlamydia muridarum Infection. J Immunol 180(5):3375-82. [PubMed: 18292563]  [MGI Ref ID J:131578]

Li X; McKinstry KK; Swain SL; Dalton DK. 2007. IFN-gamma acts directly on activated CD4+ T cells during mycobacterial infection to promote apoptosis by inducing components of the intracellular apoptosis machinery and by inducing extracellular proapoptotic signals. J Immunol 179(2):939-49. [PubMed: 17617585]  [MGI Ref ID J:149401]

Lieberman LA; Banica M; Reiner SL; Hunter CA. 2004. STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis. J Immunol 172(1):457-63. [PubMed: 14688355]  [MGI Ref ID J:87565]

Lind SM; Kuylenstierna C; Moll M; D Jordo E; Winqvist O; Lundeberg L; Karlsson MA; T Linder M; Johansson C; Scheynius A; Sandberg JK; Karlsson MC. 2009. IL-18 skews the invariant NKT-cell population via autoreactive activation in atopic eczema. Eur J Immunol 39(8):2293-301. [PubMed: 19637196]  [MGI Ref ID J:151774]

Listopad JJ; Kammertoens T; Anders K; Silkenstedt B; Willimsky G; Schmidt K; Kuehl AA; Loddenkemper C; Blankenstein T. 2013. Fas expression by tumor stroma is required for cancer eradication. Proc Natl Acad Sci U S A 110(6):2276-81. [PubMed: 23341634]  [MGI Ref ID J:193821]

Liu XS; Leerberg J; MacDonald K; Leggatt GR; Frazer IH. 2009. IFN-{gamma} promotes generation of IL-10 secreting CD4+ T cells that suppress generation of CD8 responses in an antigen-experienced host. J Immunol 183(1):51-8. [PubMed: 19535638]  [MGI Ref ID J:150112]

Lohman BL; Welsh RM. 1998. Apoptotic regulation of T cells and absence of immune deficiency in virus-infected gamma interferon receptor knockout mice. J Virol 72(10):7815-21. [PubMed: 9733817]  [MGI Ref ID J:120244]

Londono LP; Jones HB; Vie AT; McPheat WL; Booth G; Gao XM; Dougan G. 2000. Characterisation of Candida albicans infections of haematogenous and mucosal origin in mice lacking the interferon gamma receptor protein. FEMS Immunol Med Microbiol 27(2):117-25. [PubMed: 10640606]  [MGI Ref ID J:60050]

Longhi MP; Trumpfheller C; Idoyaga J; Caskey M; Matos I; Kluger C; Salazar AM; Colonna M; Steinman RM. 2009. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 206(7):1589-602. [PubMed: 19564349]  [MGI Ref ID J:150266]

Lu Y; Giver CR; Sharma A; Li JM; Darlak KA; Owens LM; Roback JD; Galipeau J; Waller EK. 2012. IFN-gamma and indoleamine 2,3-dioxygenase signaling between donor dendritic cells and T cells regulates graft versus host and graft versus leukemia activity. Blood 119(4):1075-85. [PubMed: 22130799]  [MGI Ref ID J:181750]

Lukacs-Kornek V; Malhotra D; Fletcher AL; Acton SE; Elpek KG; Tayalia P; Collier AR; Turley SJ. 2011. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol 12(11):1096-104. [PubMed: 21926986]  [MGI Ref ID J:177695]

Ma F; Feng J; Zhang C; Li Y; Qi G; Li H; Wu Y; Fu Y; Zhao Y; Chen H; Du J; Tang H. 2014. The requirement of CD8+ T cells to initiate and augment acute cardiac inflammatory response to high blood pressure. J Immunol 192(7):3365-73. [PubMed: 24600037]  [MGI Ref ID J:210252]

MacNamara KC; Jones M; Martin O; Winslow GM. 2011. Transient activation of hematopoietic stem and progenitor cells by IFNgamma during acute bacterial infection. PLoS One 6(12):e28669. [PubMed: 22194881]  [MGI Ref ID J:182248]

MacNamara KC; Oduro K; Martin O; Jones DD; McLaughlin M; Choi K; Borjesson DL; Winslow GM. 2011. Infection-induced myelopoiesis during intracellular bacterial infection is critically dependent upon IFN-gamma signaling. J Immunol 186(2):1032-43. [PubMed: 21149601]  [MGI Ref ID J:168775]

Mahon BP; Sheahan BJ; Griffin F; Murphy G; Mills KH. 1997. Atypical disease after Bordetella pertussis respiratory infection of mice with targeted disruptions of interferon-gamma receptor or immunoglobulin mu chain genes. J Exp Med 186(11):1843-51. [PubMed: 9382883]  [MGI Ref ID J:44402]

Maldonado RA; Soriano MA; Perdomo LC; Sigrist K; Irvine DJ; Decker T; Glimcher LH. 2009. Control of T helper cell differentiation through cytokine receptor inclusion in the immunological synapse. J Exp Med 206(4):877-92. [PubMed: 19349465]  [MGI Ref ID J:147862]

Mana P; Linares D; Fordham S; Staykova M; Willenborg D. 2006. Deleterious role of IFNgamma in a toxic model of central nervous system demyelination. Am J Pathol 168(5):1464-73. [PubMed: 16651614]  [MGI Ref ID J:108669]

Mancini M; Hadchouel M; Tiollais P; Michel ML. 1998. Regulation of hepatitis B virus mRNA expression in a hepatitis B surface antigen transgenic mouse model by IFN-gamma-secreting T cells after DNA-based immunization. J Immunol 161(10):5564-70. [PubMed: 9820533]  [MGI Ref ID J:115022]

Mancuso G; Midiri A; Biondo C; Beninati C; Zummo S; Galbo R; Tomasello F; Gambuzza M; Macri G; Ruggeri A; Leanderson T; Teti G. 2007. Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. J Immunol 178(5):3126-33. [PubMed: 17312160]  [MGI Ref ID J:144305]

Manoury-Schwartz B; Chiocchia G; Bessis N; Abehsira-Amar O; Batteux F; Muller S; Huang S; Boissier MC; Fournier C. 1997. High susceptibility to collagen-induced arthritis in mice lacking IFN-gamma receptors. J Immunol 158(11):5501-6. [PubMed: 9164973]  [MGI Ref ID J:40634]

Maroun LE; Heffernan TN; Hallam DM. 2000. Partial IFN-alpha/beta and IFN-gamma receptor knockout trisomy 16 mouse fetuses show improved growth and cultured neuron viability J Interferon Cytokine Res 20(2):197-203. [PubMed: 10714556]  [MGI Ref ID J:61279]

Masocha W; Robertson B; Rottenberg ME; Mhlanga J; Sorokin L; Kristensson K. 2004. Cerebral vessel laminins and IFN-gamma define Trypanosoma brucei brucei penetration of the blood-brain barrier. J Clin Invest 114(5):689-94. [PubMed: 15343387]  [MGI Ref ID J:92595]

Matlack R; Yeh K; Rosini L; Gonzalez D; Taylor J; Silberman D; Pennello A; Riggs J. 2006. Peritoneal macrophages suppress T-cell activation by amino acid catabolism. Immunology 117(3):386-95. [PubMed: 16476058]  [MGI Ref ID J:107076]

Matsuda M; Nakamoto Y; Suzuki S; Kurata T; Kaneko S. 2005. Interferon-gamma-mediated hepatocarcinogenesis in mice treated with diethylnitrosamine. Lab Invest 85(5):655-63. [PubMed: 15765122]  [MGI Ref ID J:98206]

Matthys P; Dooms H; Rottiers P; Mitera T; Overgergh L; Leclercq G; Billiau A; Grooten J. 2002. Induction of IL-15 by TCR/CD3 aggregation depends on IFN-gamma and protects against apoptosis of immature thymocytes in vivo. Clin Exp Immunol 130(3):379-85. [PubMed: 12452826]  [MGI Ref ID J:115532]

Matthys P; Froyen G; Verdot L; Huang S; Sobis H; Van Damme J; Vray B; Aguet M; Billiau A. 1995. IFN-gamma receptor-deficient mice are hypersensitive to the anti-CD3-induced cytokine release syndrome and thymocyte apoptosis. Protective role of endogenous nitric oxide. J Immunol 155(8):3823-9. [PubMed: 7561088]  [MGI Ref ID J:29284]

Matthys P; Lories RJ; De Klerck B; Heremans H; Luyten FP; Billiau A. 2003. Dependence on interferon-gamma for the spontaneous occurrence of arthritis in DBA/1 mice. Arthritis Rheum 48(10):2983-8. [PubMed: 14558106]  [MGI Ref ID J:106277]

Matthys P; Vermeire K; Mitera T; Heremans H; Huang S; Billiau A. 1998. Anti-IL-12 antibody prevents the development and progression of collagen-induced arthritis in IFN-gamma receptor-deficient mice. Eur J Immunol 28(7):2143-51. [PubMed: 9692883]  [MGI Ref ID J:49316]

Matthys P; Vermeire K; Mitera T; Heremans H; Huang S; Schols D; De Wolf-Peeters C; Billiau A. 1999. Enhanced autoimmune arthritis in IFN-gamma receptor-deficient mice is conditioned by mycobacteria in Freund's adjuvant and by increased expansion of Mac-1+ myeloid cells. J Immunol 163(6):3503-10. [PubMed: 10477624]  [MGI Ref ID J:119600]

Mayer KD; Mohrs K; Reiley W; Wittmer S; Kohlmeier JE; Pearl JE; Cooper AM; Johnson LL; Woodland DL; Mohrs M. 2008. Cutting edge: T-bet and IL-27R are critical for in vivo IFN-gamma production by CD8 T cells during infection. J Immunol 180(2):693-7. [PubMed: 18178806]  [MGI Ref ID J:130953]

Mayer-Barber KD; Andrade BB; Barber DL; Hieny S; Feng CG; Caspar P; Oland S; Gordon S; Sher A. 2011. Innate and Adaptive Interferons Suppress IL-1alpha and IL-1beta Production by Distinct Pulmonary Myeloid Subsets during Mycobacterium tuberculosis Infection. Immunity 35(6):1023-34. [PubMed: 22195750]  [MGI Ref ID J:179275]

Medoff BD; Wain JC; Seung E; Jackobek R; Means TK; Ginns LC; Farber JM; Luster AD. 2006. CXCR3 and its ligands in a murine model of obliterative bronchiolitis: regulation and function. J Immunol 176(11):7087-95. [PubMed: 16709871]  [MGI Ref ID J:131767]

Mellor AL; Chandler P; Baban B; Hansen AM; Marshall B; Pihkala J; Waldmann H; Cobbold S; Adams E; Munn DH. 2004. Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol 16(10):1391-401. [PubMed: 15351783]  [MGI Ref ID J:93639]

Merlin T; Woelky-Bruggmann R; Fearns C; Freudenberg M; Landmann R. 2002. Expression and role of CD14 in mice sensitized to lipopolysaccharide by Propionibacterium acnes. Eur J Immunol 32(3):761-72. [PubMed: 11870620]  [MGI Ref ID J:75332]

Messingham KA; Badovinac VP; Jabbari A; Harty JT. 2007. A role for IFN-gamma from antigen-specific CD8+ T cells in protective immunity to Listeria monocytogenes. J Immunol 179(4):2457-66. [PubMed: 17675507]  [MGI Ref ID J:151292]

Michels C; Goyal P; Nieuwenhuizen N; Brombacher F. 2006. Infection with Syphacia obvelata (pinworm) induces protective Th2 immune responses and influences ovalbumin-induced allergic reactions. Infect Immun 74(10):5926-32. [PubMed: 16988272]  [MGI Ref ID J:112864]

Miguel RD; Cherpes TL; Watson LJ; McKenna KC. 2010. CTL Induction of Tumoricidal Nitric Oxide Production by Intratumoral Macrophages Is Critical for Tumor Elimination. J Immunol 185(11):6706-18. [PubMed: 21041723]  [MGI Ref ID J:166136]

Mikhak Z; Farsidjani A; Luster AD. 2009. Endotoxin augmented antigen-induced Th1 cell trafficking amplifies airway neutrophilic inflammation. J Immunol 182(12):7946-56. [PubMed: 19494319]  [MGI Ref ID J:149283]

Mishra BB; Rathinam VA; Martens GW; Martinot AJ; Kornfeld H; Fitzgerald KA; Sassetti CM. 2013. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta. Nat Immunol 14(1):52-60. [PubMed: 23160153]  [MGI Ref ID J:191074]

Mitchell C; Provost K; Niu N; Homer R; Cohn L. 2011. IFN-gamma acts on the airway epithelium to inhibit local and systemic pathology in allergic airway disease. J Immunol 187(7):3815-20. [PubMed: 21873527]  [MGI Ref ID J:179335]

Miyagi T; Gil MP; Wang X; Louten J; Chu WM; Biron CA. 2007. High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells. J Exp Med 204(10):2383-96. [PubMed: 17846149]  [MGI Ref ID J:126055]

Mohammed JP; Fusakio ME; Rainbow DB; Moule C; Fraser HI; Clark J; Todd JA; Peterson LB; Savage PB; Wills-Karp M; Ridgway WM; Wicker LS; Mattner J. 2011. Identification of Cd101 as a susceptibility gene for Novosphingobium aromaticivorans-induced liver autoimmunity. J Immunol 187(1):337-49. [PubMed: 21613619]  [MGI Ref ID J:175942]

Moro H; Otero DC; Tanabe Y; David M. 2011. T cell-intrinsic and -extrinsic contributions of the IFNAR/STAT1-axis to thymocyte survival. PLoS One 6(9):e24972. [PubMed: 21949815]  [MGI Ref ID J:177873]

Morris ES; MacDonald KP; Kuns RD; Morris HM; Banovic T; Don AL; Rowe V; Wilson YA; Raffelt NC; Engwerda CR; Burman AC; Markey KA; Godfrey DI; Smyth MJ; Hill GR. 2009. Induction of natural killer T cell-dependent alloreactivity by administration of granulocyte colony-stimulating factor after bone marrow transplantation. Nat Med 15(4):436-41. [PubMed: 19330008]  [MGI Ref ID J:149361]

Mountford AP; Coulson PS; Cheever AW; Sher A; Wilson RA; Wynn TA. 1999. Interleukin-12 can directly induce T-helper 1 responses in interferon-gamma (IFN-gamma) receptor-deficient mice, but requires IFN-gamma signalling to downregulate T-helper 2 responses. Immunology 97(4):588-94. [PubMed: 10457211]  [MGI Ref ID J:56676]

Mowat AM; Steel M; Leishman AJ; Garside P. 1999. Normal induction of oral tolerance in the absence of a functional IL-12-dependent IFN-gamma signaling pathway. J Immunol 163(9):4728-36. [PubMed: 10528171]  [MGI Ref ID J:119049]

Mullarky IK; Szaba FM; Berggren KN; Kummer LW; Wilhelm LB; Parent MA; Johnson LL; Smiley ST. 2006. Tumor necrosis factor alpha and gamma interferon, but not hemorrhage or pathogen burden, dictate levels of protective fibrin deposition during infection. Infect Immun 74(2):1181-8. [PubMed: 16428767]  [MGI Ref ID J:104988]

Muller AJ; Filipe-Santos O; Eberl G; Aebischer T; Spath GF; Bousso P. 2012. CD4+ T cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity 37(1):147-57. [PubMed: 22727490]  [MGI Ref ID J:187413]

Muller U; Steinhoff U; Reis LF; Hemmi S; Pavlovic J; Zinkernagel RM; Aguet M. 1994. Functional role of type I and type II interferons in antiviral defense. Science 264(5167):1918-21. [PubMed: 8009221]  [MGI Ref ID J:36115]

Muralimohan G; Vella AT. 2006. A role for IFNgamma in differential superantigen stimulation of conventional versus plasmacytoid DCs. Cell Immunol 242(1):9-22. [PubMed: 17045255]  [MGI Ref ID J:116765]

Muranski P; Boni A; Antony PA; Cassard L; Irvine KR; Kaiser A; Paulos CM; Palmer DC; Touloukian CE; Ptak K; Gattinoni L; Wrzesinski C; Hinrichs CS; Kerstann KW; Feigenbaum L; Chan CC; Restifo NP. 2008. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112(2):362-73. [PubMed: 18354038]  [MGI Ref ID J:138466]

Murugaiyan G; Beynon V; Pires Da Cunha A; Joller N; Weiner HL. 2012. IFN-gamma limits Th9-mediated autoimmune inflammation through dendritic cell modulation of IL-27. J Immunol 189(11):5277-83. [PubMed: 23125412]  [MGI Ref ID J:190977]

Murugaiyan G; Mittal A; Weiner HL. 2010. Identification of an IL-27/osteopontin axis in dendritic cells and its modulation by IFN-gamma limits IL-17-mediated autoimmune inflammation. Proc Natl Acad Sci U S A 107(25):11495-500. [PubMed: 20534530]  [MGI Ref ID J:161596]

Myers L; Croft M; Kwon BS; Mittler RS; Vella AT. 2005. Peptide-specific CD8 T regulatory cells use IFN-gamma to elaborate TGF-beta-based suppression. J Immunol 174(12):7625-32. [PubMed: 15944263]  [MGI Ref ID J:100786]

Nakajima S; Hida S; Taki S. 2008. IL-15 inhibits pre-B cell proliferation by selectively expanding Mac-1+B220+ NK cells. Biochem Biophys Res Commun 369(4):1139-43. [PubMed: 18339305]  [MGI Ref ID J:134069]

Nakanishi Y; Lu B; Gerard C; Iwasaki A. 2009. CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462(7272):510-3. [PubMed: 19898495]  [MGI Ref ID J:155104]

Naves R; Singh SP; Cashman KS; Rowse AL; Axtell RC; Steinman L; Mountz JD; Steele C; De Sarno P; Raman C. 2013. The interdependent, overlapping, and differential roles of type I and II IFNs in the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 191(6):2967-77. [PubMed: 23960239]  [MGI Ref ID J:205866]

Nelson MH; Bird MD; Chu CF; Johnson AJ; Friedrich BM; Allman WR; Milligan GN. 2011. Rapid clearance of herpes simplex virus type 2 by CD8+ T cells requires high level expression of effector T cell functions. J Reprod Immunol 89(1):10-7. [PubMed: 21444117]  [MGI Ref ID J:175956]

Nie S; Cornberg M; Selin LK. 2009. Resistance to vaccinia virus is less dependent on TNF under conditions of heterologous immunity. J Immunol 183(10):6554-60. [PubMed: 19846867]  [MGI Ref ID J:157185]

Norman MU; Zbytnuik L; Kubes P. 2008. Interferon-gamma limits Th1 lymphocyte adhesion to inflamed endothelium: A nitric oxide regulatory feedback mechanism. Eur J Immunol 38(5):1368-80. [PubMed: 18412158]  [MGI Ref ID J:134151]

O'Brien KB; Schultz-Cherry S; Knoll LJ. 2011. Parasite-Mediated Upregulation of NK Cell-Derived Gamma Interferon Protects against Severe Highly Pathogenic H5N1 Influenza Virus Infection. J Virol 85(17):8680-8. [PubMed: 21734055]  [MGI Ref ID J:174619]

O'Connor JC; Andre C; Wang Y; Lawson MA; Szegedi SS; Lestage J; Castanon N; Kelley KW; Dantzer R. 2009. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci 29(13):4200-9. [PubMed: 19339614]  [MGI Ref ID J:147443]

O'Connor RA; Wittmer S; Dalton DK. 2005. Infection-induced apoptosis deletes bystander CD4(+) T cells: a mechanism for suppression of autoimmunity during BCG infection. J Autoimmun 24(2):93-100. [PubMed: 15829401]  [MGI Ref ID J:97542]

Obayashi K; Doi T; Koyasu S. 2007. Dendritic cells suppress IgE production in B cells. Int Immunol 19(2):217-26. [PubMed: 17208926]  [MGI Ref ID J:117872]

Ohta A; Sekimoto M; Sato M; Koda T; Nishimura S; Iwakura Y; Sekikawa K; Nishimura T. 2000. Indispensable role for TNF-alpha and IFN-gamma at the effector phase of liver injury mediated by Th1 cells specific to hepatitis B virus surface antigen. J Immunol 165(2):956-61. [PubMed: 10878371]  [MGI Ref ID J:120559]

Olson CM Jr; Bates TC; Izadi H; Radolf JD; Huber SA; Boyson JE; Anguita J. 2009. Local production of IFN-gamma by invariant NKT cells modulates acute lyme carditis. J Immunol 182(6):3728-34. [PubMed: 19265151]  [MGI Ref ID J:145920]

Ortega SB; Kashi VP; Tyler AF; Cunnusamy K; Mendoza JP; Karandikar NJ. 2013. The disease-ameliorating function of autoregulatory CD8 T cells is mediated by targeting of encephalitogenic CD4 T cells in experimental autoimmune encephalomyelitis. J Immunol 191(1):117-26. [PubMed: 23733879]  [MGI Ref ID J:205352]

Ossendorp F; Fu N; Camps M; Granucci F; Gobin SJ; van den Elsen PJ; Schuurhuis D; Adema GJ; Lipford GB; Chiba T; Sijts A; Kloetzel PM; Ricciardi-Castagnoli P; Melief CJ. 2005. Differential expression regulation of the alpha and beta subunits of the PA28 proteasome activator in mature dendritic cells. J Immunol 174(12):7815-22. [PubMed: 15944286]  [MGI Ref ID J:100877]

Ou R; Zhou S; Huang L; Moskophidis D. 2001. Critical role for alpha/beta and gamma interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J Virol 75(18):8407-23. [PubMed: 11507186]  [MGI Ref ID J:71214]

Pak-Wittel MA; Yang L; Sojka DK; Rivenbark JG; Yokoyama WM. 2013. Interferon-gamma mediates chemokine-dependent recruitment of natural killer cells during viral infection. Proc Natl Acad Sci U S A 110(1):E50-9. [PubMed: 23248310]  [MGI Ref ID J:192522]

Palomo J; Fauconnier M; Coquard L; Gilles M; Meme S; Szeremeta F; Fick L; Franetich JF; Jacobs M; Togbe D; Beloeil JC; Mazier D; Ryffel B; Quesniaux VF. 2013. Type I interferons contribute to experimental cerebral malaria development in response to sporozoite or blood-stage Plasmodium berghei ANKA. Eur J Immunol 43(10):2683-95. [PubMed: 23780878]  [MGI Ref ID J:201696]

Panchanathan V; Chaudhri G; Karupiah G. 2005. Interferon function is not required for recovery from a secondary poxvirus infection. Proc Natl Acad Sci U S A 102(36):12921-6. [PubMed: 16123129]  [MGI Ref ID J:101427]

Parent MA; Wilhelm LB; Kummer LW; Szaba FM; Mullarky IK; Smiley ST. 2006. Gamma interferon, tumor necrosis factor alpha, and nitric oxide synthase 2, key elements of cellular immunity, perform critical protective functions during humoral defense against lethal pulmonary Yersinia pestis infection. Infect Immun 74(6):3381-6. [PubMed: 16714568]  [MGI Ref ID J:109236]

Pasieka TJ; Collins L; O'Connor MA; Chen Y; Parker ZM; Berwin BL; Piwnica-Worms DR; Leib DA. 2011. Bioluminescent imaging reveals divergent viral pathogenesis in two strains of Stat1-deficient mice, and in alphassgamma interferon receptor-deficient mice. PLoS One 6(9):e24018. [PubMed: 21915277]  [MGI Ref ID J:177699]

Patterson M; Seregin A; Huang C; Kolokoltsova O; Smith J; Miller M; Smith J; Yun N; Poussard A; Grant A; Tigabu B; Walker A; Paessler S. 2014. Rescue of a Recombinant Machupo Virus from Cloned cDNAs and In Vivo Characterization in Interferon (alphabeta/gamma) Receptor Double Knockout Mice. J Virol 88(4):1914-23. [PubMed: 24284323]  [MGI Ref ID J:205274]

Paunicka K; Chen PW; Niederkorn JY. 2012. Role of IFN-gamma in the establishment of anterior chamber-associated immune deviation (ACAID)-induced CD8+ T regulatory cells. J Leukoc Biol 91(3):475-83. [PubMed: 22180630]  [MGI Ref ID J:181507]

Peine M; Rausch S; Helmstetter C; Frohlich A; Hegazy AN; Kuhl AA; Grevelding CG; Hofer T; Hartmann S; Lohning M. 2013. Stable T-bet(+)GATA-3(+) Th1/Th2 hybrid cells arise in vivo, can develop directly from naive precursors, and limit immunopathologic inflammation. PLoS Biol 11(8):e1001633. [PubMed: 23976880]  [MGI Ref ID J:201585]

Perera GK; Ainali C; Semenova E; Hundhausen C; Barinaga G; Kassen D; Williams AE; Mirza MM; Balazs M; Wang X; Rodriguez RS; Alendar A; Barker J; Tsoka S; Ouyang W; Nestle FO. 2014. Integrative biology approach identifies cytokine targeting strategies for psoriasis. Sci Transl Med 6(223):223ra22. [PubMed: 24523322]  [MGI Ref ID J:213686]

Perona-Wright G; Mohrs K; Mohrs M. 2010. Sustained signaling by canonical helper T cell cytokines throughout the reactive lymph node. Nat Immunol 11(6):520-6. [PubMed: 20418876]  [MGI Ref ID J:160618]

Pinschewer DD; Flatz L; Steinborn R; Horvath E; Fernandez M; Lutz H; Suter M; Bergthaler A. 2010. Innate and adaptive immune control of genetically engineered live-attenuated arenavirus vaccine prototypes. Int Immunol 22(9):749-56. [PubMed: 20584765]  [MGI Ref ID J:163332]

Prajeeth CK; Haeberlein S; Sebald H; Schleicher U; Bogdan C. 2011. Leishmania-infected macrophages are targets of NK cell-derived cytokines but not of NK cell cytotoxicity. Infect Immun 79(7):2699-708. [PubMed: 21518784]  [MGI Ref ID J:173486]

Presti RM; Pollock JL; Dal Canto AJ; O'Guin AK; Virgin HW 4th. 1998. Interferon gamma regulates acute and latent murine cytomegalovirus infection and chronic disease of the great vessels. J Exp Med 188(3):577-88. [PubMed: 9687534]  [MGI Ref ID J:115139]

Prestwood TR; May MM; Plummer EM; Morar MM; Yauch LE; Shresta S. 2012. Trafficking and replication patterns reveal splenic macrophages as major targets of dengue virus in mice. J Virol 86(22):12138-47. [PubMed: 22933295]  [MGI Ref ID J:188919]

Prestwood TR; Morar MM; Zellweger RM; Miller R; May MM; Yauch LE; Lada SM; Shresta S. 2012. Gamma Interferon (IFN-gamma) Receptor Restricts Systemic Dengue Virus Replication and Prevents Paralysis in IFN-alpha/beta Receptor-Deficient Mice. J Virol 86(23):12561-70. [PubMed: 22973027]  [MGI Ref ID J:189016]

Price GE; Gaszewska-Mastarlarz A; Moskophidis D. 2000. The role of alpha/beta and gamma interferons in development of immunity to influenza A virus in mice. J Virol 74(9):3996-4003. [PubMed: 10756011]  [MGI Ref ID J:61580]

Qin Z; Blankenstein T. 2000. CD4+ T cell--mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 12(6):677-86. [PubMed: 10894167]  [MGI Ref ID J:63089]

Quezada SA; Simpson TR; Peggs KS; Merghoub T; Vider J; Fan X; Blasberg R; Yagita H; Muranski P; Antony PA; Restifo NP; Allison JP. 2010. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207(3):637-50. [PubMed: 20156971]  [MGI Ref ID J:158560]

Raivich G; Liu ZQ; Kloss CU; Labow M; Bluethmann H; Bohatschek M. 2002. Cytotoxic potential of proinflammatory cytokines: combined deletion of TNF receptors TNFR1 and TNFR2 prevents motoneuron cell death after facial axotomy in adult mouse. Exp Neurol 178(2):186-93. [PubMed: 12504878]  [MGI Ref ID J:118490]

Ramanathan S; Dubois S; Gagnon J; Leblanc C; Mariathasan S; Ferbeyre G; Rottapel R; Ohashi PS; Ilangumaran S. 2010. Regulation of cytokine-driven functional differentiation of CD8 T cells by suppressor of cytokine signaling 1 controls autoimmunity and preserves their proliferative capacity toward foreign antigens. J Immunol 185(1):357-66. [PubMed: 20519645]  [MGI Ref ID J:161432]

Rangachari M; Mauermann N; Marty RR; Dirnhofer S; Kurrer MO; Komnenovic V; Penninger JM; Eriksson U. 2006. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med 203(8):2009-19. [PubMed: 16880257]  [MGI Ref ID J:124393]

Recher M; Lang KS; Hunziker L; Freigang S; Eschli B; Harris NL; Navarini A; Senn BM; Fink K; Lotscher M; Hangartner L; Zellweger R; Hersberger M; Theocharides A; Hengartner H; Zinkernagel RM. 2004. Deliberate removal of T cell help improves virus-neutralizing antibody production. Nat Immunol 5(9):934-42. [PubMed: 15300247]  [MGI Ref ID J:92168]

Ren G; Su J; Zhao X; Zhang L; Zhang J; Roberts AI; Zhang H; Das G; Shi Y. 2008. Apoptotic cells induce immunosuppression through dendritic cells: critical roles of IFN-gamma and nitric oxide. J Immunol 181(5):3277-84. [PubMed: 18713999]  [MGI Ref ID J:138951]

Ren G; Zhao X; Zhang L; Zhang J; L'Huillier A; Ling W; Roberts AI; Le AD; Shi S; Shao C; Shi Y. 2010. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184(5):2321-8. [PubMed: 20130212]  [MGI Ref ID J:159645]

Rhee SJ; Walker WA; Cherayil BJ. 2005. Developmentally regulated intestinal expression of IFN-gamma and its target genes and the age-specific response to enteric Salmonella infection. J Immunol 175(2):1127-36. [PubMed: 16002714]  [MGI Ref ID J:100731]

Rijneveld AW; Lauw FN; Schultz MJ; Florquin S; Te Velde AA; Speelman P; Van Deventer SJ; Van Der Poll T. 2002. The role of interferon-gamma in murine pneumococcal pneumonia. J Infect Dis 185(1):91-7. [PubMed: 11756986]  [MGI Ref ID J:73620]

Rocha VZ; Folco EJ; Sukhova G; Shimizu K; Gotsman I; Vernon AH; Libby P. 2008. Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res 103(5):467-76. [PubMed: 18658050]  [MGI Ref ID J:152646]

Roman J; Rangasamy T; Guo J; Sugunan S; Meednu N; Packirisamy G; Shimoda LA; Golding A; Semenza G; Georas SN. 2010. T-cell activation under hypoxic conditions enhances IFN-gamma secretion. Am J Respir Cell Mol Biol 42(1):123-8. [PubMed: 19372249]  [MGI Ref ID J:168451]

Rosas LE; Keiser T; Pyles R; Durbin J; Satoskar AR. 2003. Development of protective immunity against cutaneous leishmaniasis is dependent on STAT1-mediated IFN signaling pathway. Eur J Immunol 33(7):1799-805. [PubMed: 12811839]  [MGI Ref ID J:84419]

Rothfuchs AG; Gigliotti D; Palmblad K; Andersson U; Wigzell H; Rottenberg ME. 2001. IFN-alphabeta-dependent, IFN-gamma secretion by bone marrow-derived macrophages controls an intracellular bacterial infection. J Immunol 167(11):6453-61. [PubMed: 11714812]  [MGI Ref ID J:72825]

Rothfuchs AG; Trumstedt C; Mattei F; Schiavoni G; Hidmark A; Wigzell H; Rottenberg ME. 2006. STAT1 regulates IFN-alpha beta- and IFN-gamma-dependent control of infection with Chlamydia pneumoniae by nonhemopoietic cells. J Immunol 176(11):6982-90. [PubMed: 16709859]  [MGI Ref ID J:131788]

Rothfuchs AG; Trumstedt C; Wigzell H; Rottenberg ME. 2004. Intracellular bacterial infection-induced IFN-gamma is critically but not solely dependent on Toll-like receptor 4-myeloid differentiation factor 88-IFN-alpha beta-STAT1 signaling. J Immunol 172(10):6345-53. [PubMed: 15128825]  [MGI Ref ID J:89856]

Rottenberg ME; Gigliotti Rothfuchs A; Gigliotti D; Ceausu M; Une C; Levitsky V; Wigzell H. 2000. Regulation and role of IFN-gamma in the innate resistance to infection with Chlamydia pneumoniae. J Immunol 164(9):4812-8. [PubMed: 10779789]  [MGI Ref ID J:124531]

Rottenberg ME; Gigliotti Rothfuchs AC; Gigliotti D; Svanholm C; Bandholtz L; Wigzell H. 1999. Role of innate and adaptive immunity in the outcome of primary infection with Chlamydia pneumoniae, as analyzed in genetically modified mice. J Immunol 162(5):2829-36. [PubMed: 10072530]  [MGI Ref ID J:124536]

Rottman M; Catherinot E; Hochedez P; Emile JF; Casanova JL; Gaillard JL; Soudais C. 2007. Importance of T cells, gamma interferon, and tumor necrosis factor in immune control of the rapid grower Mycobacterium abscessus in C57BL/6 mice. Infect Immun 75(12):5898-907. [PubMed: 17875636]  [MGI Ref ID J:127652]

Rottman M; Soudais C; Vogt G; Renia L; Emile JF; Decaluwe H; Gaillard JL; Casanova JL. 2008. IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts. PLoS Med 5(1):e26. [PubMed: 18232731]  [MGI Ref ID J:134158]

Rowe JH; Ertelt JM; Way SS. 2012. Innate IFN-gamma is essential for programmed death ligand-1-mediated T cell stimulation following Listeria monocytogenes infection. J Immunol 189(2):876-84. [PubMed: 22711893]  [MGI Ref ID J:189796]

Rowse AL; Naves R; Cashman KS; McGuire DJ; Mbana T; Raman C; De Sarno P. 2012. Lithium controls central nervous system autoimmunity through modulation of IFN-gamma signaling. PLoS One 7(12):e52658. [PubMed: 23285134]  [MGI Ref ID J:195752]

Rubtsova K; Rubtsov AV; van Dyk LF; Kappler JW; Marrack P. 2013. T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance. Proc Natl Acad Sci U S A 110(34):E3216-24. [PubMed: 23922396]  [MGI Ref ID J:200754]

Sabatino JJ Jr; Shires J; Altman JD; Ford ML; Evavold BD. 2008. Loss of IFN-{gamma} Enables the Expansion of Autoreactive CD4+ T Cells to Induce Experimental Autoimmune Encephalomyelitis by a Nonencephalitogenic Myelin Variant Antigen. J Immunol 180(7):4451-7. [PubMed: 18354166]  [MGI Ref ID J:132970]

Samuelsson C; Hausmann J; Lauterbach H; Schmidt M; Akira S; Wagner H; Chaplin P; Suter M; O'Keeffe M; Hochrein H. 2008. Survival of lethal poxvirus infection in mice depends on TLR9, and therapeutic vaccination provides protection. J Clin Invest 118(5):1776-84. [PubMed: 18398511]  [MGI Ref ID J:135187]

Sato A; Iwasaki A. 2004. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments. Proc Natl Acad Sci U S A 101(46):16274-9. [PubMed: 15534227]  [MGI Ref ID J:94732]

Sato K; Suematsu A; Okamoto K; Yamaguchi A; Morishita Y; Kadono Y; Tanaka S; Kodama T; Akira S; Iwakura Y; Cua DJ; Takayanagi H. 2006. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203(12):2673-82. [PubMed: 17088434]  [MGI Ref ID J:124621]

Sauder C; Hallensleben W; Pagenstecher A; Schneckenburger S; Biro L; Pertlik D; Hausmann J; Suter M; Staeheli P. 2000. Chemokine gene expression in astrocytes of Borna disease virus-infected rats and mice in the absence of inflammation. J Virol 74(19):9267-80. [PubMed: 10982374]  [MGI Ref ID J:64497]

Schijns VE; Haagmans BL; Horzinek MC. 1995. IL-12 stimulates an antiviral type 1 cytokine response but lacks adjuvant activity in IFN-gamma-receptor-deficient mice. J Immunol 155(5):2525-32. [PubMed: 7650382]  [MGI Ref ID J:28197]

Schijns VE; Haagmans BL; Rijke EO; Huang S; Aguet M; Horzinek MC. 1994. IFN-gamma receptor-deficient mice generate antiviral Th1-characteristic cytokine profiles but altered antibody responses. J Immunol 153(5):2029-37. [PubMed: 8051408]  [MGI Ref ID J:19758]

Schijns VE; Haagmans BL; Wierda CM; Kruithof B; Heijnen IA; Alber G; Horzinek MC. 1998. Mice lacking IL-12 develop polarized Th1 cells during viral infection. J Immunol 160(8):3958-64. [PubMed: 9558103]  [MGI Ref ID J:46942]

Schijns VE; Wierda CM; van Hoeij M; Horzinek MC. 1996. Exacerbated viral hepatitis in IFN-gamma receptor-deficient mice is not suppressed by IL-12. J Immunol 157(2):815-21. [PubMed: 8752933]  [MGI Ref ID J:34040]

Schoggins JW; Dorner M; Feulner M; Imanaka N; Murphy MY; Ploss A; Rice CM. 2012. Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro. Proc Natl Acad Sci U S A 109(36):14610-5. [PubMed: 22908290]  [MGI Ref ID J:189890]

Schulz EG; Mariani L; Radbruch A; Hofer T. 2009. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity 30(5):673-83. [PubMed: 19409816]  [MGI Ref ID J:149559]

Schurgers E; Mertens F; Vanoirbeek JA; Put S; Mitera T; Langhe ED; Billiau A; Hoet PH; Nemery B; Verbeken E; Matthys P. 2012. Pulmonary inflammation in mice with collagen-induced arthritis is conditioned by complete Freund's adjuvant and regulated by endogenous IFN-gamma. Eur J Immunol 42(12):3223-34. [PubMed: 22930199]  [MGI Ref ID J:190356]

Schwarting A; Moore K; Wada T; Tesch G; Yoon HJ; Kelley VR. 1998. IFN-gamma limits macrophage expansion in MRL-Fas(lpr) autoimmune interstitial nephritis: a negative regulatory pathway. J Immunol 160(8):4074-81. [PubMed: 9558118]  [MGI Ref ID J:111003]

Sercan O; Hammerling GJ; Arnold B; Schuler T. 2006. Innate immune cells contribute to the IFN-gamma-dependent regulation of antigen-specific CD8+ T cell homeostasis. J Immunol 176(2):735-9. [PubMed: 16393956]  [MGI Ref ID J:126599]

Sercan O; Stoycheva D; Hammerling GJ; Arnold B; Schuler T. 2010. IFN-gamma receptor signaling regulates memory CD8+ T cell differentiation. J Immunol 184(6):2855-62. [PubMed: 20164422]  [MGI Ref ID J:160112]

Sewnath ME; Van Der Poll T; Van Noorden CJ; Ten Kate FJ; Gouma DJ. 2002. Endogenous interferon gamma protects against cholestatic liver injury in mice. Hepatology 36(6):1466-77. [PubMed: 12447873]  [MGI Ref ID J:106209]

Shankaran V; Ikeda H; Bruce AT; White JM; Swanson PE; Old LJ; Schreiber RD. 2001. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107-11. [PubMed: 11323675]  [MGI Ref ID J:80176]

Shaw MH; Freeman GJ; Scott MF; Fox BA; Bzik DJ; Belkaid Y; Yap GS. 2006. Tyk2 negatively regulates adaptive Th1 immunity by mediating IL-10 signaling and promoting IFN-gamma-dependent IL-10 reactivation. J Immunol 176(12):7263-71. [PubMed: 16751369]  [MGI Ref ID J:132232]

Shen H; Iwasaki A. 2006. A crucial role for plasmacytoid dendritic cells in antiviral protection by CpG ODN-based vaginal microbicide. J Clin Invest 116(8):2237-43. [PubMed: 16878177]  [MGI Ref ID J:113124]

Shenoy AR; Wellington DA; Kumar P; Kassa H; Booth CJ; Cresswell P; MacMicking JD. 2012. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336(6080):481-5. [PubMed: 22461501]  [MGI Ref ID J:183942]

Shresta S; Kyle JL; Snider HM; Basavapatna M; Beatty PR; Harris E. 2004. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78(6):2701-10. [PubMed: 14990690]  [MGI Ref ID J:88819]

Shresta S; Sharar KL; Prigozhin DM; Snider HM; Beatty PR; Harris E. 2005. Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol 175(6):3946-54. [PubMed: 16148142]  [MGI Ref ID J:116690]

Sinha P; Parker KH; Horn L; Ostrand-Rosenberg S. 2012. Tumor-induced myeloid-derived suppressor cell function is independent of IFN-gamma and IL-4Ralpha. Eur J Immunol 42(8):2052-9. [PubMed: 22673957]  [MGI Ref ID J:187851]

Skoberne M; Geginat G. 2002. Efficient in vivo presentation of Listeria monocytogenes- derived CD4 and CD8 T cell epitopes in the absence of IFN-gamma. J Immunol 168(4):1854-60. [PubMed: 11823519]  [MGI Ref ID J:74477]

Skold M; Behar SM. 2008. Tuberculosis triggers a tissue-dependent program of differentiation and acquisition of effector functions by circulating monocytes. J Immunol 181(9):6349-60. [PubMed: 18941226]  [MGI Ref ID J:140726]

Songhet P; Barthel M; Stecher B; Muller AJ; Kremer M; Hansson GC; Hardt WD. 2011. Stromal IFN-gammaR-signaling modulates goblet cell function during Salmonella Typhimurium infection. PLoS One 6(7):e22459. [PubMed: 21829463]  [MGI Ref ID J:175835]

Sorensen EW; Gerber SA; Frelinger JG; Lord EM. 2010. IL-12 suppresses vascular endothelial growth factor receptor 3 expression on tumor vessels by two distinct IFN-gamma-dependent mechanisms. J Immunol 184(4):1858-66. [PubMed: 20061409]  [MGI Ref ID J:159492]

Spiller S; Elson G; Ferstl R; Dreher S; Mueller T; Freudenberg M; Daubeuf B; Wagner H; Kirschning CJ. 2008. TLR4-induced IFN-gamma production increases TLR2 sensitivity and drives Gram-negative sepsis in mice. J Exp Med 205(8):1747-54. [PubMed: 18644971]  [MGI Ref ID J:138218]

Sporri R; Joller N; Albers U; Hilbi H; Oxenius A. 2006. MyD88-dependent IFN-gamma production by NK cells is key for control of Legionella pneumophila infection. J Immunol 176(10):6162-71. [PubMed: 16670325]  [MGI Ref ID J:131762]

Stange J; Hepworth MR; Rausch S; Zajic L; Kuhl AA; Uyttenhove C; Renauld JC; Hartmann S; Lucius R. 2012. IL-22 Mediates Host Defense against an Intestinal Intracellular Parasite in the Absence of IFN-gamma at the Cost of Th17-Driven Immunopathology. J Immunol 188(5):2410-8. [PubMed: 22266282]  [MGI Ref ID J:181287]

Starr R; Fuchsberger M; Lau LS; Uldrich AP; Goradia A; Willson TA; Verhagen AM; Alexander WS; Smyth MJ. 2009. SOCS-1 binding to tyrosine 441 of IFN-gamma receptor subunit 1 contributes to the attenuation of IFN-gamma signaling in vivo. J Immunol 183(7):4537-44. [PubMed: 19734231]  [MGI Ref ID J:152785]

Strutt TM; McKinstry KK; Dibble JP; Winchell C; Kuang Y; Curtis JD; Huston G; Dutton RW; Swain SL. 2010. Memory CD4+ T cells induce innate responses independently of pathogen. Nat Med 16(5):558-64, 1p following 564. [PubMed: 20436484]  [MGI Ref ID J:160609]

Sukupolvi-Petty S; Austin SK; Engle M; Brien JD; Dowd KA; Williams KL; Johnson S; Rico-Hesse R; Harris E; Pierson TC; Fremont DH; Diamond MS. 2010. Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84(18):9227-39. [PubMed: 20592088]  [MGI Ref ID J:164610]

Sun K; Hsiao HH; Li M; Ames E; Bouchlaka M; Welniak LA; Hagino T; Jagdeo J; Pai CC; Chen M; Blazar BR; Abedi M; Murphy WJ. 2012. IFN-gamma receptor-deficient donor T cells mediate protection from graft-versus-host disease and preserve graft-versus-tumor responses after allogeneic bone marrow transplantation. J Immunol 189(4):2033-42. [PubMed: 22778394]  [MGI Ref ID J:189757]

Sun K; Metzger DW. 2008. Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nat Med 14(5):558-64. [PubMed: 18438414]  [MGI Ref ID J:136669]

Sun K; Ye J; Perez DR; Metzger DW. 2011. Seasonal FluMist vaccination induces cross-reactive T cell immunity against H1N1 (2009) influenza and secondary bacterial infections. J Immunol 186(2):987-93. [PubMed: 21160043]  [MGI Ref ID J:168768]

Sun R; Gao B. 2004. Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-gamma). Gastroenterology 127(5):1525-39. [PubMed: 15521020]  [MGI Ref ID J:107757]

Suscovich TJ; Perdue NR; Campbell DJ. 2012. Type-1 immunity drives early lethality in scurfy mice. Eur J Immunol 42(9):2305-10. [PubMed: 22740092]  [MGI Ref ID J:187940]

Swihart K; Fruth U; Messmer N; Hug K; Behin R; Huang S; Del Giudice G; Aguet M; Louis JA. 1995. Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T cell response. J Exp Med 181(3):961-71. [PubMed: 7869054]  [MGI Ref ID J:23339]

Szabo SJ; Kim ST; Costa GL; Zhang X; Fathman CG; Glimcher LH. 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655-69. [PubMed: 10761931]  [MGI Ref ID J:61321]

Szalay G; Ladel CH; Blum C; Kaufmann SH. 1996. IL-4 neutralization or TNF-alpha treatment ameliorate disease by an intracellular pathogen in IFN-gamma receptor-deficient mice. J Immunol 157(11):4746-50. [PubMed: 8943375]  [MGI Ref ID J:37042]

Tarallo V; Hirano Y; Gelfand BD; Dridi S; Kerur N; Kim Y; Cho WG; Kaneko H; Fowler BJ; Bogdanovich S; Albuquerque RJ; Hauswirth WW; Chiodo VA; Kugel JF; Goodrich JA; Ponicsan SL; Chaudhuri G; Murphy MP; Dunaief JL; Ambati BK; Ogura Y; Yoo JW; Lee DK; Provost P; Hinton DR; Nunez G; Baffi JZ; Kleinman ME; Ambati J. 2012. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149(4):847-59. [PubMed: 22541070]  [MGI Ref ID J:186198]

Tay CH; Welsh RM. 1997. Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J Virol 71(1):267-75. [PubMed: 8985346]  [MGI Ref ID J:37971]

Templeton SP; Perlman S. 2008. Role of IFN-gamma responsiveness in CD8 T cell-mediated viral clearance and demyelination in coronavirus-infected mice. J Neuroimmunol 194(1-2):18-26. [PubMed: 18082272]  [MGI Ref ID J:131907]

Tewari K; Nakayama Y; Suresh M. 2007. Role of direct effects of IFN-gamma on T cells in the regulation of CD8 T cell homeostasis. J Immunol 179(4):2115-25. [PubMed: 17675470]  [MGI Ref ID J:151231]

Todoric J; Strobl B; Jais A; Boucheron N; Bayer M; Amann S; Lindroos J; Teperino R; Prager G; Bilban M; Ellmeier W; Krempler F; Muller M; Wagner O; Patsch W; Pospisilik JA; Esterbauer H. 2011. Cross-talk between interferon-gamma and hedgehog signaling regulates adipogenesis. Diabetes 60(6):1668-76. [PubMed: 21536945]  [MGI Ref ID J:177949]

Tran EH; Prince EN; Owens T. 2000. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. J Immunol 164(5):2759-68. [PubMed: 10679118]  [MGI Ref ID J:60605]

Tsai CC; Huang WC; Chen CL; Hsieh CY; Lin YS; Chen SH; Yang KC; Lin CF. 2011. Glycogen synthase kinase-3 facilitates con a-induced IFN-gamma-- mediated immune hepatic injury. J Immunol 187(7):3867-77. [PubMed: 21873526]  [MGI Ref ID J:179336]

Tsuji M; Miyahira Y; Nussenzweig RS; Aguet M; Reichel M; Zavala F. 1995. Development of antimalaria immunity in mice lacking IFN-gamma receptor. J Immunol 154(10):5338-44. [PubMed: 7537305]  [MGI Ref ID J:25111]

Turner SJ; Olivas E; Gutierrez A; Diaz G; Doherty PC. 2007. Disregulated influenza A virus-specific CD8+ T cell homeostasis in the absence of IFN-gamma signaling. J Immunol 178(12):7616-22. [PubMed: 17548597]  [MGI Ref ID J:148590]

Tzelepis F; Persechini PM; Rodrigues MM. 2007. Modulation of CD4+ T cell-dependent specific cytotoxic CD8+ T cells differentiation and proliferation by the timing of increase in the pathogen load. PLoS ONE 2(4):e393. [PubMed: 17460760]  [MGI Ref ID J:129273]

Valaperti A; Marty RR; Kania G; Germano D; Mauermann N; Dirnhofer S; Leimenstoll B; Blyszczuk P; Dong C; Mueller C; Hunziker L; Eriksson U. 2008. CD11b+ monocytes abrogate Th17 CD4+ T cell-mediated experimental autoimmune myocarditis. J Immunol 180(4):2686-95. [PubMed: 18250481]  [MGI Ref ID J:131968]

Van Uden JH; Tran CH; Carson DA; Raz E. 2001. Type I interferon is required to mount an adaptive response to immunostimulatory DNA. Eur J Immunol 31(11):3281-90. [PubMed: 11745345]  [MGI Ref ID J:72586]

Van den Steen PE; Deroost K; Aelst IV; Geurts N; Martens E; Struyf S; Nie CQ; Hansen DS; Matthys P; Damme JV; Opdenakker G. 2008. CXCR3 determines strain susceptibility to murine cerebral malaria by mediating T lymphocyte migration toward IFN-gamma-induced chemokines. Eur J Immunol 38(4):1082-95. [PubMed: 18383042]  [MGI Ref ID J:133766]

Vermeire K; Heremans H; Vandeputte M; Huang S; Billiau A; Matthys P. 1997. Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J Immunol 158(11):5507-13. [PubMed: 9164974]  [MGI Ref ID J:40635]

Viero C; Mechaly I; Aptel H; Puech S; Valmier J; Bancel F; Dayanithi G. 2006. Rapid inhibition of Ca(2+) influx by neurosteroids in murine embryonic sensory neurones Cell Calcium 40(4):383-91. [PubMed: 16769113]  [MGI Ref ID J:110866]

Vila-del Sol V; Diaz-Munoz MD; Fresno M. 2007. Requirement of tumor necrosis factor alpha and nuclear factor-kappaB in the induction by IFN-gamma of inducible nitric oxide synthase in macrophages. J Leukoc Biol 81(1):272-83. [PubMed: 17035338]  [MGI Ref ID J:117247]

Vladimer GI; Weng D; Paquette SW; Vanaja SK; Rathinam VA; Aune MH; Conlon JE; Burbage JJ; Proulx MK; Liu Q; Reed G; Mecsas JC; Iwakura Y; Bertin J; Goguen JD; Fitzgerald KA; Lien E. 2012. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37(1):96-107. [PubMed: 22840842]  [MGI Ref ID J:187388]

Vollstedt S; Arnold S; Schwerdel C; Franchini M; Alber G; Di Santo JP; Ackermann M; Suter M. 2004. Interplay between alpha/beta and gamma interferons with B, T, and natural killer cells in the defense against herpes simplex virus type 1. J Virol 78(8):3846-50. [PubMed: 15047800]  [MGI Ref ID J:89128]

Vollstedt S; Franchini M; Alber G; Ackermann M; Suter M. 2001. Interleukin-12- and gamma interferon-dependent innate immunity are essential and sufficient for long-term survival of passively immunized mice infected with herpes simplex virus type 1. J Virol 75(20):9596-600. [PubMed: 11559791]  [MGI Ref ID J:71695]

Wei J; Waithman J; Lata R; Mifsud NA; Cebon J; Kay T; Smyth MJ; Sadler AJ; Chen W. 2010. Influenza A infection enhances cross-priming of CD8+ T cells to cell-associated antigens in a TLR7- and type I IFN-dependent fashion. J Immunol 185(10):6013-22. [PubMed: 20956347]  [MGI Ref ID J:165777]

Wesley JD; Robbins SH; Sidobre S; Kronenberg M; Terrizzi S; Brossay L. 2005. Cutting edge: IFN-gamma signaling to macrophages is required for optimal Valpha14i NK T/NK cell cross-talk. J Immunol 174(7):3864-8. [PubMed: 15778340]  [MGI Ref ID J:97977]

Whitmire JK; Benning N; Whitton JL. 2005. Cutting edge: early IFN-gamma signaling directly enhances primary antiviral CD4+ T cell responses. J Immunol 175(9):5624-8. [PubMed: 16237051]  [MGI Ref ID J:119361]

Whitmire JK; Eam B; Benning N; Whitton JL. 2007. Direct interferon-gamma signaling dramatically enhances CD4+ and CD8+ T cell memory. J Immunol 179(2):1190-7. [PubMed: 17617612]  [MGI Ref ID J:149391]

Whitmire JK; Eam B; Whitton JL. 2009. Mice deficient in stem cell antigen-1 (Sca1, Ly-6A/E) develop normal primary and memory CD4+ and CD8+ T-cell responses to virus infection. Eur J Immunol 39(6):1494-504. [PubMed: 19384870]  [MGI Ref ID J:149483]

Willenborg DO; Fordham S; Bernard CC; Cowden WB; Ramshaw IA. 1996. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157(8):3223-7. [PubMed: 8871615]  [MGI Ref ID J:38363]

Willenborg DO; Fordham SA; Staykova MA; Ramshaw IA; Cowden WB. 1999. IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J Immunol 163(10):5278-86. [PubMed: 10553050]  [MGI Ref ID J:58457]

Wilson CB; Ray M; Lutz M; Sharda D; Xu J; Hankey PA. 2008. The RON receptor tyrosine kinase regulates IFN-gamma production and responses in innate immunity. J Immunol 181(4):2303-10. [PubMed: 18684919]  [MGI Ref ID J:140197]

Wozniak KL; Hardison SE; Kolls JK; Wormley FL. 2011. Role of IL-17A on resolution of pulmonary C. neoformans infection. PLoS One 6(2):e17204. [PubMed: 21359196]  [MGI Ref ID J:171081]

Wu J; Yang J; Yang K; Wang H; Gorentla B; Shin J; Qiu Y; Que LG; Foster WM; Xia Z; Chi H; Zhong XP. 2014. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions. J Clin Invest 124(4):1685-98. [PubMed: 24614103]  [MGI Ref ID J:209612]

Xiao BG; Ma CG; Xu LY; Link H; Lu CZ. 2008. IL-12/IFN-gamma/NO axis plays critical role in development of Th1-mediated experimental autoimmune encephalomyelitis. Mol Immunol 45(4):1191-6. [PubMed: 17697713]  [MGI Ref ID J:126771]

Xiao M; Wang C; Zhang J; Li Z; Zhao X; Qin Z. 2009. IFNgamma promotes papilloma development by up-regulating Th17-associated inflammation. Cancer Res 69(5):2010-7. [PubMed: 19244111]  [MGI Ref ID J:145951]

Xu X; Yi H; Guo Z; Qian C; Xia S; Yao Y; Cao X. 2012. Splenic stroma-educated regulatory dendritic cells induce apoptosis of activated CD4 T cells via Fas ligand-enhanced IFN-gamma and nitric oxide. J Immunol 188(3):1168-77. [PubMed: 22205032]  [MGI Ref ID J:180753]

Xu Z; Hurchla MA; Deng H; Uluckan O; Bu F; Berdy A; Eagleton MC; Heller EA; Floyd DH; Dirksen WP; Shu S; Tanaka Y; Fernandez SA; Rosol TJ; Weilbaecher KN. 2009. Interferon-gamma targets cancer cells and osteoclasts to prevent tumor-associated bone loss and bone metastases. J Biol Chem 284(7):4658-66. [PubMed: 19059914]  [MGI Ref ID J:147601]

Yamada J; Hamuro J; Fukushima A; Ohteki T; Terai K; Iwakura Y; Yagita H; Kinoshita S. 2009. MHC-matched corneal allograft rejection in an IFN-gamma/IL-17-independent manner in C57BL/6 mice. Invest Ophthalmol Vis Sci 50(5):2139-46. [PubMed: 19136699]  [MGI Ref ID J:151042]

Yamamoto M; Kiyota T; Horiba M; Buescher JL; Walsh SM; Gendelman HE; Ikezu T. 2007. Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 170(2):680-92. [PubMed: 17255335]  [MGI Ref ID J:117817]

Yang MC; Chang CP; Lei HY. 2010. Endothelial cells are damaged by autophagic induction before hepatocytes in Con A-induced acute hepatitis. Int Immunol 22(8):661-70. [PubMed: 20547544]  [MGI Ref ID J:162090]

Yang T; Stark P; Janik K; Wigzell H; Rottenberg ME. 2008. SOCS-1 Protects against Chlamydia pneumoniae-Induced Lethal Inflammation but Hampers Effective Bacterial Clearance. J Immunol 180(6):4040-9. [PubMed: 18322213]  [MGI Ref ID J:132932]

Yang Y; Ochando JC; Bromberg JS; Ding Y. 2007. Identification of a distant T-bet enhancer responsive to IL-12/Stat4 and IFNgamma/Stat1 signals. Blood 110(7):2494-500. [PubMed: 17575072]  [MGI Ref ID J:147019]

Yu M; Eckart MR; Morgan AA; Mukai K; Butte AJ; Tsai M; Galli SJ. 2011. Identification of an IFN-gamma/mast cell axis in a mouse model of chronic asthma. J Clin Invest 121(8):3133-43. [PubMed: 21737883]  [MGI Ref ID J:176170]

Yun NE; Poussard AL; Seregin AV; Walker AG; Smith JK; Aronson JF; Smith JN; Soong L; Paessler S. 2012. Functional interferon system is required for clearance of lassa virus. J Virol 86(6):3389-92. [PubMed: 22238311]  [MGI Ref ID J:181200]

Zhang GX; Xiao BG; Bai XF; van der Meide PH; Orn A; Link H. 1999. Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis. J Immunol 162(7):3775-81. [PubMed: 10201893]  [MGI Ref ID J:53577]

Zhang Y; Jones M; McCabe A; Winslow GM; Avram D; Macnamara KC. 2013. MyD88 Signaling in CD4 T Cells Promotes IFN-gamma Production and Hematopoietic Progenitor Cell Expansion in Response to Intracellular Bacterial Infection. J Immunol 190(9):4725-35. [PubMed: 23526822]  [MGI Ref ID J:195524]

Zhang Y; Xu G; Zhang L; Roberts AI; Shi Y. 2008. Th17 cells undergo fas-mediated activation-induced cell death independent of IFN-gamma. J Immunol 181(1):190-6. [PubMed: 18566384]  [MGI Ref ID J:137178]

Zhao Y; Wilson D; Matthews S; Yap GS. 2007. Rapid elimination of Toxoplasma gondii by gamma interferon-primed mouse macrophages is independent of CD40 signaling. Infect Immun 75(10):4799-803. [PubMed: 17682046]  [MGI Ref ID J:125278]

Zhu J; Huang X; Yang Y. 2007. Type I IFN signaling on both B and CD4 T cells is required for protective antibody response to adenovirus. J Immunol 178(6):3505-10. [PubMed: 17339445]  [MGI Ref ID J:144287]

Zhu J; Jankovic D; Oler AJ; Wei G; Sharma S; Hu G; Guo L; Yagi R; Yamane H; Punkosdy G; Feigenbaum L; Zhao K; Paul WE. 2012. The Transcription Factor T-bet Is Induced by Multiple Pathways and Prevents an Endogenous Th2 Cell Program during Th1 Cell Responses. Immunity 37(4):660-73. [PubMed: 23041064]  [MGI Ref ID J:188559]

Zompi S; Santich BH; Beatty PR; Harris E. 2012. Protection from secondary dengue virus infection in a mouse model reveals the role of serotype cross-reactive B and T cells. J Immunol 188(1):404-16. [PubMed: 22131327]  [MGI Ref ID J:180815]

de Bruin AM; Demirel O; Hooibrink B; Brandts CH; Nolte MA. 2013. Interferon-gamma impairs proliferation of hematopoietic stem cells in mice. Blood 121(18):3578-85. [PubMed: 23487025]  [MGI Ref ID J:197934]

van den Broek MF; Muller U; Huang S; Aguet M; Zinkernagel RM. 1995. Antiviral defense in mice lacking both alpha/beta and gamma interferon receptors. J Virol 69(8):4792-6. [PubMed: 7609046]  [MGI Ref ID J:26860]

Health & husbandry

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Colony Maintenance

Breeding & HusbandryThis strain is maintained by homozygous sibling matings. Expected coat color from breeding:White Bellied Agouti

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2525.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3283.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Control Information

  Control
   002448 129S1/SvImJ (approximate)
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Notice regarding distribution of this strain.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)