Strain Name:

B6.Cg-Tg(IghMyc)22Bri/J

Stock Number:

002728

Order this mouse

Availability:

Repository- Live

Use Restrictions Apply, see Terms of Use
Hemizygous mice for this transgene show increased levels of pre-B cells in the bone marrow throughout life and an increase in spontaneous pre-B and B cell lymphomas.

Description

Strain Information

Former Names C57BL/6J-Tg(IghMyc)22Bri/J    (Changed: 08-MAY-06 )
Type Congenic; Mutant Strain; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemInbred x Hemizygote         (Female x Male)   01-MAR-06
Specieslaboratory mouse
Generation[N?+2p]N21 (06-JAN-09)
Generation Definitions
 
Donating InvestigatorDr. Alan Harris,   The Walter & Eliza Hall Inst of Med Res

Appearance
black
Related Genotype: a/a

Description
Expression of the mouse Myc transgene is restricted to the B cell lineage. Hemizygotes show increased pre-B cells in the bone marrow throughout life and a transient increase in large pre-B cells in the blood at 3-4 weeks of age. Spontaneous pre-B and B cell lymphomas reach an incidence of 50% at 15-20 weeks in hemizygous progeny of a wildtype female mated with a hemizygous male. The transgene synergizes with an TgN(BCL2)22Wehi transgene (Stock #002319) to produce primitive lymphoid tumors within 5 weeks of birth, and with an Emu-v-abl transgene to produce plasmacytomas by 8 weeks.

Development
The TgN(IghMyc)22Bri transgenic strain was made in the laboratory of Dr Ralph Brinster, University of Pennsylvania in collaboration with Dr. Alan Harris, currently of the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. The transgene construct consists of the Myc oncogene (c-myc) in association with the Emu immunoglobulin heavy chain enhancer and Myc promoter.

Control Information

  Control
   Noncarrier
   000664 C57BL/6J
 
  Considerations for Choosing Controls

Related Strains

View Strains carrying other alleles of Myc     (15 strains)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Characteristics of this human disease are associated with transgenes and other mutation types in the mouse.
Burkitt Lymphoma; BL
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Tg(IghMyc)22Bri/0

        involves: C57BL/6 * SJL
  • mortality/aging
  • premature death
    • mice die at 6 to 15 weeks of age with 94% of mice dying by 4 months of age   (MGI Ref ID J:78177)
    • median survival is 100 days   (MGI Ref ID J:186117)
  • tumorigenesis
  • increased tumor incidence
    • mice occasionally develop thyoma without involvement of peripheral lymphoid organs   (MGI Ref ID J:78177)
    • increased leukemia incidence
      • mice develop multicentric lymphosarcoma associated with leukemia   (MGI Ref ID J:78177)
    • increased lymphoma incidence
      • 13 of 15 mice develop lymphomas   (MGI Ref ID J:78177)
      • mice develop multicentric lymphosarcoma associated with leukemia   (MGI Ref ID J:78177)
      • increased B cell derived lymphoma incidence
        • lymphomas develop from single B-lymphoid clones at different stages of differentiation   (MGI Ref ID J:78177)
        • mutants exhibit a mixture of sIg- pre-B lymphoma (~40%) and sIg+ B lymphoma (~60%)   (MGI Ref ID J:186117)
    • increased sarcoma incidence
      • mice develop multicentric lymphosarcoma associated with leukemia   (MGI Ref ID J:78177)
  • immune system phenotype
  • abnormal lymphopoiesis
    • mice exhibit an increased in the number of lymphoblasts in lymph tissues and the blood compared to wild-type mice   (MGI Ref ID J:78177)
  • enlarged lymph nodes   (MGI Ref ID J:78177)
  • enlarged spleen
  • enlarged thymus   (MGI Ref ID J:78177)
  • increased leukocyte cell number
    • white blood cell counts are increased   (MGI Ref ID J:186117)
  • hematopoietic system phenotype
  • abnormal lymphopoiesis
    • mice exhibit an increased in the number of lymphoblasts in lymph tissues and the blood compared to wild-type mice   (MGI Ref ID J:78177)
  • enlarged spleen
  • enlarged thymus   (MGI Ref ID J:78177)
  • increased leukocyte cell number
    • white blood cell counts are increased   (MGI Ref ID J:186117)
  • endocrine/exocrine gland phenotype
  • enlarged thymus   (MGI Ref ID J:78177)

Tg(IghMyc)22Bri/0

        involves: C57BL * C57BL/6 * SJL
  • mortality/aging
  • premature death
    • mean mortality is 19 weeks   (MGI Ref ID J:117023)
  • tumorigenesis
  • increased lymphoma incidence   (MGI Ref ID J:117023)

Tg(IghMyc)22Bri/?

        involves: C57BL * C57BL/6 * SJL
  • mortality/aging
  • premature death
    • mean survival after lymphomas develop 91 days   (MGI Ref ID J:121564)
  • tumorigenesis
  • increased lymphoma incidence   (MGI Ref ID J:121564)
  • increased metastatic potential
    • 6 of 6 mice suffer from dissemination disease with diffuse bone marrow infiltration of B220+ lymphocytes and infiltration of the spleen, liver and meninges   (MGI Ref ID J:121564)
  • immune system phenotype
  • enlarged spleen   (MGI Ref ID J:121564)
  • increased lymphocyte cell number   (MGI Ref ID J:121564)
  • hematopoietic system phenotype
  • enlarged spleen   (MGI Ref ID J:121564)
  • increased lymphocyte cell number   (MGI Ref ID J:121564)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cancer Research
Increased Tumor Incidence
      Lymphomas
      Lymphomas: B cell lymphomas
Oncogenes

Research Tools
Immunology, Inflammation and Autoimmunity Research
      B cell lymphomas

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tg(IghMyc)22Bri
Allele Name transgene insertion 22, Ralph L Brinster
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) E-myc; Emu-c-myc; Emu-cmyc Tg; Emu-myc; Tg-IghMyc-22Bri;
Strain of Origin(C57BL x SJL)F2
Expressed Gene Myc, myelocytomatosis oncogene, mouse, laboratory
Promoter Myc, myelocytomatosis oncogene, mouse, laboratory
General Note 13 out of 15 transgenic founders developed lymphomas between 6 and 15 weeks of age. The animals became terminally ill and died or were sacrificed.

Hemizygous mice on a C57BL/6 background display increased pre-B cells in the bone marrow throughout life and a transient increase in large pre-B cells in the blood at 3-4 weeks of age. Spontaneous pre-B and B cell lymphomas reach an incidence of 50% at 15-20 weeks in hemizygous progeny of a wildtype female mated with a hemizygous male.

In conjuction with Tg(BCL2)22Wehi, transgenic mice on a C57BL/6 background exhibit the production of primitive lymphoid tumors within 5 weeks of birth

Molecular Note Expression of the mouse Myc transgene is directed to the B cell lineage by the Igh (E mu) enhancer and Myc promoter. The transgene was originally designated Eμ-Myc. [MGI Ref ID J:78177]
 

Genotyping

Genotyping Information

Genotyping Protocols

Tg(IghMyc)22Bri-alternate1, High Resolution Melting
Tg(IghMyc)22Bri-alternate1, Separated PCR
Tg(IghMyc)22Bri-alternate1, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Adams JM; Harris AW; Pinkert CA; Corcoran LM; Alexander WS; Cory S; Palmiter RD; Brinster RL. 1985. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318(6046):533-8. [PubMed: 3906410]  [MGI Ref ID J:78177]

Additional References

Eischen CM; Weber JD; Roussel MF; Sherr CJ; Cleveland JL. 1999. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13(20):2658-69. [PubMed: 10541552]  [MGI Ref ID J:58292]

Harris AW; Pinkert CA; Crawford M; Langdon WY; Brinster RL; Adams JM. 1988. The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 167(2):353-71. [PubMed: 3258007]  [MGI Ref ID J:81130]

Haupt Y; Bath ML; Harris AW; Adams JM. 1993. bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 8(11):3161-4. [PubMed: 8414519]  [MGI Ref ID J:88485]

Langdon WY; Harris AW; Cory S; Adams JM. 1986. The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 47(1):11-8. [PubMed: 3093082]  [MGI Ref ID J:81131]

Rosenbaum H; Harris AW; Bath ML; McNeall J; Webb E; Adams JM; Cory S. 1990. An E mu-v-abl transgene elicits plasmacytomas in concert with an activated myc gene. EMBO J 9(3):897-905. [PubMed: 2155783]  [MGI Ref ID J:78204]

Ruddell A; Mezquita P; Brandvold KA; Farr A; Iritani BM. 2003. B lymphocyte-specific c-Myc expression stimulates early and functional expansion of the vasculature and lymphatics during lymphomagenesis. Am J Pathol 163(6):2233-45. [PubMed: 14633598]  [MGI Ref ID J:86614]

Schmitt CA; McCurrach ME; de Stanchina E; Wallace-Brodeur RR; Lowe SW. 1999. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13(20):2670-7. [PubMed: 10541553]  [MGI Ref ID J:58293]

Strasser A; Harris AW; Bath ML; Cory S. 1990. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348(6299):331-3. [PubMed: 2250704]  [MGI Ref ID J:69571]

Tg(IghMyc)22Bri related

Alt JR; Greiner TC; Cleveland JL; Eischen CM. 2003. Mdm2 haplo-insufficiency profoundly inhibits Myc-induced lymphomagenesis. EMBO J 22(6):1442-50. [PubMed: 12628936]  [MGI Ref ID J:82477]

Anbalagan M; Sabapathy K. 2012. JNK1 and JNK2 play redundant functions in Myc-induced B cell lymphoma formation. Int J Cancer 130(8):1967-9. [PubMed: 21630260]  [MGI Ref ID J:181076]

Arrate MP; Vincent T; Odvody J; Kar R; Jones SN; Eischen CM. 2010. MicroRNA biogenesis is required for Myc-induced B-cell lymphoma development and survival. Cancer Res 70(14):6083-92. [PubMed: 20587524]  [MGI Ref ID J:162464]

Baudino TA; Maclean KH; Brennan J; Parganas E; Yang C; Aslanian A; Lees JA; Sherr CJ; Roussel MF; Cleveland JL. 2003. Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol Cell 11(4):905-14. [PubMed: 12718877]  [MGI Ref ID J:83093]

Beneteau M; Zunino B; Jacquin MA; Meynet O; Chiche J; Pradelli LA; Marchetti S; Cornille A; Carles M; Ricci JE. 2012. Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response. Proc Natl Acad Sci U S A 109(49):20071-6. [PubMed: 23169636]  [MGI Ref ID J:192330]

Berns A; Mikkers H; Krimpenfort P; Allen J; Scheijen B; Jonkers J. 1999. Identification and characterization of collaborating oncogenes in compound mutant mice. Cancer Res 59(7 Suppl):1773s-1777s. [PubMed: 10197595]  [MGI Ref ID J:54359]

Bertwistle D; Sherr CJ. 2007. Regulation of the Arf tumor suppressor in Emicro-Myc transgenic mice: longitudinal study of Myc-induced lymphomagenesis. Blood 109(2):792-4. [PubMed: 16968893]  [MGI Ref ID J:120626]

Bolitho P; Street SE; Westwood JA; Edelmann W; Macgregor D; Waring P; Murray WK; Godfrey DI; Trapani JA; Johnstone RW; Smyth MJ. 2009. Perforin-mediated suppression of B-cell lymphoma. Proc Natl Acad Sci U S A 106(8):2723-8. [PubMed: 19196996]  [MGI Ref ID J:146488]

Bouchard C; Lee S; Paulus-Hock V; Loddenkemper C; Eilers M; Schmitt CA. 2007. FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of Arf. Genes Dev 21(21):2775-87. [PubMed: 17974917]  [MGI Ref ID J:126308]

Bric A; Miething C; Bialucha CU; Scuoppo C; Zender L; Krasnitz A; Xuan Z; Zuber J; Wigler M; Hicks J; McCombie RW; Hemann MT; Hannon GJ; Powers S; Lowe SW. 2009. Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell 16(4):324-35. [PubMed: 19800577]  [MGI Ref ID J:153707]

Burd CE; Sorrentino JA; Clark KS; Darr DB; Krishnamurthy J; Deal AM; Bardeesy N; Castrillon DH; Beach DH; Sharpless NE. 2013. Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152(1-2):340-51. [PubMed: 23332765]  [MGI Ref ID J:193498]

Cardone M; Kandilci A; Carella C; Nilsson JA; Brennan JA; Sirma S; Ozbek U; Boyd K; Cleveland JL; Grosveld GC. 2005. The novel ETS factor TEL2 cooperates with Myc in B lymphomagenesis. Mol Cell Biol 25(6):2395-405. [PubMed: 15743832]  [MGI Ref ID J:97664]

Concepcion CP; Han YC; Mu P; Bonetti C; Yao E; D'Andrea A; Vidigal JA; Maughan WP; Ogrodowski P; Ventura A. 2012. Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet 8(7):e1002797. [PubMed: 22844244]  [MGI Ref ID J:188152]

Corcoran LM; Tawfilis S; Barlow LJ. 1999. Generation of B lymphoma cell lines from knockout mice by transformation in vivo with an Emu-myc transgene. J Immunol Methods 228(1-2):131-8. [PubMed: 10556550]  [MGI Ref ID J:58472]

Croxford JL; Tang ML; Pan MF; Huang CW; Kamran N; Phua CM; Chng WJ; Ng SB; Raulet DH; Gasser S. 2013. ATM-dependent spontaneous regression of early Emu-myc-induced murine B-cell leukemia depends on natural killer and T cells. Blood 121(13):2512-21. [PubMed: 23349395]  [MGI Ref ID J:196411]

Dickins RA; McJunkin K; Hernando E; Premsrirut PK; Krizhanovsky V; Burgess DJ; Kim SY; Cordon-Cardo C; Zender L; Hannon GJ; Lowe SW. 2007. Tissue-specific and reversible RNA interference in transgenic mice. Nat Genet 39(7):914-21. [PubMed: 17572676]  [MGI Ref ID J:123006]

Diede SJ; Yao Z; Keyes CC; Tyler AE; Dey J; Hackett CS; Elsaesser K; Kemp CJ; Neiman PE; Weiss WA; Olson JM; Tapscott SJ. 2013. Fundamental differences in promoter CpG island DNA hypermethylation between human cancer and genetically engineered mouse models of cancer. Epigenetics 8(12):1254-60. [PubMed: 24107773]  [MGI Ref ID J:206076]

Dierks C; Grbic J; Zirlik K; Beigi R; Englund NP; Guo GR; Veelken H; Engelhardt M; Mertelsmann R; Kelleher JF; Schultz P; Warmuth M. 2007. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 13(8):944-51. [PubMed: 17632527]  [MGI Ref ID J:126550]

Dorr JR; Yu Y; Milanovic M; Beuster G; Zasada C; Dabritz JH; Lisec J; Lenze D; Gerhardt A; Schleicher K; Kratzat S; Purfurst B; Walenta S; Mueller-Klieser W; Graler M; Hummel M; Keller U; Buck AK; Dorken B; Willmitzer L; Reimann M; Kempa S; Lee S; Schmitt CA. 2013. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501(7467):421-5. [PubMed: 23945590]  [MGI Ref ID J:205006]

Dorstyn L; Puccini J; Wilson CH; Shalini S; Nicola M; Moore S; Kumar S. 2012. Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability. Cell Death Differ 19(8):1288-98. [PubMed: 22498700]  [MGI Ref ID J:204798]

Drotar ME; Silva S; Barone E; Campbell D; Tsimbouri P; Jurvansu J; Bhatia P; Klein G; Wilson JB. 2003. Epstein-Barr virus nuclear antigen-1 and Myc cooperate in lymphomagenesis. Int J Cancer 106(3):388-95. [PubMed: 12845679]  [MGI Ref ID J:85023]

Egle A; Harris AW; Bouillet P; Cory S. 2004. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci U S A 101(16):6164-9. [PubMed: 15079075]  [MGI Ref ID J:89600]

Eischen CM; Alt JR; Wang P. 2004. Loss of one allele of ARF rescues Mdm2 haploinsufficiency effects on apoptosis and lymphoma development. Oncogene 23(55):8931-40. [PubMed: 15467748]  [MGI Ref ID J:94714]

Eischen CM; Roussel MF; Korsmeyer SJ; Cleveland JL. 2001. Bax Loss Impairs Myc-Induced Apoptosis and Circumvents the Selection of p53 Mutations during Myc-Mediated Lymphomagenesis. Mol Cell Biol 21(22):7653-62. [PubMed: 11604501]  [MGI Ref ID J:72281]

Eischen CM; Weber JD; Roussel MF; Sherr CJ; Cleveland JL. 1999. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13(20):2658-69. [PubMed: 10541552]  [MGI Ref ID J:58292]

Faubert B; Boily G; Izreig S; Griss T; Samborska B; Dong Z; Dupuy F; Chambers C; Fuerth BJ; Viollet B; Mamer OA; Avizonis D; DeBerardinis RJ; Siegel PM; Jones RG. 2013. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17(1):113-24. [PubMed: 23274086]  [MGI Ref ID J:195092]

Feldser DM; Greider CW. 2007. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11(5):461-9. [PubMed: 17433785]  [MGI Ref ID J:121351]

Ferrao PT; Bukczynska EP; Johnstone RW; McArthur GA. 2012. Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells. Oncogene 31(13):1661-72. [PubMed: 21841818]  [MGI Ref ID J:186150]

Finnberg N; Klein-Szanto AJ; El-Deiry WS. 2008. TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. J Clin Invest 118(1):111-23. [PubMed: 18079962]  [MGI Ref ID J:130845]

Frank AK; Leu JI; Zhou Y; Devarajan K; Nedelko T; Klein-Szanto A; Hollstein M; Murphy ME. 2011. The codon 72 polymorphism of p53 regulates interaction with NF-{kappa}B and transactivation of genes involved in immunity and inflammation. Mol Cell Biol 31(6):1201-13. [PubMed: 21245379]  [MGI Ref ID J:170615]

Frenzel A; Labi V; Chmelewskij W; Ploner C; Geley S; Fiegl H; Tzankov A; Villunger A. 2010. Suppression of B-cell lymphomagenesis by the BH3-only proteins Bmf and Bad. Blood 115(5):995-1005. [PubMed: 19965635]  [MGI Ref ID J:156718]

Garcia D; Warr MR; Martins CP; Brown Swigart L; Passegue E; Evan GI. 2011. Validation of MdmX as a therapeutic target for reactivating p53 in tumors. Genes Dev 25(16):1746-57. [PubMed: 21852537]  [MGI Ref ID J:174671]

Garcia-Fernandez M; Kissel H; Brown S; Gorenc T; Schile AJ; Rafii S; Larisch S; Steller H. 2010. Sept4/ARTS is required for stem cell apoptosis and tumor suppression. Genes Dev 24(20):2282-93. [PubMed: 20952537]  [MGI Ref ID J:165092]

Garrison SP; Jeffers JR; Yang C; Nilsson JA; Hall MA; Rehg JE; Yue W; Yu J; Zhang L; Onciu M; Sample JT; Cleveland JL; Zambetti GP. 2008. Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis. Mol Cell Biol 28(17):5391-402. [PubMed: 18573879]  [MGI Ref ID J:139744]

Goga A; Yang D; Tward AD; Morgan DO; Bishop JM. 2007. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med 13(7):820-7. [PubMed: 17589519]  [MGI Ref ID J:125802]

Gorrini C; Squatrito M; Luise C; Syed N; Perna D; Wark L; Martinato F; Sardella D; Verrecchia A; Bennett S; Confalonieri S; Cesaroni M; Marchesi F; Gasco M; Scanziani E; Capra M; Mai S; Nuciforo P; Crook T; Lough J; Amati B. 2007. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448(7157):1063-7. [PubMed: 17728759]  [MGI Ref ID J:125164]

Gramling MW; Eischen CM. 2012. Suppression of Ras/Mapk pathway signaling inhibits Myc-induced lymphomagenesis. Cell Death Differ 19(7):1220-7. [PubMed: 22301919]  [MGI Ref ID J:204635]

Griesmann H; Schlereth K; Krause M; Samans B; Stiewe T. 2009. p53 and p73 in suppression of Myc-driven lymphomagenesis. Int J Cancer 124(2):502-6. [PubMed: 18942718]  [MGI Ref ID J:145779]

Grisendi S; Bernardi R; Rossi M; Cheng K; Khandker L; Manova K; Pandolfi PP. 2005. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437(7055):147-53. [PubMed: 16007073]  [MGI Ref ID J:101494]

Gross AJ; Proekt I; DeFranco AL. 2011. Elevated BCR signaling and decreased survival of Lyn-deficient transitional and follicular B cells. Eur J Immunol 41(12):3645-55. [PubMed: 21928281]  [MGI Ref ID J:179511]

Guerra N; Tan YX; Joncker NT; Choy A; Gallardo F; Xiong N; Knoblaugh S; Cado D; Greenberg NR; Raulet DH. 2008. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28(4):571-80. [PubMed: 18394936]  [MGI Ref ID J:134509]

Habib T; Park H; Tsang M; de Alboran IM; Nicks A; Wilson L; Knoepfler PS; Andrews S; Rawlings DJ; Eisenman RN; Iritani BM. 2007. Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. J Cell Biol 179(4):717-31. [PubMed: 17998397]  [MGI Ref ID J:135554]

Happo L; Cragg MS; Phipson B; Haga JM; Jansen ES; Herold MJ; Dewson G; Michalak EM; Vandenberg CJ; Smyth GK; Strasser A; Cory S; Scott CL. 2010. Maximal killing of lymphoma cells by DNA damage-inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim. Blood 116(24):5256-67. [PubMed: 20829369]  [MGI Ref ID J:167411]

Harris AW; Langdon WY; Alexander WS; Hariharan IK; Rosenbaum H; Vaux D; Webb E; Bernard O; Crawford M; Abud H; et al.. 1988. Transgenic mouse models for hematopoietic tumorigenesis. Curr Top Microbiol Immunol 141:82-93. [PubMed: 3215058]  [MGI Ref ID J:125150]

Harris AW; Pinkert CA; Crawford M; Langdon WY; Brinster RL; Adams JM. 1988. The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 167(2):353-71. [PubMed: 3258007]  [MGI Ref ID J:81130]

Hastings KT; Lackman RL; Cresswell P. 2006. Functional requirements for the lysosomal thiol reductase GILT in MHC class II-restricted antigen processing. J Immunol 177(12):8569-77. [PubMed: 17142755]  [MGI Ref ID J:140669]

Haupt Y; Bath ML; Harris AW; Adams JM. 1993. bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 8(11):3161-4. [PubMed: 8414519]  [MGI Ref ID J:88485]

Helmrich A; Lee S; O'Brien P; Dorken B; Lowe SW; Schrock E; Schmitt CA. 2005. Recurrent chromosomal aberrations in INK4a/ARF defective primary lymphomas predict drug responses in vivo. Oncogene 24(26):4174-82. [PubMed: 15824738]  [MGI Ref ID J:99547]

Herold MJ; Rohrbeck L; Lang MJ; Grumont R; Gerondakis S; Tai L; Bouillet P; Kaufmann T; Strasser A. 2013. Foxo-mediated Bim transcription is dispensable for the apoptosis of hematopoietic cells that is mediated by this BH3-only protein. EMBO Rep 14(11):992-8. [PubMed: 24060902]  [MGI Ref ID J:205153]

Hooker AM; Morley AA; Tilley WD; Sykes PJ. 2004. Cancer-associated genes can affect somatic intrachromosomal recombination early in carcinogenesis. Mutat Res 550(1-2):1-10. [PubMed: 15135636]  [MGI Ref ID J:90162]

Inoue K; Zindy F; Randle DH; Rehg JE; Sherr CJ. 2001. Dmp1 is haplo-insufficient for tumor suppression and modifies the frequencies of Arf and p53 mutations in Myc-induced lymphomas. Genes Dev 15(22):2934-9. [PubMed: 11711428]  [MGI Ref ID J:72617]

Iotti G; Longobardi E; Masella S; Dardaei L; De Santis F; Micali N; Blasi F. 2011. Homeodomain transcription factor and tumor suppressor Prep1 is required to maintain genomic stability. Proc Natl Acad Sci U S A 108(29):E314-22. [PubMed: 21715654]  [MGI Ref ID J:174386]

Iotti G; Mejetta S; Modica L; Penkov D; Ponzoni M; Blasi F. 2012. Reduction of Prep1 levels affects differentiation of normal and malignant B cells and accelerates Myc driven lymphomagenesis. PLoS One 7(10):e48353. [PubMed: 23133585]  [MGI Ref ID J:192251]

Iritani BM; Eisenman RN. 1999. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci U S A 96(23):13180-5. [PubMed: 10557294]  [MGI Ref ID J:58511]

Jacobs JJ; Scheijen B; Voncken JW; Kieboom K; Berns A; van Lohuizen M. 1999. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13(20):2678-90. [PubMed: 10541554]  [MGI Ref ID J:58291]

Jiang D; Brady CA; Johnson TM; Lee EY; Park EJ; Scott MP; Attardi LD. 2011. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc Natl Acad Sci U S A 108(41):17123-8. [PubMed: 21969549]  [MGI Ref ID J:177455]

Kadariya Y; Tang B; Wang L; Al-Saleem T; Hayakawa K; Slifker MJ; Kruger WD. 2013. Germline Mutations in Cooperate with to Accelerate Tumorigenesis in Mice. PLoS One 8(6):e67635. [PubMed: 23840755]  [MGI Ref ID J:203713]

Kasper LH; Boussouar F; Boyd K; Xu W; Biesen M; Rehg J; Baudino TA; Cleveland JL; Brindle PK. 2005. Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J 24(22):3846-58. [PubMed: 16237459]  [MGI Ref ID J:103607]

Ke F; Voss A; Kerr JB; O'Reilly LA; Tai L; Echeverry N; Bouillet P; Strasser A; Kaufmann T. 2012. BCL-2 family member BOK is widely expressed but its loss has only minimal impact in mice. Cell Death Differ 19(6):915-25. [PubMed: 22281706]  [MGI Ref ID J:203179]

Keller U; Nilsson JA; Maclean KH; Old JB; Cleveland JL. 2005. Nfkb 1 is dispensable for Myc-induced lymphomagenesis. Oncogene 24(41):6231-40. [PubMed: 15940251]  [MGI Ref ID J:101764]

Keller UB; Old JB; Dorsey FC; Nilsson JA; Nilsson L; Maclean KH; Chung L; Yang C; Spruck C; Boyd K; Reed SI; Cleveland JL. 2007. Myc targets Cks1 to provoke the suppression of p27(Kip1), proliferation and lymphomagenesis. EMBO J 26(10):2562-74. [PubMed: 17464290]  [MGI Ref ID J:121564]

Kelly GL; Grabow S; Glaser SP; Fitzsimmons L; Aubrey BJ; Okamoto T; Valente LJ; Robati M; Tai L; Fairlie WD; Lee EF; Lindstrom MS; Wiman KG; Huang DC; Bouillet P; Rowe M; Rickinson AB; Herold MJ; Strasser A. 2014. Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev 28(1):58-70. [PubMed: 24395247]  [MGI Ref ID J:205583]

Kelly PN; Dakic A; Adams JM; Nutt SL; Strasser A. 2007. Tumor growth need not be driven by rare cancer stem cells. Science 317(5836):337. [PubMed: 17641192]  [MGI Ref ID J:123172]

Kelly PN; Grabow S; Delbridge AR; Adams JM; Strasser A. 2013. Prophylactic treatment with the BH3 mimetic ABT-737 impedes Myc-driven lymphomagenesis in mice. Cell Death Differ 20(1):57-63. [PubMed: 22814621]  [MGI Ref ID J:205466]

Kelly PN; Grabow S; Delbridge AR; Strasser A; Adams JM. 2011. Endogenous Bcl-xL is essential for Myc-driven lymphomagenesis in mice. Blood 118(24):6380-6. [PubMed: 21998213]  [MGI Ref ID J:179081]

Kelly PN; Puthalakath H; Adams JM; Strasser A. 2007. Endogenous bcl-2 is not required for the development of E{micro}-myc-induced B-cell lymphoma. Blood 109(11):4907-13. [PubMed: 17317859]  [MGI Ref ID J:121698]

Khandanpour C; Phelan JD; Vassen L; Schutte J; Chen R; Horman SR; Gaudreau MC; Krongold J; Zhu J; Paul WE; Duhrsen U; Gottgens B; Grimes HL; Moroy T. 2013. Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell 23(2):200-14. [PubMed: 23410974]  [MGI Ref ID J:194309]

Kotani A; Kakazu N; Tsuruyama T; Okazaki IM; Muramatsu M; Kinoshita K; Nagaoka H; Yabe D; Honjo T. 2007. Activation-induced cytidine deaminase (AID) promotes B cell lymphomagenesis in Emu-cmyc transgenic mice. Proc Natl Acad Sci U S A 104(5):1616-20. [PubMed: 17251349]  [MGI Ref ID J:119490]

Kratzat S; Nikolova V; Miething C; Hoellein A; Schoeffmann S; Gorka O; Pietschmann E; Illert AL; Ruland J; Peschel C; Nilsson J; Duyster J; Keller U. 2012. Cks1 is required for tumor cell proliferation but not sufficient to induce hematopoietic malignancies. PLoS One 7(5):e37433. [PubMed: 22624029]  [MGI Ref ID J:187223]

Lam AR; Le Bert N; Ho SS; Shen YJ; Tang ML; Xiong GM; Croxford JL; Koo CX; Ishii KJ; Akira S; Raulet DH; Gasser S. 2014. RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma. Cancer Res 74(8):2193-203. [PubMed: 24590060]  [MGI Ref ID J:210522]

Langdon WY; Harris AW; Cory S; Adams JM. 1986. The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 47(1):11-8. [PubMed: 3093082]  [MGI Ref ID J:81131]

Lee MK; Tong WM; Wang ZQ; Sabapathy K. 2011. Serine 312 phosphorylation is dispensable for wild-type p53 functions in vivo. Cell Death Differ 18(2):214-21. [PubMed: 20671749]  [MGI Ref ID J:186335]

Lee SC; Phipson B; Hyland CD; Leong HS; Allan RS; Lun A; Hilton DJ; Nutt SL; Blewitt ME; Smyth GK; Alexander WS; Majewski IJ. 2013. Polycomb repressive complex 2 (PRC2) suppresses Emu-myc lymphoma. Blood 122(15):2654-63. [PubMed: 23982173]  [MGI Ref ID J:203435]

Leong HS; Chen K; Hu Y; Lee S; Corbin J; Pakusch M; Murphy JM; Majewski IJ; Smyth GK; Alexander WS; Hilton DJ; Blewitt ME. 2013. Epigenetic regulator smchd1 functions as a tumor suppressor. Cancer Res 73(5):1591-9. [PubMed: 23269277]  [MGI Ref ID J:194360]

Letai A; Sorcinelli MD; Beard C; Korsmeyer SJ. 2004. Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell 6(3):241-9. [PubMed: 15380515]  [MGI Ref ID J:93549]

Lin CJ; Cencic R; Mills JR; Robert F; Pelletier J. 2008. c-Myc and eIF4F are components of a feedforward loop that links transcription and translation. Cancer Res 68(13):5326-34. [PubMed: 18593934]  [MGI Ref ID J:138876]

Lindemann RK; Newbold A; Whitecross KF; Cluse LA; Frew AJ; Ellis L; Williams S; Wiegmans AP; Dear AE; Scott CL; Pellegrini M; Wei A; Richon VM; Marks PA; Lowe SW; Smyth MJ; Johnstone RW. 2007. Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma. Proc Natl Acad Sci U S A 104(19):8071-6. [PubMed: 17470784]  [MGI Ref ID J:121589]

Linden M; Kirchhof N; Carlson C; Van Ness B. 2004. Targeted overexpression of Bcl-XL in B-lymphoid cells results in lymphoproliferative disease and plasma cell malignancies. Blood 103(7):2779-86. [PubMed: 14656874]  [MGI Ref ID J:89049]

Lu Y; Wu Y; Feng X; Shen R; Wang JH; Fallahi M; Li W; Yang C; Hankey W; Zhao W; Ganju RK; Li MO; Cleveland JL; Zou X. 2014. CDK4 deficiency promotes genomic instability and enhances Myc-driven lymphomagenesis. J Clin Invest 124(4):1672-84. [PubMed: 24614102]  [MGI Ref ID J:209613]

Macias E; Jin A; Deisenroth C; Bhat K; Mao H; Lindstrom MS; Zhang Y. 2010. An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell 18(3):231-43. [PubMed: 20832751]  [MGI Ref ID J:164200]

Manzl C; Peintner L; Krumschnabel G; Bock F; Labi V; Drach M; Newbold A; Johnstone R; Villunger A. 2012. PIDDosome-independent tumor suppression by Caspase-2. Cell Death Differ 19(10):1722-32. [PubMed: 22595758]  [MGI Ref ID J:205475]

Martins CP; Brown-Swigart L; Evan GI. 2006. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127(7):1323-34. [PubMed: 17182091]  [MGI Ref ID J:117803]

Mattarollo SR; West AC; Steegh K; Duret H; Paget C; Martin B; Matthews GM; Shortt J; Chesi M; Bergsagel PL; Bots M; Zuber J; Lowe SW; Johnstone RW; Smyth MJ. 2012. NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma. Blood 120(15):3019-29. [PubMed: 22932803]  [MGI Ref ID J:192928]

Meacham CE; Ho EE; Dubrovsky E; Gertler FB; Hemann MT. 2009. In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nat Genet 41(10):1133-7. [PubMed: 19783987]  [MGI Ref ID J:155132]

Merino D; Khaw SL; Glaser SP; Anderson DJ; Belmont LD; Wong C; Yue P; Robati M; Phipson B; Fairlie WD; Lee EF; Campbell KJ; Vandenberg CJ; Cory S; Roberts AW; Ludlam MJ; Huang DC; Bouillet P. 2012. Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 119(24):5807-16. [PubMed: 22538851]  [MGI Ref ID J:188645]

Merino D; Strasser A; Bouillet P. 2012. Bim must be able to engage all pro-survival Bcl-2 family members for efficient tumor suppression. Oncogene 31(28):3392-6. [PubMed: 22081075]  [MGI Ref ID J:186117]

Michalak EM; Jansen ES; Happo L; Cragg MS; Tai L; Smyth GK; Strasser A; Adams JM; Scott CL. 2009. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ 16(5):684-96. [PubMed: 19148184]  [MGI Ref ID J:164197]

Mikkers H; Allen J; Berns A. 2002. Proviral activation of the tumor suppressor E2a contributes to T cell lymphomagenesis in EmicroMyc transgenic mice. Oncogene 21(43):6559-66. [PubMed: 12242653]  [MGI Ref ID J:79057]

Mills JR; Hippo Y; Robert F; Chen SM; Malina A; Lin CJ; Trojahn U; Wendel HG; Charest A; Bronson RT; Kogan SC; Nadon R; Housman DE; Lowe SW; Pelletier J. 2008. mTORC1 promotes survival through translational control of Mcl-1. Proc Natl Acad Sci U S A 105(31):10853-8. [PubMed: 18664580]  [MGI Ref ID J:139950]

Miluzio A; Beugnet A; Grosso S; Brina D; Mancino M; Campaner S; Amati B; de Marco A; Biffo S. 2011. Impairment of Cytoplasmic eIF6 Activity Restricts Lymphomagenesis and Tumor Progression without Affecting Normal Growth. Cancer Cell 19(6):765-75. [PubMed: 21665150]  [MGI Ref ID J:173559]

Minard-Colin V; Xiu Y; Poe JC; Horikawa M; Magro CM; Hamaguchi Y; Haas KM; Tedder TF. 2008. Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcgammaRI, FcgammaRIII, and FcgammaRIV. Blood 112(4):1205-13. [PubMed: 18495955]  [MGI Ref ID J:138431]

Montalvao F; Garcia Z; Celli S; Breart B; Deguine J; Van Rooijen N; Bousso P. 2013. The mechanism of anti-CD20-mediated B cell depletion revealed by intravital imaging. J Clin Invest 123(12):5098-103. [PubMed: 24177426]  [MGI Ref ID J:207628]

Mori S; Rempel RE; Chang JT; Yao G; Lagoo AS; Potti A; Bild A; Nevins JR. 2008. Utilization of pathway signatures to reveal distinct types of B lymphoma in the Emicro-myc model and human diffuse large B-cell lymphoma. Cancer Res 68(20):8525-34. [PubMed: 18922927]  [MGI Ref ID J:140661]

Morrish TA; Greider CW. 2009. Short telomeres initiate telomere recombination in primary and tumor cells. PLoS Genet 5(1):e1000357. [PubMed: 19180191]  [MGI Ref ID J:146864]

Moser R; Toyoshima M; Robinson K; Gurley KE; Howie HL; Davison J; Morgan M; Kemp CJ; Grandori C. 2012. MYC-driven tumorigenesis is inhibited by WRN syndrome gene deficiency. Mol Cancer Res 10(4):535-45. [PubMed: 22301954]  [MGI Ref ID J:205393]

Mu P; Han YC; Betel D; Yao E; Squatrito M; Ogrodowski P; de Stanchina E; D'Andrea A; Sander C; Ventura A. 2009. Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23(24):2806-11. [PubMed: 20008931]  [MGI Ref ID J:155803]

Nemajerova A; Petrenko O; Trumper L; Palacios G; Moll UM. 2010. Loss of p73 promotes dissemination of Myc-induced B cell lymphomas in mice. J Clin Invest 120(6):2070-80. [PubMed: 20484818]  [MGI Ref ID J:161636]

Nepal RM; Tong L; Kolaj B; Edelmann W; Martin A. 2009. Msh2-dependent DNA repair mitigates a unique susceptibility of B cell progenitors to c-Myc-induced lymphomas. Proc Natl Acad Sci U S A 106(44):18698-703. [PubMed: 19837692]  [MGI Ref ID J:154682]

Nilsson JA; Keller UB; Baudino TA; Yang C; Norton S; Old JA; Nilsson LM; Neale G; Kramer DL; Porter CW; Cleveland JL. 2005. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 7(5):433-44. [PubMed: 15894264]  [MGI Ref ID J:98939]

Nilsson JA; Nilsson LM; Keller U; Yokota Y; Boyd K; Cleveland JL. 2004. Id2 is dispensable for myc-induced lymphomagenesis. Cancer Res 64(20):7296-301. [PubMed: 15492249]  [MGI Ref ID J:93645]

Odvody J; Vincent T; Arrate MP; Grieb B; Wang S; Garriga J; Lozano G; Iwakuma T; Haines DS; Eischen CM. 2010. A deficiency in Mdm2 binding protein inhibits Myc-induced B-cell proliferation and lymphomagenesis. Oncogene 29(22):3287-96. [PubMed: 20305689]  [MGI Ref ID J:162036]

Old JB; Kratzat S; Hoellein A; Graf S; Nilsson JA; Nilsson L; Nakayama KI; Peschel C; Cleveland JL; Keller UB. 2010. Skp2 directs Myc-mediated suppression of p27Kip1 yet has modest effects on Myc-driven lymphomagenesis. Mol Cancer Res 8(3):353-62. [PubMed: 20197382]  [MGI Ref ID J:205238]

Olive V; Sabio E; Bennett MJ; De Jong CS; Biton A; McGann JC; Greaney SK; Sodir NM; Zhou AY; Balakrishnan A; Foth M; Luftig MA; Goga A; Speed TP; Xuan Z; Evan GI; Wan Y; Minella AC; He L. 2013. A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis. Elife 2:e00822. [PubMed: 24137534]  [MGI Ref ID J:207787]

Osborne LC; Duthie KA; Seo JH; Gascoyne RD; Abraham N. 2010. Selective ablation of the YxxM motif of IL-7Ralpha suppresses lymphomagenesis but maintains lymphocyte development. Oncogene 29(26):3854-64. [PubMed: 20440272]  [MGI Ref ID J:162024]

Park H; Staehling K; Tsang M; Appleby MW; Brunkow ME; Margineantu D; Hockenbery DM; Habib T; Liggitt HD; Carlson G; Iritani BM. 2012. Disruption of Fnip1 reveals a metabolic checkpoint controlling B lymphocyte development. Immunity 36(5):769-81. [PubMed: 22608497]  [MGI Ref ID J:187318]

Pathak S; Ma S; Trinh L; Eudy J; Wagner KU; Joshi SS; Lu R. 2011. IRF4 Is a Suppressor of c-Myc Induced B Cell Leukemia. PLoS One 6(7):e22628. [PubMed: 21818355]  [MGI Ref ID J:174919]

Pei XH; Bai F; Li Z; Smith MD; Whitewolf G; Jin R; Xiong Y. 2011. Cytoplasmic CUL9/PARC Ubiquitin Ligase Is a Tumor Suppressor and Promotes p53-Dependent Apoptosis. Cancer Res 71(8):2969-77. [PubMed: 21487039]  [MGI Ref ID J:170976]

Phipps-Yonas H; Semik V; Hastings KT. 2013. GILT expression in B cells diminishes cathepsin S steady-state protein expression and activity. Eur J Immunol 43(1):65-74. [PubMed: 23012103]  [MGI Ref ID J:191107]

Poe JC; Minard-Colin V; Kountikov EI; Haas KM; Tedder TF. 2012. A c-Myc and surface CD19 signaling amplification loop promotes B cell lymphoma development and progression in mice. J Immunol 189(5):2318-25. [PubMed: 22826319]  [MGI Ref ID J:189725]

Post SM; Quintas-Cardama A; Terzian T; Smith C; Eischen CM; Lozano G. 2010. p53-dependent senescence delays Emu-myc-induced B-cell lymphomagenesis. Oncogene 29(9):1260-9. [PubMed: 19935700]  [MGI Ref ID J:168278]

Prasad VS; LaFond RE; Zhou M; Jacobsen KA; Osmond DG; Sidman CL. 1997. Upregulation of endogenous p53 and induction of in vivo apoptosis in B-lineage lymphomas of E(mu)-myc transgenic mice by deregulated c-myc transgene. Mol Carcinog 18(2):66-77. [PubMed: 9049182]  [MGI Ref ID J:39684]

Refaeli Y; Field KA; Turner BC; Trumpp A; Bishop JM. 2005. The protooncogene MYC can break B cell tolerance. Proc Natl Acad Sci U S A 102(11):4097-102. [PubMed: 15753301]  [MGI Ref ID J:97189]

Refaeli Y; Young RM; Turner BC; Duda J; Field KA; Bishop JM. 2008. The B cell antigen receptor and overexpression of MYC can cooperate in the genesis of B cell lymphomas. PLoS Biol 6(6):e152. [PubMed: 18578569]  [MGI Ref ID J:139351]

Rehm A; Mensen A; Schradi K; Gerlach K; Wittstock S; Winter S; Buchner G; Dorken B; Lipp M; Hopken UE. 2011. Cooperative function of CCR7 and lymphotoxin in the formation of a lymphoma-permissive niche within murine secondary lymphoid organs. Blood 118(4):1020-33. [PubMed: 21586747]  [MGI Ref ID J:174881]

Reimann M; Lee S; Loddenkemper C; Dorr JR; Tabor V; Aichele P; Stein H; Dorken B; Jenuwein T; Schmitt CA. 2010. Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 17(3):262-72. [PubMed: 20227040]  [MGI Ref ID J:158660]

Reimann M; Loddenkemper C; Rudolph C; Schildhauer I; Teichmann B; Stein H; Schlegelberger B; Dorken B; Schmitt CA. 2007. The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 110(8):2996-3004. [PubMed: 17562874]  [MGI Ref ID J:125810]

Rempel RE; Mori S; Gasparetto M; Glozak MA; Andrechek ER; Adler SB; Laakso NM; Lagoo AS; Storms R; Smith C; Nevins JR. 2009. A role for E2F activities in determining the fate of Myc-induced lymphomagenesis. PLoS Genet 5(9):e1000640. [PubMed: 19749980]  [MGI Ref ID J:154120]

Repellin CE; Tsimbouri PM; Philbey AW; Wilson JB. 2010. Lymphoid hyperplasia and lymphoma in transgenic mice expressing the small non-coding RNA, EBER1 of Epstein-Barr virus. PLoS One 5(2):e9092. [PubMed: 20161707]  [MGI Ref ID J:158000]

Richter-Larrea JA; Robles EF; Fresquet V; Beltran E; Rullan AJ; Agirre X; Calasanz MJ; Panizo C; Richter JA; Hernandez JM; Roman-Gomez J; Prosper F; Martinez-Climent JA. 2010. Reversion of epigenetically mediated BIM silencing overcomes chemoresistance in Burkitt lymphoma. Blood 116(14):2531-42. [PubMed: 20570860]  [MGI Ref ID J:165889]

Robert F; Mills JR; Agenor A; Wang D; DiMarco S; Cencic R; Tremblay ML; Gallouzi IE; Hekimi S; Wing SS; Pelletier J. 2012. Targeting protein synthesis in a Myc/mTOR-driven model of anorexia-cachexia syndrome delays its onset and prolongs survival. Cancer Res 72(3):747-56. [PubMed: 22158946]  [MGI Ref ID J:181113]

Rosenbaum H; Harris AW; Bath ML; McNeall J; Webb E; Adams JM; Cory S. 1990. An E mu-v-abl transgene elicits plasmacytomas in concert with an activated myc gene. EMBO J 9(3):897-905. [PubMed: 2155783]  [MGI Ref ID J:78204]

Rounbehler RJ; Fallahi M; Yang C; Steeves MA; Li W; Doherty JR; Schaub FX; Sanduja S; Dixon DA; Blackshear PJ; Cleveland JL. 2012. Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state. Cell 150(3):563-74. [PubMed: 22863009]  [MGI Ref ID J:187885]

Ruddell A; Mezquita P; Brandvold KA; Farr A; Iritani BM. 2003. B lymphocyte-specific c-Myc expression stimulates early and functional expansion of the vasculature and lymphatics during lymphomagenesis. Am J Pathol 163(6):2233-45. [PubMed: 14633598]  [MGI Ref ID J:86614]

Ruggero D; Montanaro L; Ma L; Xu W; Londei P; Cordon-Cardo C; Pandolfi PP. 2004. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10(5):484-6. [PubMed: 15098029]  [MGI Ref ID J:89878]

Schile AJ; Garcia-Fernandez M; Steller H. 2008. Regulation of apoptosis by XIAP ubiquitin-ligase activity. Genes Dev 22(16):2256-66. [PubMed: 18708583]  [MGI Ref ID J:138979]

Schmitt CA; Fridman JS; Yang M; Baranov E; Hoffman RM; Lowe SW. 2002. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1(3):289-98. [PubMed: 12086865]  [MGI Ref ID J:77133]

Schmitt CA; McCurrach ME; de Stanchina E; Wallace-Brodeur RR; Lowe SW. 1999. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13(20):2670-7. [PubMed: 10541553]  [MGI Ref ID J:58293]

Schmitt CA; Wallace-Brodeur RR; Rosenthal CT; McCurrach ME; Lowe SW. 2000. DNA damage responses and chemosensitivity in the E mu-myc mouse lymphoma model. Cold Spring Harb Symp Quant Biol 65:499-510. [PubMed: 12760067]  [MGI Ref ID J:84207]

Schuster C; Berger A; Hoelzl MA; Putz EM; Frenzel A; Simma O; Moritz N; Hoelbl A; Kovacic B; Freissmuth M; Muller M; Villunger A; Mullauer L; Schmatz AI; Streubel B; Porpaczy E; Jager U; Stoiber D; Sexl V. 2011. The cooperating mutation or "second hit" determines the immunologic visibility toward MYC-induced murine lymphomas. Blood 118(17):4635-45. [PubMed: 21878673]  [MGI Ref ID J:178381]

Schuster C; Muller M; Freissmuth M; Sexl V; Stoiber D. 2008. Commentary on H. Ide et al., 'Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells'. Biochem Biophys Res Commun 366(4):869-70. [PubMed: 18082134]  [MGI Ref ID J:130706]

Shah MY; Vasanthakumar A; Barnes NY; Figueroa ME; Kamp A; Hendrick C; Ostler KR; Davis EM; Lin S; Anastasi J; Le Beau MM; Moskowitz IP; Melnick A; Pytel P; Godley LA. 2010. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis. Cancer Res 70(14):5840-50. [PubMed: 20587527]  [MGI Ref ID J:162462]

Shreeram S; Hee WK; Demidov ON; Kek C; Yamaguchi H; Fornace AJ Jr; Anderson CW; Appella E; Bulavin DV. 2006. Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. J Exp Med 203(13):2793-9. [PubMed: 17158963]  [MGI Ref ID J:120284]

Sidman CL; Denial TM; Marshall JD; Roths JB. 1993. Multiple mechanisms of tumorigenesis in E mu-myc transgenic mice. Cancer Res 53(7):1665-9. [PubMed: 8453639]  [MGI Ref ID J:4302]

Sluss HK; Gannon H; Coles AH; Shen Q; Eischen CM; Jones SN. 2010. Phosphorylation of p53 serine 18 upregulates apoptosis to suppress Myc-induced tumorigenesis. Mol Cancer Res 8(2):216-22. [PubMed: 20145032]  [MGI Ref ID J:205239]

Strasser A; Elefanty AG; Harris AW; Cory S. 1996. Progenitor tumours from Emu-bcl-2-myc transgenic mice have lymphomyeloid differentiation potential and reveal developmental differences in cell survival. EMBO J 15(15):3823-34. [PubMed: 8670887]  [MGI Ref ID J:34979]

Strasser A; Harris AW; Bath ML; Cory S. 1990. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348(6299):331-3. [PubMed: 2250704]  [MGI Ref ID J:69571]

Suh YA; Post SM; Elizondo-Fraire AC; Maccio DR; Jackson JG; El-Naggar AK; Van Pelt C; Terzian T; Lozano G. 2011. Multiple Stress Signals Activate Mutant p53 In Vivo. Cancer Res 71(23):7168-75. [PubMed: 21983037]  [MGI Ref ID J:178850]

Swanson PJ; Kuslak SL; Fang W; Tze L; Gaffney P; Selby S; Hippen KL; Nunez G; Sidman CL; Behrens TW. 2004. Fatal acute lymphoblastic leukemia in mice transgenic for B cell-restricted bcl-xL and c-myc. J Immunol 172(11):6684-91. [PubMed: 15153484]  [MGI Ref ID J:90515]

Takahashi Y; Hori T; Cooper TK; Liao J; Desai N; Serfass JM; Young MM; Park S; Izu Y; Wang HG. 2013. Bif-1 haploinsufficiency promotes chromosomal instability and accelerates Myc-driven lymphomagenesis via suppression of mitophagy. Blood 121(9):1622-32. [PubMed: 23287860]  [MGI Ref ID J:194771]

Terzian T; Wang Y; Van Pelt CS; Box NF; Travis EL; Lozano G. 2007. Haploinsufficiency of Mdm2 and Mdm4 in tumorigenesis and development. Mol Cell Biol 27(15):5479-85. [PubMed: 17526734]  [MGI Ref ID J:123661]

Timofeev O; Schlereth K; Wanzel M; Braun A; Nieswandt B; Pagenstecher A; Rosenwald A; Elsasser HP; Stiewe T. 2013. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep 3(5):1512-25. [PubMed: 23665223]  [MGI Ref ID J:198482]

Tu L; Poe JC; Kadono T; Venturi GM; Bullard DC; Tedder TF; Steeber DA. 2002. A functional role for circulating mouse L-selectin in regulating leukocyte/endothelial cell interactions in vivo. J Immunol 169(4):2034-43. [PubMed: 12165530]  [MGI Ref ID J:120206]

Tu MM; Mahmoud AB; Wight A; Mottashed A; Belanger S; Rahim MM; Abou-Samra E; Makrigiannis AP. 2014. Ly49 family receptors are required for cancer immunosurveillance mediated by natural killer cells. Cancer Res 74(14):3684-94. [PubMed: 24802191]  [MGI Ref ID J:212545]

Valentin-Vega YA; Maclean KH; Tait-Mulder J; Milasta S; Steeves M; Dorsey FC; Cleveland JL; Green DR; Kastan MB. 2012. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119(6):1490-500. [PubMed: 22144182]  [MGI Ref ID J:181745]

Vasanthakumar A; Lepore JB; Zegarek MH; Kocherginsky M; Singh M; Davis EM; Link PA; Anastasi J; Le Beau MM; Karpf AR; Godley LA. 2013. Dnmt3b is a haploinsufficient tumor suppressor gene in Myc-induced lymphomagenesis. Blood 121(11):2059-63. [PubMed: 23315164]  [MGI Ref ID J:195428]

Walczynski J; Lyons S; Jones N; Breitwieser W. 2014. Sensitisation of c-MYC-induced B-lymphoma cells to apoptosis by ATF2. Oncogene 33(8):1027-36. [PubMed: 23416976]  [MGI Ref ID J:212381]

Wall M; Poortinga G; Stanley KL; Lindemann RK; Bots M; Chan CJ; Bywater MJ; Kinross KM; Astle MV; Waldeck K; Hannan KM; Shortt J; Smyth MJ; Lowe SW; Hannan RD; Pearson RB; Johnstone RW; McArthur GA. 2013. The mTORC1 inhibitor everolimus prevents and treats Emu-Myc lymphoma by restoring oncogene-induced senescence. Cancer Discov 3(1):82-95. [PubMed: 23242809]  [MGI Ref ID J:194369]

Wang P; Lushnikova T; Odvody J; Greiner TC; Jones SN; Eischen CM. 2008. Elevated Mdm2 expression induces chromosomal instability and confers a survival and growth advantage to B cells. Oncogene 27(11):1590-8. [PubMed: 17828300]  [MGI Ref ID J:145231]

Waterhouse NJ; Sedelies KA; Browne KA; Wowk ME; Newbold A; Sutton VR; Clarke CJ; Oliaro J; Lindemann RK; Bird PI; Johnstone RW; Trapani JA. 2005. A central role for Bid in granzyme B-induced apoptosis. J Biol Chem 280(6):4476-82. [PubMed: 15574417]  [MGI Ref ID J:96908]

Wen R; Chen Y; Bai L; Fu G; Schuman J; Dai X; Zeng H; Yang C; Stephan RP; Cleveland JL; Wang D. 2006. Essential role of phospholipase C gamma 2 in early B-cell development and Myc-mediated lymphomagenesis. Mol Cell Biol 26(24):9364-76. [PubMed: 17030619]  [MGI Ref ID J:117023]

Wendel HG; Malina A; Zhao Z; Zender L; Kogan SC; Cordon-Cardo C; Pelletier J; Lowe SW. 2006. Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res 66(15):7639-46. [PubMed: 16885364]  [MGI Ref ID J:112099]

Williams EL; Tutt AL; French RR; Chan HT; Lau B; Penfold CA; Mockridge CI; Roghanian A; Cox KL; Verbeek JS; Glennie MJ; Cragg MS. 2012. Development and characterisation of monoclonal antibodies specific for the murine inhibitory FcgammaRIIB (CD32B). Eur J Immunol 42(8):2109-20. [PubMed: 22760702]  [MGI Ref ID J:187928]

Wolyniec K; Shortt J; de Stanchina E; Levav-Cohen Y; Alsheich-Bartok O; Louria-Hayon I; Corneille V; Kumar B; Woods SJ; Opat S; Johnstone RW; Scott CL; Segal D; Pandolfi PP; Fox S; Strasser A; Jiang YH; Lowe SW; Haupt S; Haupt Y. 2012. E6AP ubiquitin ligase regulates PML-induced senescence in Myc-driven lymphomagenesis. Blood 120(4):822-32. [PubMed: 22689861]  [MGI Ref ID J:189091]

Xiao W; Hong H; Kawakami Y; Kato Y; Wu D; Yasudo H; Kimura A; Kubagawa H; Bertoli LF; Davis RS; Chau LA; Madrenas J; Hsia CC; Xenocostas A; Kipps TJ; Hennighausen L; Iwama A; Nakauchi H; Kawakami T. 2009. Tumor suppression by phospholipase C-beta3 via SHP-1-mediated dephosphorylation of Stat5. Cancer Cell 16(2):161-71. [PubMed: 19647226]  [MGI Ref ID J:151972]

Yang D; Liu H; Goga A; Kim S; Yuneva M; Bishop JM. 2010. Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci U S A 107(31):13836-41. [PubMed: 20643922]  [MGI Ref ID J:163460]

Yazawa N; Hamaguchi Y; Poe JC; Tedder TF. 2005. Immunotherapy using unconjugated CD19 monoclonal antibodies in animal models for B lymphocyte malignancies and autoimmune disease. Proc Natl Acad Sci U S A 102(42):15178-83. [PubMed: 16217038]  [MGI Ref ID J:103745]

Young RM; Hardy IR; Clarke RL; Lundy N; Pine P; Turner BC; Potter TA; Refaeli Y. 2009. Mouse models of non-Hodgkin lymphoma reveal Syk as an important therapeutic target. Blood 113(11):2508-16. [PubMed: 18981293]  [MGI Ref ID J:146340]

Young RM; Polsky A; Refaeli Y. 2009. TC-PTP is required for the maintenance of MYC-driven B-cell lymphomas. Blood 114(24):5016-23. [PubMed: 19755676]  [MGI Ref ID J:155497]

Zindy F; Williams RT; Baudino TA; Rehg JE; Skapek SX; Cleveland JL; Roussel MF; Sherr CJ. 2003. Arf tumor suppressor promoter monitors latent oncogenic signals in vivo. Proc Natl Acad Sci U S A 100(26):15930-5. [PubMed: 14665695]  [MGI Ref ID J:87339]

den Hollander J; Rimpi S; Doherty JR; Rudelius M; Buck A; Hoellein A; Kremer M; Graf N; Scheerer M; Hall MA; Goga A; von Bubnoff N; Duyster J; Peschel C; Cleveland JL; Nilsson JA; Keller U. 2010. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 116(9):1498-505. [PubMed: 20519624]  [MGI Ref ID J:164528]

van der Weyden L; Adams DJ. 2013. Cancer of mice and men: old twists and new tails. J Pathol 230(1):4-16. [PubMed: 23436574]  [MGI Ref ID J:196071]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX11

Colony Maintenance

Breeding & HusbandryThe strain is maintained by mating hemizygous male to a wildtype C57BL/6J female.
Mating SystemInbred x Hemizygote         (Female x Male)   01-MAR-06
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $239.00Female or MaleHemizygous for Tg(IghMyc)22Bri  
Price per Pair (US dollars $)Pair Genotype
$311.00Hemizygous for Tg(IghMyc)22Bri x Noncarrier  
$311.00Noncarrier x Hemizygous for Tg(IghMyc)22Bri  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $310.70Female or MaleHemizygous for Tg(IghMyc)22Bri  
Price per Pair (US dollars $)Pair Genotype
$404.30Hemizygous for Tg(IghMyc)22Bri x Noncarrier  
$404.30Noncarrier x Hemizygous for Tg(IghMyc)22Bri  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

  Control
   Noncarrier
   000664 C57BL/6J
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Notice to customers in Canada.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)