Strain Name:


Stock Number:


Order this mouse


Repository- Live

Use Restrictions Apply, see Terms of Use
Common Names: TNFRp55-deficient;    
Cells from homozygous Tnfrsf1atm1Mak mutant mice lack expression of TNFRp55, and TNF signaling is largely abolished. These mice may be useful in studying the multiple biological activities of tumor necrosis factor.


Strain Information

Former Names Tnfr1    (Changed: 15-DEC-04 )
Type Congenic; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemHomozygote x Homozygote         (Female x Male)   01-MAR-06
Breeding Considerations This strain is a good breeder.
Specieslaboratory mouse
Background Strain C57BL/6
Donor Strain 129S2 via D3 ES cell line
Generation?+N2F6 (20-APR-15)
Generation Definitions
Donating InvestigatorDr. Tak Mak,   University Health Network/Un of Toronto

View larger image

Expected coat color from breeding: Black
Related Genotype: a/a

Mice homozygous for the Tnfrsf1atm1Mak targeted mutation (formerly Tnfr1tm1Mak) have normal thymocyte development, lymphocyte populations and clonal deletion of potentially self-reactive T cells. TNF signaling is largely abolished, with no TNF induction of NF-kB. Homozygous mutant mice are resistant to lethal dosages of either lipopolysaccharides or S. aureus enterotoxin but succumb to L. monocytogenes infection. TNFRSF1an may also protect against atherosclerotic lesion development in mice fed an atherogenic diet.

Control Information

   000664 C57BL/6J
  Considerations for Choosing Controls

Related Strains

View Strains carrying other alleles of Tnfrsf1a     (4 strains)


Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Multiple Sclerosis, Susceptibility to, 5; MS5   (TNFRSF1A)
Periodic Fever, Familial, Autosomal Dominant   (TNFRSF1A)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.


        involves: 129S2/SvPas
  • mortality/aging
  • decreased sensitivity to induced morbidity/mortality
    • no mice treated with TNF die unlike all wild-type mice   (MGI Ref ID J:210950)
  • immune system phenotype
  • decreased circulating interleukin-6 level
    • decreased induction in TNF-treated mice   (MGI Ref ID J:210950)
  • homeostasis/metabolism phenotype
  • abnormal response/metabolism to endogenous compounds
    • TNF-treated mice fail to exhibit lethality, as great IL6 induction, hypothermia, sickness symptoms (ruffled fur, diarrhea and physical inactivity) or liver and kidney damage unlike wild-type mice   (MGI Ref ID J:210950)
  • decreased circulating interleukin-6 level
    • decreased induction in TNF-treated mice   (MGI Ref ID J:210950)


        involves: 129S2/SvPas * C57BL/6J * DBA/2J
  • immune system phenotype
  • granulomatous inflammation
    • in response to infection with Mycobacterium avium, mice developed extensive tissue necrosis in all infected tissues and persistent granulomatous lesions which went through acute disintegration before death   (MGI Ref ID J:55889)
    • mice depleted of either CD4+ or CD8+ cells after granuloma initiation stayed healthy to day 38 postinfection, with no signs of granuloma destruction   (MGI Ref ID J:55889)


        involves: 129S2/SvPas * C57BL/6J * NOD
  • immune system phenotype
  • decreased susceptibility to autoimmune diabetes
    • deficient mice do not develop diabetes over a 24-week period   (MGI Ref ID J:64051)


        involves: 129S2/SvPas
  • mortality/aging
  • decreased sensitivity to induced morbidity/mortality
    • no mice treated with TNF die unlike wild-type mice   (MGI Ref ID J:210950)
  • increased susceptibility to bacterial infection induced morbidity/mortality
    • homozygotes succumb to infection following challenge with L. monocytogenes   (MGI Ref ID J:4753)
    • in contrast to wildtype, homozygotes exhibit very high titers of Listeria in spleen and liver by day 6 post-infection   (MGI Ref ID J:4753)
    • increased susceptibility to L. monocytogenes-induced lethality with 100% lethality even when infected with a low titer of bacteria   (MGI Ref ID J:139030)
    • all mice infected with Listeria monocytogenes die unlike wild-type mice   (MGI Ref ID J:210950)
  • immune system phenotype
  • abnormal spleen germinal center morphology
    • impaired formation of follicular dendritic cell networks and germinal centers following immunization with sheep red blood cells   (MGI Ref ID J:139030)
  • decreased IgG level
    • produce low titers of sheep red blood cell antibodies after immunization compared to wild-type controls   (MGI Ref ID J:139030)
  • decreased circulating interleukin-6 level
    • mice fail to produce IL-6 in response to I.V. injection of TNF while wild-type mice have dramatic increases in this cytokine 6 hours after injection   (MGI Ref ID J:138824)
  • decreased susceptibility to bacterial infection   (MGI Ref ID J:121930)
    • homozygotes are resistant to high dose (100 ug) bacterial LPS challenge and lethal doses of staphylococcal enterotoxin B   (MGI Ref ID J:4753)
  • impaired humoral immune response
    • mice immunized with sheep red blood cells fail to exhibit germinal centers and follicular dendritic cell networks with no antibody response unlike wild-type mice   (MGI Ref ID J:210950)
  • increased circulating tumor necrosis factor level
    • in response to LPS stimulation, compared to controls   (MGI Ref ID J:139030)
  • increased susceptibility to bacterial infection induced morbidity/mortality
    • homozygotes succumb to infection following challenge with L. monocytogenes   (MGI Ref ID J:4753)
    • in contrast to wildtype, homozygotes exhibit very high titers of Listeria in spleen and liver by day 6 post-infection   (MGI Ref ID J:4753)
    • increased susceptibility to L. monocytogenes-induced lethality with 100% lethality even when infected with a low titer of bacteria   (MGI Ref ID J:139030)
    • all mice infected with Listeria monocytogenes die unlike wild-type mice   (MGI Ref ID J:210950)
  • hematopoietic system phenotype
  • abnormal spleen germinal center morphology
    • impaired formation of follicular dendritic cell networks and germinal centers following immunization with sheep red blood cells   (MGI Ref ID J:139030)
  • decreased IgG level
    • produce low titers of sheep red blood cell antibodies after immunization compared to wild-type controls   (MGI Ref ID J:139030)
  • homeostasis/metabolism phenotype
  • abnormal response/metabolism to endogenous compounds
    • TNF-treated mice fail to exhibit lethality, IL6 induction, hypothermia, sickness symptoms (ruffled fur, diarrhea and physical inactivity) or liver and kidney damage unlike wild-type mice   (MGI Ref ID J:210950)
  • decreased circulating interleukin-6 level
    • mice fail to produce IL-6 in response to I.V. injection of TNF while wild-type mice have dramatic increases in this cytokine 6 hours after injection   (MGI Ref ID J:138824)
  • impaired skin barrier function
    • slower recovery after superficial injury causes increased trans-epidermal water loss   (MGI Ref ID J:59056)
  • increased circulating tumor necrosis factor level
    • in response to LPS stimulation, compared to controls   (MGI Ref ID J:139030)
  • skeleton phenotype
  • increased bone mineral density
    • significantly increased   (MGI Ref ID J:135519)
  • integument phenotype
  • impaired skin barrier function
    • slower recovery after superficial injury causes increased trans-epidermal water loss   (MGI Ref ID J:59056)
  • cellular phenotype
  • increased sensitivity to induced cell death
    • in mouse embryonic fibroblasts exposed to hypoxia   (MGI Ref ID J:210950)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Tnfrsf1atm1Mak related

Apoptosis Research
Death Receptors

Cancer Research
Growth Factors/Receptors/Cytokines

Immunology, Inflammation and Autoimmunity Research
Growth Factors/Receptors/Cytokines

Genes & Alleles

Gene & Allele Information provided by MGI

Allele Symbol Tnfrsf1atm1Mak
Allele Name targeted mutation 1, Tak Mak
Allele Type Targeted (Null/Knockout)
Common Name(s) Pfeffer Tnfrsf1a-; TNF-R1-; TNF-alphaRI-; TNFR-; TNFR1-; TNFR1/p55-; TNFRp55-; Tnfrsf1atm1Mak; Tnfrsf1a-; p55-;
Mutation Made ByDr. Tak Mak,   University Health Network/Un of Toronto
Strain of Origin129S2/SvPas
ES Cell Line NameD3
ES Cell Line Strain129S2/SvPas
Gene Symbol and Name Tnfrsf1a, tumor necrosis factor receptor superfamily, member 1a
Chromosome 6
Gene Common Name(s) CD120a; FPF; MS5; TBP1; TNF receptor alpha chain; TNF-R; TNF-R-I; TNF-R1; TNF-R55; TNF-alpha-R1; TNF-alphaR1; TNFAR; TNFR-1; TNFR1; TNFR1-d2; TNFR55; TNFR60; TNFRI; TNFRp55; TNFalpha-R1; Tnfr-2; Tnfr1; p55; p55-R; p60; tumor necrosis factor receptor 1; tumor necrosis factor receptor 2;
Molecular Note A neomycin cassette was inserted at position 535 of the coding sequence. A radioligand binding assay demonstrated that no functional protein was present on the cell surface of splenocytes derived from homozygous mice. [MGI Ref ID J:29283] [MGI Ref ID J:4753]


Genotyping Information

Genotyping Protocols

Tnfrsf1atm1Mak, Standard PCR

Helpful Links

Genotyping resources and troubleshooting


References provided by MGI

Selected Reference(s)

Pfeffer K; Matsuyama T; Kundig TM; Wakeham A; Kishihara K; Shahinian A; Wiegmann K; Ohashi PS; Kronke M; Mak TW. 1993. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73(3):457-67. [PubMed: 8387893]  [MGI Ref ID J:4753]

Additional References

Arnett HA; Mason J; Marino M; Suzuki K; Matsushima GK; Ting JP. 2001. TNFalpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4(11):1116-22. [PubMed: 11600888]  [MGI Ref ID J:72695]

Balasa B; Van Gunst K; Jung N; Balakrishna D; Santamaria P; Hanafusa T; Itoh N; Sarvetnick N. 2000. Islet-specific expression of IL-10 promotes diabetes in nonobese diabetic mice independent of Fas, perforin, TNF receptor-1, and TNF receptor-2 molecules. J Immunol 165(5):2841-9. [PubMed: 10946317]  [MGI Ref ID J:64051]

Hayashi T; Rao SP; Takabayashi K; Van Uden JH; Kornbluth RS; Baird SM; Taylor MW; Carson DA; Catanzaro A; Raz E. 2001. Enhancement of Innate Immunity against Mycobacterium avium Infection by Immunostimulatory DNA Is Mediated by Indoleamine 2,3-Dioxygenase. Infect Immun 69(10):6156-64. [PubMed: 11553555]  [MGI Ref ID J:71646]

Kassiotis G; Kollias G. 2001. Uncoupling the Proinflammatory from the Immunosuppressive Properties of Tumor Necrosis Factor (TNF) at the p55 TNF Receptor Level. Implications for pathogenesis and therapy of autoimmune demyelination. J Exp Med 193(4):427-34. [PubMed: 11181695]  [MGI Ref ID J:67610]

Kim GM; Xu J; Xu J; Song SK; Yan P; Ku G; Xu XM; Hsu CY. 2001. Tumor necrosis factor receptor deletion reduces nuclear factor-kappaB activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J Neurosci 21(17):6617-25. [PubMed: 11517251]  [MGI Ref ID J:71178]

Pantano C; Shrivastava P; McElhinney B; Janssen-Heininger Y. 2003. Hydrogen peroxide signaling through tumor necrosis factor receptor 1 leads to selective activation of c-Jun N-terminal kinase. J Biol Chem 278(45):44091-6. [PubMed: 12939259]  [MGI Ref ID J:86570]

Senftleben U; Li ZW; Baud V; Karin M. 2001. IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 14(3):217-30. [PubMed: 11290332]  [MGI Ref ID J:68347]

Wang Y; Huang G; Wang J; Molina H; Chaplin DD; Fu YX. 2000. Antigen persistence is required for somatic mutation and affinity maturation of immunoglobulin Eur J Immunol 30(8):2226-34. [PubMed: 10940914]  [MGI Ref ID J:63948]

Tnfrsf1atm1Mak related

Abe K; Yarovinsky FO; Murakami T; Shakhov AN; Tumanov AV; Ito D; Drutskaya LN; Pfeffer K; Kuprash DV; Komschlies KL; Nedospasov SA. 2003. Distinct contributions of TNF and LT cytokines to the development of dendritic cells in vitro and their recruitment in vivo. Blood 101(4):1477-83. [PubMed: 12560241]  [MGI Ref ID J:115537]

Afanasyeva MA; Britanova LV; Korneev KV; Mitkin NA; Kuchmiy AA; Kuprash DV. 2014. Clusterin is a potential lymphotoxin beta receptor target that is upregulated and accumulates in germinal centers of mouse spleen during immune response. PLoS One 9(5):e98349. [PubMed: 24865838]  [MGI Ref ID J:216496]

Alcamo E; Mizgerd JP; Horwitz BH; Bronson R; Beg AA; Scott M; Doerschuk CM; Hynes RO; Baltimore D. 2001. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-kappa B in leukocyte recruitment. J Immunol 167(3):1592-600. [PubMed: 11466381]  [MGI Ref ID J:84897]

Algood HM; Lin PL; Yankura D; Jones A; Chan J; Flynn JL. 2004. TNF influences chemokine expression of macrophages in vitro and that of CD11b+ cells in vivo during Mycobacterium tuberculosis infection. J Immunol 172(11):6846-57. [PubMed: 15153503]  [MGI Ref ID J:90524]

Allen HL; Deepe GS Jr. 2005. Apoptosis modulates protective immunity to the pathogenic fungus Histoplasma capsulatum. J Clin Invest 115(10):2875-85. [PubMed: 16151533]  [MGI Ref ID J:101533]

Amerio P; Toto P; Feliciani C; Suzuki H; Shivji G; Wang B; Sauder DN. 2001. Rethinking the role of tumour necrosis factor-alpha in ultraviolet (UV) B-induced immunosuppression: altered immune response in UV-irradiated TNFR1R2 gene-targeted mutant mice. Br J Dermatol 144(5):952-7. [PubMed: 11359380]  [MGI Ref ID J:103298]

Armaka M; Apostolaki M; Jacques P; Kontoyiannis DL; Elewaut D; Kollias G. 2008. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J Exp Med 205(2):331-7. [PubMed: 18250193]  [MGI Ref ID J:131930]

Arruda AP; Milanski M; Coope A; Torsoni AS; Ropelle E; Carvalho DP; Carvalheira JB; Velloso LA. 2011. Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology 152(4):1314-26. [PubMed: 21266511]  [MGI Ref ID J:173872]

Ashkar AA; Di Santo JP; Croy BA. 2000. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy [see comments] J Exp Med 192(2):259-70. [PubMed: 10899912]  [MGI Ref ID J:63645]

Babcock AA; Toft-Hansen H; Owens T. 2008. Signaling through MyD88 regulates leukocyte recruitment after brain injury. J Immunol 181(9):6481-90. [PubMed: 18941239]  [MGI Ref ID J:140719]

Babcock AA; Wirenfeldt M; Holm T; Nielsen HH; Dissing-Olesen L; Toft-Hansen H; Millward JM; Landmann R; Rivest S; Finsen B; Owens T. 2006. Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation. J Neurosci 26(49):12826-37. [PubMed: 17151286]  [MGI Ref ID J:116760]

Bachmaier K; Pummerer C; Kozieradzki I; Pfeffer K; Mak TW; Neu N; Penninger JM. 1997. Low-molecular-weight tumor necrosis factor receptor p55 controls induction of autoimmune heart disease. Circulation 95(3):655-61. [PubMed: 9024154]  [MGI Ref ID J:111993]

Balasa B; Van Gunst K; Jung N; Balakrishna D; Santamaria P; Hanafusa T; Itoh N; Sarvetnick N. 2000. Islet-specific expression of IL-10 promotes diabetes in nonobese diabetic mice independent of Fas, perforin, TNF receptor-1, and TNF receptor-2 molecules. J Immunol 165(5):2841-9. [PubMed: 10946317]  [MGI Ref ID J:64051]

Barber EM; Fazzari M; Pollard JW. 2005. Th1 cytokines are essential for placental immunity to Listeria monocytogenes. Infect Immun 73(10):6322-31. [PubMed: 16177303]  [MGI Ref ID J:104232]

Barcelos LS; Talvani A; Teixeira AS; Vieira LQ; Cassali GD; Andrade SP; Teixeira MM. 2005. Impaired inflammatory angiogenesis, but not leukocyte influx, in mice lacking TNFR1. J Leukoc Biol 78(2):352-8. [PubMed: 15894588]  [MGI Ref ID J:100056]

Biragyn A; Coscia M; Nagashima K; Sanford M; Young HA; Olkhanud P. 2008. Murine beta-defensin 2 promotes TLR-4/MyD88-mediated and NF-kappaB-dependent atypical death of APCs via activation of TNFR2. J Leukoc Biol 83(4):998-1008. [PubMed: 18192488]  [MGI Ref ID J:134193]

Blazar BR; Lees CJ; Martin PJ; Noelle RJ; Kwon B; Murphy W; Taylor PA. 2000. Host T cells resist graft-versus-host disease mediated by donor leukocyte infusions. J Immunol 165(9):4901-9. [PubMed: 11046015]  [MGI Ref ID J:118027]

Bohan A; Chen WS; Denson LA; Held MA; Boyer JL. 2003. Tumor necrosis factor alpha-dependent up-regulation of Lrh-1 and Mrp3(Abcc3) reduces liver injury in obstructive cholestasis. J Biol Chem 278(38):36688-98. [PubMed: 12837754]  [MGI Ref ID J:120656]

Bohatschek M; Kloss CU; Hristova M; Pfeffer K; Raivich G. 2004. Microglial major histocompatibility complex glycoprotein-1 in the axotomized facial motor nucleus: regulation and role of tumor necrosis factor receptors 1 and 2. J Comp Neurol 470(4):382-99. [PubMed: 14961564]  [MGI Ref ID J:109424]

Bonnet MC; Preukschat D; Welz PS; van Loo G; Ermolaeva MA; Bloch W; Haase I; Pasparakis M. 2011. The Adaptor Protein FADD Protects Epidermal Keratinocytes from Necroptosis In Vivo and Prevents Skin Inflammation. Immunity 35(4):572-82. [PubMed: 22000287]  [MGI Ref ID J:177639]

Braumuller H; Wieder T; Brenner E; Assmann S; Hahn M; Alkhaled M; Schilbach K; Essmann F; Kneilling M; Griessinger C; Ranta F; Ullrich S; Mocikat R; Braungart K; Mehra T; Fehrenbacher B; Berdel J; Niessner H; Meier F; van den Broek M; Haring HU; Handgretinger R; Quintanilla-Martinez L; Fend F; Pesic M; Bauer J; Zender L; Schaller M; Schulze-Osthoff K; Rocken M. 2013. T-helper-1-cell cytokines drive cancer into senescence. Nature 494(7437):361-5. [PubMed: 23376950]  [MGI Ref ID J:194546]

Busuttil V; Droin N; McCormick L; Bernassola F; Candi E; Melino G; Green DR. 2010. NF-kappaB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2. Proc Natl Acad Sci U S A 107(42):18061-6. [PubMed: 20921405]  [MGI Ref ID J:165536]

Calzascia T; Pellegrini M; Hall H; Sabbagh L; Ono N; Elford AR; Mak TW; Ohashi PS. 2007. TNF-alpha is critical for antitumor but not antiviral T cell immunity in mice. J Clin Invest 117(12):3833-45. [PubMed: 17992258]  [MGI Ref ID J:130779]

Canetti C; Silva JS; Ferreira SH; Cunha FQ. 2001. Tumour necrosis factor-alpha and leukotriene B(4) mediate the neutrophil migration in immune inflammation. Br J Pharmacol 134(8):1619-28. [PubMed: 11739237]  [MGI Ref ID J:115415]

Chen CC; Pedraza PL; Hao S; Stier CT; Ferreri NR. 2010. TNFR1-deficient mice display altered blood pressure and renal responses to ANG II infusion. Am J Physiol Renal Physiol 299(5):F1141-50. [PubMed: 20739394]  [MGI Ref ID J:165590]

Chen MC; Mudge CS; Klumpp DJ. 2006. Urothelial lesion formation is mediated by TNFR1 during neurogenic cystitis. Am J Physiol Renal Physiol 291(4):F741-9. [PubMed: 16622179]  [MGI Ref ID J:144913]

Chen NJ; Chio II; Lin WJ; Duncan G; Chau H; Katz D; Huang HL; Pike KA; Hao Z; Su YW; Yamamoto K; de Pooter RF; Zuniga-Pflucker JC; Wakeham A; Yeh WC; Mak TW. 2008. Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors. Proc Natl Acad Sci U S A 105(34):12429-34. [PubMed: 18719121]  [MGI Ref ID J:138824]

Chien H; Dix RD. 2012. Evidence for multiple cell death pathways during development of experimental cytomegalovirus retinitis in mice with retrovirus-induced immunosuppression: apoptosis, necroptosis, and pyroptosis. J Virol 86(20):10961-78. [PubMed: 22837196]  [MGI Ref ID J:196525]

Chin AI; Miyahira AK; Covarrubias A; Teague J; Guo B; Dempsey PW; Cheng G. 2010. Toll-like receptor 3-mediated suppression of TRAMP prostate cancer shows the critical role of type I interferons in tumor immune surveillance. Cancer Res 70(7):2595-603. [PubMed: 20233880]  [MGI Ref ID J:158910]

Chouchakova N; Skokowa J; Baumann U; Tschernig T; Philippens KM; Nieswandt B; Schmidt RE; Gessner JE. 2001. Fc gamma RIII-mediated production of TNF-alpha induces immune complex alveolitis independently of CXC chemokine generation. J Immunol 166(8):5193-200. [PubMed: 11290803]  [MGI Ref ID J:123762]

Coursey TG; Chen PW; Niederkorn JY. 2011. Abrogating TNF-{alpha} Expression Prevents Bystander Destruction of Normal Tissues during iNOS-Mediated Elimination of Intraocular Tumors. Cancer Res 71(7):2445-54. [PubMed: 21307132]  [MGI Ref ID J:170908]

Dannappel M; Vlantis K; Kumari S; Polykratis A; Kim C; Wachsmuth L; Eftychi C; Lin J; Corona T; Hermance N; Zelic M; Kirsch P; Basic M; Bleich A; Kelliher M; Pasparakis M. 2014. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513(7516):90-4. [PubMed: 25132550]  [MGI Ref ID J:217312]

Deckert-Schluter M; Bluethmann H; Rang A; Hof H; Schluter D. 1998. Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. J Immunol 160(7):3427-36. [PubMed: 9531303]  [MGI Ref ID J:46621]

Delpino MV; Barrionuevo P; Macedo GC; Oliveira SC; Genaro SD; Scian R; Miraglia MC; Fossati CA; Baldi PC; Giambartolomei GH. 2012. Macrophage-elicited osteoclastogenesis in response to Brucella abortus infection requires TLR2/MyD88-dependent TNF-alpha production. J Leukoc Biol 91(2):285-98. [PubMed: 22075930]  [MGI Ref ID J:181038]

Dillon CP; Weinlich R; Rodriguez DA; Cripps JG; Quarato G; Gurung P; Verbist KC; Brewer TL; Llambi F; Gong YN; Janke LJ; Kelliher MA; Kanneganti TD; Green DR. 2014. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157(5):1189-202. [PubMed: 24813850]  [MGI Ref ID J:214393]

Dissanayake D; Hall H; Berg-Brown N; Elford AR; Hamilton SR; Murakami K; Deluca LS; Gommerman JL; Ohashi PS. 2011. Nuclear factor-kappaB1 controls the functional maturation of dendritic cells and prevents the activation of autoreactive T cells. Nat Med 17(12):1663-7. [PubMed: 22081022]  [MGI Ref ID J:180207]

Domercq M; Brambilla L; Pilati E; Marchaland J; Volterra A; Bezzi P. 2006. P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 281(41):30684-96. [PubMed: 16882655]  [MGI Ref ID J:117295]

Dong J; Jimi E; Zeiss C; Hayden MS; Ghosh S. 2010. Constitutively active NF-kappaB triggers systemic TNFalpha-dependent inflammation and localized TNFalpha-independent inflammatory disease. Genes Dev 24(16):1709-17. [PubMed: 20713516]  [MGI Ref ID J:163663]

Dong J; Jimi E; Zhong H; Hayden MS; Ghosh S. 2008. Repression of gene expression by unphosphorylated NF-kappaB p65 through epigenetic mechanisms. Genes Dev 22(9):1159-73. [PubMed: 18408078]  [MGI Ref ID J:134684]

Dong X; Liu Y; Chang X; Lei L; Zhong G. 2014. Signaling via tumor necrosis factor receptor 1 but not Toll-like receptor 2 contributes significantly to hydrosalpinx development following Chlamydia muridarum infection. Infect Immun 82(5):1833-9. [PubMed: 24549331]  [MGI Ref ID J:209898]

Duhart JM; Leone MJ; Paladino N; Evans JA; Castanon-Cervantes O; Davidson AJ; Golombek DA. 2013. Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-alpha. J Immunol 191(9):4656-64. [PubMed: 24062487]  [MGI Ref ID J:206251]

Ehlers S; Benini J; Kutsch S; Endres R; Rietschel ET; Pfeffer K. 1999. Fatal granuloma necrosis without exacerbated mycobacterial growth in tumor necrosis factor receptor p55 gene-deficient mice intravenously infected with Mycobacterium avium. Infect Immun 67(7):3571-9. [PubMed: 10377141]  [MGI Ref ID J:55889]

Ehlers S; Holscher C; Scheu S; Tertilt C; Hehlgans T; Suwinski J; Endres R; Pfeffer K. 2003. The lymphotoxin beta receptor is critically involved in controlling infections with the intracellular pathogens Mycobacterium tuberculosis and Listeria monocytogenes. J Immunol 170(10):5210-8. [PubMed: 12734369]  [MGI Ref ID J:109995]

Ehlers S; Kutsch S; Ehlers EM; Benini J; Pfeffer K. 2000. Lethal granuloma disintegration in mycobacteria-infected TNFRp55-/- mice is dependent on T cells and IL-12. J Immunol 165(1):483-92. [PubMed: 10861087]  [MGI Ref ID J:62873]

Endres R; Luz A; Schulze H; Neubauer H; Futterer A; Holland SM; Wagner H; Pfeffer K. 1997. Listeriosis in p47(phox-/-) and TRp55-/- mice: protection despite absence of ROI and susceptibility despite presence of RNI. Immunity 7(3):419-32. [PubMed: 9324362]  [MGI Ref ID J:43155]

Ermolaeva MA; Michallet MC; Papadopoulou N; Utermohlen O; Kranidioti K; Kollias G; Tschopp J; Pasparakis M. 2008. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9(9):1037-46. [PubMed: 18641654]  [MGI Ref ID J:139030]

Ewing P; Miklos S; Olkiewicz KM; Muller G; Andreesen R; Holler E; Cooke KR; Hildebrandt GC. 2007. Donor CD4+ T-cell production of tumor necrosis factor alpha significantly contributes to the early proinflammatory events of graft-versus-host disease. Exp Hematol 35(1):155-63. [PubMed: 17198884]  [MGI Ref ID J:123193]

Fairweather D; Frisancho-Kiss S; Yusung SA; Barrett MA; Davis SE; Steele RA; Gatewood SJ; Rose NR. 2005. IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-gamma and macrophage and neutrophil populations in the heart. J Immunol 174(1):261-9. [PubMed: 15611248]  [MGI Ref ID J:95857]

Finck BN; Johnson RW. 2000. Tumor necrosis factor (TNF)-alpha induces leptin production through the p55 TNF receptor. Am J Physiol Regul Integr Comp Physiol 278(2):R537-43. [PubMed: 10666158]  [MGI Ref ID J:114245]

Florido M; Pearl JE; Solache A; Borges M; Haynes L; Cooper AM; Appelberg R. 2005. Gamma interferon-induced T-cell loss in virulent Mycobacterium avium infection. Infect Immun 73(6):3577-86. [PubMed: 15908387]  [MGI Ref ID J:99143]

Flynn JL; Goldstein MM; Chan J; Triebold KJ; Pfeffer K; Lowenstein CJ; Schreiber R; Mak TW; Bloom BR. 1995. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2(6):561-72. [PubMed: 7540941]  [MGI Ref ID J:26085]

Foyouzi N; Cai Z; Sugimoto Y; Stocco C. 2005. Changes in the expression of steroidogenic and antioxidant genes in the mouse corpus luteum during luteolysis. Biol Reprod 72(5):1134-41. [PubMed: 15647453]  [MGI Ref ID J:104638]

Fromm PD; Kling J; Mack M; Sedgwick JD; Korner H. 2012. Loss of TNF signaling facilitates the development of a novel Ly-6C(low) macrophage population permissive for Leishmania major infection. J Immunol 188(12):6258-66. [PubMed: 22615203]  [MGI Ref ID J:188958]

Funakoshi H; Zacharia LC; Tang Z; Zhang J; Lee LL; Good JC; Herrmann DE; Higuchi Y; Koch WJ; Jackson EK; Chan TO; Feldman AM. 2007. A1 adenosine receptor upregulation accompanies decreasing myocardial adenosine levels in mice with left ventricular dysfunction. Circulation 115(17):2307-15. [PubMed: 17438146]  [MGI Ref ID J:130536]

Futterer A; Mink K; Luz A; Kosco-Vilbois MH; Pfeffer K. 1998. The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9(1):59-70. [PubMed: 9697836]  [MGI Ref ID J:48837]

Garrett WS; Lord GM; Punit S; Lugo-Villarino G; Mazmanian SK; Ito S; Glickman JN; Glimcher LH. 2007. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131(1):33-45. [PubMed: 17923086]  [MGI Ref ID J:141481]

Gatto D; Pfister T; Jegerlehner A; Martin SW; Kopf M; Bachmann MF. 2005. Complement receptors regulate differentiation of bone marrow plasma cell precursors expressing transcription factors Blimp-1 and XBP-1. J Exp Med 201(6):993-1005. [PubMed: 15767369]  [MGI Ref ID J:97983]

Gerbaulet A; Wickenhauser C; Scholten J; Peschke K; Drube S; Horny HP; Kamradt T; Naumann R; Muller W; Krieg T; Waskow C; Hartmann K; Roers A. 2011. Mast cell hyperplasia, B-cell malignancy, and intestinal inflammation in mice with conditional expression of a constitutively active kit. Blood 117(6):2012-21. [PubMed: 21148330]  [MGI Ref ID J:169611]

Geserick P; Kaiser F; Klemm U; Kaufmann SH; Zerrahn J. 2004. Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif. Int Immunol 16(10):1535-48. [PubMed: 15351786]  [MGI Ref ID J:93660]

Giambartolomei GH; Scian R; Acosta-Rodriguez E; Fossati CA; Delpino MV. 2012. Brucella abortus-infected macrophages modulate T lymphocytes to promote osteoclastogenesis via IL-17. Am J Pathol 181(3):887-96. [PubMed: 22901753]  [MGI Ref ID J:189928]

Gimenez MA; Sim J; Archambault AS; Klein RS; Russell JH. 2006. A tumor necrosis factor receptor 1-dependent conversation between central nervous system-specific T cells and the central nervous system is required for inflammatory infiltration of the spinal cord. Am J Pathol 168(4):1200-9. [PubMed: 16565495]  [MGI Ref ID J:107336]

Golovkina TV; Shlomchik M; Hannum L; Chervonsky A. 1999. Organogenic role of B lymphocytes in mucosal immunity. Science 286(5446):1965-8. [PubMed: 10583962]  [MGI Ref ID J:124532]

Goukassian DA; Qin G; Dolan C; Murayama T; Silver M; Curry C; Eaton E; Luedemann C; Ma H; Asahara T; Zak V; Mehta S; Burg A; Thorne T; Kishore R; Losordo DW. 2007. Tumor necrosis factor-alpha receptor p75 is required in ischemia-induced neovascularization. Circulation 115(6):752-62. [PubMed: 17261656]  [MGI Ref ID J:132332]

Grell M; Becke FM; Wajant H; Mannel DN; Scheurich P. 1998. TNF receptor type 2 mediates thymocyte proliferation independently of TNF receptor type 1. Eur J Immunol 28(1):257-63. [PubMed: 9485205]  [MGI Ref ID J:45904]

Hagge DA; Saunders BM; Ebenezer GJ; Ray NA; Marks VT; Britton WJ; Krahenbuhl JL; Adams LB. 2009. Lymphotoxin-alpha and TNF have essential but independent roles in the evolution of the granulomatous response in experimental leprosy. Am J Pathol 174(4):1379-89. [PubMed: 19246648]  [MGI Ref ID J:146889]

Hamid T; Gu Y; Ortines RV; Bhattacharya C; Wang G; Xuan YT; Prabhu SD. 2009. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 119(10):1386-97. [PubMed: 19255345]  [MGI Ref ID J:166004]

Higuchi Y; McTiernan CF; Frye CB; McGowan BS; Chan TO; Feldman AM. 2004. Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation 109(15):1892-7. [PubMed: 15051641]  [MGI Ref ID J:127874]

Honma K; Udono H; Kohno T; Yamamoto K; Ogawa A; Takemori T; Kumatori A; Suzuki S; Matsuyama T; Yui K. 2005. Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS. Proc Natl Acad Sci U S A 102(44):16001-6. [PubMed: 16243976]  [MGI Ref ID J:102927]

Hovelmeyer N; Hao Z; Kranidioti K; Kassiotis G; Buch T; Frommer F; von Hoch L; Kramer D; Minichiello L; Kollias G; Lassmann H; Waisman A. 2005. Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J Immunol 175(9):5875-84. [PubMed: 16237080]  [MGI Ref ID J:114741]

Huber SA; Sartini D. 2005. Roles of tumor necrosis factor alpha (TNF-alpha) and the p55 TNF receptor in CD1d induction and coxsackievirus B3-induced myocarditis. J Virol 79(5):2659-65. [PubMed: 15708985]  [MGI Ref ID J:96701]

Hui-Yuen JS; Duong TT; Yeung RS. 2006. TNF-alpha is necessary for induction of coronary artery inflammation and aneurysm formation in an animal model of Kawasaki disease. J Immunol 176(10):6294-301. [PubMed: 16670341]  [MGI Ref ID J:131777]

Hunter CA; Yu D; Gee M; Ngo CV; Sevignani C; Goldschmidt M; Golovkina TV; Evans S; Lee WF; Thomas-Tikhonenko A. 2001. Cutting edge: systemic inhibition of angiogenesis underlies resistance to tumors during acute toxoplasmosis. J Immunol 166(10):5878-81. [PubMed: 11342601]  [MGI Ref ID J:124573]

Ignacio-Souza LM; Bombassaro B; Pascoal LB; Portovedo MA; Razolli DS; Coope A; Victorio SC; de Moura RF; Nascimento LF; Arruda AP; Anhe GF; Milanski M; Velloso LA. 2014. Defective regulation of the ubiquitin/proteasome system in the hypothalamus of obese male mice. Endocrinology 155(8):2831-44. [PubMed: 24892821]  [MGI Ref ID J:214459]

Jacob N; Guo S; Mathian A; Koss MN; Gindea S; Putterman C; Jacob CO; Stohl W. 2011. B Cell and BAFF dependence of IFN-alpha-exaggerated disease in systemic lupus erythematosus-prone NZM 2328 mice. J Immunol 186(8):4984-93. [PubMed: 21383240]  [MGI Ref ID J:172469]

Jacob N; Yang H; Pricop L; Liu Y; Gao X; Zheng SG; Wang J; Gao HX; Putterman C; Koss MN; Stohl W; Jacob CO. 2009. Accelerated pathological and clinical nephritis in systemic lupus erythematosus-prone New Zealand Mixed 2328 mice doubly deficient in TNF receptor 1 and TNF receptor 2 via a Th17-associated pathway. J Immunol 182(4):2532-41. [PubMed: 19201910]  [MGI Ref ID J:144776]

Jacobs M; Brown N; Allie N; Chetty K; Ryffel B. 2000. Tumor necrosis factor receptor 2 plays a minor role for mycobacterial immunity Pathobiology 68(2):68-75. [PubMed: 10878503]  [MGI Ref ID J:63519]

Janssen EM; Droin NM; Lemmens EE; Pinkoski MJ; Bensinger SJ; Ehst BD; Griffith TS; Green DR; Schoenberger SP. 2005. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434(7029):88-93. [PubMed: 15744305]  [MGI Ref ID J:96586]

Jensen JM; Schutze S; Forl M; Kronke M; Proksch E. 1999. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J Clin Invest 104(12):1761-70. [PubMed: 10606630]  [MGI Ref ID J:59056]

Ji C; Deng Q; Kaplowitz N. 2004. Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology 40(2):442-51. [PubMed: 15368449]  [MGI Ref ID J:105438]

Ji H; Pettit A; Ohmura K; Ortiz-Lopez A; Duchatelle V; Degott C; Gravallese E; Mathis D; Benoist C. 2002. Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody-induced arthritis. J Exp Med 196(1):77-85. [PubMed: 12093872]  [MGI Ref ID J:132920]

Jolicoeur P; Hu C; Mak TW; Martinou JC; Kay DG. 2003. Protection against murine leukemia virus-induced spongiform myeloencephalopathy in mice overexpressing Bcl-2 but not in mice deficient for interleukin-6, inducible nitric oxide synthetase, ICE, Fas, Fas ligand, or TNF-R1 genes. J Virol 77(24):13161-70. [PubMed: 14645573]  [MGI Ref ID J:86761]

Josephs MD; Solorzano CC; Taylor M; Rosenberg JJ; Topping D; Abouhamze A; Mackay SL; Hirsch E; Hirsh D; Labow M; Moldawer LL. 2000. Modulation of the acute phase response by altered expression of the IL-1 type 1 receptor or IL-1ra. Am J Physiol Regul Integr Comp Physiol 278(4):R824-30. [PubMed: 10749768]  [MGI Ref ID J:61600]

Juttner S; Bernhagen J; Metz CN; Rollinghoff M; Bucala R; Gessner A. 1998. Migration inhibitory factor induces killing of Leishmania major by macrophages: dependence on reactive nitrogen intermediates and endogenous TNF-alpha. J Immunol 161(5):2383-90. [PubMed: 9725234]  [MGI Ref ID J:118440]

Kafrouni MI; Brown GR; Thiele DL. 2003. The role of TNF-TNFR2 interactions in generation of CTL responses and clearance of hepatic adenovirus infection. J Leukoc Biol 74(4):564-71. [PubMed: 12960267]  [MGI Ref ID J:85969]

Kagi D; Ho A; Odermatt B; Zakarian A; Ohashi PS; Mak TW. 1999. TNF receptor 1-dependent beta cell toxicity as an effector pathway in autoimmune diabetes. J Immunol 162(8):4598-605. [PubMed: 10201999]  [MGI Ref ID J:120458]

Kajino-Sakamoto R; Inagaki M; Lippert E; Akira S; Robine S; Matsumoto K; Jobin C; Ninomiya-Tsuji J. 2008. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J Immunol 181(2):1143-52. [PubMed: 18606667]  [MGI Ref ID J:137419]

Kajino-Sakamoto R; Omori E; Nighot PK; Blikslager AT; Matsumoto K; Ninomiya-Tsuji J. 2010. TGF-beta-activated kinase 1 signaling maintains intestinal integrity by preventing accumulation of reactive oxygen species in the intestinal epithelium. J Immunol 185(8):4729-37. [PubMed: 20855879]  [MGI Ref ID J:164727]

Kalns J; Scruggs J; Millenbaugh N; Vivekananda J; Shealy D; Eggers J; Kiel J. 2002. TNF Receptor 1, IL-1 Receptor, and iNOS Genetic Knockout Mice Are Not Protected from Anthrax Infection. Biochem Biophys Res Commun 292(1):41-4. [PubMed: 11890668]  [MGI Ref ID J:75694]

Kanaly ST; Nashleanas M; Hondowicz B; Scott P. 1999. TNF receptor p55 is required for elimination of inflammatory cells following control of intracellular pathogens. J Immunol 163(7):3883-9. [PubMed: 10490988]  [MGI Ref ID J:110830]

Keeton R; Allie N; Dambuza I; Abel B; Hsu NJ; Sebesho B; Randall P; Burger P; Fick E; Quesniaux VF; Ryffel B; Jacobs M. 2014. Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis. J Clin Invest 124(4):1537-51. [PubMed: 24569452]  [MGI Ref ID J:209719]

Kerkela R; Kockeritz L; Macaulay K; Zhou J; Doble BW; Beahm C; Greytak S; Woulfe K; Trivedi CM; Woodgett JR; Epstein JA; Force T; Huggins GS. 2008. Deletion of GSK-3beta in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. J Clin Invest 118(11):3609-18. [PubMed: 18830417]  [MGI Ref ID J:144603]

Khasawneh J; Schulz MD; Walch A; Rozman J; Hrabe de Angelis M; Klingenspor M; Buck A; Schwaiger M; Saur D; Schmid RM; Kloppel G; Sipos B; Greten FR; Arkan MC. 2009. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci U S A 106(9):3354-9. [PubMed: 19208810]  [MGI Ref ID J:146442]

Kim JY; Kajino-Sakamoto R; Omori E; Jobin C; Ninomiya-Tsuji J. 2009. Intestinal epithelial-derived TAK1 signaling is essential for cytoprotection against chemical-induced colitis. PLoS ONE 4(2):e4561. [PubMed: 19234607]  [MGI Ref ID J:146227]

Kisiswa L; Osorio C; Erice C; Vizard T; Wyatt S; Davies AM. 2013. TNFalpha reverse signaling promotes sympathetic axon growth and target innervation. Nat Neurosci 16(7):865-73. [PubMed: 23749144]  [MGI Ref ID J:203348]

Kondo S; Wang B; Fujisawa H; Shivji GM; Echtenacher B; Mak TW; Sauder DN. 1995. Effect of gene-targeted mutation in TNF receptor (p55) on contact hypersensitivity and ultraviolet B-induced immunosuppression. J Immunol 155(8):3801-5. [PubMed: 7561085]  [MGI Ref ID J:29283]

Krautler NJ; Kana V; Kranich J; Tian Y; Perera D; Lemm D; Schwarz P; Armulik A; Browning JL; Tallquist M; Buch T; Oliveira-Martins JB; Zhu C; Hermann M; Wagner U; Brink R; Heikenwalder M; Aguzzi A. 2012. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150(1):194-206. [PubMed: 22770220]  [MGI Ref ID J:186239]

Krucken J; Mehnert LI; Dkhil MA; El-Khadragy M; Benten WP; Mossmann H; Wunderlich F. 2005. Massive destruction of malaria-parasitized red blood cells despite spleen closure. Infect Immun 73(10):6390-8. [PubMed: 16177310]  [MGI Ref ID J:104226]

Kumari S; Bonnet MC; Ulvmar MH; Wolk K; Karagianni N; Witte E; Uthoff-Hachenberg C; Renauld JC; Kollias G; Toftgard R; Sabat R; Pasparakis M; Haase I. 2013. Tumor necrosis factor receptor signaling in keratinocytes triggers interleukin-24-dependent psoriasis-like skin inflammation in mice. Immunity 39(5):899-911. [PubMed: 24211183]  [MGI Ref ID J:208995]

Lai CF; Shao JS; Behrmann A; Krchma K; Cheng SL; Towler DA. 2012. TNFR1-activated reactive oxidative species signals up-regulate osteogenic Msx2 programs in aortic myofibroblasts. Endocrinology 153(8):3897-910. [PubMed: 22685265]  [MGI Ref ID J:189093]

Lai JJ; Lai KP; Chuang KH; Chang P; Yu IC; Lin WJ; Chang C. 2009. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. J Clin Invest 119(12):3739-51. [PubMed: 19907077]  [MGI Ref ID J:155101]

Lengeling A; Pfeffer K; Balling R. 2001. The battle of two genomes: genetics of bacterial host/pathogen interactions in mice. Mamm Genome 12(4):261-71. [PubMed: 11309656]  [MGI Ref ID J:68401]

Li Q; Estepa G; Memet S; Israel A; Verma IM. 2000. Complete lack of NF-kappaB activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes Dev 14(14):1729-33. [PubMed: 10898787]  [MGI Ref ID J:63443]

Li Q; Van Antwerp D; Mercurio F; Lee KF; Verma IM. 1999. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene [see comments] Science 284(5412):321-5. [PubMed: 10195897]  [MGI Ref ID J:54323]

Li X; McKinstry KK; Swain SL; Dalton DK. 2007. IFN-gamma acts directly on activated CD4+ T cells during mycobacterial infection to promote apoptosis by inducing components of the intracellular apoptosis machinery and by inducing extracellular proapoptotic signals. J Immunol 179(2):939-49. [PubMed: 17617585]  [MGI Ref ID J:149401]

Li Y; Li A; Strait K; Zhang H; Nanes MS; Weitzmann MN. 2007. Endogenous TNFalpha lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-kappaB. J Bone Miner Res 22(5):646-55. [PubMed: 17266397]  [MGI Ref ID J:135519]

Lien YC; Noel T; Liu H; Stromberg AJ; Chen KC; St Clair DK. 2006. Phospholipase C-delta1 is a critical target for tumor necrosis factor receptor-mediated protection against adriamycin-induced cardiac injury. Cancer Res 66(8):4329-38. [PubMed: 16618758]  [MGI Ref ID J:108315]

Liepinsh DJ; Grivennikov SI; Klarmann KD; Lagarkova MA; Drutskaya MS; Lockett SJ; Tessarollo L; McAuliffe M; Keller JR; Kuprash DV; Nedospasov SA. 2006. Novel lymphotoxin alpha (LTalpha) knockout mice with unperturbed tumor necrosis factor expression: reassessing LTalpha biological functions. Mol Cell Biol 26(11):4214-25. [PubMed: 16705172]  [MGI Ref ID J:109621]

Lind MH; Rozell B; Wallin RP; van Hogerlinden M; Ljunggren HG; Toftgard R; Sur I. 2004. Tumor necrosis factor receptor 1-mediated signaling is required for skin cancer development induced by NF-kappaB inhibition. Proc Natl Acad Sci U S A 101(14):4972-7. [PubMed: 15044707]  [MGI Ref ID J:89239]

Liu B; Xia X; Zhu F; Park E; Carbajal S; Kiguchi K; DiGiovanni J; Fischer SM; Hu Y. 2008. IKKalpha is required to maintain skin homeostasis and prevent skin cancer. Cancer Cell 14(3):212-25. [PubMed: 18772111]  [MGI Ref ID J:141162]

Lourenco MV; Clarke JR; Frozza RL; Bomfim TR; Forny-Germano L; Batista AF; Sathler LB; Brito-Moreira J; Amaral OB; Silva CA; Freitas-Correa L; Espirito-Santo S; Campello-Costa P; Houzel JC; Klein WL; Holscher C; Carvalheira JB; Silva AM; Velloso LA; Munoz DP; Ferreira ST; De Felice FG. 2013. TNF-alpha mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer's beta-amyloid oligomers in mice and monkeys. Cell Metab 18(6):831-43. [PubMed: 24315369]  [MGI Ref ID J:206139]

Louten J; van Rooijen N; Biron CA. 2006. Type 1 IFN deficiency in the absence of normal splenic architecture during lymphocytic choriomeningitis virus infection. J Immunol 177(5):3266-72. [PubMed: 16920967]  [MGI Ref ID J:139540]

Lu Y; Leung TM; Ward SC; Nieto N. 2012. Partial deletion of argininosuccinate synthase protects from pyrazole plus lipopolysaccharide-induced liver injury by decreasing nitrosative stress. Am J Physiol Gastrointest Liver Physiol 302(3):G287-95. [PubMed: 22052013]  [MGI Ref ID J:183321]

Lukic IK; Grcevic D; Kovacic N; Katavic V; Ivcevic S; Kalajzic I; Marusic A. 2005. Alteration of newly induced endochondral bone formation in adult mice without tumour necrosis factor receptor 1. Clin Exp Immunol 139(2):236-44. [PubMed: 15654822]  [MGI Ref ID J:95559]

Luo D; Luo Y; He Y; Zhang H; Zhang R; Li X; Dobrucki WL; Sinusas AJ; Sessa WC; Min W. 2006. Differential functions of tumor necrosis factor receptor 1 and 2 signaling in ischemia-mediated arteriogenesis and angiogenesis. Am J Pathol 169(5):1886-98. [PubMed: 17071609]  [MGI Ref ID J:114980]

Mackler AM; Barber EM; Takikawa O; Pollard JW. 2003. Indoleamine 2,3-dioxygenase is regulated by IFN-gamma in the mouse placenta during Listeria monocytogenes infection. J Immunol 170(2):823-30. [PubMed: 12517946]  [MGI Ref ID J:127135]

Mao XJ; Zhang XM; Zhang HL; Quezada HC; Mix E; Yang X; Winblad B; Adem A; Zhu J. 2010. TNF-alpha receptor 1 deficiency reduces antigen-presenting capacity of Schwann cells and ameliorates experimental autoimmune neuritis in mice. Neurosci Lett 470(1):19-23. [PubMed: 20035831]  [MGI Ref ID J:156875]

Marchetti S; Gamas P; Belhacene N; Grosso S; Pradelli LA; Colosetti P; Johansen C; Iversen L; Deckert M; Luciano F; Hofman P; Ortonne N; Khemis A; Mari B; Ortonne JP; Ricci JE; Auberger P. 2009. The caspase-cleaved form of LYN mediates a psoriasis-like inflammatory syndrome in mice. EMBO J 28(16):2449-60. [PubMed: 19590497]  [MGI Ref ID J:151886]

Markel TA; Crisostomo PR; Wang M; Herring CM; Meldrum DR. 2007. Activation of individual tumor necrosis factor receptors differentially affects stem cell growth factor and cytokine production. Am J Physiol Gastrointest Liver Physiol 293(4):G657-62. [PubMed: 17640973]  [MGI Ref ID J:126701]

McCandless EE; Budde M; Lees JR; Dorsey D; Lyng E; Klein RS. 2009. IL-1R signaling within the central nervous system regulates CXCL12 expression at the blood-brain barrier and disease severity during experimental autoimmune encephalomyelitis. J Immunol 183(1):613-20. [PubMed: 19535637]  [MGI Ref ID J:150113]

McClary H; Koch R; Chisari FV; Guidotti LG. 2000. Relative sensitivity of hepatitis B virus and other hepatotropic viruses to the antiviral effects of cytokines. J Virol 74(5):2255-64. [PubMed: 10666256]  [MGI Ref ID J:126989]

McKall-Faienza KJ; Kawai K; Kundig TM; Odermatt B; Bachmann MF; Zakarian A; Mak TW; Ohashi PS. 1998. Absence of TNFRp55 influences virus-induced autoimmunity despite efficient lymphocytic infiltration. Int Immunol 10(4):405-12. [PubMed: 9620596]  [MGI Ref ID J:47278]

McKee CM; Defina R; He H; Haley KJ; Stone JR; Perkins DL. 2002. Prolonged allograft survival in TNF receptor 1-deficient recipients is due to immunoregulatory effects, not to inhibition of direct antigraft cytotoxicity. J Immunol 168(1):483-9. [PubMed: 11751996]  [MGI Ref ID J:126021]

Medeiros MM; Peixoto JR; Oliveira AC; Cardilo-Reis L; Koatz VL; Van Kaer L; Previato JO; Mendonca-Previato L; Nobrega A; Bellio M. 2007. Toll-like receptor 4 (TLR4)-dependent proinflammatory and immunomodulatory properties of the glycoinositolphospholipid (GIPL) from Trypanosoma cruzi. J Leukoc Biol 82(3):488-496. [PubMed: 17540734]  [MGI Ref ID J:124231]

Meffert MK; Chang JM; Wiltgen BJ; Fanselow MS; Baltimore D. 2003. NF-kappaB functions in synaptic signaling and behavior. Nat Neurosci 6(10):1072-8. [PubMed: 12947408]  [MGI Ref ID J:85743]

Milanski M; Arruda AP; Coope A; Ignacio-Souza LM; Nunez CE; Roman EA; Romanatto T; Pascoal LB; Caricilli AM; Torsoni MA; Prada PO; Saad MJ; Velloso LA. 2012. Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61(6):1455-62. [PubMed: 22522614]  [MGI Ref ID J:196822]

Milicevic NM; Nohroudi K; Labudovic-Borovic M; Milicevic Z; Pfeffer K; Westermann J. 2006. Metallophilic macrophages are lacking in the thymus of lymphotoxin-beta receptor-deficient mice. Histochem Cell Biol 126(6):687-93. [PubMed: 16830123]  [MGI Ref ID J:144687]

Miller LS; O'Connell RM; Gutierrez MA; Pietras EM; Shahangian A; Gross CE; Thirumala A; Cheung AL; Cheng G; Modlin RL. 2006. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24(1):79-91. [PubMed: 16413925]  [MGI Ref ID J:113315]

Miyahira AK; Shahangian A; Hwang S; Sun R; Cheng G. 2009. TANK-binding kinase-1 plays an important role during in vitro and in vivo type I IFN responses to DNA virus infections. J Immunol 182(4):2248-57. [PubMed: 19201879]  [MGI Ref ID J:144789]

Mohammed FF; Smookler DS; Taylor SE; Fingleton B; Kassiri Z; Sanchez OH; English JL; Matrisian LM; Au B; Yeh WC; Khokha R. 2004. Abnormal TNF activity in Timp3-/- mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet 36(9):969-77. [PubMed: 15322543]  [MGI Ref ID J:92948]

Montgomery SL; Mastrangelo MA; Habib D; Narrow WC; Knowlden SA; Wright TW; Bowers WJ. 2011. Ablation of TNF-RI/RII Expression in Alzheimer's Disease Mice Leads to an Unexpected Enhancement of Pathology Implications for Chronic Pan-TNF-alpha Suppressive Therapeutic Strategies in the Brain. Am J Pathol 179(4):2053-70. [PubMed: 21835156]  [MGI Ref ID J:176301]

Moore TA; Lau HY; Cogen AL; Standiford TJ. 2005. Defective innate antibacterial host responses during murine Klebsiella pneumoniae bacteremia: tumor necrosis factor (TNF) receptor 1 deficiency versus therapy with anti-TNF-alpha. Clin Infect Dis 41 Suppl 3:S213-7. [PubMed: 15983903]  [MGI Ref ID J:114418]

Moreira AP; Campanelli AP; Cavassani KA; Souto JT; Ferreira BR; Martinez R; Rossi MA; Silva JS. 2006. Intercellular adhesion molecule-1 is required for the early formation of granulomas and participates in the resistance of mice to the infection with the fungus Paracoccidioides brasiliensis. Am J Pathol 169(4):1270-81. [PubMed: 17003484]  [MGI Ref ID J:113377]

Morioka S; Broglie P; Omori E; Ikeda Y; Takaesu G; Matsumoto K; Ninomiya-Tsuji J. 2014. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. J Cell Biol 204(4):607-23. [PubMed: 24535827]  [MGI Ref ID J:208251]

Morioka S; Inagaki M; Komatsu Y; Mishina Y; Matsumoto K; Ninomiya-Tsuji J. 2012. TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. Blood 120(18):3846-57. [PubMed: 22972987]  [MGI Ref ID J:191285]

Mota BE; Gallardo-Romero N; Trindade G; Keckler MS; Karem K; Carroll D; Campos MA; Vieira LQ; da Fonseca FG; Ferreira PC; Bonjardim CA; Damon IK; Kroon EG. 2011. Adverse Events Post Smallpox-Vaccination: Insights from Tail Scarification Infection in Mice with Vaccinia virus. PLoS One 6(4):e18924. [PubMed: 21526210]  [MGI Ref ID J:172270]

Mukhopadhyay A; Suttles J; Stout RD; Aggarwal BB. 2001. Genetic deletion of the tumor necrosis factor receptor p60 or p80 abrogates ligand-mediated activation of nuclear factor-kappa B and of mitogen-activated protein kinases in macrophages. J Biol Chem 276(34):31906-12. [PubMed: 11438547]  [MGI Ref ID J:120510]

Mullarky IK; Szaba FM; Berggren KN; Kummer LW; Wilhelm LB; Parent MA; Johnson LL; Smiley ST. 2006. Tumor necrosis factor alpha and gamma interferon, but not hemorrhage or pathogen burden, dictate levels of protective fibrin deposition during infection. Infect Immun 74(2):1181-8. [PubMed: 16428767]  [MGI Ref ID J:104988]

Muller-Hermelink N; Braumuller H; Pichler B; Wieder T; Mailhammer R; Schaak K; Ghoreschi K; Yazdi A; Haubner R; Sander CA; Mocikat R; Schwaiger M; Forster I; Huss R; Weber WA; Kneilling M; Rocken M. 2008. TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13(6):507-18. [PubMed: 18538734]  [MGI Ref ID J:138631]

Murthy A; Defamie V; Smookler DS; Di Grappa MA; Horiuchi K; Federici M; Sibilia M; Blobel CP; Khokha R. 2010. Ectodomain shedding of EGFR ligands and TNFR1 dictates hepatocyte apoptosis during fulminant hepatitis in mice. J Clin Invest 120(8):2731-44. [PubMed: 20628198]  [MGI Ref ID J:163773]

Nakao A; Fukushima H; Kajiya H; Ozeki S; Okabe K. 2007. RANKL-stimulated TNFalpha production in osteoclast precursor cells promotes osteoclastogenesis by modulating RANK signaling pathways. Biochem Biophys Res Commun 357(4):945-50. [PubMed: 17467668]  [MGI Ref ID J:121768]

Nashleanas M; Kanaly S; Scott P. 1998. Control of Leishmania major infection in mice lacking TNF receptors. J Immunol 160(11):5506-13. [PubMed: 9605154]  [MGI Ref ID J:120578]

Nashleanas M; Scott P. 2000. Activated T cells induce macrophages to produce NO and control Leishmania major in the absence of tumor necrosis factor receptor p55. Infect Immun 68(3):1428-34. [PubMed: 10678956]  [MGI Ref ID J:60570]

Nenci A; Becker C; Wullaert A; Gareus R; van Loo G; Danese S; Huth M; Nikolaev A; Neufert C; Madison B; Gumucio D; Neurath MF; Pasparakis M. 2007. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446(7135):557-61. [PubMed: 17361131]  [MGI Ref ID J:120854]

Nenci A; Huth M; Funteh A; Schmidt-Supprian M; Bloch W; Metzger D; Chambon P; Rajewsky K; Krieg T; Haase I; Pasparakis M. 2006. Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum Mol Genet 15(4):531-42. [PubMed: 16399796]  [MGI Ref ID J:106786]

Nguyen LT; Duncan GS; Mirtsos C; Ng M; Speiser DE; Shahinian A; Marino MW; Mak TW; Ohashi PS; Yeh WC. 1999. TRAF2 deficiency results in hyperactivity of certain TNFR1 signals and impairment of CD40-mediated responses. Immunity 11(3):379-89. [PubMed: 10514016]  [MGI Ref ID J:57913]

Nguyen LT; McKall-Faienza K; Zakarian A; Speiser DE; Mak TW; Ohashi PS. 2000. TNF receptor 1 (TNFR1) and CD95 are not required for T cell deletion after virus infection but contribute to peptide-induced deletion under limited conditions. Eur J Immunol 30(2):683-8. [PubMed: 10671227]  [MGI Ref ID J:60374]

Nonaka K; Saio M; Suwa T; Frey AB; Umemura N; Imai H; Ouyang GF; Osada S; Balazs M; Adany R; Kawaguchi Y; Yoshida K; Takami T. 2008. Skewing the Th cell phenotype toward Th1 alters the maturation of tumor-infiltrating mononuclear phagocytes. J Leukoc Biol 84(3):679-88. [PubMed: 18566103]  [MGI Ref ID J:138274]

Novais FO; Santiago RC; Bafica A; Khouri R; Afonso L; Borges VM; Brodskyn C; Barral-Netto M; Barral A; de Oliveira CI. 2009. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J Immunol 183(12):8088-98. [PubMed: 19923470]  [MGI Ref ID J:157493]

Oganesyan G; Saha SK; Pietras EM; Guo B; Miyahira AK; Zarnegar B; Cheng G. 2008. IRF3-dependent type I interferon response in B cells regulates CpG-mediated antibody production. J Biol Chem 283(2):802-8. [PubMed: 17925397]  [MGI Ref ID J:130096]

Okazaki M; Matsuyama T; Kohno T; Shindo H; Koji T; Morimoto Y; Ishimaru T. 2005. Induction of epithelial cell apoptosis in the uterus by a mouse uterine ischemia-reperfusion model: possible involvement of tumor necrosis factor-alpha. Biol Reprod 72(5):1282-8. [PubMed: 15673605]  [MGI Ref ID J:104637]

Omori E; Matsumoto K; Sanjo H; Sato S; Akira S; Smart RC; Ninomiya-Tsuji J. 2006. TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. J Biol Chem 281(28):19610-7. [PubMed: 16675448]  [MGI Ref ID J:114888]

Oyoshi MK; Barthel R; Tsitsikov EN. 2007. TRAF1 regulates recruitment of lymphocytes and, to a lesser extent, neutrophils, myeloid dendritic cells and monocytes to the lung airways following lipopolysaccharide inhalation. Immunology 120(3):303-14. [PubMed: 17328785]  [MGI Ref ID J:122710]

Pan W; Kastin AJ. 2002. TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice. Exp Neurol 174(2):193-200. [PubMed: 11922661]  [MGI Ref ID J:75855]

Panthel K; Faller G; Haas R. 2003. Colonization of C57BL/6J and BALB/c wild-type and knockout mice with Helicobacter pylori: effect of vaccination and implications for innate and acquired immunity. Infect Immun 71(2):794-800. [PubMed: 12540559]  [MGI Ref ID J:81703]

Papa S; Zazzeroni F; Fu YX; Bubici C; Alvarez K; Dean K; Christiansen PA; Anders RA; Franzoso G. 2008. Gadd45beta promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling. J Clin Invest 118(5):1911-23. [PubMed: 18382767]  [MGI Ref ID J:136146]

Park CK; Lu N; Xu ZZ; Liu T; Serhan CN; Ji RR. 2011. Resolving TRPV1- and TNF-{alpha}-Mediated Spinal Cord Synaptic Plasticity and Inflammatory Pain with Neuroprotectin D1. J Neurosci 31(42):15072-85. [PubMed: 22016541]  [MGI Ref ID J:177637]

Perry AK; Chow EK; Goodnough JB; Yeh WC; Cheng G. 2004. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J Exp Med 199(12):1651-8. [PubMed: 15210743]  [MGI Ref ID J:120402]

Piao JH; Hasegawa M; Heissig B; Hattori K; Takeda K; Iwakura Y; Okumura K; Inohara N; Nakano H. 2011. Tumor Necrosis Factor Receptor-associated Factor (TRAF) 2 Controls Homeostasis of the Colon to Prevent Spontaneous Development of Murine Inflammatory Bowel Disease. J Biol Chem 286(20):17879-88. [PubMed: 21393251]  [MGI Ref ID J:172694]

Piao JH; Yoshida H; Yeh WC; Doi T; Xue X; Yagita H; Okumura K; Nakano H. 2007. TNF receptor-associated factor 2-dependent canonical pathway is crucial for the development of Peyer's patches. J Immunol 178(4):2272-7. [PubMed: 17277132]  [MGI Ref ID J:143986]

Poligone B; Hayden MS; Chen L; Pentland AP; Jimi E; Ghosh S. 2013. A role for NF-kappaB activity in skin hyperplasia and the development of Keratoacanthomata in mice. PLoS One 8(8):e71887. [PubMed: 23977171]  [MGI Ref ID J:204921]

Powolny-Budnicka I; Riemann M; Tanzer S; Schmid RM; Hehlgans T; Weih F. 2011. RelA and RelB Transcription Factors in Distinct Thymocyte Populations Control Lymphotoxin-Dependent Interleukin-17 Production in gammadelta T Cells. Immunity 34(3):364-74. [PubMed: 21419662]  [MGI Ref ID J:169863]

Priceputu E; Rodrigue I; Chrobak P; Poudrier J; Mak TW; Hanna Z; Hu C; Kay DG; Jolicoeur P. 2005. The Nef-mediated AIDS-like disease of CD4C/human immunodeficiency virus transgenic mice is associated with increased Fas/FasL expression on T cells and T-cell death but is not prevented in Fas-, FasL-, tumor necrosis factor receptor 1-, or interleukin-1beta-converting enzyme-deficient or Bcl2-expressing transgenic mice. J Virol 79(10):6377-91. [PubMed: 15858021]  [MGI Ref ID J:98353]

Pryhuber GS; Huyck HL; Bhagwat S; O'Reilly MA; Finkelstein JN; Gigliotti F; Wright TW. 2008. Parenchymal cell TNF receptors contribute to inflammatory cell recruitment and respiratory failure in Pneumocystis carinii-induced pneumonia. J Immunol 181(2):1409-19. [PubMed: 18606695]  [MGI Ref ID J:137659]

Quinton LJ; Jones MR; Simms BT; Kogan MS; Robson BE; Skerrett SJ; Mizgerd JP. 2007. Functions and regulation of NF-kappaB RelA during pneumococcal pneumonia. J Immunol 178(3):1896-903. [PubMed: 17237440]  [MGI Ref ID J:143632]

Ramakrishnan P; Kahn DA; Baltimore D. 2011. Anti-apoptotic effect of hyperglycemia can allow survival of potentially autoreactive T cells. Cell Death Differ 18(4):690-9. [PubMed: 21164518]  [MGI Ref ID J:186968]

Ramani R; Mathier M; Wang P; Gibson G; Togel S; Dawson J; Bauer A; Alber S; Watkins SC; McTiernan CF; Feldman AM. 2004. Inhibition of tumor necrosis factor receptor-1-mediated pathways has beneficial effects in a murine model of postischemic remodeling. Am J Physiol Heart Circ Physiol 287(3):H1369-77. [PubMed: 15317681]  [MGI Ref ID J:95580]

Ramos CD; Fernandes KS; Canetti C; Teixeira MM; Silva JS; Cunha FQ. 2006. Neutrophil recruitment in immunized mice depends on MIP-2 inducing the sequential release of MIP-1alpha, TNF-alpha and LTB(4). Eur J Immunol 36(8):2025-34. [PubMed: 16856209]  [MGI Ref ID J:116027]

Rebholz B; Haase I; Eckelt B; Paxian S; Flaig MJ; Ghoreschi K; Nedospasov SA; Mailhammer R; Debey-Pascher S; Schultze JL; Weindl G; Forster I; Huss R; Stratis A; Ruzicka T; Rocken M; Pfeffer K; Schmid RM; Rupec RA. 2007. Crosstalk between Keratinocytes and Adaptive Immune Cells in an IkappaBalpha Protein-Mediated Inflammatory Disease of the Skin. Immunity 27(2):296-307. [PubMed: 17692539]  [MGI Ref ID J:124343]

Redmond WL; Wei CH; Kreuwel HT; Sherman LA. 2008. The apoptotic pathway contributing to the deletion of naive CD8 T cells during the induction of peripheral tolerance to a cross-presented self-antigen. J Immunol 180(8):5275-82. [PubMed: 18390708]  [MGI Ref ID J:134242]

Reil JC; Gilles S; Zahler S; Brandl A; Drexler H; Hultner L; Matrisian LM; Welsch U; Becker BF. 2007. Insights from knock-out models concerning postischemic release of TNFalpha from isolated mouse hearts. J Mol Cell Cardiol 42(1):133-41. [PubMed: 17101148]  [MGI Ref ID J:119661]

Reiniger N; Lee MM; Coleman FT; Ray C; Golan DE; Pier GB. 2007. Resistance to Pseudomonas aeruginosa chronic lung infection requires cystic fibrosis transmembrane conductance regulator-modulated interleukin-1 (IL-1) release and signaling through the IL-1 receptor. Infect Immun 75(4):1598-608. [PubMed: 17283089]  [MGI Ref ID J:119764]

Roggia C; Gao Y; Cenci S; Weitzmann MN; Toraldo G; Isaia G; Pacifici R. 2001. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A 98(24):13960-5. [PubMed: 11717453]  [MGI Ref ID J:125464]

Romanatto T; Roman EA; Arruda AP; Denis RG; Solon C; Milanski M; Moraes JC; Bonfleur ML; Degasperi GR; Picardi PK; Hirabara S; Boschero AC; Curi R; Velloso LA. 2009. Deletion of tumor necrosis factor-alpha receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis. J Biol Chem 284(52):36213-22. [PubMed: 19858212]  [MGI Ref ID J:158315]

Rothfuchs AG; Gigliotti D; Palmblad K; Andersson U; Wigzell H; Rottenberg ME. 2001. IFN-alphabeta-dependent, IFN-gamma secretion by bone marrow-derived macrophages controls an intracellular bacterial infection. J Immunol 167(11):6453-61. [PubMed: 11714812]  [MGI Ref ID J:72825]

Rottenberg ME; Gigliotti Rothfuchs AC; Gigliotti D; Svanholm C; Bandholtz L; Wigzell H. 1999. Role of innate and adaptive immunity in the outcome of primary infection with Chlamydia pneumoniae, as analyzed in genetically modified mice. J Immunol 162(5):2829-36. [PubMed: 10072530]  [MGI Ref ID J:124536]

Roulis M; Armaka M; Manoloukos M; Apostolaki M; Kollias G. 2011. Intestinal epithelial cells as producers but not targets of chronic TNF suffice to cause murine Crohn-like pathology. Proc Natl Acad Sci U S A 108(13):5396-401. [PubMed: 21402942]  [MGI Ref ID J:171234]

Rudmann DG; Moore MW; Tepper JS; Aldrich MC; Pfeiffer JW; Hogenesch H; Tumas DB. 2000. Modulation of allergic inflammation in mice deficient in TNF receptors Am J Physiol Lung Cell Mol Physiol 279(6):L1047-57. [PubMed: 11076794]  [MGI Ref ID J:66248]

Salomon R; Hoffmann E; Webster RG. 2007. Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc Natl Acad Sci U S A 104(30):12479-81. [PubMed: 17640882]  [MGI Ref ID J:123301]

Samartino CG; Delpino MV; Pott Godoy C; Di Genaro MS; Pasquevich KA; Zwerdling A; Barrionuevo P; Mathieu P; Cassataro J; Pitossi F; Giambartolomei GH. 2010. Brucella abortus induces the secretion of proinflammatory mediators from glial cells leading to astrocyte apoptosis. Am J Pathol 176(3):1323-38. [PubMed: 20093491]  [MGI Ref ID J:158356]

Sasi SP; Song J; Park D; Enderling H; McDonald JT; Gee H; Garrity B; Shtifman A; Yan X; Walsh K; Natarajan M; Kishore R; Goukassian DA. 2014. TNF-TNFR2/p75 signaling inhibits early and increases delayed nontargeted effects in bone marrow-derived endothelial progenitor cells. J Biol Chem 289(20):14178-93. [PubMed: 24711449]  [MGI Ref ID J:214119]

Senftleben U; Li ZW; Baud V; Karin M. 2001. IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 14(3):217-30. [PubMed: 11290332]  [MGI Ref ID J:68347]

Shanmugam NK; Ellenbogen S; Trebicka E; Wang L; Mukhopadhyay S; Lacy-Hulbert A; Gallini CA; Garrett WS; Cherayil BJ. 2012. Tumor necrosis factor alpha inhibits expression of the iron regulating hormone hepcidin in murine models of innate colitis. PLoS One 7(5):e38136. [PubMed: 22675442]  [MGI Ref ID J:187286]

Shrestha B; Zhang B; Purtha WE; Klein RS; Diamond MS. 2008. Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. J Virol 82(18):8956-64. [PubMed: 18632856]  [MGI Ref ID J:153407]

Simen BB; Duman CH; Simen AA; Duman RS. 2006. TNFalpha signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol Psychiatry 59(9):775-85. [PubMed: 16458261]  [MGI Ref ID J:112823]

Singh A; Wuthrich M; Klein B; Suresh M. 2007. Indirect regulation of CD4 T-cell responses by tumor necrosis factor receptors in an acute viral infection. J Virol 81(12):6502-12. [PubMed: 17409152]  [MGI Ref ID J:153320]

Singh N; Yamamoto M; Takami M; Seki Y; Takezaki M; Mellor AL; Iwashima M. 2010. CD4(+)CD25(+) regulatory T cells resist a novel form of CD28- and Fas-dependent p53-induced T cell apoptosis. J Immunol 184(1):94-104. [PubMed: 19949106]  [MGI Ref ID J:159002]

Singh P; Bahrami L; Castillo A; Majid DS. 2013. TNF-alpha type 2 receptor mediates renal inflammatory response to chronic angiotensin II administration with high salt intake in mice. Am J Physiol Renal Physiol 304(7):F991-9. [PubMed: 23389459]  [MGI Ref ID J:195777]

Sivakumar V; Hammond KJ; Howells N; Pfeffer K; Weih F. 2003. Differential requirement for Rel/nuclear factor kappa B family members in natural killer T cell development. J Exp Med 197(12):1613-21. [PubMed: 12810684]  [MGI Ref ID J:120660]

Smookler DS; Mohammed FF; Kassiri Z; Duncan GS; Mak TW; Khokha R. 2006. Tissue inhibitor of metalloproteinase 3 regulates TNF-dependent systemic inflammation. J Immunol 176(2):721-5. [PubMed: 16393953]  [MGI Ref ID J:126607]

Souto JT; Figueiredo F; Furlanetto A; Pfeffer K; Rossi MA; Silva JS. 2000. Interferon-gamma and tumor necrosis factor-alpha determine resistance to Paracoccidioides brasiliensis infection in mice. Am J Pathol 156(5):1811-20. [PubMed: 10793093]  [MGI Ref ID J:108248]

Souza DG; Soares AC; Pinho V; Torloni H; Reis LF; Teixeira MM; Dias AA. 2002. Increased mortality and inflammation in tumor necrosis factor-stimulated gene-14 transgenic mice after ischemia and reperfusion injury. Am J Pathol 160(5):1755-65. [PubMed: 12000727]  [MGI Ref ID J:133735]

Speiser DE; Bachmann MF; Frick TW; McKall-Faienza K; Griffiths E ; Pfeffer K ; Mak TW ; Ohashi PS. 1997. TNF receptor p55 controls early acute graft-versus-host disease. J Immunol 158(11):5185-90. [PubMed: 9164935]  [MGI Ref ID J:40628]

Spiller S; Dreher S; Meng G; Grabiec A; Thomas W; Hartung T; Pfeffer K; Hochrein H; Brade H; Bessler W; Wagner H; Kirschning CJ. 2007. Cellular recognition of trimyristoylated peptide or enterobacterial lipopolysaccharide via both TLR2 and TLR4. J Biol Chem 282(18):13190-8. [PubMed: 17353199]  [MGI Ref ID J:121930]

Sporri R; Joller N; Albers U; Hilbi H; Oxenius A. 2006. MyD88-dependent IFN-gamma production by NK cells is key for control of Legionella pneumophila infection. J Immunol 176(10):6162-71. [PubMed: 16670325]  [MGI Ref ID J:131762]

Starcher B. 2000. Role for tumour necrosis factor-alpha receptors in ultraviolet-induced skin tumours. Br J Dermatol 142(6):1140-7. [PubMed: 10848737]  [MGI Ref ID J:103197]

Steinhoff U; Brinkmann V; Klemm U; Aichele P; Seiler P; Brandt U; Bland PW; Prinz I; Zugel U; Kaufmann SH. 1999. Autoimmune intestinal pathology induced by hsp60-specific CD8 T cells. Immunity 11(3):349-58. [PubMed: 10514013]  [MGI Ref ID J:110543]

Suresh M; Singh A; Fischer C. 2005. Role of tumor necrosis factor receptors in regulating CD8 T-cell responses during acute lymphocytic choriomeningitis virus infection. J Virol 79(1):202-13. [PubMed: 15596816]  [MGI Ref ID J:94814]

Tada Y; Ho A; Koarada S; Morito F; Ushiyama O; Suzuki N; Kikuchi Y; Ohta A; Mak TW; Nagasawa K. 2001. Collagen-induced arthritis in TNF receptor-1-deficient mice: TNF receptor-2 can modulate arthritis in the absence of TNF receptor-1. Clin Immunol 99(3):325-33. [PubMed: 11358427]  [MGI Ref ID J:110628]

Takaesu G; Inagaki M; Takubo K; Mishina Y; Hess PR; Dean GA; Yoshimura A; Matsumoto K; Suda T; Ninomiya-Tsuji J. 2012. TAK1 (MAP3K7) signaling regulates hematopoietic stem cells through TNF-dependent and -independent mechanisms. PLoS One 7(11):e51073. [PubMed: 23226465]  [MGI Ref ID J:194994]

Taubitz A; Schwarz M; Eltrich N; Lindenmeyer MT; Vielhauer V. 2013. Distinct contributions of TNF receptor 1 and 2 to TNF-induced glomerular inflammation in mice. PLoS One 8(7):e68167. [PubMed: 23869211]  [MGI Ref ID J:204416]

Tavener SA; Kubes P. 2006. Cellular and molecular mechanisms underlying LPS-associated myocyte impairment. Am J Physiol Heart Circ Physiol 290(2):H800-6. [PubMed: 16172157]  [MGI Ref ID J:106721]

Tezel G; Yang X; Yang J; Wax MB. 2004. Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res 996(2):202-12. [PubMed: 14697498]  [MGI Ref ID J:87873]

Tong X; Coulombe PA. 2006. Keratin 17 modulates hair follicle cycling in a TNFalpha-dependent fashion. Genes Dev 20(10):1353-64. [PubMed: 16702408]  [MGI Ref ID J:108710]

Ulvmar MH; Sur I; Memet S; Toftgard R. 2009. Timed NF-kappaB inhibition in skin reveals dual independent effects on development of HED/EDA and chronic inflammation. J Invest Dermatol 129(11):2584-93. [PubMed: 19516260]  [MGI Ref ID J:157137]

Unterholzner L; Keating SE; Baran M; Horan KA; Jensen SB; Sharma S; Sirois CM; Jin T; Latz E; Xiao TS; Fitzgerald KA; Paludan SR; Bowie AG. 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11(11):997-1004. [PubMed: 20890285]  [MGI Ref ID J:166541]

Van Hauwermeiren F; Armaka M; Karagianni N; Kranidioti K; Vandenbroucke RE; Loges S; Van Roy M; Staelens J; Puimege L; Palagani A; Berghe WV; Victoratos P; Carmeliet P; Libert C; Kollias G. 2013. Safe TNF-based antitumor therapy following p55TNFR reduction in intestinal epithelium. J Clin Invest 123(6):2590-603. [PubMed: 23676465]  [MGI Ref ID J:210950]

VanLith ML; Kohlgraf KG; Sivinski CL; Tempero RM; Hollingsworth MA. 2002. MUC1-specific anti-tumor responses: molecular requirements for CD4-mediated responses. Int Immunol 14(8):873-82. [PubMed: 12147624]  [MGI Ref ID J:113544]

Venkatesh D; Ernandez T; Rosetti F; Batal I; Cullere X; Luscinskas FW; Zhang Y; Stavrakis G; Garcia-Cardena G; Horwitz BH; Mayadas TN. 2013. Endothelial TNF receptor 2 induces IRF1 transcription factor-dependent interferon-beta autocrine signaling to promote monocyte recruitment. Immunity 38(5):1025-37. [PubMed: 23623383]  [MGI Ref ID J:203156]

Vereecke L; Sze M; Guire CM; Rogiers B; Chu Y; Schmidt-Supprian M; Pasparakis M; Beyaert R; van Loo G. 2010. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J Exp Med 207(7):1513-23. [PubMed: 20530205]  [MGI Ref ID J:163410]

Verri WA Jr; Guerrero AT; Fukada SY; Valerio DA; Cunha TM; Xu D; Ferreira SH; Liew FY; Cunha FQ. 2008. IL-33 mediates antigen-induced cutaneous and articular hypernociception in mice. Proc Natl Acad Sci U S A 105(7):2723-8. [PubMed: 18250323]  [MGI Ref ID J:131928]

Vieira LQ; Goldschmidt M; Nashleanas M; Pfeffer K; Mak T; Scott P. 1996. Mice lacking the TNF receptor p55 fail to resolve lesions caused by infection with Leishmania major, but control parasite replication. J Immunol 157(2):827-35. [PubMed: 8752935]  [MGI Ref ID J:34039]

Vielhauer V; Stavrakis G; Mayadas TN. 2005. Renal cell-expressed TNF receptor 2, not receptor 1, is essential for the development of glomerulonephritis. J Clin Invest 115(5):1199-1209. [PubMed: 15841213]  [MGI Ref ID J:98089]

Vossenkamper A; Struck D; Alvarado-Esquivel C; Went T; Takeda K; Akira S; Pfeffer K; Alber G; Lochner M; Forster I; Liesenfeld O. 2004. Both IL-12 and IL-18 contribute to small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii, but IL-12 is dominant over IL-18 in parasite control. Eur J Immunol 34(11):3197-207. [PubMed: 15368276]  [MGI Ref ID J:93844]

Wallenius V; Wallenius K; Hisaoka M; Sandstedt J; Ohlsson C; Kopf M; Jansson JO. 2001. Retarded liver growth in interleukin-6-deficient and tumor necrosis factor receptor-1-deficient mice. Endocrinology 142(7):2953-60. [PubMed: 11416016]  [MGI Ref ID J:71930]

Wang B; Kondo S; Shivji GM; Fujisawa H; Mak TW; Sauder DN. 1996. Tumour necrosis factor receptor II (p75) signalling is required for the migration of Langerhans' cells. Immunology 88(2):284-8. [PubMed: 8690462]  [MGI Ref ID J:110735]

Wang M; Tsai BM; Crisostomo PR; Meldrum DR. 2006. Tumor necrosis factor receptor 1 signaling resistance in the female myocardium during ischemia. Circulation 114(1 Suppl):I282-9. [PubMed: 16820587]  [MGI Ref ID J:122889]

Watanabe T; Nakagawa K; Ohata S; Kitagawa D; Nishitai G; Seo J; Tanemura S; Shimizu N; Kishimoto H; Wada T; Aoki J; Arai H; Iwatsubo T; Mochita M; Watanabe T; Satake M; Ito Y; Matsuyama T; Mak T; Penninger J; Nishina H; Katada T. 2002. SEK1/MKK4-Mediated SAPK/JNK Signaling Participates in Embryonic Hepatoblast Proliferation via a Pathway Different from NF-kappaB-Induced Anti-Apoptosis. Dev Biol 250(2):332. [PubMed: 12376107]  [MGI Ref ID J:79547]

Weiterer S; Schulte D; Muller S; Kohlen T; Uhle F; Weigand MA; Henrich M. 2014. Tumor necrosis factor alpha induces a serotonin dependent early increase in ciliary beat frequency and epithelial transport velocity in murine tracheae. PLoS One 9(3):e91705. [PubMed: 24626175]  [MGI Ref ID J:215006]

Wessig J; Brecht S; Claussen M; Roemer L; Goetz M; Bigini P; Schutze S; Herdegen T. 2005. Tumor necrosis factor-alpha receptor 1 (p55) knockout only transiently decreases the activation of c-Jun and does not affect the survival of axotomized dopaminergic nigral neurons. Eur J Neurosci 22(1):267-72. [PubMed: 16029216]  [MGI Ref ID J:101091]

Wheeler RD; Zehntner SP; Kelly LM; Bourbonniere L; Owens T. 2006. Elevated interferon gamma expression in the central nervous system of tumour necrosis factor receptor 1-deficient mice with experimental autoimmune encephalomyelitis. Immunology 118(4):527-38. [PubMed: 16780563]  [MGI Ref ID J:114491]

White LE; Santora RJ; Cui Y; Moore FA; Hassoun HT. 2012. TNFR1-dependent pulmonary apoptosis during ischemic acute kidney injury. Am J Physiol Lung Cell Mol Physiol 303(5):L449-59. [PubMed: 22728466]  [MGI Ref ID J:191900]

Wolf G; Yirmiya R; Goshen I; Iverfeldt K; Holmlund L; Takeda K; Shavit Y. 2003. Impairment of interleukin-1 (IL-1) signaling reduces basal pain sensitivity in mice: genetic, pharmacological and developmental aspects. Pain 104(3):471-80. [PubMed: 12927619]  [MGI Ref ID J:118738]

Xanthoulea S; Thelen M; Pottgens C; Gijbels MJ; Lutgens E; de Winther MP. 2009. Absence of p55 TNF receptor reduces atherosclerosis, but has no major effect on angiotensin II induced aneurysms in LDL receptor deficient mice. PLoS One 4(7):e6113. [PubMed: 19582157]  [MGI Ref ID J:151487]

Yang PL; Althage A; Chung J; Maier H; Wieland S; Isogawa M; Chisari FV. 2010. Immune effectors required for hepatitis B virus clearance. Proc Natl Acad Sci U S A 107(2):798-802. [PubMed: 20080755]  [MGI Ref ID J:156523]

Yi AK; Yoon H; Park JE; Kim BS; Kim HJ; Martinez-Hernandez A. 2006. CpG DNA-mediated induction of acute liver injury in D-galactosamine-sensitized mice: the mitochondrial apoptotic pathway-dependent death of hepatocytes. J Biol Chem 281(21):15001-12. [PubMed: 16554296]  [MGI Ref ID J:113473]

Yilmaz ZB; Weih DS; Sivakumar V; Weih F. 2003. RelB is required for Peyer's patch development: differential regulation of p52-RelB by lymphotoxin and TNF. EMBO J 22(1):121-30. [PubMed: 12505990]  [MGI Ref ID J:81255]

Yin M; Wheeler MD; Kono H; Bradford BU; Gallucci RM; Luster MI; Thurman RG. 1999. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 117(4):942-52. [PubMed: 10500078]  [MGI Ref ID J:59468]

Yoshimatsu M; Shibata Y; Kitaura H; Chang X; Moriishi T; Hashimoto F; Yoshida N; Yamaguchi A. 2006. Experimental model of tooth movement by orthodontic force in mice and its application to tumor necrosis factor receptor-deficient mice. J Bone Miner Metab 24(1):20-7. [PubMed: 16369894]  [MGI Ref ID J:106099]

Zganiacz A; Santosuosso M; Wang J; Yang T; Chen L; Anzulovic M; Alexander S; Gicquel B; Wan Y; Bramson J; Inman M; Xing Z. 2004. TNF-alpha is a critical negative regulator of type 1 immune activation during intracellular bacterial infection. J Clin Invest 113(3):401-13. [PubMed: 14755337]  [MGI Ref ID J:87611]

Zhang H; Hilton MJ; Anolik JH; Welle SL; Zhao C; Yao Z; Li X; Wang Z; Boyce BF; Xing L. 2014. NOTCH inhibits osteoblast formation in inflammatory arthritis via noncanonical NF-kappaB. J Clin Invest 124(7):3200-14. [PubMed: 24892805]  [MGI Ref ID J:213803]

Zhang JY; Tao S; Kimmel R; Khavari PA. 2005. CDK4 regulation by TNFR1 and JNK is required for NF-kappaB-mediated epidermal growth control. J Cell Biol 168(4):561-6. [PubMed: 15699216]  [MGI Ref ID J:129435]

Zhang L; Connelly JJ; Peppel K; Brian L; Shah SH; Nelson S; Crosslin DR; Wang T; Allen A; Kraus WE; Gregory SG; Hauser ER; Freedman NJ. 2010. Aging-related atherosclerosis is exacerbated by arterial expression of tumor necrosis factor receptor-1: evidence from mouse models and human association studies. Hum Mol Genet 19(14):2754-66. [PubMed: 20421368]  [MGI Ref ID J:161330]

Zhang P; Chan J; Dragoi AM; Gong X; Ivanov S; Li ZW; Chuang T; Tuthill C; Wan Y; Karin M; Chu WM. 2005. Activation of IKK by thymosin alpha1 requires the TRAF6 signalling pathway. EMBO Rep 6(6):531-7. [PubMed: 15905851]  [MGI Ref ID J:98834]

Zhao J; Kim KD; Yang X; Auh S; Fu YX; Tang H. 2008. Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc Natl Acad Sci U S A 105(21):7528-33. [PubMed: 18490660]  [MGI Ref ID J:136311]

Zhao YX; Lajoie G; Zhang H; Chiu B; Payne U; Inman RD. 2000. Tumor necrosis factor receptor p55-deficient mice respond to acute Yersinia enterocolitica infection with less apoptosis and more effective host resistance. Infect Immun 68(3):1243-51. [PubMed: 10678933]  [MGI Ref ID J:60576]

Zhou J; Wu R; High AA; Slaughter CA; Finkelstein D; Rehg JE; Redecke V; Hacker H. 2011. A20-binding inhibitor of NF-kappaB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein beta activation and protects from inflammatory disease. Proc Natl Acad Sci U S A 108(44):E998-1006. [PubMed: 22011580]  [MGI Ref ID J:180054]

Zhuang L; Wang B; Shinder GA; Shivji GM; Mak TW; Sauder DN. 1999. TNF receptor p55 plays a pivotal role in murine keratinocyte apoptosis induced by ultraviolet B irradiation. J Immunol 162(3):1440-7. [PubMed: 9973400]  [MGI Ref ID J:112081]

Zimmerman MA; Reznikov LL; Sorensen AC; Selzman CH. 2003. Relative contribution of the TNF-alpha receptors to murine intimal hyperplasia. Am J Physiol Regul Integr Comp Physiol 284(5):R1213-8. [PubMed: 12531783]  [MGI Ref ID J:109369]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX9

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, homozygous mice may be bred together.
Mating SystemHomozygote x Homozygote         (Female x Male)   01-MAR-06
Breeding Considerations This strain is a good breeder.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls

Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $139.90Female or MaleHomozygous for Tnfrsf1atm1Mak  
Price per Pair (US dollars $)Pair Genotype
$279.80Homozygous for Tnfrsf1atm1Mak x Homozygous for Tnfrsf1atm1Mak  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $181.90Female or MaleHomozygous for Tnfrsf1atm1Mak  
Price per Pair (US dollars $)Pair Genotype
$363.80Homozygous for Tnfrsf1atm1Mak x Homozygous for Tnfrsf1atm1Mak  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

   000664 C57BL/6J
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

See Terms of Use tab for General Terms and Conditions

The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use

General Terms and Conditions

For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration


JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty


In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.