Strain Name:

B6.129S2-Tap1tm1Arp/J

Stock Number:

002944

Order this mouse

Availability:

Repository- Live

Use Restrictions Apply, see Terms of Use
Mice homozygous mice for Tap1tm1Arp lack CD4-8+ T cells. They are defective in the stable assembly and intracellular transport of class I molecules, and show severely reduced levels of class I surface molecules. This phenotype is similar to human beings with TAP1 and TAP2 deficiencies.

Description

Strain Information

Former Names B6.129S2-Tap1tm1Arp    (Changed: 20-SEP-07 )
B6.129S2-Abcb2tm1Arp    (Changed: 15-DEC-04 )
Type Congenic; Mutant Strain; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemHomozygote x Homozygote         (Female x Male)   01-MAR-06
Specieslaboratory mouse
Background Strain C57BL/6J
Donor Strain 129S2 via D3 ES cell line
GenerationN10F32 (26-NOV-14)
Generation Definitions
 
Donating Investigator IMR Colony,   The Jackson Laboratory

Appearance
black
Related Genotype: a/a

Description
Mice homozygous mice for the Tap1tm1Arp targeted mutation are viable and fertile. They are defective in the stable assembly and intracellular transport of class I molecules. They show severely reduced levels of class I surface molecules. They lack CD4-8+ T cells. This phenotype is similar to the mouse RMA-S cell line and human beings with TAP1 and TAP2 deficiencies. This strain should be housed under pathogen free conditions similar to the Prkdcscid/Prkdcscid mouse or any other immunodeficient strain.

Development
The strain was developed in the laboratory of Dr. Philip Ashton-Rickardt, Imperial College London. A 7kb region of the wild-type locus (which made up 80% of the protein coding region) was replaced by a neomycin resistance cassette. The targeting construct was transfected into ES cells of the D3 line (derived from the strain 129/Sv) and correctly targeted ES cells were injected into C57BL/6 blastocysts. Resulting chimeric mice were bred with C57BL/6 mice and mice heterozygous for the mutation were interbred to homozygosity, then backcrossed to C57BL/6J for 10 generations before being maintained by inbreeding.

Control Information

  Control
   000664 C57BL/6J
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Tap1tm1Arp allele
002458   B6;129S2-Tap1tm1Arp/J
View Strains carrying   Tap1tm1Arp     (1 strain)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Bare Lymphocyte Syndrome, Type I   (TAP1)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Tap1tm1Arp/Tap1tm1Arp

        B6.129S2-Tap1tm1Arp/J
  • mortality/aging
  • decreased susceptibility to bacterial infection induced morbidity/mortality
    • following infection with a monocytotropic Ehrlichia bacteria from Ixodes ovatrus ticks (IOE), 70% of mice survive a low dose but all mice succumb to a high dose   (MGI Ref ID J:123934)
  • immune system phenotype
  • decreased CD8-positive, alpha-beta T cell number
    • following infection with a low dose of IEO, CD8+ T cells in the spleen are reduced (1.2%+/-0.2% of splenocytes compared to 8.0%+/-0.4% of splenocytes in wild-type mice)   (MGI Ref ID J:123934)
  • decreased susceptibility to bacterial infection
    • mice have lower burdens of Ehrlichia bacteria in the lungs and spleen following infection than do wild-type mice   (MGI Ref ID J:123934)
    • at day 12 and 14 post-infection with a lethal low dose of IEO, mice exhibit only mild liver pathology, few apoptotic foci in the liver and preserved lymphoid tissue cellularity   (MGI Ref ID J:123934)
    • decreased susceptibility to bacterial infection induced morbidity/mortality
      • following infection with a monocytotropic Ehrlichia bacteria from Ixodes ovatrus ticks (IOE), 70% of mice survive a low dose but all mice succumb to a high dose   (MGI Ref ID J:123934)
  • increased T-helper 1 cell number
    • following infection with a monocytotropic Ehrlichia bacteria from Ixodes ovatrus ticks (IOE), the number of interferon-gamma producing CD4+ Th1 cells in the spleen on day 8 and day 12 is increased relative to in infected wild-type mice   (MGI Ref ID J:123934)
  • hematopoietic system phenotype
  • decreased CD8-positive, alpha-beta T cell number
    • following infection with a low dose of IEO, CD8+ T cells in the spleen are reduced (1.2%+/-0.2% of splenocytes compared to 8.0%+/-0.4% of splenocytes in wild-type mice)   (MGI Ref ID J:123934)
  • increased T-helper 1 cell number
    • following infection with a monocytotropic Ehrlichia bacteria from Ixodes ovatrus ticks (IOE), the number of interferon-gamma producing CD4+ Th1 cells in the spleen on day 8 and day 12 is increased relative to in infected wild-type mice   (MGI Ref ID J:123934)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Tap1tm1Arp/Tap1tm1Arp

        involves: 129S2/SvPas * C57BL/6
  • immune system phenotype
  • abnormal antigen presentation
    • when ovalbumin is introduced by osmotic shock, mutant cells show impairment in presentation of OVA-derived epitopes   (MGI Ref ID J:122479)
    • abnormal dendritic cell antigen presentation
      • mutant bone marrow-derived dendritic cells (BM-DC) treated with ovalbumin-immune complexes (OVA-IC) do not present the MHC class I-restricted epitope after OVA-IC internalization   (MGI Ref ID J:112436)
    • decreased level of surface class I molecules
      • splenocytes exhibit little or no H2-Kb or -Db surface expression, however, at lower temperatures (26C) surface expression is increased   (MGI Ref ID J:3524)
    • defective intracellular transport of class I molecules
      • class I Kb and Db molecules have little heavy chain sialylation indicating an impaired delivery to trans Golgi   (MGI Ref ID J:3524)
  • abnormal lymphocyte physiology
    • class I heavy chains in spleen lymphoblasts are defective in acquisition of EndoH resistance suggesting a defect in class I maturation   (MGI Ref ID J:122479)
  • absent CD8-positive, alpha-beta T cells   (MGI Ref ID J:3524)
  • decreased double-negative T cell number
    • exhibit a 30-40 fold reduction in CD4-CD8- T cells in spleen, blood and lymph nodes, but not thymus   (MGI Ref ID J:3524)
  • hematopoietic system phenotype
  • abnormal lymphocyte physiology
    • class I heavy chains in spleen lymphoblasts are defective in acquisition of EndoH resistance suggesting a defect in class I maturation   (MGI Ref ID J:122479)
  • absent CD8-positive, alpha-beta T cells   (MGI Ref ID J:3524)
  • decreased double-negative T cell number
    • exhibit a 30-40 fold reduction in CD4-CD8- T cells in spleen, blood and lymph nodes, but not thymus   (MGI Ref ID J:3524)

Tap1tm1Arp/Tap1tm1Arp

        involves: 129S2/SvPas
  • immune system phenotype
  • abnormal antigen presentation via MHC class I
    • dendritic cells are unable to present ovalbumin via MHC class I molecules to an OVA-specific hybridoma   (MGI Ref ID J:64349)
    • decreased level of surface class I molecules
      • CD8+ T cell number in periphery, and in thymus, is reduced   (MGI Ref ID J:64349)
      • expression is only ~5% of wild-type   (MGI Ref ID J:64177)
    • defective assembly of class I molecules
      • most MHC class I molecules lack high-affinity peptides   (MGI Ref ID J:64177)
    • defective intracellular transport of class I molecules
      • MHC class I heterodimers lacking high-affinity peptides are retained in the endoplasmic reticulum and targeted for degradation in the cytosol   (MGI Ref ID J:64177)
  • abnormal dendritic cell antigen presentation
    • CD8+ T cell responses to virus and protein antigen are reduced due to inability of dendritic cells to efficiently present antigen   (MGI Ref ID J:64349)
    • dendritic cells are unable to present ovalbumin via MHC class I molecules to an OVA-specific hybridoma   (MGI Ref ID J:64349)
  • decreased CD8-positive, alpha-beta T cell number
    • mice have very few mature CD8+ T cells   (MGI Ref ID J:64177)
    • CD8+ T cell number in periphery, and in thymus, is reduced   (MGI Ref ID J:64349)
  • decreased cytotoxic T cell cytolysis
    • mutants show a strong CTL response to syngeneic antigens from wild-type   (MGI Ref ID J:64349)
  • hematopoietic system phenotype
  • decreased CD8-positive, alpha-beta T cell number
    • mice have very few mature CD8+ T cells   (MGI Ref ID J:64177)
    • CD8+ T cell number in periphery, and in thymus, is reduced   (MGI Ref ID J:64349)
  • decreased cytotoxic T cell cytolysis
    • mutants show a strong CTL response to syngeneic antigens from wild-type   (MGI Ref ID J:64349)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Tap1tm1Arp related

Immunology, Inflammation and Autoimmunity Research
Immunodeficiency
      MHC class I deficiency, hemochromatosis

Research Tools
Immunology, Inflammation and Autoimmunity Research
      MHC class I deficiency

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tap1tm1Arp
Allele Name targeted mutation 1, Philip Ashton-Rickardt
Allele Type Targeted (Null/Knockout)
Common Name(s) Abcb2tm1Arp; TAP-1-; TAP1-; TAP-;
Mutation Made ByDr. Philip Ashton-Rickardt,   Imperial College London
Strain of Origin129S2/SvPas
ES Cell Line NameD3
ES Cell Line Strain129S2/SvPas
Gene Symbol and Name Tap1, transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)
Chromosome 17
Gene Common Name(s) ABC17; ABCB2; APT1; ATP-binding cassette, sub-family B (MDR/TAP), member 2; Abcb2; Cim; D6S114E; Ham-1; Ham1; MTP1; PSF-1; PSF1; RING4; TAP; TAP1*0102N; TAP1N; Tap-1; Tap2; histocompatibility antigen modifier 1; transporter 1, ABC (ATP binding cassette);
Molecular Note A 7kb region of the wild-type locus (which made up 80% of the protein coding region) was replaced by a neomycin resistance cassette. [MGI Ref ID J:3524]

Genotyping

Genotyping Information

Genotyping Protocols

Tap1tm1Arpalternate1 MCA,

Separated MCA


Tap1tm1Arp,

MELT


Tap1tm1Arp, Standard PCR
Tap1tm1Arpalternate1, Separated PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Van Kaer L; Ashton-Rickardt PG; Ploegh HL; Tonegawa S. 1992. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+ T cells. Cell 71(7):1205-14. [PubMed: 1473153]  [MGI Ref ID J:3524]

Additional References

Dorfman JR; Stefanova I; Yasutomo K; Germain RN. 2000. CD4+ T cell survival is not directly linked to self-MHC-induced TCR signaling. Nat Immunol 1(4):329-35. [PubMed: 11017105]  [MGI Ref ID J:65116]

Kambayashi T; Kraft-Leavy JR; Dauner JG; Sullivan BA; Laur O; Jensen PE. 2004. The nonclassical MHC class I molecule Qa-1 forms unstable peptide complexes. J Immunol 172(3):1661-9. [PubMed: 14734748]  [MGI Ref ID J:87655]

Lilic M; Santori FR; Neilson EG; Frey AB; Vukmanovic S. 2002. The role of fibroblasts in thymocyte-positive selection. J Immunol 169(9):4945-50. [PubMed: 12391207]  [MGI Ref ID J:79811]

Shen L; Sigal LJ; Boes M; Rock KL. 2004. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21(2):155-65. [PubMed: 15308097]  [MGI Ref ID J:93590]

Urdahl KB; Liggitt D; Bevan MJ. 2003. CD8+ T cells accumulate in the lungs of Mycobacterium tuberculosis-infected Kb-/-Db-/- mice, but provide minimal protection. J Immunol 170(4):1987-94. [PubMed: 12574368]  [MGI Ref ID J:82297]

Tap1tm1Arp related

Alcon VL; Luther C; Balce D; Takei F. 2009. B-cell co-receptor CD72 is expressed on NK cells and inhibits IFN-gamma production but not cytotoxicity. Eur J Immunol 39(3):826-32. [PubMed: 19197938]  [MGI Ref ID J:146477]

Aldrich CJ; Ljunggren HG; Van Kaer L; Ashton-Rickardt PG; Tonegawa S; Forman J. 1994. Positive selection of self- and alloreactive CD8+ T cells in Tap-1 mutant mice. Proc Natl Acad Sci U S A 91(14):6525-8. [PubMed: 8022816]  [MGI Ref ID J:19192]

Aliahmad P; Kaye J. 2008. Development of all CD4 T lineages requires nuclear factor TOX. J Exp Med 205(1):245-56. [PubMed: 18195075]  [MGI Ref ID J:131287]

Asano J; Tada H; Onai N; Sato T; Horie Y; Fujimoto Y; Fukase K; Suzuki A; Mak TW; Ohteki T. 2010. Nucleotide oligomerization binding domain-like receptor signaling enhances dendritic cell-mediated cross-priming in vivo. J Immunol 184(2):736-45. [PubMed: 20008287]  [MGI Ref ID J:159410]

Assarsson E; Kambayashi T; Sandberg JK; Hong S; Taniguchi M; Van Kaer L; Ljunggren HG; Chambers BJ. 2000. CD8+ T cells rapidly acquire NK1.1 and NK cell-associated molecules upon stimulation in vitro and in vivo. J Immunol 165(7):3673-9. [PubMed: 11034371]  [MGI Ref ID J:118029]

Bagai R; Valujskikh A; Canaday DH; Bailey E; Lalli PN; Harding CV; Heeger PS. 2005. Mouse endothelial cells cross-present lymphocyte-derived antigen on class I MHC via a TAP1- and proteasome-dependent pathway. J Immunol 174(12):7711-5. [PubMed: 15944272]  [MGI Ref ID J:100884]

Basha G; Omilusik K; Chavez-Steenbock A; Reinicke AT; Lack N; Choi KB; Jefferies WA. 2012. A CD74-dependent MHC class I endolysosomal cross-presentation pathway. Nat Immunol 13(3):237-245. [PubMed: 22306692]  [MGI Ref ID J:181327]

Beauvillain C; Delneste Y; Scotet M; Peres A; Gascan H; Guermonprez P; Barnaba V; Jeannin P. 2007. Neutrophils efficiently cross-prime naive T cells in vivo. Blood 110(8):2965-73. [PubMed: 17562875]  [MGI Ref ID J:148908]

Beauvillain C; Donnou S; Jarry U; Scotet M; Gascan H; Delneste Y; Guermonprez P; Jeannin P; Couez D. 2008. Neonatal and adult microglia cross-present exogenous antigens. Glia 56(1):69-77. [PubMed: 17932942]  [MGI Ref ID J:156294]

Behar SM; Dascher CC; Grusby MJ; Wang CR; Brenner MB. 1999. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189(12):1973-80. [PubMed: 10377193]  [MGI Ref ID J:55867]

Belizaire R; Unanue ER. 2009. Targeting proteins to distinct subcellular compartments reveals unique requirements for MHC class I and II presentation. Proc Natl Acad Sci U S A 106(41):17463-8. [PubMed: 19805168]  [MGI Ref ID J:153672]

Belz GT; Smith CM; Kleinert L; Reading P; Brooks A; Shortman K; Carbone FR; Heath WR. 2004. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc Natl Acad Sci U S A 101(23):8670-5. [PubMed: 15163797]  [MGI Ref ID J:90862]

Blanchard N; Gonzalez F; Schaeffer M; Joncker NT; Cheng T; Shastri AJ; Robey EA; Shastri N. 2008. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum. Nat Immunol 9(8):937-44. [PubMed: 18587399]  [MGI Ref ID J:137849]

Boyman O; Ramsey C; Kim DM; Sprent J; Surh CD. 2008. IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T Cell expansion without lymphopenia. J Immunol 180(11):7265-75. [PubMed: 18490726]  [MGI Ref ID J:136336]

Brossay L; Jullien D; Cardell S; Sydora BC; Burdin N; Modlin RL ; Kronenberg M. 1997. Mouse CD1 is mainly expressed on hemopoietic-derived cells. J Immunol 159(3):1216-24. [PubMed: 9233616]  [MGI Ref ID J:41641]

Burdin N; Brossay L; Kronenberg M. 1999. Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol 29(6):2014-25. [PubMed: 10382765]  [MGI Ref ID J:115308]

Cady CT; Lahn M; Vollmer M; Tsuji M; Seo SJ; Reardon CL; O'Brien RL; Born WK. 2000. Response of murine gamma delta T cells to the synthetic polypeptide poly-Glu50Tyr50. J Immunol 165(4):1790-8. [PubMed: 10925256]  [MGI Ref ID J:120419]

Chen M; Tabaczewski P; Truscott SM; Van Kaer L; Stroynowski I. 2005. Hepatocytes express abundant surface class I MHC and efficiently use transporter associated with antigen processing, tapasin, and low molecular weight polypeptide proteasome subunit components of antigen processing and presentation pathway. J Immunol 175(2):1047-55. [PubMed: 16002705]  [MGI Ref ID J:100733]

Chiu NM; Wang B; Kerksiek KM; Kurlander R; Pamer EG; Wang CR. 1999. The selection of M3-restricted T cells is dependent on M3 expression and presentation of N-formylated peptides in the thymus. J Exp Med 190(12):1869-78. [PubMed: 10601361]  [MGI Ref ID J:131934]

Cho JH; Boyman O; Kim HO; Hahm B; Rubinstein MP; Ramsey C; Kim DM; Surh CD; Sprent J. 2007. An intense form of homeostatic proliferation of naive CD8+ cells driven by IL-2. J Exp Med 204(8):1787-801. [PubMed: 17664294]  [MGI Ref ID J:125917]

Cho JH; Kim HO; Kim KS; Yang DH; Surh CD; Sprent J. 2013. Unique features of naive CD8+ T cell activation by IL-2. J Immunol 191(11):5559-73. [PubMed: 24166977]  [MGI Ref ID J:207012]

Cho JH; Kim HO; Surh CD; Sprent J. 2010. T cell receptor-dependent regulation of lipid rafts controls naive CD8+ T cell homeostasis. Immunity 32(2):214-26. [PubMed: 20137986]  [MGI Ref ID J:157928]

Chun T; Grandea AG 3rd; Lybarger L; Forman J; Van Kaer L; Wang CR. 2001. Functional roles of TAP and tapasin in the assembly of M3-N-formylated peptide complexes. J Immunol 167(3):1507-14. [PubMed: 11466371]  [MGI Ref ID J:120485]

Cogen AL; Moore TA. 2009. Beta2-microglobulin-dependent bacterial clearance and survival during murine Klebsiella pneumoniae bacteremia. Infect Immun 77(1):360-6. [PubMed: 18981251]  [MGI Ref ID J:143765]

Corr M; Crain B. 2002. The role of FcgammaR signaling in the K/B x N serum transfer model of arthritis. J Immunol 169(11):6604-9. [PubMed: 12444173]  [MGI Ref ID J:124384]

Datta SK; Redecke V; Prilliman KR; Takabayashi K; Corr M; Tallant T; DiDonato J; Dziarski R; Akira S; Schoenberger SP; Raz E. 2003. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J Immunol 170(8):4102-10. [PubMed: 12682240]  [MGI Ref ID J:128788]

Davey GM; Starr R; Cornish AL; Burghardt JT; Alexander WS; Carbone FR; Surh CD; Heath WR. 2005. SOCS-1 regulates IL-15-driven homeostatic proliferation of antigen-naive CD8 T cells, limiting their autoimmune potential. J Exp Med 202(8):1099-108. [PubMed: 16216888]  [MGI Ref ID J:116818]

Feng HM; Walker DH. 2004. Mechanisms of immunity to Ehrlichia muris: a model of monocytotropic ehrlichiosis. Infect Immun 72(2):966-71. [PubMed: 14742542]  [MGI Ref ID J:87862]

Fourgeaud L; Davenport CM; Tyler CM; Cheng TT; Spencer MB; Boulanger LM. 2010. MHC class I modulates NMDA receptor function and AMPA receptor trafficking. Proc Natl Acad Sci U S A 107(51):22278-83. [PubMed: 21135233]  [MGI Ref ID J:167301]

Freland S; Chambers BJ; Andersson M; Van Kaer L; Ljunggren HG. 1998. Rejection of allogeneic and syngeneic but not MHC class I-deficient tumor grafts by MHC class I-deficient mice. J Immunol 160(2):572-9. [PubMed: 9551890]  [MGI Ref ID J:45189]

Fujiura Y; Kawaguchi M; Kondo Y; Obana S; Yamamoto H; Nanno M; Ishikawa H. 1996. Development of CD8 alpha alpha+ intestinal intraepithelial T cells in beta 2-microglobulin- and/or TAP1-deficient mice. J Immunol 156(8):2710-5. [PubMed: 8609387]  [MGI Ref ID J:111566]

Fujiwara D; Wei B; Presley LL; Brewer S; McPherson M; Lewinski MA; Borneman J; Braun J. 2008. Systemic Control of Plasmacytoid Dendritic Cells by CD8+ T Cells and Commensal Microbiota. J Immunol 180(9):5843-52. [PubMed: 18424703]  [MGI Ref ID J:134320]

Gapin L; Cheroutre H; Kronenberg M. 1999. Cutting edge: TCR alpha beta+ CD8 alpha alpha+ T cells are found in intestinal intraepithelial lymphocytes of mice that lack classical MHC class I molecules. J Immunol 163(8):4100-4. [PubMed: 10510343]  [MGI Ref ID J:111019]

Garbi N; Tan P; Diehl AD; Chambers BJ; Ljunggren HG; Momburg F; Hammerling GJ. 2000. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat Immunol 1(3):234-8. [PubMed: 10973281]  [MGI Ref ID J:64349]

Garbi N; Tiwari N; Momburg F; Hammerling GJ. 2003. A major role for tapasin as a stabilizer of the TAP peptide transporter and consequences for MHC class I expression. Eur J Immunol 33(1):264-73. [PubMed: 12594855]  [MGI Ref ID J:113970]

Goldszmid RS; Bafica A; Jankovic D; Feng CG; Caspar P; Winkler-Pickett R; Trinchieri G; Sher A. 2007. TAP-1 indirectly regulates CD4+ T cell priming in Toxoplasma gondii infection by controlling NK cell IFN-{gamma} production. J Exp Med 204(11):2591-602. [PubMed: 17923502]  [MGI Ref ID J:126112]

Gourapura RJ; Khan MA; Gallo RM; Shaji D; Liu J; Brutkiewicz RR. 2013. Forming a complex with MHC class I molecules interferes with mouse CD1d functional expression. PLoS One 8(8):e72867. [PubMed: 24009709]  [MGI Ref ID J:205941]

Grandea AG 3rd; Golovina TN; Hamilton SE; Sriram V; Spies T; Brutkiewicz RR; Harty JT; Eisenlohr LC; Van Kaer L. 2000. Impaired assembly yet normal trafficking of MHC class I molecules in Tapasin mutant mice Immunity 13(2):213-22. [PubMed: 10981964]  [MGI Ref ID J:64177]

Hammer GE; Gonzalez F; Champsaur M; Cado D; Shastri N. 2006. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat Immunol 7(1):103-12. [PubMed: 16299505]  [MGI Ref ID J:112389]

Hammer GE; Gonzalez F; James E; Nolla H; Shastri N. 2007. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat Immunol 8(1):101-8. [PubMed: 17128277]  [MGI Ref ID J:116606]

Hangartner L; Zellweger RM; Giobbi M; Weber J; Eschli B; McCoy KD; Harris N; Recher M; Zinkernagel RM; Hengartner H. 2006. Nonneutralizing antibodies binding to the surface glycoprotein of lymphocytic choriomeningitis virus reduce early virus spread. J Exp Med 203(8):2033-42. [PubMed: 16880253]  [MGI Ref ID J:124394]

Hayakawa Y; Screpanti V; Yagita H; Grandien A; Ljunggren HG; Smyth MJ; Chambers BJ. 2004. NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy. J Immunol 172(1):123-9. [PubMed: 14688317]  [MGI Ref ID J:87568]

Hayakawa Y; Watt SV; Takeda K; Smyth MJ. 2008. Distinct receptor repertoire formation in mouse NK cell subsets regulated by MHC class I expression. J Leukoc Biol 83(1):106-11. [PubMed: 17940219]  [MGI Ref ID J:130091]

Hemmi H; Zaidi N; Wang B; Matos I; Fiorese C; Lubkin A; Zbytnuik L; Suda K; Zhang K; Noda M; Kaisho T; Steinman RM; Idoyaga J. 2012. Treml4, an Ig superfamily member, mediates presentation of several antigens to T cells in vivo, including protective immunity to HER2 protein. J Immunol 188(3):1147-55. [PubMed: 22210914]  [MGI Ref ID J:180744]

Ho LH; Uehara T; Chen CC; Kubagawa H; Cooper MD. 1999. Constitutive tyrosine phosphorylation of the inhibitory paired Ig-like receptor PIR-B. Proc Natl Acad Sci U S A 96(26):15086-90. [PubMed: 10611342]  [MGI Ref ID J:119839]

Hollenberg SM; Broussard M; Osman J; Parrillo JE. 2000. Increased microvascular reactivity and improved mortality in septic mice lacking inducible nitric oxide synthase. Circ Res 86(7):774-8. [PubMed: 10764411]  [MGI Ref ID J:110288]

Hussell T; Openshaw PJ. 2000. IL-12-activated NK cells reduce lung eosinophilia to the attachment protein of respiratory syncytial virus but do not enhance the severity of illness in CD8 T cell-immunodeficient conditions. J Immunol 165(12):7109-15. [PubMed: 11120841]  [MGI Ref ID J:118396]

Ichiyanagi T; Imai T; Kajiwara C; Mizukami S; Nakai A; Nakayama T; Udono H. 2010. Essential role of endogenous heat shock protein 90 of dendritic cells in antigen cross-presentation. J Immunol 185(5):2693-700. [PubMed: 20668218]  [MGI Ref ID J:163264]

Imai T; Kato Y; Kajiwara C; Mizukami S; Ishige I; Ichiyanagi T; Hikida M; Wang JY; Udono H. 2011. Heat shock protein 90 (HSP90) contributes to cytosolic translocation of extracellular antigen for cross-presentation by dendritic cells. Proc Natl Acad Sci U S A 108(39):16363-8. [PubMed: 21930907]  [MGI Ref ID J:177143]

Ismail N; Crossley EC; Stevenson HL; Walker DH. 2007. Relative importance of T-cell subsets in monocytotropic ehrlichiosis: a novel effector mechanism involved in ehrlichia-induced immunopathology in murine ehrlichiosis. Infect Immun 75(9):4608-20. [PubMed: 17562770]  [MGI Ref ID J:123934]

Jabbari A; Harty JT. 2005. Cutting edge: differential self-peptide/MHC requirement for maintaining CD8 T cell function versus homeostatic proliferation. J Immunol 175(8):4829-33. [PubMed: 16210583]  [MGI Ref ID J:119057]

Johnsen AK; France J; Nagy N; Askew D; Abdul-Karim FW; Gerson SL; Sy MS; Harding CV. 2001. Systemic deficits in transporter for antigen presentation (TAP)-1 or proteasome subunit LMP2 have little or no effect on tumor incidence. Int J Cancer 91(3):366-72. [PubMed: 11169961]  [MGI Ref ID J:67509]

Jones-Carson J; McCollister BD; Clambey ET; Vazquez-Torres A. 2007. Systemic CD8 T-cell memory response to a Salmonella pathogenicity island 2 effector is restricted to Salmonella enterica encountered in the gastrointestinal mucosa. Infect Immun 75(6):2708-16. [PubMed: 17403871]  [MGI Ref ID J:121925]

Joyce S; Negishi I; Boesteanu A; DeSilva AD; Sharma P; Chorney MJ; Loh DY; Van Kaer L. 1996. Expansion of natural (NK1+) T cells that express alpha beta T cell receptors in transporters associated with antigen presentation-1 null and thymus leukemia antigen positive mice. J Exp Med 184(4):1579-84. [PubMed: 8879233]  [MGI Ref ID J:110770]

Kanaseki T; Lind KC; Escobar H; Nagarajan N; Reyes-Vargas E; Rudd B; Rockwood AL; Van Kaer L; Sato N; Delgado JC; Shastri N. 2013. ERAAP and tapasin independently edit the amino and carboxyl termini of MHC class I peptides. J Immunol 191(4):1547-55. [PubMed: 23863903]  [MGI Ref ID J:205830]

Kenty G; Martin WD; Van Kaer L; Bikoff EK. 1998. MHC class II expression in double mutant mice lacking invariant chain and DM functions. J Immunol 160(2):606-14. [PubMed: 9551894]  [MGI Ref ID J:45191]

Khan S; Bijker MS; Weterings JJ; Tanke HJ; Adema GJ; van Hall T; Drijfhout JW; Melief CJ; Overkleeft HS; van der Marel GA; Filippov DV; van der Burg SH; Ossendorp F. 2007. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. J Biol Chem 282(29):21145-59. [PubMed: 17462991]  [MGI Ref ID J:124553]

Khare SD; Lee S; Bull MJ; Hanson J; Luthra HS; David CS. 2001. Spontaneous inflammatory disease in HLA-B27 transgenic mice does not require transporter of antigenic peptides. Clin Immunol 98(3):364-9. [PubMed: 11237560]  [MGI Ref ID J:115586]

Kincaid EZ; Che JW; York I; Escobar H; Reyes-Vargas E; Delgado JC; Welsh RM; Karow ML; Murphy AJ; Valenzuela DM; Yancopoulos GD; Rock KL. 2012. Mice completely lacking immunoproteasomes show major changes in antigen presentation. Nat Immunol 13(2):129-35. [PubMed: 22197977]  [MGI Ref ID J:180765]

Kingsbury DJ; Mear JP; Witte DP; Taurog JD; Roopenian DC; Colbert RA. 2000. Development of spontaneous arthritis in beta2-microglobulin-deficient mice without expression of HLA-B27: association with deficiency of endogenous major histocompatibility complex class I expression. Arthritis Rheum 43(10):2290-6. [PubMed: 11037889]  [MGI Ref ID J:133830]

Kirby AC; Yrlid U; Svensson M; Wick MJ. 2001. Differential involvement of dendritic cell subsets during acute salmonella infection. J Immunol 166(11):6802-11. [PubMed: 11359839]  [MGI Ref ID J:69480]

Klug F; Prakash H; Huber PE; Seibel T; Bender N; Halama N; Pfirschke C; Voss RH; Timke C; Umansky L; Klapproth K; Schakel K; Garbi N; Jager D; Weitz J; Schmitz-Winnenthal H; Hammerling GJ; Beckhove P. 2013. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24(5):589-602. [PubMed: 24209604]  [MGI Ref ID J:206743]

Kobrynski LJ; Sousa AO; Nahmias AJ; Lee FK. 2005. Cutting edge: antibody production to pneumococcal polysaccharides requires CD1 molecules and CD8+ T cells. J Immunol 174(4):1787-90. [PubMed: 15699104]  [MGI Ref ID J:96541]

Kohyama M; Nanno M; Kawaguchi-Miyashita M; Shimada S; Watanabe M; Hibi T; Kaminogawa S; Ishikawa H. 1999. Cytolytic and IFN-gamma-producing activities of gamma delta T cells in the mouse intestinal epithelium are T cell receptor-beta-chain dependent. Proc Natl Acad Sci U S A 96(13):7451-5. [PubMed: 10377435]  [MGI Ref ID J:56057]

Kuchtey J; Chefalo PJ; Gray RC; Ramachandra L; Harding CV. 2005. Enhancement of dendritic cell antigen cross-presentation by CpG DNA involves type I IFN and stabilization of class I MHC mRNA. J Immunol 175(4):2244-51. [PubMed: 16081792]  [MGI Ref ID J:107511]

Leng Q; Ge Q; Nguyen T; Eisen HN; Chen J. 2007. Stage-dependent reactivity of thymocytes to self-peptide--MHC complexes. Proc Natl Acad Sci U S A 104(12):5038-43. [PubMed: 17360333]  [MGI Ref ID J:120081]

Li L; Kim S; Herndon JM; Goedegebuure P; Belt BA; Satpathy AT; Fleming TP; Hansen TH; Murphy KM; Gillanders WE. 2012. Cross-dressed CD8alpha+/CD103+ dendritic cells prime CD8+ T cells following vaccination. Proc Natl Acad Sci U S A 109(31):12716-21. [PubMed: 22802630]  [MGI Ref ID J:188515]

Li L; Sullivan BA; Aldrich CJ; Soloski MJ; Forman J; Grandea AG 3rd; Jensen PE; Van Kaer L. 2004. Differential requirement for tapasin in the presentation of leader- and insulin-derived peptide antigens to Qa-1b-restricted CTLs. J Immunol 173(6):3707-15. [PubMed: 15356116]  [MGI Ref ID J:92768]

Li S; Holdsworth SR; Tipping PG. 2000. MHC class I pathway is not required for the development of crescentic glomerulonephritis in mice. Clin Exp Immunol 122(3):453-8. [PubMed: 11122254]  [MGI Ref ID J:110286]

Lilic M; Santori FR; Neilson EG; Frey AB; Vukmanovic S. 2002. The role of fibroblasts in thymocyte-positive selection. J Immunol 169(9):4945-50. [PubMed: 12391207]  [MGI Ref ID J:79811]

Lind EF; Ahonen CL; Wasiuk A; Kosaka Y; Becher B; Bennett KA; Noelle RJ. 2008. Dendritic cells require the NF-kappaB2 pathway for cross-presentation of soluble antigens. J Immunol 181(1):354-63. [PubMed: 18566401]  [MGI Ref ID J:137405]

Ljunggren HG; Van Kaer L; Ashton-Rickardt PG; Tonegawa S; Ploegh HL. 1995. Differential reactivity of residual CD8+ T lymphocytes in TAP1 and beta 2-microglobulin mutant mice. Eur J Immunol 25(1):174-8. [PubMed: 7843229]  [MGI Ref ID J:22500]

Ljunggren HG; Van Kaer L; Ploegh HL; Tonegawa S. 1994. Altered natural killer cell repertoire in Tap-1 mutant mice. Proc Natl Acad Sci U S A 91(14):6520-4. [PubMed: 8022815]  [MGI Ref ID J:19191]

Ljunggren HG; Van Kaer L; Sabatine MS; Auchincloss H Jr; Tonegawa S; Ploegh HL. 1995. MHC class I expression and CD8+ T cell development in TAP1/beta 2-microglobulin double mutant mice. Int Immunol 7(6):975-84. [PubMed: 7577806]  [MGI Ref ID J:26520]

Lucas PJ; Kim SJ; Mackall CL; Telford WG; Chu YW; Hakim FT; Gress RE. 2006. Dysregulation of IL-15-mediated T-cell homeostasis in TGF-beta dominant-negative receptor transgenic mice. Blood 108(8):2789-95. [PubMed: 16788095]  [MGI Ref ID J:139469]

Markiewicz MA; Girao C; Opferman JT; Sun J; Hu Q; Agulnik AA; Bishop CE; Thompson CB; Ashton-Rickardt PG. 1998. Long-term T cell memory requires the surface expression of self-peptide/major histocompatibility complex molecules. Proc Natl Acad Sci U S A 95(6):3065-70. [PubMed: 9501216]  [MGI Ref ID J:51117]

Marrero I; Benvenutti LA; Kalil J; Coelho V. 2005. Autoreactivity to self H-2Kb peptides in TAP1 mice. Intravenous administration of H-2Kb class I-derived peptides induces long-term survival of grafts from C57BL/6 donors. Immunology 115(4):484-94. [PubMed: 16011517]  [MGI Ref ID J:99754]

Marrero I; Huffman D; Kalil J; Sercarz EE; Coelho V. 2006. TAP1-/- mice present oligoclonal BV-BJ expansions following the rejection of grafts bearing self antigens. Immunology 118(4):461-71. [PubMed: 16895555]  [MGI Ref ID J:114445]

Martien van Santen H; Woolsey A; Rickardt PG; Van Kaer L; Baas EJ; Berns A; Tonegawa S; Ploegh HL. 1995. Increase in positive selection of CD8+ T cells in TAP1-mutant mice by human beta 2-microglobulin transgene. J Exp Med 181(2):787-92. [PubMed: 7836931]  [MGI Ref ID J:110779]

Martin E; Treiner E; Duban L; Guerri L; Laude H; Toly C; Premel V; Devys A; Moura IC; Tilloy F; Cherif S; Vera G; Latour S; Soudais C; Lantz O. 2009. Stepwise development of MAIT cells in mouse and human. PLoS Biol 7(3):e54. [PubMed: 19278296]  [MGI Ref ID J:149748]

McPhee CG; Sproule TJ; Shin DM; Bubier JA; Schott WH; Steinbuck MP; Avenesyan L; Morse HC 3rd; Roopenian DC. 2011. MHC class I family proteins retard systemic lupus erythematosus autoimmunity and B cell lymphomagenesis. J Immunol 187(9):4695-704. [PubMed: 21964024]  [MGI Ref ID J:179430]

McPherson M; Wei B; Turovskaya O; Fujiwara D; Brewer S; Braun J. 2008. Colitis immunoregulation by CD8+ T cell requires T cell cytotoxicity and B cell peptide antigen presentation. Am J Physiol Gastrointest Liver Physiol 295(3):G485-92. [PubMed: 18617557]  [MGI Ref ID J:141865]

Miyakoda M; Kimura D; Yuda M; Chinzei Y; Shibata Y; Honma K; Yui K. 2008. Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection. J Immunol 181(2):1420-8. [PubMed: 18606696]  [MGI Ref ID J:137658]

Monteiro JP; Benjamin A; Costa ES; Barcinski MA; Bonomo A. 2005. Normal hematopoiesis is maintained by activated bone marrow CD4+ T cells. Blood 105(4):1484-91. [PubMed: 15514013]  [MGI Ref ID J:96600]

Murshid A; Gong J; Calderwood SK. 2010. Heat shock protein 90 mediates efficient antigen cross presentation through the scavenger receptor expressed by endothelial cells-I. J Immunol 185(5):2903-17. [PubMed: 20686127]  [MGI Ref ID J:163244]

Murthy AK; Li W; Chaganty BK; Kamalakaran S; Guentzel MN; Seshu J; Forsthuber TG; Zhong G; Arulanandam BP. 2011. Tumor Necrosis Factor Alpha Production from CD8+ T Cells Mediates Oviduct Pathological Sequelae following Primary Genital Chlamydia muridarum Infection. Infect Immun 79(7):2928-35. [PubMed: 21536799]  [MGI Ref ID J:173482]

Nagarajan NA; Gonzalez F; Shastri N. 2012. Nonclassical MHC class Ib-restricted cytotoxic T cells monitor antigen processing in the endoplasmic reticulum. Nat Immunol 13(6):579-86. [PubMed: 22522492]  [MGI Ref ID J:186455]

Oliveira AL; Thams S; Lidman O; Piehl F; Hokfelt T; Karre K; Linda H; Cullheim S. 2004. A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proc Natl Acad Sci U S A 101(51):17843-8. [PubMed: 15591351]  [MGI Ref ID J:95276]

Oliveira CC; Querido B; Sluijter M; Derbinski J; van der Burg SH; van Hall T. 2011. Peptide transporter TAP mediates between competing antigen sources generating distinct surface MHC class I peptide repertoires. Eur J Immunol 41(11):3114-24. [PubMed: 21898382]  [MGI Ref ID J:179513]

Ontiveros F; Wilson EB; Livingstone AM. 2011. Type I interferon supports primary CD8+ T-cell responses to peptide-pulsed dendritic cells in the absence of CD4+ T-cell help. Immunology 132(4):549-58. [PubMed: 21255009]  [MGI Ref ID J:172101]

Paliard X; Doe B; Selby MJ; Hartog K; Lee AY; Burke RL; Walker CM. 2001. Induction of herpes simplex virus gB-specific cytotoxic T lymphocytes in TAP1-deficient mice by genetic immunization but not HSV infection. Virology 282(1):56-64. [PubMed: 11259190]  [MGI Ref ID J:68353]

Regnault A; Lankar D; Lacabanne V; Rodriguez A; Thery C; Rescigno M; Saito T; Verbeek S; Bonnerot C; Ricciardi-Castagnoli P; Amigorena S. 1999. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189(2):371-80. [PubMed: 9892619]  [MGI Ref ID J:112436]

Reinicke AT; Omilusik KD; Basha G; Jefferies WA. 2009. Dendritic cell cross-priming is essential for immune responses to Listeria monocytogenes. PLoS One 4(10):e7210. [PubMed: 19806187]  [MGI Ref ID J:154109]

Rottenberg ME; Gigliotti Rothfuchs AC; Gigliotti D; Svanholm C; Bandholtz L; Wigzell H. 1999. Role of innate and adaptive immunity in the outcome of primary infection with Chlamydia pneumoniae, as analyzed in genetically modified mice. J Immunol 162(5):2829-36. [PubMed: 10072530]  [MGI Ref ID J:124536]

Ruedl C; Storni T; Lechner F; Bachi T; Bachmann MF. 2002. Cross-presentation of virus-like particles by skin-derived CD8(-) dendritic cells: a dispensable role for TAP. Eur J Immunol 32(3):818-25. [PubMed: 11870626]  [MGI Ref ID J:115370]

Salcedo M; Andersson M; Lemieux S; Van Kaer L; Chambers BJ; Ljunggren HG. 1998. Fine tuning of natural killer cell specificity and maintenance of self tolerance in MHC class I-deficient mice. Eur J Immunol 28(4):1315-21. [PubMed: 9565371]  [MGI Ref ID J:114261]

Salcedo M; Diehl AD; Olsson-Alheim MY; Sundback J; Van Kaer L ; Karre K ; Ljunggren HG. 1997. Altered expression of Ly49 inhibitory receptors on natural killer cells from MHC class I-deficient mice. J Immunol 158(7):3174-80. [PubMed: 9120271]  [MGI Ref ID J:39441]

Sandberg JK; Chambers BJ; Van Kaer L; Karre K; Ljunggren HG. 1996. TAP1-deficient mice select a CD8+ T cell repertoire that displays both diversity and peptide specificity. Eur J Immunol 26(2):288-93. [PubMed: 8617293]  [MGI Ref ID J:31297]

Santori FR; Arsov I; Vukmanovic S. 2001. Modulation of CD8+ T cell response to antigen by the levels of self MHC class I. J Immunol 166(9):5416-21. [PubMed: 11313378]  [MGI Ref ID J:124752]

Santori FR; Popmihajlov Z; Badovinac VP; Smith C; Radoja S; Harty JT; Vukmanovic S. 2007. TCR beta chain that forms peptide-independent alloreactive TCR transfers reduced reactivity with irrelevant peptide/MHC complex. J Immunol 178(10):6109-14. [PubMed: 17475836]  [MGI Ref ID J:146127]

Seach N; Guerri L; Le Bourhis L; Mburu Y; Cui Y; Bessoles S; Soudais C; Lantz O. 2013. Double-positive thymocytes select mucosal-associated invariant T cells. J Immunol 191(12):6002-9. [PubMed: 24244014]  [MGI Ref ID J:207116]

Seaman MS; Perarnau B; Lindahl KF; Lemonnier FA; Forman J. 1999. Response to Listeria monocytogenes in mice lacking MHC class Ia molecules. J Immunol 162(9):5429-36. [PubMed: 10228021]  [MGI Ref ID J:120457]

Seaman MS; Wang CR; Forman J. 2000. MHC class Ib-restricted CTL provide protection against primary and secondary Listeria monocytogenes infection. J Immunol 165(9):5192-201. [PubMed: 11046052]  [MGI Ref ID J:118922]

Sehrawat S; Koenig PA; Kirak O; Schlieker C; Fankhauser M; Ploegh HL. 2013. A catalytically inactive mutant of the deubiquitylase YOD-1 enhances antigen cross-presentation. Blood 121(7):1145-56. [PubMed: 23243279]  [MGI Ref ID J:194608]

Shen L; Sigal LJ; Boes M; Rock KL. 2004. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21(2):155-65. [PubMed: 15308097]  [MGI Ref ID J:93590]

Shinohara ML; Lu L; Bu J; Werneck MB; Kobayashi KS; Glimcher LH; Cantor H. 2006. Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol 7(5):498-506. [PubMed: 16604075]  [MGI Ref ID J:112559]

Singer DS; Zinger H; Kohn LD; Mozes E. 1999. Differing MHC class I requirements for induction and propagation of experimental systemic lupus erythematosus. Eur J Immunol 29(7):2259-68. [PubMed: 10427989]  [MGI Ref ID J:115300]

Skelsey ME; Mayhew E; Niederkorn JY. 2003. Splenic B cells act as antigen presenting cells for the induction of anterior chamber-associated immune deviation. Invest Ophthalmol Vis Sci 44(12):5242-51. [PubMed: 14638723]  [MGI Ref ID J:107362]

Smith AL; Hayday AC. 2000. Genetic dissection of primary and secondary responses to a widespread natural pathogen of the gut, Eimeria vermiformis. Infect Immun 68(11):6273-80. [PubMed: 11035735]  [MGI Ref ID J:133107]

Smyth LA; Williams O; Huby RD; Norton T; Acuto O; Ley SC; Kioussis D. 1998. Altered peptide ligands induce quantitatively but not qualitatively different intracellular signals in primary thymocytes. Proc Natl Acad Sci U S A 95(14):8193-8. [PubMed: 9653163]  [MGI Ref ID J:125216]

Svensson M; Wick MJ. 1999. Classical MHC class I peptide presentation of a bacterial fusion protein by bone marrow-derived dendritic cells. Eur J Immunol 29(1):180-8. [PubMed: 9933099]  [MGI Ref ID J:115229]

Swier K; Brown DR; Bird JJ; Martin WD; Van Kaer L; Reiner SL. 1998. A critical, invariant chain-independent role for H2-M in antigen presentation. J Immunol 160(2):540-4. [PubMed: 9551884]  [MGI Ref ID J:45185]

TeKippe M; Harrison DE; Chen J. 2003. Expansion of hematopoietic stem cell phenotype and activity in Trp53-null mice. Exp Hematol 31(6):521-7. [PubMed: 12829028]  [MGI Ref ID J:115677]

Terabe M; Tagaya Y; Zhu Q; Granger L; Roederer M; Waldmann TA; Berzofsky JA. 2008. IL-15 expands unconventional CD8alphaalphaNK1.1+ T cells but not Valpha14Jalpha18+ NKT cells. J Immunol 180(11):7276-86. [PubMed: 18490727]  [MGI Ref ID J:136310]

Tewari MK; Sinnathamby G; Rajagopal D; Eisenlohr LC. 2005. A cytosolic pathway for MHC class II-restricted antigen processing that is proteasome and TAP dependent. Nat Immunol 6(3):287-94. [PubMed: 15711549]  [MGI Ref ID J:96370]

Thams S; Brodin P; Plantman S; Saxelin R; Karre K; Cullheim S. 2009. Classical major histocompatibility complex class I molecules in motoneurons: new actors at the neuromuscular junction. J Neurosci 29(43):13503-15. [PubMed: 19864563]  [MGI Ref ID J:158310]

Tilloy F; Treiner E; Park SH; Garcia C; Lemonnier F; de la Salle H; Bendelac A; Bonneville M; Lantz O. 1999. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med 189(12):1907-21. [PubMed: 10377186]  [MGI Ref ID J:55844]

Treiner E; Duban L; Bahram S; Radosavljevic M; Wanner V; Tilloy F; Affaticati P; Gilfillan S; Lantz O. 2003. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422(6928):164-9. [PubMed: 12634786]  [MGI Ref ID J:113083]

Tsukada C; Miyaji C; Kawamura H; Miyakawa R; Yokoyama H; Ishimoto Y; Miyazawa S; Watanabe H; Abo T. 2003. Characterization of extrathymic CD8 alpha beta T cells in the liver and intestine in TAP-1 deficient mice. Immunology 109(3):343-50. [PubMed: 12807479]  [MGI Ref ID J:84080]

Uldrich AP; Crowe NY; Kyparissoudis K; Pellicci DG; Zhan Y; Lew AM; Bouillet P; Strasser A; Smyth MJ; Godfrey DI. 2005. NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol 175(5):3092-101. [PubMed: 16116198]  [MGI Ref ID J:113331]

Urdahl KB; Liggitt D; Bevan MJ. 2003. CD8+ T cells accumulate in the lungs of Mycobacterium tuberculosis-infected Kb-/-Db-/- mice, but provide minimal protection. J Immunol 170(4):1987-94. [PubMed: 12574368]  [MGI Ref ID J:82297]

Vitry MA; De Trez C; Goriely S; Dumoutier L; Akira S; Ryffel B; Carlier Y; Letesson JJ; Muraille E. 2012. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun 80(12):4271-80. [PubMed: 23006848]  [MGI Ref ID J:190620]

Wang B; Chun T; Wang CR. 2000. Comparative contribution of CD1 on the development of CD4+ and CD8+ T cell compartments. J Immunol 164(2):739-45. [PubMed: 10623818]  [MGI Ref ID J:76977]

Wang H; Yu X; Guo C; Zuo D; Fisher PB; Subjeck JR; Wang XY. 2013. Enhanced endoplasmic reticulum entry of tumor antigen is crucial for cross-presentation induced by dendritic cell-targeted vaccination. J Immunol 191(12):6010-21. [PubMed: 24218449]  [MGI Ref ID J:207139]

Wang J; Cheng L; Wondimu Z; Swain M; Santamaria P; Yang Y. 2009. Cutting edge: CD28 engagement releases antigen-activated invariant NKT cells from the inhibitory effects of PD-1. J Immunol 182(11):6644-7. [PubMed: 19454657]  [MGI Ref ID J:148876]

Watarai H; Rybouchkin A; Hongo N; Nagata Y; Sakata S; Sekine E; Dashtsoodol N; Tashiro T; Fujii S; Shimizu K; Mori K; Masuda K; Kawamoto H; Koseki H; Taniguchi M. 2010. Generation of functional NKT cells in vitro from embryonic stem cells bearing rearranged invariant Valpha14-Jalpha18 TCRalpha gene. Blood 115(2):230-7. [PubMed: 19897575]  [MGI Ref ID J:155981]

Watson AM; Mylin LM; Thompson MM; Schell TD. 2012. Modification of a Tumor Antigen Determinant To Improve Peptide/MHC Stability Is Associated with Increased Immunogenicity and Cross-Priming a Larger Fraction of CD8+ T Cells. J Immunol 189(12):5549-60. [PubMed: 23175697]  [MGI Ref ID J:190846]

Weber SE; Tian H; Pirofski LA. 2011. CD8+ cells enhance resistance to pulmonary serotype 3 Streptococcus pneumoniae infection in mice. J Immunol 186(1):432-42. [PubMed: 21135172]  [MGI Ref ID J:168003]

Wei CH; Sherman LA. 2007. N-terminal trimer extension of nominal CD8 T cell epitopes is sufficient to promote cross-presentation to cognate CD8 T cells in vivo. J Immunol 179(12):8280-6. [PubMed: 18056372]  [MGI Ref ID J:155198]

Yan J; Parekh VV; Mendez-Fernandez Y; Olivares-Villagomez D; Dragovic S; Hill T; Roopenian DC; Joyce S; Van Kaer L. 2006. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J Exp Med 203(3):647-59. [PubMed: 16505142]  [MGI Ref ID J:122479]

van Faassen H; Dudani R; Krishnan L; Sad S. 2004. Prolonged antigen presentation, APC-, and CD8+ T cell turnover during mycobacterial infection: comparison with Listeria monocytogenes. J Immunol 172(6):3491-500. [PubMed: 15004149]  [MGI Ref ID J:108254]

van Hall T; Wolpert EZ; van Veelen P; Laban S; van der Veer M; Roseboom M; Bres S; Grufman P; de Ru A; Meiring H; de Jong A; Franken K; Teixeira A; Valentijn R; Drijfhout JW; Koning F; Camps M; Ossendorp F; Karre K; Ljunggren HG; Melief CJ; Offringa R. 2006. Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nat Med 12(4):417-24. [PubMed: 16550190]  [MGI Ref ID J:129530]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           FGB27

Colony Maintenance

Breeding & HusbandryThe Tap1 deficient strain is maintained by homozygous sibling matings. This strain should be housed under pathogen free conditions similar to the Prkdcscid/Prkdcscid mouse or any other immunodeficient strain. The expected coat color from breeding is Black.
Mating SystemHomozygote x Homozygote         (Female x Male)   01-MAR-06
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $199.90Female or MaleHomozygous for Tap1tm1Arp  
Price per Pair (US dollars $)Pair Genotype
$399.80Homozygous for Tap1tm1Arp x Homozygous for Tap1tm1Arp  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $259.90Female or MaleHomozygous for Tap1tm1Arp  
Price per Pair (US dollars $)Pair Genotype
$519.80Homozygous for Tap1tm1Arp x Homozygous for Tap1tm1Arp  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

  Control
   000664 C57BL/6J
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)