Strain Name:


Stock Number:


Order this mouse


Repository- Live

Use Restrictions Apply, see Terms of Use
Homozygous Baxtm1Sjk mice display aberrant apoptosis with hyperplasia displayed in various tissues, including thymocytes, B cells, and cells of the reproductive organs.


Strain Information

Type Congenic; Mutant Strain; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemHeterozygote x Heterozygote         (Female x Male)   01-MAR-06
Specieslaboratory mouse
Background Strain C57BL/6
Donor Strain 129X1 RW-4 ES cell line
GenerationN21+F9N1F3 (12-NOV-08)
Generation Definitions
Donating InvestigatorDr. Stanley J. Korsmeyer,   Dana-Farber Cancer Institute

Mice homozygous for the Baxtm1Sjk mutation are viable but display lineage-specific aberrations in cell death. Thymocytes and B cells from homozygous mutant mice display hyperplasia. Ovaries contain unusual atretic follicles with excess granulosa cells while Bax-deficient males are infertile. There is an accumulation of atypical premeiotic germ cells and no mature haploid sperm found in seminiferous tubules. Multinucleated giant cells and dysplastic cells accompany massive cell death.

Used in conjunction with strain B6.129-Bak1tm1Thsn/J (see Stock No. 004183), to generate the double knock-out Bak/Bax, a model for demonstrating severe defects in the regulation of apoptosis during development and tissue homeostasis.

Coat color of Baxtm1Sjk mice
The coat color loci tyrosinase (Tyr) and pink-eyed dilution (p) are linked to the Bcl2-associated X protein (Bax) gene. According to backcross data from the Mouse Genome Database, Bax is at 23.00 cM, p is at 28.00 cM, and Tyr is at 44.00 cM on chromosome 7. The targeted disruption of the Bax gene was performed in a 129-derived RW-4 ES cell line (Aw/Aw p Tyrc-ch/p Tyrc) and has been backcrossed 8 generations to C57BL/6 (a/a +p +Tyr-c/+p +Tyr-c; nonagouti black). Statistically, C57BL/6J-Baxtm1Sjk mice (Stock No. 002994) should be 99.6% C57BL/6-like at all loci not linked to the Bax gene. At the present time The Jackson Laboratory's colony of C57BL/6J-Baxtm1Sjkmice are stillsegregating at the Tyr locus and retain the p allele from the 129 ES cell line. Thus, matings of Bax heterozygous (+/-) mice may produce progeny of varying coat color including black, white, chinchilla, light chinchilla, or grey, with all but the black mice having pink eyes. Because the potential for crossover between the p and Bax loci is small (roughly 5%), progeny that are grey in color and have pink eyes most likely are homozygous for the targeted Bax gene (-/-). However, we strongly recommend that you confirm the genotype of the mice prior to using them for research purposes. The Jackson Laboratory is continuing to backcross the Bax targeted mutation to C57BL/6J to try to eliminate the recessive 129 alleles of Tyr and p. However, in an effort to make these mice available to the research community as soon as possible we will begin distribution of the current colony. To summarize, the C57BL/6J-Baxtm1Sjkmice (Stock No. 002994) have been backcrossed 8 generations to the C57BL/6J inbred strain. However, because of coat color genes linked to the Bax mutation breeder pairs supplied by The Jackson Laboratory may produce progeny of varying coat color.

A Bax targeting vector substituted PGK-Neo for exons 2 through 5, deleting BH1 and BH2 and the capacity for a functional protein.

Control Information

   Wild-type from the colony
   000664 C57BL/6J
  Considerations for Choosing Controls

Related Strains

Strains carrying other alleles of Bax
006329   B6;129-Baxtm2Sjk Bak1tm1Thsn/J
View Strains carrying other alleles of Bax     (1 strain)


Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype


  • reproductive system phenotype
  • abnormal seminiferous tubule morphology
    • some tubules have an accumulation of early germ cells while others have fewer germ cells than normal   (MGI Ref ID J:103605)
    • the spermatogonia layer is thicker than in wild-type being up to 3 cell layers thick   (MGI Ref ID J:103605)
  • abnormal spermatogenesis
    • at P15 the number of germ cells in the testis is increased and these are mostly c-Kit+ early germ cells, but in adult males the number of germ cells is decreased by up to 10-fold compared to wild-type   (MGI Ref ID J:103605)
    • arrest of male meiosis
      • arrests before the completion of meiosis in the preleptotene spermatocyte stage   (MGI Ref ID J:103605)
    • azoospermia   (MGI Ref ID J:103605)
  • decreased testis weight
    • in adults testes weigh about 60% that of wild-type   (MGI Ref ID J:103605)
  • male infertility
    • males but not females are sterile   (MGI Ref ID J:103605)
  • growth/size/body phenotype
  • decreased body weight
    • seen in about 50% of mice   (MGI Ref ID J:103605)
  • nervous system phenotype
  • *normal* nervous system phenotype
    • cultured enteric neurons from Bax-deficient embryos that are GDNF-deprived show no significant differences in survival relative to enteric neurons from conditionally-inactivated Gfra1-null mice   (MGI Ref ID J:122607)
  • endocrine/exocrine gland phenotype
  • abnormal seminiferous tubule morphology
    • some tubules have an accumulation of early germ cells while others have fewer germ cells than normal   (MGI Ref ID J:103605)
    • the spermatogonia layer is thicker than in wild-type being up to 3 cell layers thick   (MGI Ref ID J:103605)
  • decreased testis weight
    • in adults testes weigh about 60% that of wild-type   (MGI Ref ID J:103605)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.


        involves: 129X1/SvJ
  • nervous system phenotype
  • abnormal sympathetic neuron morphology
    • cultures of sympathetic neurons grown in the presence of NGF before being deprived of NGF, die with slower kinetics than wild-type, such that after 8 days, 14% of neurons remain viable compared to none in controls   (MGI Ref ID J:35372)
  • increased motor neuron number
    • modest 13% increase in the total number of facial motor neurons at 4 weeks of age relative to wild-type   (MGI Ref ID J:35372)


        involves: 129X1/SvJ
  • endocrine/exocrine gland phenotype
  • abnormal ovarian follicle morphology
    • atretic follicles with excess granulosa cells   (MGI Ref ID J:29253)
  • abnormal seminiferous tubule morphology
    • disordered   (MGI Ref ID J:29253)
  • increased thymocyte number
    • 1.6 fold increase in thymocyte number relative to wild-type   (MGI Ref ID J:29253)
    • normal distribution of maturational subsets (CD4-CD8-, CD4+CD8+, CD4+, CD8+ cells)   (MGI Ref ID J:29253)
  • hematopoietic system phenotype
  • enlarged spleen   (MGI Ref ID J:29253)
  • increased B cell number   (MGI Ref ID J:29253)
  • increased thymocyte number
    • 1.6 fold increase in thymocyte number relative to wild-type   (MGI Ref ID J:29253)
    • normal distribution of maturational subsets (CD4-CD8-, CD4+CD8+, CD4+, CD8+ cells)   (MGI Ref ID J:29253)
  • immune system phenotype
  • enlarged spleen   (MGI Ref ID J:29253)
  • increased B cell number   (MGI Ref ID J:29253)
  • increased thymocyte number
    • 1.6 fold increase in thymocyte number relative to wild-type   (MGI Ref ID J:29253)
    • normal distribution of maturational subsets (CD4-CD8-, CD4+CD8+, CD4+, CD8+ cells)   (MGI Ref ID J:29253)
  • reproductive system phenotype
  • abnormal male germ cell apoptosis
    • increased male germ cell apoptosis   (MGI Ref ID J:29253)
  • abnormal ovarian follicle morphology
    • atretic follicles with excess granulosa cells   (MGI Ref ID J:29253)
  • abnormal seminiferous tubule morphology
    • disordered   (MGI Ref ID J:29253)
  • arrest of spermatogenesis
    • accumulation of premeiotic germ cells   (MGI Ref ID J:29253)
  • azoospermia
    • absence of sperm in the epididymis and vas deferens   (MGI Ref ID J:29253)
  • male infertility   (MGI Ref ID J:29253)
  • nervous system phenotype
  • abnormal facial motor nucleus morphology
    • mutants exhibit a large reduction in motor neuron death in the facial nucleus following neonatal axotomy compared to wild-type   (MGI Ref ID J:35372)
  • abnormal phrenic nerve morphology
    • the phrenic nerve is thicker in mutants, however neuromuscular synapses were normal   (MGI Ref ID J:91066)
  • abnormal proprioceptive neuron morphology
    • about 30% of pSNs in the rostral lumbar DRG have cell body diameters in the wild-type range, with 70% having smaller somatic diameters   (MGI Ref ID J:197913)
  • abnormal superior cervical ganglion morphology
    • superior cervical ganglion of neonates contains 2.5 and 1.8 times more neurons than wild-type and heterozygous ganglia, respectively   (MGI Ref ID J:35372)
  • abnormal sympathetic neuron morphology
    • sympathetic neurons from superior cervical ganglion show a dramatic reduction of death after trophic factor (NGF) deprivation   (MGI Ref ID J:35372)
  • decreased neuron apoptosis
    • developmental sympathetic and motor neuronal death is reduced   (MGI Ref ID J:35372)
  • increased motor neuron number
    • contralateral nonaxotomized facial nucleus shows a 51% increase in neuronal number relative to wild-type at 4 weeks of age   (MGI Ref ID J:35372)
    • mutants display an increase in the number of small- to medium-sized motor neurons   (MGI Ref ID J:35372)
  • increased sensory neuron number
    • number of proprioceptive sensory neurons (pSNs) is increased by 2-fold compared to wild-type controls   (MGI Ref ID J:197913)
  • cellular phenotype
  • abnormal male germ cell apoptosis
    • increased male germ cell apoptosis   (MGI Ref ID J:29253)
  • decreased neuron apoptosis
    • developmental sympathetic and motor neuronal death is reduced   (MGI Ref ID J:35372)


        involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6
  • nervous system phenotype
  • abnormal axon extension
    • neurite outgrowth is significantly less than that of Isl1tm1(cre)Cos Mapttm1(Ewsr1/Etv4)Arbr heterozygotes with or without treatment with neurotrphin-3   (MGI Ref ID J:100886)
  • abnormal dorsal root ganglion morphology
    • dorsal root ganglia neurons survive without neurotrophic factors   (MGI Ref ID J:100886)
  • increased sensory neuron number
    • apoptosis rates are decreased resulting in increased number of neurons in the lumbar dorsal root ganglia (170% of wild-type numbers)   (MGI Ref ID J:100886)
  • cellular phenotype
  • abnormal axon extension
    • neurite outgrowth is significantly less than that of Isl1tm1(cre)Cos Mapttm1(Ewsr1/Etv4)Arbr heterozygotes with or without treatment with neurotrphin-3   (MGI Ref ID J:100886)


        involves: 129X1/SvJ * C57BL/6
  • endocrine/exocrine gland phenotype
  • abnormal ovarian folliculogenesis
    • reduced incidence of atresia of primordial and primary follicles relative to wild-type   (MGI Ref ID J:52574)
    • increased number of follicles observed at 42 days   (MGI Ref ID J:52574)
    • follicles persisted in aged females (20 to 22 months old)   (MGI Ref ID J:52574)
  • increased mature ovarian follicle number
    • increased number of follicles observed at 42 days of age   (MGI Ref ID J:52574)
    • persistence of hundreds of follicles of all developmental stages in aged females (20 to 22 months old)   (MGI Ref ID J:52574)
  • nervous system phenotype
  • abnormal dorsal root ganglion morphology
    • the number of dorsal root ganglia neurons in L4 is increased relative to in wild-type mice   (MGI Ref ID J:83461)
  • reproductive system phenotype
  • abnormal ovarian folliculogenesis
    • reduced incidence of atresia of primordial and primary follicles relative to wild-type   (MGI Ref ID J:52574)
    • increased number of follicles observed at 42 days   (MGI Ref ID J:52574)
    • follicles persisted in aged females (20 to 22 months old)   (MGI Ref ID J:52574)
  • increased mature ovarian follicle number
    • increased number of follicles observed at 42 days of age   (MGI Ref ID J:52574)
    • persistence of hundreds of follicles of all developmental stages in aged females (20 to 22 months old)   (MGI Ref ID J:52574)
  • uterus hypertrophy
    • ovarian steroid-driven uternine hypertrophy is observed in aged females (20 to 22 months old)   (MGI Ref ID J:52574)

The following phenotype relates to a compound genotype created using this strain.
Contact JAX® Services for customized breeding options.

Bak1tm1Thsn/Bak1tm1Thsn Baxtm1Sjk/Baxtm1Sjk

        involves: 129S1/Sv * 129S1/SvImJ * 129X1/SvJ * C57BL/6
  • mortality/aging
  • partial neonatal lethality
    • majority die within 48 hours of birth, although some survive to adulthood   (MGI Ref ID J:66872)
  • limbs/digits/tail phenotype
  • interdigital webbing
    • mutants retain interdigital webs on both fore and rear paws   (MGI Ref ID J:66872)
  • reproductive system phenotype
  • vagina atresia
    • seen in all adult females   (MGI Ref ID J:66872)
  • behavior/neurological phenotype
  • circling
    • display circling behavior when exposed to external stress   (MGI Ref ID J:66872)
  • seizures
    • stress-induced seizure activity   (MGI Ref ID J:66872)
  • hearing/vestibular/ear phenotype
  • abnormal hearing physiology
    • unresponsive to auditory stimuli   (MGI Ref ID J:66872)
  • hematopoietic system phenotype
  • abnormal hematopoiesis
    • hematopoietic colony assays show an increase in the number of myeloid colony forming units and a mild increase in erythroid and megakaryocyte colony forming units   (MGI Ref ID J:66872)
    • abnormal B cell morphology
      • B220+ B cells present in the lymph node and spleen are skewed toward a B220brightIgD- phenotype, indicating an increase in the number of class-switched or memory B cells   (MGI Ref ID J:66872)
    • abnormal T cell morphology
      • T cells that accumulate in mutants are skewed toward a memory cell phenotype   (MGI Ref ID J:66872)
    • decreased platelet cell number   (MGI Ref ID J:66872)
    • increased leukocyte cell number   (MGI Ref ID J:66872)
      • increased lymphocyte cell number
        • increases within the circulation and the peripheral lymphoid organs   (MGI Ref ID J:66872)
        • lymphocytic infiltration is seen in parenchymal organs, liver, and kidney   (MGI Ref ID J:66872)
  • abnormal splenocyte physiology
    • isolated splenocytes cultured in suspension show enhanced survival   (MGI Ref ID J:66872)
  • anemia
    • mild anemia   (MGI Ref ID J:66872)
  • enlarged spleen   (MGI Ref ID J:66872)
  • increased spleen red pulp amount
    • expanded red pulp contains a large increase in the number of plasma cells and histiocytes   (MGI Ref ID J:66872)
  • increased spleen white pulp amount
    • pronounced hyperplasia   (MGI Ref ID J:66872)
  • immune system phenotype
  • abnormal B cell morphology
    • B220+ B cells present in the lymph node and spleen are skewed toward a B220brightIgD- phenotype, indicating an increase in the number of class-switched or memory B cells   (MGI Ref ID J:66872)
  • abnormal T cell morphology
    • T cells that accumulate in mutants are skewed toward a memory cell phenotype   (MGI Ref ID J:66872)
  • abnormal splenocyte physiology
    • isolated splenocytes cultured in suspension show enhanced survival   (MGI Ref ID J:66872)
  • enlarged lymph nodes   (MGI Ref ID J:66872)
  • enlarged spleen   (MGI Ref ID J:66872)
  • increased leukocyte cell number   (MGI Ref ID J:66872)
    • increased lymphocyte cell number
      • increases within the circulation and the peripheral lymphoid organs   (MGI Ref ID J:66872)
      • lymphocytic infiltration is seen in parenchymal organs, liver, and kidney   (MGI Ref ID J:66872)
  • increased spleen red pulp amount
    • expanded red pulp contains a large increase in the number of plasma cells and histiocytes   (MGI Ref ID J:66872)
  • increased spleen white pulp amount
    • pronounced hyperplasia   (MGI Ref ID J:66872)
  • nervous system phenotype
  • abnormal brain morphology
    • increase in the number of neurons in multiple regions of the brain   (MGI Ref ID J:66872)
    • large accumulation of small neuronal cells (neural stem cells) with dense chromatin staining in the periventricular region   (MGI Ref ID J:66872)
    • increased brain size   (MGI Ref ID J:66872)
  • increased neuron number
    • in multiple regions of the brain   (MGI Ref ID J:66872)
  • seizures
    • stress-induced seizure activity   (MGI Ref ID J:66872)
  • cellular phenotype
  • decreased cellular sensitivity to gamma-irradiation
    • thymocytes show enhanced survival compared to wild-type when exposed to gamma irradiation   (MGI Ref ID J:66872)
  • homeostasis/metabolism phenotype
  • decreased physiological sensitivity to xenobiotic
    • thymocytes are resistant to treatment with etoposide, a chemotherapeutic agent that normally induces cell death   (MGI Ref ID J:66872)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Baxtm1Sjk related

Apoptosis Research
Endogenous Regulators

Cancer Research
Genes Regulating Growth and Proliferation

Developmental Biology Research
Internal/Organ Defects

Immunology, Inflammation and Autoimmunity Research
Intracellular Signaling Molecules

Reproductive Biology Research
Developmental Defects Affecting Gonads
Fertility Defects

Genes & Alleles

Gene & Allele Information provided by MGI

Allele Symbol Baxtm1Sjk
Allele Name targeted mutation 1, Stanley J Korsmeyer
Allele Type Targeted (Null/Knockout)
Common Name(s) Bax-; Bax1;
Mutation Made ByDr. Stanley Korsmeyer,   Dana-Farber Cancer Institute
Strain of Origin129X1/SvJ
ES Cell Line NameRW-4
ES Cell Line Strain129X1/SvJ
Gene Symbol and Name Bax, BCL2-associated X protein
Chromosome 7
Gene Common Name(s) BCL2L4;
Molecular Note A neomycin selection cassette replaced exons 2 through 4 and part of exon 5, which encode sequences that correspond to the two BCL2 homology domains BH1 and BH2. Immunoblots did not detect the endcoded protein in tissue lysates derived from homozygous mice. [MGI Ref ID J:29253]


Genotyping Information

Genotyping Protocols

Baxtm1Sjk, Melt Curve Analysis
Baxtm1Sjk, Standard PCR

Helpful Links

Genotyping resources and troubleshooting


References provided by MGI

Additional References

Baxtm1Sjk related

Abdo H; Li L; Lallemend F; Bachy I; Xu XJ; Rice FL; Ernfors P. 2011. Dependence on the transcription factor Shox2 for specification of sensory neurons conveying discriminative touch. Eur J Neurosci 34(10):1529-41. [PubMed: 22103411]  [MGI Ref ID J:184160]

Alton M; Taketo T. 2007. Switch from BAX-dependent to BAX-independent germ cell loss during the development of fetal mouse ovaries. J Cell Sci 120(Pt 3):417-24. [PubMed: 17213335]  [MGI Ref ID J:120767]

Armstrong A; Ryu YK; Chieco D; Kuruvilla R. 2011. Frizzled3 Is Required for Neurogenesis and Target Innervation during Sympathetic Nervous System Development. J Neurosci 31(7):2371-81. [PubMed: 21325504]  [MGI Ref ID J:169444]

Bailey DP; Kashyap M; Bouton LA; Murray PJ; Ryan JJ. 2006. Interleukin-10 induces apoptosis in developing mast cells and macrophages. J Leukoc Biol 80(3):581-9. [PubMed: 16829633]  [MGI Ref ID J:112579]

Baines CP; Kaiser RA; Sheiko T; Craigen WJ; Molkentin JD. 2007. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9(5):550-5. [PubMed: 17417626]  [MGI Ref ID J:129616]

Barone MC; Desouza LA; Freeman RS. 2008. Pin1 promotes cell death in NGF-dependent neurons through a mechanism requiring c-Jun activity. J Neurochem 106(2):734-45. [PubMed: 18419764]  [MGI Ref ID J:139389]

Ben-Zvi A; Manor O; Schachner M; Yaron A; Tessier-Lavigne M; Behar O. 2008. The Semaphorin receptor PlexinA3 mediates neuronal apoptosis during dorsal root ganglia development. J Neurosci 28(47):12427-32. [PubMed: 19020035]  [MGI Ref ID J:142362]

Ben-Zvi A; Sweetat S; Behar O. 2013. Elimination of aberrant DRG circuitries in Sema3A mutant mice leads to extensive neuronal deficits. PLoS One 8(7):e70085. [PubMed: 23922915]  [MGI Ref ID J:204365]

Berens HM; Tyler KL. 2011. The pro-apoptotic Bcl-2 protein Bax plays an important role in the pathogenesis of reovirus encephalitis. J Virol :. [PubMed: 21307199]  [MGI Ref ID J:168899]

Bernal NP; Stehr W; Coyle R; Erwin CR; Warner BW. 2006. Epidermal growth factor receptor signaling regulates Bax and Bcl-w expression and apoptotic responses during intestinal adaptation in mice. Gastroenterology 130(2):412-23. [PubMed: 16472596]  [MGI Ref ID J:124922]

Bruckheimer EM; Cho S; Brisbay S; Johnson DJ; Gingrich JR; Greenberg N; McDonnell TJ. 2000. The impact of bcl-2 expression and bax deficiency on prostate homeostasis in vivo. Oncogene 19(20):2404-12. [PubMed: 10828882]  [MGI Ref ID J:62297]

Buss RR; Gould TW; Ma J; Vinsant S; Prevette D; Winseck A; Toops KA; Hammarback JA; Smith TL; Oppenheim RW. 2006. Neuromuscular development in the absence of programmed cell death: phenotypic alteration of motoneurons and muscle. J Neurosci 26(52):13413-27. [PubMed: 17192424]  [MGI Ref ID J:117220]

Chang MY; Sun W; Ochiai W; Nakashima K; Kim SY; Park CH; Kang JS; Shim JW; Jo AY; Kang CS; Lee YS; Kim JS; Lee SH. 2007. Bcl-XL/Bax proteins direct the fate of embryonic cortical precursor cells. Mol Cell Biol 27(12):4293-305. [PubMed: 17438128]  [MGI Ref ID J:122346]

Chao JR; Parganas E; Boyd K; Hong CY; Opferman JT; Ihle JN. 2008. Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 452(7183):98-102. [PubMed: 18288109]  [MGI Ref ID J:132627]

Chavez-Reyes A; Parant JM; Amelse LL; de Oca Luna RM; Korsmeyer SJ; Lozano G. 2003. Switching mechanisms of cell death in mdm2- and mdm4-null mice by deletion of p53 downstream targets. Cancer Res 63(24):8664-9. [PubMed: 14695178]  [MGI Ref ID J:87065]

Chen L; Faire M; Kissner MD; Laird DJ. 2013. Primordial germ cells and gastrointestinal stromal tumors respond distinctly to a cKit overactivating allele. Hum Mol Genet 22(2):313-27. [PubMed: 23077213]  [MGI Ref ID J:191131]

Chen WV; Alvarez FJ; Lefebvre JL; Friedman B; Nwakeze C; Geiman E; Smith C; Thu CA; Tapia JC; Tasic B; Sanes JR; Maniatis T. 2012. Functional significance of isoform diversification in the protocadherin gamma gene cluster. Neuron 75(3):402-9. [PubMed: 22884324]  [MGI Ref ID J:188341]

Cheung EC; Melanson-Drapeau L; Cregan SP; Vanderluit JL; Ferguson KL; McIntosh WC; Park DS; Bennett SA; Slack RS. 2005. Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci 25(6):1324-34. [PubMed: 15703386]  [MGI Ref ID J:98103]

Chi MM; Pingsterhaus J; Carayannopoulos M; Moley KH. 2000. Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst J Biol Chem 275(51):40252-7. [PubMed: 10995754]  [MGI Ref ID J:66414]

Chi MM; Schlein AL; Moley KH. 2000. High insulin-like growth factor 1 (IGF-1) and insulin concentrations trigger apoptosis in the mouse blastocyst via down-regulation of the IGF-1 receptor. Endocrinology 141(12):4784-92. [PubMed: 11108294]  [MGI Ref ID J:115385]

Chong MJ; Murray MR; Gosink EC; Russell HR; Srinivasan A; Kapsetaki M; Korsmeyer SJ; McKinnon PJ. 2000. Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc Natl Acad Sci U S A 97(2):889-94. [PubMed: 10639175]  [MGI Ref ID J:59934]

Cleland MM; Norris KL; Karbowski M; Wang C; Suen DF; Jiao S; George NM; Luo X; Li Z; Youle RJ. 2011. Bcl-2 family interaction with the mitochondrial morphogenesis machinery. Cell Death Differ 18(2):235-47. [PubMed: 20671748]  [MGI Ref ID J:186336]

Clemente EJ; Furlong RA; Loveland KL; Affara NA. 2006. Gene expression study in the juvenile mouse testis: identification of stage-specific molecular pathways during spermatogenesis. Mamm Genome 17(9):956-75. [PubMed: 16964443]  [MGI Ref ID J:112872]

Cook MS; Coveney D; Batchvarov I; Nadeau JH; Capel B. 2009. BAX-mediated cell death affects early germ cell loss and incidence of testicular teratomas in Dnd1(Ter/Ter) mice. Dev Biol 328(2):377-83. [PubMed: 19389346]  [MGI Ref ID J:149469]

Cook MS; Munger SC; Nadeau JH; Capel B. 2011. Regulation of male germ cell cycle arrest and differentiation by DND1 is modulated by genetic background. Development 138(1):23-32. [PubMed: 21115610]  [MGI Ref ID J:167041]

Coulpier M; Messiaen S; Hamel R; Fernandez de Marco M; Lilin T; Eloit M. 2006. Bax deletion does not protect neurons from BSE-induced death. Neurobiol Dis 23(3):603-11. [PubMed: 16854590]  [MGI Ref ID J:147030]

Coultas L; Bouillet P; Loveland KL; Meachem S; Perlman H; Adams JM; Strasser A. 2005. Concomitant loss of proapoptotic BH3-only Bcl-2 antagonists Bik and Bim arrests spermatogenesis. EMBO J 24(22):3963-73. [PubMed: 16270031]  [MGI Ref ID J:103605]

Crowther AJ; Gama V; Bevilacqua A; Chang SX; Yuan H; Deshmukh M; Gershon TR. 2013. Tonic activation of Bax primes neural progenitors for rapid apoptosis through a mechanism preserved in medulloblastoma. J Neurosci 33(46):18098-108. [PubMed: 24227720]  [MGI Ref ID J:204171]

D'Orsi B; Bonner H; Tuffy LP; Dussmann H; Woods I; Courtney MJ; Ward MW; Prehn JH. 2012. Calpains are downstream effectors of bax-dependent excitotoxic apoptosis. J Neurosci 32(5):1847-58. [PubMed: 22302823]  [MGI Ref ID J:181340]

Dansen TB; Whitfield J; Rostker F; Brown-Swigart L; Evan GI. 2006. Specific requirement for Bax, not Bak, in Myc-induced apoptosis and tumor suppression in vivo. J Biol Chem 281(16):10890-5. [PubMed: 16464852]  [MGI Ref ID J:108676]

Dargusch R; Piasecki D; Tan S; Liu Y; Schubert D. 2001. The role of Bax in glutamate-induced nerve cell death. J Neurochem 76(1):295-301. [PubMed: 11146002]  [MGI Ref ID J:68970]

Deckwerth TL; Easton RM; Knudson CM; Korsmeyer SJ; Johnson EM Jr. 1998. Placement of the BCL2 family member BAX in the death pathway of sympathetic neurons activated by trophic factor deprivation. Exp Neurol 152(1):150-62. [PubMed: 9682022]  [MGI Ref ID J:179272]

Deckwerth TL; Elliott JL; Knudson CM; Johnson EM Jr; Snider WD; Korsmeyer SJ. 1996. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17(3):401-11. [PubMed: 8816704]  [MGI Ref ID J:35372]

Degenhardt K; Sundararajan R; Lindsten T; Thompson C; White E. 2002. Bax and Bak independently promote cytochrome C release from mitochondria. J Biol Chem 277(16):14127-34. [PubMed: 11836241]  [MGI Ref ID J:76058]

Dejean LM; Martinez-Caballero S; Guo L; Hughes C; Teijido O; Ducret T; Ichas F; Korsmeyer SJ; Antonsson B; Jonas EA; Kinnally KW. 2005. Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16(5):2424-32. [PubMed: 15772159]  [MGI Ref ID J:100217]

Deppmann CD; Mihalas S; Sharma N; Lonze BE; Niebur E; Ginty DD. 2008. A model for neuronal competition during development. Science 320(5874):369-73. [PubMed: 18323418]  [MGI Ref ID J:133953]

Dierks C; Grbic J; Zirlik K; Beigi R; Englund NP; Guo GR; Veelken H; Engelhardt M; Mertelsmann R; Kelleher JF; Schultz P; Warmuth M. 2007. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 13(8):944-51. [PubMed: 17632527]  [MGI Ref ID J:126550]

Doan PL; Himburg HA; Helms K; Russell JL; Fixsen E; Quarmyne M; Harris JR; Deoliviera D; Sullivan JM; Chao NJ; Kirsch DG; Chute JP. 2013. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med 19(3):295-304. [PubMed: 23377280]  [MGI Ref ID J:196315]

Doan PL; Russell JL; Himburg HA; Helms K; Harris JR; Lucas J; Holshausen KC; Meadows SK; Daher P; Jeffords LB; Chao NJ; Kirsch DG; Chute JP. 2013. Tie2(+) bone marrow endothelial cells regulate hematopoietic stem cell regeneration following radiation injury. Stem Cells 31(2):327-37. [PubMed: 23132593]  [MGI Ref ID J:194696]

Dominov JA; Kravetz AJ; Ardelt M; Kostek CA; Beermann ML; Miller JB. 2005. Muscle-specific BCL2 expression ameliorates muscle disease in laminin {alpha}2-deficient, but not in dystrophin-deficient, mice. Hum Mol Genet 14(8):1029-40. [PubMed: 15757977]  [MGI Ref ID J:98004]

Dong H; Fazzaro A; Xiang C; Korsmeyer SJ; Jacquin MF; McDonald JW. 2003. Enhanced oligodendrocyte survival after spinal cord injury in Bax-deficient mice and mice with delayed Wallerian degeneration. J Neurosci 23(25):8682-91. [PubMed: 14507967]  [MGI Ref ID J:85750]

Doughty ML; De Jager PL; Korsmeyer SJ; Heintz N. 2000. Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J Neurosci 20(10):3687-94. [PubMed: 10804210]  [MGI Ref ID J:62117]

Dowling MR; Josefsson EC; Henley KJ; Hodgkin PD; Kile BT. 2010. Platelet senescence is regulated by an internal timer, not damage inflicted by hits. Blood 116(10):1776-8. [PubMed: 20530288]  [MGI Ref ID J:164520]

Duckworth CA; Pritchard DM. 2009. Suppression of apoptosis, crypt hyperplasia, and altered differentiation in the colonic epithelia of bak-null mice. Gastroenterology 136(3):943-52. [PubMed: 19185578]  [MGI Ref ID J:146852]

Dunkle A; Dzhagalov I; He YW. 2010. Mcl-1 promotes survival of thymocytes by inhibition of Bak in a pathway separate from Bcl-2. Cell Death Differ 17(6):994-1002. [PubMed: 20057504]  [MGI Ref ID J:186374]

Eblaghie MC; Reedy M; Oliver T; Mishina Y; Hogan BL. 2006. Evidence that autocrine signaling through Bmpr1a regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells. Dev Biol 291(1):67-82. [PubMed: 16414041]  [MGI Ref ID J:106392]

Eischen CM; Rehg JE; Korsmeyer SJ; Cleveland JL. 2002. Loss of Bax alters tumor spectrum and tumor numbers in ARF-deficient mice. Cancer Res 62(7):2184-91. [PubMed: 11929842]  [MGI Ref ID J:75877]

Eischen CM; Roussel MF; Korsmeyer SJ; Cleveland JL. 2001. Bax Loss Impairs Myc-Induced Apoptosis and Circumvents the Selection of p53 Mutations during Myc-Mediated Lymphomagenesis. Mol Cell Biol 21(22):7653-62. [PubMed: 11604501]  [MGI Ref ID J:72281]

Fan H; Favero M; Vogel MW. 2001. Elimination of Bax expression in mice increases cerebellar purkinje cell numbers but not the number of granule cells. J Comp Neurol 436(1):82-91. [PubMed: 11413548]  [MGI Ref ID J:111106]

Fan H; Stefkova J; El-Dahr SS. 2006. Susceptibility to metanephric apoptosis in bradykinin B2 receptor null mice via the p53-Bax pathway. Am J Physiol Renal Physiol 291(3):F670-82. [PubMed: 16571598]  [MGI Ref ID J:111678]

Fontanini A; Foti C; Potu H; Crivellato E; Maestro R; Bernardi P; Demarchi F; Brancolini C. 2009. The Isopeptidase Inhibitor G5 Triggers a Caspase-independent Necrotic Death in Cells Resistant to Apoptosis: A COMPARATIVE STUDY WITH THE PROTEASOME INHIBITOR BORTEZOMIB. J Biol Chem 284(13):8369-81. [PubMed: 19139105]  [MGI Ref ID J:148618]

Forger NG; Rosen GJ; Waters EM; Jacob D; Simerly RB; de Vries GJ. 2004. Deletion of Bax eliminates sex differences in the mouse forebrain. Proc Natl Acad Sci U S A 101(37):13666-71. [PubMed: 15342910]  [MGI Ref ID J:92614]

Fuerst PG; Bruce F; Tian M; Wei W; Elstrott J; Feller MB; Erskine L; Singer JH; Burgess RW. 2009. DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron 64(4):484-97. [PubMed: 19945391]  [MGI Ref ID J:155397]

Furlan A; Lubke M; Adameyko I; Lallemend F; Ernfors P. 2013. The transcription factor Hmx1 and growth factor receptor activities control sympathetic neurons diversification. EMBO J 32(11):1613-25. [PubMed: 23591430]  [MGI Ref ID J:198834]

Garcia I; Crowther AJ; Gama V; Ryan Miller C; Deshmukh M; Gershon TR. 2013. Bax deficiency prolongs cerebellar neurogenesis, accelerates medulloblastoma formation and paradoxically increases both malignancy and differentiation. Oncogene 32(18):2304-14. [PubMed: 22710714]  [MGI Ref ID J:198027]

Garrison SP; Phillips DC; Jeffers JR; Chipuk JE; Parsons MJ; Rehg JE; Opferman JT; Green DR; Zambetti GP. 2012. Genetically defining the mechanism of Puma- and Bim-induced apoptosis. Cell Death Differ 19(4):642-9. [PubMed: 22015606]  [MGI Ref ID J:203075]

Gavalda N; Perez-Navarro E; Garcia-Martinez JM; Marco S; Benito A; Alberch J. 2008. Bax deficiency promotes an up-regulation of Bim(EL) and Bak during striatal and cortical postnatal development, and after excitotoxic injury. Mol Cell Neurosci 37(4):663-72. [PubMed: 18272391]  [MGI Ref ID J:135298]

Genc B; Ozdinler PH; Mendoza AE; Erzurumlu RS. 2004. A chemoattractant role for NT-3 in proprioceptive axon guidance. PLoS Biol 2(12):e403. [PubMed: 15550985]  [MGI Ref ID J:97779]

Geng Y; Walls KC; Ghosh AP; Akhtar RS; Klocke BJ; Roth KA. 2010. Cytoplasmic p53 and activated Bax regulate p53-dependent, transcription-independent neural precursor cell apoptosis. J Histochem Cytochem 58(3):265-75. [PubMed: 19901272]  [MGI Ref ID J:160504]

Gianino S; Grider JR; Cresswell J; Enomoto H; Heuckeroth RO. 2003. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 130(10):2187-98. [PubMed: 12668632]  [MGI Ref ID J:82456]

Girgenrath M; Dominov JA; Kostek CA; Miller JB. 2004. Inhibition of apoptosis improves outcome in a model of congenital muscular dystrophy. J Clin Invest 114(11):1635-9. [PubMed: 15578095]  [MGI Ref ID J:94431]

Glebova NO; Ginty DD. 2004. Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci 24(3):743-51. [PubMed: 14736860]  [MGI Ref ID J:87702]

Gould TW; Buss RR; Vinsant S; Prevette D; Sun W; Knudson CM; Milligan CE; Oppenheim RW. 2006. Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci 26(34):8774-86. [PubMed: 16928866]  [MGI Ref ID J:111890]

Gray DH; Kupresanin F; Berzins SP; Herold MJ; O'Reilly LA; Bouillet P; Strasser A. 2012. The BH3-Only Proteins Bim and Puma Cooperate to Impose Deletional Tolerance of Organ-Specific Antigens. Immunity 37(3):451-62. [PubMed: 22960223]  [MGI Ref ID J:187669]

Greenfeld CR; Babus JK; Furth PA; Marion S; Hoyer PB; Flaws JA. 2007. BAX is involved in regulating follicular growth, but is dispensable for follicle atresia in adult mouse ovaries. Reproduction 133(1):107-116. [PubMed: 17244737]  [MGI Ref ID J:117770]

Greenfeld CR; Pepling ME; Babus JK; Furth PA; Flaws JA. 2007. BAX regulates follicular endowment in mice. Reproduction 133(5):865-76. [PubMed: 17616717]  [MGI Ref ID J:122810]

Gruber JJ; Zatechka DS; Sabin LR; Yong J; Lum JJ; Kong M; Zong WX; Zhang Z; Lau CK; Rawlings J; Cherry S; Ihle JN; Dreyfuss G; Thompson CB. 2009. Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell 138(2):328-39. [PubMed: 19632182]  [MGI Ref ID J:152729]

Gumy LF; Bampton ET; Tolkovsky AM. 2008. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci 37(2):298-311. [PubMed: 18024075]  [MGI Ref ID J:132600]

Guo H; Hellard DT; Huang L; Katz DM. 2005. Development of pontine noradrenergic A5 neurons requires brain-derived neurotrophic factor. Eur J Neurosci 21(7):2019-23. [PubMed: 15869495]  [MGI Ref ID J:101073]

Guo T; Mandai K; Condie BG; Wickramasinghe SR; Capecchi MR; Ginty DD. 2011. An evolving NGF-Hoxd1 signaling pathway mediates development of divergent neural circuits in vertebrates. Nat Neurosci 14(1):31-6. [PubMed: 21151121]  [MGI Ref ID J:170402]

Hahn P; Lindsten T; Lyubarsky A; Ying GS; Pugh EN Jr; Thompson CB; Dunaief JL. 2004. Deficiency of Bax and Bak protects photoreceptors from light damage in vivo. Cell Death Differ 11(11):1192-7. [PubMed: 15272317]  [MGI Ref ID J:134629]

Hahn P; Lindsten T; Tolentino M; Thompson CB; Bennett J; Dunaief JL. 2005. Persistent fetal ocular vasculature in mice deficient in bax and bak. Arch Ophthalmol 123(6):797-802. [PubMed: 15955981]  [MGI Ref ID J:115735]

Hamann S; Schorderet DF; Cottet S. 2009. Bax-induced apoptosis in Leber's congenital amaurosis: a dual role in rod and cone degeneration. PLoS One 4(8):e6616. [PubMed: 19672311]  [MGI Ref ID J:152468]

He H; Hershberger PA; McCarthy SA. 1998. Characterization of a novel Bax-associated protein expressed in hemopoietic tissues and regulated during thymocyte apoptosis. J Immunol 161(3):1169-75. [PubMed: 9686576]  [MGI Ref ID J:119202]

Hellard D; Brosenitsch T; Fritzsch B; Katz DM. 2004. Cranial sensory neuron development in the absence of brain-derived neurotrophic factor in BDNF/Bax double null mice. Dev Biol 275(1):34-43. [PubMed: 15464571]  [MGI Ref ID J:94276]

Hetz C; Bernasconi P; Fisher J; Lee AH; Bassik MC; Antonsson B; Brandt GS; Iwakoshi NN; Schinzel A; Glimcher LH; Korsmeyer SJ. 2006. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312(5773):572-6. [PubMed: 16645094]  [MGI Ref ID J:108337]

Hippenmeyer S; Vrieseling E; Sigrist M; Portmann T; Laengle C; Ladle DR; Arber S. 2005. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol 3(5):e159. [PubMed: 15836427]  [MGI Ref ID J:100886]

Hochhauser E; Kivity S; Offen D; Maulik N; Otani H; Barhum Y; Pannet H; Shneyvays V; Shainberg A; Goldshtaub V; Tobar A; Vidne BA. 2003. Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol 284(6):H2351-9. [PubMed: 12742833]  [MGI Ref ID J:83909]

Holmes MM; McCutcheon J; Forger NG. 2009. Sex differences in NeuN- and androgen receptor-positive cells in the bed nucleus of the stria terminalis are due to Bax-dependent cell death. Neuroscience 158(4):1251-6. [PubMed: 19059313]  [MGI Ref ID J:149001]

Holmes MM; Niel L; Anyan JJ; Griffith AT; Monks DA; Forger NG. 2011. Effects of Bax gene deletion on social behaviors and neural response to olfactory cues in mice. Eur J Neurosci 34(9):1492-9. [PubMed: 22034980]  [MGI Ref ID J:183175]

Honma Y; Kawano M; Kohsaka S; Ogawa M. 2010. Axonal projections of mechanoreceptive dorsal root ganglion neurons depend on Ret. Development 137(14):2319-28. [PubMed: 20534675]  [MGI Ref ID J:161851]

Howell GR; Libby RT; Jakobs TC; Smith RS; Phalan FC; Barter JW; Barbay JM; Marchant JK; Mahesh N; Porciatti V; Whitmore AV; Masland RH; John SW. 2007. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 179(7):1523-37. [PubMed: 18158332]  [MGI Ref ID J:131073]

Hua ZL; Smallwood PM; Nathans J. 2013. Frizzled3 controls axonal development in distinct populations of cranial and spinal motor neurons. Elife 2:e01482. [PubMed: 24347548]  [MGI Ref ID J:207894]

Hutcheson J; Perlman H. 2007. Loss of Bim results in abnormal accumulation of mature CD4-CD8-CD44-CD25- thymocytes. Immunobiology 212(8):629-36. [PubMed: 17869640]  [MGI Ref ID J:129934]

Hutcheson J; Scatizzi JC; Bickel E; Brown NJ; Bouillet P; Strasser A; Perlman H. 2005. Combined loss of proapoptotic genes Bak or Bax with Bim synergizes to cause defects in hematopoiesis and in thymocyte apoptosis. J Exp Med 201(12):1949-60. [PubMed: 15967824]  [MGI Ref ID J:99285]

Imao T; Nagata S. 2013. Apaf-1- and Caspase-8-independent apoptosis. Cell Death Differ 20(2):343-52. [PubMed: 23197294]  [MGI Ref ID J:205616]

Jabbour AM; Heraud JE; Daunt CP; Kaufmann T; Sandow J; O'Reilly LA; Callus BA; Lopez A; Strasser A; Vaux DL; Ekert PG. 2009. Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death Differ 16(4):555-63. [PubMed: 19079139]  [MGI Ref ID J:158076]

Jacob DA; Bengston CL; Forger NG. 2005. Effects of Bax gene deletion on muscle and motoneuron degeneration in a sexually dimorphic neuromuscular system. J Neurosci 25(23):5638-44. [PubMed: 15944391]  [MGI Ref ID J:98923]

Jacquin MF; Arends JJ; Xiang C; Shapiro LA; Ribak CE; Chen ZF. 2008. In DRG11 knock-out mice, trigeminal cell death is extensive and does not account for failed brainstem patterning. J Neurosci 28(14):3577-85. [PubMed: 18385316]  [MGI Ref ID J:133752]

Jamerson MH; Johnson MD; Korsmeyer SJ; Furth PA; Dickson RB. 2004. Bax regulates c-Myc-induced mammary tumour apoptosis but not proliferation in MMTV-c-myc transgenic mice. Br J Cancer 91(7):1372-9. [PubMed: 15354213]  [MGI Ref ID J:92916]

Janssen K; Horn S; Niemann MT; Daniel PT; Schulze-Osthoff K; Fischer U. 2009. Inhibition of the ER Ca2+ pump forces multidrug-resistant cells deficient in Bak and Bax into necrosis. J Cell Sci 122(Pt 24):4481-91. [PubMed: 19920074]  [MGI Ref ID J:155568]

Jeffers JR; Parganas E; Lee Y; Yang C; Wang J; Brennan J; MacLean KH; Han J; Chittenden T; Ihle JN; McKinnon PJ; Cleveland JL; Zambetti GP. 2003. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4(4):321-8. [PubMed: 14585359]  [MGI Ref ID J:115660]

Jeong YH; Kim JM; Yoo J; Lee SH; Kim HS; Suh YH. 2011. Environmental enrichment compensates for the effects of stress on disease progression in Tg2576 mice, an Alzheimer's disease model. J Neurochem 119(6):1282-93. [PubMed: 21967036]  [MGI Ref ID J:178457]

Jones RG; Bui T; White C; Madesh M; Krawczyk CM; Lindsten T; Hawkins BJ; Kubek S; Frauwirth KA; Wang YL; Conway SJ; Roderick HL; Bootman MD; Shen H; Foskett JK; Thompson CB. 2007. The Proapoptotic Factors Bax and Bak Regulate T Cell Proliferation through Control of Endoplasmic Reticulum Ca(2+) Homeostasis. Immunity 27(2):268-80. [PubMed: 17692540]  [MGI Ref ID J:124342]

Josefsson EC; Burnett DL; Lebois M; Debrincat MA; White MJ; Henley KJ; Lane RM; Moujalled D; Preston SP; O'Reilly LA; Pellegrini M; Metcalf D; Strasser A; Kile BT. 2014. Platelet production proceeds independently of the intrinsic and extrinsic apoptosis pathways. Nat Commun 5:3455. [PubMed: 24632563]  [MGI Ref ID J:210320]

Josefsson EC; James C; Henley KJ; Debrincat MA; Rogers KL; Dowling MR; White MJ; Kruse EA; Lane RM; Ellis S; Nurden P; Mason KD; O'Reilly LA; Roberts AW; Metcalf D; Huang DC; Kile BT. 2011. Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets. J Exp Med 208(10):2017-31. [PubMed: 21911424]  [MGI Ref ID J:177288]

Jung AR; Kim TW; Rhyu IJ; Kim H; Lee YD; Vinsant S; Oppenheim RW; Sun W. 2008. Misplacement of Purkinje cells during postnatal development in Bax knock-out mice: a novel role for programmed cell death in the nervous system? J Neurosci 28(11):2941-8. [PubMed: 18337425]  [MGI Ref ID J:132984]

Kang HR; Cho SJ; Lee CG; Homer RJ; Elias JA. 2007. Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-12. J Biol Chem 282(10):7723-32. [PubMed: 17209037]  [MGI Ref ID J:120886]

Karbowski M; Norris KL; Cleland MM; Jeong SY; Youle RJ. 2006. Role of Bax and Bak in mitochondrial morphogenesis. Nature 443(7112):658-62. [PubMed: 17035996]  [MGI Ref ID J:113296]

Kawai K; Itoh T; Itoh A; Horiuchi M; Wakayama K; Bannerman P; Garbern JY; Pleasure D; Lindsten T. 2009. Maintenance of the relative proportion of oligodendrocytes to axons even in the absence of BAX and BAK. Eur J Neurosci 30(11):2030-41. [PubMed: 20128842]  [MGI Ref ID J:157612]

Keeley PW; Zhou C; Lu L; Williams RW; Melmed S; Reese BE. 2014. Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics. Proc Natl Acad Sci U S A 111(25):9295-300. [PubMed: 24927528]  [MGI Ref ID J:212096]

Keramaris E; Ruzhynsky VA; Callaghan SM; Wong E; Davis RJ; Flavell R; Slack RS; Park DS. 2008. Required roles of Bax and JNKs in central and peripheral nervous system death of retinoblastoma-deficient mice. J Biol Chem 283(1):405-15. [PubMed: 17984095]  [MGI Ref ID J:130256]

Khaled AR; Li WQ; Huang J; Fry TJ; Khaled AS; Mackall CL; Muegge K; Young HA; Durum SK. 2002. Bax deficiency partially corrects interleukin-7 receptor alpha deficiency. Immunity 17(5):561-73. [PubMed: 12433363]  [MGI Ref ID J:93139]

Kim TW; Moon Y; Kim K; Lee JE; Koh HC; Rhyu IJ; Kim H; Sun W. 2011. Dissociation of progressive dopaminergic neuronal death and behavioral impairments by Bax deletion in a mouse model of Parkinson's diseases. PLoS One 6(10):e25346. [PubMed: 22043283]  [MGI Ref ID J:179717]

Kim WR; Chun SK; Kim TW; Kim H; Ono K; Takebayashi H; Ikenaka K; Oppenheim RW; Sun W. 2011. Evidence for the spontaneous production but massive programmed cell death of new neurons in the subcallosal zone of the postnatal mouse brain. Eur J Neurosci 33(4):599-611. [PubMed: 21219476]  [MGI Ref ID J:174460]

Kim WR; Kim Y; Eun B; Park OH; Kim H; Kim K; Park CH; Vinsant S; Oppenheim RW; Sun W. 2007. Impaired migration in the rostral migratory stream but spared olfactory function after the elimination of programmed cell death in Bax knock-out mice. J Neurosci 27(52):14392-403. [PubMed: 18160647]  [MGI Ref ID J:130972]

Kim WR; Park OH; Choi S; Choi SY; Park SK; Lee KJ; Rhyu IJ; Kim H; Lee YK; Kim HT; Oppenheim RW; Sun W. 2009. The maintenance of specific aspects of neuronal function and behavior is dependent on programmed cell death of adult-generated neurons in the dentate gyrus. Eur J Neurosci 29(7):1408-21. [PubMed: 19519627]  [MGI Ref ID J:150199]

Kim WR; Sun W. 2013. Enhanced odor discrimination learning in aged Bax-KO mice. Neurosci Lett 548:196-200. [PubMed: 23685130]  [MGI Ref ID J:201550]

Kinugasa T; Kudo N; Ozaki S. 2006. Peripheral targets influence sensory-motor connectivity in the neonatal spinal cord: sciatic nerve axotomy in Bax-deficient mice. Neurosci Res 54(1):30-7. [PubMed: 16290239]  [MGI Ref ID J:105117]

Kirkland RA; Saavedra GM; Cummings BS; Franklin JL. 2010. Bax regulates production of superoxide in both apoptotic and nonapoptotic neurons: role of caspases. J Neurosci 30(48):16114-27. [PubMed: 21123558]  [MGI Ref ID J:166748]

Kirsch DG; Dinulescu DM; Miller JB; Grimm J; Santiago PM; Young NP; Nielsen GP; Quade BJ; Chaber CJ; Schultz CP; Takeuchi O; Bronson RT; Crowley D; Korsmeyer SJ; Yoon SS; Hornicek FJ; Weissleder R; Jacks T. 2007. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat Med 13(8):992-7. [PubMed: 17676052]  [MGI Ref ID J:125101]

Kirsch DG; Santiago PM; di Tomaso E; Sullivan JM; Hou WS; Dayton T; Jeffords LB; Sodha P; Mercer KL; Cohen R; Takeuchi O; Korsmeyer SJ; Bronson RT; Kim CF; Haigis KM; Jain RK; Jacks T. 2010. p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science 327(5965):593-6. [PubMed: 20019247]  [MGI Ref ID J:156707]

Knudson CM; Johnson GM; Lin Y; Korsmeyer SJ. 2001. Bax accelerates tumorigenesis in p53-deficient mice. Cancer Res 61(2):659-65. [PubMed: 11212265]  [MGI Ref ID J:67325]

Knudson CM; Korsmeyer SJ. 1997. Bcl-2 and Bax function independently to regulate cell death. Nat Genet 16(4):358-63. [PubMed: 9241272]  [MGI Ref ID J:42051]

Knudson CM; Tung KS; Tourtellotte WG; Brown GA; Korsmeyer SJ. 1995. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270(5233):96-9. [PubMed: 7569956]  [MGI Ref ID J:29253]

Kodama T; Takehara T; Hikita H; Shimizu S; Shigekawa M; Li W; Miyagi T; Hosui A; Tatsumi T; Ishida H; Kanto T; Hiramatsu N; Yin XM; Hayashi N. 2011. BH3-only Activator Proteins Bid and Bim Are Dispensable for Bak/Bax-dependent Thrombocyte Apoptosis Induced by Bcl-xL Deficiency: MOLECULAR REQUISITES FOR THE MITOCHONDRIAL PATHWAY TO APOPTOSIS IN PLATELETS. J Biol Chem 286(16):13905-13. [PubMed: 21367852]  [MGI Ref ID J:171123]

Korhonen L; Hansson I; Maugras C; Wehrle R; Kairisalo M; Borgkvist A; Jokitalo E; Sotelo C; Fisone G; Dusart I; Lindholm D. 2008. Expression of X-chromosome linked inhibitor of apoptosis protein in mature Purkinje cells and in retinal bipolar cells in transgenic mice induces neurodegeneration. Neuroscience 156(3):515-26. [PubMed: 18765270]  [MGI Ref ID J:141181]

Koubova J; Hu YC; Bhattacharyya T; Soh YQ; Gill ME; Goodheart ML; Hogarth CA; Griswold MD; Page DC. 2014. Retinoic acid activates two pathways required for meiosis in mice. PLoS Genet 10(8):e1004541. [PubMed: 25102060]  [MGI Ref ID J:215225]

Kujjo LL; Laine T; Pereira RJ; Kagawa W; Kurumizaka H; Yokoyama S; Perez GI. 2010. Enhancing survival of mouse oocytes following chemotherapy or aging by targeting Bax and Rad51. PLoS One 5(2):e9204. [PubMed: 20169201]  [MGI Ref ID J:157991]

Kuruvilla R; Zweifel LS; Glebova NO; Lonze BE; Valdez G; Ye H; Ginty DD. 2004. A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118(2):243-55. [PubMed: 15260993]  [MGI Ref ID J:91949]

Laird DJ; Altshuler-Keylin S; Kissner MD; Zhou X; Anderson KV. 2011. Ror2 enhances polarity and directional migration of primordial germ cells. PLoS Genet 7(12):e1002428. [PubMed: 22216013]  [MGI Ref ID J:179805]

Lallemend F; Sterzenbach U; Hadjab-Lallemend S; Aquino JB; Castelo-Branco G; Sinha I; Villaescusa JC; Levanon D; Wang Y; Franck MC; Kharchenko O; Adameyko I; Linnarsson S; Groner Y; Turner E; Ernfors P. 2012. Positional differences of axon growth rates between sensory neurons encoded by Runx3. EMBO J 31(18):3718-29. [PubMed: 22903063]  [MGI Ref ID J:189922]

Lassot I; Robbins I; Kristiansen M; Rahmeh R; Jaudon F; Magiera MM; Mora S; Vanhille L; Lipkin A; Pettmann B; Ham J; Desagher S. 2010. Trim17, a novel E3 ubiquitin-ligase, initiates neuronal apoptosis. Cell Death Differ 17(12):1928-41. [PubMed: 20559321]  [MGI Ref ID J:186344]

Lechner SG; Frenzel H; Wang R; Lewin GR. 2009. Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO J 28(10):1479-91. [PubMed: 19322198]  [MGI Ref ID J:148796]

Lee J; Friese A; Mielich M; Sigrist M; Arber S. 2012. Scaling proprioceptor gene transcription by retrograde NT3 signaling. PLoS One 7(9):e45551. [PubMed: 23029089]  [MGI Ref ID J:191993]

Lee JW; Kim WR; Sun W; Jung MW. 2012. Disruption of Dentate Gyrus Blocks Effect of Visual Input on Spatial Firing of CA1 Neurons. J Neurosci 32(38):12999-3003. [PubMed: 22993417]  [MGI Ref ID J:188107]

Lee JW; Kim WR; Sun W; Jung MW. 2009. Role of dentate gyrus in aligning internal spatial map to external landmark. Learn Mem 16(9):530-6. [PubMed: 19706836]  [MGI Ref ID J:164948]

Lee SC; Cowgill EJ; Al-Nabulsi A; Quinn EJ; Evans SM; Reese BE. 2011. Homotypic regulation of neuronal morphology and connectivity in the mouse retina. J Neurosci 31(40):14126-33. [PubMed: 21976497]  [MGI Ref ID J:177107]

Lefebvre JL; Kostadinov D; Chen WV; Maniatis T; Sanes JR. 2012. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488(7412):517-21. [PubMed: 22842903]  [MGI Ref ID J:186772]

Lefebvre JL; Zhang Y; Meister M; Wang X; Sanes JR. 2008. {gamma}-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina. Development 135(24):4141-51. [PubMed: 19029044]  [MGI Ref ID J:142186]

Lei L; Laub F; Lush M; Romero M; Zhou J; Luikart B; Klesse L; Ramirez F; Parada LF. 2005. The zinc finger transcription factor Klf7 is required for TrkA gene expression and development of nociceptive sensory neurons. Genes Dev 19(11):1354-64. [PubMed: 15937222]  [MGI Ref ID J:98715]

Lewis J; Oyler GA; Ueno K; Fannjiang YR; Chau BN; Vornov J; Korsmeyer SJ; Zou S; Hardwick JM. 1999. Inhibition of virus-induced neuronal apoptosis by Bax. Nat Med 5(7):832-5. [PubMed: 10395331]  [MGI Ref ID J:124238]

Libby RT; Li Y; Savinova OV; Barter J; Smith RS; Nickells RW; John SW. 2005. Susceptibility to neurodegeneration in a glaucoma is modified by bax gene dosage. PLoS Genet 1(1):e4. [PubMed: 16103918]  [MGI Ref ID J:100118]

Lilley BN; Pan YA; Sanes JR. 2013. SAD kinases sculpt axonal arbors of sensory neurons through long- and short-term responses to neurotrophin signals. Neuron 79(1):39-53. [PubMed: 23790753]  [MGI Ref ID J:201695]

Lin L; Lee VM; Wang Y; Lin JS; Sock E; Wegner M; Lei L. 2011. Sox11 regulates survival and axonal growth of embryonic sensory neurons. Dev Dyn 240(1):52-64. [PubMed: 21117150]  [MGI Ref ID J:166964]

Lin MH; Leimeister C; Gessler M; Kopan R. 2000. Activation of the Notch pathway in the hair cortex leads to aberrant differentiation of the adjacent hair-shaft layers. Development 127(11):2421-32. [PubMed: 10804183]  [MGI Ref ID J:62217]

Lindenboim L; Kringel S; Braun T; Borner C; Stein R. 2005. Bak but not Bax is essential for Bcl-xS-induced apoptosis. Cell Death Differ 12(7):713-23. [PubMed: 15861188]  [MGI Ref ID J:111864]

Lindsten T; Golden JA; Zong WX; Minarcik J; Harris MH; Thompson CB. 2003. The proapoptotic activities of Bax and Bak limit the size of the neural stem cell pool. J Neurosci 23(35):11112-9. [PubMed: 14657169]  [MGI Ref ID J:87971]

Lindsten T; Ross AJ; King A; Zong WX; Rathmell JC; Shiels HA; Ulrich E; Waymire KG; Mahar P; Frauwirth K; Chen Y; Wei M; Eng VM; Adelman DM; Simon MC; Ma A; Golden JA; Evan G; Korsmeyer SJ; MacGregor GR; Thompson CB. 2000. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6(6):1389-99. [PubMed: 11163212]  [MGI Ref ID J:66872]

Lindsten T; Thompson CB. 2006. Cell death in the absence of Bax and Bak. Cell Death Differ 13(8):1272-6. [PubMed: 16676001]  [MGI Ref ID J:126409]

Liu J; Naegele JR; Lin SL. 2009. The DNA-PK catalytic subunit regulates Bax-mediated excitotoxic cell death by Ku70 phosphorylation. Brain Res 1296:164-75. [PubMed: 19664609]  [MGI Ref ID J:157421]

Lonze BE; Riccio A; Cohen S; Ginty DD. 2002. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34(3):371-85. [PubMed: 11988169]  [MGI Ref ID J:76363]

Lu MY; Liao F. 2011. Interferon-stimulated gene ISG12b2 is localized to the inner mitochondrial membrane and mediates virus-induced cell death. Cell Death Differ 18(6):925-36. [PubMed: 21151029]  [MGI Ref ID J:186970]

Lu X; Yang C; Yin C; Van Dyke T; Simin K. 2011. Apoptosis is the essential target of selective pressure against p53, whereas loss of additional p53 functions facilitates carcinoma progression. Mol Cancer Res 9(4):430-9. [PubMed: 21385880]  [MGI Ref ID J:205228]

Lu YP; Lou YR; Peng QY; Xie JG; Conney AH. 2004. Stimulatory effect of topical application of caffeine on UVB-induced apoptosis in the epidermis of p53 and Bax knockout mice. Cancer Res 64(14):5020-7. [PubMed: 15256477]  [MGI Ref ID J:91506]

Luciani DS; White SA; Widenmaier SB; Saran VV; Taghizadeh F; Hu X; Allard MF; Johnson JD. 2013. Bcl-2 and Bcl-xL suppress glucose signaling in pancreatic beta-cells. Diabetes 62(1):170-82. [PubMed: 22933114]  [MGI Ref ID J:208489]

Luedke AC; Boucher PO; Niel L; Holmes MM. 2013. Altered anxiety and defensive behaviors in Bax knockout mice. Behav Brain Res 239:115-20. [PubMed: 23142367]  [MGI Ref ID J:197074]

Lum JJ; Bauer DE; Kong M; Harris MH; Li C; Lindsten T; Thompson CB. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120(2):237-48. [PubMed: 15680329]  [MGI Ref ID J:97305]

Luo W; Wickramasinghe SR; Savitt JM; Griffin JW; Dawson TM; Ginty DD. 2007. A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpeptidergic DRG neurons. Neuron 54(5):739-54. [PubMed: 17553423]  [MGI Ref ID J:126484]

Ma CH; Omura T; Cobos EJ; Latremoliere A; Ghasemlou N; Brenner GJ; van Veen E; Barrett L; Sawada T; Gao F; Coppola G; Gertler F; Costigan M; Geschwind D; Woolf CJ. 2011. Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. J Clin Invest 121(11):4332-47. [PubMed: 21965333]  [MGI Ref ID J:178458]

Ma L; Lei L; Eng SR; Turner E; Parada LF. 2003. Brn3a regulation of TrkA/NGF receptor expression in developing sensory neurons. Development 130(15):3525-34. [PubMed: 12810599]  [MGI Ref ID J:83805]

Maatouk DM; Mork L; Chassot AA; Chaboissier MC; Capel B. 2013. Disruption of mitotic arrest precedes precocious differentiation and transdifferentiation of pregranulosa cells in the perinatal Wnt4 mutant ovary. Dev Biol 383(2):295-306. [PubMed: 24036309]  [MGI Ref ID J:203797]

Mandai K; Guo T; St Hillaire C; Meabon JS; Kanning KC; Bothwell M; Ginty DD. 2009. LIG family receptor tyrosine kinase-associated proteins modulate growth factor signals during neural development. Neuron 63(5):614-27. [PubMed: 19755105]  [MGI Ref ID J:154926]

Mann-Chandler MN; Kashyap M; Wright HV; Norozian F; Barnstein BO; Gingras S; Parganas E; Ryan JJ. 2005. IFN-gamma induces apoptosis in developing mast cells. J Immunol 175(5):3000-5. [PubMed: 16116187]  [MGI Ref ID J:113205]

Martin LJ; Kaiser A; Yu JW; Natale JE; Al-Abdulla NA. 2001. Injury-induced apoptosis of neurons in adult brain is mediated by p53-dependent and p53-independent pathways and requires Bax. J Comp Neurol 433(3):299-311. [PubMed: 11298357]  [MGI Ref ID J:121197]

Mason KD; Carpinelli MR; Fletcher JI; Collinge JE; Hilton AA; Ellis S; Kelly PN; Ekert PG; Metcalf D; Roberts AW; Huang DC; Kile BT. 2007. Programmed anuclear cell death delimits platelet life span. Cell 128(6):1173-86. [PubMed: 17382885]  [MGI Ref ID J:149205]

Mason KD; Lin A; Robb L; Josefsson EC; Henley KJ; Gray DH; Kile BT; Roberts AW; Strasser A; Huang DC; Waring P; O'Reilly LA. 2013. Proapoptotic Bak and Bax guard against fatal systemic and organ-specific autoimmune disease. Proc Natl Acad Sci U S A 110(7):2599-604. [PubMed: 23349374]  [MGI Ref ID J:194331]

McKenzie MD; Carrington EM; Kaufmann T; Strasser A; Huang DC; Kay TW; Allison J; Thomas HE. 2008. Proapoptotic BH3-only protein Bid is essential for death receptor-induced apoptosis of pancreatic beta-cells. Diabetes 57(5):1284-92. [PubMed: 18252892]  [MGI Ref ID J:135326]

McKenzie MD; Jamieson E; Jansen ES; Scott CL; Huang DC; Bouillet P; Allison J; Kay TW; Strasser A; Thomas HE. 2010. Glucose induces pancreatic islet cell apoptosis that requires the BH3-only proteins Bim and Puma and multi-BH domain protein Bax. Diabetes 59(3):644-52. [PubMed: 19959756]  [MGI Ref ID J:164154]

Mebratu YA; Dickey BF; Evans C; Tesfaigzi Y. 2008. The BH3-only protein Bik/Blk/Nbk inhibits nuclear translocation of activated ERK1/2 to mediate IFNgamma-induced cell death. J Cell Biol 183(3):429-39. [PubMed: 18981230]  [MGI Ref ID J:141068]

Merino D; Khaw SL; Glaser SP; Anderson DJ; Belmont LD; Wong C; Yue P; Robati M; Phipson B; Fairlie WD; Lee EF; Campbell KJ; Vandenberg CJ; Cory S; Roberts AW; Ludlam MJ; Huang DC; Bouillet P. 2012. Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 119(24):5807-16. [PubMed: 22538851]  [MGI Ref ID J:188645]

Metrailler S; Schorderet DF; Cottet S. 2012. Early apoptosis of rod photoreceptors in Rpe65(-/-) mice is associated with the upregulated expression of lysosomal-mediated autophagic genes. Exp Eye Res 96(1):70-81. [PubMed: 22227450]  [MGI Ref ID J:196780]

Middleton G; Cox SW; Korsmeyer S; Davies AM. 2000. Differences in bcl-2- and bax-independent function in regulating apoptosis in sensory neuron populations. Eur J Neurosci 12(3):819-27. [PubMed: 10762311]  [MGI Ref ID J:63350]

Middleton G; Davies AM. 2001. Populations of NGF-dependent neurones differ in their requirement for BAX to undergo apoptosis in the absence of NGF/TrkA signalling in vivo. Development 128(23):4715-28. [PubMed: 11731452]  [MGI Ref ID J:72722]

Misgeld T; Burgess RW; Lewis RM; Cunningham JM; Lichtman JW; Sanes JR. 2002. Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron 36(4):635-48. [PubMed: 12441053]  [MGI Ref ID J:91066]

Moqrich A; Earley TJ; Watson J; Andahazy M; Backus C; Martin-Zanca D; Wright DE; Reichardt LF; Patapoutian A. 2004. Expressing TrkC from the TrkA locus causes a subset of dorsal root ganglia neurons to switch fate. Nat Neurosci 7(8):812-8. [PubMed: 15247919]  [MGI Ref ID J:92099]

Morita Y; Maravei DV; Bergeron L; Wang S; Perez GI; Tsutsumi O; Taketani Y; Asano M; Horai R; Korsmeyer SJ; Iwakura Y; Yuan J; Tilly JL. 2001. Caspase-2 deficiency prevents programmed germ cell death resulting from cytokine insufficiency but not meiotic defects caused by loss of ataxia telangiectasia-mutated (Atm) gene function. Cell Death Differ 8(6):614-20. [PubMed: 11536012]  [MGI Ref ID J:115619]

Mosinger Ogilvie J; Deckwerth TL; Knudson CM; Korsmeyer SJ. 1998. Suppression of developmental retinal cell death but not of photoreceptor degeneration in Bax-deficient mice [published erratum appears in Invest Ophthalmol Vis Sci 1998 Nov;39(12):2244] Invest Ophthalmol Vis Sci 39(9):1713-20. [PubMed: 9699561]  [MGI Ref ID J:49526]

Moubarak RS; Yuste VJ; Artus C; Bouharrour A; Greer PA; Menissier-de Murcia J; Susin SA. 2007. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27(13):4844-62. [PubMed: 17470554]  [MGI Ref ID J:122803]

Myers CE; Bermudez-Hernandez K; Scharfman HE. 2013. The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS One 8(6):e68208. [PubMed: 23840835]  [MGI Ref ID J:204319]

Nakamura S; Senzaki K; Yoshikawa M; Nishimura M; Inoue K; Ito Y; Ozaki S; Shiga T. 2008. Dynamic regulation of the expression of neurotrophin receptors by Runx3. Development 135(9):1703-11. [PubMed: 18385258]  [MGI Ref ID J:134495]

Nikolaev A ; McLaughlin T ; O'Leary DD ; Tessier-Lavigne M. 2009. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232):981-9. [PubMed: 19225519]  [MGI Ref ID J:146602]

Nogueira CV; Lindsten T; Jamieson AM; Case CL; Shin S; Thompson CB; Roy CR. 2009. Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog 5(6):e1000478. [PubMed: 19521510]  [MGI Ref ID J:211458]

Okamoto T; Coultas L; Metcalf D; van Delft MF; Glaser SP; Takiguchi M; Strasser A; Bouillet P; Adams JM; Huang DC. 2014. Enhanced stability of Mcl1, a prosurvival Bcl2 relative, blunts stress-induced apoptosis, causes male sterility, and promotes tumorigenesis. Proc Natl Acad Sci U S A 111(1):261-6. [PubMed: 24363325]  [MGI Ref ID J:206385]

Owens TW; Foster FM; Valentijn A; Gilmore AP; Streuli CH. 2010. Role for X-linked Inhibitor of apoptosis protein upstream of mitochondrial permeabilization. J Biol Chem 285(2):1081-8. [PubMed: 19875445]  [MGI Ref ID J:161686]

Ozdinler PH; Macklis JD. 2006. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 9(11):1371-81. [PubMed: 17057708]  [MGI Ref ID J:114984]

Pardo J; Urban C; Galvez EM; Ekert PG; Muller U; Kwon-Chung J; Lobigs M; Mullbacher A; Wallich R; Borner C; Simon MM. 2006. The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice. J Cell Biol 174(4):509-19. [PubMed: 16893972]  [MGI Ref ID J:112620]

Park OH; Lee KJ; Rhyu IJ; Geum D; Kim H; Buss R; Oppenheim RW; Sun W. 2007. Bax-dependent and -independent death of motoneurons after facial nerve injury in adult mice. Eur J Neurosci 26(6):1421-32. [PubMed: 17822434]  [MGI Ref ID J:127254]

Patel AV; Krimm RF. 2010. BDNF is required for the survival of differentiated geniculate ganglion neurons. Dev Biol 340(2):419-29. [PubMed: 20122917]  [MGI Ref ID J:160265]

Patel TD; Jackman A; Rice FL; Kucera J; Snider WD. 2000. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo [see comments] Neuron 25(2):345-57. [PubMed: 10719890]  [MGI Ref ID J:60772]

Patel TD; Kramer I; Kucera J; Niederkofler V; Jessell TM; Arber S; Snider WD. 2003. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38(3):403-16. [PubMed: 12741988]  [MGI Ref ID J:83461]

Pei L; Shang Y; Jin H; Wang S; Wei N; Yan H; Wu Y; Yao C; Wang X; Zhu LQ; Lu Y. 2014. DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci 34(19):6546-56. [PubMed: 24806680]  [MGI Ref ID J:211044]

Pelzel HR; Schlamp CL; Waclawski M; Shaw MK; Nickells RW. 2012. Silencing of Fem1cR3 gene expression in the DBA/2J mouse precedes retinal ganglion cell death and is associated with histone deacetylase activity. Invest Ophthalmol Vis Sci 53(3):1428-35. [PubMed: 22297488]  [MGI Ref ID J:196753]

Pequignot MO; Provost AC; Salle S; Taupin P; Sainton KM; Marchant D; Martinou JC; Ameisen JC; Jais JP; Abitbol M. 2003. Major role of BAX in apoptosis during retinal development and in establishment of a functional postnatal retina. Dev Dyn 228(2):231-8. [PubMed: 14517994]  [MGI Ref ID J:85918]

Perez GI; Jurisicova A; Wise L; Lipina T; Kanisek M; Bechard A; Takai Y; Hunt P; Roder J; Grynpas M; Tilly JL. 2007. Absence of the proapoptotic Bax protein extends fertility and alleviates age-related health complications in female mice. Proc Natl Acad Sci U S A 104(12):5229-34. [PubMed: 17360389]  [MGI Ref ID J:120089]

Perez GI; Robles R; Knudson CM; Flaws JA; Korsmeyer SJ; Tilly JL. 1999. Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. Nat Genet 21(2):200-3. [PubMed: 9988273]  [MGI Ref ID J:52574]

Pestina TI; Cleveland JL; Yang C; Zambetti GP; Jackson CW. 2001. Mpl ligand prevents lethal myelosuppression by inhibiting p53-dependent apoptosis. Blood 98(7):2084-90. [PubMed: 11567994]  [MGI Ref ID J:115633]

Prasad T; Wang X; Gray PA; Weiner JA. 2008. A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-{gamma} gene cluster. Development 135(24):4153-64. [PubMed: 19029045]  [MGI Ref ID J:142349]

Prasad T; Weiner JA. 2011. Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the gamma-Protocadherins. Front Mol Neurosci 4:54. [PubMed: 22275881]  [MGI Ref ID J:190261]

Pritchard DM; Potten CS; Korsmeyer SJ; Roberts S; Hickman JA. 1999. Damage-induced apoptosis in intestinal epithelia from bcl-2-null and bax-null mice: investigations of the mechanistic determinants of epithelial apoptosis in vivo. Oncogene 18(51):7287-93. [PubMed: 10602483]  [MGI Ref ID J:59016]

Przemeck SM; Duckworth CA; Pritchard DM. 2007. Radiation-induced gastric epithelial apoptosis occurs in the proliferative zone and is regulated by p53, bak, bax, and bcl-2. Am J Physiol Gastrointest Liver Physiol 292(2):G620-7. [PubMed: 17068116]  [MGI Ref ID J:124814]

Qi Q; Huang W; Bai Y; Balmus G; Weiss RS; August A. 2012. A unique role for ITK in survival of invariant NKT cells associated with the p53-dependent pathway in mice. J Immunol 188(8):3611-9. [PubMed: 22403441]  [MGI Ref ID J:184083]

Qiu W; Carson-Walter EB; Liu H; Epperly M; Greenberger JS; Zambetti GP; Zhang L; Yu J. 2008. PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2(6):576-83. [PubMed: 18522850]  [MGI Ref ID J:149798]

Quach DH; Oliveira-Fernandes M; Gruner KA; Tourtellotte WG. 2013. A sympathetic neuron autonomous role for Egr3-mediated gene regulation in dendrite morphogenesis and target tissue innervation. J Neurosci 33(10):4570-83. [PubMed: 23467373]  [MGI Ref ID J:196371]

Rabionet M; van der Spoel AC; Chuang CC; von Tumpling-Radosta B; Litjens M; Bouwmeester D; Hellbusch CC; Korner C; Wiegandt H; Gorgas K; Platt FM; Grone HJ; Sandhoff R. 2008. Male germ cells require polyenoic sphingolipids with complex glycosylation for completion of meiosis: a link to ceramide synthase-3. J Biol Chem 283(19):13357-69. [PubMed: 18308723]  [MGI Ref ID J:137091]

Rakowicz WP; Staples CS; Milbrandt J; Brunstrom JE; Johnson EM Jr. 2002. Glial cell line-derived neurotrophic factor promotes the survival of early postnatal spinal motor neurons in the lateral and medial motor columns in slice culture. J Neurosci 22(10):3953-62. [PubMed: 12019314]  [MGI Ref ID J:126984]

Robinson AM; Conley DB; Kern RC. 2003. Olfactory neurons in bax knockout mice are protected from bulbectomy-induced apoptosis. Neuroreport 14(15):1891-4. [PubMed: 14561915]  [MGI Ref ID J:89724]

Rong Y; Wei P; Parris J; Guo H; Pattarini R; Correia K; Li L; Kusnoor SV; Deutch AY; Morgan JI. 2012. Comparison of Cbln1 and Cbln2 functions using transgenic and knockout mice. J Neurochem 120(4):528-40. [PubMed: 22117778]  [MGI Ref ID J:182277]

Ross AJ; Amy SP; Mahar PL; Lindsten T; Knudson CM; Thompson CB; Korsmeyer SJ; MacGregor GR. 2001. BCLW Mediates Survival of Postmitotic Sertoli Cells by Regulating BAX Activity. Dev Biol 239(2):295-308. [PubMed: 11784036]  [MGI Ref ID J:72582]

Rucker EB 3rd; Dierisseau P; Wagner KU; Garrett L; Wynshaw-Boris A; Flaws JA; Hennighausen L. 2000. Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis Mol Endocrinol 14(7):1038-52. [PubMed: 10894153]  [MGI Ref ID J:63161]

Ruiz-Vela A; Opferman JT; Cheng EH; Korsmeyer SJ. 2005. Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Rep 6(4):379-85. [PubMed: 15776018]  [MGI Ref ID J:97306]

Rundle CH; Wang X; Sheng MH; Wergedal JE; Lau KH; Mohan S. 2008. Bax deficiency in mice increases cartilage production during fracture repair through a mechanism involving increased chondrocyte proliferation without changes in apoptosis. Bone 43(5):880-8. [PubMed: 18708175]  [MGI Ref ID J:142303]

Runyan C; Gu Y; Shoemaker A; Looijenga L; Wylie C. 2008. The distribution and behavior of extragonadal primordial germ cells in Bax mutant mice suggest a novel origin for sacrococcygeal germ cell tumors. Int J Dev Biol 52(4):333-44. [PubMed: 18415933]  [MGI Ref ID J:133945]

Runyan C; Schaible K; Molyneaux K; Wang Z; Levin L; Wylie C. 2006. Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133(24):4861-9. [PubMed: 17107997]  [MGI Ref ID J:115283]

Russell LD; Chiarini-Garcia H; Korsmeyer SJ; Knudson CM. 2002. Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol Reprod 66(4):950-8. [PubMed: 11906913]  [MGI Ref ID J:75666]

Sanchez-Gomez MV; Alberdi E; Perez-Navarro E; Alberch J; Matute C. 2011. Bax and calpain mediate excitotoxic oligodendrocyte death induced by activation of both AMPA and kainate receptors. J Neurosci 31(8):2996-3006. [PubMed: 21414921]  [MGI Ref ID J:180921]

Schoenmann Z; Assa-Kunik E; Tiomny S; Minis A; Haklai-Topper L; Arama E; Yaron A. 2010. Axonal degeneration is regulated by the apoptotic machinery or a NAD+-sensitive pathway in insects and mammals. J Neurosci 30(18):6375-86. [PubMed: 20445064]  [MGI Ref ID J:160556]

Schoenwaelder SM; Yuan Y; Josefsson EC; White MJ; Yao Y; Mason KD; O'Reilly LA; Henley KJ; Ono A; Hsiao S; Willcox A; Roberts AW; Huang DC; Salem HH; Kile BT; Jackson SP. 2009. Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood 114(3):663-6. [PubMed: 19387006]  [MGI Ref ID J:150769]

Schweers RL; Zhang J; Randall MS; Loyd MR; Li W; Dorsey FC; Kundu M; Opferman JT; Cleveland JL; Miller JL; Ney PA. 2007. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A 104(49):19500-5. [PubMed: 18048346]  [MGI Ref ID J:141545]

Selimi F; Vogel MW; Mariani J. 2000. Bax inactivation in lurcher mutants rescues cerebellar granule cells but not purkinje cells or inferior olivary neurons. J Neurosci 20(14):5339-45. [PubMed: 10884318]  [MGI Ref ID J:63483]

Senzaki K; Ozaki S; Yoshikawa M; Ito Y; Shiga T. 2010. Runx3 is required for the specification of TrkC-expressing mechanoreceptive trigeminal ganglion neurons. Mol Cell Neurosci 43(3):296-307. [PubMed: 20034568]  [MGI Ref ID J:158404]

Shacka JJ; Klocke BJ; Young C; Shibata M; Olney JW; Uchiyama Y; Saftig P; Roth KA. 2007. Cathepsin D deficiency induces persistent neurodegeneration in the absence of Bax-dependent apoptosis. J Neurosci 27(8):2081-90. [PubMed: 17314303]  [MGI Ref ID J:141738]

Shi J; Miles DK; Orr BA; Massa SM; Kernie SG. 2007. Injury-induced neurogenesis in Bax-deficient mice: evidence for regulation by voltage-gated potassium channels. Eur J Neurosci 25(12):3499-512. [PubMed: 17610570]  [MGI Ref ID J:126093]

Shi J; Parada LF; Kernie SG. 2005. Bax limits adult neural stem cell persistance through caspase and IP3 receptor activation Cell Death Differ 12(12):1601-1612. [PubMed: 15947791]  [MGI Ref ID J:116534]

Shibata MA; Liu ML; Knudson MC; Shibata E; Yoshidome K; Bandey T ; Korsmeyer SJ ; Green JE. 1999. Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/SV40-TAg transgenic mice: reduction in protective apoptotic response at the preneoplastic stage. EMBO J 18(10):2692-701. [PubMed: 10329616]  [MGI Ref ID J:55778]

Shibue T; Takeda K; Oda E; Tanaka H; Murasawa H; Takaoka A; Morishita Y; Akira S; Taniguchi T; Tanaka N. 2003. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 17(18):2233-8. [PubMed: 12952892]  [MGI Ref ID J:85569]

Simon DJ; Weimer RM; McLaughlin T; Kallop D; Stanger K; Yang J; O'Leary DD; Hannoush RN; Tessier-Lavigne M. 2012. A caspase cascade regulating developmental axon degeneration. J Neurosci 32(49):17540-53. [PubMed: 23223278]  [MGI Ref ID J:193196]

Smith MI; Deshmukh M. 2007. Endoplasmic reticulum stress-induced apoptosis requires bax for commitment and Apaf-1 for execution in primary neurons. Cell Death Differ 14(5):1011-9. [PubMed: 17218955]  [MGI Ref ID J:139276]

Someya S; Xu J; Kondo K; Ding D; Salvi RJ; Yamasoba T; Rabinovitch PS; Weindruch R; Leeuwenburgh C; Tanokura M; Prolla TA. 2009. Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci U S A 106(46):19432-7. [PubMed: 19901338]  [MGI Ref ID J:154747]

Southwell DG; Paredes MF; Galvao RP; Jones DL; Froemke RC; Sebe JY; Alfaro-Cervello C; Tang Y; Garcia-Verdugo JM; Rubenstein JL; Baraban SC; Alvarez-Buylla A. 2012. Intrinsically determined cell death of developing cortical interneurons. Nature 491(7422):109-13. [PubMed: 23041929]  [MGI Ref ID J:189225]

Speiran K; Bailey DP; Fernando J; Macey M; Barnstein B; Kolawole M; Curley D; Watowich SS; Murray PJ; Oskeritzian C; Ryan JJ. 2009. Endogenous suppression of mast cell development and survival by IL-4 and IL-10. J Leukoc Biol 85(5):826-36. [PubMed: 19228815]  [MGI Ref ID J:149777]

Stallock J; Molyneaux K; Schaible K; Knudson CM; Wylie C. 2003. The pro-apoptotic gene Bax is required for the death of ectopic primordial germ cells during their migration in the mouse embryo. Development 130(26):6589-97. [PubMed: 14660547]  [MGI Ref ID J:86513]

Steckley D; Karajgikar M; Dale LB; Fuerth B; Swan P; Drummond-Main C; Poulter MO; Ferguson SS; Strasser A; Cregan SP. 2007. Puma is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J Neurosci 27(47):12989-99. [PubMed: 18032672]  [MGI Ref ID J:127640]

Steele AD; King OD; Jackson WS; Hetz CA; Borkowski AW; Thielen P; Wollmann R; Lindquist S. 2007. Diminishing apoptosis by deletion of Bax or overexpression of Bcl-2 does not protect against infectious prion toxicity in vivo. J Neurosci 27(47):13022-7. [PubMed: 18032675]  [MGI Ref ID J:141553]

Steimer DA; Boyd K; Takeuchi O; Fisher JK; Zambetti GP; Opferman JT. 2009. Selective roles for antiapoptotic MCL-1 during granulocyte development and macrophage effector function. Blood 113(12):2805-15. [PubMed: 19064728]  [MGI Ref ID J:146310]

Su H; Marcheva B; Meng S; Liang FA; Kohsaka A; Kobayashi Y; Xu AW; Bass J; Wang X. 2010. Gamma-protocadherins regulate the functional integrity of hypothalamic feeding circuitry in mice. Dev Biol 339(1):38-50. [PubMed: 20025866]  [MGI Ref ID J:157958]

Sun W; Gould TW; Vinsant S; Prevette D; Oppenheim RW. 2003. Neuromuscular development after the prevention of naturally occurring neuronal death by Bax deletion. J Neurosci 23(19):7298-310. [PubMed: 12917363]  [MGI Ref ID J:88191]

Sun W; Oppenheim RW. 2003. Response of motoneurons to neonatal sciatic nerve axotomy in Bax-knockout mice. Mol Cell Neurosci 24(4):875-86. [PubMed: 14697655]  [MGI Ref ID J:87200]

Sun W; Winseck A; Vinsant S; Park OH; Kim H; Oppenheim RW. 2004. Programmed cell death of adult-generated hippocampal neurons is mediated by the proapoptotic gene Bax. J Neurosci 24(49):11205-13. [PubMed: 15590937]  [MGI Ref ID J:96804]

Suo D; Park J; Harrington AW; Zweifel LS; Mihalas S; Deppmann CD. 2014. Coronin-1 is a neurotrophin endosomal effector that is required for developmental competition for survival. Nat Neurosci 17(1):36-45. [PubMed: 24270184]  [MGI Ref ID J:207835]

Suzuki A; Igarashi K; Aisaki K; Kanno J; Saga Y. 2010. NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc Natl Acad Sci U S A 107(8):3594-9. [PubMed: 20133598]  [MGI Ref ID J:157579]

Suzuki A; Saga Y. 2008. Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev 22(4):430-5. [PubMed: 18281459]  [MGI Ref ID J:132711]

Suzuki H; Aoyama Y; Senzaki K; Vincler M; Wittenauer S; Yoshikawa M; Ozaki S; Oppenheim RW; Shiga T. 2010. Characterization of sensory neurons in the dorsal root ganglia of Bax-deficient mice. Brain Res 1362:23-31. [PubMed: 20846512]  [MGI Ref ID J:166957]

Suzuki H; Tsuda M; Kiso M; Saga Y. 2008. Nanos3 maintains the germ cell lineage in the mouse by suppressing both Bax-dependent and -independent apoptotic pathways. Dev Biol 318(1):133-42. [PubMed: 18436203]  [MGI Ref ID J:136687]

Takeuchi O; Fisher J; Suh H; Harada H; Malynn BA; Korsmeyer SJ. 2005. Essential role of BAX,BAK in B cell homeostasis and prevention of autoimmune disease. Proc Natl Acad Sci U S A 102(32):11272-7. [PubMed: 16055554]  [MGI Ref ID J:100463]

Tesfaigzi Y; Fischer MJ; Daheshia M; Green FH; De Sanctis GT; Wilder JA. 2002. Bax is crucial for IFN-gamma-induced resolution of allergen-induced mucus cell metaplasia. J Immunol 169(10):5919-25. [PubMed: 12421976]  [MGI Ref ID J:80074]

Tessner TG; Muhale F; Riehl TE; Anant S; Stenson WF. 2004. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation. J Clin Invest 114(11):1676-85. [PubMed: 15578100]  [MGI Ref ID J:94433]

Tian H; Ma M. 2008. Activity plays a role in eliminating olfactory sensory neurons expressing multiple odorant receptors in the mouse septal organ. Mol Cell Neurosci 38(4):484-8. [PubMed: 18538580]  [MGI Ref ID J:141795]

Uesaka T; Enomoto H. 2010. Neural precursor death is central to the pathogenesis of intestinal aganglionosis in Ret hypomorphic mice. J Neurosci 30(15):5211-8. [PubMed: 20392943]  [MGI Ref ID J:159854]

Uesaka T; Jain S; Yonemura S; Uchiyama Y; Milbrandt J; Enomoto H. 2007. Conditional ablation of GFRalpha1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung's disease phenotype. Development 134(11):2171-81. [PubMed: 17507417]  [MGI Ref ID J:122607]

Uo T; Kinoshita Y; Morrison RS. 2007. Apoptotic actions of p53 require transcriptional activation of PUMA and do not involve a direct mitochondrial/cytoplasmic site of action in postnatal cortical neurons. J Neurosci 27(45):12198-210. [PubMed: 17989286]  [MGI Ref ID J:127443]

Upton JP; Austgen K; Nishino M; Coakley KM; Hagen A; Han D; Papa FR; Oakes SA. 2008. Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol 28(12):3943-51. [PubMed: 18426910]  [MGI Ref ID J:137299]

Vaughn AE; Deshmukh M. 2007. Essential postmitochondrial function of p53 uncovered in DNA damage-induced apoptosis in neurons. Cell Death Differ 14(5):973-81. [PubMed: 17218959]  [MGI Ref ID J:139242]

Vila M; Jackson-Lewis V; Vukosavic S; Djaldetti R; Liberatore G; Offen D; Korsmeyer SJ; Przedborski S. 2001. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 98(5):2837-42. [PubMed: 11226327]  [MGI Ref ID J:67861]

Villunger A; Scott C; Bouillet P; Strasser A. 2003. Essential role for the BH3-only protein Bim but redundant roles for Bax, Bcl-2, and Bcl-w in the control of granulocyte survival. Blood 101(6):2393-400. [PubMed: 12433687]  [MGI Ref ID J:82641]

Vince JE; Wong WW; Gentle I; Lawlor KE; Allam R; O'Reilly L; Mason K; Gross O; Ma S; Guarda G; Anderton H; Castillo R; Hacker G; Silke J; Tschopp J. 2012. Inhibitor of Apoptosis Proteins Limit RIP3 Kinase-Dependent Interleukin-1 Activation. Immunity 36(2):215-27. [PubMed: 22365665]  [MGI Ref ID J:181625]

Wang X; Eno CO; Altman BJ; Zhu Y; Zhao G; Olberding KE; Rathmell JC; Li C. 2011. ER stress modulates cellular metabolism. Biochem J 435(1):285-96. [PubMed: 21241252]  [MGI Ref ID J:170628]

Weiner JA; Wang X; Tapia JC; Sanes JR. 2005. Gamma protocadherins are required for synaptic development in the spinal cord. Proc Natl Acad Sci U S A 102(1):8-14. [PubMed: 15574493]  [MGI Ref ID J:95826]

Weinlich R; Oberst A; Dillon CP; Janke LJ; Milasta S; Lukens JR; Rodriguez DA; Gurung P; Savage C; Kanneganti TD; Green DR. 2013. Protective roles for caspase-8 and cFLIP in adult homeostasis. Cell Rep 5(2):340-8. [PubMed: 24095739]  [MGI Ref ID J:203778]

Werth JL; Deshmukh M; Cocabo J; Johnson EM Jr; Rothman SM. 2000. Reversible physiological alterations in sympathetic neurons deprived of NGF but protected from apoptosis by caspase inhibition or Bax deletion. Exp Neurol 161(1):203-11. [PubMed: 10683286]  [MGI Ref ID J:115320]

White FA; Keller-Peck CR; Knudson CM; Korsmeyer SJ; Snider WD. 1998. Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J Neurosci 18(4):1428-39. [PubMed: 9454852]  [MGI Ref ID J:45764]

White MJ; Schoenwaelder SM; Josefsson EC; Jarman KE; Henley KJ; James C; Debrincat MA; Jackson SP; Huang DC; Kile BT. 2012. Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function. Blood 119(18):4283-90. [PubMed: 22294729]  [MGI Ref ID J:185011]

Whitney IE; Raven MA; Ciobanu DC; Williams RW; Reese BE. 2009. Multiple genes on chromosome 7 regulate dopaminergic amacrine cell number in the mouse retina. Invest Ophthalmol Vis Sci 50(5):1996-2003. [PubMed: 19168892]  [MGI Ref ID J:149703]

Wickramasinghe SR; Alvania RS; Ramanan N; Wood JN; Mandai K; Ginty DD. 2008. Serum response factor mediates NGF-dependent target innervation by embryonic DRG sensory neurons. Neuron 58(4):532-45. [PubMed: 18498735]  [MGI Ref ID J:145293]

Winseck AK; Oppenheim RW. 2006. An in vivo analysis of Schwann cell programmed cell death in embryonic mice: the role of axons, glial growth factor, and the pro-apoptotic gene Bax. Eur J Neurosci 24(8):2105-17. [PubMed: 17042795]  [MGI Ref ID J:116994]

Wolpaw AJ; Shimada K; Skouta R; Welsch ME; Akavia UD; Pe'er D; Shaik F; Bulinski JC; Stockwell BR. 2011. Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc Natl Acad Sci U S A 108(39):E771-80. [PubMed: 21896738]  [MGI Ref ID J:176584]

Xiang C; Zhang KH; Yin J; Arends JJ; Erzurumlu RS; Jacquin MF; Chen ZF. 2010. The transcription factor, Lmx1b, is necessary for the development of the principal trigeminal nucleus-based lemniscal pathway. Mol Cell Neurosci 44(4):394-403. [PubMed: 20621716]  [MGI Ref ID J:164254]

Xiang CX; Zhang KH; Johnson RL; Jacquin MF; Chen ZF. 2012. The transcription factor, Lmx1b, promotes a neuronal glutamate phenotype and suppresses a GABA one in the embryonic trigeminal brainstem complex. Somatosens Mot Res 29(1):1-12. [PubMed: 22397680]  [MGI Ref ID J:200736]

Xiang J; Rir-Sim-Ah J; Tesfaigzi Y. 2008. IL-9 and IL-13 induce mucous cell metaplasia that is reduced by IFN-gamma in a Bax-mediated pathway. Am J Respir Cell Mol Biol 38(3):310-7. [PubMed: 17901408]  [MGI Ref ID J:146356]

Xu X; Qiao W; Linke SP; Cao L; Li WM; Furth PA; Harris CC; Deng CX. 2001. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 28(3):266-71. [PubMed: 11431698]  [MGI Ref ID J:70271]

Yamauchi J; Kumar A; Duarte L; Mehuron T; Girgenrath M. 2013. Triggering regeneration and tackling apoptosis: a combinatorial approach to treating congenital muscular dystrophy type 1 A. Hum Mol Genet 22(21):4306-17. [PubMed: 23773998]  [MGI Ref ID J:202292]

Yang L; Bula D; Arroyo JG; Chen DF. 2004. Preventing retinal detachment-associated photoreceptor cell loss in Bax-deficient mice. Invest Ophthalmol Vis Sci 45(2):648-54. [PubMed: 14744910]  [MGI Ref ID J:109756]

Yee KS; Wilkinson S; James J; Ryan KM; Vousden KH. 2009. PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ 16(8):1135-45. [PubMed: 19300452]  [MGI Ref ID J:164186]

Yin C; Knudson CM; Korsmeyer SJ; Van Dyke T. 1997. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385(6617):637-40. [PubMed: 9024662]  [MGI Ref ID J:38331]

Zaman F; Chrysis D; Huntjens K; Fadeel B; Savendahl L. 2012. Ablation of the pro-apoptotic protein Bax protects mice from glucocorticoid-induced bone growth impairment. PLoS One 7(3):e33168. [PubMed: 22442678]  [MGI Ref ID J:187038]

Zeng Q; Kwan A; Oakley B. 2000. Gustatory innervation and bax-dependent caspase-2: participants in the life and death pathways of mouse taste receptor cells. J Comp Neurol 424(4):640-50. [PubMed: 10931486]  [MGI Ref ID J:63729]

Zhao Y; Li S; Childs EE; Kuharsky DK; Yin XM. 2001. Activation of pro-death bcl-2 family proteins and mitochondria apoptosis pathway in tumor necrosis factor-alpha -induced liver injury. J Biol Chem 276(29):27432-40. [PubMed: 11369777]  [MGI Ref ID J:70549]

Zhu X; Libby RT; de Vries WN; Smith RS; Wright DL; Bronson RT; Seburn KL; John SW. 2012. Mutations in a P-type ATPase gene cause axonal degeneration. PLoS Genet 8(8):e1002853. [PubMed: 22912588]  [MGI Ref ID J:188127]

Zhu Y; Liu X; Hildeman D; Peyerl FW; White J; Kushnir E; Kappler J; Marrack P. 2006. Bax does not have to adopt its final form to drive T cell death. J Exp Med 203(5):1147-52. [PubMed: 16651384]  [MGI Ref ID J:124139]

Zong WX; Ditsworth D; Bauer DE; Wang ZQ; Thompson CB. 2004. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18(11):1272-82. [PubMed: 15145826]  [MGI Ref ID J:118568]

de Nooij JC; Doobar S; Jessell TM. 2013. Etv1 inactivation reveals proprioceptor subclasses that reflect the level of NT3 expression in muscle targets. Neuron 77(6):1055-68. [PubMed: 23522042]  [MGI Ref ID J:197913]

de Rivero Vaccari JC; Casey GP; Aleem S; Park WM; Corriveau RA. 2006. NMDA receptors promote survival in somatosensory relay nuclei by inhibiting Bax-dependent developmental cell death. Proc Natl Acad Sci U S A 103(45):16971-6. [PubMed: 17077143]  [MGI Ref ID J:117103]

de Vries GJ; Jardon M; Reza M; Rosen GJ; Immerman E; Forger NG. 2008. Sexual differentiation of vasopressin innervation of the brain: cell death versus phenotypic differentiation. Endocrinology 149(9):4632-7. [PubMed: 18499746]  [MGI Ref ID J:145504]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX11

Colony Maintenance

Breeding & HusbandryThe strain is maintained through heterozygous matings. BAX-deficient males are infertile and females are extremely poor breeders. Expected coat color from breeding:Black,Beige,Albino,Gray
Mating SystemHeterozygote x Heterozygote         (Female x Male)   01-MAR-06
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls

Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $232.00Female or MaleHeterozygous for Baxtm1Sjk  
$232.00Female or MaleHomozygous for Baxtm1Sjk  
Price per Pair (US dollars $)Pair Genotype
$464.00Heterozygous for Baxtm1Sjk x Heterozygous for Baxtm1Sjk  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $301.60Female or MaleHeterozygous for Baxtm1Sjk  
$301.60Female or MaleHomozygous for Baxtm1Sjk  
Price per Pair (US dollars $)Pair Genotype
$603.20Heterozygous for Baxtm1Sjk x Heterozygous for Baxtm1Sjk  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

   Wild-type from the colony
   000664 C57BL/6J
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

See Terms of Use tab for General Terms and Conditions

The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use

General Terms and Conditions

For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration


JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty


In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.