Strain Name:

FVB.129P2(B6)-Fmr1tm1Cgr/J

Stock Number:

003024

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Type Congenic; Mutant Strain; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
Background Strain FVB/NJ
Donor Strain B6,129P-Fmr1tm1Cgr (129P2 derived E14TG2a ES cell line)
 
Donating Investigator IMR Colony,   The Jackson Laboratory

Appearance
albino
Related Genotype: Tyrc/Tyrc

Important Note
This strain is homozygous for the retinal degeneration allele Pde6brd1.

Description
Mice homozygous for the Fmr1tm1Cg targeted mutation show macroorchidism (enlarged testes), learning deficits, and hyperactivity. Macroorchidism in caused by an increased rate of Sertoli cell proliferation during embryogenesis which may be independent of FSH signalling. Comparison of homozygotes to wildtype littermates in hidden- and visible-platform water maze learning showed deficits in spatial learning and motor performance.

Control Information

  Control
   001800 FVB/NJ
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Fmr1tm1Cgr allele
003025   B6.129P2-Fmr1tm1Cgr/J
004624   FVB.129P2-Pde6b+ Tyrc-ch Fmr1tm1Cgr/J
002700   FVB;129P-Fmr1tm1Cgr/J
View Strains carrying   Fmr1tm1Cgr     (3 strains)

Strains carrying   Pde6brd1 allele
004202   B6.C3 Pde6brd1 Hps4le/+ +-Lmx1adr-8J/J
000002   B6.C3-Pde6brd1 Hps4le/J
001022   B6C3FeF1/J a/a
000652   BDP/J
000653   BUB/BnJ
002439   C3.129P2(B6)-B2mtm1Unc/J
005494   C3.129S1(B6)-Grm1rcw/J
000509   C3.Cg-Lystbg-2J/J
000480   C3.MRL-Faslpr/J
001957   C3A Pde6brd1.O20/A-Prph2Rd2/J
004326   C3Bir.129P2(B6)-Il10tm1Cgn/Lt
003968   C3Bir.129P2(B6)-Il10tm1Cgn/LtJ
006435   C3Fe.SW-Soaa/MonJ
001904   C3H-Atcayji-hes/J
000659   C3H/HeJ
000511   C3H/HeJ-Ap3d1mh-2J/J
000784   C3H/HeJ-Faslgld/J
002433   C3H/HeJ-Sptbn4qv-lnd2J/J
005972   C3H/HeJBirLtJ
001824   C3H/HeJSxJ
000635   C3H/HeOuJ
000474   C3H/HeSn
001431   C3H/HeSn-ocd/J
000661   C3H/HeSnJ
002333   C3H/HeSnJ-gri/J
001576   C3He-Atp7btx-J/J
000658   C3HeB/FeJ
002588   C3HeB/FeJ-Eya1bor/J
001533   C3HeB/FeJ-Mc1rE-so Gli3Xt-J/J
001908   C3HfB/BiJ
001502   C3Sn.B6-Epha4rb/EiGrsrJ
002235   C3Sn.C3-Ctnna2cdf/J
001547   C3Sn.Cg-Cm/J
001906   C3fBAnl.Cg-Catb/AnlJ
000656   CBA/J
000813   CBA/J-Atp7aMo-pew/J
000660   DA/HuSnJ
000023   FL/1ReJ
000025   FL/4ReJ
002539   FVB.129P2-Abcb4tm1Bor/J
002935   FVB.129S2(B6)-Ccnd1tm1Wbg/J
002953   FVB.Cg-Tg(MMTVTGFA)254Rjc/J
003170   FVB.Cg-Tg(Myh6-tTA)6Smbf/J
003078   FVB.Cg-Tg(WapIgf1)39Dlr/J
003487   FVB.Cg-Tg(XGFAP-lacZ)3Mes/J
003257   FVB/N-Tg(GFAPGFP)14Mes/J
002856   FVB/N-Tg(TIE2-lacZ)182Sato/J
002384   FVB/N-Tg(UcpDta)1Kz/J
001800   FVB/NJ
001491   FVB/NMob
000804   HPG/BmJ
000734   MOLD/RkJ
000550   MOLF/EiJ
002423   NON/ShiLtJ
000679   P/J
000680   PL/J
000268   RSV/LeJ
000269   SB/LeJ
010968   SB;C3Sn-Lrp4mdig-2J/GrsrJ
005651   SJL.AK-Thy1a/TseJ
000686   SJL/J
000688   ST/bJ
004808   STOCK Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
002648   STOCK a/a Cln6nclf/J
000279   STOCK gr +/+ Ap3d1mh/J
005965   STOCK Tg(Pomc1-cre)16Lowl/J
004770   SW.B6-Soab/J
002023   SWR.M-Emv21 Emv22/J
000689   SWR/J
000939   SWR/J-Clcn1adr-mto/J
000692   WB/ReJ KitW/J
100410   WBB6F1/J-KitW/KitW-v/J
000693   WC/ReJ KitlSl/J
View Strains carrying   Pde6brd1     (73 strains)

Strains carrying other alleles of Fmr1
010504   B6.129-Fmr1tm1Rbd/J
008909   FVB.129-Fmr1tm1Rbd/J
View Strains carrying other alleles of Fmr1     (2 strains)

View Strains carrying other alleles of Pde6b     (13 strains)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Model with phenotypic similarity to human disease where etiologies involve orthologs. Human genes are associated with this disease. Orthologs of those genes appear in the mouse genotype(s).
Fragile X Mental Retardation Syndrome
- Model with phenotypic similarity to human disease where etiologies are distinct. Human genes are associated with this disease. Orthologs of these genes do not appear in the mouse genotype(s).
Autism
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Fragile X Tremor/Ataxia Syndrome; FXTAS   (FMR1)
Premature Ovarian Failure 1; POF1   (FMR1)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Fmr1tm1Cgr/Y

        FVB.129P2(B6)-Fmr1tm1Cgr/J
  • behavior/neurological phenotype
  • decreased startle reflex
    • startle response development is normal (at 118 dB) until 3-4 weeks of age, but does not increase as compared to controls   (MGI Ref ID J:113024)

Fmr1tm1Cgr/Y

        FVB.129P2(B6)-Pde6b+ Fmr1tm1Cgr
  • behavior/neurological phenotype
  • abnormal associative learning   (MGI Ref ID J:100197)
    • impaired cued conditioning behavior
      • mice exhibit reduced freezing compared to controls following CS-US pairings in trace fear conditioning paradigm   (MGI Ref ID J:100197)
      • mice exhibit reduced average freezing within the intertrial intervals   (MGI Ref ID J:100197)
      • there are no significant differences in locomotor activity, nociceptive responses and anxiety-like behaviors between mutants and controls   (MGI Ref ID J:100197)
  • nervous system phenotype
  • reduced long term potentiation
    • synaptic potentiation is blocked in anterior cingulated cortex (ACC) and lateral amygdala (LA) as determined by whole cell patch-clamp recordings,   (MGI Ref ID J:100197)
    • however, short-term synaptic plasticity and basal synaptic transmission are normal   (MGI Ref ID J:100197)
  • vision/eye phenotype
  • *normal* vision/eye phenotype
    • mice are wild-type for Pde6b and therefore sighted   (MGI Ref ID J:100197)

Fmr1tm1Cgr/Y

        either: FVB.129P2(B6)-Fmr1tm1Cgr/J or FVB;129P2(B6)-Fmr1tm1Cgr/J
  • behavior/neurological phenotype
  • audiogenic seizures
    • loud (115 dB) sound results in seizures   (MGI Ref ID J:85912)
    • seizures begin within 20-30 seconds and are characterized by wild running, erratic leaping, clonic convulsions and progress to tonic hindlimb extension, respiratory arrest and death   (MGI Ref ID J:85912)
    • seizures are age dependent and are not fully penetrant   (MGI Ref ID J:85912)
    • no seizures occur before 10 weeks of age   (MGI Ref ID J:85912)
    • 57% of mice exhibit seizures between 10-12 weeks; 70% of mice exhibit seizures between 20-34 weeks of age   (MGI Ref ID J:85912)
  • decreased startle reflex   (MGI Ref ID J:85912)
  • nervous system phenotype
  • audiogenic seizures
    • loud (115 dB) sound results in seizures   (MGI Ref ID J:85912)
    • seizures begin within 20-30 seconds and are characterized by wild running, erratic leaping, clonic convulsions and progress to tonic hindlimb extension, respiratory arrest and death   (MGI Ref ID J:85912)
    • seizures are age dependent and are not fully penetrant   (MGI Ref ID J:85912)
    • no seizures occur before 10 weeks of age   (MGI Ref ID J:85912)
    • 57% of mice exhibit seizures between 10-12 weeks; 70% of mice exhibit seizures between 20-34 weeks of age   (MGI Ref ID J:85912)
  • increased prepulse inhibition
    • both a low (75 dB) and higher (85 dB) prepulse inhibits startle response more efficiently as compared to wild-type   (MGI Ref ID J:85912)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Fmr1tm1Cgr/Fmr1tm1Cgr

        involves: 129P2/OlaHsd * C57BL/6J
  • behavior/neurological phenotype
  • hyperactivity
    • mutants show significantly more crossings through three infrared beams in an empty cage over 40 min   (MGI Ref ID J:19220)
  • increased exploration in new environment
    • mutants exhibit more exploratory behavior than controls, displaying more line crossings in the lit compartment   (MGI Ref ID J:19220)

Fmr1tm1Cgr/Fmr1tm1Cgr

        involves: 129P2/OlaHsd
  • behavior/neurological phenotype
  • increased startle reflex
    • in all eye blink conditioning training session the percentage and peak amplitudes of the startle responses were higher   (MGI Ref ID J:101021)
  • nervous system phenotype
  • abnormal Purkinje cell morphology
    • the percentage of single climbing fiber innervation is increased, the length of spine heads and necks is increased, and spines are more irregular   (MGI Ref ID J:101021)
  • abnormal dentate gyrus morphology
    • increased volume of the dentate gyrus (DG) in mutant mice   (MGI Ref ID J:159211)
  • abnormal long term depression
    • induction of long term depression in Purkinje cells is significantly enhanced when stimulating parallel fibers   (MGI Ref ID J:101021)
  • abnormal neuron differentiation
    • 60.4% decrease in neuronal differentiation compared with wild-type isolated adult neural progenitor/stem cells (aNPCs)   (MGI Ref ID J:159211)
    • 74.9% increase in astrocyte differentiation compared with wild-type isolated adult neural progenitor/stem cells (aNPCs)   (MGI Ref ID J:159211)
    • exogenously expressed wild-type gene, but not mutant (I304N) rescues both the neuronal and the astrocyte differentiation deficits in homozygous mutant cells   (MGI Ref ID J:159211)
    • reduced (10.4% ) neuronal differentiation but greater (75.7%) glial differentiation in aNPCs residing in the DG compared with wild-type mice   (MGI Ref ID J:159211)
  • abnormal neuronal precursor proliferation
    • increased proliferation of isolated aNPCs from both the forebrain and DG of adult homozygous mice   (MGI Ref ID J:159211)
    • 11% more cells in mitotic (G2/M) phase compared with wild-type controls   (MGI Ref ID J:159211)
    • increased proliferation of both stem and progenitor cells in the DG and subventricular zone of mutant mice   (MGI Ref ID J:159211)
    • normal proliferation of astrocytes in the DG of mutant mice   (MGI Ref ID J:159211)
  • cellular phenotype
  • abnormal neuron differentiation
    • 60.4% decrease in neuronal differentiation compared with wild-type isolated adult neural progenitor/stem cells (aNPCs)   (MGI Ref ID J:159211)
    • 74.9% increase in astrocyte differentiation compared with wild-type isolated adult neural progenitor/stem cells (aNPCs)   (MGI Ref ID J:159211)
    • exogenously expressed wild-type gene, but not mutant (I304N) rescues both the neuronal and the astrocyte differentiation deficits in homozygous mutant cells   (MGI Ref ID J:159211)
    • reduced (10.4% ) neuronal differentiation but greater (75.7%) glial differentiation in aNPCs residing in the DG compared with wild-type mice   (MGI Ref ID J:159211)
  • abnormal neuronal precursor proliferation
    • increased proliferation of isolated aNPCs from both the forebrain and DG of adult homozygous mice   (MGI Ref ID J:159211)
    • 11% more cells in mitotic (G2/M) phase compared with wild-type controls   (MGI Ref ID J:159211)
    • increased proliferation of both stem and progenitor cells in the DG and subventricular zone of mutant mice   (MGI Ref ID J:159211)
    • normal proliferation of astrocytes in the DG of mutant mice   (MGI Ref ID J:159211)

Fmr1tm1Cgr/Fmr1tm1Cgr

        B6.129P2-Fmr1tm1Cgr
  • reproductive system phenotype
  • increased testis weight   (MGI Ref ID J:171292)
    • testes are significantly heavier than wild-type   (MGI Ref ID J:119166)
  • behavior/neurological phenotype
  • *normal* behavior/neurological phenotype
    • mice on the C57BL/6 background, but not the FVB/NJ background, location of hidden escape platform in water maze after 6 days of training   (MGI Ref ID J:119166)
    • abnormal object recognition memory
      • mice exhibit reduced novel object recognition compared with wild-type mice   (MGI Ref ID J:171292)
    • decreased aggression towards mice
      • mice exhibit less social dominance compared with wild-type mice   (MGI Ref ID J:171292)
    • hyperactivity   (MGI Ref ID J:171292)
    • impaired conditioned place preference behavior
      • for a scent-paired chamber   (MGI Ref ID J:171292)
    • increased vertical activity   (MGI Ref ID J:171292)
  • growth/size/body phenotype
  • increased body weight   (MGI Ref ID J:171292)
  • endocrine/exocrine gland phenotype
  • increased testis weight   (MGI Ref ID J:171292)
    • testes are significantly heavier than wild-type   (MGI Ref ID J:119166)

Fmr1tm1Cgr/Y

        involves: 129P2/OlaHsd * C57BL/6 * FVB
  • behavior/neurological phenotype
  • audiogenic seizures
    • 72% of mice have a seizure in response to the test tone   (MGI Ref ID J:127792)
  • impaired passive avoidance behavior
    • mice exhibit reduced latency to enter box 24 hours after initiation of inhibitory avoidance test as compared to wildtype (inhibitory avoidance extinction behavior)   (MGI Ref ID J:127792)
  • nervous system phenotype
  • abnormal dendrite morphology
    • dendritic spine density is increased in comparison to wildtype   (MGI Ref ID J:127792)
    • abnormal dendritic spine morphology
      • density of dendritic spines along apical dendrites of layer V pyramidal cells is increased   (MGI Ref ID J:70399)
      • dendritic spine length is increased   (MGI Ref ID J:70399)
      • mice have fewer short mushroom-shaped spines than wild-type   (MGI Ref ID J:70399)
      • elongated spines are more prevalent in mutant mice   (MGI Ref ID J:70399)
  • abnormal nerve fiber response
    • brief monocular deprivation results in substantial open-eye potentiation rather than the expected deprived-eye depression   (MGI Ref ID J:127792)
  • audiogenic seizures
    • 72% of mice have a seizure in response to the test tone   (MGI Ref ID J:127792)
  • growth/size/body phenotype
  • increased body weight
    • 10% increase in body weight is observed by postnatal day 26, but is similar to wildtype by day 45   (MGI Ref ID J:127792)
  • endocrine/exocrine gland phenotype
  • increased testis weight
    • increase in weight is only observed in adult (11-12 weeks)   (MGI Ref ID J:127792)
  • reproductive system phenotype
  • increased testis weight
    • increase in weight is only observed in adult (11-12 weeks)   (MGI Ref ID J:127792)

Fmr1tm1Cgr/Y

        involves: 129P2/OlaHsd * C57BL/6J
  • behavior/neurological phenotype
  • abnormal spatial learning
    • mutants do not seem to be impaired in the retrieval of spatial and nonspatial information in training and reversal trials once this information has been learned, but they are impaired in their acquisition of the reversal task   (MGI Ref ID J:19220)
  • hyperactivity
    • mutants show significantly more crossings through three infrared beams in an empty cage over 40 min   (MGI Ref ID J:19220)
  • increased exploration in new environment
    • mutants exhibit more exploratory behavior than controls, displaying more line crossings in the lit compartment   (MGI Ref ID J:19220)
  • endocrine/exocrine gland phenotype
  • enlarged testis
    • macroorchidism develops over time   (MGI Ref ID J:19220)
    • increased testis weight
      • weight of testis increases over time, however no structural abnormalities are observed   (MGI Ref ID J:19220)
  • reproductive system phenotype
  • enlarged testis
    • macroorchidism develops over time   (MGI Ref ID J:19220)
    • increased testis weight
      • weight of testis increases over time, however no structural abnormalities are observed   (MGI Ref ID J:19220)

Fmr1tm1Cgr/Y

        involves: 129P2/OlaHsd
  • behavior/neurological phenotype
  • abnormal eye blink conditioning behavior
    • the percentage of conditioned responses was reduced in the 2nd - 4th training sessions and peak amplitude and peak velocity were reduced in the 3rd and 4th training sessions   (MGI Ref ID J:101021)
  • abnormal spatial learning
    • in the reversal trials of the Morris water maze, mutants take more time to escape to the platform than controls   (MGI Ref ID J:34449)
  • increased startle reflex
    • in all eye blink conditioning training session the percentage and peak amplitudes of the startle responses were higher   (MGI Ref ID J:101021)
  • endocrine/exocrine gland phenotype
  • enlarged testis
    • progressive enlargement resulting in testes that were 34% bigger than those of wild-type by 168-170 days of age   (MGI Ref ID J:34449)
    • macroorchidism decreases somewhat after 168-170 days of age   (MGI Ref ID J:34449)
    • increased testis weight   (MGI Ref ID J:34449)
  • reproductive system phenotype
  • enlarged testis
    • progressive enlargement resulting in testes that were 34% bigger than those of wild-type by 168-170 days of age   (MGI Ref ID J:34449)
    • macroorchidism decreases somewhat after 168-170 days of age   (MGI Ref ID J:34449)
    • increased testis weight   (MGI Ref ID J:34449)
  • nervous system phenotype
  • abnormal Purkinje cell morphology
    • the percentage of single climbing fiber innervation is increased, the length of spine heads and necks is increased, and spines are more irregular   (MGI Ref ID J:101021)
  • abnormal long term depression
    • induction of long term depression in Purkinje cells is significantly enhanced when stimulating parallel fibers   (MGI Ref ID J:101021)

Fmr1tm1Cgr/Y

        involves: 129P2/OlaHsd * FVB
  • behavior/neurological phenotype
  • convulsive seizures
    • some mice exhibit bilateral motor seizures that range from head twitching to forelimb and hindlimb clonus, loss of postural control and tonic twisting of head and torso   (MGI Ref ID J:113177)
    • tonic-clonic seizures
      • observed in some mice   (MGI Ref ID J:113177)
  • decreased anxiety-related response
    • total number of entries in arms of elevated plus maze was significantly decreased as compared to littermate control in one of the two cohorts tested   (MGI Ref ID J:151144)
  • impaired coordination
    • mice on the C57BL/6 background have longer latencies on the rotarod test than mice on the mixed FVB and 129P2 background, however, the difference between mutant and control on the mixed FVB and 129P2 background is not significant   (MGI Ref ID J:151144)
  • increased anxiety-related response
    • percentage of entries and percentage of time spent in arms of elevated plus maze is significantly increased as compared to Fmr1tm1Cgr mice on the C57BL/6 background, however, the difference between mutant and control on the mixed FVB and 129P2 background is not significant   (MGI Ref ID J:151144)
    • distance traveled in open field test is increased as compared to control   (MGI Ref ID J:151144)
  • increased exploration in new environment
    • distance traveled in open field test is increased as compared to control   (MGI Ref ID J:151144)
  • social withdrawal
    • mice spend more time in an empty cage than in a cage with a strange mouse in sociability choice test   (MGI Ref ID J:151144)
  • growth/size/body phenotype
  • increased body weight
    • body weight was significantly increased in one of the two cohorts tested   (MGI Ref ID J:151144)
  • nervous system phenotype
  • abnormal hippocampal mossy fiber morphology
    • density of Timm granules (Timm staining identifies neural elements that contain heavy metals) in zinc-rich mossy fiber terminals is increased in inner molecular layer and close to the hilus in the stratum oriens   (MGI Ref ID J:113177)
  • convulsive seizures
    • some mice exhibit bilateral motor seizures that range from head twitching to forelimb and hindlimb clonus, loss of postural control and tonic twisting of head and torso   (MGI Ref ID J:113177)
    • tonic-clonic seizures
      • observed in some mice   (MGI Ref ID J:113177)
  • vision/eye phenotype
  • *normal* vision/eye phenotype   (MGI Ref ID J:151144)
    • mice are wild-type at the Pde6b locus and are therefore not blind   (MGI Ref ID J:113177)

Fmr1tm1Cgr/Y

        FVB.129P2-Pde6b+ Tyrc-ch Fmr1tm1Cgr/J
  • behavior/neurological phenotype
  • abnormal locomotor activation
    • overall locomotor activity is increased as compared to wild-type   (MGI Ref ID J:171069)
    • mice on the FVB background are more active as compared to mice on the C57BL/6 background   (MGI Ref ID J:171069)
  • abnormal response to novelty
    • mice do not explore the novelty stimulus mouse in the social novelty preference test   (MGI Ref ID J:171069)
    • mice on the C57BL/6 background, but not the FVB background, exhibit an increased tendency to attack a juvenile stimulus mouse   (MGI Ref ID J:171069)
    • increased exploration in new environment
      • levels of spontaneous alternation and entries into maze arms are increased on the FVB background as compared to the C57BL/6 background   (MGI Ref ID J:171069)
      • however, exploration does not differ between mutant and wild-type   (MGI Ref ID J:171069)
  • abnormal social investigation
    • mice do not explore the novelty stimulus mouse in the social novelty preference test   (MGI Ref ID J:171069)
    • mice spend less time in non-social activities; the effect is more pronounced on the FVB background as compared to C57BL/6   (MGI Ref ID J:171069)
    • mice spend less time in affiliative behaviors; the effect is more pronounced on the C57BL/6 background as compared to FVB   (MGI Ref ID J:171069)
  • abnormal vocalization
    • mice exhibit an increase in the number of vocalization and duration on FVB background as compared to the C57BL/6 background   (MGI Ref ID J:171069)
  • decreased startle reflex
    • startle response is less prominent with increased pulse intensity as compared to wild-type   (MGI Ref ID J:171069)
    • mice on the C57BL/6 background exhibit stronger responses to 100 dBa pulse and lower responses to the 120 dBa pulse as compared to FVB   (MGI Ref ID J:171069)
  • nervous system phenotype
  • increased prepulse inhibition
    • magnitude of prepulse inhibition is enhanced although the effect is more prominent on the C57BL/6 background as compared to the FVB background   (MGI Ref ID J:171069)

Fmr1tm1Cgr/Y

        B6.129P2-Fmr1tm1Cgr/Nwu
  • behavior/neurological phenotype
  • *normal* behavior/neurological phenotype
    • levels of spontaneous alternation and entries into maze arms are increased on the FVB background as compared to the C57BL/6 background, however, exploration does not differ between mutant and wild-type   (MGI Ref ID J:171069)
    • mice exhibit an increase in the number of vocalization and duration on FVB background as compared to the C57BL/6 background   (MGI Ref ID J:171069)
    • abnormal locomotor activation
      • overall locomotor activity is increased as compared to wild-type   (MGI Ref ID J:171069)
      • mice on the FVB background are more active as compared to the C57BL/6 background   (MGI Ref ID J:171069)
    • abnormal response to novelty
      • mice do not preferentially explore the novelty stimulus mouse as compared to the familiar mouse in the social novelty preference test   (MGI Ref ID J:171069)
    • abnormal social investigation
      • mice do not preferentially explore the novelty stimulus mouse as compared to the familiar mouse in the social novelty preference test   (MGI Ref ID J:171069)
      • mice spend less time in non-social activities; the effect is more pronounced on the FVB background as compared to C57BL/6   (MGI Ref ID J:171069)
      • mice spend less time in affiliative behaviors; the effect is more pronounced on the C57BL/6 background as compared to FVB   (MGI Ref ID J:171069)
    • decreased startle reflex
      • startle response is less prominent with increased pulse intensity as compared to wild-type   (MGI Ref ID J:171069)
      • mice on the C57BL/6 background exhibit stronger responses to 100 dBa pulse and lower responses to the 120 dBa pulse as compared to FVB   (MGI Ref ID J:171069)
    • increased aggression towards mice
      • mice on the C57BL/6 background, but not the FVB background, exhibit an increased tendency to attack a juvenile stimulus mouse   (MGI Ref ID J:171069)
    • increased grooming behavior
      • mice spend more time self-grooming; the effect is more pronounced on the C57BL/6 background as compared to the FVB background   (MGI Ref ID J:171069)
  • nervous system phenotype
  • increased prepulse inhibition
    • magnitude of prepulse inhibition is enhanced although the effect is more prominent on the C57BL/6 background as compared to the FVB background   (MGI Ref ID J:171069)

Fmr1tm1Cgr/Y

        involves: 129P2/OlaHsd * FVB/NJ
  • behavior/neurological phenotype
  • abnormal spatial learning
    • mice do not learn location of hidden escape platform in water maze after 6 days of training   (MGI Ref ID J:119166)
    • in contrast, mice on the C57BL/6 background learned platform location and performed similar to wild-type   (MGI Ref ID J:119166)
  • endocrine/exocrine gland phenotype
  • increased testis weight
    • testes are significantly heavier than wild-type   (MGI Ref ID J:119166)
  • vision/eye phenotype
  • *normal* vision/eye phenotype
    • mice have at least one wild-type allele of Pde6b and therefore lack vison impairments commonly seen in FVB mice   (MGI Ref ID J:119166)
  • reproductive system phenotype
  • increased testis weight
    • testes are significantly heavier than wild-type   (MGI Ref ID J:119166)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Fmr1tm1Cgr related

Developmental Biology Research
Internal/Organ Defects
      multiple

Neurobiology Research
Behavioral and Learning Defects
Fragile X Mental Retardation Syndrome

Pde6brd1 related

Sensorineural Research
Retinal Degeneration

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Fmr1tm1Cgr
Allele Name targeted mutation 1, Ben Oostra
Allele Type Targeted (Null/Knockout)
Common Name(s) FMRP KO; Fmr1 KO; Fmr1tm4Cgr; FraX; fmr-tm1Cgr;
Mutation Made ByDr. Ben Oostra,   Erasmus University
Strain of Origin129P2/OlaHsd
ES Cell Line NameE14
ES Cell Line Strain129P2/OlaHsd
Gene Symbol and Name Fmr1, fragile X mental retardation syndrome 1
Chromosome X
Gene Common Name(s) FMRP; FRAXA; Fmr-1; POF; POF1;
General Note Genbank: AF179463 and AF170530
Molecular Note A neomycin resistance gene was inserted into exon 5. RT-PCR analysis on testis RNA derived from hemizygous male mice demonstrated that no detectable transcript was produced from this allele, and western blot analysis on extracts of testes, liver, kidneyand brain of hemizygous male mice confirmed that no stable encoded protein was made. [MGI Ref ID J:19220]
 
Allele Symbol Pde6brd1
Allele Name retinal degeneration 1
Allele Type Spontaneous
Common Name(s) Pdebrd1; rd; rd-1; rd1; rodless retina;
Strain of Originvarious
Gene Symbol and Name Pde6b, phosphodiesterase 6B, cGMP, rod receptor, beta polypeptide
Chromosome 5
Gene Common Name(s) CSNB3; CSNBAD2; PDEB; Pdeb; RP40; nmf137; phosphodiesterase, cGMP, rod receptor, beta polypeptide; r; rd; rd-1; rd1; rd10; retinal degeneration; retinal degeneration 1; retinal degeneration 10;
General Note The following inbred strains are known to be homozygous for Pde6b: C3H sublines, CBA/J, FVB/NJ, PL/J, SB, SJL/J, and SWR/J.
Molecular Note Two mutations have been identified in rd1 mice. A murine leukimia virus (Xmv-28) insertion in reverse orientation in intron 1 is found in all mouse strains with the rd1 phenotype. Further, a nonsense mutation (C to A transversion) in codon 347 that results in a truncation eliminating more than half of the predicted encoded protein, including the catalytic domain has also been identified in all rd1 strains of mice. A specific degradation of mutant transcript during or after pre-mRNA splicing is suggested. [MGI Ref ID J:11513] [MGI Ref ID J:4366] [MGI Ref ID J:51361]

Genotyping

Genotyping Information

Genotyping Protocols

Fmr1tm1Cgr,

Separated MCA


Fmr1tm1Cgr, Melt Curve Analysis
Fmr1tm1Cgr, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Bakker CE; Verheij C; Willemsen R; Vanderhelm R; Oerlemans F; Vermey M; Bygrave A; Hoogeveen AT; Oostra BA; Reyniers E; Deboulle K; Dhooge R; Cras P; Vanvelzen D; Nagels G; Martin JJ; Dedyn PP; Darby JK; Willems PJ; The Dutch-Belgium Fragile X Consortium. 1994. Fmr1 knockout mice: a model to study fragile x mental retardation. The Dutch-Belgium Fragile X Consortium Cell 78(1):23-33. [PubMed: 8033209]  [MGI Ref ID J:19220]

Additional References

Chen L; Toth M. 2001. Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 103(4):1043-50. [PubMed: 11301211]  [MGI Ref ID J:85912]

Comery TA; Harris JB; Willems PJ; Oostra BA; Irwin SA; Weiler IJ; Greenough WT. 1997. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 94(10):5401-4. [PubMed: 9144249]  [MGI Ref ID J:70399]

Godfraind JM; Reyniers E; De Boulle K; D'Hooge R; De Deyn PP; Bakker CE; Oostra BA; Kooy RF; Willems PJ. 1996. Long-term potentiation in the hippocampus of fragile X knockout mice. Am J Med Genet 64(2):246-51. [PubMed: 8844057]  [MGI Ref ID J:34552]

Kooy RF; D'Hooge R; Reyniers E; Bakker CE; Nagels G; De Boulle K; Storm K; Clincke G; De Deyn PP; Oostra BA; Willems PJ. 1996. Transgenic mouse model for the fragile X syndrome. Am J Med Genet 64(2):241-5. [PubMed: 8844056]  [MGI Ref ID J:34449]

Oostra BA; Willems PJ. 1995. A fragile gene. Bioessays 17(11):941-7. [PubMed: 8526888]  [MGI Ref ID J:41538]

Paradee W; Melikian HE; Rasmussen DL; Kenneson A; Conn PJ; Warren ST. 1999. Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 94(1):185-92. [PubMed: 10613508]  [MGI Ref ID J:59781]

Qin M; Kang J; Smith CB. 2002. Increased rates of cerebral glucose metabolism in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99(24):15758-63. [PubMed: 12427968]  [MGI Ref ID J:80518]

Reyniers E; Van Bockstaele DR; De Boulle K; Kooy RF; Bakker CE; Oostra BA; Willems PJ. 1996. Mean corpuscular hemoglobin is not increased in Fmr1 knockout mice. Hum Genet 97(1):49-50. [PubMed: 8557260]  [MGI Ref ID J:31093]

Slegtenhorst-Eegdeman KE; de Rooij DG; Verhoef-Post M; van de Kant HJ; Bakker CE; Oostra BA; Grootegoed JA; Themmen AP. 1998. Macroorchidism in FMR1 knockout mice is caused by increased Sertoli cell proliferation during testicular development. Endocrinology 139(1):156-62. [PubMed: 9421410]  [MGI Ref ID J:44826]

Fmr1tm1Cgr related

Achuta VS; Rezov V; Uutela M; Louhivuori V; Louhivuori L; Castren ML. 2014. Tissue plasminogen activator contributes to alterations of neuronal migration and activity-dependent responses in fragile X mice. J Neurosci 34(5):1916-23. [PubMed: 24478370]  [MGI Ref ID J:206954]

Antar LN; Li C; Zhang H; Carroll RC; Bassell GJ. 2006. Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol Cell Neurosci 32(1-2):37-48. [PubMed: 16631377]  [MGI Ref ID J:111946]

Ascano M Jr; Mukherjee N; Bandaru P; Miller JB; Nusbaum JD; Corcoran DL; Langlois C; Munschauer M; Dewell S; Hafner M; Williams Z; Ohler U; Tuschl T. 2012. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492(7429):382-6. [PubMed: 23235829]  [MGI Ref ID J:194411]

Aschrafi A; Cunningham BA; Edelman GM; Vanderklish PW. 2005. The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain. Proc Natl Acad Sci U S A 102(6):2180-5. [PubMed: 15684045]  [MGI Ref ID J:96472]

Auerbach BD; Osterweil EK; Bear MF. 2011. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480(7375):63-8. [PubMed: 22113615]  [MGI Ref ID J:178293]

Baker KB; Wray SP; Ritter R; Mason S; Lanthorn TH; Savelieva KV. 2010. Male and female Fmr1 knockout mice on C57 albino background exhibit spatial learning and memory impairments. Genes Brain Behav 9(6):562-74. [PubMed: 20398059]  [MGI Ref ID J:175059]

Bakker CE; de Diego Otero Y; Bontekoe C; Raghoe P; Luteijn T; Hoogeveen AT; Oostra BA; Willemsen R. 2000. Immunocytochemical and biochemical characterization of FMRP, FXR1P, and FXR2P in the mouse Exp Cell Res 258(1):162-70. [PubMed: 10912798]  [MGI Ref ID J:63269]

Bilousova TV; Dansie L; Ngo M; Aye J; Charles JR; Ethell DW; Ethell IM. 2009. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46(2):94-102. [PubMed: 18835858]  [MGI Ref ID J:200885]

Bongmba OY; Martinez LA; Elhardt ME; Butler K; Tejada-Simon MV. 2011. Modulation of dendritic spines and synaptic function by Rac1: A possible link to Fragile X syndrome pathology. Brain Res 1399:79-95. [PubMed: 21645877]  [MGI Ref ID J:174070]

Braun K; Segal M. 2000. FMRP involvement in formation of synapses among cultured hippocampal neurons. Cereb Cortex 10(10):1045-52. [PubMed: 11007555]  [MGI Ref ID J:102340]

Brennan FX; Albeck DS; Paylor R. 2006. Fmr1 knockout mice are impaired in a leverpress escape/avoidance task. Genes Brain Behav 5(6):467-71. [PubMed: 16923151]  [MGI Ref ID J:123642]

Brown MR; Kronengold J; Gazula VR; Chen Y; Strumbos JG; Sigworth FJ; Navaratnam D; Kaczmarek LK. 2010. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat Neurosci 13(7):819-21. [PubMed: 20512134]  [MGI Ref ID J:161627]

Bureau I; Shepherd GM; Svoboda K. 2008. Circuit and plasticity defects in the developing somatosensory cortex of FMR1 knock-out mice. J Neurosci 28(20):5178-88. [PubMed: 18480274]  [MGI Ref ID J:136321]

Busquets-Garcia A; Gomis-Gonzalez M; Guegan T; Agustin-Pavon C; Pastor A; Mato S; Perez-Samartin A; Matute C; de la Torre R; Dierssen M; Maldonado R; Ozaita A. 2013. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med 19(5):603-7. [PubMed: 23542787]  [MGI Ref ID J:198359]

Centonze D; Rossi S; Mercaldo V; Napoli I; Ciotti MT; De Chiara V; Musella A; Prosperetti C; Calabresi P; Bernardi G; Bagni C. 2008. Abnormal striatal GABA transmission in the mouse model for the fragile X syndrome. Biol Psychiatry 63(10):963-73. [PubMed: 18028882]  [MGI Ref ID J:139619]

Centonze D; Rossi S; Napoli I; Mercaldo V; Lacoux C; Ferrari F; Ciotti MT; De Chiara V; Prosperetti C; Maccarrone M; Fezza F; Calabresi P; Bernardi G; Bagni C. 2007. The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum. J Neurosci 27(33):8885-92. [PubMed: 17699670]  [MGI Ref ID J:145252]

Chen L; Toth M. 2001. Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 103(4):1043-50. [PubMed: 11301211]  [MGI Ref ID J:85912]

Chen LY; Rex CS; Babayan AH; Kramar EA; Lynch G; Gall CM; Lauterborn JC. 2010. Physiological activation of synaptic Rac>PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J Neurosci 30(33):10977-84. [PubMed: 20720104]  [MGI Ref ID J:163307]

Chuang SC; Zhao W; Bauchwitz R; Yan Q; Bianchi R; Wong RK. 2005. Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model. J Neurosci 25(35):8048-55. [PubMed: 16135762]  [MGI Ref ID J:100474]

Comery TA; Harris JB; Willems PJ; Oostra BA; Irwin SA; Weiler IJ; Greenough WT. 1997. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 94(10):5401-4. [PubMed: 9144249]  [MGI Ref ID J:70399]

Cruz-Martin A; Crespo M; Portera-Cailliau C. 2010. Delayed stabilization of dendritic spines in fragile X mice. J Neurosci 30(23):7793-803. [PubMed: 20534828]  [MGI Ref ID J:160891]

D'Antuono M; Merlo D; Avoli M. 2003. Involvement of cholinergic and gabaergic systems in the fragile X knockout mice. Neuroscience 119(1):9-13. [PubMed: 12763063]  [MGI Ref ID J:126733]

D'Hooge R; Nagels G; Franck F; Bakker CE; Reyniers E; Storm K ; Kooy RF ; Oostra BA ; Willems PJ ; De Deyn PP. 1997. Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience 76(2):367-76. [PubMed: 9015322]  [MGI Ref ID J:38436]

D'Hulst C; De Geest N; Reeve SP; Van Dam D; De Deyn PP; Hassan BA; Kooy RF. 2006. Decreased expression of the GABA(A) receptor in fragile X syndrome. Brain Res 1121(1):238-45. [PubMed: 17046729]  [MGI Ref ID J:115258]

D'Hulst C; Heulens I; Brouwer JR; Willemsen R; De Geest N; Reeve SP; De Deyn PP; Hassan BA; Kooy RF. 2009. Expression of the GABAergic system in animal models for fragile X syndrome and fragile X associated tremor/ataxia syndrome (FXTAS). Brain Res 1253:176-83. [PubMed: 19070606]  [MGI Ref ID J:147799]

Dahlhaus R; El-Husseini A. 2010. Altered neuroligin expression is involved in social deficits in a mouse model of the fragile X syndrome. Behav Brain Res 208(1):96-105. [PubMed: 19932134]  [MGI Ref ID J:157012]

Dansie LE; Phommahaxay K; Okusanya AG; Uwadia J; Huang M; Rotschafer SE; Razak KA; Ethell DW; Ethell IM. 2013. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. Neuroscience 246:186-98. [PubMed: 23660195]  [MGI Ref ID J:201443]

Darnell JC; Van Driesche SJ; Zhang C; Hung KY; Mele A; Fraser CE; Stone EF; Chen C; Fak JJ; Chi SW; Licatalosi DD; Richter JD; Darnell RB. 2011. FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism. Cell 146(2):247-61. [PubMed: 21784246]  [MGI Ref ID J:174610]

Davidovic L; Navratil V; Bonaccorso CM; Catania MV; Bardoni B; Dumas ME. 2011. A metabolomic and systems biology perspective on the brain of the fragile X syndrome mouse model. Genome Res 21(12):2190-202. [PubMed: 21900387]  [MGI Ref ID J:183567]

De Rubeis S; Pasciuto E; Li KW; Fernandez E; Di Marino D; Buzzi A; Ostroff LE; Klann E; Zwartkruis FJ; Komiyama NH; Grant SG; Poujol C; Choquet D; Achsel T; Posthuma D; Smit AB; Bagni C. 2013. CYFIP1 Coordinates mRNA Translation and Cytoskeleton Remodeling to Ensure Proper Dendritic Spine Formation. Neuron 79(6):1169-82. [PubMed: 24050404]  [MGI Ref ID J:201819]

Deng PY; Rotman Z; Blundon JA; Cho Y; Cui J; Cavalli V; Zakharenko SS; Klyachko VA. 2013. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron 77(4):696-711. [PubMed: 23439122]  [MGI Ref ID J:197827]

Deng PY; Sojka D; Klyachko VA. 2011. Abnormal presynaptic short-term plasticity and information processing in a mouse model of fragile x syndrome. J Neurosci 31(30):10971-82. [PubMed: 21795546]  [MGI Ref ID J:174605]

Desai NS; Casimiro TM; Gruber SM; Vanderklish PW. 2006. Early postnatal plasticity in neocortex of Fmr1 knockout mice. J Neurophysiol 96(4):1734-45. [PubMed: 16823030]  [MGI Ref ID J:135706]

Dickson PE; Corkill B; McKimm E; Miller MM; Calton MA; Goldowitz D; Blaha CD; Mittleman G. 2013. Effects of stimulus salience on touchscreen serial reversal learning in a mouse model of fragile X syndrome. Behav Brain Res 252:126-35. [PubMed: 23747611]  [MGI Ref ID J:202112]

Dictenberg JB; Swanger SA; Antar LN; Singer RH; Bassell GJ. 2008. A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell 14(6):926-39. [PubMed: 18539120]  [MGI Ref ID J:137197]

Dobkin C; Rabe A; Dumas R; El Idrissi A; Haubenstock H; Brown WT. 2000. Fmr1 knockout mouse has a distinctive strain-specific learning impairment. Neuroscience 100(2):423-9. [PubMed: 11008180]  [MGI Ref ID J:119166]

Dolan BM; Duron SG; Campbell DA; Vollrath B; Rao BS; Ko HY; Lin GG; Govindarajan A; Choi SY; Tonegawa S. 2013. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc Natl Acad Sci U S A 110(14):5671-6. [PubMed: 23509247]  [MGI Ref ID J:194236]

Dolen G; Osterweil E; Rao BS; Smith GB; Auerbach BD; Chattarji S; Bear MF. 2007. Correction of Fragile X Syndrome in Mice. Neuron 56(6):955-962. [PubMed: 18093519]  [MGI Ref ID J:127792]

Dury AY; El Fatimy R; Tremblay S; Rose TM; Cote J; De Koninck P; Khandjian EW. 2013. Nuclear Fragile X Mental Retardation Protein is localized to Cajal bodies. PLoS Genet 9(10):e1003890. [PubMed: 24204304]  [MGI Ref ID J:204185]

El Idrissi A; Ding XH; Scalia J; Trenkner E; Brown WT; Dobkin C. 2005. Decreased GABA(A) receptor expression in the seizure-prone fragile X mouse. Neurosci Lett 377(3):141-6. [PubMed: 15755515]  [MGI Ref ID J:104931]

Errijgers V; Fransen E; D'Hooge R; De Deyn PP; Kooy RF. 2008. Effect of genetic background on acoustic startle response in fragile X knockout mice. Genet Res 90(4):341-5. [PubMed: 18840308]  [MGI Ref ID J:144419]

Fisch GS; Hao HK; Bakker C; Oostra BA. 1999. Learning and memory in the FMR1 knockout mouse. Am J Med Genet 84(3):277-82. [PubMed: 10331607]  [MGI Ref ID J:54509]

Fish EW; Krouse MC; Stringfield SJ; Diberto JF; Robinson JE; Malanga CJ. 2013. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome. PLoS One 8(10):e77896. [PubMed: 24205018]  [MGI Ref ID J:209243]

Frankland PW; Wang Y; Rosner B; Shimizu T; Balleine BW; Dykens EM; Ornitz EM; Silva AJ. 2004. Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Mol Psychiatry 9(4):417-25. [PubMed: 14981523]  [MGI Ref ID J:102061]

Galvan AM; Galvez R. 2012. Neocortical vasculature abnormalities in the Fragile X mental retardation syndrome. Brain Res 1471:155-61. [PubMed: 22796598]  [MGI Ref ID J:192392]

Galvez R; Gopal AR; Greenough WT. 2003. Somatosensory cortical barrel dendritic abnormalities in a mouse model of the fragile X mental retardation syndrome. Brain Res 971(1):83-9. [PubMed: 12691840]  [MGI Ref ID J:83158]

Galvez R; Smith RL; Greenough WT. 2005. Olfactory bulb mitral cell dendritic pruning abnormalities in a mouse model of the Fragile-X mental retardation syndrome: further support for FMRP's involvement in dendritic development. Brain Res Dev Brain Res 157(2):214-6. [PubMed: 15878626]  [MGI Ref ID J:104546]

Gantois I; Vandesompele J; Speleman F; Reyniers E; D'Hooge R; Severijnen LA; Willemsen R; Tassone F; Kooy RF. 2006. Expression profiling suggests underexpression of the GABA(A) receptor subunit delta in the fragile X knockout mouse model Neurobiol Dis 21:346-357. [PubMed: 16199166]  [MGI Ref ID J:105740]

Giuffrida R; Musumeci S; D'Antoni S; Bonaccorso CM; Giuffrida-Stella AM; Oostra BA; Catania MV. 2005. A reduced number of metabotropic glutamate subtype 5 receptors are associated with constitutive homer proteins in a mouse model of fragile X syndrome. J Neurosci 25(39):8908-16. [PubMed: 16192381]  [MGI Ref ID J:101346]

Gocel J; Larson J. 2012. Synaptic NMDA receptor-mediated currents in anterior piriform cortex are reduced in the adult fragile X mouse. Neuroscience 221:170-81. [PubMed: 22750206]  [MGI Ref ID J:192512]

Godfraind JM; Reyniers E; De Boulle K; D'Hooge R; De Deyn PP; Bakker CE; Oostra BA; Kooy RF; Willems PJ. 1996. Long-term potentiation in the hippocampus of fragile X knockout mice. Am J Med Genet 64(2):246-51. [PubMed: 8844057]  [MGI Ref ID J:34552]

Goebel-Goody SM; Wilson-Wallis ED; Royston S; Tagliatela SM; Naegele JR; Lombroso PJ. 2012. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model. Genes Brain Behav 11(5):586-600. [PubMed: 22405502]  [MGI Ref ID J:198038]

Goncalves JT; Anstey JE; Golshani P; Portera-Cailliau C. 2013. Circuit level defects in the developing neocortex of Fragile X mice. Nat Neurosci 16(7):903-9. [PubMed: 23727819]  [MGI Ref ID J:203350]

Gross C; Nakamoto M; Yao X; Chan CB; Yim SY; Ye K; Warren ST; Bassell GJ. 2010. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J Neurosci 30(32):10624-38. [PubMed: 20702695]  [MGI Ref ID J:163238]

Grossman AW; Aldridge GM; Lee KJ; Zeman MK; Jun CS; Azam HS; Arii T; Imoto K; Greenough WT; Rhyu IJ. 2010. Developmental characteristics of dendritic spines in the dentate gyrus of Fmr1 knockout mice. Brain Res 1355:221-7. [PubMed: 20682298]  [MGI Ref ID J:165152]

Grossman AW; Elisseou NM; McKinney BC; Greenough WT. 2006. Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines. Brain Res 1084(1):158-164. [PubMed: 16574084]  [MGI Ref ID J:108977]

Gruss M; Braun K. 2004. Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice. Neurochem Int 45(1):81-8. [PubMed: 15082225]  [MGI Ref ID J:101787]

Guo W; Murthy AC; Zhang L; Johnson EB; Schaller EG; Allan AM; Zhao X. 2012. Inhibition of GSK3beta improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Hum Mol Genet 21(3):681-91. [PubMed: 22048960]  [MGI Ref ID J:179694]

Hanson JE; Madison DV. 2007. Presynaptic FMR1 genotype influences the degree of synaptic connectivity in a mosaic mouse model of fragile X syndrome. J Neurosci 27(15):4014-8. [PubMed: 17428978]  [MGI Ref ID J:143837]

Harlow EG; Till SM; Russell TA; Wijetunge LS; Kind P; Contractor A. 2010. Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. Neuron 65(3):385-98. [PubMed: 20159451]  [MGI Ref ID J:167766]

Hayashi ML; Rao BS; Seo JS; Choi HS; Dolan BM; Choi SY; Chattarji S; Tonegawa S. 2007. Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci U S A 104(27):11489-11494. [PubMed: 17592139]  [MGI Ref ID J:122818]

Hays SA; Huber KM; Gibson JR. 2011. Altered Neocortical Rhythmic Activity States in Fmr1 KO Mice Are Due to Enhanced mGluR5 Signaling and Involve Changes in Excitatory Circuitry. J Neurosci 31(40):14223-34. [PubMed: 21976507]  [MGI Ref ID J:177183]

He CX; Portera-Cailliau C. 2013. The trouble with spines in fragile X syndrome: density, maturity and plasticity. Neuroscience 251:120-8. [PubMed: 22522472]  [MGI Ref ID J:207070]

He Q; Nomura T; Xu J; Contractor A. 2014. The developmental switch in GABA polarity is delayed in fragile X mice. J Neurosci 34(2):446-50. [PubMed: 24403144]  [MGI Ref ID J:205580]

Henderson C; Wijetunge L; Kinoshita MN; Shumway M; Hammond RS; Postma FR; Brynczka C; Rush R; Thomas A; Paylor R; Warren ST; Vanderklish PW; Kind PC; Carpenter RL; Bear MF; Healy AM. 2012. Reversal of Disease-Related Pathologies in the Fragile X Mouse Model by Selective Activation of GABAB Receptors with Arbaclofen. Sci Transl Med 4(152):152ra128. [PubMed: 22993295]  [MGI Ref ID J:188108]

Higashimori H; Morel L; Huth J; Lindemann L; Dulla C; Taylor A; Freeman M; Yang Y. 2013. Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse. Hum Mol Genet 22(10):2041-54. [PubMed: 23396537]  [MGI Ref ID J:194964]

Hou L; Antion MD; Hu D; Spencer CM; Paylor R; Klann E. 2006. Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51(4):441-54. [PubMed: 16908410]  [MGI Ref ID J:122974]

Hu H; Qin Y; Bochorishvili G; Zhu Y; van Aelst L; Zhu JJ. 2008. Ras signaling mechanisms underlying impaired GluR1-dependent plasticity associated with fragile X syndrome. J Neurosci 28(31):7847-62. [PubMed: 18667617]  [MGI Ref ID J:139516]

Huber KM; Gallagher SM; Warren ST; Bear MF. 2002. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99(11):7746-50. [PubMed: 12032354]  [MGI Ref ID J:76865]

Iliff AJ; Renoux AJ; Krans A; Usdin K; Sutton MA; Todd PK. 2013. Impaired activity-dependent FMRP translation and enhanced mGluR-dependent LTD in Fragile X premutation mice. Hum Mol Genet 22(6):1180-92. [PubMed: 23250915]  [MGI Ref ID J:193289]

Irwin SA; Idupulapati M; Gilbert ME; Harris JB; Chakravarti AB; Rogers EJ; Crisostomo RA; Larsen BP; Mehta A; Alcantara CJ; Patel B; Swain RA; Weiler IJ; Oostra BA; Greenough WT. 2002. Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am J Med Genet 111(2):140-6. [PubMed: 12210340]  [MGI Ref ID J:78149]

Ivanco TL; Greenough WT. 2002. Altered mossy fiber distributions in adult Fmr1 (FVB) knockout mice. Hippocampus 12(1):47-54. [PubMed: 11918288]  [MGI Ref ID J:113177]

Janusz A; Milek J; Perycz M; Pacini L; Bagni C; Kaczmarek L; Dziembowska M. 2013. The Fragile X mental retardation protein regulates matrix metalloproteinase 9 mRNA at synapses. J Neurosci 33(46):18234-41. [PubMed: 24227732]  [MGI Ref ID J:204168]

Kao DI; Aldridge GM; Weiler IJ; Greenough WT. 2010. Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc Natl Acad Sci U S A 107(35):15601-6. [PubMed: 20713728]  [MGI Ref ID J:163742]

Kim H; Gibboni R; Kirkhart C; Bao S. 2013. Impaired critical period plasticity in primary auditory cortex of fragile X model mice. J Neurosci 33(40):15686-92. [PubMed: 24089476]  [MGI Ref ID J:202680]

Kim SH; Markham JA; Weiler IJ; Greenough WT. 2008. Aberrant early-phase ERK inactivation impedes neuronal function in fragile X syndrome. Proc Natl Acad Sci U S A 105(11):4429-34. [PubMed: 18332424]  [MGI Ref ID J:133336]

Klemmer P; Meredith RM; Holmgren CD; Klychnikov OI; Stahl-Zeng J; Loos M; van der Schors RC; Wortel J; de Wit H; Spijker S; Rotaru DC; Mansvelder HD; Smit AB; Li KW. 2011. Proteomics, ultrastructure, and physiology of hippocampal synapses in a fragile x syndrome mouse model reveal presynaptic phenotype. J Biol Chem 286(29):25495-504. [PubMed: 21596744]  [MGI Ref ID J:175401]

Koekkoek SK; Yamaguchi K; Milojkovic BA; Dortland BR; Ruigrok TJ; Maex R; De Graaf W; Smit AE; VanderWerf F; Bakker CE; Willemsen R; Ikeda T; Kakizawa S; Onodera K; Nelson DL; Mientjes E; Joosten M; De Schutter E; Oostra BA; Ito M; De Zeeuw CI. 2005. Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron 47(3):339-52. [PubMed: 16055059]  [MGI Ref ID J:101021]

Kooy RF; D'Hooge R; Reyniers E; Bakker CE; Nagels G; De Boulle K; Storm K; Clincke G; De Deyn PP; Oostra BA; Willems PJ. 1996. Transgenic mouse model for the fragile X syndrome. Am J Med Genet 64(2):241-5. [PubMed: 8844056]  [MGI Ref ID J:34449]

Kooy RF; Reyniers E; Verhoye M; Sijbers J; Bakker CE; Oostra BA; Willems PJ; Van Der Linden A. 1999. Neuroanatomy of the fragile X knockout mouse brain studied using in vivo high resolution magnetic resonance imaging. Eur J Hum Genet 7(5):526-32. [PubMed: 10439957]  [MGI Ref ID J:103315]

Krueger DD; Osterweil EK; Chen SP; Tye LD; Bear MF. 2011. Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. Proc Natl Acad Sci U S A 108(6):2587-92. [PubMed: 21262808]  [MGI Ref ID J:169108]

Kwan KY; Lam MM; Johnson MB; Dube U; Shim S; Rasin MR; Sousa AM; Fertuzinhos S; Chen JG; Arellano JI; Chan DW; Pletikos M; Vasung L; Rowitch DH; Huang EJ; Schwartz ML; Willemsen R; Oostra BA; Rakic P; Heffer M; Kostovic I; Judas M; Sestan N. 2012. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell 149(4):899-911. [PubMed: 22579290]  [MGI Ref ID J:186177]

Lai JK; Sobala-Drozdowski M; Zhou L; Doering LC; Faure PA; Foster JA. 2014. Temporal and spectral differences in the ultrasonic vocalizations of fragile X knock out mice during postnatal development. Behav Brain Res 259:119-30. [PubMed: 24211451]  [MGI Ref ID J:208299]

Larson J; Jessen RE; Kim D; Fine AK; du Hoffmann J. 2005. Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein. J Neurosci 25(41):9460-9. [PubMed: 16221856]  [MGI Ref ID J:101394]

Larson J; Kim D; Patel RC; Floreani C. 2008. Olfactory discrimination learning in mice lacking the fragile X mental retardation protein. Neurobiol Learn Mem 90(1):90-102. [PubMed: 18289890]  [MGI Ref ID J:139604]

Lauterborn JC. 2004. Stress induced changes in cortical and hypothalamic c-fos expression are altered in fragile X mutant mice. Brain Res Mol Brain Res 131(1-2):101-9. [PubMed: 15530658]  [MGI Ref ID J:109325]

Lauterborn JC; Rex CS; Kramar E; Chen LY; Pandyarajan V; Lynch G; Gall CM. 2007. Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J Neurosci 27(40):10685-94. [PubMed: 17913902]  [MGI Ref ID J:125595]

Lee HY; Ge WP; Huang W; He Y; Wang GX; Rowson-Baldwin A; Smith SJ; Jan YN; Jan LY. 2011. Bidirectional regulation of dendritic voltage-gated potassium channels by the fragile X mental retardation protein. Neuron 72(4):630-42. [PubMed: 22099464]  [MGI Ref ID J:178946]

Li J; Pelletier MR; Perez Velazquez JL; Carlen PL. 2002. Reduced Cortical Synaptic Plasticity and GluR1 Expression Associated with Fragile X Mental Retardation Protein Deficiency. Mol Cell Neurosci 19(2):138-51. [PubMed: 11860268]  [MGI Ref ID J:75442]

Liao L; Park SK; Xu T; Vanderklish P; Yates JR 3rd. 2008. Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice. Proc Natl Acad Sci U S A 105(40):15281-6. [PubMed: 18829439]  [MGI Ref ID J:141828]

Lim CS; Hoang ET; Viar KE; Stornetta RL; Scott MM; Zhu JJ. 2014. Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a fragile X model. Genes Dev 28(3):273-89. [PubMed: 24493647]  [MGI Ref ID J:207471]

Liu ZH; Huang T; Smith CB. 2012. Lithium reverses increased rates of cerebral protein synthesis in a mouse model of fragile X syndrome. Neurobiol Dis 45(3):1145-52. [PubMed: 22227453]  [MGI Ref ID J:182317]

Louhivuori V; Vicario A; Uutela M; Rantamaki T; Louhivuori LM; Castren E; Tongiorgi E; Akerman KE; Castren ML. 2011. BDNF and TrkB in neuronal differentiation of Fmr1-knockout mouse. Neurobiol Dis 41(2):469-80. [PubMed: 21047554]  [MGI Ref ID J:168630]

Lu R; Wang H; Liang Z; Ku L; O'donnell WT; Li W; Warren ST; Feng Y. 2004. The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proc Natl Acad Sci U S A 101(42):15201-6. [PubMed: 15475576]  [MGI Ref ID J:93541]

Luo Y; Shan G; Guo W; Smrt RD; Johnson EB; Li X; Pfeiffer RL; Szulwach KE; Duan R; Barkho BZ; Li W; Liu C; Jin P; Zhao X. 2010. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet 6(4):e1000898. [PubMed: 20386739]  [MGI Ref ID J:159211]

MacLeod LS; Kogan CS; Collin CA; Berry-Kravis E; Messier C; Gandhi R. 2010. A comparative study of the performance of individuals with fragile X syndrome and Fmr1 knockout mice on Hebb-Williams mazes. Genes Brain Behav 9(1):53-64. [PubMed: 19796132]  [MGI Ref ID J:169204]

Markham JA; Beckel-Mitchener AC; Estrada CM; Greenough WT. 2006. Corticosterone response to acute stress in a mouse model of Fragile X syndrome. Psychoneuroendocrinology 31(6):781-5. [PubMed: 16621323]  [MGI Ref ID J:112825]

Mazroui R; Huot ME; Tremblay S; Filion C; Labelle Y; Khandjian EW. 2002. Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression. Hum Mol Genet 11(24):3007-17. [PubMed: 12417522]  [MGI Ref ID J:204807]

Meredith RM; Holmgren CD; Weidum M; Burnashev N; Mansvelder HD. 2007. Increased threshold for spike-timing-dependent plasticity is caused by unreliable calcium signaling in mice lacking fragile X gene FMR1. Neuron 54(4):627-38. [PubMed: 17521574]  [MGI Ref ID J:122303]

Meredith RM; de Jong R; Mansvelder HD. 2011. Functional rescue of excitatory synaptic transmission in the developing hippocampus in Fmr1-KO mouse. Neurobiol Dis 41(1):104-10. [PubMed: 20817093]  [MGI Ref ID J:167255]

Min WW; Yuskaitis CJ; Yan Q; Sikorski C; Chen S; Jope RS; Bauchwitz RP. 2009. Elevated glycogen synthase kinase-3 activity in Fragile X mice: key metabolic regulator with evidence for treatment potential. Neuropharmacology 56(2):463-72. [PubMed: 18952114]  [MGI Ref ID J:177983]

Mines MA; Yuskaitis CJ; King MK; Beurel E; Jope RS. 2010. GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS One 5(3):e9706. [PubMed: 20300527]  [MGI Ref ID J:158906]

Mineur YS; Huynh LX; Crusio WE. 2006. Social behavior deficits in the Fmr1 mutant mouse. Behav Brain Res 168(1):172-5. [PubMed: 16343653]  [MGI Ref ID J:105026]

Mineur YS; Sluyter F; de Wit S; Oostra BA; Crusio WE. 2002. Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus 12(1):39-46. [PubMed: 11918286]  [MGI Ref ID J:113306]

Miyashiro KY; Beckel-Mitchener A; Purk TP; Becker KG; Barret T; Liu L; Carbonetto S; Weiler IJ; Greenough WT; Eberwine J. 2003. RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 37(3):417-31. [PubMed: 12575950]  [MGI Ref ID J:107689]

Moy SS; Nadler JJ; Young NB; Nonneman RJ; Grossman AW; Murphy DL; D'Ercole AJ; Crawley JN; Magnuson TR; Lauder JM. 2009. Social approach in genetically engineered mouse lines relevant to autism. Genes Brain Behav 8(2):129-42. [PubMed: 19016890]  [MGI Ref ID J:151144]

Muddashetty RS; Kelic S; Gross C; Xu M; Bassell GJ. 2007. Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J Neurosci 27(20):5338-48. [PubMed: 17507556]  [MGI Ref ID J:143833]

Musumeci SA; Bosco P; Calabrese G; Bakker C; De Sarro GB; Elia M; Ferri R; Oostra BA. 2000. Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 41(1):19-23. [PubMed: 10643918]  [MGI Ref ID J:60043]

Nielsen DM; Derber WJ; McClellan DA; Crnic LS. 2002. Alterations in the auditory startle response in Fmr1 targeted mutant mouse models of fragile X syndrome. Brain Res 927(1):8-17. [PubMed: 11814427]  [MGI Ref ID J:74592]

Nimchinsky EA; Oberlander AM; Svoboda K. 2001. Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21(14):5139-46. [PubMed: 11438589]  [MGI Ref ID J:70178]

Nosyreva ED; Huber KM. 2006. Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J Neurophysiol 95(5):3291-5. [PubMed: 16452252]  [MGI Ref ID J:135796]

Oddi D; Crusio WE; D'Amato FR; Pietropaolo S. 2013. Monogenic mouse models of social dysfunction: Implications for autism. Behav Brain Res :. [PubMed: 23327738]  [MGI Ref ID J:197157]

Olmos-Serrano JL; Paluszkiewicz SM; Martin BS; Kaufmann WE; Corbin JG; Huntsman MM. 2010. Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome. J Neurosci 30(29):9929-38. [PubMed: 20660275]  [MGI Ref ID J:162862]

Osterweil EK; Krueger DD; Reinhold K; Bear MF. 2010. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci 30(46):15616-27. [PubMed: 21084617]  [MGI Ref ID J:166442]

Pacey LK; Doering LC. 2007. Developmental expression of FMRP in the astrocyte lineage: implications for fragile X syndrome. Glia 55(15):1601-9. [PubMed: 17823967]  [MGI Ref ID J:127940]

Pacey LK; Doss L; Cifelli C; van der Kooy D; Heximer SP; Hampson DR. 2011. Genetic deletion of regulator of G-protein signaling 4 (RGS4) rescues a subset of fragile X related phenotypes in the FMR1 knockout mouse. Mol Cell Neurosci 46(3):563-72. [PubMed: 21215802]  [MGI Ref ID J:171292]

Pan F; Aldridge GM; Greenough WT; Gan WB. 2010. Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome. Proc Natl Acad Sci U S A 107(41):17768-73. [PubMed: 20861447]  [MGI Ref ID J:165411]

Paradee W; Melikian HE; Rasmussen DL; Kenneson A; Conn PJ; Warren ST. 1999. Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 94(1):185-92. [PubMed: 10613508]  [MGI Ref ID J:59781]

Park S; Park JM; Kim S; Kim JA; Shepherd JD; Smith-Hicks CL; Chowdhury S; Kaufmann W; Kuhl D; Ryazanov AG; Huganir RL; Linden DJ; Worley PF. 2008. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59(1):70-83. [PubMed: 18614030]  [MGI Ref ID J:145490]

Patel AB; Hays SA; Bureau I; Huber KM; Gibson JR. 2013. A target cell-specific role for presynaptic Fmr1 in regulating glutamate release onto neocortical fast-spiking inhibitory neurons. J Neurosci 33(6):2593-604. [PubMed: 23392687]  [MGI Ref ID J:194272]

Pfeiffer BE; Huber KM. 2007. Fragile X mental retardation protein induces synapse loss through acute postsynaptic translational regulation. J Neurosci 27(12):3120-30. [PubMed: 17376973]  [MGI Ref ID J:143842]

Pfeiffer BE; Zang T; Wilkerson JR; Taniguchi M; Maksimova MA; Smith LN; Cowan CW; Huber KM. 2010. Fragile X mental retardation protein is required for synapse elimination by the activity-dependent transcription factor MEF2. Neuron 66(2):191-7. [PubMed: 20434996]  [MGI Ref ID J:167762]

Pietropaolo S; Guilleminot A; Martin B; D'Amato FR; Crusio WE. 2011. Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice. PLoS One 6(2):e17073. [PubMed: 21364941]  [MGI Ref ID J:171069]

Price TJ; Rashid MH; Millecamps M; Sanoja R; Entrena JM; Cervero F. 2007. Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J Neurosci 27(51):13958-67. [PubMed: 18094233]  [MGI Ref ID J:129270]

Qin M; Kang J; Burlin TV; Jiang C; Smith CB. 2005. Postadolescent changes in regional cerebral protein synthesis: an in vivo study in the FMR1 null mouse. J Neurosci 25(20):5087-95. [PubMed: 15901791]  [MGI Ref ID J:98726]

Qin M; Kang J; Smith CB. 2005. A null mutation for Fmr1 in female mice: effects on regional cerebral metabolic rate for glucose and relationship to behavior. Neuroscience 135(3):999-1009. [PubMed: 16154294]  [MGI Ref ID J:104426]

Qin M; Kang J; Smith CB. 2002. Increased rates of cerebral glucose metabolism in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99(24):15758-63. [PubMed: 12427968]  [MGI Ref ID J:80518]

Qin M; Xia Z; Huang T; Smith CB. 2011. Effects of chronic immobilization stress on anxiety-like behavior and basolateral amygdala morphology in Fmr1 knockout mice. Neuroscience 194:282-90. [PubMed: 21723920]  [MGI Ref ID J:180350]

Real MA; Simon MP; Heredia R; de Diego Y; Guirado S. 2011. Phenotypic changes in calbindin D28K immunoreactivity in the hippocampus of Fmr1 knockout mice. J Comp Neurol 519(13):2622-36. [PubMed: 21491426]  [MGI Ref ID J:187346]

Restivo L; Ferrari F; Passino E; Sgobio C; Bock J; Oostra BA; Bagni C; Ammassari-Teule M. 2005. Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc Natl Acad Sci U S A 102(32):11557-62. [PubMed: 16076950]  [MGI Ref ID J:100841]

Reyniers E; Van Bockstaele DR; De Boulle K; Kooy RF; Bakker CE; Oostra BA; Willems PJ. 1996. Mean corpuscular hemoglobin is not increased in Fmr1 knockout mice. Hum Genet 97(1):49-50. [PubMed: 8557260]  [MGI Ref ID J:31093]

Ronesi JA; Collins KA; Hays SA; Tsai NP; Guo W; Birnbaum SG; Hu JH; Worley PF; Gibson JR; Huber KM. 2012. Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat Neurosci 15(3):431-40, S1. [PubMed: 22267161]  [MGI Ref ID J:182308]

Rotschafer S; Razak K. 2013. Altered auditory processing in a mouse model of fragile X syndrome. Brain Res 1506:12-24. [PubMed: 23458504]  [MGI Ref ID J:209340]

Rotschafer SE; Trujillo MS; Dansie LE; Ethell IM; Razak KA. 2012. Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X Syndrome. Brain Res 1439:7-14. [PubMed: 22265702]  [MGI Ref ID J:181878]

Routh BN; Johnston D; Brager DH. 2013. Loss of Functional A-Type Potassium Channels in the Dendrites of CA1 Pyramidal Neurons from a Mouse Model of Fragile X Syndrome. J Neurosci 33(50):19442-50. [PubMed: 24336711]  [MGI Ref ID J:204133]

Roy S; Watkins N; Heck D. 2012. Comprehensive analysis of ultrasonic vocalizations in a mouse model of fragile X syndrome reveals limited, call type specific deficits. PLoS One 7(9):e44816. [PubMed: 22984567]  [MGI Ref ID J:191758]

Saffary R; Xie Z. 2011. FMRP Regulates the Transition from Radial Glial Cells to Intermediate Progenitor Cells during Neocortical Development. J Neurosci 31(4):1427-39. [PubMed: 21273427]  [MGI Ref ID J:168545]

Schutt J; Falley K; Richter D; Kreienkamp HJ; Kindler S. 2009. Fragile X mental retardation protein regulates the levels of scaffold proteins and glutamate receptors in postsynaptic densities. J Biol Chem 284(38):25479-87. [PubMed: 19640847]  [MGI Ref ID J:156357]

Seese RR; Babayan AH; Katz AM; Cox CD; Lauterborn JC; Lynch G; Gall CM. 2012. LTP induction translocates cortactin at distant synapses in wild-type but not FMR1 knock-out mice. J Neurosci 32(21):7403-13. [PubMed: 22623686]  [MGI Ref ID J:184974]

Segal M; Kreher U; Greenberger V; Braun K. 2003. Is fragile X mental retardation protein involved in activity-induced plasticity of dendritic spines? Brain Res 972(1-2):9-15. [PubMed: 12711073]  [MGI Ref ID J:107795]

Selby L; Zhang C; Sun QQ. 2007. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci Lett 412(3):227-32. [PubMed: 17197085]  [MGI Ref ID J:119086]

Sharma A; Hoeffer CA; Takayasu Y; Miyawaki T; McBride SM; Klann E; Zukin RS. 2010. Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci 30(2):694-702. [PubMed: 20071534]  [MGI Ref ID J:157708]

Shi D; Xu S; Waddell J; Scafidi S; Roys S; Gullapalli RP; McKenna MC. 2012. Longitudinal in vivo developmental changes of metabolites in the hippocampus of Fmr1 knockout mice. J Neurochem 123(6):971-81. [PubMed: 23046047]  [MGI Ref ID J:191000]

Slegtenhorst-Eegdeman KE; de Rooij DG; Verhoef-Post M; van de Kant HJ; Bakker CE; Oostra BA; Grootegoed JA; Themmen AP. 1998. Macroorchidism in FMR1 knockout mice is caused by increased Sertoli cell proliferation during testicular development. Endocrinology 139(1):156-62. [PubMed: 9421410]  [MGI Ref ID J:44826]

Spencer CM; Alekseyenko O; Serysheva E; Yuva-Paylor LA; Paylor R. 2005. Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav 4(7):420-30. [PubMed: 16176388]  [MGI Ref ID J:114353]

Spencer CM; Serysheva E; Yuva-Paylor LA; Oostra BA; Nelson DL; Paylor R. 2006. Exaggerated behavioral phenotypes in Fmr1/Fxr2 double knockout mice reveal a functional genetic interaction between Fragile X-related proteins. Hum Mol Genet 15(12):1984-94. [PubMed: 16675531]  [MGI Ref ID J:112066]

Steward O; Bakker CE; Willems PJ; Oostra BA. 1998. No evidence for disruption of normal patterns of mRNA localization in dendrites or dendritic transport of recently synthesized mRNA in FMR1 knockout mice, a model for human fragile-X mental retardation syndrome. Neuroreport 9(3):477-81. [PubMed: 9512393]  [MGI Ref ID J:103598]

Straiker A; Min KT; Mackie K. 2013. Fmr1 deletion enhances and ultimately desensitizes CB1 signaling in autaptic hippocampal neurons. Neurobiol Dis 56:1-5. [PubMed: 23578490]  [MGI Ref ID J:197902]

Strumbos JG; Brown MR; Kronengold J; Polley DB; Kaczmarek LK. 2010. Fragile X mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b. J Neurosci 30(31):10263-71. [PubMed: 20685971]  [MGI Ref ID J:162850]

Suvrathan A; Hoeffer CA; Wong H; Klann E; Chattarji S. 2010. Characterization and reversal of synaptic defects in the amygdala in a mouse model of fragile X syndrome. Proc Natl Acad Sci U S A 107(25):11591-6. [PubMed: 20534533]  [MGI Ref ID J:161384]

Tervonen T; Akerman K; Oostra BA; Castren M. 2005. Rgs4 mRNA expression is decreased in the brain of Fmr1 knockout mouse. Brain Res Mol Brain Res 133(1):162-5. [PubMed: 15661377]  [MGI Ref ID J:95566]

Tervonen TA; Louhivuori V; Sun X; Hokkanen ME; Kratochwil CF; Zebryk P; Castren E; Castren ML. 2009. Aberrant differentiation of glutamatergic cells in neocortex of mouse model for fragile X syndrome. Neurobiol Dis 33(2):250-9. [PubMed: 19056494]  [MGI Ref ID J:144369]

Testa-Silva G; Loebel A; Giugliano M; de Kock CP; Mansvelder HD; Meredith RM. 2012. Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism. Cereb Cortex 22(6):1333-42. [PubMed: 21856714]  [MGI Ref ID J:198110]

Till SM; Wijetunge LS; Seidel VG; Harlow E; Wright AK; Bagni C; Contractor A; Gillingwater TH; Kind PC. 2012. Altered maturation of the primary somatosensory cortex in a mouse model of fragile X syndrome. Hum Mol Genet 21(10):2143-56. [PubMed: 22328088]  [MGI Ref ID J:183805]

Tsai NP; Wilkerson JR; Guo W; Maksimova MA; DeMartino GN; Cowan CW; Huber KM. 2012. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 151(7):1581-94. [PubMed: 23260144]  [MGI Ref ID J:193326]

Udagawa T; Farny NG; Jakovcevski M; Kaphzan H; Alarcon JM; Anilkumar S; Ivshina M; Hurt JA; Nagaoka K; Nalavadi VC; Lorenz LJ; Bassell GJ; Akbarian S; Chattarji S; Klann E; Richter JD. 2013. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med 19(11):1473-7. [PubMed: 24141422]  [MGI Ref ID J:203765]

Uutela M; Lindholm J; Louhivuori V; Wei H; Louhivuori LM; Pertovaara A; Akerman K; Castren E; Castren ML. 2012. Reduction of BDNF expression in Fmr1 knockout mice worsens cognitive deficits but improves hyperactivity and sensorimotor deficits. Genes Brain Behav 11(5):513-23. [PubMed: 22435671]  [MGI Ref ID J:198036]

Van Dam D; D'Hooge R; Hauben E; Reyniers E; Gantois I; Bakker CE; Oostra BA; Kooy RF; De Deyn PP. 2000. Spatial learning, contextual fear conditioning and conditioned emotional response in Fmr1 knockout mice. Behav Brain Res 117(1-2):127-36. [PubMed: 11099766]  [MGI Ref ID J:96655]

Van Dam D; Errijgers V; Kooy RF; Willemsen R; Mientjes E; Oostra BA; De Deyn PP. 2005. Cognitive decline, neuromotor and behavioural disturbances in a mouse model for fragile-X-associated tremor/ataxia syndrome (FXTAS). Behav Brain Res 162(2):233-9. [PubMed: 15876460]  [MGI Ref ID J:104445]

Veeraragavan S; Graham D; Bui N; Yuva-Paylor LA; Wess J; Paylor R. 2012. Genetic reduction of muscarinic M4 receptor modulates analgesic response and acoustic startle response in a mouse model of fragile X syndrome (FXS). Behav Brain Res 228(1):1-8. [PubMed: 22123412]  [MGI Ref ID J:185107]

Vislay RL; Martin BS; Olmos-Serrano JL; Kratovac S; Nelson DL; Corbin JG; Huntsman MM. 2013. Homeostatic responses fail to correct defective amygdala inhibitory circuit maturation in fragile X syndrome. J Neurosci 33(17):7548-58. [PubMed: 23616559]  [MGI Ref ID J:197033]

Wang H; Wu LJ; Kim SS; Lee FJ; Gong B; Toyoda H; Ren M; Shang YZ; Xu H; Liu F; Zhao MG; Zhuo M. 2008. FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59(4):634-47. [PubMed: 18760699]  [MGI Ref ID J:149875]

Wang H; Wu LJ; Zhang F; Zhuo M. 2008. Roles of calcium-stimulated adenylyl cyclase and calmodulin-dependent protein kinase IV in the regulation of FMRP by group I metabotropic glutamate receptors. J Neurosci 28(17):4385-97. [PubMed: 18434517]  [MGI Ref ID J:134617]

Wang W; Zhu JZ; Chang KT; Min KT. 2012. DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis. EMBO J 31(18):3655-66. [PubMed: 22863780]  [MGI Ref ID J:188613]

Wang X; Snape M; Klann E; Stone JG; Singh A; Petersen RB; Castellani RJ; Casadesus G; Smith MA; Zhu X. 2012. Activation of the extracellular signal-regulated kinase pathway contributes to the behavioral deficit of fragile x-syndrome. J Neurochem 121(4):672-9. [PubMed: 22393900]  [MGI Ref ID J:184475]

Weiler IJ; Spangler CC; Klintsova AY; Grossman AW; Kim SH; Bertaina-Anglade V; Khaliq H; de Vries FE; Lambers FA; Hatia F; Base CK; Greenough WT. 2004. Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci U S A 101(50):17504-9. [PubMed: 15548614]  [MGI Ref ID J:94717]

Westmark CJ; Malter JS. 2007. FMRP Mediates mGluR5-Dependent Translation of Amyloid Precursor Protein. PLoS Biol 5(3):e52. [PubMed: 17298186]  [MGI Ref ID J:122019]

Westmark CJ; Westmark PR; O'Riordan KJ; Ray BC; Hervey CM; Salamat MS; Abozeid SH; Stein KM; Stodola LA; Tranfaglia M; Burger C; Berry-Kravis EM; Malter JS. 2011. Reversal of Fragile X Phenotypes by Manipulation of AbetaPP/Abeta Levels in Fmr1 Mice. PLoS One 6(10):e26549. [PubMed: 22046307]  [MGI Ref ID J:178076]

Wilson BM; Cox CL. 2007. Absence of metabotropic glutamate receptor-mediated plasticity in the neocortex of fragile X mice. Proc Natl Acad Sci U S A 104(7):2454-9. [PubMed: 17287348]  [MGI Ref ID J:119740]

Xu XL; Zong R; Li Z; Biswas MH; Fang Z; Nelson DL; Gao FB. 2011. FXR1P But Not FMRP Regulates the Levels of Mammalian Brain-Specific microRNA-9 and microRNA-124. J Neurosci 31(39):13705-9. [PubMed: 21957233]  [MGI Ref ID J:176126]

Yan QJ; Asafo-Adjei PK; Arnold HM; Brown RE; Bauchwitz RP. 2004. A phenotypic and molecular characterization of the fmr1-tm1Cgr fragile X mouse. Genes Brain Behav 3(6):337-59. [PubMed: 15544577]  [MGI Ref ID J:104517]

Yan QJ; Rammal M; Tranfaglia M; Bauchwitz RP. 2005. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49(7):1053-66. [PubMed: 16054174]  [MGI Ref ID J:177984]

Yang Q; Feng B; Zhang K; Guo YY; Liu SB; Wu YM; Li XQ; Zhao MG. 2012. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome. PLoS Genet 8(12):e1003172. [PubMed: 23300470]  [MGI Ref ID J:194923]

Yun SW; Platholi J; Flaherty MS; Fu W; Kottmann AH; Toth M. 2006. Fmrp is required for the establishment of the startle response during the critical period of auditory development. Brain Res 1110(1):159-65. [PubMed: 16887106]  [MGI Ref ID J:113024]

Yuskaitis CJ; Beurel E; Jope RS. 2010. Evidence of reactive astrocytes but not peripheral immune system activation in a mouse model of Fragile X syndrome. Biochim Biophys Acta 1802(11):1006-12. [PubMed: 20600866]  [MGI Ref ID J:170023]

Yuskaitis CJ; Mines MA; King MK; Sweatt JD; Miller CA; Jope RS. 2010. Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. Biochem Pharmacol 79(4):632-46. [PubMed: 19799873]  [MGI Ref ID J:158037]

Zalfa F; Eleuteri B; Dickson KS; Mercaldo V; De Rubeis S; di Penta A; Tabolacci E; Chiurazzi P; Neri G; Grant SG; Bagni C. 2007. A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat Neurosci 10(5):578-87. [PubMed: 17417632]  [MGI Ref ID J:121659]

Zang JB; Nosyreva ED; Spencer CM; Volk LJ; Musunuru K; Zhong R; Stone EF; Yuva-Paylor LA; Huber KM; Paylor R; Darnell JC; Darnell RB. 2009. A mouse model of the human Fragile X syndrome I304N mutation. PLoS Genet 5(12):e1000758. [PubMed: 20011099]  [MGI Ref ID J:155593]

Zhang J; Fang Z; Jud C; Vansteensel MJ; Kaasik K; Lee CC; Albrecht U; Tamanini F; Meijer JH; Oostra BA; Nelson DL. 2008. Fragile X-related proteins regulate mammalian circadian behavioral rhythms. Am J Hum Genet 83(1):43-52. [PubMed: 18589395]  [MGI Ref ID J:139265]

Zhang J; Hou L; Klann E; Nelson DL. 2009. Altered hippocampal synaptic plasticity in the FMR1 gene family knockout mouse models. J Neurophysiol 101(5):2572-80. [PubMed: 19244359]  [MGI Ref ID J:164979]

Zhang L; Alger BE. 2010. Enhanced endocannabinoid signaling elevates neuronal excitability in fragile X syndrome. J Neurosci 30(16):5724-9. [PubMed: 20410124]  [MGI Ref ID J:159835]

Zhao MG; Toyoda H; Ko SW; Ding HK; Wu LJ; Zhuo M. 2005. Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J Neurosci 25(32):7385-92. [PubMed: 16093389]  [MGI Ref ID J:100197]

Zhong J; Chuang SC; Bianchi R; Zhao W; Paul G; Thakkar P; Liu D; Fenton AA; Wong RK; Tiedge H. 2010. Regulatory BC1 RNA and the fragile X mental retardation protein: convergent functionality in brain. PLoS One 5(11):e15509. [PubMed: 21124905]  [MGI Ref ID J:167315]

de Vrij FM; Levenga J; van der Linde HC; Koekkoek SK; De Zeeuw CI; Nelson DL; Oostra BA; Willemsen R. 2008. Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis 31(1):127-32. [PubMed: 18571098]  [MGI Ref ID J:139157]

el Bekay R; Romero-Zerbo Y; Decara J; Sanchez-Salido L; Del Arco-Herrera I; Rodriguez-de Fonseca F; de Diego-Otero Y. 2007. Enhanced markers of oxidative stress, altered antioxidants and NADPH-oxidase activation in brains from Fragile X mental retardation 1-deficient mice, a pathological model for Fragile X syndrome. Eur J Neurosci 26(11):3169-80. [PubMed: 18005058]  [MGI Ref ID J:130129]

Pde6brd1 related

Acosta ML; Fletcher EL; Azizoglu S; Foster LE; Farber DB; Kalloniatis M. 2005. Early markers of retinal degeneration in rd/rd mice. Mol Vis 11:717-28. [PubMed: 16163270]  [MGI Ref ID J:103970]

Aftab U; Jiang C; Tucker B; Kim JY; Klassen H; Miljan E; Sinden J; Young M. 2009. Growth kinetics and transplantation of human retinal progenitor cells. Exp Eye Res 89(3):301-10. [PubMed: 19524569]  [MGI Ref ID J:151412]

Ahuja S; Ahuja-Jensen P; Johnson LE; Caffe AR; Abrahamson M; Ekstrom PA; van Veen T. 2008. rd1 Mouse retina shows an imbalance in the activity of cysteine protease cathepsins and their endogenous inhibitor cystatin C. Invest Ophthalmol Vis Sci 49(3):1089-96. [PubMed: 18326735]  [MGI Ref ID J:133024]

Ahuja-Jensen P; Johnsen-Soriano S; Ahuja S; Bosch-Morell F; Sancho-Tello M; Romero FJ; Abrahamson M; van Veen T. 2007. Low glutathione peroxidase in rd1 mouse retina increases oxidative stress and proteases. Neuroreport 18(8):797-801. [PubMed: 17471069]  [MGI Ref ID J:122802]

Alavi MV; Bette S; Schimpf S; Schuettauf F; Schraermeyer U; Wehrl HF; Ruttiger L; Beck SC; Tonagel F; Pichler BJ; Knipper M; Peters T; Laufs J; Wissinger B. 2007. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 130(Pt 4):1029-42. [PubMed: 17314202]  [MGI Ref ID J:154966]

Allen AE; Brown TM; Lucas RJ. 2011. A distinct contribution of short-wavelength-sensitive cones to light-evoked activity in the mouse pretectal olivary nucleus. J Neurosci 31(46):16833-43. [PubMed: 22090509]  [MGI Ref ID J:177906]

Allen AE; Cameron MA; Brown TM; Vugler AA; Lucas RJ. 2010. Visual responses in mice lacking critical components of all known retinal phototransduction cascades. PLoS One 5(11):e15063. [PubMed: 21124780]  [MGI Ref ID J:167121]

Alvarez-Lopez C; Cernuda-Cernuda R; Alcorta E; Alvarez-Viejo M; Manuel Garcia-Fernandez J. 2004. Altered endogenous activation of CREB in the suprachiasmatic nucleus of mice with retinal degeneration. Brain Res 1024(1-2):137-45. [PubMed: 15451375]  [MGI Ref ID J:92980]

Alvarez-Lopez C; Cernuda-Cernuda R; Garcia-Fernandez JM. 2006. The mPer1 clock gene expression in the rd mouse suprachiasmatic nucleus is affected by the retinal degeneration. Brain Res 1087(1):134-41. [PubMed: 16626665]  [MGI Ref ID J:109668]

Alvarez-Lopez C; Cernuda-Cernuda R; Paniagua MA; Alvarez-Viejo M; Fernandez-Lopez A; Garcia-Fernandez JM. 2004. The transcription factor CREB is phosphorylated in neurons of the piriform cortex of blind mice in response to illumination of the retina. Neurosci Lett 357(3):223-6. [PubMed: 15003290]  [MGI Ref ID J:121036]

Ardayfio P; Moon J; Leung KK; Youn-Hwang D; Kim KS. 2008. Impaired learning and memory in Pitx3 deficient aphakia mice: A genetic model for striatum-dependent cognitive symptoms in Parkinson's disease. Neurobiol Dis :. [PubMed: 18573342]  [MGI Ref ID J:136304]

Ash J; McLeod DS; Lutty GA. 2005. Transgenic expression of leukemia inhibitory factor (LIF) blocks normal vascular development but not pathological neovascularization in the eye. Mol Vis 11:298-308. [PubMed: 15889014]  [MGI Ref ID J:98579]

Audo I; Bujakowska K; Orhan E; Poloschek CM; Defoort-Dhellemmes S; Drumare I; Kohl S; Luu TD; Lecompte O; Zrenner E; Lancelot ME; Antonio A; Germain A; Michiels C; Audier C; Letexier M; Saraiva JP; Leroy BP; Munier FL; Mohand-Said S; Lorenz B; Friedburg C; Preising M; Kellner U; Renner AB; Moskova-Doumanova V; Berger W; Wissinger B; Hamel CP; Schorderet DF; De Baere E; Sharon D; Banin E; Jacobson SG; Bonneau D; Zanlonghi X; Le Meur G; Casteels I; Koenekoop R; Long VW; Meire F; Prescott K; de Ravel T; Simm. 2012. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 90(2):321-30. [PubMed: 22325361]  [MGI Ref ID J:196741]

Azadi S; Paquet-Durand F; Medstrand P; van Veen T; Ekstrom PA. 2006. Up-regulation and increased phosphorylation of protein kinase C (PKC) delta, mu and theta in the degenerating rd1 mouse retina. Mol Cell Neurosci 31(4):759-73. [PubMed: 16503160]  [MGI Ref ID J:108601]

BRUCKNER R. 1951. [Slit-lamp microscopy and ophthalmoscopy in rat and mouse.] Doc Ophthalmol 5-6:452-554. [PubMed: 14896883]  [MGI Ref ID J:25576]

Ball SL; Powers PA; Shin HS; Morgans CW; Peachey NS; Gregg RG. 2002. Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest Ophthalmol Vis Sci 43(5):1595-603. [PubMed: 11980879]  [MGI Ref ID J:80080]

Barabas P; Liu A; Xing W; Chen CK; Tong Z; Watt CB; Jones BW; Bernstein PS; Krizaj D. 2013. Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc Natl Acad Sci U S A 110(13):5181-6. [PubMed: 23479632]  [MGI Ref ID J:194246]

Barber AC; Hippert C; Duran Y; West EL; Bainbridge JW; Warre-Cornish K; Luhmann UF; Lakowski J; Sowden JC; Ali RR; Pearson RA. 2013. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A 110(1):354-9. [PubMed: 23248312]  [MGI Ref ID J:192521]

Bi A; Cui J; Ma YP; Olshevskaya E; Pu M; Dizhoor AM; Pan ZH. 2006. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50(1):23-33. [PubMed: 16600853]  [MGI Ref ID J:122947]

Blanks JC; Bok D. 1977. An autoradiographic analysis of postnatal cell proliferation in the normal and degenerative mouse retina. J Comp Neurol 174(2):317-27. [PubMed: 864040]  [MGI Ref ID J:5812]

Borowska J; Trenholm S; Awatramani GB. 2011. An intrinsic neural oscillator in the degenerating mouse retina. J Neurosci 31(13):5000-12. [PubMed: 21451038]  [MGI Ref ID J:171202]

Bowes C; Danciger M; Kozak CA; Farber DB. 1989. Isolation of a candidate cDNA for the gene causing retinal degeneration in the rd mouse [published erratum appears in Proc Natl Acad Sci U S A 1990 Feb;87(4):1625] Proc Natl Acad Sci U S A 86(24):9722-6. [PubMed: 2481314]  [MGI Ref ID J:10184]

Bowes C; Li T; Danciger M; Baxter LC; Applebury ML; Farber DB. 1990. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase [see comments] Nature 347(6294):677-80. [PubMed: 1977087]  [MGI Ref ID J:10777]

Bowes C; Li T; Frankel WN; Danciger M; Coffin JM; Applebury ML; Farber DB. 1993. Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc Natl Acad Sci U S A 90(7):2955-9. [PubMed: 8385352]  [MGI Ref ID J:4366]

Bramall AN; Szego MJ; Pacione LR; Chang I; Diez E; D'Orleans-Juste P; Stewart DJ; Hauswirth WW; Yanagisawa M; McInnes RR. 2013. Endothelin-2-mediated protection of mutant photoreceptors in inherited photoreceptor degeneration. PLoS One 8(2):e58023. [PubMed: 23469133]  [MGI Ref ID J:198395]

Brown TM; Gias C; Hatori M; Keding SR; Semo M; Coffey PJ; Gigg J; Piggins HD; Panda S; Lucas RJ. 2010. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biol 8(12):e1000558. [PubMed: 21151887]  [MGI Ref ID J:170401]

Buhr ED; Van Gelder RN. 2014. Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin. Proc Natl Acad Sci U S A 111(23):8625-30. [PubMed: 24843129]  [MGI Ref ID J:211359]

Bumsted KM; Rizzolo LJ; Barnstable CJ. 2001. Defects in the MITF(mi/mi) apical surface are associated with a failure of outer segment elongation. Exp Eye Res 73(3):383-92. [PubMed: 11520113]  [MGI Ref ID J:115620]

Busskamp V; Duebel J; Balya D; Fradot M; Viney TJ; Siegert S; Groner AC; Cabuy E; Forster V; Seeliger M; Biel M; Humphries P; Paques M; Mohand-Said S; Trono D; Deisseroth K; Sahel JA; Picaud S; Roska B. 2010. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329(5990):413-7. [PubMed: 20576849]  [MGI Ref ID J:162017]

Caley DW; Johnson C; Liebelt RA. 1972. The postnatal development of the retina in the normal and rodless CBA mouse: a light and electron microscopic study. Am J Anat 133(2):179-212. [PubMed: 5009246]  [MGI Ref ID J:5250]

Cameron MA; Pozdeyev N; Vugler AA; Cooper H; Iuvone PM; Lucas RJ. 2009. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 29(4):761-7. [PubMed: 19200071]  [MGI Ref ID J:146469]

Carter-Dawson LD; LaVail MM; Sidman RL. 1978. Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci 17(6):489-98. [PubMed: 659071]  [MGI Ref ID J:5988]

Cayouette M; Gravel C. 1997. Adenovirus-mediated gene transfer of ciliary neurotrophic factor can prevent photoreceptor degeneration in the retinal degeneration (rd) mouse. Hum Gene Ther 8(4):423-30. [PubMed: 9054517]  [MGI Ref ID J:39262]

Cayouette M; Smith SB; Becerra SP; Gravel C. 1999. Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 6(6):523-32. [PubMed: 10600408]  [MGI Ref ID J:59343]

Chang B; Hawes NL; Hurd RE; Davisson MT; Nusinowitz S; Heckenlively JR. 2002. Retinal degeneration mutants in the mouse. Vision Res 42(4):517-25. [PubMed: 11853768]  [MGI Ref ID J:75095]

Chang B; Hawes NL; Hurd RE; Wang J; Howell D; Davisson MT; Roderick TH; Nusinowitz S; Heckenlively JR. 2005. Mouse models of ocular diseases. Vis Neurosci 22(5):587-93. [PubMed: 16332269]  [MGI Ref ID J:156373]

Chang B; Hurd R; Wang J; Nishina P. 2013. Survey of common eye diseases in laboratory mouse strains. Invest Ophthalmol Vis Sci 54(7):4974-81. [PubMed: 23800770]  [MGI Ref ID J:198916]

Charbel Issa P; Singh MS; Lipinski DM; Chong NV; Delori FC; Barnard AR; MacLaren RE. 2012. Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration. Invest Ophthalmol Vis Sci 53(2):1066-75. [PubMed: 22169101]  [MGI Ref ID J:191520]

Chen B; Cepko CL. 2009. HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323(5911):256-9. [PubMed: 19131628]  [MGI Ref ID J:143166]

Chen Q; Khoury M; Chen J. 2009. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A :. [PubMed: 19966223]  [MGI Ref ID J:155817]

Chua J; Nivison-Smith L; Fletcher EL; Trenholm S; Awatramani GB; Kalloniatis M. 2013. Early remodeling of Muller cells in the rd/rd mouse model of retinal dystrophy. J Comp Neurol 521(11):2439-53. [PubMed: 23348616]  [MGI Ref ID J:200732]

Cohen AI; Blazynski C. 1990. Dopamine and its agonists reduce a light-sensitive pool of cyclic AMP in mouse photoreceptors. Vis Neurosci 4(1):43-52. [PubMed: 1702315]  [MGI Ref ID J:78184]

Cornett A; Sucic JF; Hillsburg D; Cyr L; Johnson C; Polanco A; Figuereo J; Cabine K; Russo N; Sturtevant A; Jarvinen MK. 2011. Altered glial gene expression, density, and architecture in the visual cortex upon retinal degeneration. Brain Res 1422:46-56. [PubMed: 21983206]  [MGI Ref ID J:179028]

Danciger M; Bowes C; Kozak CA; LaVail MM; Farber DB. 1990. Fine mapping of a putative rd cDNA and its co-segregation with rd expression. Invest Ophthalmol Vis Sci 31(8):1427-32. [PubMed: 1974892]  [MGI Ref ID J:10689]

Daniels DM; Stoddart CW; Martin-Iverson MT; Lai CM; Redmond TM; Rakoczy PE. 2003. Entrainment of circadian rhythm to a photoperiod reversal shows retinal dystrophy in RPE65(-/-) mice. Physiol Behav 79(4-5):701-11. [PubMed: 12954412]  [MGI Ref ID J:96439]

Davies VJ; Powell KA; White KE; Yip W; Hogan V; Hollins AJ; Davies JR; Piechota M; Brownstein DG; Moat SJ; Nichols PP; Wride MA; Boulton ME; Votruba M. 2008. A missense mutation in the murine Opa3 gene models human Costeff syndrome. Brain 131(Pt 2):368-80. [PubMed: 18222992]  [MGI Ref ID J:181670]

Davis RJ; Tosi J; Janisch KM; Kasanuki JM; Wang NK; Kong J; Tsui I; Cilluffo M; Woodruff ML; Fain GL; Lin CS; Tsang SH. 2008. Functional rescue of degenerating photoreceptors in mice homozygous for a hypomorphic cGMP phosphodiesterase 6 b allele (Pde6bH620Q). Invest Ophthalmol Vis Sci 49(11):5067-76. [PubMed: 18658088]  [MGI Ref ID J:141984]

Del Rio P; Irmler M; Arango-Gonzalez B; Favor J; Bobe C; Bartsch U; Vecino E; Beckers J; Hauck SM; Ueffing M. 2011. GDNF-induced osteopontin from Muller glial cells promotes photoreceptor survival in the Pde6b(rd1) mouse model of retinal degeneration. Glia 59(5):821-32. [PubMed: 21360756]  [MGI Ref ID J:169746]

Delyfer MN; Forster V; Neveux N; Picaud S; Leveillard T; Sahel JA. 2005. Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis 11:688-96. [PubMed: 16163266]  [MGI Ref ID J:103968]

Demos C; Bandyopadhyay M; Rohrer B. 2008. Identification of candidate genes for human retinal degeneration loci using differentially expressed genes from mouse photoreceptor dystrophy models. Mol Vis 14:1639-49. [PubMed: 18776951]  [MGI Ref ID J:140115]

Doonan F; Donovan M; Cotter TG. 2003. Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. J Neurosci 23(13):5723-31. [PubMed: 12843276]  [MGI Ref ID J:84389]

Drager UC; Hubel DH. 1978. Studies of visual function and its decay in mice with hereditary retinal degeneration. J Comp Neurol 180(1):85-114. [PubMed: 649791]  [MGI Ref ID J:5980]

Du Y; Davisson MT; Kafadar K; Gardiner K. 2006. A-to-I pre-mRNA editing of the serotonin 2C receptor: comparisons among inbred mouse strains. Gene 382:39-46. [PubMed: 16904273]  [MGI Ref ID J:115050]

Ekstrom P; Sanyal S; Narfstrom K; Chader GJ; van Veen T. 1988. Accumulation of glial fibrillary acidic protein in Muller radial glia during retinal degeneration. Invest Ophthalmol Vis Sci 29(9):1363-71. [PubMed: 3417421]  [MGI Ref ID J:27850]

Feng BS; He SH; Zheng PY; Wu L; Yang PC. 2007. Mast cells play a crucial role in Staphylococcus aureus peptidoglycan-induced diarrhea. Am J Pathol 171(2):537-47. [PubMed: 17600127]  [MGI Ref ID J:123928]

Fletcher RT; Sanyal S; Krishna G; Aguirre G; Chader GJ. 1986. Genetic expression of cyclic GMP phosphodiesterase activity defines abnormal photoreceptor differentiation in neurological mutants of inherited retinal degeneration. J Neurochem 46(4):1240-5. [PubMed: 3005510]  [MGI Ref ID J:12044]

Foster RG; Argamaso S; Coleman S; Colwell CS; Lederman A; Provencio I. 1993. Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythms 8 Suppl:S17-23. [PubMed: 8274758]  [MGI Ref ID J:17940]

Foster RG; Provencio I; Hudson D; Fiske S; De Grip W; Menaker M. 1991. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol [A] 169(1):39-50. [PubMed: 1941717]  [MGI Ref ID J:83743]

Frasson M; Picaud S; Leveillard T; Simonutti M; Mohand-Said S; Dreyfus H; Hicks D; Sabel J. 1999. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 40(11):2724-34. [PubMed: 10509671]  [MGI Ref ID J:57866]

Frasson M; Sahel JA; Fabre M; Simonutti M; Dreyfus H; Picaud S. 1999. Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med 5(10):1183-7. [PubMed: 10502823]  [MGI Ref ID J:57986]

Gao H; Hollyfield JG. 1995. Basic fibroblast growth factor in retinal development: differential levels of bFGF expression and content in normal and retinal degeneration (rd) mutant mice. Dev Biol 169(1):168-184. [PubMed: 7750636]  [MGI Ref ID J:25273]

Garcia-Fernandez JM; Jimenez AJ; Foster RG. 1995. The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (rd/rd): implications for circadian organization. Neurosci Lett 187(1):33-6. [PubMed: 7617296]  [MGI Ref ID J:25157]

Gimenez E; Montoliu L. 2001. A simple polymerase chain reaction assay for genotyping the retinal degeneration mutation (Pdeb(rd1)) in FVB/N-derived transgenic mice. Lab Anim 35(2):153-6. [PubMed: 11315164]  [MGI Ref ID J:69558]

Goel M; Dhingra NK. 2012. Muller glia express rhodopsin in a mouse model of inherited retinal degeneration. Neuroscience 225:152-61. [PubMed: 22967839]  [MGI Ref ID J:192477]

Golub MS; Germann SL; Mercer M; Gordon MN; Morgan DG; Mayer LP; Hoyer PB. 2008. Behavioral consequences of ovarian atrophy and estrogen replacement in the APPswe mouse. Neurobiol Aging 29(10):1512-23. [PubMed: 17451844]  [MGI Ref ID J:140912]

Gouras P; Du J; Kjeldbye H; Kwun R; Lopez R; Zack DJ. 1991. Transplanted photoreceptors identified in dystrophic mouse retina by a transgenic reporter gene. Invest Ophthalmol Vis Sci 32(13):3167-74. [PubMed: 1748547]  [MGI Ref ID J:607]

Gouras P; Du J; Kjeldbye H; Yamamoto S; Zack DJ. 1994. Long-term photoreceptor transplants in dystrophic and normal mouse retina. Invest Ophthalmol Vis Sci 35(8):3145-53. [PubMed: 8045709]  [MGI Ref ID J:20769]

Grafstein B; Murray M; Ingoglia NA. 1972. Protein synthesis and axonal transport in retinal ganglion cells of mice lacking visual receptors. Brain Res 44(1):37-48. [PubMed: 4115728]  [MGI Ref ID J:5292]

Graham DR; Overbeek PA; Ash JD. 2005. Leukemia inhibitory factor blocks expression of crx and nrl transcription factors to inhibit photoreceptor differentiation. Invest Ophthalmol Vis Sci 46(7):2601-10. [PubMed: 15980254]  [MGI Ref ID J:99409]

Greferath U; Goh HC; Chua PY; Astrand E; O'Brien EE; Fletcher EL; Murphy M. 2009. Mapping retinal degeneration and loss-of-function in Rd-FTL mice. Invest Ophthalmol Vis Sci 50(12):5955-64. [PubMed: 19661224]  [MGI Ref ID J:158255]

Grimm C; Wenzel A; Stanescu D; Samardzija M; Hotop S; Groszer M; Naash M; Gassmann M; Reme C. 2004. Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration. J Neurosci 24(25):5651-8. [PubMed: 15215287]  [MGI Ref ID J:133235]

Hackam AS; Strom R; Liu D; Qian J; Wang C; Otteson D; Gunatilaka T; Farkas RH; Chowers I; Kageyama M; Leveillard T; Sahel JA; Campochiaro PA; Parmigiani G; Zack DJ. 2004. Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse. Invest Ophthalmol Vis Sci 45(9):2929-42. [PubMed: 15326104]  [MGI Ref ID J:92921]

Hafezi F; Abegg M; Grimm C; Wenzel A; Munz K; Sturmer J; Farber DB; Reme CE. 1998. Retinal degeneration in the rd mouse in the absence of c-fos. Invest Ophthalmol Vis Sci 39(12):2239-44. [PubMed: 9804131]  [MGI Ref ID J:112088]

Hanno Y; Nakahira M; Jishage K; Noda T; Yoshihara Y. 2003. Tracking mouse visual pathways with WGA transgene. Eur J Neurosci 18(10):2910-4. [PubMed: 14656342]  [MGI Ref ID J:128266]

Hart AW; McKie L; Morgan JE; Gautier P; West K; Jackson IJ; Cross SH. 2005. Genotype-phenotype correlation of mouse pde6b mutations. Invest Ophthalmol Vis Sci 46(9):3443-50. [PubMed: 16123450]  [MGI Ref ID J:101336]

Hatori M; Le H; Vollmers C; Keding SR; Tanaka N; Schmedt C; Jegla T; Panda S. 2008. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3(6):e2451. [PubMed: 18545654]  [MGI Ref ID J:137151]

Hawes NL; Smith RS; Chang B; Davisson M; Heckenlively JR; John SW. 1999. Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Mol Vis 5:22. [PubMed: 10493779]  [MGI Ref ID J:59481]

Heckenlively JR; Chang B; Erway LC; Peng C; Hawes NL; Hageman GS; Roderick TH. 1995. Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome 11p15. Proc Natl Acad Sci U S A 92(24):11100-4. [PubMed: 7479945]  [MGI Ref ID J:121993]

Heynen SR; Tanimoto N; Joly S; Seeliger MW; Samardzija M; Grimm C. 2011. Retinal degeneration modulates intracellular localization of CDC42 in photoreceptors. Mol Vis 17:2934-46. [PubMed: 22128240]  [MGI Ref ID J:179662]

Hopp RM; Ransom N; Hilsenbeck SG; Papermaster DS; Windle JJ. 1998. Apoptosis in the murine rd1 retinal degeneration is predominantly p53-independent. Mol Vis 4:5. [PubMed: 9485488]  [MGI Ref ID J:47520]

Horev G; Benjamini Y; Sakov A; Golani I. 2007. Estimating wall guidance and attraction in mouse free locomotor behavior. Genes Brain Behav 6(1):30-41. [PubMed: 17233639]  [MGI Ref ID J:132656]

Hsiao FC; Liao YH; Tsai LL. 2013. Differential effects of retinal degeneration on sleep and wakefulness responses to short light-dark cycles in albino mice. Neuroscience 248C:459-468. [PubMed: 23811394]  [MGI Ref ID J:207054]

Huber G; Beck SC; Grimm C; Sahaboglu-Tekgoz A; Paquet-Durand F; Wenzel A; Humphries P; Redmond TM; Seeliger MW; Fischer MD. 2009. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 50(12):5888-95. [PubMed: 19661229]  [MGI Ref ID J:158254]

Huerta JJ; Llamosas MM; Cernuda-Cernuda R; Garcia-Fernandez JM. 1997. Fos expression in the retina of rd/rd mice during the light/dark cycle. Neurosci Lett 232(3):143-6. [PubMed: 9310300]  [MGI Ref ID J:43873]

Huerta JJ; Llamosas MM; Cernuda-Cernuda R; Garcia-Fernandez JM. 1999. Spatio-temporal analysis of light-induced Fos expression in the retina of rd mutant mice. Brain Res 834(1-2):122-7. [PubMed: 10407100]  [MGI Ref ID J:56973]

Hughes S; Pothecary CA; Jagannath A; Foster RG; Hankins MW; Peirson SN. 2012. Profound defects in pupillary responses to light in TRPM-channel null mice: a role for TRPM channels in non-image-forming photoreception. Eur J Neurosci 35(1):34-43. [PubMed: 22211741]  [MGI Ref ID J:184336]

Hussain AA; Willmott NJ; Voaden MJ. 1992. Cyclic GMP, calcium and photoreceptor sensitivity in mice heterozygous for the rod dysplasia gene designated rd. Vision Res 32(1):29-36. [PubMed: 1323896]  [MGI Ref ID J:611]

Hwang DY; Fleming SM; Ardayfio P; Moran-Gates T; Kim H; Tarazi FI; Chesselet MF; Kim KS. 2005. 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson's disease. J Neurosci 25(8):2132-7. [PubMed: 15728853]  [MGI Ref ID J:98209]

Ionita MA; Pittler SJ. 2007. Focus on molecules: rod cGMP phosphodiesterase type 6. Exp Eye Res 84(1):1-2. [PubMed: 16563379]  [MGI Ref ID J:123170]

Jia L; Oh EC; Ng L; Srinivas M; Brooks M; Swaroop A; Forrest D. 2009. Retinoid-related orphan nuclear receptor RORbeta is an early-acting factor in rod photoreceptor development. Proc Natl Acad Sci U S A 106(41):17534-9. [PubMed: 19805139]  [MGI Ref ID J:153683]

Johnson LE; van Veen T; Ekstrom PA. 2005. Differential Akt activation in the photoreceptors of normal and rd1 mice. Cell Tissue Res 320(2):213-22. [PubMed: 15789220]  [MGI Ref ID J:105103]

Jomary C; Cullen J; Jones SE. 2006. Inactivation of the Akt survival pathway during photoreceptor apoptosis in the retinal degeneration mouse. Invest Ophthalmol Vis Sci 47(4):1620-9. [PubMed: 16565401]  [MGI Ref ID J:108445]

Jomary C; Thomas M; Grist J; Milbrandt J; Neal MJ; Jones SE. 1999. Expression patterns of neurturin and its receptor components in developing and degenerative mouse retina. Invest Ophthalmol Vis Sci 40(3):568-74. [PubMed: 10067959]  [MGI Ref ID J:53298]

Jones BW; Watt CB; Frederick JM; Baehr W; Chen CK; Levine EM; Milam AH; Lavail MM; Marc RE. 2003. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 464(1):1-16. [PubMed: 12866125]  [MGI Ref ID J:84675]

Jones SE; Jomary C; Grist J; Stewart HJ; Neal MJ. 2000. Identification by array screening of altered nm23-M2/PuF mRNA expression in mouse retinal degeneration. Mol Cell Biol Res Commun 4(1):20-5. [PubMed: 11152623]  [MGI Ref ID J:66982]

Jones SE; Jomary C; Grist J; Thomas MR; Neal MJ. 1998. Expression of Pax-6 mRNA in the retinal degeneration (rd) mouse. Biochem Biophys Res Commun 252(1):236-40. [PubMed: 9813176]  [MGI Ref ID J:50978]

Jones SE; Jomary C; Grist J; Thomas MR; Neal MJ. 1998. Expression of alphaB-crystallin in a mouse model of inherited retinal degeneration. Neuroreport 9(18):4161-5. [PubMed: 9926867]  [MGI Ref ID J:52955]

Joseph RM; Li T. 1996. Overexpression of Bcl-2 or Bcl-XL transgenes and photoreceptor degeneration. Invest Ophthalmol Vis Sci 37(12):2434-46. [PubMed: 8933760]  [MGI Ref ID J:37285]

Kanan Y; Hoffhines A; Rauhauser A; Murray A; Al-Ubaidi MR. 2009. Protein tyrosine-O-sulfation in the retina. Exp Eye Res 89(4):559-67. [PubMed: 19523945]  [MGI Ref ID J:154498]

Kaneko H; Nishiguchi KM; Nakamura M; Kachi S; Terasaki H. 2008. Retardation of photoreceptor degeneration in the detached retina of rd1 mouse. Invest Ophthalmol Vis Sci 49(2):781-7. [PubMed: 18235028]  [MGI Ref ID J:132586]

Karasawa K; Tanaka A; Jung K; Matsuda A; Okamoto N; Oida K; Ebihara N; Ohmori K; Matsuda H. 2011. Retinal degeneration and rd1 mutation in NC/Tnd mice-a human atopic dermatitis model. Curr Eye Res 36(4):350-7. [PubMed: 21275519]  [MGI Ref ID J:179794]

Keady BT; Le YZ; Pazour GJ. 2011. IFT20 is required for opsin trafficking and photoreceptor outer segment development. Mol Biol Cell 22(7):921-30. [PubMed: 21307337]  [MGI Ref ID J:183002]

Keeler C. 1966. Retinal degeneration in the mouse is rodless retina. J Hered 57(2):47-50. [PubMed: 5916892]  [MGI Ref ID J:5007]

Keeler CE. 1926. On the Occurrence in the House Mouse of Mendelizing Structural Defect of the Retina Producing Blindness. Proc Natl Acad Sci U S A 12(4):255-8. [PubMed: 16576989]  [MGI Ref ID J:153354]

Keeler CE. 1924. The inheritance of a retinal abnormality in white mice Proc Natl Acad Sci U S A 10(7):329-33. [PubMed: 16576828]  [MGI Ref ID J:24999]

Keeler CE; Sutcliffe E; Chaffee EL. 1928. Normal and 'Rodless' Retinae of the House Mouse with Respect to the Electromotive Force Generated through Stimulation by Light. Proc Natl Acad Sci U S A 14(6):477-84. [PubMed: 16577134]  [MGI Ref ID J:153353]

Kida E; Rabe A; Walus M; Albertini G; Golabek AA. 2013. Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn. Exp Neurol 240:178-89. [PubMed: 23201095]  [MGI Ref ID J:196979]

Kirschman LT; Kolandaivelu S; Frederick JM; Dang L; Goldberg AF; Baehr W; Ramamurthy V. 2010. The Leber congenital amaurosis protein, AIPL1, is needed for the viability and functioning of cone photoreceptor cells. Hum Mol Genet 19(6):1076-87. [PubMed: 20042464]  [MGI Ref ID J:157652]

Klein SL; Kriegsfeld LJ; Hairston JE; Rau V; Nelson RJ; Yarowsky PJ. 1996. Characterization of sensorimotor performance, reproductive and aggressive behaviors in segmental trisomic 16 (Ts65Dn) mice. Physiol Behav 60(4):1159-64. [PubMed: 8884947]  [MGI Ref ID J:174274]

Kokkinopoulos I; Pearson RA; Macneil A; Dhomen NS; Maclaren RE; Ali RR; Sowden JC. 2008. Isolation and characterisation of neural progenitor cells from the adult Chx10(orJ/orJ) central neural retina. Mol Cell Neurosci 38(3):359-73. [PubMed: 18514541]  [MGI Ref ID J:137047]

Kolandaivelu S; Chang B; Ramamurthy V. 2011. Rod Phosphodiesterase-6 (PDE6) Catalytic Subunits Restore Cone Function in a Mouse Model Lacking Cone PDE6 Catalytic Subunit. J Biol Chem 286(38):33252-9. [PubMed: 21799013]  [MGI Ref ID J:176734]

Kolandaivelu S; Huang J; Hurley JB; Ramamurthy V. 2009. AIPL1, a protein associated with childhood blindness, interacts with alpha-subunit of rod phosphodiesterase (PDE6) and is essential for its proper assembly. J Biol Chem 284(45):30853-61. [PubMed: 19758987]  [MGI Ref ID J:156330]

Komeima K; Rogers BS; Lu L; Campochiaro PA. 2006. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A 103(30):11300-5. [PubMed: 16849425]  [MGI Ref ID J:111826]

Komeima K; Usui S; Shen J; Rogers BS; Campochiaro PA. 2008. Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa. Free Radic Biol Med 45(6):905-12. [PubMed: 18634866]  [MGI Ref ID J:142007]

Kranz K; Paquet-Durand F; Weiler R; Janssen-Bienhold U; Dedek K. 2013. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones. PLoS One 8(2):e57163. [PubMed: 23468924]  [MGI Ref ID J:199394]

Kuenzi F; Rosahl TW; Morton RA; Fitzjohn SM; Collingridge GL; Seabrook GR. 2003. Hippocampal synaptic plasticity in mice carrying the rd mutation in the gene encoding cGMP phosphodiesterase type 6 (PDE6). Brain Res 967(1-2):144-51. [PubMed: 12650975]  [MGI Ref ID J:82830]

LaVail MM; Matthes MT; Yasumura D; Steinberg RH. 1997. Variability in rate of cone degeneration in the retinal degeneration (rd/rd) mouse. Exp Eye Res 65(1):45-50. [PubMed: 9237863]  [MGI Ref ID J:42223]

LaVail MM; Mullen RJ. 1976. Role of the pigment epithelium in inherited retinal degeneration analyzed with experimental mouse chimeras. Exp Eye Res 23(2):227-45. [PubMed: 976367]  [MGI Ref ID J:5708]

LaVail MW; Yasumura D; Matthes MT; Lau-Villacorta C; Unoki K; Sung CH; Steinberg RH. 1998. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39(3):592-602. [PubMed: 9501871]  [MGI Ref ID J:46230]

Lahdenranta J; Pasqualini R; Schlingemann RO; Hagedorn M; Stallcup WB; Bucana CD; Sidman RL; Arap W. 2001. An anti-angiogenic state in mice and humans with retinal photoreceptor cell degeneration. Proc Natl Acad Sci U S A 98(18):10368-73. [PubMed: 11526242]  [MGI Ref ID J:126744]

Langmann T; Di Gioia SA; Rau I; Stohr H; Maksimovic NS; Corbo JC; Renner AB; Zrenner E; Kumaramanickavel G; Karlstetter M; Arsenijevic Y; Weber BH; Gal A; Rivolta C. 2010. Nonsense mutations in FAM161A cause RP28-associated recessive retinitis pigmentosa. Am J Hum Genet 87(3):376-81. [PubMed: 20705278]  [MGI Ref ID J:169189]

Lavail MM; Nishikawa S; Duncan JL; Yang H; Matthes MT; Yasumura D; Vollrath D; Overbeek PA; Ash JD; Robinson ML. 2008. Sustained delivery of NT-3 from lens fiber cells in transgenic mice reveals specificity of neuroprotection in retinal degenerations. J Comp Neurol 511(6):724-35. [PubMed: 18925574]  [MGI Ref ID J:176641]

Lin B; Koizumi A; Tanaka N; Panda S; Masland RH. 2008. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A 105(41):16009-14. [PubMed: 18836071]  [MGI Ref ID J:141434]

Lin B; Masland RH; Strettoi E. 2009. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res 88(3):589-99. [PubMed: 19087876]  [MGI Ref ID J:146569]

Lin B; Peng EB. 2013. Retinal ganglion cells are resistant to photoreceptor loss in retinal degeneration. PLoS One 8(6):e68084. [PubMed: 23840814]  [MGI Ref ID J:204325]

Liu SH; Gottsch JD; Vinores SA; Derevjanik NL; McLeod DS; Lutty GA. 2001. EMAP cytokine expression in developing retinas of normal and retinal degeneration (rd) mutant mice. J Neuroimmunol 114(1-2):28-34. [PubMed: 11240012]  [MGI Ref ID J:102963]

Lohr HR; Kuntchithapautham K; Sharma AK; Rohrer B. 2006. Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Eye Res 83(2):380-9. [PubMed: 16626700]  [MGI Ref ID J:116326]

Lu B; Coffey P; Lund R. 2004. Increased c-fos-like immunoreactivity in the superior colliculus and lateral geniculate nucleus of the rd mouse. Brain Res 1025(1-2):220-5. [PubMed: 15464763]  [MGI Ref ID J:107774]

Lucas RJ; Freedman MS; Munoz M; Garcia-Fernandez JM; Foster RG. 1999. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284(5413):505-7. [PubMed: 10205062]  [MGI Ref ID J:128478]

Lupi D; Oster H; Thompson S; Foster RG. 2008. The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci :. [PubMed: 18711396]  [MGI Ref ID J:141041]

Lupi D; Semo M; Foster RG. 2012. Impact of age and retinal degeneration on the light input to circadian brain structures. Neurobiol Aging 33(2):383-92. [PubMed: 20409612]  [MGI Ref ID J:188243]

Marc RE; Jones BW; Anderson JR; Kinard K; Marshak DW; Wilson JH; Wensel T; Lucas RJ. 2007. Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci 48(7):3364-71. [PubMed: 17591910]  [MGI Ref ID J:123271]

Masana MI; Sumaya IC; Becker-Andre M; Dubocovich ML. 2007. Behavioral characterization and modulation of circadian rhythms by light and melatonin in C3H/HeN mice homozygous for the RORbeta knockout. Am J Physiol Regul Integr Comp Physiol 292(6):R2357-67. [PubMed: 17303680]  [MGI Ref ID J:121989]

Matynia A; Parikh S; Chen B; Kim P; McNeill DS; Nusinowitz S; Evans C; Gorin MB. 2012. Intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion. Exp Eye Res 105:60-9. [PubMed: 23078956]  [MGI Ref ID J:203664]

May A; Nimtschke U; May CA. 2009. The architecture of the mouse ciliary processes and their changes during retinal degeneration. Exp Eye Res 88(3):561-5. [PubMed: 19059237]  [MGI Ref ID J:146578]

May CA. 2009. Fibrae medullares in the retina of the RD mouse: a case report. Curr Eye Res 34(5):411-3. [PubMed: 19401885]  [MGI Ref ID J:149565]

McFadyen MP; Kusek G; Bolivar VJ; Flaherty L. 2003. Differences among eight inbred strains of mice in motor ability and motor learning on a rotorod. Genes Brain Behav 2(4):214-9. [PubMed: 12953787]  [MGI Ref ID J:104873]

McKenzie JA; Fruttiger M; Abraham S; Lange CA; Stone J; Gandhi P; Wang X; Bainbridge J; Moss SE; Greenwood J. 2012. Apelin is required for non-neovascular remodeling in the retina. Am J Pathol 180(1):399-409. [PubMed: 22067912]  [MGI Ref ID J:180164]

Menu dit Huart L; Lorentz O; Goureau O; Leveillard T; Sahel JA. 2004. DNA repair in the degenerating mouse retina. Mol Cell Neurosci 26(3):441-9. [PubMed: 15234348]  [MGI Ref ID J:109747]

Menzler J; Zeck G. 2011. Network oscillations in rod-degenerated mouse retinas. J Neurosci 31(6):2280-91. [PubMed: 21307264]  [MGI Ref ID J:169452]

Mohand-Said S; Deudon-Combe A; Hicks D; Simonutti M; Forster V ; Fintz AC ; Leveillard T ; Dreyfus H ; Sahel JA. 1998. Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proc Natl Acad Sci U S A 95(14):8357-62. [PubMed: 9653191]  [MGI Ref ID J:48731]

Montana CL; Kolesnikov AV; Shen SQ; Myers CA; Kefalov VJ; Corbo JC. 2013. Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc Natl Acad Sci U S A 110(5):1732-7. [PubMed: 23319618]  [MGI Ref ID J:193697]

Morin LP; Studholme KM. 2011. Separation of function for classical and ganglion cell photoreceptors with respect to circadian rhythm entrainment and induction of photosomnolence. Neuroscience 199:213-24. [PubMed: 21985934]  [MGI Ref ID J:184037]

Mrosovsky N; Foster RG; Salmon PA. 1999. Thresholds for masking responses to light in three strains of retinally degenerate mice. J Comp Physiol [A] 184(4):423-8. [PubMed: 10377976]  [MGI Ref ID J:56471]

Mrosovsky N; Hampton RR. 1997. Spatial responses to light in mice with severe retinal degeneration. Neurosci Lett 222(3):204-6. [PubMed: 9148250]  [MGI Ref ID J:40689]

Nakamura K; Harada C; Okumura A; Namekata K; Mitamura Y; Yoshida K; Ohno S; Yoshida H; Harada T. 2005. Effect of p75NTR on the regulation of photoreceptor apoptosis in the rd mouse. Mol Vis 11:1229-35. [PubMed: 16402023]  [MGI Ref ID J:136765]

Namekata K; Okumura A; Harada C; Nakamura K; Yoshida H; Harada T. 2006. Effect of photoreceptor degeneration on RNA splicing and expression of AMPA receptors. Mol Vis 12:1586-93. [PubMed: 17200657]  [MGI Ref ID J:117332]

Nishiguchi KM; Nakamura M; Kaneko H; Kachi S; Terasaki H. 2007. The role of VEGF and VEGFR2/Flk1 in proliferation of retinal progenitor cells in murine retinal degeneration. Invest Ophthalmol Vis Sci 48(9):4315-20. [PubMed: 17724222]  [MGI Ref ID J:126933]

Nishikawa S; LaVail MM. 1998. Neovascularization of the RPE: temporal differences in mice with rod photoreceptor gene defects. Exp Eye Res 67(5):509-15. [PubMed: 9878212]  [MGI Ref ID J:52112]

O'Leary TP; Brown RE. 2009. Visuo-spatial learning and memory deficits on the Barnes maze in the 16-month-old APPswe/PS1dE9 mouse model of Alzheimer's disease. Behav Brain Res 201(1):120-7. [PubMed: 19428625]  [MGI Ref ID J:148386]

Ogilvie JM; Hakenewerth AM; Gardner RR; Martak JG; Maggio VM. 2009. Dopamine receptor loss of function is not protective of rd1 rod photoreceptors in vivo. Mol Vis 15:2868-78. [PubMed: 20038975]  [MGI Ref ID J:157088]

Otani A; Kojima H; Guo C; Oishi A; Yoshimura N. 2012. Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa. Am J Pathol 180(1):328-36. [PubMed: 22074737]  [MGI Ref ID J:180155]

Owens L; Buhr E; Tu DC; Lamprecht TL; Lee J; Van Gelder RN. 2012. Effect of circadian clock gene mutations on nonvisual photoreception in the mouse. Invest Ophthalmol Vis Sci 53(1):454-60. [PubMed: 22159024]  [MGI Ref ID J:191526]

Panda S; Provencio I; Tu DC; Pires SS; Rollag MD; Castrucci AM; Pletcher MT; Sato TK; Wiltshire T; Andahazy M; Kay SA; Van Gelder RN; Hogenesch JB. 2003. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301(5632):525-7. [PubMed: 12829787]  [MGI Ref ID J:165769]

Panda S; Sato TK; Castrucci AM; Rollag MD; DeGrip WJ; Hogenesch JB; Provencio I; Kay SA. 2002. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298(5601):2213-6. [PubMed: 12481141]  [MGI Ref ID J:81501]

Pang J; Cheng M; Haire SE; Barker E; Planelles V; Blanks JC. 2006. Efficiency of lentiviral transduction during development in normal and rd mice. Mol Vis 12:756-67. [PubMed: 16862069]  [MGI Ref ID J:111621]

Paper W; Kroeber M; Heersink S; Stephan DA; Fuchshofer R; Russell P; Tamm ER. 2008. Elevated amounts of myocilin in the aqueous humor of transgenic mice cause significant changes in ocular gene expression. Exp Eye Res 87(3):257-67. [PubMed: 18602390]  [MGI Ref ID J:141881]

Paquet-Durand F ; Hauck SM ; van Veen T ; Ueffing M ; Ekstrom P. 2009. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J Neurochem 108(3):796-810. [PubMed: 19187097]  [MGI Ref ID J:146653]

Paquet-Durand F; Azadi S; Hauck SM; Ueffing M; van Veen T; Ekstrom P. 2006. Calpain is activated in degenerating photoreceptors in the rd1 mouse. J Neurochem 96(3):802-14. [PubMed: 16405498]  [MGI Ref ID J:106017]

Paquet-Durand F; Beck S; Michalakis S; Goldmann T; Huber G; Muhlfriedel R; Trifunovic D; Fischer MD; Fahl E; Duetsch G; Becirovic E; Wolfrum U; van Veen T; Biel M; Tanimoto N; Seeliger MW. 2011. A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa. Hum Mol Genet 20(5):941-7. [PubMed: 21149284]  [MGI Ref ID J:169039]

Park H; Tan CC; Faulkner A; Jabbar SB; Schmid G; Abey J; Iuvone PM; Pardue MT. 2013. Retinal degeneration increases susceptibility to myopia in mice. Mol Vis 19:2068-79. [PubMed: 24146540]  [MGI Ref ID J:205341]

Park SJ; Lee DS; Lim EJ; Choi SH; Kang WS; Kim IB; Chun MH. 2008. The absence of the clathrin-dependent endocytosis in rod bipolar cells of the FVB/N mouse retina. Neurosci Lett 439(2):165-9. [PubMed: 18514403]  [MGI Ref ID J:137049]

Peirson SN; Oster H; Jones SL; Leitges M; Hankins MW; Foster RG. 2007. Microarray analysis and functional genomics identify novel components of melanopsin signaling. Curr Biol 17(16):1363-72. [PubMed: 17702581]  [MGI Ref ID J:128396]

Peng GH; Chen S. 2007. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation. Hum Mol Genet 16(20):3433-52. [PubMed: 17656371]  [MGI Ref ID J:129889]

Petrasch-Parwez E; Habbes HW; Weickert S; Lobbecke-Schumacher M; Striedinger K; Wieczorek S; Dermietzel R; Epplen JT. 2004. Fine-structural analysis and connexin expression in the retina of a transgenic model of Huntington's disease. J Comp Neurol 479(2):181-97. [PubMed: 15452853]  [MGI Ref ID J:135880]

Phelan JK; Bok D. 2000. Analysis and quantitation of mRNAs encoding the alpha- and beta-subunits of rod photoreceptor cGMP phosphodiesterase in neonatal retinal degeneration (rd) mouse retinas. Exp Eye Res 71(2):119-28. [PubMed: 10930317]  [MGI Ref ID J:63861]

Pickard GE; Baver SB; Ogilvie MD; Sollars PJ. 2009. Light-induced fos expression in intrinsically photosensitive retinal ganglion cells in melanopsin knockout (opn4) mice. PLoS ONE 4(3):e4984. [PubMed: 19319185]  [MGI Ref ID J:147460]

Pittler SJ; Baehr W. 1991. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A 88(19):8322-6. [PubMed: 1656438]  [MGI Ref ID J:11513]

Pittler SJ; Keeler CE; Sidman RL; Baehr W. 1993. PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. Proc Natl Acad Sci U S A 90(20):9616-9. [PubMed: 8415750]  [MGI Ref ID J:15231]

Popper P; Farber DB; Micevych PE; Minoofar K; Bronstein JM. 1997. TRPM-2 expression and tunel staining in neurodegenerative diseases: studies in wobbler and rd mice. Exp Neurol 143(2):246-54. [PubMed: 9056387]  [MGI Ref ID J:38831]

Portera-Cailliau C; Sung CH; Nathans J; Adler R. 1994. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 91(3):974-8. [PubMed: 8302876]  [MGI Ref ID J:16708]

Provencio I; Cooper HM; Foster RG. 1998. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol 395(4):417-39. [PubMed: 9619497]  [MGI Ref ID J:47756]

Provencio I; Foster RG. 1995. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res 694(1-2):183-90. [PubMed: 8974643]  [MGI Ref ID J:29236]

Provencio I; Wong S; Lederman AB; Argamaso SM; Foster RG. 1994. Visual and circadian responses to light in aged retinally degenerate mice. Vision Res 34(14):1799-806. [PubMed: 7941382]  [MGI Ref ID J:19843]

Punzo C; Cepko C. 2007. Cellular responses to photoreceptor death in the rd1 mouse model of retinal degeneration. Invest Ophthalmol Vis Sci 48(2):849-57. [PubMed: 17251487]  [MGI Ref ID J:123282]

Punzo C; Kornacker K; Cepko CL. 2009. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44-52. [PubMed: 19060896]  [MGI Ref ID J:144720]

Qiao X; Pennesi M; Seong E; Gao H; Burmeister M; Wu SM. 2003. Photoreceptor degeneration and rd1 mutation in the grizzled/mocha mouse strain. Vision Res 43(8):859-65. [PubMed: 12668055]  [MGI Ref ID J:88031]

RIKEN BioResource Center/RIKEN Genomic Sciences Center. 2008. A Large Scale Mutagenesis Program in RIKEN GSC PhenoSITE, World Wide Web (URL: http://www.brc.riken.jp/lab/gsc/mouse/) :.  [MGI Ref ID J:133634]

Rao A; Dallman R; Henderson S; Chen CK. 2007. Gbeta5 is required for normal light responses and morphology of retinal ON-bipolar cells. J Neurosci 27(51):14199-204. [PubMed: 18094259]  [MGI Ref ID J:129267]

Read DS; McCall MA; Gregg RG. 2002. Absence of voltage-dependent calcium channels delays photoreceptor degeneration in rd mice. Exp Eye Res 75(4):415-20. [PubMed: 12387789]  [MGI Ref ID J:79923]

Rich KA; Zhan Y; Blanks JC. 1997. Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. J Comp Neurol 388(1):47-63. [PubMed: 9364238]  [MGI Ref ID J:44100]

Roesch K; Stadler MB; Cepko CL. 2012. Gene expression changes within Muller glial cells in retinitis pigmentosa. Mol Vis 18:1197-214. [PubMed: 22665967]  [MGI Ref ID J:191614]

Rohrer B; Demos C; Frigg R; Grimm C. 2007. Classical complement activation and acquired immune response pathways are not essential for retinal degeneration in the rd1 mouse. Exp Eye Res 84(1):82-91. [PubMed: 17069800]  [MGI Ref ID J:123183]

Rossi C; Strettoi E; Galli-Resta L. 2003. The spatial order of horizontal cells is not affected by massive alterations in the organization of other retinal cells. J Neurosci 23(30):9924-8. [PubMed: 14586022]  [MGI Ref ID J:120041]

Ruan GX; Allen GC; Yamazaki S; McMahon DG. 2008. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol 6(10):e249. [PubMed: 18959477]  [MGI Ref ID J:141081]

Ruggiero L; Allen CN; Lane Brown R; Robinson DW. 2009. The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration. Eur J Neurosci 29(2):359-67. [PubMed: 19200239]  [MGI Ref ID J:146465]

Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH. 2010. Temporal response properties of retinal ganglion cells in rd1 mice evoked by amplitude-modulated electrical pulse trains. Invest Ophthalmol Vis Sci 51(12):6762-9. [PubMed: 20671284]  [MGI Ref ID J:171389]

SIDMAN RL; GREEN MC. 1965. RETINAL DEGENERATION IN THE MOUSE: LOCATION OF THE RD LOCUS IN LINKAGE GROUP XVII. J Hered 56:23-9. [PubMed: 14276177]  [MGI Ref ID J:114]

Sahaboglu A; Tanimoto N; Kaur J; Sancho-Pelluz J; Huber G; Fahl E; Arango-Gonzalez B; Zrenner E; Ekstrom P; Lowenheim H; Seeliger M; Paquet-Durand F. 2010. PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function. PLoS One 5(11):e15495. [PubMed: 21124852]  [MGI Ref ID J:167317]

Samardzija M; Wenzel A; Aufenberg S; Thiersch M; Reme C; Grimm C. 2006. Differential role of Jak-STAT signaling in retinal degenerations. FASEB J 20(13):2411-3. [PubMed: 16966486]  [MGI Ref ID J:114638]

Samardzija M; Wenzel A; Thiersch M; Frigg R; Reme C; Grimm C. 2006. Caspase-1 ablation protects photoreceptors in a model of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 47(12):5181-90. [PubMed: 17122101]  [MGI Ref ID J:123100]

Sancho-Pelluz J; Wunderlich KA; Rauch U; Romero FJ; van Veen T; Limb GA; Crocker PR; Perez MT. 2008. Sialoadhesin expression in intact degenerating retinas and following transplantation. Invest Ophthalmol Vis Sci 49(12):5602-10. [PubMed: 18641281]  [MGI Ref ID J:142000]

Sanz MM; Johnson LE; Ahuja S; Ekstrom PA; Romero J; van Veen T. 2007. Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration. Neuroscience 145(3):1120-9. [PubMed: 17293057]  [MGI Ref ID J:121644]

Sasahara M; Otani A; Oishi A; Kojima H; Yodoi Y; Kameda T; Nakamura H; Yoshimura N. 2008. Activation of bone marrow-derived microglia promotes photoreceptor survival in inherited retinal degeneration. Am J Pathol 172(6):1693-703. [PubMed: 18483210]  [MGI Ref ID J:136339]

Schmidt SY; Lolley RN. 1973. Cyclic-nucleotide phosphodiesterase: an early defect in inherited retinal degeneration of C3H mice. J Cell Biol 57(1):117-23. [PubMed: 4347974]  [MGI Ref ID J:5332]

Scott A; Powner MB; Fruttiger M. 2014. Quantification of vascular tortuosity as an early outcome measure in oxygen induced retinopathy (OIR). Exp Eye Res 120:55-60. [PubMed: 24418725]  [MGI Ref ID J:210367]

Selby CP; Thompson C; Schmitz TM; Van Gelder RN; Sancar A. 2000. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice Proc Natl Acad Sci U S A 97(26):14697-702. [PubMed: 11114194]  [MGI Ref ID J:66580]

Semo M; Gias C; Ahmado A; Sugano E; Allen AE; Lawrence JM; Tomita H; Coffey PJ; Vugler AA. 2010. Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception. PLoS One 5(11):e15009. [PubMed: 21124784]  [MGI Ref ID J:167120]

Semo M; Lupi D; Peirson SN; Butler JN; Foster RG. 2003. Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 18(11):3007-17. [PubMed: 14656296]  [MGI Ref ID J:89691]

Semo M; Peirson S; Lupi D; Lucas RJ; Jeffery G; Foster RG. 2003. Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 17(9):1793-801. [PubMed: 12752778]  [MGI Ref ID J:128149]

Sharma AK; Rohrer B. 2007. Sustained elevation of intracellular cGMP causes oxidative stress triggering calpain-mediated apoptosis in photoreceptor degeneration. Curr Eye Res 32(3):259-69. [PubMed: 17453946]  [MGI Ref ID J:121112]

Sheedlo HJ; Jaynes D; Bolan AL; Turner JE. 1995. Mullerian glia in dystrophic rodent retinas: an immunocytochemical analysis. Brain Res Dev Brain Res 85(2):171-80. [PubMed: 7600664]  [MGI Ref ID J:24543]

Srinivasan Y; Lovicu FJ; Overbeek PA. 1998. Lens-specific expression of transforming growth factor beta1 in transgenic mice causes anterior subcapsular cataracts. J Clin Invest 101(3):625-34. [PubMed: 9449696]  [MGI Ref ID J:135895]

Stone C; Pinto LH. 1993. Response properties of ganglion cells in the isolated mouse retina. Vis Neurosci 10(1):31-9. [PubMed: 8424927]  [MGI Ref ID J:116795]

Strettoi E; Pignatelli V. 2000. Modifications of retinal neurons in a mouse model of retinitis pigmentosa Proc Natl Acad Sci U S A 97(20):11020-5. [PubMed: 10995468]  [MGI Ref ID J:64742]

Strettoi E; Pignatelli V; Rossi C; Porciatti V; Falsini B. 2003. Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Res 43(8):867-77. [PubMed: 12668056]  [MGI Ref ID J:92316]

Strettoi E; Porciatti V; Falsini B; Pignatelli V; Rossi C. 2002. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J Neurosci 22(13):5492-504. [PubMed: 12097501]  [MGI Ref ID J:109225]

Sumaya IC; Masana MI; Dubocovich ML. 2005. The antidepressant-like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MT1 melatonin receptors. J Pineal Res 39(2):170-7. [PubMed: 16098095]  [MGI Ref ID J:114318]

Takahashi M; Miyoshi H; Verma IM; Gage FH. 1999. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 73(9):7812-6. [PubMed: 10438872]  [MGI Ref ID J:56759]

Tansley K. 1954. An inherited retinal degeneration in the mouse J Hered 45:123-27.  [MGI Ref ID J:15333]

Thaung C; Arnold K; Jackson IJ; Coffey PJ. 2002. Presence of visual head tracking differentiates normal sighted from retinal degenerate mice. Neurosci Lett 325(1):21-4. [PubMed: 12023058]  [MGI Ref ID J:107978]

Thompson CL; Selby CP; Partch CL; Plante DT; Thresher RJ; Araujo F; Sancar A. 2004. Further evidence for the role of cryptochromes in retinohypothalamic photoreception/phototransduction. Brain Res Mol Brain Res 122(2):158-66. [PubMed: 15010208]  [MGI Ref ID J:88468]

Thompson S; Foster RG; Stone EM; Sheffield VC; Mrosovsky N. 2008. Classical and melanopsin photoreception in irradiance detection: negative masking of locomotor activity by light. Eur J Neurosci 27(8):1973-9. [PubMed: 18412618]  [MGI Ref ID J:136825]

Thompson S; Lupi D; Hankins MW; Peirson SN; Foster RG. 2008. The effects of rod and cone loss on the photic regulation of locomotor activity and heart rate. Eur J Neurosci 28(4):724-9. [PubMed: 18702692]  [MGI Ref ID J:140577]

Thompson S; Mullins RF; Philp AR; Stone EM; Mrosovsky N. 2008. Divergent phenotypes of vision and accessory visual function in mice with visual cycle dysfunction (Rpe65 rd12) or retinal degeneration (rd/rd). Invest Ophthalmol Vis Sci 49(6):2737-42. [PubMed: 18515598]  [MGI Ref ID J:137044]

Thompson S; Stasheff SF; Hernandez J; Nylen E; East JS; Kardon RH; Pinto LH; Mullins RF; Stone EM. 2011. Different inner retinal pathways mediate rod-cone input in irradiance detection for the pupillary light reflex and regulation of behavioral state in mice. Invest Ophthalmol Vis Sci 52(1):618-23. [PubMed: 20847113]  [MGI Ref ID J:171559]

Thyagarajan S; van Wyk M; Lehmann K; Lowel S; Feng G; Wassle H. 2010. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci 30(26):8745-58. [PubMed: 20592196]  [MGI Ref ID J:161847]

Tsang SH; Gouras P; Yamashita CK; Kjeldbye H; Fisher J; Farber DB; Goff SP. 1996. Retinal degeneration in mice lacking the gamma subunit of the rod cGMP phosphodiesterase. Science 272(5264):1026-9. [PubMed: 8638127]  [MGI Ref ID J:33048]

Tu DC; Owens LA; Anderson L; Golczak M; Doyle SE; McCall M; Menaker M; Palczewski K; Van Gelder RN. 2006. Inner retinal photoreception independent of the visual retinoid cycle. Proc Natl Acad Sci U S A 103(27):10426-31. [PubMed: 16788071]  [MGI Ref ID J:111700]

Tu DC; Zhang D; Demas J; Slutsky EB; Provencio I; Holy TE; Van Gelder RN. 2005. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48(6):987-99. [PubMed: 16364902]  [MGI Ref ID J:107606]

Tucker B; Klassen H; Yang L; Chen DF; Young MJ. 2008. Elevated MMP Expression in the MRL Mouse Retina Creates a Permissive Environment for Retinal Regeneration. Invest Ophthalmol Vis Sci 49(4):1686-95. [PubMed: 18385092]  [MGI Ref ID J:136153]

Usui S; Oveson BC; Lee SY; Jo YJ; Yoshida T; Miki A; Miki K; Iwase T; Lu L; Campochiaro PA. 2009. NADPH oxidase plays a central role in cone cell death in retinitis pigmentosa. J Neurochem 110(3):1028-37. [PubMed: 19493169]  [MGI Ref ID J:152819]

Van Gelder RN; Wee R; Lee JA; Tu DC. 2003. Reduced pupillary light responses in mice lacking cryptochromes. Science 299(5604):222. [PubMed: 12522242]  [MGI Ref ID J:81500]

Vazquez-Chona FR; Clark AM; Levine EM. 2009. Rlbp1 promoter drives robust Muller glial GFP expression in transgenic mice. Invest Ophthalmol Vis Sci 50(8):3996-4003. [PubMed: 19324864]  [MGI Ref ID J:154561]

Viczian A; Sanyal S; Toffenetti J; Chader GJ; Farber DB. 1992. Photoreceptor-specific mRNAs in mice carrying different allelic combinations at the rd and rds loci. Exp Eye Res 54(6):853-60. [PubMed: 1381682]  [MGI Ref ID J:2579]

Vlachantoni D; Bramall AN; Murphy MP; Taylor RW; Shu X; Tulloch B; Van Veen T; Turnbull DM; McInnes RR; Wright AF. 2011. Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. Hum Mol Genet 20(2):322-35. [PubMed: 21051333]  [MGI Ref ID J:166898]

Wahlin KJ; Adler R; Zack DJ; Campochiaro PA. 2001. Neurotrophic signaling in normal and degenerating rodent retinas. Exp Eye Res 73(5):693-701. [PubMed: 11747369]  [MGI Ref ID J:73377]

Wang Y; Wang ZY; Zhou MN; Cai J; Sun LY; Liu XY; Daugherty BL; Pestka S. 1997. Sequencing and bacterial expression of a novel murine alpha interferon gene. Sci China C Life Sci 40(3):277-283.  [MGI Ref ID J:41297]

Warthen DM; Wiltgen BJ; Provencio I. 2011. Light enhances learned fear. Proc Natl Acad Sci U S A 108(33):13788-93. [PubMed: 21808002]  [MGI Ref ID J:175610]

Welge-Lussen U; Wilsch C; Neuhardt T; Wayne Streilein J; Lutjen-Drecoll E. 1999. Loss of anterior chamber-associated immune deviation (ACAID) in aged retinal degeneration (rd) mice. Invest Ophthalmol Vis Sci 40(13):3209-14. [PubMed: 10586944]  [MGI Ref ID J:58745]

Won J; Shi LY; Hicks W; Wang J; Hurd R; Naggert JK; Chang B; Nishina PM. 2011. Mouse model resources for vision research. J Ophthalmol 2011:391384. [PubMed: 21052544]  [MGI Ref ID J:166679]

Wong P; Borst DE; Farber D; Danciger JS; Tenniswood M; Chader GJ; van Veen T. 1994. Increased TRPM-2/clusterin mRNA levels during the time of retinal degeneration in mouse models of retinitis pigmentosa. Biochem Cell Biol 72(9-10):439-46. [PubMed: 7605616]  [MGI Ref ID J:24128]

Wu J; Trogadis J; Bremner R. 2001. Rod and cone degeneration in the rd mouse is p53 independent. Mol Vis 7:101-6. [PubMed: 11344337]  [MGI Ref ID J:126023]

Wunderlich KA; Leveillard T; Penkowa M; Zrenner E; Perez MT. 2010. Altered expression of metallothionein-I and -II and their receptor megalin in inherited photoreceptor degeneration. Invest Ophthalmol Vis Sci 51(9):4809-20. [PubMed: 20357188]  [MGI Ref ID J:164094]

Yamada H; Yamada E; Hackett SF; Ozaki H; Okamoto N; Campochiaro PA. 1999. Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. J Cell Physiol 179(2):149-56. [PubMed: 10199554]  [MGI Ref ID J:54326]

Yan W; Lewin A; Hauswirth W. 1998. Selective degradation of nonsense beta-phosphodiesterase mRNA in the heterozygous rd mouse. Invest Ophthalmol Vis Sci 39(13):2529-36. [PubMed: 9856762]  [MGI Ref ID J:51361]

Yang LP; Wu LM; Guo XJ; Tso MO. 2007. Activation of endoplasmic reticulum stress in degenerating photoreceptors of the rd1 mouse. Invest Ophthalmol Vis Sci 48(11):5191-8. [PubMed: 17962473]  [MGI Ref ID J:127157]

Yazulla S; Studholme KM; Pinto LH. 1997. Differences in the retinal GABA system among control, spastic mutant and retinal degeneration mutant mice. Vision Res 37(24):3471-82. [PubMed: 9425524]  [MGI Ref ID J:45280]

Yi H; Nakamura RE; Mohamed O; Dufort D; Hackam AS. 2007. Characterization of Wnt signaling during photoreceptor degeneration. Invest Ophthalmol Vis Sci 48(12):5733-41. [PubMed: 18055826]  [MGI Ref ID J:132500]

Yoshimura T; Ebihara S. 1998. Decline of circadian photosensitivity associated with retinal degeneration in CBA/J-rd/rd mice. Brain Res 779(1-2):188-93. [PubMed: 9473668]  [MGI Ref ID J:45462]

Yoshimura T; Ebihara S. 1996. Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+)mice. J Comp Physiol [A] 178(6):797-802. [PubMed: 8667293]  [MGI Ref ID J:33685]

Yoshimura T; Nishio M; Goto M; Ebihara S. 1994. Differences in circadian photosensitivity between retinally degenerate CBA/J mice (rd/rd) and normal CBA/N mice (+/+). J Biol Rhythms 9(1):51-60. [PubMed: 7949306]  [MGI Ref ID J:19351]

Yoshimura T; Yokota Y; Ishikawa A; Yasuo S; Hayashi N; Suzuki T; Okabayashi N; Namikawa T; Ebihara S. 2002. Mapping quantitative trait loci affecting circadian photosensitivity in retinally degenerate mice. J Biol Rhythms 17(6):512-9. [PubMed: 12465884]  [MGI Ref ID J:80788]

Zeiss CJ; Johnson EA. 2004. Proliferation of microglia, but not photoreceptors, in the outer nuclear layer of the rd-1 mouse. Invest Ophthalmol Vis Sci 45(3):971-6. [PubMed: 14985319]  [MGI Ref ID J:109731]

Zeiss CJ; Neal J; Johnson EA. 2004. Caspase-3 in postnatal retinal development and degeneration. Invest Ophthalmol Vis Sci 45(3):964-70. [PubMed: 14985318]  [MGI Ref ID J:88367]

Zencak D; Crippa SV; Tekaya M; Tanger E; Schorderet DE; Munier FL; van Lohuizen M; Arsenijevic Y. 2006. BMI1 loss delays photoreceptor degeneration in Rd1 mice. Bmi1 loss and neuroprotection in Rd1 mice. Adv Exp Med Biol 572:209-15. [PubMed: 17249577]  [MGI Ref ID J:154016]

Zencak D; Schouwey K; Chen D; Ekstrom P; Tanger E; Bremner R; van Lohuizen M; Arsenijevic Y. 2013. Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins. Proc Natl Acad Sci U S A 110(7):E593-601. [PubMed: 23359713]  [MGI Ref ID J:194322]

Zeng HY; Lu QJ; Liu Q; Liu KG; Wang NL. 2011. The role of CCR1 expression in the retinal degeneration in rd mice. Curr Eye Res 36(3):264-9. [PubMed: 21275605]  [MGI Ref ID J:179793]

Zhang N; Kolesnikov AV; Jastrzebska B; Mustafi D; Sawada O; Maeda T; Genoud C; Engel A; Kefalov VJ; Palczewski K. 2013. Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization. J Clin Invest 123(1):121-37. [PubMed: 23221340]  [MGI Ref ID J:194158]

Zhu Y; Tu DC; Denner D; Shane T; Fitzgerald CM; Van Gelder RN. 2007. Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses. Invest Ophthalmol Vis Sci 48(3):1268-75. [PubMed: 17325172]  [MGI Ref ID J:123259]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3300.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $4290.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Control Information

  Control
   001800 FVB/NJ
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Important Note

This strain is homozygous for the retinal degeneration allele Pde6brd1.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.6)