Strain Name:

STOCK Adrb1tm1Bkk Adrb2tm1Bkk/J

Stock Number:

003810

Order this mouse

Availability:

Repository- Live

Use Restrictions Apply, see Terms of Use
Stimulation of beta adrenergic receptor function in homozygous null mice for the Adrb1 and Adrb2 genes by agonists or exercise reveals significant impairments in chronotropic range, vascular reactivity and metabolic rate. When exercised, heart rates in null mice are lower than that of wild type mice.

Description

Strain Information

Type Mutant Stock; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Mating SystemHomozygote x Homozygote         (Female x Male)   30-JUN-08
Specieslaboratory mouse
Generation[N7+3p]F11 (17-JUL-13)
Generation Definitions
 
Donating InvestigatorDr. Brian Kobilka,   Stanford University

Description
Mice that are homozygous null for the Adrb1 and Adrb2 genes are viable, fertile, normal in size and do not display any gross physical or behavioral abnormalities. Stimulation of beta adrenergic receptor function in these mice by agonists or exercise reveals significant impairments in chronotropic range, vascular reactivity and metabolic rate. A severely attenuated chronotropic and hypotensive response is observed after administration of the non-selective beta adrenergic receptor agonist isoproterenol. An abnormal response to epinephrine is also seen, with bradycardia and a monophasic hypertensive blood pressure change being observed rather than the tachycardia and biphasic hypertensive/ hypotensive response seen in wildtype mice. When exercised, heart rates in null mice are lower than that of wild type mice. No difference is noted in the resting heart rate.

Development
Double knockout mice were created by mating Adrb1 homozygous knockout mice with Adrb2 homozygous knockout mice to generate compound heterozygotes, the offspring of which were then mated to obtain compound homozygotes. Adrb1 null mice were created using a targeting vector containing a neomycin resistance gene driven by the mouse phosphoglycerate kinase promoter to disrupt most of the Adrb1coding region (all but a 3' 153 bp). The construct was transfected into 129- derived R1 embryonic stem (ES) cells. Correctly targeted ES cells were injected into C57BL/6J blastocysts. The resulting chimeric male animals were mated to C57BL/6J X DBA/2 F1 hybrids. Adrb2 null mice were created in a similar fashion using a targeting vector again containing a neomycin resistance gene driven by the mouse phosphoglycerate kinase promoter to disrupt Adrb2 such that the end of the fourth transmembrane segment is absent, rendering the receptor nonfunctional. The construct was transfected into 129- derived R1 embryonic stem (ES) cells. Correctly targeted ES cells were injected into CD-1 blastocysts. The resulting chimeric male animals were mated to FVB/N females.

Control Information

  Control
   None Available
 
  Considerations for Choosing Controls

Related Strains

Strains carrying other alleles of Adrb2
006691   STOCK Olfr151tm14(Adrb2)Mom/MomJ
View Strains carrying other alleles of Adrb2     (1 strain)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Asthma, Susceptibility to   (ADRB2)
Beta-1-Adrenergic Receptor; ADRB1   (ADRB1)
Beta-2-Adrenergic Receptor; ADRB2   (ADRB2)
Obesity   (ADRB2)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Adrb1tm1Bkk/Adrb1tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk

        involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
  • cardiovascular system phenotype
  • abnormal cardiovascular system physiology
    • abnormal responses to pharmacological stimuli; attenuation of both the normal tachycardia and hypotensive responses to isoproterenol administration and bradycardia and monophasic hypertension in response to epinephrine administration   (MGI Ref ID J:55553)
    • decreased cardiac muscle contractility
      • reduced cardiac contractility in awake and in anesthetized mice   (MGI Ref ID J:55553)
    • decreased heart rate
      • decreased heart rate in response to exercise, but normal basal heart rate, normal basal mean arterial blood pressure and normal blood pressure changes in response to exercise   (MGI Ref ID J:55553)
  • homeostasis/metabolism phenotype
  • abnormal physiological response to xenobiotic
    • abnormal responses to pharmacological stimuli; attenuation of the normal tachycardia and hypotensive responses to isoproterenol administration   (MGI Ref ID J:55553)
  • abnormal response/metabolism to endogenous compounds
    • abnormal responses to pharmacological stimuli; attenuation of the normal bradycardia and monophasic hypertension in response to epinephrine administration   (MGI Ref ID J:55553)
  • decreased oxygen consumption
    • reduced O2 consumption during exercise and reduced CO2 production during exercise, but normal total exercise capacity   (MGI Ref ID J:55553)
  • muscle phenotype
  • decreased cardiac muscle contractility
    • reduced cardiac contractility in awake and in anesthetized mice   (MGI Ref ID J:55553)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Sensorineural Research
Nociception

Adrb1tm1Bkk related

Cardiovascular Research
Heart Abnormalities
      chronotropy

Metabolism Research
Exertion Related

Neurobiology Research
Metabolic Defects
Response to Catecholamines

Adrb2tm1Bkk related

Cardiovascular Research
Heart Abnormalities
      chronotropy

Metabolism Research
Exertion Related

Neurobiology Research
Metabolic Defects
Response to Catecholamines

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Adrb1tm1Bkk
Allele Name targeted mutation 1, Brian K Kobilka
Allele Type Targeted (Null/Knockout)
Common Name(s) Adrb1tm1Gsb; Beta1-KO; beta1-AR-;
Mutation Made ByDr. Brian Kobilka,   Stanford University
Strain of Origin(129X1/SvJ x 129S1/Sv)F1-Kitl<+>
ES Cell Line NameR1
ES Cell Line Strain(129X1/SvJ x 129S1/Sv)F1-Kitl<+>
Gene Symbol and Name Adrb1, adrenergic receptor, beta 1
Chromosome 19
Gene Common Name(s) ADRB1R; Adrb-1; B1AR; BETA1AR; RATB1AR; RHR; beta 1-AR;
Molecular Note A 1364 bp genomic fragment containing the initiation codon was replaced with a neomycin selection cassette. No protein product was detected on Western blots of heart tissue from homozygous mutant mice. [MGI Ref ID J:34659]
 
Allele Symbol Adrb2tm1Bkk
Allele Name targeted mutation 1, Brian K Kobilka
Allele Type Targeted (Null/Knockout)
Common Name(s) Adrb2-; Beta2-AR; Beta2-KO; beta2AR-;
Mutation Made ByDr. Brian Kobilka,   Stanford University
Strain of Origin(129X1/SvJ x 129S1/Sv)F1-Kitl<+>
ES Cell Line NameR1
ES Cell Line Strain(129X1/SvJ x 129S1/Sv)F1-Kitl<+>
Gene Symbol and Name Adrb2, adrenergic receptor, beta 2
Chromosome 18
Gene Common Name(s) ADRB2R; ADRBR; Adrb-2; B-adrenergic binding; B2AR; BAR; BETA2AR; Badm; G protein coupled receptor 7; Gpcr7; beta 2-AR; beta 2-adrenoceptor;
Molecular Note A neomycin selection cassette was inserted into the sequence encoding the fourth transmembrane segment. This mutation is predicted to eliminate expression of a functional receptor. Ligand binding experiments confirmed that no functional receptor was expressed in the lung of homozygous mice. [MGI Ref ID J:55552]

Genotyping

Genotyping Information

Genotyping Protocols

Adrb1tm1Bkkalternate4, Separated PCR
Adrb2tm1Bkk MCA, Melt Curve Analysis
Adrb2tm1Bkk, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Rohrer DK; Chruscinski A; Schauble EH; Bernstein D; Kobilka BK. 1999. Cardiovascular and metabolic alterations in mice lacking both beta1- and beta2-adrenergic receptors. J Biol Chem 274(24):16701-8. [PubMed: 10358009]  [MGI Ref ID J:55553]

Additional References

Adrb1tm1Bkk related

Angers M; Uldry M; Kong D; Gimble JM; Jetten AM. 2008. Mfsd2a encodes a novel major facilitator superfamily domain-containing protein highly induced in brown adipose tissue during fasting and adaptive thermogenesis. Biochem J 416(3):347-55. [PubMed: 18694395]  [MGI Ref ID J:143949]

Bachman ES; Dhillon H; Zhang CY; Cinti S; Bianco AC; Kobilka BK; Lowell BB. 2002. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297(5582):843-5. [PubMed: 12161655]  [MGI Ref ID J:79309]

Bernstein D; Fajardo G; Zhao M; Urashima T; Powers J; Berry G; Kobilka BK. 2005. Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol 289(6):H2441-9. [PubMed: 16040722]  [MGI Ref ID J:104748]

Chen L; Kim SM; Eisner C; Oppermann M; Huang Y; Mizel D; Li L; Chen M; Sequeira Lopez ML; Weinstein LS; Gomez RA; Schnermann J; Briggs JP. 2010. Stimulation of renin secretion by angiotensin II blockade is Gsalpha-dependent. J Am Soc Nephrol 21(6):986-92. [PubMed: 20395378]  [MGI Ref ID J:185936]

Chen Q; Zhang Y; Peng H; Lei L; Kuang H; Zhang L; Ning L; Cao Y; Duan E. 2011. Transient {beta}2-adrenoceptor activation confers pregnancy loss by disrupting embryo spacing at implantation. J Biol Chem 286(6):4349-56. [PubMed: 21148315]  [MGI Ref ID J:169482]

Chruscinski A; Brede ME; Meinel L; Lohse MJ; Kobilka BK; Hein L. 2001. Differential distribution of beta-adrenergic receptor subtypes in blood vessels of knockout mice lacking beta(1)- or beta(2)-adrenergic receptors. Mol Pharmacol 60(5):955-62. [PubMed: 11641423]  [MGI Ref ID J:102882]

Devic E; Xiang Y; Gould D; Kobilka B. 2001. Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol Pharmacol 60(3):577-83. [PubMed: 11502890]  [MGI Ref ID J:103958]

Ecker PM; Lin CC; Powers J; Kobilka BK; Dubin AM; Bernstein D. 2006. Effect of targeted deletions of beta1- and beta2-adrenergic-receptor subtypes on heart rate variability. Am J Physiol Heart Circ Physiol 290(1):H192-9. [PubMed: 16113068]  [MGI Ref ID J:104760]

Emeny RT; Gao D; Lawrence DA. 2007. Beta1-adrenergic receptors on immune cells impair innate defenses against Listeria. J Immunol 178(8):4876-84. [PubMed: 17404268]  [MGI Ref ID J:145198]

Fajardo G; Zhao M; Powers J; Bernstein D. 2006. Differential cardiotoxic/cardioprotective effects of beta-adrenergic receptor subtypes in myocytes and fibroblasts in doxorubicin cardiomyopathy. J Mol Cell Cardiol 40(3):375-383. [PubMed: 16458323]  [MGI Ref ID J:105959]

Fujikawa T; Berglund ED; Patel VR; Ramadori G; Vianna CR; Vong L; Thorel F; Chera S; Herrera PL; Lowell BB; Elmquist JK; Baldi P; Coppari R. 2013. Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin. Cell Metab 18(3):431-44. [PubMed: 24011077]  [MGI Ref ID J:203813]

Jiang Y; Zhang Q; Liu L; Tang J; Kern TS; Steinle JJ. 2013. beta2-adrenergic receptor knockout mice exhibit A diabetic retinopathy phenotype. PLoS One 8(7):e70555. [PubMed: 23894672]  [MGI Ref ID J:204379]

Jimenez M; Leger B; Canola K; Lehr L; Arboit P; Seydoux J; Russell AP; Giacobino JP; Muzzin P; Preitner F. 2002. beta(1)/beta(2)/beta(3)-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett 530(1-3):37. [PubMed: 12387862]  [MGI Ref ID J:79769]

Kim SM; Chen L; Faulhaber-Walter R; Oppermann M; Huang Y; Mizel D; Briggs JP; Schnermann J. 2007. Regulation of renin secretion and expression in mice deficient in beta1- and beta2-adrenergic receptors. Hypertension 50(1):103-9. [PubMed: 17515456]  [MGI Ref ID J:148152]

Kim SM; Huang Y; Qin Y; Mizel D; Schnermann J; Briggs JP. 2008. Persistence of circadian variation in arterial blood pressure in {beta}1/{beta}2-adrenergic receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 294(5):R1427-34. [PubMed: 18305025]  [MGI Ref ID J:134689]

Lehr L; Canola K; Asensio C; Jimenez M; Kuehne F; Giacobino JP; Muzzin P. 2006. The control of UCP1 is dissociated from that of PGC-1alpha or of mitochondriogenesis as revealed by a study using beta-less mouse brown adipocytes in culture. FEBS Lett 580(19):4661-6. [PubMed: 16876797]  [MGI Ref ID J:112155]

Lehr L; Kuehne F; Arboit P; Giacobino JP; Poulin F; Muzzin P; Jimenez M. 2004. Control of 4E-BP1 expression in mouse brown adipose tissue by the beta3-adrenoceptor. FEBS Lett 576(1-2):179-82. [PubMed: 15474034]  [MGI Ref ID J:108474]

McGraw DW; Almoosa KF; Paul RJ; Kobilka BK; Liggett SB. 2003. Antithetic regulation by beta-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway beta-agonist paradox. J Clin Invest 112(4):619-26. [PubMed: 12925702]  [MGI Ref ID J:85126]

Miura S; Kawanaka K; Kai Y; Tamura M; Goto M; Shiuchi T; Minokoshi Y; Ezaki O. 2007. An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to exercise is mediated by beta-adrenergic receptor activation. Endocrinology 148(7):3441-8. [PubMed: 17446185]  [MGI Ref ID J:129633]

Neubauer B; Machura K; Schnermann J; Wagner C. 2011. Renin expression in large renal vessels during fetal development depends on functional {beta}1/{beta}2-adrenergic receptors. Am J Physiol Renal Physiol 301(1):F71-7. [PubMed: 21389089]  [MGI Ref ID J:173799]

Nikolaev VO; Moshkov A; Lyon AR; Miragoli M; Novak P; Paur H; Lohse MJ; Korchev YE; Harding SE; Gorelik J. 2010. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327(5973):1653-7. [PubMed: 20185685]  [MGI Ref ID J:158758]

Nogueiras R; Perez-Tilve D; Veyrat-Durebex C; Morgan DA; Varela L; Haynes WG; Patterson JT; Disse E; Pfluger PT; Lopez M; Woods SC; DiMarchi R; Dieguez C; Rahmouni K; Rohner-Jeanrenaud F; Tschop MH. 2009. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci 29(18):5916-25. [PubMed: 19420258]  [MGI Ref ID J:155651]

Nogueiras R; Wiedmer P; Perez-Tilve D; Veyrat-Durebex C; Keogh JM; Sutton GM; Pfluger PT; Castaneda TR; Neschen S; Hofmann SM; Howles PN; Morgan DA; Benoit SC; Szanto I; Schrott B; Schurmann A; Joost HG; Hammond C; Hui DY; Woods SC; Rahmouni K; Butler AA; Farooqi IS; O'Rahilly S; Rohner-Jeanrenaud F; Tschop MH. 2007. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest 117(11):3475-88. [PubMed: 17885689]  [MGI Ref ID J:127528]

Ouyang M; Young MB; Lestini MM; Schutsky K; Thomas SA. 2012. Redundant catecholamine signaling consolidates fear memory via phospholipase C. J Neurosci 32(6):1932-41. [PubMed: 22323706]  [MGI Ref ID J:181321]

Panjala SR; Jiang Y; Kern TS; Thomas SA; Steinle JJ. 2011. Increased tumor necrosis factor-alpha, cleaved caspase 3 levels and insulin receptor substrate-1 phosphorylation in the beta-adrenergic receptor knockout mouse. Mol Vis 17:1822-8. [PubMed: 21850156]  [MGI Ref ID J:179522]

Patrizio M; Vago V; Musumeci M; Fecchi K; Sposi NM; Mattei E; Catalano L; Stati T; Marano G. 2008. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes. J Mol Cell Cardiol 45(6):761-9. [PubMed: 18851973]  [MGI Ref ID J:143292]

Pulinilkunnil T; He H; Kong D; Asakura K; Peroni OD; Lee A; Kahn BB. 2011. Adrenergic Regulation of AMP-activated Protein Kinase in Brown Adipose Tissue in Vivo. J Biol Chem 286(11):8798-809. [PubMed: 21209093]  [MGI Ref ID J:170535]

Rohrer DK; Desai KH; Jasper JR; Stevens ME; Regula DP Jr; Barsh GS; Bernstein D; Kobilka BK. 1996. Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci U S A 93(14):7375-80. [PubMed: 8693001]  [MGI Ref ID J:34659]

Rohrer DK; Schauble EH; Desai KH; Kobilka BK; Bernstein D. 1998. Alterations in dynamic heart rate control in the beta 1-adrenergic receptor knockout mouse. Am J Physiol 274(4 Pt 2):H1184-93. [PubMed: 9575921]  [MGI Ref ID J:47167]

Schutsky K; Ouyang M; Castelino CB; Zhang L; Thomas SA. 2011. Stress and Glucocorticoids Impair Memory Retrieval via {beta}2-Adrenergic, Gi/o-Coupled Suppression of cAMP Signaling. J Neurosci 31(40):14172-81. [PubMed: 21976502]  [MGI Ref ID J:177184]

Stockigt F; Brixius K; Lickfett L; Andrie R; Linhart M; Nickenig G; Schrickel JW. 2012. Total beta-adrenoceptor knockout slows conduction and reduces inducible arrhythmias in the mouse heart. PLoS One 7(11):e49203. [PubMed: 23133676]  [MGI Ref ID J:195032]

Swoap SJ; Li C; Wess J; Parsons AD; Williams TD; Overton JM. 2008. Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am J Physiol Heart Circ Physiol 294(4):H1581-8. [PubMed: 18245567]  [MGI Ref ID J:135270]

Tavernier G; Jimenez M; Giacobino JP; Hulo N; Lafontan M; Muzzin P; Langin D. 2005. Norepinephrine induces lipolysis in beta1/beta2/beta3-adrenoceptor knockout mice. Mol Pharmacol 68(3):793-9. [PubMed: 15939797]  [MGI Ref ID J:114333]

Theander-Carrillo C; Wiedmer P; Cettour-Rose P; Nogueiras R; Perez-Tilve D; Pfluger P; Castaneda TR; Muzzin P; Schurmann A; Szanto I; Tschop MH; Rohner-Jeanrenaud F. 2006. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 116(7):1983-93. [PubMed: 16767221]  [MGI Ref ID J:111740]

Wang Y; De Arcangelis V; Gao X; Ramani B; Jung YS; Xiang Y. 2008. Norepinephrine- and epinephrine-induced distinct beta2-adrenoceptor signaling is dictated by GRK2 phosphorylation in cardiomyocytes. J Biol Chem 283(4):1799-807. [PubMed: 18056263]  [MGI Ref ID J:130709]

Yoo B; Lemaire A; Mangmool S; Wolf MJ; Curcio A; Mao L; Rockman HA. 2009. Beta1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 297(4):H1377-86. [PubMed: 19633206]  [MGI Ref ID J:154223]

Zhang L; Ouyang M; Ganellin CR; Thomas SA. 2013. The slow afterhyperpolarization: a target of beta1-adrenergic signaling in hippocampus-dependent memory retrieval. J Neurosci 33(11):5006-16. [PubMed: 23486971]  [MGI Ref ID J:196600]

Zhang W; Yano N; Deng M; Mao Q; Shaw SK; Tseng YT. 2011. beta-Adrenergic receptor-PI3K signaling crosstalk in mouse heart: elucidation of immediate downstream signaling cascades. PLoS One 6(10):e26581. [PubMed: 22028912]  [MGI Ref ID J:179763]

Zhao M; Fajardo G; Urashima T; Spin JM; Poorfarahani S; Rajagopalan V; Huynh D; Connolly A; Quertermous T; Bernstein D. 2011. Cardiac pressure overload hypertrophy is differentially regulated by {beta}-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol 301(4):H1461-70. [PubMed: 21705675]  [MGI Ref ID J:176904]

Adrb2tm1Bkk related

Angers M; Uldry M; Kong D; Gimble JM; Jetten AM. 2008. Mfsd2a encodes a novel major facilitator superfamily domain-containing protein highly induced in brown adipose tissue during fasting and adaptive thermogenesis. Biochem J 416(3):347-55. [PubMed: 18694395]  [MGI Ref ID J:143949]

Arteaga-Solis E; Zee T; Emala CW; Vinson C; Wess J; Karsenty G. 2013. Inhibition of leptin regulation of parasympathetic signaling as a cause of extreme body weight-associated asthma. Cell Metab 17(1):35-48. [PubMed: 23312282]  [MGI Ref ID J:195073]

Bachman ES; Dhillon H; Zhang CY; Cinti S; Bianco AC; Kobilka BK; Lowell BB. 2002. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297(5582):843-5. [PubMed: 12161655]  [MGI Ref ID J:79309]

Bernstein D; Fajardo G; Zhao M; Urashima T; Powers J; Berry G; Kobilka BK. 2005. Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol 289(6):H2441-9. [PubMed: 16040722]  [MGI Ref ID J:104748]

Chen L; Kim SM; Eisner C; Oppermann M; Huang Y; Mizel D; Li L; Chen M; Sequeira Lopez ML; Weinstein LS; Gomez RA; Schnermann J; Briggs JP. 2010. Stimulation of renin secretion by angiotensin II blockade is Gsalpha-dependent. J Am Soc Nephrol 21(6):986-92. [PubMed: 20395378]  [MGI Ref ID J:185936]

Chen Q; Zhang Y; Peng H; Lei L; Kuang H; Zhang L; Ning L; Cao Y; Duan E. 2011. Transient {beta}2-adrenoceptor activation confers pregnancy loss by disrupting embryo spacing at implantation. J Biol Chem 286(6):4349-56. [PubMed: 21148315]  [MGI Ref ID J:169482]

Chow A; Lucas D; Hidalgo A; Mendez-Ferrer S; Hashimoto D; Scheiermann C; Battista M; Leboeuf M; Prophete C; van Rooijen N; Tanaka M; Merad M; Frenette PS. 2011. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261-71. [PubMed: 21282381]  [MGI Ref ID J:176846]

Chruscinski A; Brede ME; Meinel L; Lohse MJ; Kobilka BK; Hein L. 2001. Differential distribution of beta-adrenergic receptor subtypes in blood vessels of knockout mice lacking beta(1)- or beta(2)-adrenergic receptors. Mol Pharmacol 60(5):955-62. [PubMed: 11641423]  [MGI Ref ID J:102882]

Chruscinski AJ; Rohrer DK; Schauble E; Desai KH; Bernstein D; Kobilka BK. 1999. Targeted disruption of the beta2 adrenergic receptor gene. J Biol Chem 274(24):16694-700. [PubMed: 10358008]  [MGI Ref ID J:55552]

Devic E; Xiang Y; Gould D; Kobilka B. 2001. Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol Pharmacol 60(3):577-83. [PubMed: 11502890]  [MGI Ref ID J:103958]

Ecker PM; Lin CC; Powers J; Kobilka BK; Dubin AM; Bernstein D. 2006. Effect of targeted deletions of beta1- and beta2-adrenergic-receptor subtypes on heart rate variability. Am J Physiol Heart Circ Physiol 290(1):H192-9. [PubMed: 16113068]  [MGI Ref ID J:104760]

Elefteriou F; Ahn JD; Takeda S; Starbuck M; Yang X; Liu X; Kondo H; Richards WG; Bannon TW; Noda M; Clement K; Vaisse C; Karsenty G. 2005. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434(7032):514-20. [PubMed: 15724149]  [MGI Ref ID J:97566]

Emeny RT; Gao D; Lawrence DA. 2007. Beta1-adrenergic receptors on immune cells impair innate defenses against Listeria. J Immunol 178(8):4876-84. [PubMed: 17404268]  [MGI Ref ID J:145198]

Fajardo G; Zhao M; Powers J; Bernstein D. 2006. Differential cardiotoxic/cardioprotective effects of beta-adrenergic receptor subtypes in myocytes and fibroblasts in doxorubicin cardiomyopathy. J Mol Cell Cardiol 40(3):375-383. [PubMed: 16458323]  [MGI Ref ID J:105959]

Fujikawa T; Berglund ED; Patel VR; Ramadori G; Vianna CR; Vong L; Thorel F; Chera S; Herrera PL; Lowell BB; Elmquist JK; Baldi P; Coppari R. 2013. Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin. Cell Metab 18(3):431-44. [PubMed: 24011077]  [MGI Ref ID J:203813]

Ghoghawala SY; Mannis MJ; Pullar CE; Rosenblatt MI; Isseroff RR. 2008. Beta2-adrenergic receptor signaling mediates corneal epithelial wound repair. Invest Ophthalmol Vis Sci 49(5):1857-63. [PubMed: 18436820]  [MGI Ref ID J:135178]

Guereschi MG; Araujo LP; Maricato JT; Takenaka MC; Nascimento VM; Vivanco BC; Reis VO; Keller AC; Brum PC; Basso AS. 2013. Beta2-adrenergic receptor signaling in CD4(+) Foxp3(+) regulatory T cells enhances their suppressive function in a PKA-dependent manner. Eur J Immunol 43(4):1001-12. [PubMed: 23436577]  [MGI Ref ID J:195045]

Hanyu R; Wehbi VL; Hayata T; Moriya S; Feinstein TN; Ezura Y; Nagao M; Saita Y; Hemmi H; Notomi T; Nakamoto T; Schipani E; Takeda S; Kaneko K; Kurosawa H; Karsenty G; Kronenberg HM; Vilardaga JP; Noda M. 2012. Anabolic action of parathyroid hormone regulated by the beta2-adrenergic receptor. Proc Natl Acad Sci U S A 109(19):7433-8. [PubMed: 22538810]  [MGI Ref ID J:184803]

Hara MR; Kovacs JJ; Whalen EJ; Rajagopal S; Strachan RT; Grant W; Towers AJ; Williams B; Lam CM; Xiao K; Shenoy SK; Gregory SG; Ahn S; Duckett DR; Lefkowitz RJ. 2011. A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 477(7364):349-53. [PubMed: 21857681]  [MGI Ref ID J:176251]

Herve J; Dubreil L; Tardif V; Terme M; Pogu S; Anegon I; Rozec B; Gauthier C; Bach JM; Blancou P. 2013. beta2-Adrenoreceptor Agonist Inhibits Antigen Cross-Presentation by Dendritic Cells. J Immunol 190(7):3163-71. [PubMed: 23420884]  [MGI Ref ID J:194464]

Jiang Y; Zhang Q; Liu L; Tang J; Kern TS; Steinle JJ. 2013. beta2-adrenergic receptor knockout mice exhibit A diabetic retinopathy phenotype. PLoS One 8(7):e70555. [PubMed: 23894672]  [MGI Ref ID J:204379]

Jimenez M; Leger B; Canola K; Lehr L; Arboit P; Seydoux J; Russell AP; Giacobino JP; Muzzin P; Preitner F. 2002. beta(1)/beta(2)/beta(3)-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett 530(1-3):37. [PubMed: 12387862]  [MGI Ref ID J:79769]

Kasprowicz DJ; Kohm AP; Berton MT; Chruscinski AJ; Sharpe A; Sanders VM. 2000. Stimulation of the B cell receptor, CD86 (B7-2), and the beta 2-adrenergic receptor intrinsically modulates the level of IgG1 and IgE produced per B cell. J Immunol 165(2):680-90. [PubMed: 10878340]  [MGI Ref ID J:120527]

Kim SM; Chen L; Faulhaber-Walter R; Oppermann M; Huang Y; Mizel D; Briggs JP; Schnermann J. 2007. Regulation of renin secretion and expression in mice deficient in beta1- and beta2-adrenergic receptors. Hypertension 50(1):103-9. [PubMed: 17515456]  [MGI Ref ID J:148152]

Kim SM; Huang Y; Qin Y; Mizel D; Schnermann J; Briggs JP. 2008. Persistence of circadian variation in arterial blood pressure in {beta}1/{beta}2-adrenergic receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 294(5):R1427-34. [PubMed: 18305025]  [MGI Ref ID J:134689]

Lehr L; Canola K; Asensio C; Jimenez M; Kuehne F; Giacobino JP; Muzzin P. 2006. The control of UCP1 is dissociated from that of PGC-1alpha or of mitochondriogenesis as revealed by a study using beta-less mouse brown adipocytes in culture. FEBS Lett 580(19):4661-6. [PubMed: 16876797]  [MGI Ref ID J:112155]

Lehr L; Kuehne F; Arboit P; Giacobino JP; Poulin F; Muzzin P; Jimenez M. 2004. Control of 4E-BP1 expression in mouse brown adipose tissue by the beta3-adrenoceptor. FEBS Lett 576(1-2):179-82. [PubMed: 15474034]  [MGI Ref ID J:108474]

Liang DY; Liao G; Wang J; Usuka J; Guo Y; Peltz G; Clark JD. 2006. A genetic analysis of opioid-induced hyperalgesia in mice. Anesthesiology 104(5):1054-62. [PubMed: 16645459]  [MGI Ref ID J:108835]

Liang DY; Shi X; Li X; Li J; Clark JD. 2007. The beta2 adrenergic receptor regulates morphine tolerance and physical dependence. Behav Brain Res 181(1):118-26. [PubMed: 17498818]  [MGI Ref ID J:121984]

Lucas D; Scheiermann C; Chow A; Kunisaki Y; Bruns I; Barrick C; Tessarollo L; Frenette PS. 2013. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med 19(6):695-703. [PubMed: 23644514]  [MGI Ref ID J:198559]

Ma Y; Nyman JS; Tao H; Moss HH; Yang X; Elefteriou F. 2011. beta2-Adrenergic receptor signaling in osteoblasts contributes to the catabolic effect of glucocorticoids on bone. Endocrinology 152(4):1412-22. [PubMed: 21266510]  [MGI Ref ID J:173873]

McAlees JW; Sanders VM. 2009. Hematopoietic protein tyrosine phosphatase mediates beta2-adrenergic receptor-induced regulation of p38 mitogen-activated protein kinase in B lymphocytes. Mol Cell Biol 29(3):675-86. [PubMed: 19047375]  [MGI Ref ID J:145544]

McGraw DW; Almoosa KF; Paul RJ; Kobilka BK; Liggett SB. 2003. Antithetic regulation by beta-adrenergic receptors of Gq receptor signaling via phospholipase C underlies the airway beta-agonist paradox. J Clin Invest 112(4):619-26. [PubMed: 12925702]  [MGI Ref ID J:85126]

Mendez-Ferrer S; Lucas D; Battista M; Frenette PS. 2008. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442-7. [PubMed: 18256599]  [MGI Ref ID J:134224]

Miura S; Kawanaka K; Kai Y; Tamura M; Goto M; Shiuchi T; Minokoshi Y; Ezaki O. 2007. An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to exercise is mediated by beta-adrenergic receptor activation. Endocrinology 148(7):3441-8. [PubMed: 17446185]  [MGI Ref ID J:129633]

Mutlu GM; Dumasius V; Burhop J; McShane PJ; Meng FJ; Welch L; Dumasius A; Mohebahmadi N; Thakuria G; Hardiman K; Matalon S; Hollenberg S; Factor P. 2004. Upregulation of alveolar epithelial active Na+ transport is dependent on beta2-adrenergic receptor signaling. Circ Res 94(8):1091-100. [PubMed: 15016730]  [MGI Ref ID J:98914]

Nagao M; Feinstein TN; Ezura Y; Hayata T; Notomi T; Saita Y; Hanyu R; Hemmi H; Izu Y; Takeda S; Wang K; Rittling S; Nakamoto T; Kaneko K; Kurosawa H; Karsenty G; Denhardt DT; Vilardaga JP; Noda M. 2011. Sympathetic control of bone mass regulated by osteopontin. Proc Natl Acad Sci U S A 108(43):17767-72. [PubMed: 21990347]  [MGI Ref ID J:177413]

Neubauer B; Machura K; Schnermann J; Wagner C. 2011. Renin expression in large renal vessels during fetal development depends on functional {beta}1/{beta}2-adrenergic receptors. Am J Physiol Renal Physiol 301(1):F71-7. [PubMed: 21389089]  [MGI Ref ID J:173799]

Nguyen LP; Lin R; Parra S; Omoluabi O; Hanania NA; Tuvim MJ; Knoll BJ; Dickey BF; Bond RA. 2009. Beta2-adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proc Natl Acad Sci U S A 106(7):2435-40. [PubMed: 19171883]  [MGI Ref ID J:146131]

Nikolaev VO; Moshkov A; Lyon AR; Miragoli M; Novak P; Paur H; Lohse MJ; Korchev YE; Harding SE; Gorelik J. 2010. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327(5973):1653-7. [PubMed: 20185685]  [MGI Ref ID J:158758]

Nogueiras R; Perez-Tilve D; Veyrat-Durebex C; Morgan DA; Varela L; Haynes WG; Patterson JT; Disse E; Pfluger PT; Lopez M; Woods SC; DiMarchi R; Dieguez C; Rahmouni K; Rohner-Jeanrenaud F; Tschop MH. 2009. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci 29(18):5916-25. [PubMed: 19420258]  [MGI Ref ID J:155651]

Nogueiras R; Wiedmer P; Perez-Tilve D; Veyrat-Durebex C; Keogh JM; Sutton GM; Pfluger PT; Castaneda TR; Neschen S; Hofmann SM; Howles PN; Morgan DA; Benoit SC; Szanto I; Schrott B; Schurmann A; Joost HG; Hammond C; Hui DY; Woods SC; Rahmouni K; Butler AA; Farooqi IS; O'Rahilly S; Rohner-Jeanrenaud F; Tschop MH. 2007. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest 117(11):3475-88. [PubMed: 17885689]  [MGI Ref ID J:127528]

Ouyang M; Young MB; Lestini MM; Schutsky K; Thomas SA. 2012. Redundant catecholamine signaling consolidates fear memory via phospholipase C. J Neurosci 32(6):1932-41. [PubMed: 22323706]  [MGI Ref ID J:181321]

Padro CJ; Shawler TM; Gormley MG; Sanders VM. 2013. Adrenergic regulation of IgE involves modulation of CD23 and ADAM10 expression on exosomes. J Immunol 191(11):5383-97. [PubMed: 24140643]  [MGI Ref ID J:207028]

Patrizio M; Vago V; Musumeci M; Fecchi K; Sposi NM; Mattei E; Catalano L; Stati T; Marano G. 2008. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes. J Mol Cell Cardiol 45(6):761-9. [PubMed: 18851973]  [MGI Ref ID J:143292]

Pongratz G; McAlees JW; Conrad DH; Erbe RS; Haas KM; Sanders VM. 2006. The level of IgE produced by a B cell is regulated by norepinephrine in a p38 MAPK- and CD23-dependent manner. J Immunol 177(5):2926-38. [PubMed: 16920928]  [MGI Ref ID J:139551]

Pulinilkunnil T; He H; Kong D; Asakura K; Peroni OD; Lee A; Kahn BB. 2011. Adrenergic Regulation of AMP-activated Protein Kinase in Brown Adipose Tissue in Vivo. J Biol Chem 286(11):8798-809. [PubMed: 21209093]  [MGI Ref ID J:170535]

Pullar CE; Le Provost GS; O'Leary AP; Evans SE; Baier BS; Isseroff RR. 2012. beta2AR antagonists and beta2AR gene deletion both promote skin wound repair processes. J Invest Dermatol 132(8):2076-84. [PubMed: 22495178]  [MGI Ref ID J:189440]

Qian L; Wu HM; Chen SH; Zhang D; Ali SF; Peterson L; Wilson B; Lu RB; Hong JS; Flood PM. 2011. {beta}2-Adrenergic Receptor Activation Prevents Rodent Dopaminergic Neurotoxicity by Inhibiting Microglia via a Novel Signaling Pathway. J Immunol 186(7):4443-54. [PubMed: 21335487]  [MGI Ref ID J:170468]

Sanders VM; Kasprowicz DJ; Swanson-Mungerson MA; Podojil JR; Kohm AP. 2003. Adaptive immunity in mice lacking the beta(2)-adrenergic receptor. Brain Behav Immun 17(1):55-67. [PubMed: 12615050]  [MGI Ref ID J:82380]

Santulli G; Lombardi A; Sorriento D; Anastasio A; Del Giudice C; Formisano P; Beguinot F; Trimarco B; Miele C; Iaccarino G. 2012. Age-related impairment in insulin release: the essential role of beta(2)-adrenergic receptor. Diabetes 61(3):692-701. [PubMed: 22315324]  [MGI Ref ID J:196745]

Sato S; Hanada R; Kimura A; Abe T; Matsumoto T; Iwasaki M; Inose H; Ida T; Mieda M; Takeuchi Y; Fukumoto S; Fujita T; Kato S; Kangawa K; Kojima M; Shinomiya K; Takeda S. 2007. Central control of bone remodeling by neuromedin U. Nat Med 13(10):1234-40. [PubMed: 17873881]  [MGI Ref ID J:129930]

Scheiermann C; Kunisaki Y; Lucas D; Chow A; Jang JE; Zhang D; Hashimoto D; Merad M; Frenette PS. 2012. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37(2):290-301. [PubMed: 22863835]  [MGI Ref ID J:187383]

Schutsky K; Ouyang M; Castelino CB; Zhang L; Thomas SA. 2011. Stress and Glucocorticoids Impair Memory Retrieval via {beta}2-Adrenergic, Gi/o-Coupled Suppression of cAMP Signaling. J Neurosci 31(40):14172-81. [PubMed: 21976502]  [MGI Ref ID J:177184]

Shi Y; Oury F; Yadav VK; Wess J; Liu XS; Guo XE; Murshed M; Karsenty G. 2010. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab 11(3):231-8. [PubMed: 20197056]  [MGI Ref ID J:158738]

Stockigt F; Brixius K; Lickfett L; Andrie R; Linhart M; Nickenig G; Schrickel JW. 2012. Total beta-adrenoceptor knockout slows conduction and reduces inducible arrhythmias in the mouse heart. PLoS One 7(11):e49203. [PubMed: 23133676]  [MGI Ref ID J:195032]

Swoap SJ; Li C; Wess J; Parsons AD; Williams TD; Overton JM. 2008. Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am J Physiol Heart Circ Physiol 294(4):H1581-8. [PubMed: 18245567]  [MGI Ref ID J:135270]

Tavernier G; Jimenez M; Giacobino JP; Hulo N; Lafontan M; Muzzin P; Langin D. 2005. Norepinephrine induces lipolysis in beta1/beta2/beta3-adrenoceptor knockout mice. Mol Pharmacol 68(3):793-9. [PubMed: 15939797]  [MGI Ref ID J:114333]

Theander-Carrillo C; Wiedmer P; Cettour-Rose P; Nogueiras R; Perez-Tilve D; Pfluger P; Castaneda TR; Muzzin P; Schurmann A; Szanto I; Tschop MH; Rohner-Jeanrenaud F. 2006. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 116(7):1983-93. [PubMed: 16767221]  [MGI Ref ID J:111740]

Torres-Rosas R; Yehia G; Pena G; Mishra P; del Rocio Thompson-Bonilla M; Moreno-Eutimio MA; Arriaga-Pizano LA; Isibasi A; Ulloa L. 2014. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 20(3):291-5. [PubMed: 24562381]  [MGI Ref ID J:208897]

Wang Y; De Arcangelis V; Gao X; Ramani B; Jung YS; Xiang Y. 2008. Norepinephrine- and epinephrine-induced distinct beta2-adrenoceptor signaling is dictated by GRK2 phosphorylation in cardiomyocytes. J Biol Chem 283(4):1799-807. [PubMed: 18056263]  [MGI Ref ID J:130709]

Wisely EV; Xiang YK; Oddo S. 2014. Genetic suppression of beta2-adrenergic receptors ameliorates tau pathology in a mouse model of tauopathies. Hum Mol Genet 23(15):4024-34. [PubMed: 24626633]  [MGI Ref ID J:210986]

Yalcin I; Tessier LH; Petit-Demouliere N; Doridot S; Hein L; Freund-Mercier MJ; Barrot M. 2009. Beta2-adrenoceptors are essential for desipramine, venlafaxine or reboxetine action in neuropathic pain. Neurobiol Dis 33(3):386-94. [PubMed: 19084064]  [MGI Ref ID J:146308]

Yoo B; Lemaire A; Mangmool S; Wolf MJ; Curcio A; Mao L; Rockman HA. 2009. Beta1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 297(4):H1377-86. [PubMed: 19633206]  [MGI Ref ID J:154223]

Zhang W; Yano N; Deng M; Mao Q; Shaw SK; Tseng YT. 2011. beta-Adrenergic receptor-PI3K signaling crosstalk in mouse heart: elucidation of immediate downstream signaling cascades. PLoS One 6(10):e26581. [PubMed: 22028912]  [MGI Ref ID J:179763]

Zhao M; Fajardo G; Urashima T; Spin JM; Poorfarahani S; Rajagopalan V; Huynh D; Connolly A; Quertermous T; Bernstein D. 2011. Cardiac pressure overload hypertrophy is differentially regulated by {beta}-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol 301(4):H1461-70. [PubMed: 21705675]  [MGI Ref ID J:176904]

de Coupade C; Brown AS; Dazin PF; Levine JD; Green PG. 2007. beta(2)-Adrenergic receptor-dependent sexual dimorphism for murine leukocyte migration. J Neuroimmunol 186(1-2):54-62. [PubMed: 17442405]  [MGI Ref ID J:124560]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX11

Colony Maintenance

Breeding & HusbandryThese mice are maintained by mating double homozygote null mice. A number of strains have contributed to the background (C57BL/6J, DBA/2, 129, FVB/N, CD-1) which will be designated as STOCK.
Mating SystemHomozygote x Homozygote         (Female x Male)   30-JUN-08
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $199.90Female or MaleHomozygous for Adrb1tm1Bkk, Homozygous for Adrb2tm1Bkk  
Price per Pair (US dollars $)Pair Genotype
$399.80Homozygous for Adrb1tm1Bkk, Homozygous for Adrb2tm1Bkk x Homozygous for Adrb1tm1Bkk, Homozygous for Adrb2tm1Bkk  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $259.90Female or MaleHomozygous for Adrb1tm1Bkk, Homozygous for Adrb2tm1Bkk  
Price per Pair (US dollars $)Pair Genotype
$519.80Homozygous for Adrb1tm1Bkk, Homozygous for Adrb2tm1Bkk x Homozygous for Adrb1tm1Bkk, Homozygous for Adrb2tm1Bkk  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

  Control
   None Available
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.6)