Strain Name:

B6.129-Ctnnb1tm2Kem/KnwJ

Stock Number:

004152

Order this mouse

Availability:

Repository- Live

When bred to different strains expressing Cre recombinase in various tissues, this strain may be useful in studies such as chrondocyte differentiation, cardiovascular disease, brain malformation and studies of craniofacial, lung, bone and tooth development.

Description

Strain Information

Former Names B6.129-Ctnnb1tm2Kem/J    (Changed: 29-NOV-05 )
B6.129-Catnbtm2Kem/J    (Changed: 20-MAY-05 )
Type Congenic; Mutant Strain; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemHomozygote x Homozygote         (Female x Male)   01-MAR-06
Specieslaboratory mouse
GenerationN10F?+F12N1F4 (01-JAN-09)
Generation Definitions
 
Donating InvestigatorProf. Dr. RolfK Kemler,   Max Planck Institute for Immunobiology

Description
These mice possess loxP sites located in introns 1 and 6 of the targeted gene. Mice that are homozygous for this floxed allele are viable, fertile, normal in size and do not display any gross physical or behavioral abnormalities.

When bred to a strain expressing Cre recombinase in chrondocytes (see Stock No. 003554 for example), this mutant mouse strain may be useful in studies of chrondocyte differentiation.

When bred to a strain expressing Cre recombinase in heart(see Stock No. 005650 or 005657 for example), this mutant mouse strain may be useful in studies of cardiovascular disease.

When bred to a strain expressing Cre recombinase in midbrain/dorsal spinal cord (see Stock No. 007807 or 009107 for example), this mutant mouse strain may be useful in studies of brain malformation and craniofacial development.

When bred to a strain expressing Cre recombinase in the distal posterior region of the embryo (see Stock No. 005622 for example), this mutant mouse strain may be useful in studies of lung development.

When bred to a strain expressing Cre recombinase in palate (see Stock No. 009388 for example), this mutant mouse strain may be useful in studies of tooth development.

When bred to a strain expressing Cre recombinase in early limb bud mesenchyme and a subset of craniofacial mesenchyme (see Stock No. 005584 for example), this mutant mouse strain may be useful in studies of bone development.

When bred to mice carrying Tg(Krt1-15-cre/PGR)22Cot (Stock No. 005249), RU 486-induced Cre recombinase expression in the epithelial and hair follicle results in altered hair growth.

When bred to mice carrying Tg(KRT14-cre/ERT)20Efu (Stock No. 005107), tamoxifen-inducible Cre recombinase expression in the epidermis results in increased cell proliferation and increased numbers of mast cells.

Development
A targeting vector containing neomycin resistance and herpes simplex virus thymidine kinase genes was utilized in the construction of this mutant. Similarly oriented loxP sites were placed upstream of exon 2 and flanking the neomycin resistance/ thymidine kinase genes (located in intron 6). The construct was electroporated into 129X1/SvJ x 129S1/Sv-derived R1 embryonic stem (ES) cells. Correctly targeted ES cells were transiently transfected with a Cre expression plasmid for the purpose of removing the selectable marker cassette. ES cells that had successfully undergone Cre recombination and no longer retained the cassette but did retain the loxP-flanked exons 2-6 were injected in C57BL/6J blastocysts. Resulting chimeric male animals were backcrossed to wild-type C57BL/6J mice.

Control Information

  Control
   000664 C57BL/6J
 
  Considerations for Choosing Controls

Additional Web Information

Introduction to Cre-lox technology

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Hepatocellular Carcinoma   (CTNNB1)
Mental Retardation, Autosomal Dominant 19; MRD19   (CTNNB1)
Ovarian Cancer   (CTNNB1)
Pilomatrixoma   (CTNNB1)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Ctnnb1tm2Kem/Ctnnb1tm2Kem

        involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * FVB   (conditional)
  • cardiovascular system phenotype
  • decreased response of heart to induced stress
    • mutants treated with tamoxifen and subjected to thoracic aortic constriction exhibit a reduced hypertrophic response to the pressure overload   (MGI Ref ID J:109612)
  • homeostasis/metabolism phenotype
  • decreased response of heart to induced stress
    • mutants treated with tamoxifen and subjected to thoracic aortic constriction exhibit a reduced hypertrophic response to the pressure overload   (MGI Ref ID J:109612)

The following phenotype relates to a compound genotype created using this strain.
Contact JAX® Services jaxservices@jax.org for customized breeding options.

Ctnnb1tm2Kem/Ctnnb1+ Lyz2tm1(cre)Ifo/Lyz2+

        involves: 129P2/OlaHsd * 129S1/Sv * 129X1/SvJ   (conditional)
  • skeleton phenotype
  • decreased trabecular bone volume   (MGI Ref ID J:178340)
  • increased bone resorption   (MGI Ref ID J:178340)
  • increased osteoclast cell number   (MGI Ref ID J:178340)
  • osteoporosis   (MGI Ref ID J:178340)
  • hematopoietic system phenotype
  • increased osteoclast cell number   (MGI Ref ID J:178340)
  • immune system phenotype
  • increased osteoclast cell number   (MGI Ref ID J:178340)

Ctnnb1tm2Kem/Ctnnb1+ Tg(Prrx1-cre)1Cjt/0

        involves: 129 * C57BL/6 * SJL   (conditional)
  • skeleton phenotype
  • abnormal skeleton morphology
    • slight reduction in bone size   (MGI Ref ID J:173242)

Ctnnb1tm2Kem/Ctnnb1+ Tg(Tek-cre)1Ywa/0

        involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * SJL   (conditional)
  • skeleton phenotype
  • decreased trabecular bone volume   (MGI Ref ID J:178340)
  • increased bone resorption   (MGI Ref ID J:178340)
  • increased osteoclast cell number   (MGI Ref ID J:178340)
  • osteoporosis   (MGI Ref ID J:178340)
  • hematopoietic system phenotype
  • increased osteoclast cell number   (MGI Ref ID J:178340)
  • immune system phenotype
  • increased osteoclast cell number   (MGI Ref ID J:178340)

Ctnnb1tm2Kem/Ctnnb1tm2.1Kem Tg(Sox2-cre)1Amc/0

        involves: 129S1/Sv * 129S6/SvEvTac * 129X1/SvJ * C57BL/6 * CBA   (conditional)
  • mortality/aging
  • complete prenatal lethality   (MGI Ref ID J:187739)
  • embryogenesis phenotype
  • abnormal embryonic tissue morphology
    • absence of embryonic structures at E8.5   (MGI Ref ID J:187739)

Ctnnb1tm2Kem/Ctnnb1tm2.1Kem Tg(Wnt1-cre)11Rth/?

        involves: 129/Sv * C57BL/6 * CBA   (conditional)
  • mortality/aging
  • complete prenatal lethality
    • no mutant mice are born   (MGI Ref ID J:67966)
  • craniofacial phenotype
  • absent craniofacial bones
    • craniofacial bones derived from neural crest cells are absent   (MGI Ref ID J:67966)
    • bones present include optic vesicle, basioccipital, exoccipital   (MGI Ref ID J:67966)
  • skeleton phenotype
  • absent craniofacial bones
    • craniofacial bones derived from neural crest cells are absent   (MGI Ref ID J:67966)
    • bones present include optic vesicle, basioccipital, exoccipital   (MGI Ref ID J:67966)
  • nervous system phenotype
  • abnormal brain morphology   (MGI Ref ID J:67966)
    • abnormal brain development
      • brain morphogenesis grossly abnormal between E10.5 and 18.5   (MGI Ref ID J:67966)
      • absent midbrain-hindbrain boundary
        • isthmic border between midbrain and rhombencephalon not visible   (MGI Ref ID J:67966)
    • abnormal hindbrain morphology
      • anterior hindbrain is missing by E10.5   (MGI Ref ID J:67966)
      • poorly formed connections between cranial ganglia and hindbrain   (MGI Ref ID J:67966)
      • absent cerebellum
        • cerebellum is missing at E12.5   (MGI Ref ID J:67966)
      • absent metencephalon
        • anterior hindbrain is missing by E10.5   (MGI Ref ID J:67966)
    • abnormal telencephalon morphology
      • enlarged telencephalon   (MGI Ref ID J:67966)
      • walls of cephalic vesicles thinner   (MGI Ref ID J:67966)
    • abnormal trigeminal V mesencephalic nucleus morphology
      • indistinctly formed   (MGI Ref ID J:67966)
    • absent choroid plexus
      • choroid plexus absent by E12.5   (MGI Ref ID J:67966)
    • absent midbrain
      • by E10.5 parts of the midbrain are missing   (MGI Ref ID J:67966)
      • no discernable midbrain by E12.5   (MGI Ref ID J:67966)
  • abnormal cranial nerve morphology   (MGI Ref ID J:67966)
    • abnormal facial nerve morphology
      • combined ganglion with vestibulocochlear nerve abnormal   (MGI Ref ID J:67966)
    • abnormal glossopharyngeal nerve morphology
      • roots poorly formed   (MGI Ref ID J:67966)
    • abnormal hypoglossal nerve morphology
      • roots poorly formed   (MGI Ref ID J:67966)
      • hypoglossal nerve missing   (MGI Ref ID J:67966)
    • abnormal vagus nerve morphology
      • roots poorly formed   (MGI Ref ID J:67966)
    • absent oculomotor nerve   (MGI Ref ID J:67966)
  • abnormal dorsal root ganglion morphology
    • first spinal root ganglion missing   (MGI Ref ID J:67966)
    • other spinal root ganglia severely affected as well   (MGI Ref ID J:67966)
  • abnormal neural tube morphology/development
    • shortened neural tube   (MGI Ref ID J:67966)
  • embryogenesis phenotype
  • abnormal neural tube morphology/development
    • shortened neural tube   (MGI Ref ID J:67966)

Ctnnb1tm2Kem/Ctnnb1tm2.1Kem Tg(Zp3-cre)93Knw/0

        involves: 129S1/Sv * 129S6/SvEvTac * 129X1/SvJ * C57BL/6J   (conditional)
  • mortality/aging
  • complete prenatal lethality   (MGI Ref ID J:187739)
  • embryogenesis phenotype
  • abnormal embryonic tissue morphology
    • absence of embryonic structures at E8.5   (MGI Ref ID J:187739)

Ctnnb1tm2Kem/Ctnnb1tm2Kem Gt(ROSA)26Sortm1Sor/Gt(ROSA)26Sor+ Tg(Wnt1-cre)11Rth/0

        involves: 129 * C57BL/6 * CBA/J   (conditional)
  • craniofacial phenotype
  • absent mandible
  • absent maxilla
  • small pharyngeal arch
    • rudimentary at E12.5   (MGI Ref ID J:178971)
  • nervous system phenotype
  • absent hindbrain
    • absence of hindbrain structures at E10.5   (MGI Ref ID J:178971)
  • absent midbrain-hindbrain boundary
    • absent at E10.5   (MGI Ref ID J:178971)
  • absent midbrain
    • absence of midbrain structures at E10.5   (MGI Ref ID J:178971)
  • embryogenesis phenotype
  • small pharyngeal arch
    • rudimentary at E12.5   (MGI Ref ID J:178971)
  • skeleton phenotype
  • absent mandible
  • absent maxilla

Ctnnb1tm2Kem/Ctnnb1tm2Kem Lyz2tm1(cre)Ifo/Lyz2+

        involves: 129P2/OlaHsd * 129S1/Sv * 129X1/SvJ   (conditional)
  • skeleton phenotype
  • decreased trabecular bone volume   (MGI Ref ID J:178340)
  • increased bone resorption   (MGI Ref ID J:178340)
  • increased osteoclast cell number   (MGI Ref ID J:178340)
  • osteoporosis   (MGI Ref ID J:178340)
  • hematopoietic system phenotype
  • increased osteoclast cell number   (MGI Ref ID J:178340)
  • immune system phenotype
  • increased osteoclast cell number   (MGI Ref ID J:178340)

Ctnnb1tm2Kem/Ctnnb1tm2Kem Tg(Col2a1-cre)1Bhr/0

        involves: 129S1/Sv * 129X1/SvJ   (conditional)
  • craniofacial phenotype
  • abnormal craniofacial bone morphology   (MGI Ref ID J:90567)
    • domed cranium   (MGI Ref ID J:90567)
  • limbs/digits/tail phenotype
  • short limbs   (MGI Ref ID J:90567)
  • skeleton phenotype
  • abnormal cartilage morphology   (MGI Ref ID J:90567)
    • abnormal chondrocyte morphology
      • chondrocyte morphology reduced about 34%   (MGI Ref ID J:90567)
  • abnormal craniofacial bone morphology   (MGI Ref ID J:90567)
    • domed cranium   (MGI Ref ID J:90567)
  • decreased length of long bones
    • endochondral bone elements all shorter   (MGI Ref ID J:90567)

Ctnnb1tm2Kem/Ctnnb1tm2Kem Tg(KRT14-cre/ERT)20Efu/0

        involves: 129S1/Sv * 129X1/SvJ * CD-1   (conditional)
  • integument phenotype
  • *normal* integument phenotype
    • after induction, mutants do not display overt blistering   (MGI Ref ID J:204142)
    • abnormal epidermal layer morphology
      • with topical tamoxifen treatment during the first telogen phase, epidermis exhibits increased proliferation as well as expanded expression of basal and suprabasal markers and hyperproliferation markers   (MGI Ref ID J:204142)
  • immune system phenotype
  • increased mast cell number
    • with doxycycline induction from P4-P60, mast cell number in the dermis is increased at P60   (MGI Ref ID J:204142)
  • hematopoietic system phenotype
  • increased mast cell number
    • with doxycycline induction from P4-P60, mast cell number in the dermis is increased at P60   (MGI Ref ID J:204142)

Ctnnb1tm2Kem/Ctnnb1tm2Kem Tg(Krt1-15-cre/PGR)22Cot/0

        involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * SJL   (conditional)
  • integument phenotype
  • *normal* integument phenotype
    • when induction is performed from P20-27, upper hair follicles and sebaceous glands are intact   (MGI Ref ID J:204142)
    • hyperproliferation is not observed in the epidermis   (MGI Ref ID J:204142)
    • abnormal hair cycle anagen phase
      • when animals are treated topically with RU486 for 5 days prior to hair plucking at P54, hair follicles in treated areas do not progress through anagen, while controls show robust hair regrowth 14 days after plucking   (MGI Ref ID J:204142)
    • abnormal hair follicle morphology
      • when induction is performed from P20-27, secondary hair germ cells in some mutant hair follicles appear abnormal or absent at P60   (MGI Ref ID J:204142)
    • abnormal hair growth
      • after treatment of skin with RU486 to induce cre deletion, external hair growth fails   (MGI Ref ID J:204142)

Ctnnb1tm2Kem/Ctnnb1tm2Kem Tg(Tek-cre)1Ywa/0

        involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * SJL   (conditional)
  • mortality/aging
  • partial prenatal lethality
    • fewer than expected mice are born   (MGI Ref ID J:178340)
  • skeleton phenotype
  • decreased bone resorption   (MGI Ref ID J:178340)
  • decreased osteoclast cell number   (MGI Ref ID J:178340)
  • increased bone volume   (MGI Ref ID J:178340)
  • osteopetrosis   (MGI Ref ID J:178340)
  • hematopoietic system phenotype
  • decreased osteoclast cell number   (MGI Ref ID J:178340)
  • immune system phenotype
  • decreased osteoclast cell number   (MGI Ref ID J:178340)

Ctnnb1tm2Kem/Ctnnb1tm2Kem Tg(Wnt1-cre)11Rth/0

        involves: 129 * C57BL/6 * CBA/J   (conditional)
  • nervous system phenotype
  • abnormal neural tube morphology/development
    • disruption of apical neural tube morphology leading to migration of cells into the neural canal   (MGI Ref ID J:178971)
  • abnormal telencephalon development
    • malformed telencephalic lobes at E12.5   (MGI Ref ID J:178971)
  • absent midbrain-hindbrain boundary
    • absent at E12.5   (MGI Ref ID J:178971)
  • premature neuronal precursor differentiation   (MGI Ref ID J:178971)
  • craniofacial phenotype
  • abnormal craniofacial morphology
  • embryogenesis phenotype
  • abnormal neural tube morphology/development
    • disruption of apical neural tube morphology leading to migration of cells into the neural canal   (MGI Ref ID J:178971)
  • cellular phenotype
  • premature neuronal precursor differentiation   (MGI Ref ID J:178971)

Ctnnb1tm2Kem/Ctnnb1+ Osr2tm2(cre)Jian/Osr2+

        involves: 129S1/Sv * 129X1/SvJ   (conditional)
  • mortality/aging
  • neonatal lethality   (MGI Ref ID J:153554)
  • craniofacial phenotype
  • abnormal tooth development
    • unlike in wild-type mice, strong Caspase3 activity is detected in the enamel knot cells of the maxillary and mandibular first molar tooth germs at E14.5   (MGI Ref ID J:153554)
    • however, no increase in cell death in tooth epithelium and mesenchyme is detected   (MGI Ref ID J:153554)
    • growth retardation of incisors
      • incisor development arrests at bud stage   (MGI Ref ID J:153554)
    • growth retardation of molars
      • molar development arrests at bud stage   (MGI Ref ID J:153554)
  • cleft secondary palate   (MGI Ref ID J:153554)
  • digestive/alimentary phenotype
  • cleft secondary palate   (MGI Ref ID J:153554)
  • growth/size/body phenotype
  • abnormal tooth development
    • unlike in wild-type mice, strong Caspase3 activity is detected in the enamel knot cells of the maxillary and mandibular first molar tooth germs at E14.5   (MGI Ref ID J:153554)
    • however, no increase in cell death in tooth epithelium and mesenchyme is detected   (MGI Ref ID J:153554)
    • growth retardation of incisors
      • incisor development arrests at bud stage   (MGI Ref ID J:153554)
    • growth retardation of molars
      • molar development arrests at bud stage   (MGI Ref ID J:153554)
  • cleft secondary palate   (MGI Ref ID J:153554)

Ctnnb1tm2Kem/Ctnnb1tm2Kem Osr2tm2(cre)Jian/Osr2+

        involves: 129S1/Sv * 129X1/SvJ   (conditional)
  • skeleton phenotype
  • abnormal joint morphology
    • at E13.5, joints are not as clearly organized as in wild-type mice   (MGI Ref ID J:171478)

Ctnnb1tm2Kem/Ctnnb1tm2Kem Shhtm1(EGFP/cre)Cjt/Shh+

        involves: 129S1/Sv * 129X1/SvJ   (conditional)
  • respiratory system phenotype
  • abnormal lung development
    • mice exhibit an expansion of lung endoderm progenitor cells into the stomach unlike in wild-type mice   (MGI Ref ID J:153098)
    • absent lung buds
      • mice lack tracheal budding   (MGI Ref ID J:153098)
  • absent lungs
    • mice lack lung specification   (MGI Ref ID J:153098)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Research Tools
Cre-lox System
      loxP-flanked Sequences
Developmental Biology Research
      Cre-lox System

Ctnnb1tm2Kem related

Developmental Biology Research
Defects in Cell Adhesion Molecules

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Ctnnb1tm2Kem
Allele Name targeted mutation 2, Rolf Kemler
Allele Type Targeted (Conditional ready (e.g. floxed), No functional change)
Common Name(s) B-cateninfl2-6; BcatLOF; Beta-Catc; Catnb1tm2Kem; Catnbfx; Catnblox(ex2-6); Catnbtm2Kem; Catnbtm2Kwem; CtnbfloxE2-E6; Ctnnb1f; Ctnnb1flox; Ctnnb1floxed; Ctnnb1fx; Ctnnb1loxp; beta-Catflox; beta-Ctnfl; beta-catex2-6; beta-catfl; beta-catlof; beta-catenin/loxP(ex2-6); beta-cateninc; beta-cateninf; beta-cateninfl; beta-cateninflox; beta-cateninfloxed; beta-cateninlox;
Mutation Made ByProf. Dr. RolfK Kemler,   Max Planck Institute for Immunobiology
Strain of Origin(129X1/SvJ x 129S1/Sv)F1-Kitl<+>
ES Cell Line NameR1
ES Cell Line Strain(129X1/SvJ x 129S1/Sv)F1-Kitl<+>
Gene Symbol and Name Ctnnb1, catenin (cadherin associated protein), beta 1
Chromosome 9
Gene Common Name(s) Bfc; CTNNB; Catnb; MRD19; armadillo; batface; beta catenin; beta-catenin; catenin beta;
Molecular Note A loxP site was inserted in intron 1 and a loxP-flanked neomycin-TK cassette was inserted downstream in intron 6. The neomycin-TK cassette was removed by transient transfection with a Cre recombinase expression vector in ES cells prior to the production of chimeric mice and left two loxP sites flanking a region of gene sequence from exon 2 through exon 6. [MGI Ref ID J:67966]

Genotyping

Genotyping Information

Genotyping Protocols

Ctnnb1tm2Kem, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Brault V; Moore R; Kutsch S; Ishibashi M; Rowitch DH; McMahon AP; Sommer L; Boussadia O; Kemler R. 2001. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128(8):1253-64. [PubMed: 11262227]  [MGI Ref ID J:67966]

Additional References

Akiyama H; Lyons JP; Mori-Akiyama Y; Yang X; Zhang R; Zhang Z; Deng JM; Taketo MM; Nakamura T; Behringer RR; McCrea PD; de Crombrugghe B. 2004. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 18(9):1072-87. [PubMed: 15132997]  [MGI Ref ID J:90567]

Campos VE; Du M; Li Y. 2004. Increased seizure susceptibility and cortical malformation in beta-catenin mutant mice. Biochem Biophys Res Commun 320(2):606-14. [PubMed: 15219872]  [MGI Ref ID J:92923]

Ctnnb1tm2Kem related

Ahn Y; Sims C; Logue JM; Weatherbee SD; Krumlauf R. 2013. Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development 140(3):583-93. [PubMed: 23293290]  [MGI Ref ID J:194074]

Ahrens MJ; Li Y; Jiang H; Dudley AT. 2009. Convergent extension movements in growth plate chondrocytes require gpi-anchored cell surface proteins. Development 136(20):3463-74. [PubMed: 19762422]  [MGI Ref ID J:153618]

Ahrens MJ; Romereim S; Dudley AT. 2011. A re-evaluation of two key reagents for in vivo studies of Wnt signaling. Dev Dyn :. [PubMed: 21793100]  [MGI Ref ID J:174609]

Ai D; Fu X; Wang J; Lu MF; Chen L; Baldini A; Klein WH; Martin JF. 2007. Canonical Wnt signaling functions in second heart field to promote right ventricular growth. Proc Natl Acad Sci U S A 104(22):9319-24. [PubMed: 17519332]  [MGI Ref ID J:143626]

Akiyama H; Lyons JP; Mori-Akiyama Y; Yang X; Zhang R; Zhang Z; Deng JM; Taketo MM; Nakamura T; Behringer RR; McCrea PD; de Crombrugghe B. 2004. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 18(9):1072-87. [PubMed: 15132997]  [MGI Ref ID J:90567]

Akiyama R; Kawakami H; Taketo MM; Evans SM; Wada N; Petryk A; Kawakami Y. 2014. Distinct populations within Isl1 lineages contribute to appendicular and facial skeletogenesis through the beta-catenin pathway. Dev Biol 387(1):37-48. [PubMed: 24424161]  [MGI Ref ID J:207610]

Albers J; Keller J; Baranowsky A; Beil FT; Catala-Lehnen P; Schulze J; Amling M; Schinke T. 2013. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J Cell Biol 200(4):537-49. [PubMed: 23401003]  [MGI Ref ID J:195205]

Amini-Nik S; Cambridge E; Yu W; Guo A; Whetstone H; Nadesan P; Poon R; Hinz B; Alman BA. 2014. beta-Catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest 124(6):2599-610. [PubMed: 24837430]  [MGI Ref ID J:212902]

Anderson MJ; Naiche LA; Wilson CP; Elder C; Swing DA; Lewandoski M. 2013. TCreERT2, a transgenic mouse line for temporal control of Cre-mediated recombination in lineages emerging from the primitive streak or tail bud. PLoS One 8(4):e62479. [PubMed: 23638095]  [MGI Ref ID J:200549]

Andoniadou CL; Signore M; Young RM; Gaston-Massuet C; Wilson SW; Fuchs E; Martinez-Barbera JP. 2011. HESX1- and TCF3-mediated repression of Wnt/beta-catenin targets is required for normal development of the anterior forebrain. Development 138(22):4931-42. [PubMed: 22007134]  [MGI Ref ID J:181005]

Apte U; Singh S; Zeng G; Cieply B; Virji MA; Wu T; Monga SP. 2009. Beta-catenin activation promotes liver regeneration after acetaminophen-induced injury. Am J Pathol 175(3):1056-65. [PubMed: 19679878]  [MGI Ref ID J:152895]

Apte U; Zeng G; Muller P; Tan X; Micsenyi A; Cieply B; Dai C; Liu Y; Kaestner KH; Monga SP. 2006. Activation of Wnt/beta-catenin pathway during hepatocyte growth factor-induced hepatomegaly in mice. Hepatology 44(4):992-1002. [PubMed: 17006939]  [MGI Ref ID J:115725]

Apte U; Zeng G; Thompson MD; Muller P; Micsenyi A; Cieply B; Kaestner KH; Monga SP. 2007. beta-Catenin is critical for early postnatal liver growth. Am J Physiol Gastrointest Liver Physiol 292(6):G1578-85. [PubMed: 17332475]  [MGI Ref ID J:123695]

Arango NA; Szotek PP; Manganaro TF; Oliva E; Donahoe PK; Teixeira J. 2005. Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol 288(1):276-83. [PubMed: 16256976]  [MGI Ref ID J:103530]

Armstrong A; Ryu YK; Chieco D; Kuruvilla R. 2011. Frizzled3 Is Required for Neurogenesis and Target Innervation during Sympathetic Nervous System Development. J Neurosci 31(7):2371-81. [PubMed: 21325504]  [MGI Ref ID J:169444]

Aulehla A; Wiegraebe W; Baubet V; Wahl MB; Deng C; Taketo M; Lewandoski M; Pourquie O. 2008. A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat Cell Biol 10(2):186-93. [PubMed: 18157121]  [MGI Ref ID J:132361]

Awuah PK; Rhieu BH; Singh S; Misse A; Monga SP. 2012. beta-Catenin loss in hepatocytes promotes hepatocellular cancer after diethylnitrosamine and phenobarbital administration to mice. PLoS One 7(6):e39771. [PubMed: 22761897]  [MGI Ref ID J:187916]

Backman M; Machon O; Mygland L; van den Bout CJ; Zhong W; Taketo MM; Krauss S. 2005. Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. Dev Biol 279(1):155-68. [PubMed: 15708565]  [MGI Ref ID J:96233]

Barham W; Frump AL; Sherrill TP; Garcia CB; Saito-Diaz K; VanSaun MN; Fingleton B; Gleaves L; Orton D; Capecchi MR; Blackwell TS; Lee E; Yull F; Eid JE. 2013. Targeting the Wnt pathway in synovial sarcoma models. Cancer Discov 3(11):1286-301. [PubMed: 23921231]  [MGI Ref ID J:206992]

Barrow JR; Thomas KR; Boussadia-Zahui O; Moore R; Kemler R; Capecchi MR; McMahon AP. 2003. Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev 17(3):394-409. [PubMed: 12569130]  [MGI Ref ID J:81795]

Behari J; Yeh TH; Krauland L; Otruba W; Cieply B; Hauth B; Apte U; Wu T; Evans R; Monga SP. 2010. Liver-specific beta-catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet-induced steatohepatitis. Am J Pathol 176(2):744-53. [PubMed: 20019186]  [MGI Ref ID J:156446]

Bielefeld KA; Amini-Nik S; Whetstone H; Poon R; Youn A; Wang J; Alman BA. 2011. Fibronectin and beta-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J Biol Chem 286(31):27687-97. [PubMed: 21652705]  [MGI Ref ID J:175376]

Binder F; Hayakawa M; Choo MK; Sano Y; Park JM. 2013. Interleukin-4-induced beta-catenin regulates the conversion of macrophages to multinucleated giant cells. Mol Immunol 54(2):157-63. [PubMed: 23287596]  [MGI Ref ID J:193264]

Bluske KK; Vue TY; Kawakami Y; Taketo MM; Yoshikawa K; Johnson JE; Nakagawa Y. 2012. beta-Catenin signaling specifies progenitor cell identity in parallel with Shh signaling in the developing mammalian thalamus. Development 139(15):2692-702. [PubMed: 22745311]  [MGI Ref ID J:185651]

Borello U; Berarducci B; Murphy P; Bajard L; Buffa V; Piccolo S; Buckingham M; Cossu G. 2006. The Wnt/{beta}-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133(18):3723-32. [PubMed: 16936075]  [MGI Ref ID J:112463]

Bridgewater D; Cox B; Cain J; Lau A; Athaide V; Gill PS; Kuure S; Sainio K; Rosenblum ND. 2008. Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol 317(1):83-94. [PubMed: 18358465]  [MGI Ref ID J:136068]

Brunelli S; Relaix F; Baesso S; Buckingham M; Cossu G. 2007. Beta catenin-independent activation of MyoD in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity. Dev Biol 304(2):604-14. [PubMed: 17275805]  [MGI Ref ID J:122535]

Campos VE; Du M; Li Y. 2004. Increased seizure susceptibility and cortical malformation in beta-catenin mutant mice. Biochem Biophys Res Commun 320(2):606-14. [PubMed: 15219872]  [MGI Ref ID J:92923]

Capietto AH; Kim S; Sanford DE; Linehan DC; Hikida M; Kumosaki T; Novack DV; Faccio R. 2013. Down-regulation of PLCgamma2-beta-catenin pathway promotes activation and expansion of myeloid-derived suppressor cells in cancer. J Exp Med 210(11):2257-71. [PubMed: 24127488]  [MGI Ref ID J:206537]

Cattelino A; Liebner S; Gallini R; Zanetti A; Balconi G; Corsi A; Bianco P; Wolburg H; Moore R; Oreda B; Kemler R; Dejana E. 2003. The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol 162(6):1111-22. [PubMed: 12975353]  [MGI Ref ID J:85505]

Chalamalasetty RB; Dunty WC Jr; Biris KK; Ajima R; Iacovino M; Beisaw A; Feigenbaum L; Chapman DL; Yoon JK; Kyba M; Yamaguchi TP. 2011. The Wnt3a/beta-catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signalling program. Nat Commun 2:390. [PubMed: 21750544]  [MGI Ref ID J:205649]

Chang H; Gao F; Guillou F; Taketo MM; Huff V; Behringer RR. 2008. Wt1 negatively regulates {beta}-catenin signaling during testis development. Development 135(10):1875-85. [PubMed: 18403409]  [MGI Ref ID J:134687]

Chang YF; Lee-Chang JS; Harris KY; Sinha-Hikim AP; Rao MK. 2011. Role of beta-catenin in post-meiotic male germ cell differentiation. PLoS One 6(11):e28039. [PubMed: 22125654]  [MGI Ref ID J:180951]

Chen CM; Wang HY; You LR; Shang RL; Liu FC. 2010. Expression analysis of an evolutionary conserved metallophosphodiesterase gene, Mpped1, in the normal and beta-catenin-deficient malformed dorsal telencephalon. Dev Dyn 239(6):1797-806. [PubMed: 20503375]  [MGI Ref ID J:160586]

Chen D; Jarrell A; Guo C; Lang R; Atit R. 2012. Dermal beta-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development 139(8):1522-33. [PubMed: 22434869]  [MGI Ref ID J:183485]

Chen J; Lan Y; Baek JA; Gao Y; Jiang R. 2009. Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development. Dev Biol 334(1):174-85. [PubMed: 19631205]  [MGI Ref ID J:153554]

Chen X; Shevtsov SP; Hsich E; Cui L; Haq S; Aronovitz M; Kerkela R; Molkentin JD; Liao R; Salomon RN; Patten R; Force T. 2006. The beta-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol Cell Biol 26(12):4462-73. [PubMed: 16738313]  [MGI Ref ID J:109612]

Chen Y; Whetstone HC; Lin AC; Nadesan P; Wei Q; Poon R; Alman BA. 2007. Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med 4(7):e249. [PubMed: 17676991]  [MGI Ref ID J:134161]

Chen Y; Whetstone HC; Youn A; Nadesan P; Chow EC; Lin AC; Alman BA. 2007. Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem 282(1):526-33. [PubMed: 17085452]  [MGI Ref ID J:118120]

Cheon SS; Wei Q; Gurung A; Youn A; Bright T; Poon R; Whetstone H; Guha A; Alman BA. 2006. Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing. FASEB J 20(6):692-701. [PubMed: 16581977]  [MGI Ref ID J:129713]

Chilov D; Sinjushina N; Rita H; Taketo MM; Makela TP; Partanen J. 2011. Phosphorylated beta-catenin localizes to centrosomes of neuronal progenitors and is required for cell polarity and neurogenesis in developing midbrain. Dev Biol 357(1):259-68. [PubMed: 21736876]  [MGI Ref ID J:175551]

Chilov D; Sinjushina N; Saarimaki-Vire J; Taketo MM; Partanen J. 2010. beta-Catenin regulates intercellular signalling networks and cell-type specific transcription in the developing mouse midbrain-rhombomere 1 region. PLoS One 5(6):e10881. [PubMed: 20532162]  [MGI Ref ID J:161813]

Choi YS; Zhang Y; Xu M; Yang Y; Ito M; Peng T; Cui Z; Nagy A; Hadjantonakis AK; Lang RA; Cotsarelis G; Andl T; Morrisey EE; Millar SE. 2013. Distinct Functions for Wnt/beta-Catenin in Hair Follicle Stem Cell Proliferation and Survival and Interfollicular Epidermal Homeostasis. Cell Stem Cell 13(6):720-33. [PubMed: 24315444]  [MGI Ref ID J:204142]

Cobas M; Wilson A; Ernst B; Mancini SJ; MacDonald HR; Kemler R; Radtke F. 2004. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med 199(2):221-9. [PubMed: 14718516]  [MGI Ref ID J:89995]

Cohen ED; Ihida-Stansbury K; Lu MM; Panettieri RA; Jones PL; Morrisey EE. 2009. Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway. J Clin Invest 119(9):2538-49. [PubMed: 19690384]  [MGI Ref ID J:152705]

Corada M; Nyqvist D; Orsenigo F; Caprini A; Giampietro C; Taketo MM; Iruela-Arispe ML; Adams RH; Dejana E. 2010. The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell 18(6):938-49. [PubMed: 20627076]  [MGI Ref ID J:163848]

Corada M; Orsenigo F; Morini MF; Pitulescu ME; Bhat G; Nyqvist D; Breviario F; Conti V; Briot A; Iruela-Arispe ML; Adams RH; Dejana E. 2013. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat Commun 4:2609. [PubMed: 24153254]  [MGI Ref ID J:206194]

Dabernat S; Secrest P; Peuchant E; Moreau-Gaudry F; Dubus P; Sarvetnick N. 2009. Lack of beta-catenin in early life induces abnormal glucose homeostasis in mice. Diabetologia 52(8):1608-17. [PubMed: 19513688]  [MGI Ref ID J:150423]

Dai C; Stolz DB; Kiss LP; Monga SP; Holzman LB; Liu Y. 2009. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J Am Soc Nephrol 20(9):1997-2008. [PubMed: 19628668]  [MGI Ref ID J:166330]

Dai ZM; Sun S; Wang C; Huang H; Hu X; Zhang Z; Lu QR; Qiu M. 2014. Stage-specific regulation of oligodendrocyte development by Wnt/beta-catenin signaling. J Neurosci 34(25):8467-73. [PubMed: 24948802]  [MGI Ref ID J:212081]

Damsky WE; Curley DP; Santhanakrishnan M; Rosenbaum LE; Platt JT; Gould Rothberg BE; Taketo MM; Dankort D; Rimm DL; McMahon M; Bosenberg M. 2011. beta-Catenin Signaling Controls Metastasis in Braf-Activated Pten-Deficient Melanomas. Cancer Cell 20(6):741-54. [PubMed: 22172720]  [MGI Ref ID J:178598]

Daneman R; Agalliu D; Zhou L; Kuhnert F; Kuo CJ; Barres BA. 2009. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 106(2):641-6. [PubMed: 19129494]  [MGI Ref ID J:143865]

Davis RB; Curtis CD; Griffin CT. 2013. BRG1 promotes COUP-TFII expression and venous specification during embryonic vascular development. Development 140(6):1272-81. [PubMed: 23406903]  [MGI Ref ID J:194470]

De Langhe SP; Carraro G; Tefft D; Li C; Xu X; Chai Y; Minoo P; Hajihosseini MK; Drouin J; Kaartinen V; Bellusci S. 2008. Formation and Differentiation of Multiple Mesenchymal Lineages during Lung Development Is Regulated by beta-catenin Signaling. PLoS ONE 3(1):e1516. [PubMed: 18231602]  [MGI Ref ID J:131535]

Dean CH; Miller LA; Smith AN; Dufort D; Lang RA; Niswander LA. 2005. Canonical Wnt signaling negatively regulates branching morphogenesis of the lung and lacrimal gland. Dev Biol 286(1):270-86. [PubMed: 16126193]  [MGI Ref ID J:103528]

Demireva EY; Shapiro LS; Jessell TM; Zampieri N. 2011. Motor neuron position and topographic order imposed by beta- and gamma-catenin activities. Cell 147(3):641-52. [PubMed: 22036570]  [MGI Ref ID J:178688]

Deutscher E; Hung-Chang Yao H. 2007. Essential roles of mesenchyme-derived beta-catenin in mouse Mullerian duct morphogenesis. Dev Biol 307(2):227-36. [PubMed: 17532316]  [MGI Ref ID J:122979]

Diala I; Wagner N; Magdinier F; Shkreli M; Sirakov M; Bauwens S; Schluth-Bolard C; Simonet T; Renault VM; Ye J; Djerbi A; Pineau P; Choi J; Artandi S; Dejean A; Plateroti M; Gilson E. 2013. Telomere protection and TRF2 expression are enhanced by the canonical Wnt signalling pathway. EMBO Rep 14(4):356-63. [PubMed: 23429341]  [MGI Ref ID J:197196]

Diegel CR; Cho KR; El-Naggar AK; Williams BO; Lindvall C. 2010. Mammalian target of rapamycin-dependent acinar cell neoplasia after inactivation of Apc and Pten in the mouse salivary gland: implications for human acinic cell carcinoma. Cancer Res 70(22):9143-52. [PubMed: 21062985]  [MGI Ref ID J:166853]

Domyan ET; Ferretti E; Throckmorton K; Mishina Y; Nicolis SK; Sun X. 2011. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development 138(5):971-81. [PubMed: 21303850]  [MGI Ref ID J:169134]

Duan J; Lee Y; Jania C; Gong J; Rojas M; Burk L; Willis M; Homeister J; Tilley S; Rubin J; Deb A. 2013. Rib fractures and death from deletion of osteoblast betacatenin in adult mice is rescued by corticosteroids. PLoS One 8(2):e55757. [PubMed: 23393600]  [MGI Ref ID J:199426]

Duan W; So T; Mehta AK; Choi H; Croft M. 2011. Inducible CD4+LAP+Foxp3- regulatory T cells suppress allergic inflammation. J Immunol 187(12):6499-507. [PubMed: 22079987]  [MGI Ref ID J:180402]

Dunty WC Jr; Biris KK; Chalamalasetty RB; Taketo MM; Lewandoski M; Yamaguchi TP. 2008. Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 135(1):85-94. [PubMed: 18045842]  [MGI Ref ID J:129202]

Elghazi L; Gould AP; Weiss AJ; Barker DJ; Callaghan J; Opland D; Myers M; Cras-Meneur C; Bernal-Mizrachi E. 2012. Importance of beta-Catenin in glucose and energy homeostasis. Sci Rep 2:693. [PubMed: 23012647]  [MGI Ref ID J:207267]

Engert S; Burtscher I; Liao WP; Dulev S; Schotta G; Lickert H. 2013. Wnt/beta-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse. Development 140(15):3128-38. [PubMed: 23824574]  [MGI Ref ID J:198627]

Enshell-Seijffers D; Lindon C; Kashiwagi M; Morgan BA. 2010. beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell 18(4):633-42. [PubMed: 20412777]  [MGI Ref ID J:160311]

Enshell-Seijffers D; Lindon C; Wu E; Taketo MM; Morgan BA. 2010. {beta}-Catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching. Proc Natl Acad Sci U S A :. [PubMed: 21098273]  [MGI Ref ID J:167151]

Fan HY; O'Connor A; Shitanaka M; Shimada M; Liu Z; Richards JS. 2010. Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol Endocrinol 24(8):1529-42. [PubMed: 20610534]  [MGI Ref ID J:182854]

Francis JC; Thomsen MK; Taketo MM; Swain A. 2013. beta-catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet 9(1):e1003180. [PubMed: 23300485]  [MGI Ref ID J:195087]

Freyer L; Morrow BE. 2010. Canonical Wnt signaling modulates Tbx1, Eya1, and Six1 expression, restricting neurogenesis in the otic vesicle. Dev Dyn 239(6):1708-22. [PubMed: 20503367]  [MGI Ref ID J:160589]

Fu X; Sun H; Klein WH; Mu X. 2006. Beta-catenin is essential for lamination but not neurogenesis in mouse retinal development. Dev Biol 299(2):424-37. [PubMed: 16959241]  [MGI Ref ID J:115047]

Fuhrmann S; Riesenberg AN; Mathiesen AM; Brown EC; Vetter ML; Brown NL. 2009. Characterization of a transient TCF/LEF-responsive progenitor population in the embryonic mouse retina. Invest Ophthalmol Vis Sci 50(1):432-40. [PubMed: 18599572]  [MGI Ref ID J:146698]

Fujimura N; Taketo MM; Mori M; Korinek V; Kozmik Z. 2009. Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Dev Biol 334(1):31-45. [PubMed: 19596317]  [MGI Ref ID J:153566]

Gan Q; Lee A; Suzuki R; Yamagami T; Stokes A; Nguyen BC; Pleasure D; Wang J; Chen HW; Zhou CJ. 2014. Pax6 mediates ss-catenin signaling for self-renewal and neurogenesis by neocortical radial glial stem cells. Stem Cells 32(1):45-58. [PubMed: 24115331]  [MGI Ref ID J:206763]

Gao X; Arlotta P; Macklis JD; Chen J. 2007. Conditional knock-out of beta-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J Neurosci 27(52):14317-25. [PubMed: 18160639]  [MGI Ref ID J:130955]

Gao Y; Lan Y; Liu H; Jiang R. 2011. The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation. Dev Biol 352(1):83-91. [PubMed: 21262216]  [MGI Ref ID J:171478]

Glass DA 2nd; Bialek P; Ahn JD; Starbuck M; Patel MS; Clevers H; Taketo MM; Long F; McMahon AP; Lang RA; Karsenty G. 2005. Canonical wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8(5):751-64. [PubMed: 15866165]  [MGI Ref ID J:98430]

Golovchenko S; Hattori T; Hartmann C; Gebhardt M; Gebhard S; Hess A; Pausch F; Schlund B; von der Mark K. 2013. Deletion of beta catenin in hypertrophic growth plate chondrocytes impairs trabecular bone formation. Bone 55(1):102-12. [PubMed: 23567158]  [MGI Ref ID J:199943]

Goodnough LH; Chang AT; Treloar C; Yang J; Scacheri PC; Atit RP. 2012. Twist1 mediates repression of chondrogenesis by beta-catenin to promote cranial bone progenitor specification. Development 139(23):4428-38. [PubMed: 23095887]  [MGI Ref ID J:189063]

Goss AM; Tian Y; Tsukiyama T; Cohen ED; Zhou D; Lu MM; Yamaguchi TP; Morrisey EE. 2009. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17(2):290-8. [PubMed: 19686689]  [MGI Ref ID J:153098]

Gould TD; O'Donnell KC; Picchini AM; Dow ER; Chen G; Manji HK. 2008. Generation and behavioral characterization of beta-catenin forebrain-specific conditional knock-out mice. Behav Brain Res 189(1):117-25. [PubMed: 18299155]  [MGI Ref ID J:132769]

Grigoryan T; Wend P; Klaus A; Birchmeier W. 2008. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 22(17):2308-41. [PubMed: 18765787]  [MGI Ref ID J:138781]

Gulacsi AA; Anderson SA. 2008. Beta-catenin-mediated Wnt signaling regulates neurogenesis in the ventral telencephalon. Nat Neurosci 11(12):1383-91. [PubMed: 18997789]  [MGI Ref ID J:145017]

Guo W; Lasky JL; Chang CJ; Mosessian S; Lewis X; Xiao Y; Yeh JE; Chen JY; Iruela-Arispe ML; Varella-Garcia M; Wu H. 2008. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453(7194):529-33. [PubMed: 18463637]  [MGI Ref ID J:135172]

Hagglund AC; Berghard A; Carlsson L. 2013. Canonical Wnt/beta-catenin signalling is essential for optic cup formation. PLoS One 8(12):e81158. [PubMed: 24324671]  [MGI Ref ID J:210692]

Hari L; Brault V; Kleber M; Lee HY; Ille F; Leimeroth R; Paratore C; Suter U; Kemler R; Sommer L. 2002. Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol 159(5):867-80. [PubMed: 12473692]  [MGI Ref ID J:80757]

He F; Xiong W; Wang Y; Li L; Liu C; Yamagami T; Taketo MM; Zhou C; Chen Y. 2011. Epithelial Wnt/beta-catenin signaling regulates palatal shelf fusion through regulation of Tgfbeta3 expression. Dev Biol 350(2):511-9. [PubMed: 21185284]  [MGI Ref ID J:170579]

Heaton JH; Wood MA; Kim AC; Lima LO; Barlaskar FM; Almeida MQ; Fragoso MC; Kuick R; Lerario AM; Simon DP; Soares IC; Starnes E; Thomas DG; Latronico AC; Giordano TJ; Hammer GD. 2012. Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and beta-catenin. Am J Pathol 181(3):1017-33. [PubMed: 22800756]  [MGI Ref ID J:188518]

Heinonen KM; Vanegas JR; Lew D; Krosl J; Perreault C. 2011. Wnt4 enhances murine hematopoietic progenitor cell expansion through a planar cell polarity-like pathway. PLoS One 6(4):e19279. [PubMed: 21541287]  [MGI Ref ID J:172379]

Hernandez Gifford JA; Hunzicker-Dunn ME; Nilson JH. 2009. Conditional deletion of beta-catenin mediated by Amhr2cre in mice causes female infertility. Biol Reprod 80(6):1282-92. [PubMed: 19176883]  [MGI Ref ID J:149699]

Herriges MJ; Swarr DT; Morley MP; Rathi KS; Peng T; Stewart KM; Morrisey EE. 2014. Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development. Genes Dev 28(12):1363-79. [PubMed: 24939938]  [MGI Ref ID J:212084]

Hiremath M; Dann P; Fischer J; Butterworth D; Boras-Granic K; Hens J; Van Houten J; Shi W; Wysolmerski J. 2012. Parathyroid hormone-related protein activates Wnt signaling to specify the embryonic mammary mesenchyme. Development 139(22):4239-49. [PubMed: 23034629]  [MGI Ref ID J:189075]

Holmen SL; Zylstra CR; Mukherjee A; Sigler RE; Faugere MC; Bouxsein ML; Deng L; Clemens TL; Williams BO. 2005. Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem 280(22):21162-8. [PubMed: 15802266]  [MGI Ref ID J:99904]

Hu H; Hilton MJ; Tu X; Yu K; Ornitz DM; Long F. 2005. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132(1):49-60. [PubMed: 15576404]  [MGI Ref ID J:94274]

Huh SH; Narhi K; Lindfors PH; Haara O; Yang L; Ornitz DM; Mikkola ML. 2013. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes Dev 27(4):450-8. [PubMed: 23431057]  [MGI Ref ID J:193958]

Huh SH; Ornitz DM. 2010. Beta-catenin deficiency causes DiGeorge syndrome-like phenotypes through regulation of Tbx1. Development 137(7):1137-47. [PubMed: 20215350]  [MGI Ref ID J:158677]

Hutcheson DA; Zhao J; Merrell A; Haldar M; Kardon G. 2009. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin. Genes Dev 23(8):997-1013. [PubMed: 19346403]  [MGI Ref ID J:147972]

Ireland H; Kemp R; Houghton C; Howard L; Clarke AR; Sansom OJ; Winton DJ. 2004. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology 126(5):1236-46. [PubMed: 15131783]  [MGI Ref ID J:92092]

Jayasena CS; Ohyama T; Segil N; Groves AK. 2008. Notch signaling augments the canonical Wnt pathway to specify the size of the otic placode. Development 135(13):2251-61. [PubMed: 18495817]  [MGI Ref ID J:137096]

Jeong JW; Lee HS; Franco HL; Broaddus RR; Taketo MM; Tsai SY; Lydon JP; DeMayo FJ. 2009. beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus. Oncogene 28(1):31-40. [PubMed: 18806829]  [MGI Ref ID J:145792]

Jiang M; Ku WY; Fu J; Offermanns S; Hsu W; Que J. 2013. Gpr177 regulates pulmonary vasculature development. Development 140(17):3589-94. [PubMed: 23884445]  [MGI Ref ID J:199291]

Joeng KS; Schumacher CA; Zylstra-Diegel CR; Long F; Williams BO. 2011. Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo. Dev Biol 359(2):222-9. [PubMed: 21924256]  [MGI Ref ID J:178499]

Joksimovic M; Yun BA; Kittappa R; Anderegg AM; Chang WW; Taketo MM; McKay RD; Awatramani RB. 2009. Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat Neurosci 12(2):125-31. [PubMed: 19122665]  [MGI Ref ID J:146200]

Juan J; Muraguchi T; Iezza G; Sears RC; McMahon M. 2014. Diminished WNT -> beta-catenin -> c-MYC signaling is a barrier for malignant progression of BRAFV600E-induced lung tumors. Genes Dev 28(6):561-75. [PubMed: 24589553]  [MGI Ref ID J:209631]

Junghans D; Hack I; Frotscher M; Taylor V; Kemler R. 2005. Beta-catenin-mediated cell-adhesion is vital for embryonic forebrain development. Dev Dyn 233(2):528-39. [PubMed: 15844200]  [MGI Ref ID J:129254]

Kaftanovskaya EM; Feng S; Huang Z; Tan Y; Barbara AM; Kaur S; Truong A; Gorlov IP; Agoulnik AI. 2011. Suppression of insulin-like3 receptor reveals the role of beta-catenin and Notch signaling in gubernaculum development. Mol Endocrinol 25(1):170-83. [PubMed: 21147849]  [MGI Ref ID J:182895]

Karner CM; Das A; Ma Z; Self M; Chen C; Lum L; Oliver G; Carroll TJ. 2011. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138(7):1247-57. [PubMed: 21350016]  [MGI Ref ID J:171512]

Kawakami Y; Marti M; Kawakami H; Itou J; Quach T; Johnson A; Sahara S; O'Leary DD; Nakagawa Y; Lewandoski M; Pfaff S; Evans SM; Izpisua Belmonte JC. 2011. Islet1-mediated activation of the beta-catenin pathway is necessary for hindlimb initiation in mice. Development 138(20):4465-73. [PubMed: 21937598]  [MGI Ref ID J:178771]

Keefe MD; Wang H; De La O JP; Khan A; Firpo MA; Murtaugh LC. 2012. beta-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice. Dis Model Mech 5(4):503-14. [PubMed: 22266944]  [MGI Ref ID J:185013]

Kiefer SM; Robbins L; Stumpff KM; Lin C; Ma L; Rauchman M. 2010. Sall1-dependent signals affect Wnt signaling and ureter tip fate to initiate kidney development. Development 137(18):3099-106. [PubMed: 20702564]  [MGI Ref ID J:168364]

Kim AC; Reuter AL; Zubair M; Else T; Serecky K; Bingham NC; Lavery GG; Parker KL; Hammer GD. 2008. Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 135(15):2593-602. [PubMed: 18599507]  [MGI Ref ID J:138575]

Kobayashi A; Stewart CA; Wang Y; Fujioka K; Thomas NC; Jamin SP; Behringer RR. 2011. {beta}-Catenin is essential for Mullerian duct regression during male sexual differentiation. Development 138(10):1967-75. [PubMed: 21490063]  [MGI Ref ID J:171430]

Koch U; Wilson A; Cobas M; Kemler R; Macdonald HR; Radtke F. 2008. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111(1):160-4. [PubMed: 17855627]  [MGI Ref ID J:129952]

Koyama E; Shibukawa Y; Nagayama M; Sugito H; Young B; Yuasa T; Okabe T; Ochiai T; Kamiya N; Rountree RB; Kingsley DM; Iwamoto M; Enomoto-Iwamoto M; Pacifici M. 2008. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316(1):62-73. [PubMed: 18295755]  [MGI Ref ID J:135666]

Kramer I; Halleux C; Keller H; Pegurri M; Gooi JH; Weber PB; Feng JQ; Bonewald LF; Kneissel M. 2010. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30(12):3071-85. [PubMed: 20404086]  [MGI Ref ID J:162679]

Kreslova J; Machon O; Ruzickova J; Lachova J; Wawrousek EF; Kemler R; Krauss S; Piatigorsky J; Kozmik Z. 2007. Abnormal lens morphogenesis and ectopic lens formation in the absence of beta-catenin function. Genesis 45(4):157-68. [PubMed: 17410548]  [MGI Ref ID J:121794]

Kuhnert F; Mancuso MR; Shamloo A; Wang HT; Choksi V; Florek M; Su H; Fruttiger M; Young WL; Heilshorn SC; Kuo CJ. 2010. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330(6006):985-9. [PubMed: 21071672]  [MGI Ref ID J:166127]

Kumamoto N; Gu Y; Wang J; Janoschka S; Takemaru K; Levine J; Ge S. 2012. A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci 15(3):399-405, S1. [PubMed: 22306608]  [MGI Ref ID J:182293]

Kwon C; Arnold J; Hsiao EC; Taketo MM; Conklin BR; Srivastava D. 2007. Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci U S A 104(26):10894-9. [PubMed: 17576928]  [MGI Ref ID J:164056]

Landsman L; Nijagal A; Whitchurch TJ; Vanderlaan RL; Zimmer WE; Mackenzie TC; Hebrok M. 2011. Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLoS Biol 9(9):e1001143. [PubMed: 21909240]  [MGI Ref ID J:182781]

Lang J; Maeda Y; Bannerman P; Xu J; Horiuchi M; Pleasure D; Guo F. 2013. Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci 33(7):3113-30. [PubMed: 23407966]  [MGI Ref ID J:194259]

Lento W; Ito T; Zhao C; Harris JR; Huang W; Jiang C; Owzar K; Piryani S; Racioppi L; Chao N; Reya T. 2014. Loss of beta-catenin triggers oxidative stress and impairs hematopoietic regeneration. Genes Dev 28(9):995-1004. [PubMed: 24788518]  [MGI Ref ID J:211290]

Lewallen KA; Shen YA; De La Torre AR; Ng BK; Meijer D; Chan JR. 2011. Assessing the role of the cadherin/catenin complex at the schwann cell-axon interface and in the initiation of myelination. J Neurosci 31(8):3032-43. [PubMed: 21414924]  [MGI Ref ID J:169864]

Li TF; Chen D; Wu Q; Chen M; Sheu TJ; Schwarz EM; Drissi H; Zuscik M; O'Keefe RJ. 2006. Transforming growth factor-beta stimulates cyclin D1 expression through activation of beta-catenin signaling in chondrocytes. J Biol Chem 281(30):21296-304. [PubMed: 16690606]  [MGI Ref ID J:116442]

Li W; Hou Y; Ming M; Yu L; Seba A; Qian Z. 2013. Apc regulates the function of hematopoietic stem cells largely through beta-catenin-dependent mechanisms. Blood 121(20):4063-72. [PubMed: 23547052]  [MGI Ref ID J:198202]

Li Y; Ahrens MJ; Wu A; Liu J; Dudley AT. 2011. Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes. Development 138(2):359-70. [PubMed: 21177348]  [MGI Ref ID J:180840]

Li Y; Gordon J; Manley NR; Litingtung Y; Chiang C. 2008. Bmp4 is required for tracheal formation: a novel mouse model for tracheal agenesis. Dev Biol 322(1):145-55. [PubMed: 18692041]  [MGI Ref ID J:142133]

Lickert H; Cox B; Wehrle C; Taketo MM; Kemler R; Rossant J. 2005. Dissecting Wnt/{beta}-catenin signaling during gastrulation using RNA interference in mouse embryos. Development 132(11):2599-609. [PubMed: 15857914]  [MGI Ref ID J:98484]

Lickert H; Kutsch S; Kanzler B; Tamai Y; Taketo MM; Kemler R. 2002. Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell 3(2):171-81. [PubMed: 12194849]  [MGI Ref ID J:108981]

Liebner S; Cattelino A; Gallini R; Rudini N; Iurlaro M; Piccolo S; Dejana E. 2004. Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166(3):359-67. [PubMed: 15289495]  [MGI Ref ID J:91830]

Liebner S; Corada M; Bangsow T; Babbage J; Taddei A; Czupalla CJ; Reis M; Felici A; Wolburg H; Fruttiger M; Taketo MM; von Melchner H; Plate KH; Gerhardt H; Dejana E. 2008. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183(3):409-17. [PubMed: 18955553]  [MGI Ref ID J:141415]

Lim X; Tan SH; Koh WL; Chau RM; Yan KS; Kuo CJ; van Amerongen R; Klein AM; Nusse R. 2013. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 342(6163):1226-30. [PubMed: 24311688]  [MGI Ref ID J:205263]

Lin C; Yin Y; Long F; Ma L. 2008. Tissue-specific requirements of beta-catenin in external genitalia development. Development 135(16):2815-25. [PubMed: 18635608]  [MGI Ref ID J:139251]

Lin L; Cui L; Zhou W; Dufort D; Zhang X; Cai CL; Bu L; Yang L; Martin J; Kemler R; Rosenfeld MG; Chen J; Evans SM. 2007. Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci U S A 104(22):9313-8. [PubMed: 17519333]  [MGI Ref ID J:143832]

Liu B; Yu HM; Hsu W. 2007. Craniosynostosis caused by Axin2 deficiency is mediated through distinct functions of beta-catenin in proliferation and differentiation. Dev Biol 301(1):298-308. [PubMed: 17113065]  [MGI Ref ID J:117081]

Liu CF; Bingham N; Parker K; Yao HH. 2009. Sex-specific roles of beta-catenin in mouse gonadal development. Hum Mol Genet 18(3):405-17. [PubMed: 18981061]  [MGI Ref ID J:143769]

Liu F; Thirumangalathu S; Gallant NM; Yang SH; Stoick-Cooper CL; Reddy ST; Andl T; Taketo MM; Dlugosz AA; Moon RT; Barlow LA; Millar SE. 2007. Wnt-beta-catenin signaling initiates taste papilla development. Nat Genet 39(1):106-12. [PubMed: 17128274]  [MGI Ref ID J:117476]

Liu H; Fergusson MM; Wu JJ; Rovira II; Liu J; Gavrilova O; Lu T; Bao J; Han D; Sack MN; Finkel T. 2011. Wnt signaling regulates hepatic metabolism. Sci Signal 4(158):ra6. [PubMed: 21285411]  [MGI Ref ID J:185396]

Liu H; Zhou J; Cheng P; Ramachandran I; Nefedova Y; Gabrilovich DI. 2013. Regulation of dendritic cell differentiation in bone marrow during emergency myelopoiesis. J Immunol 191(4):1916-26. [PubMed: 23833236]  [MGI Ref ID J:205705]

Luciani F; Champeval D; Herbette A; Denat L; Aylaj B; Martinozzi S; Ballotti R; Kemler R; Goding CR; De Vuyst F; Larue L; Delmas V. 2011. Biological and mathematical modeling of melanocyte development. Development 138(18):3943-54. [PubMed: 21862558]  [MGI Ref ID J:176245]

Maatouk DM; Mork L; Chassot AA; Chaboissier MC; Capel B. 2013. Disruption of mitotic arrest precedes precocious differentiation and transdifferentiation of pregranulosa cells in the perinatal Wnt4 mutant ovary. Dev Biol 383(2):295-306. [PubMed: 24036309]  [MGI Ref ID J:203797]

Machon O; Backman M; Machonova O; Kozmik Z; Vacik T; Andersen L; Krauss S. 2007. A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev Biol 311(1):223-37. [PubMed: 17916349]  [MGI Ref ID J:126323]

Machon O; van den Bout CJ; Backman M; Kemler R; Krauss S. 2003. Role of beta-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122(1):129-43. [PubMed: 14596855]  [MGI Ref ID J:109500]

Maes C; Goossens S; Bartunkova S; Drogat B; Coenegrachts L; Stockmans I; Moermans K; Nyabi O; Haigh K; Naessens M; Haenebalcke L; Tuckermann JP; Tjwa M; Carmeliet P; Mandic V; David JP; Behrens A; Nagy A; Carmeliet G; Haigh JJ. 2010. Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J 29(2):424-41. [PubMed: 20010698]  [MGI Ref ID J:156474]

Maezawa Y; Binnie M; Li C; Thorner P; Hui CC; Alman B; Taketo MM; Quaggin SE. 2012. A new Cre driver mouse line, Tcf21/Pod1-Cre, targets metanephric mesenchyme. PLoS One 7(7):e40547. [PubMed: 22792366]  [MGI Ref ID J:189643]

Maguschak KA; Ressler KJ. 2008. Beta-catenin is required for memory consolidation. Nat Neurosci 11(11):1319-26. [PubMed: 18820693]  [MGI Ref ID J:143334]

Manicassamy S; Reizis B; Ravindran R; Nakaya H; Salazar-Gonzalez RM; Wang YC; Pulendran B. 2010. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329(5993):849-53. [PubMed: 20705860]  [MGI Ref ID J:163676]

Manuylov NL; Smagulova FO; Leach L; Tevosian SG. 2008. Ovarian development in mice requires the GATA4-FOG2 transcription complex. Development 135(22):3731-43. [PubMed: 18927154]  [MGI Ref ID J:143586]

Marose TD; Merkel CE; McMahon AP; Carroll TJ. 2008. Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 314(1):112-26. [PubMed: 18177851]  [MGI Ref ID J:131012]

Moisan A; Rivera MN; Lotinun S; Akhavanfard S; Coffman EJ; Cook EB; Stoykova S; Mukherjee S; Schoonmaker JA; Burger A; Kim WJ; Kronenberg HM; Baron R; Haber DA; Bardeesy N. 2011. The WTX tumor suppressor regulates mesenchymal progenitor cell fate specification. Dev Cell 20(5):583-96. [PubMed: 21571217]  [MGI Ref ID J:173242]

Morris JP 4th; Cano DA; Sekine S; Wang SC; Hebrok M. 2010. beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest 120(2):508-20. [PubMed: 20071774]  [MGI Ref ID J:156681]

Mundy C; Yasuda T; Kinumatsu T; Yamaguchi Y; Iwamoto M; Enomoto-Iwamoto M; Koyama E; Pacifici M. 2011. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol 351(1):70-81. [PubMed: 21185280]  [MGI Ref ID J:170582]

Murtaugh LC; Law AC; Dor Y; Melton DA. 2005. Beta-catenin is essential for pancreatic acinar but not islet development. Development 132(21):4663-74. [PubMed: 16192304]  [MGI Ref ID J:102698]

Mutch CA; Funatsu N; Monuki ES; Chenn A. 2009. Beta-catenin signaling levels in progenitors influence the laminar cell fates of projection neurons. J Neurosci 29(43):13710-9. [PubMed: 19864583]  [MGI Ref ID J:158308]

Mutch CA; Schulte JD; Olson E; Chenn A. 2010. Beta-catenin signaling negatively regulates intermediate progenitor population numbers in the developing cortex. PLoS One 5(8):. [PubMed: 20811503]  [MGI Ref ID J:163996]

Nakanishi R; Akiyama H; Kimura H; Otsuki B; Shimizu M; Tsuboyama T; Nakamura T. 2008. Osteoblast-targeted expression of Sfrp4 in mice results in low bone mass. J Bone Miner Res 23(2):271-7. [PubMed: 17907918]  [MGI Ref ID J:145676]

Nam J; Onitsuka I; Hatch J; Uchida Y; Ray S; Huang S; Li W; Zang H; Ruiz-Lozano P; Mukouyama YS. 2013. Coronary veins determine the pattern of sympathetic innervation in the developing heart. Development 140(7):1475-85. [PubMed: 23462468]  [MGI Ref ID J:194919]

Nejak-Bowen KN; Zeng G; Tan X; Cieply B; Monga SP. 2009. Beta-catenin regulates vitamin C biosynthesis and cell survival in murine liver. J Biol Chem 284(41):28115-27. [PubMed: 19690176]  [MGI Ref ID J:155711]

Nishino J; Kim S; Zhu Y; Zhu H; Morrison SJ. 2013. A network of heterochronic genes including Imp1 regulates temporal changes in stem cell properties. Elife 2:e00924. [PubMed: 24192035]  [MGI Ref ID J:207231]

Norden J; Greulich F; Rudat C; Taketo MM; Kispert A. 2011. Wnt/beta-catenin signaling maintains the mesenchymal precursor pool for murine sinus horn formation. Circ Res 109(6):e42-50. [PubMed: 21757651]  [MGI Ref ID J:188836]

Oh SJ; Shin JH; Kim TH; Lee HS; Yoo JY; Ahn JY; Broaddus RR; Taketo MM; Lydon JP; Leach RE; Lessey BA; Fazleabas AT; Lim JM; Jeong JW. 2013. beta-Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition. J Pathol 231(2):210-22. [PubMed: 23784889]  [MGI Ref ID J:202507]

Ohtola J; Myers J; Akhtar-Zaidi B; Zuzindlak D; Sandesara P; Yeh K; Mackem S; Atit R. 2008. {beta}-Catenin has sequential roles in the survival and specification of ventral dermis. Development 135(13):2321-9. [PubMed: 18539925]  [MGI Ref ID J:137352]

Ohyama T; Mohamed OA; Taketo MM; Dufort D; Groves AK. 2006. Wnt signals mediate a fate decision between otic placode and epidermis. Development 133(5):865-75. [PubMed: 16452098]  [MGI Ref ID J:105983]

Ola R; Jakobson M; Kvist J; Perala N; Kuure S; Braunewell KH; Bridgewater D; Rosenblum ND; Chilov D; Immonen T; Sainio K; Sariola H. 2011. The GDNF target Vsnl1 marks the ureteric tip. J Am Soc Nephrol 22(2):274-84. [PubMed: 21289216]  [MGI Ref ID J:191040]

Olson LE; Tollkuhn J; Scafoglio C; Krones A; Zhang J; Ohgi KA; Wu W; Taketo MM; Kemler R; Grosschedl R; Rose D; Li X; Rosenfeld MG. 2006. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125(3):593-605. [PubMed: 16678101]  [MGI Ref ID J:114817]

Ouchi Y; Baba Y; Koso H; Taketo MM; Iwamoto T; Aburatani H; Watanabe S. 2011. beta-Catenin signaling regulates the timing of cell differentiation in mouse retinal progenitor cells. Mol Cell Neurosci 46(4):770-80. [PubMed: 21354309]  [MGI Ref ID J:171283]

Park JS; Valerius MT; McMahon AP. 2007. Wnt/{beta}-catenin signaling regulates nephron induction during mouse kidney development. Development 134(13):2533-9. [PubMed: 17537789]  [MGI Ref ID J:122521]

Parry L; Young M; El Marjou F; Clarke AR. 2012. Evidence for a crucial role of paneth cells in mediating the intestinal response to injury. Stem Cells 31(4):776-85. [PubMed: 23335179]  [MGI Ref ID J:195059]

Pei Y; Brun SN; Markant SL; Lento W; Gibson P; Taketo MM; Giovannini M; Gilbertson RJ; Wechsler-Reya RJ. 2012. WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. Development 139(10):1724-33. [PubMed: 22461560]  [MGI Ref ID J:184015]

Perry JM; He XC; Sugimura R; Grindley JC; Haug JS; Ding S; Li L. 2011. Cooperation between both Wnt/{beta}-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev 25(18):1928-42. [PubMed: 21890648]  [MGI Ref ID J:176204]

Phng LK; Potente M; Leslie JD; Babbage J; Nyqvist D; Lobov I; Ondr JK; Rao S; Lang RA; Thurston G; Gerhardt H. 2009. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16(1):70-82. [PubMed: 19154719]  [MGI Ref ID J:144980]

Qian C; Qian L; Yu Y; An H; Guo Z; Han Y; Chen Y; Bai Y; Wang Q; Cao X. 2013. Fas signal promotes the immunosuppressive function of regulatory dendritic cells via the ERK/beta-catenin pathway. J Biol Chem 288(39):27825-35. [PubMed: 23943615]  [MGI Ref ID J:203852]

Qu J; Zhou J; Ping Yi X; Dong B; Zheng H; Miller LM; Wang X; Schneider MD; Li F. 2007. Cardiac-specific haploinsufficiency of beta-catenin attenuates cardiac hypertrophy but enhances fetal gene expression in response to aortic constriction. J Mol Cell Cardiol 43(3):319-26. [PubMed: 17673255]  [MGI Ref ID J:125231]

Qyang Y; Martin-Puig S; Chiravuri M; Chen S; Xu H; Bu L; Jiang X; Lin L; Granger A; Moretti A; Caron L; Wu X; Clarke J; Taketo MM; Laugwitz KL; Moon RT; Gruber P; Evans SM; Ding S; Chien KR. 2007. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell 1(2):165-79. [PubMed: 18371348]  [MGI Ref ID J:149713]

Rabbani P; Takeo M; Chou W; Myung P; Bosenberg M; Chin L; Taketo MM; Ito M. 2011. Coordinated activation of wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145(6):941-55. [PubMed: 21663796]  [MGI Ref ID J:173080]

Rakowiecki S; Epstein DJ. 2013. Divergent roles for Wnt/beta-catenin signaling in epithelial maintenance and breakdown during semicircular canal formation. Development 140(8):1730-9. [PubMed: 23487315]  [MGI Ref ID J:195122]

Ray S; Foote HP; Lechler T. 2013. beta-Catenin protects the epidermis from mechanical stresses. J Cell Biol 202(1):45-52. [PubMed: 23816618]  [MGI Ref ID J:201523]

Reed KR; Athineos D; Meniel VS; Wilkins JA; Ridgway RA; Burke ZD; Muncan V; Clarke AR; Sansom OJ. 2008. B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proc Natl Acad Sci U S A 105(48):18919-23. [PubMed: 19033191]  [MGI Ref ID J:142249]

Reid BS; Yang H; Melvin VS; Taketo MM; Williams T. 2011. Ectodermal Wnt/beta-catenin signaling shapes the mouse face. Dev Biol 349(2):261-9. [PubMed: 21087601]  [MGI Ref ID J:168016]

Rhee H; Polak L; Fuchs E. 2006. Lhx2 maintains stem cell character in hair follicles. Science 312(5782):1946-9. [PubMed: 16809539]  [MGI Ref ID J:110119]

Riddle RC; Diegel CR; Leslie JM; Van Koevering KK; Faugere MC; Clemens TL; Williams BO. 2013. Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition. PLoS One 8(5):e63323. [PubMed: 23675479]  [MGI Ref ID J:202175]

Rivas B; Huang Z; Agoulnik AI. 2014. Normal fertility in male mice with deletion of beta-catenin gene in germ cells. Genesis 52(4):328-32. [PubMed: 24443144]  [MGI Ref ID J:213360]

Rockich BE; Hrycaj SM; Shih HP; Nagy MS; Ferguson MA; Kopp JL; Sander M; Wellik DM; Spence JR. 2013. Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. Proc Natl Acad Sci U S A 110(47):E4456-64. [PubMed: 24191021]  [MGI Ref ID J:202984]

Rodda SJ; McMahon AP. 2006. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133(16):3231-44. [PubMed: 16854976]  [MGI Ref ID J:114494]

Rudloff S; Kemler R. 2012. Differential requirements for beta-catenin during mouse development. Development 139(20):3711-21. [PubMed: 22991437]  [MGI Ref ID J:187739]

Ruiz-Herguido C; Guiu J; D'Altri T; Ingles-Esteve J; Dzierzak E; Espinosa L; Bigas A. 2012. Hematopoietic stem cell development requires transient Wnt/beta-catenin activity. J Exp Med 209(8):1457-68. [PubMed: 22802352]  [MGI Ref ID J:189158]

Sarin S; Boivin F; Li A; Lim J; Svajger B; Rosenblum ND; Bridgewater D. 2014. beta-Catenin Overexpression in the Metanephric Mesenchyme Leads to Renal Dysplasia Genesis via Cell-Autonomous and Non-Cell-Autonomous Mechanisms. Am J Pathol 184(5):1395-410. [PubMed: 24637293]  [MGI Ref ID J:208128]

Schuller U; Rowitch DH. 2007. Beta-catenin function is required for cerebellar morphogenesis. Brain Res 1140:161-9. [PubMed: 16824494]  [MGI Ref ID J:120586]

Sekine S; Gutierrez PJ; Lan BY; Feng S; Hebrok M. 2007. Liver-specific loss of beta-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology 45(2):361-8. [PubMed: 17256747]  [MGI Ref ID J:153936]

Sekine S; Lan BY; Bedolli M; Feng S; Hebrok M. 2006. Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology 43(4):817-25. [PubMed: 16557553]  [MGI Ref ID J:153937]

Sekine S; Ogawa R; Kanai Y. 2011. Hepatomas with activating Ctnnb1 mutations in 'Ctnnb1-deficient' livers: a tricky aspect of a conditional knockout mouse model. Carcinogenesis 32(4):622-8. [PubMed: 21216847]  [MGI Ref ID J:170659]

Sekine S; Ogawa R; Mcmanus MT; Kanai Y; Hebrok M. 2009. Dicer is required for proper liver zonation. J Pathol 219(3):365-72. [PubMed: 19718708]  [MGI Ref ID J:153733]

Shan M; Gentile M; Yeiser JR; Walland AC; Bornstein VU; Chen K; He B; Cassis L; Bigas A; Cols M; Comerma L; Huang B; Blander JM; Xiong H; Mayer L; Berin C; Augenlicht LH; Velcich A; Cerutti A. 2013. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342(6157):447-53. [PubMed: 24072822]  [MGI Ref ID J:202829]

Shi F; Hu L; Jacques BE; Mulvaney JF; Dabdoub A; Edge AS. 2014. beta-Catenin is required for hair-cell differentiation in the cochlea. J Neurosci 34(19):6470-9. [PubMed: 24806673]  [MGI Ref ID J:211047]

Simons BW; Hurley PJ; Huang Z; Ross AE; Miller R; Marchionni L; Berman DM; Schaeffer EM. 2012. Wnt signaling though beta-catenin is required for prostate lineage specification. Dev Biol 371(2):246-55. [PubMed: 22960283]  [MGI Ref ID J:190538]

Smith AN; Miller LA; Song N; Taketo MM; Lang RA. 2005. The duality of beta-catenin function: a requirement in lens morphogenesis and signaling suppression of lens fate in periocular ectoderm. Dev Biol 285(2):477-89. [PubMed: 16102745]  [MGI Ref ID J:101264]

Smith MK; Koch PJ; Reynolds SD. 2012. Direct and indirect roles for beta-catenin in facultative basal progenitor cell differentiation. Am J Physiol Lung Cell Mol Physiol 302(6):L580-94. [PubMed: 22227204]  [MGI Ref ID J:183435]

Song N; Schwab KR; Patterson LT; Yamaguchi T; Lin X; Potter SS; Lang RA. 2007. pygopus 2 has a crucial, Wnt pathway-independent function in lens induction. Development 134(10):1873-85. [PubMed: 17428831]  [MGI Ref ID J:121416]

Spittau B; Wullkopf L; Zhou X; Rilka J; Pfeifer D; Krieglstein K. 2013. Endogenous transforming growth factor-beta promotes quiescence of primary microglia in vitro. Glia 61(2):287-300. [PubMed: 23065670]  [MGI Ref ID J:191135]

Stenman JM; Rajagopal J; Carroll TJ; Ishibashi M; McMahon J; McMahon AP. 2008. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322(5905):1247-50. [PubMed: 19023080]  [MGI Ref ID J:142352]

Sun X; Jackson L; Dey SK; Daikoku T. 2009. In pursuit of leucine-rich repeat-containing G protein-coupled receptor-5 regulation and function in the uterus. Endocrinology 150(11):5065-73. [PubMed: 19797400]  [MGI Ref ID J:157315]

Sun Y; Aiga M; Yoshida E; Humbert PO; Bamji SX. 2009. Scribble interacts with beta-catenin to localize synaptic vesicles to synapses. Mol Biol Cell 20(14):3390-400. [PubMed: 19458197]  [MGI Ref ID J:153473]

Sun Y; Teng I; Huo R; Rosenfeld MG; Olson LE; Li X; Li X. 2012. Asymmetric requirement of surface epithelial beta-catenin during the upper and lower jaw development. Dev Dyn 241(4):663-74. [PubMed: 22354888]  [MGI Ref ID J:181632]

Swope D; Cheng L; Gao E; Li J; Radice GL. 2012. Loss of cadherin-binding proteins beta-catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis. Mol Cell Biol 32(6):1056-67. [PubMed: 22252313]  [MGI Ref ID J:183710]

Takezawa Y; Yoshida K; Miyado K; Sato M; Nakamura A; Kawano N; Sakakibara K; Kondo T; Harada Y; Ohnami N; Kanai S; Miyado M; Saito H; Takahashi Y; Akutsu H; Umezawa A. 2011. beta-catenin is a molecular switch that regulates transition of cell-cell adhesion to fusion. Sci Rep 1:68. [PubMed: 22355587]  [MGI Ref ID J:206123]

Tamarina NA; Roe MW; Philipson L. 2014. Characterization of mice expressing Ins1 gene promoter driven CreERT recombinase for conditional gene deletion in pancreatic beta-cells. Islets 6(1):. [PubMed: 24637233]  [MGI Ref ID J:208033]

Tan X; Behari J; Cieply B; Michalopoulos GK; Monga SP. 2006. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology 131(5):1561-72. [PubMed: 17101329]  [MGI Ref ID J:124952]

Tang M; Miyamoto Y; Huang EJ. 2009. Multiple roles of {beta}-catenin in controlling the neurogenic niche for midbrain dopamine neurons. Development 136(12):2027-38. [PubMed: 19439492]  [MGI Ref ID J:149534]

Taniguchi N; Carames B; Kawakami Y; Amendt BA; Komiya S; Lotz M. 2009. Chromatin protein HMGB2 regulates articular cartilage surface maintenance via beta-catenin pathway. Proc Natl Acad Sci U S A 106(39):16817-22. [PubMed: 19805379]  [MGI Ref ID J:153213]

Tao GZ; Lehwald N; Jang KY; Baek J; Xu B; Omary MB; Sylvester KG. 2013. Wnt/beta-catenin signaling protects mouse liver against oxidative stress-induced apoptosis through the inhibition of forkhead transcription factor FoxO3. J Biol Chem 288(24):17214-24. [PubMed: 23620592]  [MGI Ref ID J:199603]

Tian Y; Yuan L; Goss AM; Wang T; Yang J; Lepore JJ; Zhou D; Schwartz RJ; Patel V; Cohen ED; Morrisey EE. 2010. Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development. Dev Cell 18(2):275-87. [PubMed: 20159597]  [MGI Ref ID J:158582]

Tran TH; Jarrell A; Zentner GE; Welsh A; Brownell I; Scacheri PC; Atit R. 2010. Role of canonical Wnt signaling/ss-catenin via Dermo1 in cranial dermal cell development. Development 137(23):3973-84. [PubMed: 20980404]  [MGI Ref ID J:166907]

Tsai SY; Sennett R; Rezza A; Clavel C; Grisanti L; Zemla R; Najam S; Rendl M. 2014. Wnt/beta-catenin signaling in dermal condensates is required for hair follicle formation. Dev Biol 385(2):179-88. [PubMed: 24309208]  [MGI Ref ID J:205498]

Ukita K; Hirahara S; Oshima N; Imuta Y; Yoshimoto A; Jang CW; Oginuma M; Saga Y; Behringer RR; Kondoh H; Sasaki H. 2009. Wnt signaling maintains the notochord fate for progenitor cells and supports the posterior extension of the notochord. Mech Dev 126(10):791-803. [PubMed: 19720144]  [MGI Ref ID J:153634]

Valenta T; Gay M; Steiner S; Draganova K; Zemke M; Hoffmans R; Cinelli P; Aguet M; Sommer L; Basler K. 2011. Probing transcription-specific outputs of beta-catenin in vivo. Genes Dev 25(24):2631-43. [PubMed: 22190459]  [MGI Ref ID J:178971]

Wang EY; Yeh SH; Tsai TF; Huang HP; Jeng YM; Lin WH; Chen WC; Yeh KH; Chen PJ; Chen DS. 2011. Depletion of beta-catenin from mature hepatocytes of mice promotes expansion of hepatic progenitor cells and tumor development. Proc Natl Acad Sci U S A 108(45):18384-9. [PubMed: 22042854]  [MGI Ref ID J:180230]

Wang XP; O'Connell DJ; Lund JJ; Saadi I; Kuraguchi M; Turbe-Doan A; Cavallesco R; Kim H; Park PJ; Harada H; Kucherlapati R; Maas RL. 2009. Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development 136(11):1939-49. [PubMed: 19429790]  [MGI Ref ID J:149542]

Wang Y; Krivtsov AV; Sinha AU; North TE; Goessling W; Feng Z; Zon LI; Armstrong SA. 2010. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327(5973):1650-3. [PubMed: 20339075]  [MGI Ref ID J:158885]

Wang Y; Song L; Zhou CJ. 2011. The canonical Wnt/beta-catenin signaling pathway regulates Fgf signaling for early facial development. Dev Biol 349(2):250-60. [PubMed: 21070765]  [MGI Ref ID J:168024]

Weber BN; Chi AW; Chavez A; Yashiro-Ohtani Y; Yang Q; Shestova O; Bhandoola A. 2011. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476(7358):63-8. [PubMed: 21814277]  [MGI Ref ID J:174921]

Wei W; Wang X; Yang M; Smith LC; Dechow PC; Wan Y. 2010. PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 11(6):503-16. [PubMed: 20519122]  [MGI Ref ID J:160910]

Wei W; Zeve D; Suh JM; Wang X; Du Y; Zerwekh JE; Dechow PC; Graff JM; Wan Y. 2011. Biphasic and Dosage-Dependent Regulation of Osteoclastogenesis by beta-Catenin. Mol Cell Biol 31(23):4706-19. [PubMed: 21876000]  [MGI Ref ID J:178340]

Westenskow P; Piccolo S; Fuhrmann S. 2009. Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development 136(15):2505-10. [PubMed: 19553286]  [MGI Ref ID J:152855]

Woodhead GJ; Mutch CA; Olson EC; Chenn A. 2006. Cell-autonomous beta-catenin signaling regulates cortical precursor proliferation. J Neurosci 26(48):12620-30. [PubMed: 17135424]  [MGI Ref ID J:116183]

Wray J; Kalkan T; Gomez-Lopez S; Eckardt D; Cook A; Kemler R; Smith A. 2011. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 13(7):838-45. [PubMed: 21685889]  [MGI Ref ID J:174453]

Wu X; Tu X; Joeng KS; Hilton MJ; Williams DA; Long F. 2008. Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell 133(2):340-53. [PubMed: 18423204]  [MGI Ref ID J:145305]

Xu B; Chen C; Chen H; Zheng SG; Bringas P Jr; Xu M; Zhou X; Chen D; Umans L; Zwijsen A; Shi W. 2011. Smad1 and its target gene Wif1 coordinate BMP and Wnt signaling activities to regulate fetal lung development. Development 138(5):925-35. [PubMed: 21270055]  [MGI Ref ID J:169137]

Yadav VK; Ryu JH; Suda N; Tanaka KF; Gingrich JA; Schutz G; Glorieux FH; Chiang CY; Zajac JD; Insogna KL; Mann JJ; Hen R; Ducy P; Karsenty G. 2008. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135(5):825-37. [PubMed: 19041748]  [MGI Ref ID J:146078]

Yajima I; Colombo S; Puig I; Champeval D; Kumasaka M; Belloir E; Bonaventure J; Mark M; Yamamoto H; Taketo MM; Choquet P; Etchevers HC; Beermann F; Delmas V; Monassier L; Larue L. 2013. A subpopulation of smooth muscle cells, derived from melanocyte-competent precursors, prevents patent ductus arteriosus. PLoS One 8(1):e53183. [PubMed: 23382837]  [MGI Ref ID J:195917]

Yan Y; Tang D; Chen M; Huang J; Xie R; Jonason JH; Tan X; Hou W; Reynolds D; Hsu W; Harris SE; Puzas JE; Awad H; O'Keefe RJ; Boyce BF; Chen D. 2009. Axin2 controls bone remodeling through the beta-catenin-BMP signaling pathway in adult mice. J Cell Sci 122(Pt 19):3566-78. [PubMed: 19737815]  [MGI Ref ID J:153051]

Yang P; An H; Liu X; Wen M; Zheng Y; Rui Y; Cao X. 2010. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11(6):487-94. [PubMed: 20453844]  [MGI Ref ID J:160697]

Yang Q; Monticelli LA; Saenz SA; Chi AW; Sonnenberg GF; Tang J; De Obaldia ME; Bailis W; Bryson JL; Toscano K; Huang J; Haczku A; Pear WS; Artis D; Bhandoola A. 2013. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38(4):694-704. [PubMed: 23601684]  [MGI Ref ID J:196648]

Yasuhara R; Ohta Y; Yuasa T; Kondo N; Hoang T; Addya S; Fortina P; Pacifici M; Iwamoto M; Enomoto-Iwamoto M. 2011. Roles of beta-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Invest 91(12):1739-52. [PubMed: 21968810]  [MGI Ref ID J:180101]

Yeung J; Esposito MT; Gandillet A; Zeisig BB; Griessinger E; Bonnet D; So CW. 2010. beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 18(6):606-18. [PubMed: 21156284]  [MGI Ref ID J:167611]

Yin Y; White AC; Huh SH; Hilton MJ; Kanazawa H; Long F; Ornitz DM. 2008. An FGF-WNT gene regulatory network controls lung mesenchyme development. Dev Biol 319(2):426-36. [PubMed: 18533146]  [MGI Ref ID J:137691]

Yu Q; Quinn WJ 3rd; Salay T; Crowley JE; Cancro MP; Sen JM. 2008. Role of beta-catenin in B cell development and function. J Immunol 181(6):3777-83. [PubMed: 18768830]  [MGI Ref ID J:139115]

Yuasa T; Kondo N; Yasuhara R; Shimono K; Mackem S; Pacifici M; Iwamoto M; Enomoto-Iwamoto M. 2009. Transient activation of Wnt/{beta}-catenin signaling induces abnormal growth plate closure and articular cartilage thickening in postnatal mice. Am J Pathol 175(5):1993-2003. [PubMed: 19815716]  [MGI Ref ID J:154696]

Zacharias AL; Gage PJ. 2010. Canonical Wnt/beta-catenin signaling is required for maintenance but not activation of Pitx2 expression in neural crest during eye development. Dev Dyn 239(12):3215-25. [PubMed: 20960542]  [MGI Ref ID J:166528]

Zamora M; Manner J; Ruiz-Lozano P. 2007. Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proc Natl Acad Sci U S A 104(46):18109-14. [PubMed: 17989236]  [MGI Ref ID J:127444]

Zhang T; Liu S; Yang P; Han C; Wang J; Liu J; Han Y; Yu Y; Cao X. 2009. Fibronectin maintains survival of mouse natural killer (NK) cells via CD11b/Src/beta-catenin pathway. Blood 114(19):4081-8. [PubMed: 19738028]  [MGI Ref ID J:154182]

Zhang Y; Goss AM; Cohen ED; Kadzik R; Lepore JJ; Muthukumaraswamy K; Yang J; DeMayo FJ; Whitsett JA; Parmacek MS; Morrisey EE. 2008. A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration. Nat Genet 40(7):862-70. [PubMed: 18536717]  [MGI Ref ID J:138407]

Zhang Y; Morris JP 4th; Yan W; Schofield HK; Gurney A; Simeone DM; Millar SE; Hoey T; Hebrok M; Pasca di Magliano M. 2013. Canonical Wnt Signaling Is Required for Pancreatic Carcinogenesis. Cancer Res 73(15):4909-4922. [PubMed: 23761328]  [MGI Ref ID J:199468]

Zhao C; Blum J; Chen A; Kwon HY; Jung SH; Cook JM; Lagoo A; Reya T. 2007. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12(6):528-41. [PubMed: 18068630]  [MGI Ref ID J:130324]

Zhao T; Gan Q; Stokes A; Lassiter RN; Wang Y; Chan J; Han JX; Pleasure DE; Epstein JA; Zhou CJ. 2014. beta-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation. Development 141(1):148-57. [PubMed: 24284205]  [MGI Ref ID J:206311]

Zhou D; Li Y; Lin L; Zhou L; Igarashi P; Liu Y. 2012. Tubule-specific ablation of endogenous beta-catenin aggravates acute kidney injury in mice. Kidney Int 82(5):537-47. [PubMed: 22622501]  [MGI Ref ID J:198173]

Zhou D; Tan RJ; Zhou L; Li Y; Liu Y. 2013. Kidney tubular beta-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci Rep 3:1878. [PubMed: 23698793]  [MGI Ref ID J:207805]

Zhou J; Cheng P; Youn JI; Cotter MJ; Gabrilovich DI. 2009. Notch and wingless signaling cooperate in regulation of dendritic cell differentiation. Immunity 30(6):845-59. [PubMed: 19523851]  [MGI Ref ID J:150040]

Zhou J; Qu J; Yi XP; Graber K; Huber L; Wang X; Gerdes AM; Li F. 2007. Upregulation of gamma-catenin compensates for the loss of beta-catenin in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 292(1):H270-6. [PubMed: 16936006]  [MGI Ref ID J:119968]

Zou SS; Yang W; Yan HX; Yu LX; Li YQ; Wu FQ; Tang L; Lin Y; Guo LN; Zhou HB; Zhou DX; Shen F; Wu MC; Hu HP; Wang HY. 2013. Role of beta-Catenin in regulating the balance between TNF-alpha- and Fas-induced acute liver injury. Cancer Lett 335(1):160-7. [PubMed: 23410872]  [MGI Ref ID J:198312]

de Vries WN; Evsikov AV; Haac BE; Fancher KS; Holbrook AE; Kemler R; Solter D; Knowles BB. 2004. Maternal beta-catenin and E-cadherin in mouse development. Development 131(18):4435-45. [PubMed: 15306566]  [MGI Ref ID J:96042]

von Gise A; Zhou B; Honor LB; Ma Q; Petryk A; Pu WT. 2011. WT1 regulates epicardial epithelial to mesenchymal transition through beta-catenin and retinoic acid signaling pathways. Dev Biol 356(2):421-31. [PubMed: 21663736]  [MGI Ref ID J:175466]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX11

Colony Maintenance

Breeding & HusbandryThis strain originated on a B6;129 background and has been backcrossed to C57BL/6J for at least ten generations before being made homozygous. Coat color expected from breeding:Black
Mating SystemHomozygote x Homozygote         (Female x Male)   01-MAR-06
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $232.00Female or MaleHomozygous for Ctnnb1tm2Kem  
Price per Pair (US dollars $)Pair Genotype
$464.00Homozygous for Ctnnb1tm2Kem x Homozygous for Ctnnb1tm2Kem  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $301.60Female or MaleHomozygous for Ctnnb1tm2Kem  
Price per Pair (US dollars $)Pair Genotype
$603.20Homozygous for Ctnnb1tm2Kem x Homozygous for Ctnnb1tm2Kem  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

  Control
   000664 C57BL/6J
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)