Strain Name:

129(Cg)-Foxg1tm1(cre)Skm/J

Stock Number:

004337

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Other products are available, see Purchasing Information for Cryopreserved Embryos

Use Restrictions Apply, see Terms of Use

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names 129.Cg-Foxg1tm1(cre)Skm/J    (Changed: 29-AUG-08 )
STOCK Foxg1tm1(cre)Skm    (Changed: 15-DEC-04 )
STOCK-Foxg1tm1(Cre)Skm    (Changed: 15-DEC-04 )
Type Congenic; Mutant Strain; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
 
Donating Investigator Susan K. McConnell,   Stanford University

Description
This strain expresses Cre recombinase from the endogenous Foxg1 locus. Forkhead box G1 is required for telencephalon development and is expressed specifically in the telencephalon and discrete head structures. When crossed with a strain containing loxP site flanked sequence of interest, Cre-mediated recombination results in tissue-specific deletion of the target. Recombination occurs in the telencephalon, anterior optic vesicle (developing lens and retina), otic vesicle, facial and head ectoderm, olfactory epithelium, mid-hindbrain junction and pharyngeal pouches. Mice that are homozygous for the targeted mutation die perinatally. Heterozygous mutant mice are viable, fertile, normal in size and do not display any gross physical or behavioral abnormalities. This mutant mouse strain represents a model that may be useful in studies of telencephalic development.

Development
A targeting vector containing cre coding sequence, neomycin resistance and herpes simplex virus thymidine kinase genes was used to disrupt most of the coding sequence the targeted gene. The endogenous Foxg1 promoter drives expression of the Cre recombinase through the in-frame insertion of the cre coding sequence to the first 13 codons of the Foxg1 gene. The construct was electroporated into 129P2/OlaHsd-Hprtb-m1 derived HM-1 embryonic stem (ES) cells. Correctly targeted ES cells were injected into C57BL/6 blastocysts. The resulting chimeric animals were initially backcrossed to Swiss Webster mice, then backcrossed for 9 generations on a 129 background.

Control Information

  Control
   Wild-type from the colony
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Foxg1tm1(cre)Skm allele
006084   B6.129P2(Cg)-Foxg1tm1(cre)Skm/J
View Strains carrying   Foxg1tm1(cre)Skm     (1 strain)

Strains carrying other alleles of cre
008569   129-Alpltm1(cre)Nagy/J
017611   129-Mcm2tm1(cre/ERT2)Scpr/J
005989   129;FVB-Tg(PTH-cre)4167Slib/J
007179   129S.Cg-Tg(UBC-cre/ERT2)1Ejb/J
007915   129S.FVB-Tg(Amh-cre)8815Reb/J
003328   129S/Sv-Tg(Prm-cre)58Og/J
026200   129S1.Cg-Tg(Vsx2-cre)2690Chow/J
004302   129S1/Sv-Hprttm1(cre)Mnn/J
022137   129S4.Cg-Tg(Wnt1-cre)2Sor/J
003960   129S6-Tg(Prnp-GFP/cre)1Blw/J
008523   129S6.Cg-Tg(NPHS2-cre)295Lbh/BroJ
009575   B6(129S4)-Et(cre/ERT2)119Rdav/J
009580   B6(129S4)-Et(cre/ERT2)1382Rdav/J
012688   B6(129S4)-Et(cre/ERT2)13866Rdav/J
009581   B6(129S4)-Et(cre/ERT2)1642Rdav/J
009582   B6(129S4)-Et(cre/ERT2)1645Rdav/J
009583   B6(129S4)-Et(cre/ERT2)1957Rdav/J
009584   B6(129S4)-Et(cre/ERT2)2007Rdav/J
009585   B6(129S4)-Et(cre/ERT2)2047Rdav/J
009574   B6(129S4)-Et(cre/ERT2)21Rdav/J
009577   B6(129S4)-Et(cre/ERT2)296Rdav/J
009578   B6(129S4)-Et(cre/ERT2)398Rdav/J
009573   B6(129S4)-Et(cre/ERT2)4Rdav/J
010688   B6(129S4)-Et(cre/ERT2)6691Rdav/J
010689   B6(129S4)-Et(cre/ERT2)6959Rdav/J
010690   B6(129S4)-Et(cre/ERT2)7089Rdav/J
010691   B6(129S4)-Et(cre/ERT2)7149Rdav/J
010692   B6(129S4)-Et(cre/ERT2)7381Rdav/J
010693   B6(129S4)-Et(cre/ERT2)8120Rdav/J
010694   B6(129S4)-Et(cre/ERT2)8131Rdav/J
009579   B6(129S4)-Et(cre/ERT2)837Rdav/J
010695   B6(129S4)-Et(cre/ERT2)9699Rdav/J
009587   B6(129S4)-Et(icre)1402Rdav/J
009588   B6(129S4)-Et(icre)1470Rdav/J
009589   B6(129S4)-Et(icre)1555Rdav/J
009586   B6(129S4)-Et(icre)754Rdav/J
010696   B6(129S4)-Et(icre/ERT2)10596Rdav/J
010697   B6(129S4)-Et(icre/ERT2)10727Rdav/J
012689   B6(129S4)-Et(icre/ERT2)14163Rdav/J
012690   B6(129S4)-Et(icre/ERT2)14208Rdav/J
012694   B6(129S4)-Et(icre/ERT2)14915Rdav/J
012687   B6(129S4)-Tg(SYN1-icre/mRFP1)9934Rdav/J
022356   B6(129X1)-Tg(Cd4-cre/ERT2)11Gnri/J
010774   B6(Cg)-Calb2tm1(cre)Zjh/J
013730   B6(Cg)-Calb2tm2.1(cre/ERT2)Zjh/J
017562   B6(Cg)-Cd8atm1.1(cre)Koni/J
012704   B6(Cg)-Crhtm1(cre)Zjh/J
010705   B6(Cg)-Dlx5tm1(cre/ERT2)Zjh/J
013048   B6(Cg)-Etv1tm1.1(cre/ERT2)Zjh/J
018448   B6(Cg)-Foxn1tm3(cre)Nrm/J
010776   B6(Cg)-Lhx6tm1(cre/ERT2)Zjh/J
010777   B6(Cg)-Pvalbtm1(cre/ERT2)Zjh/J
010708   B6(Cg)-Ssttm1(cre/ERT2)Zjh/J
016223   B6(Cg)-Tg(Phox2b-cre)3Jke/J
016829   B6(SJL)-Pou5f1tm1.1(cre/Esr1*)Yseg/J
021881   B6.129(Cg)-Arctm1.1(cre/ERT2)Luo/J
018867   B6.129(Cg)-Axin2tm1(cre/ERT2)Rnu/J
021882   B6.129(Cg)-Fostm1.1(cre/ERT2)Luo/J
016959   B6.129(Cg)-Foxp3tm4(YFP/cre)Ayr/J
023055   B6.129(Cg)-Krt12tm3(cre)Wwk/J
008463   B6.129-Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J
008320   B6.129-Leprtm2(cre)Rck/J
017526   B6.129-Nos1tm1(cre)Mgmj/J
005697   B6.129-Otx1tm4(cre)Asim/J
018938   B6.129-Tac2tm1.1(cre)Qima/J
017769   B6.129-Trpv1tm1(cre)Bbm/J
004146   B6.129-Tg(Pcp2-cre)2Mpin/J
008710   B6.129P2(129S4)-Hprttm10(Ple162-EGFP/cre)Ems/Mmjax
008877   B6.129P2(129S4)-Hprttm12(Ple177-EGFP/cre)Ems/Mmjax
009116   B6.129P2(129S4)-Hprttm16(Ple167-EGFP/cre)Ems/Mmjax
008709   B6.129P2(129S4)-Hprttm9(Ple178-EGFP/cre)Ems/Mmjax
006785   B6.129P2(C)-Cd19tm1(cre)Cgn/J
021160   B6.129P2(Cg)-Cx3cr1tm2.1(cre/ERT)Litt/WganJ
010611   B6.129P2(Cg)-Ighg1tm1(IRES-cre)Cgn/J
007770   B6.129P2-Aicdatm1(cre)Mnz/J
008875   B6.129P2-Lgr5tm1(cre/ERT2)Cle/J
016934   B6.129P2-Lgr6tm2.1(cre/ERT2)Cle/J
004781   B6.129P2-Lyz2tm1(cre)Ifo/J
017320   B6.129P2-Pvalbtm1(cre)Arbr/J
016222   B6.129S(Cg)-Id2tm1.1(cre/ERT2)Blh/ZhuJ
017915   B6.129S(Cg)-Pgrtm1.1(cre)Shah/AndJ
013594   B6.129S-Atoh1tm5.1(Cre/PGR)Hzo/J
021794   B6.129S1(Cg)-Ascl3tm1.1(EGFP/cre)Ovi/J
024637   B6.129S1(SJL)-Nkx2-5tm2(cre)Rph/J
006600   B6.129S1-Mnx1tm4(cre)Tmj/J
005628   B6.129S2-Emx1tm1(cre)Krj/J
022510   B6.129S4-Gpr88tm1.1(cre/GFP)Rpa/J
017578   B6.129S4-Mcpt8tm1(cre)Lky/J
003755   B6.129S4-Meox2tm1(cre)Sor/J
007893   B6.129S4-Myf5tm3(cre)Sor/J
005623   B6.129S6-Shhtm2(cre/ERT2)Cjt/J
006878   B6.129S6-Taglntm2(cre)Yec/J
012839   B6.129X1(Cg)-Tnfrsf4tm2(cre)Nik/J
008712   B6.129X1-Twist2tm1.1(cre)Dor/J
006054   B6.C-Tg(CMV-cre)1Cgn/J
020811   B6.C-Tg(Pgk1-cre)1Lni/CrsJ
019148   B6.Cg-Acantm1(cre/ERT2)Crm/J
023530   B6.Cg-Avptm1.1(cre)Hze/J
013590   B6.Cg-Braftm1Mmcm Ptentm1Hwu Tg(Tyr-cre/ERT2)13Bos/BosJ
023531   B6.Cg-Calb1tm1.1(folA/EGFP/cre)Hze/J
006230   B6.Cg-Cebpatm1Dgt Tg(Mx1-cre)1Cgn/J
012360   B6.Cg-Erbb4tm1.1(cre/ERT2)Aibs/J
023676   B6.Cg-Hprttm331(Ple275-icre/ERT2)Ems/Mmjax
023678   B6.Cg-Hprttm333(Ple281-icre/ERT2)Ems/Mmjax
023679   B6.Cg-Hprttm334(Ple279-icre/ERT2)Ems/Mmjax
023680   B6.Cg-Hprttm335(Ple277-icre/ERT2)Ems/Mmjax
023685   B6.Cg-Hprttm340(Ple252-icre/ERT2)Ems/Mmjax
023686   B6.Cg-Hprttm341(Ple273-icre/ERT2)Ems/Mmjax
023688   B6.Cg-Hprttm343(Ple270-icre/ERT2)Ems/Mmjax
022861   B6.Cg-Nxph4tm1.1(cre/ERT2)Hze/J
017763   B6.Cg-Pax7tm1(cre/ERT2)Gaka/J
022862   B6.Cg-Penktm1.1(cre/ERT2)Hze/J
012358   B6.Cg-Pvalbtm1.1(cre)Aibs/J
022863   B6.Cg-Pvalbtm5.1(cre/folA)Hze/J
005622   B6.Cg-Shhtm1(EGFP/cre)Cjt/J
022865   B6.Cg-Trib2tm1.1(cre/ERT2)Hze/J
022762   B6.Cg-Zfp335tm1.2Caw Emx1tm1(cre)Krj/J
017346   B6.Cg-Tg(A930038C07Rik-cre)1Aibs/J
006149   B6.Cg-Tg(ACTA1-cre)79Jme/J
003574   B6.Cg-Tg(Alb-cre)21Mgn/J
006881   B6.Cg-Tg(Aqp2-cre)1Dek/J
011104   B6.Cg-Tg(Atoh1-cre)1Bfri/J
004682   B6.Cg-Tg(CAG-cre/Esr1*)5Amc/J
008520   B6.Cg-Tg(CD2-cre)4Kio/J
009350   B6.Cg-Tg(CDX2-cre)101Erf/J
009352   B6.Cg-Tg(CDX2-cre*)189Erf/J
005359   B6.Cg-Tg(Camk2a-cre)T29-1Stl/J
022071   B6.Cg-Tg(Cd4-cre)1Cwi/BfluJ
012237   B6.Cg-Tg(Cdh16-cre)91Igr/J
016241   B6.Cg-Tg(Col1a1-cre/ERT2)1Crm/J
016237   B6.Cg-Tg(Col1a2-cre/ERT)7Cpd/J
006368   B6.Cg-Tg(Cr2-cre)3Cgn/J
008538   B6.Cg-Tg(Cspg4-cre/Esr1*)BAkik/J
006663   B6.Cg-Tg(Eno2-cre)39Jme/J
005069   B6.Cg-Tg(Fabp4-cre)1Rev/J
012712   B6.Cg-Tg(Fev-cre)1Esd/J
012849   B6.Cg-Tg(GFAP-cre/ERT2)505Fmv/J
012886   B6.Cg-Tg(Gfap-cre)73.12Mvs/J
024098   B6.Cg-Tg(Gfap-cre)77.6Mvs/2J
009642   B6.Cg-Tg(Gh1-cre)1Sac/J
024474   B6.Cg-Tg(Il9-cre)#Stck/J
003573   B6.Cg-Tg(Ins2-cre)25Mgn/J
008068   B6.Cg-Tg(Itgax-cre)1-1Reiz/J
008781   B6.Cg-Tg(Kap-cre)29066/2Sig/J
012837   B6.Cg-Tg(Lck-cre)3779Nik/J
003802   B6.Cg-Tg(Lck-cre)548Jxm/J
006889   B6.Cg-Tg(Lck-cre)I540Jxm/J
009643   B6.Cg-Tg(Lhb-cre)1Sac/J
008330   B6.Cg-Tg(Mc4r-cre)25Rck/J
003556   B6.Cg-Tg(Mx1-cre)1Cgn/J
007742   B6.Cg-Tg(Myh11-cre,-EGFP)2Mik/J
008205   B6.Cg-Tg(NPHS2-cre)295Lbh/J
003771   B6.Cg-Tg(Nes-cre)1Kln/J
010536   B6.Cg-Tg(Pcp2-cre)3555Jdhu/J
005975   B6.Cg-Tg(Plp1-cre/ERT)3Pop/J
008827   B6.Cg-Tg(Prdm1-cre)1Masu/J
005584   B6.Cg-Tg(Prrx1-cre)1Cjt/J
003967   B6.Cg-Tg(Rbp3-cre)528Jxm/J
021614   B6.Cg-Tg(S100A8-cre,-EGFP)1Ilw/J
008454   B6.Cg-Tg(Sox2-cre)1Amc/J
006361   B6.Cg-Tg(Sp7-tTA,tetO-EGFP/cre)1Amc/J
003966   B6.Cg-Tg(Syn1-cre)671Jxm/J
017491   B6.Cg-Tg(Tagln-cre)1Her/J
004128   B6.Cg-Tg(Tek-cre)12Flv/J
008863   B6.Cg-Tg(Tek-cre)1Ywa/J
008601   B6.Cg-Tg(Th-cre)1Tmd/J
007606   B6.Cg-Tg(Thy1-cre/ERT2,-EYFP)AGfng/J
012328   B6.Cg-Tg(Tyr-cre/ERT2)13Bos/J
008085   B6.Cg-Tg(UBC-cre/ERT2)1Ejb/J
008610   B6.Cg-Tg(Vav1-cre)A2Kio/J
004586   B6.Cg-Tg(Vil-cre)997Gum/J
021504   B6.Cg-Tg(Vil1-cre)1000Gum/J
008735   B6.Cg-Tg(Wap-cre)11738Mam/JKnwJ
009614   B6.Cg-Tg(Wfs1-cre/ERT2)2Aibs/J
009107   B6.Cg-Tg(Wnt1-cre)11Rth Tg(Wnt1-GAL4)11Rth/J
006234   B6.Cg-Tg(tetO-cre)1Jaw/J
016832   B6.FVB(129)-Tg(Alb1-cre)1Dlr/J
005657   B6.FVB(129)-Tg(Myh6-cre/Esr1*)1Jmk/J
024688   B6.FVB(129S)-Tg(Pax6-GFP/cre)1Rilm/J
006475   B6.FVB(129S4)-Tg(Ckmm-cre)5Khn/J
006451   B6.FVB(129X1)-Tg(Sim1-cre)1Lowl/J
006333   B6.FVB(Cg)-Tg(Neurog3-cre)C1Able/J
014643   B6.FVB-Tg(CMA1-cre)6Thhe/J
006137   B6.FVB-Tg(Cdh5-cre)7Mlia/J
018980   B6.FVB-Tg(Ddx4-cre)1Dcas/KnwJ
003724   B6.FVB-Tg(EIIa-cre)C5379Lmgd/J
011069   B6.FVB-Tg(Gh1-cre)bKnmn/J
011038   B6.FVB-Tg(Myh6-cre)2182Mds/J
014647   B6.FVB-Tg(Pdx1-cre)6Tuv/J
010714   B6.FVB-Tg(Pomc-cre)1Stl/J
022791   B6.FVB-Tg(Rorc-cre)1Litt/J
017535   B6.FVB-Tg(Slc32a1-cre)2.1Hzo/FrkJ
017490   B6.FVB-Tg(Stra8-cre)1Reb/LguJ
024670   B6.FVB-Tg(Ucp1-cre)1Evdr/J
003394   B6.FVB-Tg(Zp3-cre)3Mrt/J
006660   B6.SJL-Slc6a3tm1.1(cre)Bkmn/J
003552   B6129-Tg(Wap-cre)11738Mam/J
023161   B6129S-Tg(Foxp3-EGFP/cre)1aJbs/J
021961   B6;129-Abcg2tm3.1(cre/ERT2)Bsor/J
010531   B6;129-Bmi1tm1(cre/ERT)Mrc/J
008364   B6;129-Chattm1(cre/ERT)Nat/J
004847   B6;129-Gt(ROSA)26Sortm1(cre/ERT)Nat/J
021025   B6;129-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm1(tetO-cre)Haho/J
010557   B6;129-Gt(ROSA)26Sortm3(rtTA,tetO-cre/ERT)Nat/J
010529   B6;129-Myf5tm1(cre)Mrc/J
010528   B6;129-Myf6tm2(cre)Mrc/J
024475   B6;129-Myod1tm1.1(cre/ERT,TVA)Gcg/J
008363   B6;129-Nefltm1(cre/ERT)Nat/J
017525   B6;129-Ntstm1(cre)Mgmj/J
005549   B6;129-Pax3tm1(cre)Joe/J
012476   B6;129-Pax7tm2.1(cre/ERT2)Fan/J
009600   B6;129-Six2tm3(EGFP/cre/ERT2)Amc/J
008532   B6;129-Thtm1(cre/Esr1)Nat/J
008531   B6;129-Vamp2tm1(cre/ERT)Nat/J
017968   B6;129-Tg(Cdh5-cre)1Spe/J
024860   B6;129-Tg(Drd1-cre)120Mxu/Mmjax
010988   B6;129P-Cyp11a1tm1(GFP/cre)Pzg/J
010985   B6;129P-Klf3tm1(cre/ERT2)Pzg/J
008529   B6;129P-Tg(Neurog1-cre/ERT2)1Good/J
015854   B6;129P2-Foxl2tm1(GFP/cre/ERT2)Pzg/J
012601   B6;129P2-Lyve1tm1.1(EGFP/cre)Cys/J
006668   B6;129P2-Omptm4(cre)Mom/MomJ
008069   B6;129P2-Pvalbtm1(cre)Arbr/J
012373   B6;129S-Hoxb1tm1(cre)Og/J
014541   B6;129S-Nos1tm1.1(cre/ERT2)Zjh/J
024234   B6;129S-Oxttm1.1(cre)Dolsn/J
022864   B6;129S-Rasgrf2tm1(cre/folA)Hze/J
023526   B6;129S-Rorbtm1.1(cre)Hze/J
023527   B6;129S-Slc17a7tm1.1(cre)Hze/J
023525   B6;129S-Snap25tm2.1(cre)Hze/J
010987   B6;129S-Sox18tm1(GFP/cre/ERT2)Pzg/J
017593   B6;129S-Sox2tm1(cre/ERT2)Hoch/J
021877   B6;129S-Tac1tm1.1(cre)Hze/J
021878   B6;129S-Tac2tm1.1(cre)Hze/J
017685   B6;129S-Wisp3tm1(cre)Mawa/J
007001   B6;129S-Tg(UBC-cre/ERT2)1Ejb/J
009388   B6;129S1-Osr2tm2(cre)Jian/J
014551   B6;129S4-Dlx1tm1(cre/ERT2)Zjh/J
012463   B6;129S4-Foxd1tm1(GFP/cre)Amc/J
012464   B6;129S4-Foxd1tm2(GFP/cre/ERT2)Amc/J
011105   B6;129S4-Olig1tm1(cre)Rth/J
009576   B6;129S4-Et(cre/ERT2)278Rdav/J
006410   B6;129S6-Chattm2(cre)Lowl/J
024948   B6;129S6-Gdnftm1(cre/ERT2)Cos/J
012362   B6;129S6-Tg(Camk2a-cre/ERT2)1Aibs/J
017495   B6;129S7-Crim1tm1(GFP/cre/ERT2)Pzg/J
014638   B6;129X1-Cldn6tm1(cre/ERT2)Dam/J
009616   B6;C3-Tg(A930038C07Rik-cre)4Aibs/J
012433   B6;C3-Tg(ACTA1-rtTA,tetO-cre)102Monk/J
008844   B6;C3-Tg(Ctgf-cre)2Aibs/J
008839   B6;C3-Tg(Cyp39a1-cre)1Aibs/J
009117   B6;C3-Tg(Cyp39a1-cre)7Aibs/J
008848   B6;C3-Tg(Mybpc1-cre)2Aibs/J
009111   B6;C3-Tg(Scnn1a-cre)1Aibs/J
009112   B6;C3-Tg(Scnn1a-cre)2Aibs/J
009613   B6;C3-Tg(Scnn1a-cre)3Aibs/J
009103   B6;C3-Tg(Wfs1-cre/ERT2)3Aibs/J
025806   B6;CBA-Tg(Gsx2-cre)1Kess/J
025807   B6;CBA-Tg(Sox10-cre)1Wdr/J
024507   B6;CBA-Tg(Tbx21-cre)1Dlc/J
017494   B6;D-Tg(Tshz3-GFP/cre)43Amc/J
024926   B6;D2-Tg(Fshr-cre)1Ldu/J
003466   B6;D2-Tg(Sycp1-cre)4Min/J
014160   B6;DBA-Tg(S100b-EGFP/cre/ERT2)22Amc/J
014159   B6;DBA-Tg(Tmem100-EGFP/cre/ERT2)30Amc/J
015855   B6;DBA-Tg(Upk3a-GFP/cre/ERT2)26Amc/J
010803   B6;FVB-Tg(Adipoq-cre)1Evdr/J
018422   B6;FVB-Tg(Aicda-cre)1Rcas/J
023748   B6;FVB-Tg(Aldh1l1-cre)JD1884Gsat/J
011087   B6;FVB-Tg(Crh-cre)1Kres/J
008533   B6;FVB-Tg(Cspg4-cre)1Akik/J
003734   B6;FVB-Tg(GZMB-cre)1Jcb/J
004426   B6;SJL-Tg(Cga-cre)3Sac/J
003554   B6;SJL-Tg(Col2a1-cre)1Bhr/J
017738   B6;SJL-Tg(Foxl1-cre)1Khk/J
005249   B6;SJL-Tg(Krt1-15-cre/PGR)22Cot/J
007610   B6;SJL-Tg(Thy1-cre/ERT2,-EYFP)VGfng/J
007252   B6Ei.129S4-Tg(Prm-cre)58Og/EiJ
018956   B6N.129P2(B6)-Lyz2tm1(cre)Ifo/J
018958   B6N.129P2-Cd19tm1(cre)Cgn/J
021077   B6N.129S1-Mrgprb4tm3(cre)And/J
018957   B6N.129S6(B6)-Chattm2(cre)Lowl/J
017911   B6N.129S6(Cg)-Esr1tm1.1(cre)And/J
019013   B6N.129S6(Cg)-Gt(ROSA)26Sortm2(EGFP/cre)Alj/J
016225   B6N.129S6(Cg)-Scgb1a1tm1(cre/ERT)Blh/J
018974   B6N.B6-Tg(Nr4a1-EGFP/cre)820Khog/J
019021   B6N.Cg-Ccktm1.1(cre)Zjh/J
019022   B6N.Cg-Gad2tm2(cre)Zjh/J
018973   B6N.Cg-Ssttm2.1(cre)Zjh/J
018961   B6N.Cg-Tg(Alb-cre)21Mgn/J
019102   B6N.Cg-Tg(CAG-cre/Esr1*)5Amc/CjDswJ
018966   B6N.Cg-Tg(Camk2a-cre)T29-1Stl/J
018965   B6N.Cg-Tg(Fabp4-cre)1Rev/J
017310   B6N.Cg-Tg(Hsd17b1-icre/ERT2)3Casa/J
018960   B6N.Cg-Tg(Ins2-cre)25Mgn/J
018967   B6N.Cg-Tg(Itgax-cre)1-1Reiz/J
018964   B6N.Cg-Tg(KRT14-cre)1Amc/J
019103   B6N.Cg-Tg(Nes-cre)1Kln/CjDswJ
014094   B6N.Cg-Tg(Sox2-cre)1Amc/J
018968   B6N.Cg-Tg(Vav1-cre)A2Kio/J
018963   B6N.Cg-Tg(Vil-cre)997Gum/J
018972   B6N.FVB(B6)-Tg(Myh6-cre)2182Mds/J
019099   B6N.FVB-Tg(ACTB-cre)2Mrt/CjDswJ
019509   B6N.FVB-Tg(BGLAP-cre)1Clem/J
023047   B6N.FVB-Tg(Dmp1-cre)1Jqfe/BwdJ
017927   B6N.FVB-Tg(Mpz-cre)26Mes/J
010550   B6N.FVB-Tg(Penk-glc-2-cre/ERT2)2And/J
017743   B6N;129S-Prom1tm1(cre/ERT2)Gilb/J
003465   BALB/c-Tg(CMV-cre)1Cgn/J
012641   BALB/c-Tg(S100a4-cre)1Egn/YunkJ
010612   C.129P2(Cg)-Ighg1tm1(IRES-cre)Cgn/J
017353   C.129S4(B6)-Il13tm1(YFP/cre)Lky/J
017582   C.129S4(B6)-Mcpt8tm1(cre)Lky/J
004126   C.Cg-Cd19tm1(cre)Cgn Ighb/J
005673   C.Cg-Tg(Mx1-cre)1Cgn/J
006244   C.Cg-Tg(tetO-cre)1Jaw/J
009155   C57BL/6-Cldn6tm1(cre)Dkwu/J
017557   C57BL/6-Tg(BEST1-cre)1Jdun/J
016097   C57BL/6-Tg(Car1-cre)5Flt/J
011086   C57BL/6-Tg(Cck-cre)CKres/J
008766   C57BL/6-Tg(Cd8a-cre)1Itan/J
006474   C57BL/6-Tg(Grik4-cre)G32-4Stl/J
008314   C57BL/6-Tg(HBB-cre)12Kpe/J
008870   C57BL/6-Tg(Hspa2-cre)1Eddy/J
016261   C57BL/6-Tg(Nes-cre/ERT2)KEisc/J
012906   C57BL/6-Tg(Nes-cre/Esr1*)1Kuan/J
016617   C57BL/6-Tg(Nr4a1-EGFP/cre)820Khog/J
020287   C57BL/6-Tg(Pbsn-cre/Esr1*)14Abch/J
013148   C57BL/6-Tg(Pdgfra-cre)1Clc/J
008535   C57BL/6-Tg(Pf4-cre)Q3Rsko/J
024034   C57BL/6-Tg(Pmch-cre)1Rck/J
016583   C57BL/6-Tg(Slc6a3-icre/ERT2)2Gloss/J
006888   C57BL/6-Tg(Zp3-cre)1Gwh/J
003651   C57BL/6-Tg(Zp3-cre)93Knw/J
021119   C57BL/6J-Tg(Dlx2-cre,-mCherry)4Grsr/GrsrJ
021423   C57BL/6J-Tg(Dlx2-cre,-mCherry)9Grsr/GrsrJ
007567   C57BL/6J-Tg(Itgax-cre,-EGFP)4097Ach/J
018895   C57BL/6J-Tg(Krt6,-cre,-Cerulean)1Grsr/Grsr
018896   C57BL/6J-Tg(Krt6,-cre,-Cerulean)2Grsr/Grsr
018898   C57BL/6J-Tg(Krt6,-cre,-Cerulean)4Grsr/Grsr
018899   C57BL/6J-Tg(Krt6,-cre,-Cerulean)5Grsr/Grsr
021582   C57BL/6J-Tg(Mchr1-cre)1Emf/J
008661   C57BL/6J-Tg(Nkx2-1-cre)2Sand/J
018754   C57BL/6J-Tg(Tbx22,-cre,-mCherry)1Grsr/GrsrJ
019363   C57BL/6J-Tg(Trp63,-cre,-Cerulean)10Grsr/Grsr
018792   C57BL/6J-Tg(Trp63,-cre,-Cerulean)4Grsr/GrsrJ
003650   C57BL/6J-Tg(Zp3-cre)82Knw/KnwJ
018151   C57BL/6N-Krt17tm1(cre,Cerulean)Murr/GrsrJ
023014   C57BL/6N-Tg(Calcrl,cre)4688Nkza/J
012686   C57BL/6N-Tg(Ppp1r2-cre)4127Nkza/J
016582   C57BL/6N-Tg(Slc32a1-icre/ERT2)3Gloss/J
026266   D2.B6-Tg(Zp3-cre)93Knw/SjJ
024701   D2.Cg-Tg(Plp1-cre/ERT)3Pop/SjJ
016833   FVB(Cg)-Tg(Alb1-cre)1Dlr/J
012929   FVB(Cg)-Tg(Dhh-cre)1Mejr/J
011034   FVB(Cg)-Tg(Ghrhr-cre)3242Lsk/J
023407   FVB-HhatTg(TFAP2A-cre)1Will/J
006405   FVB-Tg(Ckmm-cre)5Khn/J
006774   FVB-Tg(Col2a1-cre/ERT)KA3Smac/J
021024   FVB-Tg(Csf1r-icre)1Jwp/J
006954   FVB-Tg(Ddx4-cre)1Dcas/J
004600   FVB-Tg(GFAP-cre)25Mes/J
011037   FVB-Tg(Myh6-cre)2182Mds/J
006364   FVB-Tg(Nr5a1-cre)2Lowl/J
008537   FVB-Tg(Tek-cre)2352Rwng/J
019382   FVB.Cg-Myh9tm1.1Gac Tg(NPHS2-cre)295Lbh/Mmjax
014140   FVB.Cg-Myod1tm2.1(icre)Glh/J
006139   FVB.Cg-Tg(ACTA1-cre)79Jme/J
017595   FVB.Cg-Tg(CAG-cre/Esr1*)5Amc/J
006297   FVB.Cg-Tg(Eno2-cre)39Jme/J
018394   FVB.Cg-Tg(KRT5-cre/ERT2)2Ipc/JeldJ
008244   FVB.Cg-Tg(tetO-cre)1Jaw/J
003376   FVB/N-Tg(ACTB-cre)2Mrt/J
024384   FVB/N-Tg(AMELX-cre)A1Kul/J
003314   FVB/N-Tg(EIIa-cre)C5379Lmgd/J
017928   FVB/N-Tg(Mpz-cre)26Mes/J
006143   FVB/N-Tg(Thy1-cre)1Vln/J
003377   FVB/N-Tg(Zp3-cre)3Mrt/J
023325   FVB;B6-Tg(Pbsn-cre)20Fwan/J
019096   NOD.129P2(B6)-Lyz2tm1(cre)Ifo/NadlJ
023806   NOD.129P2(Cg)-Cd19tm1(cre)Cgn/J
013233   NOD.B6-Tg(Itgax-cre,-EGFP)4097Ach/J
013234   NOD.Cg-Tg(Cd4-cre)1Cwi/2AchJ
023972   NOD.Cg-Tg(Ins2-cre/ERT)1Dam/SbwJ
023203   NOD.Cg-Tg(Itgax-cre)1-1Reiz/PesaJ
005732   NOD.Cg-Tg(Lck-cre)548Jxm/AchJ
023973   NOD.Cg-Tg(Neurog3-cre)1Dam/SbwJ
013251   NOD.FVB-Tg(EIIa-cre)C5379Lmgd/J
008694   NOD/ShiLt-Tg(Foxp3-EGFP/cre)1cJbs/J
004986   NOD/ShiLt-Tg(Ins2-cre)3Lt/LtJ
003855   NOD/ShiLt-Tg(Ins2-cre)5Lt/LtJ
004987   NOD/ShiLt-Tg(Ins2-cre)6Lt/LtJ
012899   STOCK Agrptm1(cre)Lowl/J
012882   STOCK Ascl1tm1.1(Cre/ERT2)Jejo/J
012706   STOCK Ccktm1.1(cre)Zjh/J
012710   STOCK Ccktm2.1(cre/ERT2)Zjh/J
010910   STOCK Corttm1(cre)Zjh/J
007916   STOCK En1tm2(cre)Wrst/J
007917   STOCK En1tm7(cre/ESR1)Alj/J
007924   STOCK En2tm4(cre/ERT2)Alj/J
008464   STOCK Foxa2tm2.1(cre/Esr1*)Moon/J
016961   STOCK Foxp3tm9(EGFP/cre/ERT2)Ayr/J
010702   STOCK Gad2tm1(cre/ERT2)Zjh/J
010802   STOCK Gad2tm2(cre)Zjh/J
022135   STOCK Gbx2tm1.1(cre/ERT2)Jyhl/J
007913   STOCK Gli1tm3(cre/ERT2)Alj/J
018903   STOCK Gt(ROSA)26Sortm2(EGFP/cre)Alj/J
024283   STOCK Hcn4tm2.1(cre/ERT2)Sev/J
017606   STOCK Hopxtm2.1(cre/ERT2)Joe/J
008876   STOCK Hprttm11(Ple176-EGFP/cre)Ems/Mmjax
016879   STOCK Il17atm1.1(icre)Stck/J
024242   STOCK Isl1tm1(cre)Sev/J
018976   STOCK Kdrtm1(cre)Sato/J
017701   STOCK Kiss1tm1.1(cre/EGFP)Stei/J
018418   STOCK Lrig1tm1.1(cre/ERT2)Rjc/J
007022   STOCK Mnx1tm4(cre)Tmj Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
004192   STOCK Mttptm2Sgy Ldlrtm1Her Apobtm2Sgy Tg(Mx1-cre)1Cgn/J
023342   STOCK Myf5tm1(cre/Esr1*)Trdo/J
024713   STOCK Myl1tm1(cre)Sjb/J
014180   STOCK Myocdtm1(cre)Jomm/J
014552   STOCK Nkx2-1tm1.1(cre/ERT2)Zjh/J
017536   STOCK Nkx6-2tm1(cre/ERT2)Fsh/J
006953   STOCK Notch1tm3(cre)Rko/J
006677   STOCK Olfr151tm28(cre)Mom/MomJ
011103   STOCK Olig2tm2(TVA,cre)Rth/J
009061   STOCK Osr1tm1(EGFP/cre/ERT2)Amc/J
010530   STOCK Pax7tm1(cre)Mrc/J
017569   STOCK Polr2atm1(cre/ERT2)Bbd E4f1tm1.1Llca/J
017585   STOCK Polr2atm1(cre/ERT2)Bbd/J
022757   STOCK Prg4tm1(GFP/cre/ERT2)Abl/J
019378   STOCK Ptf1atm2(cre/ESR1)Cvw/J
016963   STOCK Slc17a6tm2(cre)Lowl/J
016962   STOCK Slc32a1tm2(cre)Lowl/J
013044   STOCK Ssttm2.1(cre)Zjh/J
012719   STOCK Tgfb3tm1(cre)Vk/J
012620   STOCK Trp53tm1Brd Brca1tm1Aash Tg(LGB-cre)74Acl/J
008813   STOCK Trpa1tm2Kykw Tg(CAG-cre/Esr1*)5Amc/J
010908   STOCK Viptm1(cre)Zjh/J
010911   STOCK Wt1tm1(EGFP/cre)Wtp/J
010912   STOCK Wt1tm2(cre/ERT2)Wtp/J
012691   STOCK Et(icre/ERT2)14374Rdav/J
012692   STOCK Et(icre/ERT2)14602Rdav/J
012693   STOCK Et(icre/ERT2)14624Rdav/J
007684   STOCK Tg(Atoh1-cre/Esr1*)14Fsh/J
008783   STOCK Tg(CAG-cre/Esr1*)5Amc Smn1tm3(SMN2/Smn1)Mrph Tg(SMN2*delta7)4299Ahmb Tg(SMN2)89Ahmb/J
004453   STOCK Tg(CAG-cre/Esr1*)5Amc/J
009615   STOCK Tg(Cartpt-cre)1Aibs/J
017336   STOCK Tg(Cd4-cre)1Cwi/BfluJ
005105   STOCK Tg(Chx10-EGFP/cre,-ALPP)2Clc/J
008861   STOCK Tg(Ela1-Cre/ERT2)1Stof/J
008852   STOCK Tg(En2-cre)22Alj/J
005938   STOCK Tg(Eno2-cre)39Jme/J
022763   STOCK Tg(Eno2-cre/ERT2)1Pohlk/J
011062   STOCK Tg(Gdf9-cre)5092Coo/J
012841   STOCK Tg(Ggt1-cre)M3Egn/J
021207   STOCK Tg(Gnrh1-cre)1Dlc/J
017981   STOCK Tg(Hoxb6-cre)#Mku/J
004692   STOCK Tg(Hoxb7-cre)13Amc/J
014600   STOCK Tg(I12b-cre/ERT2,-ALPP)37Fsh/J
008122   STOCK Tg(Ins2-cre/ERT)1Dam/J
004782   STOCK Tg(KRT14-cre)1Amc/J
005107   STOCK Tg(KRT14-cre/ERT)20Efu/J
008582   STOCK Tg(Kcnc2-Cre)K128Stl/LetJ
023426   STOCK Tg(Kiss1-cre)J2-4Cfe/J
017836   STOCK Tg(LGB-cre)74Acl/J
003551   STOCK Tg(MMTV-cre)1Mam/J
003553   STOCK Tg(MMTV-cre)4Mam/J
002527   STOCK Tg(Mx1-cre)1Cgn/J
009074   STOCK Tg(Myh6-cre)1Jmk/J
005650   STOCK Tg(Myh6-cre/Esr1*)1Jmk/J
009102   STOCK Tg(Nefh-cre)12Kul/J
002858   STOCK Tg(Nes-cre)1Wme/J
002859   STOCK Tg(Nes-cre)2Wme/J
012859   STOCK Tg(Neurog1-cre)1Jejo/J
005667   STOCK Tg(Neurog3-cre)C1Able/J
008119   STOCK Tg(Neurog3-cre/Esr1*)1Dam/J
012462   STOCK Tg(Nr5a1-cre)7Lowl/J
014158   STOCK Tg(Pax4-cre)1Dam/J
024578   STOCK Tg(Pax6-GFP/cre)1Rilm/J
006207   STOCK Tg(Pcp2-cre)1Amc/J
014099   STOCK Tg(Pmch-cre)1Lowl/J
005965   STOCK Tg(Pomc1-cre)16Lowl/J
012452   STOCK Tg(Rr5-GFP/cre)1Sapc/J
006395   STOCK Tg(Sim1-cre)1Lowl/J
009606   STOCK Tg(Six2-EGFP/cre)1Amc/J
018147   STOCK Tg(Slc17a8-icre)1Edw/SealJ
012586   STOCK Tg(Slc1a3-cre/ERT)1Nat/J
004783   STOCK Tg(Sox2-cre)1Amc/J
008208   STOCK Tg(Stra8-cre)1Reb/J
016236   STOCK Tg(TCF/Lef1-cre/ERT2)1Dje/J
004746   STOCK Tg(Tagln-cre)1Her/J
012708   STOCK Tg(Thy1-cre/ERT2,-EYFP)HGfng/PyngJ
024240   STOCK Tg(Tnnt2-cre)5Blh/JiaoJ
016584   STOCK Tg(Tph2-icre/ERT2)6Gloss/J
003829   STOCK Tg(Wnt1-cre)11Rth Tg(Wnt1-GAL4)11Rth/J
008851   STOCK Tg(Wnt1-cre/ERT)1Alj/J
018281   STOCK Tg(Wnt7a-EGFP/cre)#Bhr/Mmjax
008199   STOCK Tg(dlx6a-cre)1Mekk/J
002471   STOCK Tg(hCMV-cre)140Sau/J
023724   STOCK Tg(mI56i-cre,EGFP)1Kc/J
006224   STOCK Tg(tetO-cre)1Jaw/J
View Strains carrying other alleles of cre     (501 strains)

Additional Web Information

Introduction to Cre-lox technology

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Rett Syndrome, Congenital Variant   (FOXG1)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Foxg1tm1(cre)Skm/Foxg1+

        129(Cg)-Foxg1tm1(cre)Skm/J
  • normal phenotype
  • no abnormal phenotype detected
    • heterozygous mutant mice are viable, fertile, normal in size and do not display any gross physical or behavioral abnormalities   (MGI Ref ID J:62916)

Foxg1tm1(cre)Skm/Foxg1tm1(cre)Skm

        129(Cg)-Foxg1tm1(cre)Skm/J
  • mortality/aging
  • complete perinatal lethality
    • homozygous mice die perinatally   (MGI Ref ID J:62916)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Foxg1tm1(cre)Skm/Foxg1+

        B6.129P2-Foxg1tm1(cre)Skm
  • nervous system phenotype
  • abnormal telencephalon morphology   (MGI Ref ID J:128207)
    • abnormal cerebrum morphology
      • length of the medio-lateral and midline anterior-posterior axes of the cerebral hemispheres is reduced   (MGI Ref ID J:128207)
      • reduction in dimensions of cerebral hemispheres is observed by postnatal day 4   (MGI Ref ID J:128207)
      • area of cortical sheet is reduced at postnatal day 8 and in adult brain   (MGI Ref ID J:128207)
      • abnormal cerebral cortex morphology
        • volume of cerebral cortex is reduced by 40.7%   (MGI Ref ID J:128207)
        • radial domain of cerebral cortex is substantially disrupted, especially in supragranular layers   (MGI Ref ID J:128207)
        • thickness of supragranular layer is reduced by 41.4% although granular and infragranular layers are not reduced   (MGI Ref ID J:128207)
        • decreased cerebral cortex pyramidal cell number
          • numbers of large and medium sized neurons are reduced in superficial layers of cortex   (MGI Ref ID J:128207)
        • thin cerebral cortex
          • thinning is observed only in C57BL/6 background, not in mixed C57BL/6 and CBA background   (MGI Ref ID J:128207)
      • small hippocampus
        • volume of hippocampus is reduced by 18.6%   (MGI Ref ID J:128207)
    • abnormal striatum morphology
      • volume of striatum is reduced by 29.7%   (MGI Ref ID J:128207)
  • abnormal thalamus morphology
    • in adult, volume of thalamus is reduced by 21.6%, however at postnatal day 4, volume is not reduced   (MGI Ref ID J:128207)
    • total number of cells is reduced in levels 1 and 2 of the ventrobasal complex   (MGI Ref ID J:128207)
  • decreased forebrain volume
    • volume of prosencephalon is reduced by 23%   (MGI Ref ID J:128207)

Foxg1tm1(cre)Skm/Foxg1+

        involves: C57BL/6 * CBA
  • nervous system phenotype
  • abnormal brain morphology
    • reduction in dimensions of cerebral hemispheres is observed by postnatal day 4, however, on the mixed background the substantial reductions reported in the C57BL/6J forebrain are not observed   (MGI Ref ID J:128207)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Neurobiology Research
Cre-lox System
      Cre Recombinase expression in neural tissue

Research Tools
Cre-lox System
      Cre Recombinase Expression
Developmental Biology Research
      Cre-lox System
Genetics Research
      Mutagenesis and Transgenesis
      Mutagenesis and Transgenesis: Cre-lox System
      Tissue/Cell Markers
      Tissue/Cell Markers: Cre-lox System
      Tissue/Cell Markers: astrocytes, neurons
Neurobiology Research

cre related

Research Tools
Cre-lox System
Genetics Research
      Mutagenesis and Transgenesis
      Mutagenesis and Transgenesis: Cre-lox System

Foxg1tm1(cre)Skm related

Developmental Biology Research
Cell Motility Defects
Craniofacial and Palate Defects
Defects in Cell Adhesion Molecules
Defects in Extracellular Matrix Molecules
Neural Crest Defects
Neural Tube Defects
Neurodevelopmental Defects

Neurobiology Research
Astrocyte Defects
Cortical Defects
Hearing Defects
Neural Tube Defects
Neurodevelopmental Defects
Neurotrophic Factor Defects

Sensorineural Research
Eye Defects
Hearing Defects
Olfactory Defects
Retinal Degeneration

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Foxg1tm1(cre)Skm
Allele Name targeted mutation 1, Susan K McConnell
Allele Type Targeted (Recombinase (cre or Flp) expressing)
Common Name(s) BF1-cre; FoxG1Cre; Foxg1-; Foxg1-Cre; Foxg1:Cre; Foxg1Cre; Foxg1KiCre; TgH(Foxg1-Cre)1Skm;
Mutation Made By Susan McConnell,   Stanford University
Strain of Origin129P2/OlaHsd-Hprt
ES Cell Line NameHM-1
ES Cell Line Strain129P2/OlaHsd-Hprt
Site of Expressiontelencephalon, anterior optic vesicle (developing lens and retina), otic vesicle, facial and head ectoderm, olfactory epithelium, mid-hindbrain junction and pharyngeal pouches
Expressed Gene cre, cre recombinase, bacteriophage P1
Cre recombinase is an enzyme derived from the bacteriophage P1 that specifically recognizes loxP sites. Cre has been shown to effectively mediate the excision of DNA located between loxP sites. After the excision event, the DNA ends recombine leaving a single loxP site in place of the intervening sequence.
Driver Note Foxg1
General Note Cre mediated recombination was demonstrated in 3 reporter mouse lines in the following tissues: telencephalon, anterior optic vesicle, otic vesicle, facial and head ectoderm, olfactory epithelium, mid-hindbrain junction, and pharyngeal pouches.
Molecular Note Most of the coding region was replaced with a cre gene and a neomycin cassette. The cre gene sequence was fused in-frame following the first 13 codons of the gene. The endogenous promoter is active in telencephalon, anterior optic vesicle, otic vesicle, facial and head ectoderm, olfactory epithelium, mid-hindbrain junction and pharyngeal pouches. [MGI Ref ID J:62916]
 
Gene Symbol and Name Foxg1, forkhead box G1
Chromosome 12
Gene Common Name(s) 2900064B05Rik; BF-1; BF1; BF1A; BF2; FHKL3; FKH2; FKHL1; FKHL2; FKHL3; FKHL4; FOXG1A; FOXG1B; FOXG1C; HBF-1; HBF-2; HBF-3; HBF-G2; HBF2; HFK1; HFK2; HFK3; HNF-3/forkhead homolog, brain factor 1; Hfh9; Hfhbf1; KHL2; QIN; RATBF1A; RIKEN cDNA 2900064B05 gene;

Genotyping

Genotyping Information

Genotyping Protocols

Foxg1tm1(cre)Skmalternate2,

SEPARATED MELT



Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Hebert JM; McConnell SK. 2000. Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev Biol 222(2):296-306. [PubMed: 10837119]  [MGI Ref ID J:62916]

Additional References

Ferguson KL; Vanderluit JL; Hebert JM; McIntosh WC; Tibbo E; MacLaurin JG; Park DS; Wallace VA; Vooijs M; McConnell SK; Slack RS. 2002. Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO J 21(13):3337-46. [PubMed: 12093735]  [MGI Ref ID J:77762]

Hebert JM; Hayhurst M; Marks ME; Kulessa H; Hogan BL; McConnell SK. 2003. BMP ligands act redundantly to pattern the dorsal telencephalic midline. Genesis 35(4):214-9. [PubMed: 12717732]  [MGI Ref ID J:83123]

Hebert JM; Mishina Y; McConnell SK. 2002. BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron 35(6):1029-41. [PubMed: 12354394]  [MGI Ref ID J:79021]

Ma L; Harada T; Harada C; Romero M; Hebert JM; McConnell SK; Parada LF. 2002. Neurotrophin-3 is required for appropriate establishment of thalamocortical connections. Neuron 36(4):623-34. [PubMed: 12441052]  [MGI Ref ID J:81563]

Foxg1tm1(cre)Skm related

Achim K; Peltopuro P; Lahti L; Li J; Salminen M; Partanen J. 2012. Distinct developmental origins and regulatory mechanisms for GABAergic neurons associated with dopaminergic nuclei in the ventral mesodiencephalic region. Development 139(13):2360-70. [PubMed: 22627282]  [MGI Ref ID J:185533]

Ahrens MJ; Li Y; Jiang H; Dudley AT. 2009. Convergent extension movements in growth plate chondrocytes require gpi-anchored cell surface proteins. Development 136(20):3463-74. [PubMed: 19762422]  [MGI Ref ID J:153618]

Andrusiak MG; McClellan KA; Dugal-Tessier D; Julian LM; Rodrigues SP; Park DS; Kennedy TE; Slack RS. 2011. Rb/E2F regulates expression of neogenin during neuronal migration. Mol Cell Biol 31(2):238-47. [PubMed: 21059867]  [MGI Ref ID J:170280]

Anthony TE; Mason HA; Gridley T; Fishell G; Heintz N. 2005. Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Genes Dev 19(9):1028-33. [PubMed: 15879553]  [MGI Ref ID J:98262]

Antoine MW; Hubner CA; Arezzo JC; Hebert JM. 2013. A causative link between inner ear defects and long-term striatal dysfunction. Science 341(6150):1120-3. [PubMed: 24009395]  [MGI Ref ID J:201156]

Arbour N; Vanderluit JL; Le Grand JN; Jahani-Asl A; Ruzhynsky VA; Cheung EC; Kelly MA; MacKenzie AE; Park DS; Opferman JT; Slack RS. 2008. Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage. J Neurosci 28(24):6068-78. [PubMed: 18550749]  [MGI Ref ID J:137346]

Arnold JS; Braunstein EM; Ohyama T; Groves AK; Adams JC; Brown MC; Morrow BE. 2006. Tissue-specific roles of Tbx1 in the development of the outer, middle and inner ear, defective in 22q11DS patients. Hum Mol Genet 15(10):1629-39. [PubMed: 16600992]  [MGI Ref ID J:109536]

Arnold JS; Werling U; Braunstein EM; Liao J; Nowotschin S; Edelmann W; Hebert JM; Morrow BE. 2006. Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Development 133(5):977-87. [PubMed: 16452092]  [MGI Ref ID J:105980]

Barrionuevo F; Naumann A; Bagheri-Fam S; Speth V; Taketo MM; Scherer G; Neubuser A. 2008. Sox9 is required for invagination of the otic placode in mice. Dev Biol 317(1):213-24. [PubMed: 18377888]  [MGI Ref ID J:136177]

Berube NG; Mangelsdorf M; Jagla M; Vanderluit J; Garrick D; Gibbons RJ; Higgs DR; Slack RS; Picketts DJ. 2005. The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J Clin Invest 115(2):258-67. [PubMed: 15668733]  [MGI Ref ID J:95953]

Bobola N; Carapuco M; Ohnemus S; Kanzler B; Leibbrandt A; Neubuser A; Drouin J; Mallo M. 2003. Mesenchymal patterning by Hoxa2 requires blocking Fgf-dependent activation of Ptx1. Development 130(15):3403-14. [PubMed: 12810588]  [MGI Ref ID J:83660]

Bok J; Zenczak C; Hwang CH; Wu DK. 2013. Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proc Natl Acad Sci U S A 110(34):13869-74. [PubMed: 23918393]  [MGI Ref ID J:200759]

Brooker R; Hozumi K; Lewis J. 2006. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 133(7):1277-86. [PubMed: 16495313]  [MGI Ref ID J:107414]

Brown AS; Epstein DJ. 2011. Otic ablation of smoothened reveals direct and indirect requirements for Hedgehog signaling in inner ear development. Development 138(18):3967-76. [PubMed: 21831920]  [MGI Ref ID J:180898]

Brzezinski JA 4th; Lamba DA; Reh TA. 2010. Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development 137(4):619-29. [PubMed: 20110327]  [MGI Ref ID J:156665]

Cases O; Perea-Gomez A; Aguiar DP; Nykjaer A; Amsellem S; Chandellier J; Umbhauer M; Cereghini S; Madsen M; Collignon J; Verroust P; Riou JF; Creuzet SE; Kozyraki R. 2013. Cubilin, a high affinity receptor for fibroblast growth factor 8, is required for cell survival in the developing vertebrate head. J Biol Chem 288(23):16655-70. [PubMed: 23592779]  [MGI Ref ID J:199615]

Causeret F; Ensini M; Teissier A; Kessaris N; Richardson WD; Lucas de Couville T; Pierani A. 2011. Dbx1-expressing cells are necessary for the survival of the Mammalian anterior neural and craniofacial structures. PLoS One 6(4):e19367. [PubMed: 21552538]  [MGI Ref ID J:172360]

Chacon-Heszele MF; Ren D; Reynolds AB; Chi F; Chen P. 2012. Regulation of cochlear convergent extension by the vertebrate planar cell polarity pathway is dependent on p120-catenin. Development 139(5):968-78. [PubMed: 22318628]  [MGI Ref ID J:182748]

Chang W; Lin Z; Kulessa H; Hebert J; Hogan BL; Wu DK. 2008. Bmp4 is essential for the formation of the vestibular apparatus that detects angular head movements. PLoS Genet 4(4):e1000050. [PubMed: 18404215]  [MGI Ref ID J:136636]

Chen L; Liao G; Waclaw RR; Burns KA; Linquist D; Campbell K; Zheng Y; Kuan CY. 2007. Rac1 controls the formation of midline commissures and the competency of tangential migration in ventral telencephalic neurons. J Neurosci 27(14):3884-93. [PubMed: 17409253]  [MGI Ref ID J:121201]

Chen L; Liao G; Yang L; Campbell K; Nakafuku M; Kuan CY; Zheng Y. 2006. Cdc42 deficiency causes Sonic hedgehog-independent holoprosencephaly. Proc Natl Acad Sci U S A 103(44):16520-5. [PubMed: 17050694]  [MGI Ref ID J:116100]

Chen L; Melendez J; Campbell K; Kuan CY; Zheng Y. 2009. Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly. Dev Biol 325(1):162-70. [PubMed: 19007770]  [MGI Ref ID J:143541]

Cheung EC; Joza N; Steenaart NA; McClellan KA; Neuspiel M; McNamara S; MacLaurin JG; Rippstein P; Park DS; Shore GC; McBride HM; Penninger JM; Slack RS. 2006. Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25(17):4061-73. [PubMed: 16917506]  [MGI Ref ID J:112874]

Dalton RP; Lyons DB; Lomvardas S. 2013. Co-opting the unfolded protein response to elicit olfactory receptor feedback. Cell 155(2):321-32. [PubMed: 24120133]  [MGI Ref ID J:205214]

Dastidar SG; Bardai FH; Ma C; Price V; Rawat V; Verma P; Narayanan V; D'Mello SR. 2012. Isoform-specific toxicity of Mecp2 in postmitotic neurons: suppression of neurotoxicity by FoxG1. J Neurosci 32(8):2846-55. [PubMed: 22357867]  [MGI Ref ID J:182500]

Deng M; Pan L; Xie X; Gan L. 2010. Requirement for Lmo4 in the vestibular morphogenesis of mouse inner ear. Dev Biol 338(1):38-49. [PubMed: 19913004]  [MGI Ref ID J:156733]

Dominguez-Frutos E; Lopez-Hernandez I; Vendrell V; Neves J; Gallozzi M; Gutsche K; Quintana L; Sharpe J; Knoepfler PS; Eisenman RN; Trumpp A; Giraldez F; Schimmang T. 2011. N-myc controls proliferation, morphogenesis, and patterning of the inner ear. J Neurosci 31(19):7178-89. [PubMed: 21562282]  [MGI Ref ID J:173398]

Duggan CD; Demaria S; Baudhuin A; Stafford D; Ngai J. 2008. Foxg1 is required for development of the vertebrate olfactory system. J Neurosci 28(20):5229-39. [PubMed: 18480279]  [MGI Ref ID J:136319]

Duncan JS; Fritzsch B. 2013. Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One 8(4):e62046. [PubMed: 23614009]  [MGI Ref ID J:200106]

Eagleson KL; Schlueter McFadyen-Ketchum LJ; Ahrens ET; Mills PH; Does MD; Nickols J; Levitt P. 2007. Disruption of Foxg1 expression by knock-in of cre recombinase: effects on the development of the mouse telencephalon. Neuroscience 148(2):385-99. [PubMed: 17640820]  [MGI Ref ID J:128207]

Fausett SR; Brunet LJ; Klingensmith J. 2014. BMP antagonism by Noggin is required in presumptive notochord cells for mammalian foregut morphogenesis. Dev Biol 391(1):111-24. [PubMed: 24631216]  [MGI Ref ID J:213659]

Feng J; Xu Y; Wang M; Ruan Y; So KF; Tissir F; Goffinet A; Zhou L. 2012. A role for atypical cadherin Celsr3 in hippocampal maturation and connectivity. J Neurosci 32(40):13729-43. [PubMed: 23035085]  [MGI Ref ID J:190932]

Ferguson KL; Vanderluit JL; Hebert JM; McIntosh WC; Tibbo E; MacLaurin JG; Park DS; Wallace VA; Vooijs M; McConnell SK; Slack RS. 2002. Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO J 21(13):3337-46. [PubMed: 12093735]  [MGI Ref ID J:77762]

Fernandes M; Gutin G; Alcorn H; McConnell SK; Hebert JM. 2007. Mutations in the BMP pathway in mice support the existence of two molecular classes of holoprosencephaly. Development 134(21):3789-94. [PubMed: 17913790]  [MGI Ref ID J:126436]

Ferrer-Vaquer A; Maurey P; Firnberg N; Leibbrandt A; Neubuser A. 2007. Expression of ASK1 during chick and early mouse development. Gene Expr Patterns 7(7):808-16. [PubMed: 17602894]  [MGI Ref ID J:123567]

Ferretti E; Li B; Zewdu R; Wells V; Hebert JM; Karner C; Anderson MJ; Williams T; Dixon J; Dixon MJ; Depew MJ; Selleri L. 2011. A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis. Dev Cell 21(4):627-41. [PubMed: 21982646]  [MGI Ref ID J:178316]

Ferri A; Favaro R; Beccari L; Bertolini J; Mercurio S; Nieto-Lopez F; Verzeroli C; La Regina F; De Pietri Tonelli D; Ottolenghi S; Bovolenta P; Nicolis SK. 2013. Sox2 is required for embryonic development of the ventral telencephalon through the activation of the ventral determinants Nkx2.1 and Shh. Development 140(6):1250-61. [PubMed: 23444355]  [MGI Ref ID J:194843]

Flames N; Long JE; Garratt AN; Fischer TM; Gassmann M; Birchmeier C; Lai C; Rubenstein JL; Marin O. 2004. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44(2):251-61. [PubMed: 15473965]  [MGI Ref ID J:130617]

Fotaki V; Smith R; Pratt T; Price DJ. 2013. Foxg1 is required to limit the formation of ciliary margin tissue and Wnt/beta-catenin signalling in the developing nasal retina of the mouse. Dev Biol 380(2):299-313. [PubMed: 23624311]  [MGI Ref ID J:199602]

Freyer L; Morrow BE. 2010. Canonical Wnt signaling modulates Tbx1, Eya1, and Six1 expression, restricting neurogenesis in the otic vesicle. Dev Dyn 239(6):1708-22. [PubMed: 20503367]  [MGI Ref ID J:160589]

Freyer L; Nowotschin S; Pirity MK; Baldini A; Morrow BE. 2013. Conditional and constitutive expression of a Tbx1-GFP fusion protein in mice. BMC Dev Biol 13(1):33. [PubMed: 23971992]  [MGI Ref ID J:204435]

Fuccillo M; Rallu M; McMahon AP; Fishell G. 2004. Temporal requirement for hedgehog signaling in ventral telencephalic patterning. Development 131(20):5031-40. [PubMed: 15371303]  [MGI Ref ID J:93609]

Furusho M; Kaga Y; Ishii A; Hebert JM; Bansal R. 2011. Fibroblast growth factor signaling is required for the generation of oligodendrocyte progenitors from the embryonic forebrain. J Neurosci 31(13):5055-66. [PubMed: 21451043]  [MGI Ref ID J:171201]

Geng X; Speirs C; Lagutin O; Inbal A; Liu W; Solnica-Krezel L; Jeong Y; Epstein DJ; Oliver G. 2008. Haploinsufficiency of Six3 fails to activate Sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev Cell 15(2):236-47. [PubMed: 18694563]  [MGI Ref ID J:140315]

Ghanem N; Andrusiak MG; Svoboda D; Al Lafi SM; Julian LM; McClellan KA; De Repentigny Y; Kothary R; Ekker M; Blais A; Park DS; Slack RS. 2012. The Rb/E2F Pathway Modulates Neurogenesis through Direct Regulation of the Dlx1/Dlx2 Bigene Cluster. J Neurosci 32(24):8219-30. [PubMed: 22699903]  [MGI Ref ID J:185576]

Grimsley-Myers CM; Sipe CW; Geleoc GS; Lu X. 2009. The small GTPase Rac1 regulates auditory hair cell morphogenesis. J Neurosci 29(50):15859-69. [PubMed: 20016102]  [MGI Ref ID J:157099]

Grimsley-Myers CM; Sipe CW; Wu DK; Lu X. 2012. Redundant functions of Rac GTPases in inner ear morphogenesis. Dev Biol 362(2):172-86. [PubMed: 22182523]  [MGI Ref ID J:180774]

Gutin G; Fernandes M; Palazzolo L; Paek H; Yu K; Ornitz DM; McConnell SK; Hebert JM. 2006. FGF signalling generates ventral telencephalic cells independently of SHH. Development 133(15):2937-46. [PubMed: 16818446]  [MGI Ref ID J:119019]

Han Q; Feng J; Qu Y; Ding Y; Wang M; So KF; Wu W; Zhou L. 2013. Spinal cord maturation and locomotion in mice with an isolated cortex. Neuroscience 253:235-44. [PubMed: 24012835]  [MGI Ref ID J:207433]

Hanashima C; Fernandes M; Hebert JM; Fishell G. 2007. The role of Foxg1 and dorsal midline signaling in the generation of Cajal-Retzius subtypes. J Neurosci 27(41):11103-11. [PubMed: 17928452]  [MGI Ref ID J:125693]

Hanashima C; Li SC; Shen L; Lai E; Fishell G. 2004. Foxg1 suppresses early cortical cell fate. Science 303(5654):56-9. [PubMed: 14704420]  [MGI Ref ID J:87404]

Hartman BH; Reh TA; Bermingham-McDonogh O. 2010. Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proc Natl Acad Sci U S A 107(36):15792-7. [PubMed: 20798046]  [MGI Ref ID J:164376]

Haugas M; Lillevali K; Hakanen J; Salminen M. 2010. Gata2 is required for the development of inner ear semicircular ducts and the surrounding perilymphatic space. Dev Dyn :. [PubMed: 20652952]  [MGI Ref ID J:163272]

Hebert JM; Hayhurst M; Marks ME; Kulessa H; Hogan BL; McConnell SK. 2003. BMP ligands act redundantly to pattern the dorsal telencephalic midline. Genesis 35(4):214-9. [PubMed: 12717732]  [MGI Ref ID J:83123]

Hebert JM; Lin M; Partanen J; Rossant J; McConnell SK. 2003. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 130(6):1101-11. [PubMed: 12571102]  [MGI Ref ID J:81763]

Hebert JM; Mishina Y; McConnell SK. 2002. BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron 35(6):1029-41. [PubMed: 12354394]  [MGI Ref ID J:79021]

Higginbotham H; Guo J; Yokota Y; Umberger NL; Su CY; Li J; Verma N; Hirt J; Ghukasyan V; Caspary T; Anton ES. 2013. Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat Neurosci 16(8):1000-7. [PubMed: 23817546]  [MGI Ref ID J:203743]

Hines EA; Jones MK; Verheyden JM; Harvey JF; Sun X. 2013. Establishment of smooth muscle and cartilage juxtaposition in the developing mouse upper airways. Proc Natl Acad Sci U S A 110(48):19444-9. [PubMed: 24218621]  [MGI Ref ID J:203056]

Horwitz GC; Risner-Janiczek JR; Jones SM; Holt JR. 2011. HCN Channels Expressed in the Inner Ear Are Necessary for Normal Balance Function. J Neurosci 31(46):16814-25. [PubMed: 22090507]  [MGI Ref ID J:177907]

Hua ZL; Jeon S; Caterina MJ; Nathans J. 2014. Frizzled3 is required for the development of multiple axon tracts in the mouse central nervous system. Proc Natl Acad Sci U S A 111(29):E3005-14. [PubMed: 24799694]  [MGI Ref ID J:212111]

Hurd EA; Poucher HK; Cheng K; Raphael Y; Martin DM. 2010. The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. Development 137(18):3139-50. [PubMed: 20736290]  [MGI Ref ID J:164582]

Hwang CH; Guo D; Harris MA; Howard O; Mishina Y; Gan L; Harris SE; Wu DK. 2010. Role of bone morphogenetic proteins on cochlear hair cell formation: analyses of Noggin and Bmp2 mutant mice. Dev Dyn 239(2):505-13. [PubMed: 20063299]  [MGI Ref ID J:156945]

Ivanova E; Hwang GS; Pan ZH. 2010. Characterization of transgenic mouse lines expressing Cre recombinase in the retina. Neuroscience 165(1):233-43. [PubMed: 19837136]  [MGI Ref ID J:158209]

Jacques BE; Montcouquiol ME; Layman EM; Lewandoski M; Kelley MW. 2007. Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea. Development 134(16):3021-9. [PubMed: 17634195]  [MGI Ref ID J:123947]

Jadhav AP; Mason HA; Cepko CL. 2006. Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development 133(5):913-23. [PubMed: 16452096]  [MGI Ref ID J:105970]

Jin YR; Han XH; Taketo MM; Yoon JK. 2012. Wnt9b-dependent FGF signaling is crucial for outgrowth of the nasal and maxillary processes during upper jaw and lip development. Development 139(10):1821-30. [PubMed: 22461561]  [MGI Ref ID J:184014]

Jones C; Roper VC; Foucher I; Qian D; Banizs B; Petit C; Yoder BK; Chen P. 2008. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet 40(1):69-77. [PubMed: 18066062]  [MGI Ref ID J:131308]

Junghans D; Hack I; Frotscher M; Taylor V; Kemler R. 2005. Beta-catenin-mediated cell-adhesion is vital for embryonic forebrain development. Dev Dyn 233(2):528-39. [PubMed: 15844200]  [MGI Ref ID J:129254]

Kasberg AD; Brunskill EW; Steven Potter S. 2013. SP8 regulates signaling centers during craniofacial development. Dev Biol 381(2):312-23. [PubMed: 23872235]  [MGI Ref ID J:200761]

Katayama K; Melendez J; Baumann JM; Leslie JR; Chauhan BK; Nemkul N; Lang RA; Kuan CY; Zheng Y; Yoshida Y. 2011. Loss of RhoA in neural progenitor cells causes the disruption of adherens junctions and hyperproliferation. Proc Natl Acad Sci U S A 108(18):7607-12. [PubMed: 21502507]  [MGI Ref ID J:172044]

Kawauchi S; Kim J; Santos R; Wu HH; Lander AD; Calof AL. 2009. Foxg1 promotes olfactory neurogenesis by antagonizing Gdf11. Development 136(9):1453-64. [PubMed: 19297409]  [MGI Ref ID J:147995]

Kawauchi S; Shou J; Santos R; Hebert JM; McConnell SK; Mason I; Calof AL. 2005. Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse. Development 132(23):5211-23. [PubMed: 16267092]  [MGI Ref ID J:103123]

Kelly MC; Chang Q; Pan A; Lin X; Chen P. 2012. Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal Mammalian cochlea in vivo. J Neurosci 32(19):6699-710. [PubMed: 22573692]  [MGI Ref ID J:184847]

Kernohan KD; Jiang Y; Tremblay DC; Bonvissuto AC; Eubanks JH; Mann MR; Berube NG. 2010. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev Cell 18(2):191-202. [PubMed: 20159591]  [MGI Ref ID J:158584]

Kersigo J; D'Angelo A; Gray BD; Soukup GA; Fritzsch B. 2011. The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 49(4):326-41. [PubMed: 21225654]  [MGI Ref ID J:171536]

Kiernan AE; Cordes R; Kopan R; Gossler A; Gridley T. 2005. The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development 132(19):4353-62. [PubMed: 16141228]  [MGI Ref ID J:132241]

Kiernan AE; Xu J; Gridley T. 2006. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet 2(1):e4. [PubMed: 16410827]  [MGI Ref ID J:115783]

Li Y; Gordon J; Manley NR; Litingtung Y; Chiang C. 2008. Bmp4 is required for tracheal formation: a novel mouse model for tracheal agenesis. Dev Biol 322(1):145-55. [PubMed: 18692041]  [MGI Ref ID J:142133]

Li Y; Hibbs MA; Gard AL; Shylo NA; Yun K. 2012. Genome-wide analysis of N1ICD/RBPJ targets in vivo reveals direct transcriptional regulation of Wnt, SHH, and hippo pathway effectors by Notch1. Stem Cells 30(4):741-52. [PubMed: 22232070]  [MGI Ref ID J:190509]

Li Y; Yui D; Luikart BW; McKay RM; Li Y; Rubenstein JL; Parada LF. 2012. Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development. Proc Natl Acad Sci U S A 109(38):15491-6. [PubMed: 22949667]  [MGI Ref ID J:190151]

Lopez-Bendito G; Cautinat A; Sanchez JA; Bielle F; Flames N; Garratt AN; Talmage DA; Role LW; Charnay P; Marin O; Garel S. 2006. Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125(1):127-42. [PubMed: 16615895]  [MGI Ref ID J:144312]

Lyons DB; Allen WE; Goh T; Tsai L; Barnea G; Lomvardas S. 2013. An epigenetic trap stabilizes singular olfactory receptor expression. Cell 154(2):325-36. [PubMed: 23870122]  [MGI Ref ID J:200085]

Lyu YL; Wang JC. 2003. Aberrant lamination in the cerebral cortex of mouse embryos lacking DNA topoisomerase IIbeta. Proc Natl Acad Sci U S A 100(12):7123-8. [PubMed: 12773624]  [MGI Ref ID J:94879]

Ma L; Harada T; Harada C; Romero M; Hebert JM; McConnell SK; Parada LF. 2002. Neurotrophin-3 is required for appropriate establishment of thalamocortical connections. Neuron 36(4):623-34. [PubMed: 12441052]  [MGI Ref ID J:81563]

Maier E; von Hofsten J; Nord H; Fernandes M; Paek H; Hebert JM; Gunhaga L. 2010. Opposing Fgf and Bmp activities regulate the specification of olfactory sensory and respiratory epithelial cell fates. Development 137(10):1601-11. [PubMed: 20392740]  [MGI Ref ID J:160372]

Manuel M; Martynoga B; Yu T; West JD; Mason JO; Price DJ. 2010. The transcription factor Foxg1 regulates the competence of telencephalic cells to adopt subpallial fates in mice. Development 137(3):487-97. [PubMed: 20081193]  [MGI Ref ID J:156171]

Manuel MN; Martynoga B; Molinek MD; Quinn JC; Kroemmer C; Mason JO; Price DJ. 2011. The transcription factor Foxg1 regulates telencephalic progenitor proliferation cell autonomously, in part by controlling Pax6 expression levels. Neural Dev 6:9. [PubMed: 21418559]  [MGI Ref ID J:171704]

Martynoga B; Morrison H; Price DJ; Mason JO. 2005. Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev Biol 283(1):113-27. [PubMed: 15893304]  [MGI Ref ID J:99329]

Mason HA; Rakowiecki SM; Gridley T; Fishell G. 2006. Loss of notch activity in the developing central nervous system leads to increased cell death. Dev Neurosci 28(1-2):49-57. [PubMed: 16508303]  [MGI Ref ID J:112183]

Mason HA; Rakowiecki SM; Raftopoulou M; Nery S; Huang Y; Gridley T; Fishell G. 2005. Notch signaling coordinates the patterning of striatal compartments. Development 132(19):4247-58. [PubMed: 16120638]  [MGI Ref ID J:101735]

McClellan KA; Ruzhynsky VA; Douda DN; Vanderluit JL; Ferguson KL; Chen D; Bremner R; Park DS; Leone G; Slack RS. 2007. Unique requirement for Rb/E2F3 in neuronal migration: evidence for cell cycle-independent functions. Mol Cell Biol 27(13):4825-43. [PubMed: 17452454]  [MGI Ref ID J:122733]

McClellan KA; Vanderluit JL; Julian LM; Andrusiak MG; Dugal-Tessier D; Park DS; Slack RS. 2009. The p107/E2F pathway regulates fibroblast growth factor 2 responsiveness in neural precursor cells. Mol Cell Biol 29(17):4701-13. [PubMed: 19564414]  [MGI Ref ID J:152616]

Muzio L; Mallamaci A. 2005. Foxg1 confines Cajal-Retzius neuronogenesis and hippocampal morphogenesis to the dorsomedial pallium. J Neurosci 25(17):4435-41. [PubMed: 15858069]  [MGI Ref ID J:98698]

Nantie LB; Himes AD; Getz DR; Raetzman LT. 2014. Notch signaling in postnatal pituitary expansion: proliferation, progenitors, and cell specification. Mol Endocrinol 28(5):731-44. [PubMed: 24673559]  [MGI Ref ID J:214133]

Nowakowski TJ; Mysiak KS; Pratt T; Price DJ. 2011. Functional dicer is necessary for appropriate specification of radial glia during early development of mouse telencephalon. PLoS One 6(8):e23013. [PubMed: 21826226]  [MGI Ref ID J:176531]

O'Hara L; Welsh M; Saunders PT; Smith LB. 2011. Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology 152(2):718-29. [PubMed: 21177831]  [MGI Ref ID J:173889]

Paek H; Antoine MW; Diaz F; Hebert JM. 2012. Increased beta-catenin activity in the anterior neural plate induces ectopic mid-hindbrain characteristics. Dev Dyn 241(2):242-6. [PubMed: 22102609]  [MGI Ref ID J:179736]

Paek H; Gutin G; Hebert JM. 2009. FGF signaling is strictly required to maintain early telencephalic precursor cell survival. Development 136(14):2457-65. [PubMed: 19542358]  [MGI Ref ID J:150347]

Pan W; Jin Y; Chen J; Rottier RJ; Steel KP; Kiernan AE. 2013. Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J Neurosci 33(41):16146-57. [PubMed: 24107947]  [MGI Ref ID J:202668]

Pan W; Jin Y; Stanger B; Kiernan AE. 2010. Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc Natl Acad Sci U S A 107(36):15798-803. [PubMed: 20733081]  [MGI Ref ID J:164383]

Park HJ; Hong M; Bronson RT; Israel MA; Frankel WN; Yun K. 2013. Elevated id2 expression results in precocious neural stem cell depletion and abnormal brain development. Stem Cells 31(5):1010-21. [PubMed: 23390122]  [MGI Ref ID J:196308]

Pasca SP; Portmann T; Voineagu I; Yazawa M; Shcheglovitov A; Pasca AM; Cord B; Palmer TD; Chikahisa S; Nishino S; Bernstein JA; Hallmayer J; Geschwind DH; Dolmetsch RE. 2011. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 17(12):1657-62. [PubMed: 22120178]  [MGI Ref ID J:199433]

Perrin BJ; Sonnemann KJ; Ervasti JM. 2010. beta-actin and gamma-actin are each dispensable for auditory hair cell development but required for Stereocilia maintenance. PLoS Genet 6(10):e1001158. [PubMed: 20976199]  [MGI Ref ID J:167543]

Pirvola U; Ylikoski J; Trokovic R; Hebert JM; McConnell SK; Partanen J. 2002. FGFR1 is required for the development of the auditory sensory epithelium. Neuron 35(4):671-80. [PubMed: 12194867]  [MGI Ref ID J:78879]

Pratt T; Quinn JC; Simpson TI; West JD; Mason JO; Price DJ. 2002. Disruption of early events in thalamocortical tract formation in mice lacking the transcription factors Pax6 or Foxg1. J Neurosci 22(19):8523-31. [PubMed: 12351726]  [MGI Ref ID J:79212]

Pratt T; Tian NM; Simpson TI; Mason JO; Price DJ. 2004. The winged helix transcription factor Foxg1 facilitates retinal ganglion cell axon crossing of the ventral midline in the mouse. Development 131(15):3773-84. [PubMed: 15240555]  [MGI Ref ID J:92062]

Puligilla C; Feng F; Ishikawa K; Bertuzzi S; Dabdoub A; Griffith AJ; Fritzsch B; Kelley MW. 2007. Disruption of fibroblast growth factor receptor 3 signaling results in defects in cellular differentiation, neuronal patterning, and hearing impairment. Dev Dyn 236(7):1905-17. [PubMed: 17557302]  [MGI Ref ID J:122378]

Qu Y; Tang W; Zhou B; Ahmad S; Chang Q; Li X; Lin X. 2012. Early developmental expression of connexin26 in the cochlea contributes to its dominate functional role in the cochlear gap junctions. Biochem Biophys Res Commun 417(1):245-50. [PubMed: 22142852]  [MGI Ref ID J:180311]

Raft S; Andrade LR; Shao D; Akiyama H; Henkemeyer M; Wu DK. 2014. Ephrin-B2 governs morphogenesis of endolymphatic sac and duct epithelia in the mouse inner ear. Dev Biol 390(1):51-67. [PubMed: 24583262]  [MGI Ref ID J:212428]

Rajaii F; Bitzer ZT; Xu Q; Sockanathan S. 2008. Expression of the dominant negative retinoid receptor, RAR403, alters telencephalic progenitor proliferation, survival, and cell fate specification. Dev Biol 316(2):371-82. [PubMed: 18329011]  [MGI Ref ID J:135403]

Rattner A; Yu H; Williams J; Smallwood PM; Nathans J. 2013. Endothelin-2 signaling in the neural retina promotes the endothelial tip cell state and inhibits angiogenesis. Proc Natl Acad Sci U S A 110(40):E3830-E3839. [PubMed: 24043815]  [MGI Ref ID J:201133]

Rickheit G; Maier H; Strenzke N; Andreescu CE; De Zeeuw CI; Muenscher A; Zdebik AA; Jentsch TJ. 2008. Endocochlear potential depends on Cl- channels: mechanism underlying deafness in Bartter syndrome IV. EMBO J 27(21):2907-17. [PubMed: 18833191]  [MGI Ref ID J:143314]

Robichaux MA; Chenaux G; Ho HY; Soskis MJ; Dravis C; Kwan KY; Sestan N; Greenberg ME; Henkemeyer M; Cowan CW. 2014. EphB receptor forward signaling regulates area-specific reciprocal thalamic and cortical axon pathfinding. Proc Natl Acad Sci U S A 111(6):2188-93. [PubMed: 24453220]  [MGI Ref ID J:206566]

Rodriguez S; Sickles HM; Deleonardis C; Alcaraz A; Gridley T; Lin DM. 2008. Notch2 is required for maintaining sustentacular cell function in the adult mouse main olfactory epithelium. Dev Biol 314(1):40-58. [PubMed: 18155189]  [MGI Ref ID J:130929]

Schultz JM; Khan SN; Ahmed ZM; Riazuddin S; Waryah AM; Chhatre D; Starost MF; Ploplis B; Buckley S; Velasquez D; Kabra M; Lee K; Hassan MJ; Ali G; Ansar M; Ghosh M; Wilcox ER; Ahmad W; Merlino G; Leal SM; Riazuddin S; Friedman TB; Morell RJ. 2009. Noncoding mutations of HGF are associated with nonsyndromic hearing loss, DFNB39. Am J Hum Genet 85(1):25-39. [PubMed: 19576567]  [MGI Ref ID J:154237]

Seah C; Levy MA; Jiang Y; Mokhtarzada S; Higgs DR; Gibbons RJ; Berube NG. 2008. Neuronal death resulting from targeted disruption of the Snf2 protein ATRX is mediated by p53. J Neurosci 28(47):12570-80. [PubMed: 19020049]  [MGI Ref ID J:142359]

Sessa A; Mao CA; Colasante G; Nini A; Klein WH; Broccoli V. 2010. Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. Genes Dev 24(16):1816-26. [PubMed: 20713522]  [MGI Ref ID J:163753]

Sessa A; Mao CA; Hadjantonakis AK; Klein WH; Broccoli V. 2008. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60(1):56-69. [PubMed: 18940588]  [MGI Ref ID J:144650]

Siegenthaler JA; Miller MW. 2008. Generation of Cajal-Retzius neurons in mouse forebrain is regulated by transforming growth factor beta-Fox signaling pathways. Dev Biol 313(1):35-46. [PubMed: 18005957]  [MGI Ref ID J:130128]

Siegenthaler JA; Tremper-Wells BA; Miller MW. 2008. Foxg1 haploinsufficiency reduces the population of cortical intermediate progenitor cells: effect of increased p21 expression. Cereb Cortex 18(8):1865-75. [PubMed: 18065723]  [MGI Ref ID J:138025]

Sipe CW; Lu X. 2011. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms. Development 138(16):3441-9. [PubMed: 21752934]  [MGI Ref ID J:175534]

Storm EE; Garel S; Borello U; Hebert JM; Martinez S; McConnell SK; Martin GR; Rubenstein JL. 2006. Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133(9):1831-44. [PubMed: 16613831]  [MGI Ref ID J:108506]

Storm EE; Rubenstein JL; Martin GR. 2003. Dosage of Fgf8 determines whether cell survival is positively or negatively regulated in the developing forebrain. Proc Natl Acad Sci U S A 100(4):1757-62. [PubMed: 12574514]  [MGI Ref ID J:111586]

Tavares AL; Garcia EL; Kuhn K; Woods CM; Williams T; Clouthier DE. 2012. Ectodermal-derived Endothelin1 is required for patterning the distal and intermediate domains of the mouse mandibular arch. Dev Biol 371(1):47-56. [PubMed: 22902530]  [MGI Ref ID J:190564]

Theil T; Dominguez-Frutos E; Schimmang T. 2008. Differential requirements for Fgf3 and Fgf8 during mouse forebrain development. Dev Dyn 237(11):3417-23. [PubMed: 18942154]  [MGI Ref ID J:140707]

Thomson RE; Kind PC; Graham NA; Etherson ML; Kennedy J; Fernandes AC; Marques CS; Hevner RF; Iwata T. 2009. Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex. Neural Dev 4:4. [PubMed: 19192266]  [MGI Ref ID J:160732]

Tian NM; Pratt T; Price DJ. 2008. Foxg1 regulates retinal axon pathfinding by repressing an ipsilateral program in nasal retina and by causing optic chiasm cells to exert a net axonal growth-promoting activity. Development 135(24):4081-9. [PubMed: 19004857]  [MGI Ref ID J:142507]

Tole S; Gutin G; Bhatnagar L; Remedios R; Hebert JM. 2006. Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. Dev Biol 289(1):141-51. [PubMed: 16309667]  [MGI Ref ID J:104160]

Virolainen SM; Achim K; Peltopuro P; Salminen M; Partanen J. 2012. Transcriptional regulatory mechanisms underlying the GABAergic neuron fate in different diencephalic prosomeres. Development 139(20):3795-805. [PubMed: 22991444]  [MGI Ref ID J:188110]

Volvert ML; Prevot PP; Close P; Laguesse S; Pirotte S; Hemphill J; Rogister F; Kruzy N; Sacheli R; Moonen G; Deiters A; Merkenschlager M; Chariot A; Malgrange B; Godin JD; Nguyen L. 2014. MicroRNA targeting of CoREST controls polarization of migrating cortical neurons. Cell Rep 7(4):1168-83. [PubMed: 24794437]  [MGI Ref ID J:211802]

Volvert ML; Rogister F; Moonen G; Malgrange B; Nguyen L. 2012. MicroRNAs tune cerebral cortical neurogenesis. Cell Death Differ 19(10):1573-81. [PubMed: 22858543]  [MGI Ref ID J:205547]

Wang Y; Chang Q; Tang W; Sun Y; Zhou B; Li H; Lin X. 2009. Targeted connexin26 ablation arrests postnatal development of the organ of Corti. Biochem Biophys Res Commun 385(1):33-7. [PubMed: 19433060]  [MGI Ref ID J:150588]

Wang Y; Martin JF; Bai CB. 2010. Direct and indirect requirements of Shh/Gli signaling in early pituitary development. Dev Biol 348(2):199-209. [PubMed: 20934421]  [MGI Ref ID J:166929]

Wang Y; Rattner A; Zhou Y; Williams J; Smallwood PM; Nathans J. 2012. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151(6):1332-44. [PubMed: 23217714]  [MGI Ref ID J:193332]

Wang Y; Song L; Zhou CJ. 2011. The canonical Wnt/beta-catenin signaling pathway regulates Fgf signaling for early facial development. Dev Biol 349(2):250-60. [PubMed: 21070765]  [MGI Ref ID J:168024]

Watson LA; Solomon LA; Li JR; Jiang Y; Edwards M; Shin-ya K; Beier F; Berube NG. 2013. Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span. J Clin Invest 123(5):2049-63. [PubMed: 23563309]  [MGI Ref ID J:201463]

Watson LA; Wang X; Elbert A; Kernohan KD; Galjart N; Berube NG. 2014. Dual Effect of CTCF Loss on Neuroprogenitor Differentiation and Survival. J Neurosci 34(8):2860-70. [PubMed: 24553927]  [MGI Ref ID J:206929]

Weng DY; Zhang Y; Hayashi Y; Kuan CY; Liu CY; Babcock G; Weng WL; Schwemberger S; Kao WW. 2008. Promiscuous recombination of LoxP alleles during gametogenesis in cornea Cre driver mice. Mol Vis 14:562-71. [PubMed: 18385792]  [MGI Ref ID J:149921]

Xu H; Viola A; Zhang Z; Gerken CP; Lindsay-Illingworth EA; Baldini A. 2007. Tbx1 regulates population, proliferation and cell fate determination of otic epithelial cells. Dev Biol 302(2):670-82. [PubMed: 17074316]  [MGI Ref ID J:119950]

Xu P; Das M; Reilly J; Davis RJ. 2011. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev 25(4):310-22. [PubMed: 21325132]  [MGI Ref ID J:169060]

Yamamoto N; Chang W; Kelley MW. 2011. Rbpj regulates development of prosensory cells in the mammalian inner ear. Dev Biol 353(2):367-79. [PubMed: 21420948]  [MGI Ref ID J:173796]

Yamamoto N; Okano T; Ma X; Adelstein RS; Kelley MW. 2009. Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development 136(12):1977-86. [PubMed: 19439495]  [MGI Ref ID J:149532]

Yip DJ; Corcoran CP; Alvarez-Saavedra M; DeMaria A; Rennick S; Mears AJ; Rudnicki MA; Messier C; Picketts DJ. 2012. Snf2l regulates Foxg1-dependent progenitor cell expansion in the developing brain. Dev Cell 22(4):871-8. [PubMed: 22516202]  [MGI Ref ID J:183998]

Yu WM; Appler JM; Kim YH; Nishitani AM; Holt JR; Goodrich LV. 2013. A Gata3-Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. Elife 2:e01341. [PubMed: 24327562]  [MGI Ref ID J:207904]

Yue T; Xian K; Hurlock E; Xin M; Kernie SG; Parada LF; Lu QR. 2006. A critical role for dorsal progenitors in cortical myelination. J Neurosci 26(4):1275-80. [PubMed: 16436615]  [MGI Ref ID J:105071]

Zelarayan LC; Vendrell V; Alvarez Y; Dominguez-Frutos E; Theil T; Alonso MT; Maconochie M; Schimmang T. 2007. Differential requirements for FGF3, FGF8 and FGF10 during inner ear development. Dev Biol 308(2):379-91. [PubMed: 17601531]  [MGI Ref ID J:124118]

Zembrzycki A; Griesel G; Stoykova A; Mansouri A. 2007. Genetic interplay between the transcription factors Sp8 and Emx2 in the patterning of the forebrain. Neural Dev 2:8. [PubMed: 17470284]  [MGI Ref ID J:160653]

Zhang Z; Cerrato F; Xu H; Vitelli F; Morishima M; Vincentz J; Furuta Y; Ma L; Martin JF; Baldini A; Lindsay E. 2005. Tbx1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development 132(23):5307-15. [PubMed: 16284121]  [MGI Ref ID J:102843]

Zhou L; Bar I; Achouri Y; Campbell K; De Backer O; Hebert JM; Jones K; Kessaris N; de Rouvroit CL; O'Leary D; Richardson WD; Goffinet AM; Tissir F. 2008. Early forebrain wiring: genetic dissection using conditional Celsr3 mutant mice. Science 320(5878):946-9. [PubMed: 18487195]  [MGI Ref ID J:134879]

Zhou L; Qu Y; Tissir F; Goffinet AM. 2009. Role of the atypical cadherin Celsr3 during development of the internal capsule. Cereb Cortex 19 Suppl 1:i114-9. [PubMed: 19349379]  [MGI Ref ID J:161098]

Zimmer C; Lee J; Griveau A; Arber S; Pierani A; Garel S; Guillemot F. 2010. Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells. Development 137(2):293-302. [PubMed: 20040495]  [MGI Ref ID J:157253]

Health & husbandry

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, these mice are bred as heterozygotes.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2525.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Frozen Products

Price (US dollars $)
Frozen Embryo $1650.00

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryopreserved Embryos
    Available to most shipping destinations1
    This strain is also available as cryopreserved embryos2. Orders for cryopreserved embryos may be placed with our Customer Service Department. Experienced technicians at The Jackson Laboratory have recovered frozen embryos of this strain successfully. We will provide you enough embryos to perform two embryo transfers. The Jackson Laboratory does not guarantee successful recovery at your facility. For complete information on purchasing embryos, please visit our Cryopreserved Embryos web page.

    1 Shipments cannot be made to Australia due to Australian government import restrictions.
    2 Embryos for most strains are cryopreserved at the two cell stage while some strains are cryopreserved at the eight cell stage. If this information is important to you, please contact Customer Service.
  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3283.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Frozen Products

Price (US dollars $)
Frozen Embryo $2145.00

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryopreserved Embryos
    Available to most shipping destinations1
    This strain is also available as cryopreserved embryos2. Orders for cryopreserved embryos may be placed with our Customer Service Department. Experienced technicians at The Jackson Laboratory have recovered frozen embryos of this strain successfully. We will provide you enough embryos to perform two embryo transfers. The Jackson Laboratory does not guarantee successful recovery at your facility. For complete information on purchasing embryos, please visit our Cryopreserved Embryos web page.

    1 Shipments cannot be made to Australia due to Australian government import restrictions.
    2 Embryos for most strains are cryopreserved at the two cell stage while some strains are cryopreserved at the eight cell stage. If this information is important to you, please contact Customer Service.
  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Control Information

  Control
   Wild-type from the colony
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)