Strain Name:

NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ

Stock Number:

004460

Order this mouse

Availability:

Repository- Live

These transgenic mice express the diabetogenic CD4+ T cell clone BDC-2.5 specific regulatory T cell receptor.

Description

Strain Information

Former Names NOD.Cg-Tg(TcraBDC2.5)1Doi Tg(TcrbBDC2.5)2Doi/DoiJ    (Changed: 30-NOV-09 )
BDC2.5/Rag    (Changed: 15-DEC-04 )
NOD.Cg-Tg(TcraBDC2.5)1Doi Tg(TcrbBDC2.5)2Doi Rag1tm1Mom/DoiJ    (Changed: 15-DEC-04 )
Type Congenic; Mutant Strain; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemNoncarrier x Hemizygote         (Female x Male)   07-NOV-13
Mating SystemHemizygote x Noncarrier         (Female x Male)   07-NOV-13
Specieslaboratory mouse
Background Strain NOD/LtSz
Donor Strain 129S7 via AB1 ES cell line
GenerationN11+p (21-OCT-13)
Generation Definitions
 
Donating Investigator Christophe Benoist,   Joslin Diabetes Center

Appearance
albino
Related Genotype: Tyrc/Tyrc

albino, pink eyed
Related Genotype: A/A Tyrc/Tyrc

Description
These transgenic mice carry both rearranged TCR alpha and beta genes from the cytotoxic CD4+ T cell clone BDC-2.5. When paired with a homozygous Rag1tm1Mom mutation (such as in Stock No. 003729), recombination of endogenous TCR and Ig is prevented so that mature T cells in these mice express only the BDC2.5 TCR. On the NOD background, mice carrying the transgenes have a reduced incidence of diabetes relative to NOD/ShiLtJ controls (12% incidence at age 30 weeks). When coupled with the homozygous Rag1tm1Mom mutation, mice develop diabetes extremely early (mean age of 25 days). (Katz et al 1993, Gonzalez et al 2001, Mombaerts et al 1992)

Development

This strain carries the rearranged T cell receptor genes Tcra and Tcrb from the diabetogenic H2-Ag7 restricted BDC2.5 Cd4+ T cell clone. The BDC2.5 Tcra and Tcrb sequences were co-injected into (B6xSJL)F2 eggs. To achieve the natural expression of Tcra, the rearranged ValphaJalpha sequence from BDC2.5 was cloned into the cassette vector generated by Kouskoff et al (1995), which contains both the 5' upstream promoter and the 3' downstream enhancer regions of the Tcra gene. The BDC2.5 Tcrb VbDbJb sequence, along with its 5' regulatory sequences and 3' enhancer region, was cloned into the construct generated by Signorelli et al upstream of the Cb2 constant region. Transgenic mice were bred to NOD/Lt for over 10 generations. Through in situ hybridization, the integration site for these BDC2.5Tcr transgenes was localized to chromosome 13 near the D13mit125 marker. (Signorelli et al 1995; Kouskoff et al 1995 Katz et al 1993)

Control Information

  Control
   Noncarrier
   001976 NOD/ShiLtJ
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Tg(TcraBDC2.5,TcrbBDC2.5)1Doi allele
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
View Strains carrying   Tg(TcraBDC2.5,TcrbBDC2.5)1Doi     (1 strain)

Strains carrying other alleles of Tcra
005308   B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005895   B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003199   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRA)B1Jg/J
002116   B6.129S2-Tcratm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005023   B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
004554   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRaAI4)1Dvs/DvsJ
002115   B6;129S2-Tcratm1Mom/J
004694   B6;D2-Tg(TcrLCMV)327Sdz/JDvsJ
002408   B6;SJL-Tg(TcrAND)53Hed/J
007848   BXSB.129P2(Cg)-Tcratm1Mjo/TheoJ
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002045   C.SJL-Tcrac/SlkJ
002047   C.SJL-Tcrba Tcrac/SlkJ
014639   C57BL/6-Tg(Cd4-TcraDN32D3)1Aben/J
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
005307   CBy.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
004444   NOD.129P2(C)-Tcratm1Mjo/DoiJ
006436   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcraAI4)1Dvs/DvsJ
026243   NOD.Cg-(rs4135590-rs13480186) H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
026624   NOD.Cg-(rs6385855-rs13480186) H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
004257   NOD.Cg-Prkdcscid Tg(TcrLCMV)327Sdz/DvsJ
004347   NOD.Cg-Rag1tm1Mom Tg(TcraAI4)1Dvs/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
005686   NOD.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
004696   NOD.Cg-Tg(TcrLCMV)327Sdz/DvsJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006303   NOD.FVB-Tg(TcraBDC12-4.1)10Jos/GseJ
004334   NOD/ShiLt-Tg(TcraAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcra     (49 strains)

Strains carrying other alleles of Tcrb
005308   B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005895   B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003200   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRB)C14Jg/J
002122   B6.129P2-Tcrbtm1Mom Tcrdtm1Mom/J
002118   B6.129P2-Tcrbtm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005023   B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
008430   B6.Cg-Tg(Tcrb)HRBAll/J
004555   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRbAI4)1Dvs/DvsJ
002121   B6;129P-Tcrbtm1Mom Tcrdtm1Mom/J
002117   B6;129P2-Tcrbtm1Mom/J
004694   B6;D2-Tg(TcrLCMV)327Sdz/JDvsJ
002408   B6;SJL-Tg(TcrAND)53Hed/J
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002047   C.SJL-Tcrba Tcrac/SlkJ
002046   C.SJL-Tcrba/SlkJ
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
003540   C57L/J-Tg(Tcrb)93Vbo/J
005307   CBy.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
007081   CByJ.129P2(B6)-Tcrbtm1Mom/J
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
023082   NOD.129P2(Cg)-Tcrbtm1Mom/MnkaJ
006437   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcrbAI4)1Dvs/DvsJ
026243   NOD.Cg-(rs4135590-rs13480186) H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
026624   NOD.Cg-(rs6385855-rs13480186) H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
004257   NOD.Cg-Prkdcscid Tg(TcrLCMV)327Sdz/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
005686   NOD.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
004696   NOD.Cg-Tg(TcrLCMV)327Sdz/DvsJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006304   NOD.FVB-Tg(TcrbBDC12-4.1)82Gse/GseJ
004335   NOD/ShiLt-Tg(TcrbAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcrb     (51 strains)

Phenotype

Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/0

        NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi
  • immune system phenotype
  • decreased susceptibility to autoimmune diabetes
    • adoptive tranfer of splenocytes from transgenic mice carrying the Tg(TcraBDC2.5)1Doi transgene into knockout recipients led to diabetes after a significant delay compared to diabetes development in wild-type recipients (100% in wild-type by 12 days versus 100% in knockouts by 20 days)   (MGI Ref ID J:87251)
  • increased activated T cell number
    • in transgenic mice, a large proportion of cells in the pancreatic lymph nodes and pancreatic islets have an activated phenotype (CD4+ Vbeta4+) compared to nontransgenic littermates   (MGI Ref ID J:52940)
  • insulitis
    • insulitis begins abruptly between days 15 and 18 after birth; at 14 days after birth, few activated (CD69+) T cells are detected   (MGI Ref ID J:52940)
  • endocrine/exocrine gland phenotype
  • insulitis
    • insulitis begins abruptly between days 15 and 18 after birth; at 14 days after birth, few activated (CD69+) T cells are detected   (MGI Ref ID J:52940)
  • hematopoietic system phenotype
  • increased activated T cell number
    • in transgenic mice, a large proportion of cells in the pancreatic lymph nodes and pancreatic islets have an activated phenotype (CD4+ Vbeta4+) compared to nontransgenic littermates   (MGI Ref ID J:52940)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/0

        involves: C57BL/6 * NOD * SJL
  • digestive/alimentary phenotype
  • *normal* digestive/alimentary phenotype
    • peri-islet Schwann cells are intact and surround remaining alpha-cells in contrast to control wild-type NOD mice   (MGI Ref ID J:135214)
  • immune system phenotype
  • *normal* immune system phenotype   (MGI Ref ID J:135214)
    • decreased dendritic cell number
      • treatment with anti-PDCA-1 ablates the plasmocytoid dendritic cell population within the pancreatic lymph nodes   (MGI Ref ID J:137009)
    • insulitis
      • treatment with anti-PDCA-1, which depleted plasmocyoid dendritic cells, or 1MT, which neutralize indoleamine 2,3 dioxygenase production, increases the severity of insulitis   (MGI Ref ID J:137009)
  • endocrine/exocrine gland phenotype
  • insulitis
    • treatment with anti-PDCA-1, which depleted plasmocyoid dendritic cells, or 1MT, which neutralize indoleamine 2,3 dioxygenase production, increases the severity of insulitis   (MGI Ref ID J:137009)
  • hematopoietic system phenotype
  • decreased dendritic cell number
    • treatment with anti-PDCA-1 ablates the plasmocytoid dendritic cell population within the pancreatic lymph nodes   (MGI Ref ID J:137009)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Diabetes and Obesity Research
Type 1 Diabetes (IDDM) Analysis Strains
      NOD Congenics with Mutations Affecting Immunocompetence
      NOD Transgenics

Immunology, Inflammation and Autoimmunity Research
Autoimmunity

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tg(TcraBDC2.5,TcrbBDC2.5)1Doi
Allele Name transgene insertion 1, Christophe Benoist
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) BDC-2.5/N TCR Tg; BDC2.5; Tg(TcraBDC2.5)2Doi; Tg(TcrbBDC2.5)2Doi;
Strain of Origin(C57BL/6 x SJL)F2
Expressed Gene Tcra, T cell receptor alpha chain, mouse, laboratory
Expressed Gene Tcrb, T cell receptor beta chain, mouse, laboratory
Promoter Tcra, T cell receptor alpha chain, mouse, laboratory
Promoter Tcrb, T cell receptor beta chain, mouse, laboratory
Molecular Note This transgene results from the coinjection of two constructs derived from diabetogenic T-cell clone BDC2.5. The Tcra construct contains a rearranged Tcra sequence (V alpha J alpha) that begins 20 bp 5' of the ATG site and ends 30 bp 3' of the splice donor sequence of J alpha 17. The 6.5 Tcrb construct contains rearranged Tcrb sequence (V beta D beta J beta) flanked by 2 kb of 5' regulatory sequences and 3.5 kb of 3' DNA containing the unrearranged J beta 1.3 to J beta 1.6 sequences, and precedes a 12 kb sequence containing the C beta 2 region. [MGI Ref ID J:77007]
 
 

Genotyping

Genotyping Information

Genotyping Protocols

Tg(TcraBDC2.5)1Doi, Tg(TcrbBDC2.5)2Doi, Melt Curve Analysis
Tg(TcraBDC2.5)1Doi, Tg(TcrbBDC2.5)2Doi, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Katz JD; Wang B; Haskins K; Benoist C; Mathis D. 1993. Following a diabetogenic T cell from genesis through pathogenesis. Cell 74(6):1089-100. [PubMed: 8402882]  [MGI Ref ID J:77007]

Additional References

Gonzalez A; Andre-Schmutz I; Carnaud C; Mathis D; Benoist C. 2001. Damage control, rather than unresponsiveness, effected by protective DX5+ T cells in autoimmune diabetes. Nat Immunol 2(12):1117-25. [PubMed: 11713466]  [MGI Ref ID J:109860]

Mombaerts P; Iacomini J; Johnson RS; Herrup K; Tonegawa S; Papaioannou VE. 1992. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68(5):869-77. [PubMed: 1547488]  [MGI Ref ID J:1934]

Tg(TcraBDC2.5,TcrbBDC2.5)1Doi related

Andre-Schmutz I; Hindelang C; Benoist C; Mathis D. 1999. Cellular and molecular changes accompanying the progression from insulitis to diabetes. Eur J Immunol 29(1):245-55. [PubMed: 9933106]  [MGI Ref ID J:52915]

Antkowiak PF; Stevens BK; Nunemaker CS; McDuffie M; Epstein FH. 2013. Manganese-enhanced magnetic resonance imaging detects declining pancreatic beta-cell mass in a cyclophosphamide-accelerated mouse model of type 1 diabetes. Diabetes 62(1):44-8. [PubMed: 22933107]  [MGI Ref ID J:208495]

Balasa B; La Cava A; Van Gunst K; Mocnik L; Balakrishna D; Nguyen N; Tucker L; Sarvetnick N. 2000. A mechanism for IL-10-mediated diabetes in the nonobese diabetic (NOD) mouse: ICAM-1 deficiency blocks accelerated diabetes J Immunol 165(12):7330-7. [PubMed: 11120869]  [MGI Ref ID J:66103]

Beaudoin L; Laloux V; Novak J; Lucas B; Lehuen A. 2002. NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity 17(6):725-36. [PubMed: 12479819]  [MGI Ref ID J:132259]

Bobbala D; Chen XL; Leblanc C; Mayhue M; Stankova J; Tanaka T; Chen YG; Ilangumaran S; Ramanathan S. 2012. Interleukin-15 plays an essential role in the pathogenesis of autoimmune diabetes in the NOD mouse. Diabetologia 55(11):3010-20. [PubMed: 22890824]  [MGI Ref ID J:191833]

Bour-Jordan H; Salomon BL; Thompson HL; Szot GL; Bernhard MR; Bluestone JA. 2004. Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J Clin Invest 114(7):979-87. [PubMed: 15467837]  [MGI Ref ID J:93421]

Cain JA; Smith JA; Ondr JK; Wang B; Katz JD. 2006. NKT cells and IFN-gamma establish the regulatory environment for the control of diabetogenic T cells in the nonobese diabetic mouse. J Immunol 176(3):1645-54. [PubMed: 16424194]  [MGI Ref ID J:126603]

Calderon B; Carrero JA; Miller MJ; Unanue ER. 2011. Cellular and molecular events in the localization of diabetogenic T cells to islets of Langerhans. Proc Natl Acad Sci U S A 108(4):1561-6. [PubMed: 21220322]  [MGI Ref ID J:168246]

Calderon B; Carrero JA; Miller MJ; Unanue ER. 2011. Entry of diabetogenic T cells into islets induces changes that lead to amplification of the cellular response. Proc Natl Acad Sci U S A 108(4):1567-72. [PubMed: 21220309]  [MGI Ref ID J:168247]

Calderon B; Suri A; Unanue ER. 2006. In CD4+ T-cell-induced diabetes, macrophages are the final effector cells that mediate islet beta-cell killing: studies from an acute model. Am J Pathol 169(6):2137-47. [PubMed: 17148676]  [MGI Ref ID J:116218]

Carrington EM; Kos C; Zhan Y; Krishnamurthy B; Allison J. 2011. Reducing or increasing beta-cell apoptosis without inflammation does not affect diabetes initiation in neonatal NOD mice. Eur J Immunol 41(8):2238-47. [PubMed: 21674480]  [MGI Ref ID J:176813]

Chen Z; Herman AE; Matos M; Mathis D; Benoist C. 2005. Where CD4+CD25+ T reg cells impinge on autoimmune diabetes. J Exp Med 202(10):1387-97. [PubMed: 16301745]  [MGI Ref ID J:118845]

Dai YD; Jensen KP; Lehuen A; Masteller EL; Bluestone JA; Wilson DB; Sercarz EE. 2005. A peptide of glutamic acid decarboxylase 65 can recruit and expand a diabetogenic T cell clone, BDC2.5, in the pancreas. J Immunol 175(6):3621-7. [PubMed: 16148106]  [MGI Ref ID J:116720]

Darwiche R; Chong MM; Santamaria P; Thomas HE; Kay TW. 2003. Fas is detectable on beta cells in accelerated, but not spontaneous, diabetes in nonobese diabetic mice. J Immunol 170(12):6292-7. [PubMed: 12794162]  [MGI Ref ID J:108698]

Delmastro MM; Styche AJ; Trucco MM; Workman CJ; Vignali DA; Piganelli JD. 2012. Modulation of redox balance leaves murine diabetogenic TH1 T cells "LAG-3-ing" behind. Diabetes 61(7):1760-8. [PubMed: 22586584]  [MGI Ref ID J:203169]

Falcone M; Yeung B; Tucker L; Rodriguez E; Krahl T; Sarvetnick N. 2001. IL-4 triggers autoimmune diabetes by increasing self-antigen presentation within the pancreatic Islets. Clin Immunol 98(2):190-9. [PubMed: 11161975]  [MGI Ref ID J:127661]

Fassett MS; Jiang W; D'Alise AM; Mathis D; Benoist C. 2012. Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proc Natl Acad Sci U S A 109(10):3891-6. [PubMed: 22345564]  [MGI Ref ID J:182146]

Feuerer M; Jiang W; Holler PD; Satpathy A; Campbell C; Bogue M; Mathis D; Benoist C. 2007. Enhanced thymic selection of FoxP3+ regulatory T cells in the NOD mouse model of autoimmune diabetes. Proc Natl Acad Sci U S A 104(46):18181-6. [PubMed: 17991775]  [MGI Ref ID J:127306]

Feuerer M; Shen Y; Littman DR; Benoist C; Mathis D. 2009. How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity 31(4):654-64. [PubMed: 19818653]  [MGI Ref ID J:153752]

Fife BT; Griffin MD; Abbas AK; Locksley RM; Bluestone JA. 2006. Inhibition of T cell activation and autoimmune diabetes using a B cell surface-linked CTLA-4 agonist. J Clin Invest 116(8):2252-61. [PubMed: 16886063]  [MGI Ref ID J:113109]

Fossati G; Cooke A; Papafio RQ; Haskins K; Stockinger B. 1999. Triggering a second T cell receptor on diabetogenic T cells can prevent induction of diabetes. J Exp Med 190(4):577-83. [PubMed: 10449528]  [MGI Ref ID J:108724]

Friedline RH; Wong CP; Steeber DA; Tedder TF; Tisch R. 2002. L-selectin is not required for T cell-mediated autoimmune diabetes. J Immunol 168(6):2659-66. [PubMed: 11884430]  [MGI Ref ID J:126855]

Ghazarian L; Diana J; Beaudoin L; Larsson PG; Puri RK; van Rooijen N; Flodstrom-Tullberg M; Lehuen A. 2013. Protection against type 1 diabetes upon Coxsackievirus B4 infection and iNKT-cell stimulation: role of suppressive macrophages. Diabetes 62(11):3785-96. [PubMed: 23894189]  [MGI Ref ID J:208935]

Gonzalez A; Andre-Schmutz I; Carnaud C; Mathis D; Benoist C. 2001. Damage control, rather than unresponsiveness, effected by protective DX5+ T cells in autoimmune diabetes. Nat Immunol 2(12):1117-25. [PubMed: 11713466]  [MGI Ref ID J:109860]

Gonzalez A; Katz JD; Mattei MG; Kikutani H; Benoist C; Mathis D. 1997. Genetic control of diabetes progression. Immunity 7(6):873-83. [PubMed: 9430232]  [MGI Ref ID J:110546]

Guerra N; Pestal K; Juarez T; Beck J; Tkach K; Wang L; Raulet DH. 2013. A selective role of NKG2D in inflammatory and autoimmune diseases. Clin Immunol 149(3):432-9. [PubMed: 24211717]  [MGI Ref ID J:206168]

Guleria I; Gubbels Bupp M; Dada S; Fife B; Tang Q; Ansari MJ; Trikudanathan S; Vadivel N; Fiorina P; Yagita H; Azuma M; Atkinson M; Bluestone JA; Sayegh MH. 2007. Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clin Immunol 125(1):16-25. [PubMed: 17627890]  [MGI Ref ID J:125272]

Gurr W; Shaw M; Herzog RI; Li Y; Sherwin R. 2013. Vaccination with single chain antigen receptors for islet-derived peptides presented on I-A(g7) delays diabetes in NOD mice by inducing anergy in self-reactiveT-cells. PLoS One 8(7):e69464. [PubMed: 23894487]  [MGI Ref ID J:204705]

He Q; Morillon YM 2nd; Spidale NA; Kroger CJ; Liu B; Sartor RB; Wang B; Tisch R. 2013. Thymic development of autoreactive T cells in NOD mice is regulated in an age-dependent manner. J Immunol 191(12):5858-66. [PubMed: 24198282]  [MGI Ref ID J:207147]

Hill NJ; Stotland AB; Sarvetnick NE. 2007. Distinct regulation of autoreactive CD4 T cell expansion by interleukin-4 under conditions of lymphopenia. J Leukoc Biol 81(3):757-65. [PubMed: 17164429]  [MGI Ref ID J:118599]

Hofmeyer KA; Scandiuzzi L; Ghosh K; Pirofski LA; Zang X. 2012. Tissue-expressed B7x affects the immune response to and outcome of lethal pulmonary infection. J Immunol 189(6):3054-63. [PubMed: 22855708]  [MGI Ref ID J:189852]

Hoglund P; Mintern J; Waltzinger C; Heath W; Benoist C; Mathis D. 1999. Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J Exp Med 189(2):331-9. [PubMed: 9892615]  [MGI Ref ID J:52940]

Holler PD; Yamagata T; Jiang W; Feuerer M; Benoist C; Mathis D. 2007. The same genomic region conditions clonal deletion and clonal deviation to the CD8alphaalpha and regulatory T cell lineages in NOD versus C57BL/6 mice. Proc Natl Acad Sci U S A 104(17):7187-92. [PubMed: 17438291]  [MGI Ref ID J:122481]

Horwitz MS; Ilic A; Fine C; Balasa B; Sarvetnick N. 2004. Coxsackieviral-mediated diabetes: induction requires antigen-presenting cells and is accompanied by phagocytosis of beta cells. Clin Immunol 110(2):134-44. [PubMed: 15003810]  [MGI Ref ID J:88777]

Ishigame H; Zenewicz LA; Sanjabi S; Licona-Limon P; Nakayama M; Leonard WJ; Flavell RA. 2013. Excessive Th1 responses due to the absence of TGF-beta signaling cause autoimmune diabetes and dysregulated Treg cell homeostasis. Proc Natl Acad Sci U S A 110(17):6961-6. [PubMed: 23569233]  [MGI Ref ID J:196160]

Johnson MC; Garland AL; Nicolson SC; Li C; Samulski RJ; Wang B; Tisch R. 2013. beta-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice. Diabetes 62(11):3775-84. [PubMed: 23884888]  [MGI Ref ID J:208940]

Judkowski V; Krakowski M; Rodriguez E; Mocnick L; Santamaria P; Sarvetnick N. 2004. Increased islet antigen presentation leads to type-1 diabetes in mice with autoimmune susceptibility. Eur J Immunol 34(4):1031-40. [PubMed: 15048713]  [MGI Ref ID J:88883]

Judkowski V; Pinilla C; Schroder K; Tucker L; Sarvetnick N; Wilson DB. 2001. Identification of MHC class II-restricted peptide ligands, including a glutamic acid decarboxylase 65 sequence, that stimulate diabetogenic T cells from transgenic BDC2.5 nonobese diabetic mice. J Immunol 166(2):908-17. [PubMed: 11145667]  [MGI Ref ID J:66844]

Kanagawa O; Militech A; Vaupel BA. 2002. Regulation of diabetes development by regulatory T cells in pancreatic islet antigen-specific TCR transgenic nonobese diabetic mice. J Immunol 168(12):6159-64. [PubMed: 12055228]  [MGI Ref ID J:89793]

Kanagawa O; Vaupel BA; Xu G; Unanue ER; Katz JD. 1998. Thymic positive selection and peripheral activation of islet antigen-specific T cells: separation of two diabetogenic steps by an I-A(g7) class II MHC beta-chain mutant. J Immunol 161(9):4489-92. [PubMed: 9794372]  [MGI Ref ID J:115237]

Keir ME; Liang SC; Guleria I; Latchman YE; Qipo A; Albacker LA; Koulmanda M; Freeman GJ; Sayegh MH; Sharpe AH. 2006. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203(4):883-95. [PubMed: 16606670]  [MGI Ref ID J:123785]

Kim HS; Han MS; Chung KW; Kim S; Kim E; Kim MJ; Jang E; Lee HA; Youn J; Akira S; Lee MS. 2007. Toll-like Receptor 2 Senses beta-Cell Death and Contributes to the Initiation of Autoimmune Diabetes. Immunity 27(2):321-33. [PubMed: 17707128]  [MGI Ref ID J:124334]

Kochupurakkal NM; Kruger AJ; Tripathi S; Zhu B; Adams LT; Rainbow DB; Rossini A; Greiner DL; Sayegh MH; Wicker LS; Guleria I. 2014. Blockade of the programmed death-1 (PD1) pathway undermines potent genetic protection from type 1 diabetes. PLoS One 9(2):e89561. [PubMed: 24586872]  [MGI Ref ID J:213816]

Kornete M; Sgouroudis E; Piccirillo CA. 2012. ICOS-dependent homeostasis and function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice. J Immunol 188(3):1064-74. [PubMed: 22227569]  [MGI Ref ID J:181217]

Kupfer TM; Crawford ML; Pham K; Gill RG. 2005. MHC-mismatched islet allografts are vulnerable to autoimmune recognition in vivo. J Immunol 175(4):2309-16. [PubMed: 16081800]  [MGI Ref ID J:107508]

Lee MH; Lee WH; Todorov I; Liu CP. 2010. CD4+CD25+ Regulatory T Cells Prevent Type 1 Diabetes Preceded by Dendritic Cell-Dominant Invasive Insulitis by Affecting Chemotaxis and Local Invasiveness of Dendritic Cells. J Immunol 185(4):2493-501. [PubMed: 20639483]  [MGI Ref ID J:162544]

Li CR; Mueller EE; Bradley LM. 2014. Islet antigen-specific Th17 cells can induce TNF-alpha-dependent autoimmune diabetes. J Immunol 192(4):1425-32. [PubMed: 24446517]  [MGI Ref ID J:209355]

Luhder F; Chambers C; Allison JP; Benoist C; Mathis D. 2000. Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc Natl Acad Sci U S A 97(22):12204-9. [PubMed: 11035773]  [MGI Ref ID J:109887]

Luhder F; Katz J; Benoist C; Mathis D. 1998. Major histocompatibility complex class II molecules can protect from diabetes by positively selecting T cells with additional specificities. J Exp Med 187(3):379-87. [PubMed: 9449718]  [MGI Ref ID J:108722]

Luo X; Tarbell KV; Yang H; Pothoven K; Bailey SL; Ding R; Steinman RM; Suthanthiran M. 2007. Dendritic cells with TGF-beta1 differentiate naive CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 104(8):2821-6. [PubMed: 17307871]  [MGI Ref ID J:125908]

Maehr R; Mintern JD; Herman AE; Lennon-Dumenil AM; Mathis D; Benoist C; Ploegh HL. 2005. Cathepsin L is essential for onset of autoimmune diabetes in NOD mice. J Clin Invest 115(10):2934-43. [PubMed: 16184198]  [MGI Ref ID J:101527]

Martin-Orozco N; Chen Z; Poirot L; Hyatt E; Chen A; Kanagawa O; Sharpe A; Mathis D; Benoist C. 2003. Paradoxical dampening of anti-islet self-reactivity but promotion of diabetes by OX40 ligand. J Immunol 171(12):6954-60. [PubMed: 14662903]  [MGI Ref ID J:86926]

Martin-Orozco N; Chung Y; Chang SH; Wang YH; Dong C. 2009. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol 39(1):216-24. [PubMed: 19130584]  [MGI Ref ID J:143724]

Miska J; Abdulreda MH; Devarajan P; Lui JB; Suzuki J; Pileggi A; Berggren PO; Chen Z. 2014. Real-time immune cell interactions in target tissue during autoimmune-induced damage and graft tolerance. J Exp Med 211(3):441-56. [PubMed: 24567447]  [MGI Ref ID J:210746]

Mohan JF; Calderon B; Anderson MS; Unanue ER. 2013. Pathogenic CD4(+) T cells recognizing an unstable peptide of insulin are directly recruited into islets bypassing local lymph nodes. J Exp Med 210(11):2403-14. [PubMed: 24127484]  [MGI Ref ID J:206540]

Morel PA; Srinivas M; Turner MS; Fuschiotti P; Munshi R; Bahar I; Feili-Hariri M; Ahrens ET. 2011. Gene expression analysis of dendritic cells that prevent diabetes in NOD mice: analysis of chemokines and costimulatory molecules. J Leukoc Biol 90(3):539-50. [PubMed: 21628331]  [MGI Ref ID J:175724]

Mori Y; Kodaka T; Kato T; Kanagawa EM; Kanagawa O. 2009. Critical role of IFN-gamma in CFA-mediated protection of NOD mice from diabetes development. Int Immunol 21(11):1291-9. [PubMed: 19778991]  [MGI Ref ID J:154177]

Pang S; Zhang L; Wang H; Yi Z; Li L; Gao L; Zhao J; Tisch R; Katz JD; Wang B. 2009. CD8(+) T cells specific for beta cells encounter their cognate antigens in the islets of NOD mice. Eur J Immunol 39(10):2716-24. [PubMed: 19658094]  [MGI Ref ID J:153282]

Parsa R; Andresen P; Gillett A; Mia S; Zhang XM; Mayans S; Holmberg D; Harris RA. 2012. Adoptive transfer of immunomodulatory M2 macrophages prevents type 1 diabetes in NOD mice. Diabetes 61(11):2881-92. [PubMed: 22745325]  [MGI Ref ID J:208522]

Pauken KE; Jenkins MK; Azuma M; Fife BT. 2013. PD-1, but not PD-L1, expressed by islet-reactive CD4+ T cells suppresses infiltration of the pancreas during type 1 diabetes. Diabetes 62(8):2859-69. [PubMed: 23545706]  [MGI Ref ID J:208973]

Perone MJ; Bertera S; Tawadrous ZS; Shufesky WJ; Piganelli JD; Baum LG; Trucco M; Morelli AE. 2006. Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice. J Immunol 177(8):5278-89. [PubMed: 17015713]  [MGI Ref ID J:139444]

Phillips JM; Parish NM; Drage M; Cooke A. 2001. Cutting edge: interactions through the IL-10 receptor regulate autoimmune diabetes. J Immunol 167(11):6087-91. [PubMed: 11714766]  [MGI Ref ID J:119045]

Raine T; Zaccone P; Mastroeni P; Cooke A. 2006. Salmonella typhimurium infection in nonobese diabetic mice generates immunomodulatory dendritic cells able to prevent type 1 diabetes. J Immunol 177(4):2224-33. [PubMed: 16887982]  [MGI Ref ID J:138394]

Rivas EI; Driver JP; Garabatos N; Presa M; Mora C; Rodriguez F; Serreze DV; Stratmann T. 2011. Targeting of a T cell agonist Peptide to lysosomes by DNA vaccination induces tolerance in the nonobese diabetic mouse. J Immunol 186(7):4078-87. [PubMed: 21346228]  [MGI Ref ID J:170837]

Rosmalen JG; Martin T; Dobbs C; Voerman JS; Drexhage HA; Haskins K; Leenen PJ. 2000. Subsets of macrophages and dendritic cells in nonobese diabetic mouse pancreatic inflammatory infiltrates: correlation with the development of diabetes. Lab Invest 80(1):23-30. [PubMed: 10652999]  [MGI Ref ID J:59988]

Ruan Q; Kameswaran V; Zhang Y; Zheng S; Sun J; Wang J; DeVirgiliis J; Liou HC; Beg AA; Chen YH. 2011. The Th17 immune response is controlled by the Rel-RORgamma-RORgamma T transcriptional axis. J Exp Med 208(11):2321-33. [PubMed: 22006976]  [MGI Ref ID J:178764]

Saxena V; Ondr JK; Magnusen AF; Munn DH; Katz JD. 2007. The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J Immunol 179(8):5041-53. [PubMed: 17911589]  [MGI Ref ID J:137009]

Sgouroudis E; Albanese A; Piccirillo CA. 2008. Impact of protective IL-2 allelic variants on CD4+ Foxp3+ regulatory T cell function in situ and resistance to autoimmune diabetes in NOD mice. J Immunol 181(9):6283-92. [PubMed: 18941219]  [MGI Ref ID J:140729]

Shi FD; Flodstrom M; Balasa B; Kim SH; Van Gunst K; Strominger JL; Wilson SB; Sarvetnick N. 2001. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci U S A 98(12):6777-82. [PubMed: 11390999]  [MGI Ref ID J:69908]

Simoni Y; Gautron AS; Beaudoin L; Bui LC; Michel ML; Coumoul X; Eberl G; Leite-de-Moraes M; Lehuen A. 2011. NOD mice contain an elevated frequency of iNKT17 cells that exacerbate diabetes. Eur J Immunol 41(12):3574-85. [PubMed: 22002883]  [MGI Ref ID J:179619]

Stadinski BD; Delong T; Reisdorph N; Reisdorph R; Powell RL; Armstrong M; Piganelli JD; Barbour G; Bradley B; Crawford F; Marrack P; Mahata SK; Kappler JW; Haskins K. 2010. Chromogranin A is an autoantigen in type 1 diabetes. Nat Immunol 11(3):225-31. [PubMed: 20139986]  [MGI Ref ID J:158628]

Suwanai H; Wilcox MA; Mathis D; Benoist C. 2010. A defective Il15 allele underlies the deficiency in natural killer cell activity in nonobese diabetic mice. Proc Natl Acad Sci U S A 107(20):9305-10. [PubMed: 20439722]  [MGI Ref ID J:160284]

Tarbell KV; Petit L; Zuo X; Toy P; Luo X; Mqadmi A; Yang H; Suthanthiran M; Mojsov S; Steinman RM. 2007. Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204(1):191-201. [PubMed: 17210729]  [MGI Ref ID J:125329]

Thomas HE; Irawaty W; Darwiche R; Brodnicki TC; Santamaria P; Allison J; Kay TW. 2004. IL-1 Receptor Deficiency Slows Progression to Diabetes in the NOD Mouse. Diabetes 53(1):113-121. [PubMed: 14693705]  [MGI Ref ID J:87251]

Tonkin DR; Haskins K. 2009. Regulatory T cells enter the pancreas during suppression of type 1 diabetes and inhibit effector T cells and macrophages in a TGF-beta-dependent manner. Eur J Immunol 39(5):1313-22. [PubMed: 19404982]  [MGI Ref ID J:148088]

Tritt M; Sgouroudis E; d'Hennezel E; Albanese A; Piccirillo CA. 2008. Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 57(1):113-23. [PubMed: 17928397]  [MGI Ref ID J:132415]

Tsai S; Serra P; Clemente-Casares X; Slattery RM; Santamaria P. 2013. Dendritic cell-dependent in vivo generation of autoregulatory T cells by antidiabetogenic MHC class II. J Immunol 191(1):70-82. [PubMed: 23740949]  [MGI Ref ID J:205347]

Tsui H; Chan Y; Tang L; Winer S; Cheung RK; Paltser G; Selvanantham T; Elford AR; Ellis JR; Becker DJ; Ohashi PS; Dosch HM. 2008. Targeting of pancreatic glia in type 1 diabetes. Diabetes 57(4):918-28. [PubMed: 18198358]  [MGI Ref ID J:135214]

Turley SJ; Lee JW; Dutton-Swain N; Mathis D; Benoist C. 2005. Endocrine self and gut non-self intersect in the pancreatic lymph nodes. Proc Natl Acad Sci U S A 102(49):17729-33. [PubMed: 16317068]  [MGI Ref ID J:104385]

Ueno A; Cho S; Cheng L; Wang J; Hou S; Nakano H; Santamaria P; Yang Y. 2007. Transient upregulation of indoleamine 2,3-dioxygenase in dendritic cells by human chorionic gonadotropin downregulates autoimmune diabetes. Diabetes 56(6):1686-93. [PubMed: 17360980]  [MGI Ref ID J:126514]

Vaitaitis GM; Carter JR; Waid DM; Olmstead MH; Wagner DH Jr. 2013. An alternative role for Foxp3 as an effector T cell regulator controlled through CD40. J Immunol 191(2):717-25. [PubMed: 23776180]  [MGI Ref ID J:205447]

Vence L; Benoist C; Mathis D. 2004. Fas deficiency prevents type 1 diabetes by inducing hyporesponsiveness in islet beta-cell-reactive T-cells. Diabetes 53(11):2797-803. [PubMed: 15504959]  [MGI Ref ID J:108733]

Wagner DH Jr; Vaitaitis G; Sanderson R; Poulin M; Dobbs C; Haskins K. 2002. Expression of CD40 identifies a unique pathogenic T cell population in type 1 diabetes. Proc Natl Acad Sci U S A 99(6):3782-7. [PubMed: 11891296]  [MGI Ref ID J:126524]

Waldner H; Sobel RA; Price N; Kuchroo VK. 2006. The autoimmune diabetes locus Idd9 regulates development of type 1 diabetes by affecting the homing of islet-specific T cells. J Immunol 176(9):5455-62. [PubMed: 16622013]  [MGI Ref ID J:131655]

Wallet MA; Flores RR; Wang Y; Yi Z; Kroger CJ; Mathews CE; Earp HS; Matsushima G; Wang B; Tisch R. 2009. MerTK regulates thymic selection of autoreactive T cells. Proc Natl Acad Sci U S A 106(12):4810-5. [PubMed: 19251650]  [MGI Ref ID J:147153]

Wallet MA; Sen P; Flores RR; Wang Y; Yi Z; Huang Y; Mathews CE; Earp HS; Matsushima G; Wang B; Tisch R. 2008. MerTK is required for apoptotic cell-induced T cell tolerance. J Exp Med 205(1):219-32. [PubMed: 18195070]  [MGI Ref ID J:131291]

Wan X; Guloglu FB; VanMorlan AM; Rowland LM; Jain R; Haymaker CL; Cascio JA; Dhakal M; Hoeman CM; Tartar DM; Zaghouani H. 2012. Mechanisms underlying antigen-specific tolerance of stable and convertible Th17 cells during suppression of autoimmune diabetes. Diabetes 61(8):2054-65. [PubMed: 22751698]  [MGI Ref ID J:208518]

Wang B; Gonzalez A; Hoglund P; Katz JD; Benoist C; Mathis D. 1998. Interleukin-4 deficiency does not exacerbate disease in NOD mice. Diabetes 47(8):1207-11. [PubMed: 9703318]  [MGI Ref ID J:85924]

Wang J; Cho S; Ueno A; Cheng L; Xu BY; Desrosiers MD; Shi Y; Yang Y. 2008. Ligand-dependent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation. J Immunol 181(4):2438-45. [PubMed: 18684934]  [MGI Ref ID J:140188]

Wei J; Loke P; Zang X; Allison JP. 2011. Tissue-specific expression of B7x protects from CD4 T cell-mediated autoimmunity. J Exp Med 208(8):1683-94. [PubMed: 21727190]  [MGI Ref ID J:177612]

Wen L; Wong FS; Sherwin R; Mora C. 2002. Human DQ8 can substitute for murine I-A(g7) in the selection of diabetogenic T cells restricted to I-A(g71). J Immunol 168(7):3635-40. [PubMed: 11907129]  [MGI Ref ID J:75571]

Wills-Karp M; Rani R; Dienger K; Lewkowich I; Fox JG; Perkins C; Lewis L; Finkelman FD; Smith DE; Bryce PJ; Kurt-Jones EA; Wang TC; Sivaprasad U; Hershey GK; Herbert DR. 2012. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J Exp Med 209(3):607-22. [PubMed: 22329990]  [MGI Ref ID J:182513]

Xiang Y; Peng J; Tai N; Hu C; Zhou Z; Wong FS; Wen L. 2012. The dual effects of B cell depletion on antigen-specific T cells in BDC2.5NOD mice. J Immunol 188(10):4747-58. [PubMed: 22490442]  [MGI Ref ID J:188690]

Yadav D; Judkowski V; Flodstrom-Tullberg M; Sterling L; Redmond WL; Sherman L; Sarvetnick N. 2004. B7-2 (CD86) controls the priming of autoreactive CD4 T cell response against pancreatic islets. J Immunol 173(6):3631-9. [PubMed: 15356107]  [MGI Ref ID J:92756]

Yi W; Seth NP; Martillotti T; Wucherpfennig KW; Sant'Angelo DB; Denzin LK. 2010. Targeted regulation of self-peptide presentation prevents type I diabetes in mice without disrupting general immunocompetence. J Clin Invest 120(4):1324-36. [PubMed: 20200448]  [MGI Ref ID J:159696]

Yi Z; Diz R; Martin AJ; Morillon YM; Kline DE; Li L; Wang B; Tisch R. 2012. Long-term remission of diabetes in NOD mice is induced by nondepleting anti-CD4 and anti-CD8 antibodies. Diabetes 61(11):2871-80. [PubMed: 22751694]  [MGI Ref ID J:208520]

Yi Z; Li L; Garland A; He Q; Wang H; Katz JD; Tisch R; Wang B. 2012. IFN-gamma receptor deficiency prevents diabetes induction by diabetogenic CD4+, but not CD8+, T cells. Eur J Immunol 42(8):2010-8. [PubMed: 22865049]  [MGI Ref ID J:187880]

You S; Piali L; Kuhn C; Steiner B; Sauvaget V; Valette F; Clozel M; Bach JF; Chatenoud L. 2013. Therapeutic use of a selective S1P1 receptor modulator ponesimod in autoimmune diabetes. PLoS One 8(10):e77296. [PubMed: 24204793]  [MGI Ref ID J:209178]

Zou L; Mendez F; Martin-Orozco N; Peterson EJ. 2008. Defective positive selection results in T cell lymphopenia and increased autoimmune diabetes in ADAP-deficient BDC2.5-C57BL/6 mice. Eur J Immunol 38(4):986-94. [PubMed: 18383041]  [MGI Ref ID J:133782]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX18

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, hemizygous mice are bred to wildtype siblings. Homozygous mice may not display delayed onset of diabetes.
Mating SystemNoncarrier x Hemizygote         (Female x Male)   07-NOV-13
Hemizygote x Noncarrier         (Female x Male)   07-NOV-13
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $199.90Female or MaleHemizygous for Tg(TcraBDC2.5,TcrbBDC2.5)1Doi  
Price per Pair (US dollars $)Pair Genotype
$271.90Hemizygous for Tg(TcraBDC2.5,TcrbBDC2.5)1Doi x Noncarrier  
$271.90Noncarrier x Hemizygous for Tg(TcraBDC2.5,TcrbBDC2.5)1Doi  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $259.90Female or MaleHemizygous for Tg(TcraBDC2.5,TcrbBDC2.5)1Doi  
Price per Pair (US dollars $)Pair Genotype
$353.50Hemizygous for Tg(TcraBDC2.5,TcrbBDC2.5)1Doi x Noncarrier  
$353.50Noncarrier x Hemizygous for Tg(TcraBDC2.5,TcrbBDC2.5)1Doi  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

  Control
   Noncarrier
   001976 NOD/ShiLtJ
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)