Strain Name:

STOCK Tg(TCF/Lef1-lacZ)34Efu/J

Stock Number:

004623

Order this mouse

Availability:

Repository- Live

Use Restrictions Apply, see Terms of Use
These TOPGAL transgenic mice express Beta-galactosidase as a reporter in the presence of the lymphoid enhancer binding factor 1/transcription factor 3 mediated signaling pathway and activated Beta-catenin. Beta-galactosidase activity is displayed during early embryonic development in a subset of pluripotent embryonic basal cells of the epithelium and dermis of developing hair follicles, This strain represents an effective tool for generating mutants that would be useful in studies of the Wnt signaling pathway.

Description

Strain Information

Former Names STOCK Tg(Fos-lacZ)34Efu/J    (Changed: 14-FEB-14 )
Type Mutant Stock; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Mating System+/+ sibling x Hemizygote         (Female x Male)   16-APR-08
Specieslaboratory mouse
GenerationN1F24 (10-DEC-13)
Generation Definitions
 
Donating Investigator Elaine Fuchs,   The Rockefeller University

Important Note
This strain may be homozygous for Gnat2cpfl3, cone photoreceptor function loss 3, which affects bright light (photopic) vision.

Description
These TOPGAL transgenic mice are a reporter strain that express Beta-galactosidase in the presence of the lymphoid enhancer binding factor 1/transcription factor 3 (LEF/TCF) mediated signaling pathway and activated Beta-catenin. The transgene contains the lacZ gene under the control of a regulatory sequence consisting of three consensus LEF/TCF-binding motifs upstream of a minimal c-fos promoter. Transgenic mice display TOPGAL activity (Beta-galactosidase activity) during early embryonic development in a subset of pluripotent embryonic basal cells of the epithelium and dermis of developing hair follicles, but not during the next stage of hair follicle development; formation of hair germs. TOPGAL transgene activity reappears in hair follicles at E16.5 and TOPGAL expression is strongly upregulated in the postnatal hair shaft precursor cells in both whisker and body hair anagen follicles (active periods of hair growth). TOPGAL expression ceases during catagen (regression and shortening) and telogen (rest) periods of the postnatal hair growth cycle. Mice homozygous for the transgenic insert are viable, fertile, normal in size and do not display any gross physical or behavioral abnormalities. This strain represents an effective tool for generating mutants that would be useful in studies of the Wnt signaling pathway.

Development
The TOPGAL transgene was designed by Dr. Elaine Fuchs (while at The University of Chicago) with three copies of a T cell specific transcription factor/lymphoid enhancer-binding factor 1 (TCF/Lef1) consensus binding site and the FBJ osteosarcoma oncogene (Fos; c-fos) minimal promoter upstream of the β-galactosidase gene (lacZ). In 2003, TOPGAL mice on a CD-1 genetic background were sent to The Jackson Laboratory Repository as Stock No. 004623. This strain may be homozygous for Gnat2cpfl3 (cone photoreceptor function loss 3), which affects bright light (photopic) vision.

Control Information

  Control
   Noncarrier
 
  Considerations for Choosing Controls

Related Strains

lacZ Expression Strains
002484   129-Alpltm1Sor/J
002292   129-Gt(ROSA)26Sor/J
012756   129-Sirt4tm1Fwa/J
006050   129-Sirt6tm1Fwa/J
003451   129-Smad3tm1Par/J
003310   129S-Gt(ROSA)26Sortm1Sor/J
003383   129S-Nogtm1Amc/J
004545   129S-Npytm1Rpa/J
005091   129S-Pnpla6tm1Blw/J
007199   129S-Sgpl1Gt(ROSA)78Sor/J
003082   129S1/SvImJ-Bcl2tm1Mpin/J
010633   B6(Cg)-Gt(ROSA)26Sortm1(CAG-taulacZ)Bene/J
005085   B6.129(Cg)-Cd44tm1Hbg/J
012239   B6.129(Cg)-Cd44tm1Hbg/SjJ
004178   B6.129(Cg)-Tg(CAG-Bgeo/GFP)21Lbe/J
004478   B6.129-Foxd1tm1Lai/J
006939   B6.129-Fut1tm1Sdo/J
008606   B6.129-Gt(ROSA)26Sortm1Joe/J
005768   B6.129-Htr5atm1Dgen/J
002938   B6.129-Kdrtm1Jrt/J
004158   B6.129-Maftm1Gsb/J
006497   B6.129-Skiltm2Spw/J
009348   B6.129P2(Cg)-Hprttm17(Ple48-lacZ)Ems/Mmjax
012572   B6.129P2(Cg)-Hprttm19(Ple88-lacZ)Ems/Mmjax
012574   B6.129P2(Cg)-Hprttm38(Ple17-lacZ)Ems/Mmjax
012575   B6.129P2(Cg)-Hprttm39(Ple24-lacZ)Ems/Mmjax
012576   B6.129P2(Cg)-Hprttm40(Ple34-lacZ)Ems/Mmjax
010805   B6.129P2(Cg)-Hprttm41(Ple160-lacZ)Ems/Mmjax
012331   B6.129P2(Cg)-Hprttm42(Ple131-lacZ)Ems/Mmjax
012577   B6.129P2(Cg)-Hprttm43(Ple140-lacZ)Ems/Mmjax
010709   B6.129P2(Cg)-Hprttm44(Ple49-lacZ)Ems/Mmjax
012333   B6.129P2(Cg)-Hprttm45(Ple67-lacZ)Ems/Mmjax
012733   B6.129P2(Cg)-Hprttm53(CAG-lacZ)Ems/Mmjax
012578   B6.129P2(Cg)-Hprttm56(Ple25-lacZ)Ems/Mmjax
012579   B6.129P2(Cg)-Hprttm58(Ple119-lacZ)Ems/Mmjax
012580   B6.129P2(Cg)-Hprttm59(Ple123-lacZ)Ems/Mmjax
012581   B6.129P2(Cg)-Hprttm62(Ple153-lacZ)Ems/Mmjax
012342   B6.129P2(Cg)-Hprttm63(Ple12-lacZ)Ems/Mmjax
012347   B6.129P2(Cg)-Hprttm64(Ple170-lacZ)Ems/Mmjax
012582   B6.129P2(Cg)-Hprttm67(Ple238-lacZ)Ems/Mmjax
012583   B6.129P2(Cg)-Hprttm68(Ple127-lacZ)Ems/Mmjax
012656   B6.129P2(Cg)-Hprttm70(Ple240-lacZ)Ems/Mmjax
012657   B6.129P2(Cg)-Hprttm71(Ple155-lacZ)Ems/Mmjax
012659   B6.129P2(Cg)-Hprttm73(Ple142-lacZ)Ems/Mmjax
012734   B6.129P2(Cg)-Hprttm74(Ple232-lacZ)Ems/Mmjax
005772   B6.129P2-Acvrl1tm1Dgen/J
005770   B6.129P2-Adamts4tm1Dgen/J
005771   B6.129P2-Adamts5tm1Dgen/J
005773   B6.129P2-Adcy3tm1Dgen/J
005774   B6.129P2-Adcy7tm1Dgen/J
005775   B6.129P2-Adipor2tm1Dgen/J
005776   B6.129P2-Avpr1atm1Dgen/J
009120   B6.129P2-Axin2tm1Wbm/J
005777   B6.129P2-Axltm1Dgen/J
005783   B6.129P2-Cacna1ctm1Dgen/J
005780   B6.129P2-Cacna2d3tm1Dgen/J
005781   B6.129P2-Cacng3tm1Dgen/J
005782   B6.129P2-Cacng4tm1Dgen/J
005784   B6.129P2-Capn5tm1Dgen/J
005785   B6.129P2-Capn7tm1Dgen/J
005792   B6.129P2-Ccr1l1tm1Dgen/J
005793   B6.129P2-Ccr6tm1Dgen/J
005794   B6.129P2-Ccr7tm1Dgen/J
005779   B6.129P2-Celsr2tm1Dgen/J
005797   B6.129P2-Chrna2tm1Dgen/J
005787   B6.129P2-Ctsctm1Dgen/J
005796   B6.129P2-Cxcr3tm1Dgen/J
005798   B6.129P2-Drd5tm1Dgen/J
005800   B6.129P2-Efemp2tm1Dgen/J
005801   B6.129P2-Esrratm1Dgen/J
005802   B6.129P2-Faim2tm1Dgen/J
005803   B6.129P2-Fzd1tm1Dgen/J
005804   B6.129P2-Fzd8tm1Dgen/J
005811   B6.129P2-Gabra3tm1Dgen/J
005812   B6.129P2-Gabra4tm1Dgen/J
005810   B6.129P2-Gabrptm1Dgen/J
005809   B6.129P2-Galr1tm1Dgen/J
016094   B6.129P2-Git2Gt(XG510)Byg/WeisJ
005816   B6.129P2-Glra3tm1Dgen/J
005805   B6.129P2-Gpr151tm1Dgen/J
005806   B6.129P2-Gpr37tm1Dgen/J
005807   B6.129P2-Gpr6tm1Dgen/J
005813   B6.129P2-Grik5tm1Dgen/J
005808   B6.129P2-Grk5tm1Dgen/J
005814   B6.129P2-Grm1tm1Dgen/J
005815   B6.129P2-Grm3tm1Dgen/J
005817   B6.129P2-Gsk3btm1Dgen/J
005818   B6.129P2-Hcrtr1tm1Dgen/J
005767   B6.129P2-Htr4tm1Dgen/J
005769   B6.129P2-Htr7tm1Dgen/J
005830   B6.129P2-Kcnq2tm1Dgen/J
005821   B6.129P2-Lats2tm1Dgen/J
005822   B6.129P2-Lmbr1tm1Dgen/J
005850   B6.129P2-Mapkapk2tm1Dgen/J
005824   B6.129P2-Mmp17tm1Dgen/J
005825   B6.129P2-Mtmr1tm1Dgen/J
005826   B6.129P2-Ntsr1tm1Dgen/J
007767   B6.129P2-Olfr17tm1Mom/MomJ
005829   B6.129P2-Pkd2l2tm1Dgen/J
005828   B6.129P2-Ppardtm1Dgen/J
005831   B6.129P2-Ppm1ftm1Dgen/J
005827   B6.129P2-Ptch2tm1Dgen/J
005832   B6.129P2-Ptprotm1Dgen/J
005799   B6.129P2-S1pr4tm1Dgen/J
005837   B6.129P2-Scn11atm1Dgen/J
005836   B6.129P2-Scn9atm1Dgen/J
005834   B6.129P2-Sema5atm1Dgen/J
005835   B6.129P2-Sema6ctm1Dgen/J
006432   B6.129P2-Slc18a1tm1Dgen/J
005839   B6.129P2-Slc22a12tm1Dgen/J
005838   B6.129P2-Slc22a6tm1Dgen/J
005840   B6.129P2-Slc40a1tm1Dgen/J
005841   B6.129P2-Slc6a9tm1Dgen/J
005842   B6.129P2-Slc7a8tm1Dgen/J
005843   B6.129P2-Slc9a6tm1Dgen/J
012723   B6.129P2-Sptbn2Gt(XK442)Byg/LlpJ
005844   B6.129P2-Sstr1tm1Dgen/J
005847   B6.129P2-Tgfbr1tm1Dgen/J
005845   B6.129P2-Thbs4tm1Dgen/J
005790   B6.129P2-Tpp1tm1Dgen/J
005848   B6.129P2-Trpm5tm1Dgen/J
005791   B6.129P2-Xcr1tm1Dgen/J
012374   B6.129S-Artm1Rax/ShahJ
012377   B6.129S-Cyp19a1tm1.1Shah/J
009089   B6.129S1(Cg)-Ndntm2Stw/J
009386   B6.129S1-Osr2tm1Jian/J
007768   B6.129S2-Omptm1Mom/MomJ
003474   B6.129S4-Gt(ROSA)26Sortm1Sor/J
005901   B6.129S4-Ppardtm2Rev/J
006142   B6.129S4-Ppargtm1Rev/J
003754   B6.129S4-Shroom3Gt(ROSA53)Sor/J
013189   B6.129S5-Mlst8tm1Lex/J
013190   B6.129S5-MtorGt(OST92090)Lex/J
013191   B6.129S5-Rptortm1Lex/J
005119   B6.129S6-Npas2tm1Slm/J
002741   B6.129S7-Alpltm1Sor/J
005970   B6.129S7-Atoh1tm2Hzo/J
006039   B6.129S7-Efnb2tm1And/J
002192   B6.129S7-Gt(ROSA)26Sor/J
005981   B6.129S7-Rai1tm1Jrl/J
005039   B6.129X1-Adra1atm1Pcs/J
006262   B6.129X1-Fut2tm1Sdo/J
014536   B6.Cg-Hprttm75(Ple143-lacZ)Ems/Mmjax
007745   B6.Cg-Mir155tm1.1Rsky/J
005317   B6.Cg-Tg(BAT-lacZ)3Picc/J
003139   B6.Cg-Tg(DBHn-lacZ)8Rpk/J
006229   B6.Cg-Tg(DRE-lacZ)2Gswz/J
006773   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/J
024377   B6.Cg-Tg(TCF/Lef1-lacZ)34Efu/KatmJ
002982   B6.Cg-Tg(xstpx-lacZ)32And/J
008615   B6;129-Frzbtm1Nat/J
012820   B6;129-Fzd1tm1.1Nat/J
012821   B6;129-Fzd2tm1.1Nat/J
012822   B6;129-Fzd3tm1Nat/J
012824   B6;129-Fzd6tm1Nat/J
012825   B6;129-Fzd7tm1.1Nat/J
008516   B6;129-Gt(ROSA)26Sortm1Joe/J
003504   B6;129-Gt(ROSA)26Sortm1Sho/J
010590   B6;129-Iis1tm1(CAG-Bgeo,-tdTomato/TEVP,-SV2B/GFP)Nat/J
016857   B6;129-Itga7tm1Burk/J
018296   B6;129-Kcptm1Gdr/J
008614   B6;129-Sfrp2tm1Nat/J
012757   B6;129-Sirt5tm1Fwa/J
005064   B6;129-Slc30a3tm1Rpa/J
009599   B6;129P2-Adam19Gt(Betageo)1Bbl/J
006431   B6;129P2-Adam21tm1Dgen/J
005788   B6;129P2-Cd97tm1Dgen/J
006595   B6;129P2-Olfr17tm1Mom/MomJ
005833   B6;129P2-Rgs4tm1Dgen/J
012850   B6;129P2-TardbpGt(RRB030)Byg/J
002073   B6;129S-Gt(ROSA)26Sor/J
006470   B6;129S-Hopxtm1Eno/J
004153   B6;129S-Map7Gt(ROSABetageo)1Sor/J
006958   B6;129S-Nkd1tm1Kwha/J
006960   B6;129S-Nkd2tm1Kwha/J
006594   B6;129S2-Omptm1Mom/MomJ
007204   B6;129S4-2610005L07RikGt(ROSA)73Sor/J
011052   B6;129S4-Ctbp2Gt(ROSA61)Sor/J
003309   B6;129S4-Gt(ROSA)26Sortm1Sor/J
004365   B6;129S6-Srebf1tm1Mbr/J
002317   B6;129S7-Alpltm1Sor/J
003266   B6;129S7-Epas1tm1Rus/J
006044   B6;129S7-Ephb4tm1And/J
008618   B6;A-Tg(OPN1LW-lacZ)1Nat/J
003471   B6;C3H-Tg(CNP-GEO)1Ldh/J
006465   B6;CBA-Tg(CAG-lacZ-WGA)330Bbm/J
006680   B6;CBA-Tg(Olfr16*,taulacZ)19Mom/MomJ
006671   B6;CBA-Tg(Olfr16*,taulacZ)5Mom/MomJ
006672   B6;CBA-Tg(Olfr16*,taulacZ)7Mom/MomJ
006673   B6;CBA-Tg(Olfr16,taulacZ)sn2Mom/MomJ
004141   B6;CBA-Tg(UAS-lacZ)65Rth/J
008344   B6;DBA-Tg(Fos-tTA,Fos-EGFP*)1Mmay Tg(tetO-lacZ,tTA*)1Mmay/J
002369   B6;SJL-Tg(c177-lacZ)226Bri/J
002372   B6;SJL-Tg(c177-lacZ)227Bri/J
002621   B6;SJL-Tg(tetop-lacZ)2Mam/J
003299   B6;SWJ-Tg(TIMP3-lacZ)7Jeb/J
002865   B6CBA-Tg(Wnt1-lacZ)206Amc/J
016095   C.129P2(B6)-Git2Gt(XG510)Byg/WeisJ
016093   C.129S4(B6)-Git1Gt(FHCRC-GT-S10-12C1)Sor/WeisJ
002955   C.129S7-Gt(ROSA)26Sor/J
010683   C57BL/6-Enamtm1.1Jcch/J
010684   C57BL/6-Klk4tm1.1Jpsi/J
009062   C57BL/6-Magel2tm1Stw/J
002754   C57BL/6-Tg(LacZpl)60Vij/J
013729   C57BL/6-Tg(tetO-EDN1,-lacZ)9Mhus/J
013728   C57BL/6-Tg(tetO-NOS2,-lacZ)240iMhus/J
002193   C57BL/6J-Tg(MTn-lacZ)204Bri/J
002981   DBA/2-Tg(xstpx-lacZ)36And/J
004127   FVB-Tg(Nes-rtTA)306Rvs/J
007225   FVB.129(B6)-Usp18tm1Dzh/J
006214   FVB.129P2-Smn1tm1Msd/J
009427   FVB.129S4(B6)-Gt(ROSA)26Sortm1Sor/J
012429   FVB.Cg-Gt(ROSA)26Sortm1(CAG-lacZ,-EGFP)Glh/J
008206   FVB.Cg-Smn1tm1Msd Tg(SMN2)566Ahmb/J
008209   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(ACTA1-SMN)69Ahmb/J
005025   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
005026   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/J
005024   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/J
003487   FVB.Cg-Tg(XGFAP-lacZ)3Mes/J
003140   FVB/N-Tg(PAI1-lacZ)1Jjb/J
002856   FVB/N-Tg(TIE2-lacZ)182Sato/J
005941   FVB/N-Tg(tetO-Aurkb,lacZ)41Kra/J
003315   FVB/N-Tg(tetORo1-lacZ)3Conk/J
005878   NOD.129(Cg)-Cd44tm1Hbg/J
003899   STOCK Cd44tm1Hbg/J
008602   STOCK Cdontm2Rsk/J
007912   STOCK En1tm2Alj/J
007925   STOCK En2tm5.1Alj/J
008211   STOCK Gli1tm2Alj/J
007922   STOCK Gli2tm2.1Alj/J
013123   STOCK Gt(ROSA)26Sortm6(Gli1)Amc/J
006241   STOCK Hhiptm1Amc/J
010707   STOCK Hprttm37(lacZ)Ems/Mmjax
012335   STOCK Hprttm50(Ple55-lacZ)Ems/Mmjax
013764   STOCK Hprttm57(Ple26-lacZ)Ems/Mmjax
012353   STOCK Hprttm65(Ple53-lacZ)Ems/Mmjax
012354   STOCK Hprttm66(Ple5-lacZ)Ems/Mmjax
012584   STOCK Hprttm69(Ple134-lacZ)Ems/Mmjax
012923   STOCK IppkGt(XA232)Byg/J
006578   STOCK Myoz2tm1Eno/J
005707   STOCK Rag1tm1Mom Tg(TIE2-lacZ)182Sato/J
006882   STOCK Tg(CAG-Bgeo,-AML1/ETO,-ALPP)1Lbe/J
005438   STOCK Tg(CAG-Bgeo,-DsRed*MST)1Nagy/J
006850   STOCK Tg(CAG-Bgeo,-NOTCH1,-EGFP)1Lbe/J
006876   STOCK Tg(CAG-Bgeo,-TEL/AML1,-EGFP)A6Lbe/J
006613   STOCK Tg(CAG-Bgeo,-Tle1,-ALPP)1Lbe/J
003919   STOCK Tg(CAG-Bgeo/ALPP)1Lbe/J
003920   STOCK Tg(CAG-Bgeo/GFP)21Lbe/J
006674   STOCK Tg(Olfr16,taulacZ)2030Mom/MomJ
008477   STOCK Tg(RARE-Hspa1b/lacZ)12Jrt/J
008203   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(ACTA1-SMN)63Ahmb/J
006553   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(H2-K1-tsA58)6Kio Tg(SMN2*delta7)4299Ahmb/J
008212   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(Prnp-SMN)92Ahmb/J
005493   STOCK Tg(Tek-rtTA,TRE-lacZ)1425Tpr/J
002395   STOCK Tg(Zfy1-lacZ)218Bri/J
003274   STOCK Tg(tetNZL)2Bjd/J
005728   STOCK Tg(tetO-Ipf1,lacZ)958.1Macd/J
View lacZ Expression Strains     (257 strains)

Strains carrying   Gnat2cpfl3 allele
003072   ALS/LtJ
006795   B6.Cg-Gnat2cpfl3/Boc
006180   CD10/JlsJ
005052   PN/nBSwUmabJ
002746   SENCARA/PtJ
002747   SENCARB/PtJ
002748   SENCARC/PtJ
006135   STOCK Sgk3fz-ica/McirJ
003773   STOCK Tg(CAG-ECFP)CK6Nagy/J
005645   STOCK Tg(CAG-mRFP1)1F1Hadj/J
005667   STOCK Tg(Neurog3-cre)C1Able/J
003262   STOCK Tg(Trp53A135V)L3Ber/J
005104   STOCK Tg(tetO-HIST1H2BJ/GFP)47Efu/J
005699   STOCK Tg(tetO-Ipf1,EGFP)956.6Macd/J
View Strains carrying   Gnat2cpfl3     (14 strains)

View Strains carrying   Tg(TCF/Lef1-lacZ)34Efu     (2 strains)

Strains carrying other alleles of Fos
003479   B6.C3-Tg(Fos-luc)1Rnd/J
View Strains carrying other alleles of Fos     (1 strain)

Strains carrying other alleles of lacZ
002484   129-Alpltm1Sor/J
002292   129-Gt(ROSA)26Sor/J
006050   129-Sirt6tm1Fwa/J
003451   129-Smad3tm1Par/J
003310   129S-Gt(ROSA)26Sortm1Sor/J
003383   129S-Nogtm1Amc/J
004545   129S-Npytm1Rpa/J
005091   129S-Pnpla6tm1Blw/J
007199   129S-Sgpl1Gt(ROSA)78Sor/J
003082   129S1/SvImJ-Bcl2tm1Mpin/J
010633   B6(Cg)-Gt(ROSA)26Sortm1(CAG-taulacZ)Bene/J
023757   B6(Cg)-Tg(tetO-tetX,lacZ)1Gogo/UmriJ
005085   B6.129(Cg)-Cd44tm1Hbg/J
012239   B6.129(Cg)-Cd44tm1Hbg/SjJ
004178   B6.129(Cg)-Tg(CAG-Bgeo/GFP)21Lbe/J
004478   B6.129-Foxd1tm1Lai/J
006939   B6.129-Fut1tm1Sdo/J
005768   B6.129-Htr5atm1Dgen/J
002938   B6.129-Kdrtm1Jrt/J
004158   B6.129-Maftm1Gsb/J
008233   B6.129-Nrgntm1Kph/J
006497   B6.129-Skiltm2Spw/J
005849   B6.129-Tmprss11atm1Dgen/J
009348   B6.129P2(Cg)-Hprttm17(Ple48-lacZ)Ems/Mmjax
012572   B6.129P2(Cg)-Hprttm19(Ple88-lacZ)Ems/Mmjax
012574   B6.129P2(Cg)-Hprttm38(Ple17-lacZ)Ems/Mmjax
012575   B6.129P2(Cg)-Hprttm39(Ple24-lacZ)Ems/Mmjax
012576   B6.129P2(Cg)-Hprttm40(Ple34-lacZ)Ems/Mmjax
010805   B6.129P2(Cg)-Hprttm41(Ple160-lacZ)Ems/Mmjax
012331   B6.129P2(Cg)-Hprttm42(Ple131-lacZ)Ems/Mmjax
012577   B6.129P2(Cg)-Hprttm43(Ple140-lacZ)Ems/Mmjax
010709   B6.129P2(Cg)-Hprttm44(Ple49-lacZ)Ems/Mmjax
012333   B6.129P2(Cg)-Hprttm45(Ple67-lacZ)Ems/Mmjax
012733   B6.129P2(Cg)-Hprttm53(CAG-lacZ)Ems/Mmjax
012578   B6.129P2(Cg)-Hprttm56(Ple25-lacZ)Ems/Mmjax
012579   B6.129P2(Cg)-Hprttm58(Ple119-lacZ)Ems/Mmjax
012580   B6.129P2(Cg)-Hprttm59(Ple123-lacZ)Ems/Mmjax
012581   B6.129P2(Cg)-Hprttm62(Ple153-lacZ)Ems/Mmjax
012342   B6.129P2(Cg)-Hprttm63(Ple12-lacZ)Ems/Mmjax
012347   B6.129P2(Cg)-Hprttm64(Ple170-lacZ)Ems/Mmjax
012582   B6.129P2(Cg)-Hprttm67(Ple238-lacZ)Ems/Mmjax
012583   B6.129P2(Cg)-Hprttm68(Ple127-lacZ)Ems/Mmjax
012656   B6.129P2(Cg)-Hprttm70(Ple240-lacZ)Ems/Mmjax
012657   B6.129P2(Cg)-Hprttm71(Ple155-lacZ)Ems/Mmjax
012659   B6.129P2(Cg)-Hprttm73(Ple142-lacZ)Ems/Mmjax
012734   B6.129P2(Cg)-Hprttm74(Ple232-lacZ)Ems/Mmjax
010921   B6.129P2(Cg)-Smn1tm1Msd/J
008235   B6.129P2-Abcg5tm1Plo/J
005772   B6.129P2-Acvrl1tm1Dgen/J
005770   B6.129P2-Adamts4tm1Dgen/J
005771   B6.129P2-Adamts5tm1Dgen/J
005773   B6.129P2-Adcy3tm1Dgen/J
005774   B6.129P2-Adcy7tm1Dgen/J
005775   B6.129P2-Adipor2tm1Dgen/J
005776   B6.129P2-Avpr1atm1Dgen/J
009120   B6.129P2-Axin2tm1Wbm/J
005777   B6.129P2-Axltm1Dgen/J
005783   B6.129P2-Cacna1ctm1Dgen/J
005780   B6.129P2-Cacna2d3tm1Dgen/J
005781   B6.129P2-Cacng3tm1Dgen/J
005782   B6.129P2-Cacng4tm1Dgen/J
005784   B6.129P2-Capn5tm1Dgen/J
005785   B6.129P2-Capn7tm1Dgen/J
005792   B6.129P2-Ccr1l1tm1Dgen/J
005793   B6.129P2-Ccr6tm1Dgen/J
005794   B6.129P2-Ccr7tm1Dgen/J
005779   B6.129P2-Celsr2tm1Dgen/J
005797   B6.129P2-Chrna2tm1Dgen/J
007566   B6.129P2-Clip2tm1.1Gal/J
005787   B6.129P2-Ctsctm1Dgen/J
005796   B6.129P2-Cxcr3tm1Dgen/J
005798   B6.129P2-Drd5tm1Dgen/J
005800   B6.129P2-Efemp2tm1Dgen/J
005801   B6.129P2-Esrratm1Dgen/J
005802   B6.129P2-Faim2tm1Dgen/J
005803   B6.129P2-Fzd1tm1Dgen/J
005804   B6.129P2-Fzd8tm1Dgen/J
005811   B6.129P2-Gabra3tm1Dgen/J
005812   B6.129P2-Gabra4tm1Dgen/J
005810   B6.129P2-Gabrptm1Dgen/J
005809   B6.129P2-Galr1tm1Dgen/J
005816   B6.129P2-Glra3tm1Dgen/J
005805   B6.129P2-Gpr151tm1Dgen/J
005806   B6.129P2-Gpr37tm1Dgen/J
005807   B6.129P2-Gpr6tm1Dgen/J
005813   B6.129P2-Grik5tm1Dgen/J
005808   B6.129P2-Grk5tm1Dgen/J
005814   B6.129P2-Grm1tm1Dgen/J
005815   B6.129P2-Grm3tm1Dgen/J
005817   B6.129P2-Gsk3btm1Dgen/J
005818   B6.129P2-Hcrtr1tm1Dgen/J
005767   B6.129P2-Htr4tm1Dgen/J
005769   B6.129P2-Htr7tm1Dgen/J
005821   B6.129P2-Lats2tm1Dgen/J
005822   B6.129P2-Lmbr1tm1Dgen/J
005850   B6.129P2-Mapkapk2tm1Dgen/J
005824   B6.129P2-Mmp17tm1Dgen/J
005825   B6.129P2-Mtmr1tm1Dgen/J
005826   B6.129P2-Ntsr1tm1Dgen/J
005829   B6.129P2-Pkd2l2tm1Dgen/J
005828   B6.129P2-Ppardtm1Dgen/J
005831   B6.129P2-Ppm1ftm1Dgen/J
005827   B6.129P2-Ptch2tm1Dgen/J
005832   B6.129P2-Ptprotm1Dgen/J
005799   B6.129P2-S1pr4tm1Dgen/J
005837   B6.129P2-Scn11atm1Dgen/J
005836   B6.129P2-Scn9atm1Dgen/J
005834   B6.129P2-Sema5atm1Dgen/J
005835   B6.129P2-Sema6ctm1Dgen/J
006432   B6.129P2-Slc18a1tm1Dgen/J
005839   B6.129P2-Slc22a12tm1Dgen/J
005838   B6.129P2-Slc22a6tm1Dgen/J
005840   B6.129P2-Slc40a1tm1Dgen/J
005841   B6.129P2-Slc6a9tm1Dgen/J
005842   B6.129P2-Slc7a8tm1Dgen/J
005843   B6.129P2-Slc9a6tm1Dgen/J
005844   B6.129P2-Sstr1tm1Dgen/J
005847   B6.129P2-Tgfbr1tm1Dgen/J
005845   B6.129P2-Thbs4tm1Dgen/J
005790   B6.129P2-Tpp1tm1Dgen/J
005848   B6.129P2-Trpm5tm1Dgen/J
005791   B6.129P2-Xcr1tm1Dgen/J
012377   B6.129S-Cyp19a1tm1.1Shah/J
009089   B6.129S1(Cg)-Ndntm2Stw/J
009387   B6.129S1-Osr1tm1Jian/J
009386   B6.129S1-Osr2tm1Jian/J
010617   B6.129S1-Snai2tm1Grid/J
003474   B6.129S4-Gt(ROSA)26Sortm1Sor/J
006142   B6.129S4-Ppargtm1Rev/J
003754   B6.129S4-Shroom3Gt(ROSA53)Sor/J
005119   B6.129S6-Npas2tm1Slm/J
002741   B6.129S7-Alpltm1Sor/J
005970   B6.129S7-Atoh1tm2Hzo/J
006039   B6.129S7-Efnb2tm1And/J
002192   B6.129S7-Gt(ROSA)26Sor/J
005981   B6.129S7-Rai1tm1Jrl/J
005039   B6.129X1-Adra1atm1Pcs/J
006262   B6.129X1-Fut2tm1Sdo/J
025101   B6.Cg-Avpr1atm1Dgen Tg(AVPR1A)1Bux/BuxJ
014536   B6.Cg-Hprttm75(Ple143-lacZ)Ems/Mmjax
007745   B6.Cg-Mir155tm1.1Rsky/J
005317   B6.Cg-Tg(BAT-lacZ)3Picc/J
003139   B6.Cg-Tg(DBHn-lacZ)8Rpk/J
006229   B6.Cg-Tg(DRE-lacZ)2Gswz/J
024050   B6.Cg-Tg(Hmgcr-lacZ)H253Sest/J
008629   B6.Cg-Tg(SMN2)11Tro Smn1tm1Msd/J
008631   B6.Cg-Tg(SMN2)11Tro Tg(SMN2)46Tro Smn1tm1Msd/J
008630   B6.Cg-Tg(SMN2)46Tro Smn1tm1Msd/J
007222   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/J
006964   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
006773   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/J
009136   B6.Cg-Tg(tetO-Kcnj2,lacZ)1Gogo/J
002982   B6.Cg-Tg(xstpx-lacZ)32And/J
018625   B6.FVB-Tg(Fabp4-lacZ)4Mosh/J
008615   B6;129-Frzbtm1Nat/J
008621   B6;129-Fzd5tm1Nat/J
016857   B6;129-Itga7tm1Burk/J
005064   B6;129-Slc30a3tm1Rpa/J
009599   B6;129P2-Adam19Gt(Betageo)1Bbl/J
006431   B6;129P2-Adam21tm1Dgen/J
005788   B6;129P2-Cd97tm1Dgen/J
008590   B6;129P2-Cxcl14tm1Litt/J
006703   B6;129P2-Gucy2dtm1Mom/MomJ
021162   B6;129P2-Mapttm2Arbr/J
006665   B6;129P2-Olfr151tm13(rI7)Mom/MomJ
006666   B6;129P2-Olfr151tm24(Olfr2)Mom/MomJ
005833   B6;129P2-Rgs4tm1Dgen/J
002073   B6;129S-Gt(ROSA)26Sor/J
006470   B6;129S-Hopxtm1Eno/J
004153   B6;129S-Map7Gt(ROSABetageo)1Sor/J
006958   B6;129S-Nkd1tm1Kwha/J
006960   B6;129S-Nkd2tm1Kwha/J
010619   B6;129S1-Lfngtm1Grid/J
007208   B6;129S4-Csrnp1Gt(ROSA)80Sor/J
011052   B6;129S4-Ctbp2Gt(ROSA61)Sor/J
003309   B6;129S4-Gt(ROSA)26Sortm1Sor/J
007207   B6;129S4-Zfp640Gt(ROSA)81Sor/J
004365   B6;129S6-Srebf1tm1Mbr/J
002317   B6;129S7-Alpltm1Sor/J
003266   B6;129S7-Epas1tm1Rus/J
006044   B6;129S7-Ephb4tm1And/J
012436   B6;129S7-Tg(CAG-lacZ,-BMPR1A*,-EGFP)1Mis/Mmjax
008618   B6;A-Tg(OPN1LW-lacZ)1Nat/J
006465   B6;CBA-Tg(CAG-lacZ-WGA)330Bbm/J
007975   B6;CBA-Tg(OR8A1-taulacZ)1Mom/MomJ
007972   B6;CBA-Tg(Olfr151-taulacZ)4Mom/MomJ
006680   B6;CBA-Tg(Olfr16*,taulacZ)19Mom/MomJ
006671   B6;CBA-Tg(Olfr16*,taulacZ)5Mom/MomJ
006672   B6;CBA-Tg(Olfr16*,taulacZ)7Mom/MomJ
006673   B6;CBA-Tg(Olfr16,taulacZ)sn2Mom/MomJ
007973   B6;CBA-Tg(Olfr16-taulacZ)1Mom/MomJ
007974   B6;CBA-Tg(Olfr160-taulacZ)V4-7Mom/MomJ
007976   B6;CBA-Tg(Olfr713-taulacZ)4Mom/MomJ
006743   B6;CBA-Tg(P-taulacZ)11Mom/MomJ
006793   B6;CBA-Tg(P-taulacZ)13Mom/MomJ
006742   B6;CBA-Tg(P-taulacZ)8Mom/MomJ
004141   B6;CBA-Tg(UAS-lacZ)65Rth/J
008344   B6;DBA-Tg(Fos-tTA,Fos-EGFP*)1Mmay Tg(tetO-lacZ,tTA*)1Mmay/J
018627   B6;SJL-Tg(Myl1-lacZ)1Ibdml/J
002369   B6;SJL-Tg(c177-lacZ)226Bri/J
002372   B6;SJL-Tg(c177-lacZ)227Bri/J
002621   B6;SJL-Tg(tetop-lacZ)2Mam/J
003299   B6;SWJ-Tg(TIMP3-lacZ)7Jeb/J
002865   B6CBA-Tg(Wnt1-lacZ)206Amc/J
019101   B6N.129S4(B6)-Gt(ROSA)26Sortm1Sor/CjDswJ
018913   B6N.Cg-Tg(tetO-GFP,-lacZ)G3Rsp/J
002955   C.129S7-Gt(ROSA)26Sor/J
009062   C57BL/6-Magel2tm1Stw/J
017955   C57BL/6-Tg(Gfap-rtTA,tetO-MAOB,-lacZ)1Jkan/J
002754   C57BL/6-Tg(LacZpl)60Vij/J
013729   C57BL/6-Tg(tetO-EDN1,-lacZ)9Mhus/J
013728   C57BL/6-Tg(tetO-NOS2,-lacZ)240iMhus/J
002193   C57BL/6J-Tg(MTn-lacZ)204Bri/J
005420   C;129S7 Gt(ROSA)26Sor-Bmp5cfe-se7J/GrsrJ
002981   DBA/2-Tg(xstpx-lacZ)36And/J
017333   FVB-Tg(tetO-Gnai2*,-lacZ)382Kndl/J
007225   FVB.129(B6)-Usp18tm1Dzh/J
006214   FVB.129P2-Smn1tm1Msd/J
009427   FVB.129S4(B6)-Gt(ROSA)26Sortm1Sor/J
012429   FVB.Cg-Gt(ROSA)26Sortm1(CAG-lacZ,-EGFP)Glh/J
008206   FVB.Cg-Smn1tm1Msd Tg(SMN2)566Ahmb/J
008209   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(ACTA1-SMN)69Ahmb/J
016573   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(S100B-EGFP)1Wjt Tg(SMN2*delta7)4299Ahmb/J
007968   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/2J
008782   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*A111G)588Ahmb/J
009134   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*A111G)591Ahmb/J
007952   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/2J
005025   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
005026   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/J
007949   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/2J
005024   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/J
003487   FVB.Cg-Tg(XGFAP-lacZ)3Mes/J
003140   FVB/N-Tg(PAI1-lacZ)1Jjb/J
002856   FVB/N-Tg(TIE2-lacZ)182Sato/J
005941   FVB/N-Tg(tetO-Aurkb,lacZ)41Kra/J
003315   FVB/N-Tg(tetORo1-lacZ)3Conk/J
005878   NOD.129(Cg)-Cd44tm1Hbg/J
003899   STOCK Cd44tm1Hbg/J
008602   STOCK Cdontm2Rsk/J
007912   STOCK En1tm2Alj/J
007925   STOCK En2tm5.1Alj/J
008211   STOCK Gli1tm2Alj/J
007922   STOCK Gli2tm2.1Alj/J
017596   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#aAhmb/J
017597   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#bAhmb/J
006241   STOCK Hhiptm1Amc/J
010707   STOCK Hprttm37(lacZ)Ems/Mmjax
012335   STOCK Hprttm50(Ple55-lacZ)Ems/Mmjax
013764   STOCK Hprttm57(Ple26-lacZ)Ems/Mmjax
012353   STOCK Hprttm65(Ple53-lacZ)Ems/Mmjax
012354   STOCK Hprttm66(Ple5-lacZ)Ems/Mmjax
012584   STOCK Hprttm69(Ple134-lacZ)Ems/Mmjax
007022   STOCK Mnx1tm4(cre)Tmj Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
006578   STOCK Myoz2tm1Eno/J
006646   STOCK Olfr151tm11(Olfr160)Mom/MomJ
006645   STOCK Olfr151tm12(Olfr16)Mom/MomJ
006691   STOCK Olfr151tm14(Adrb2)Mom/MomJ
006635   STOCK Olfr151tm15(V1rb2)Mom/MomJ
006630   STOCK Olfr151tm1Mom/MomJ
006629   STOCK Olfr151tm2Mom/MomJ
006628   STOCK Olfr151tm3Mom/MomJ
006740   STOCK Olfr160tm1(Olfr151)Mom Tg(Olfr151,taulacZ)AMom/MomJ
006741   STOCK Olfr160tm1(Olfr151)Mom Tg(Olfr151,taulacZ)BMom/MomJ
006651   STOCK Olfr17tm4Mom/MomJ
005707   STOCK Rag1tm1Mom Tg(TIE2-lacZ)182Sato/J
006633   STOCK Vmn1r49tm3Mom/MomJ
006634   STOCK Vmn1r49tm4(Olfr151)Mom/MomJ
014092   STOCK Tg(ACTB-tTA2,-MAPT/lacZ)1Luo/J
006613   STOCK Tg(CAG-Bgeo,-Tle1,-ALPP)1Lbe/J
003920   STOCK Tg(CAG-Bgeo/GFP)21Lbe/J
006674   STOCK Tg(Olfr16,taulacZ)2030Mom/MomJ
008477   STOCK Tg(RARE-Hspa1b/lacZ)12Jrt/J
008203   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(ACTA1-SMN)63Ahmb/J
006553   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(H2-K1-tsA58)6Kio Tg(SMN2*delta7)4299Ahmb/J
006570   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(Hlxb9-GFP)1Tmj/J
008212   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(Prnp-SMN)92Ahmb/J
018916   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1-SMN2*)16Cll/CllJ
005493   STOCK Tg(Tek-rtTA,TRE-lacZ)1425Tpr/J
002395   STOCK Tg(Zfy1-lacZ)218Bri/J
003274   STOCK Tg(tetNZL)2Bjd/J
005728   STOCK Tg(tetO-Ipf1,lacZ)958.1Macd/J
View Strains carrying other alleles of lacZ     (281 strains)

Additional Web Information

Fluorescent Proteins/lacZ Systems

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Achromatopsia 4; ACHM4   (GNAT2)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Tg(TCF/Lef1-lacZ)34Efu/0

        Background Not Specified
  • endocrine/exocrine gland phenotype
  • absent sebaceous gland
    • sebaceous glands are not detected at P9; however, they are visible in some follicles at P12   (MGI Ref ID J:102493)
  • integument phenotype
  • abnormal epidermal layer morphology
    • epidermal differentiation is delayed relative to wild-type   (MGI Ref ID J:102493)
    • abnormal keratinocyte differentiation
      • mice show a decrease in relative number of terminally differentiatied keratinocytes   (MGI Ref ID J:102493)
    • thick epidermis   (MGI Ref ID J:102493)
  • absent sebaceous gland
    • sebaceous glands are not detected at P9; however, they are visible in some follicles at P12   (MGI Ref ID J:102493)
  • short hair
    • transgenic mice have shorter hair than wild-type   (MGI Ref ID J:102493)
  • cellular phenotype
  • abnormal keratinocyte differentiation
    • mice show a decrease in relative number of terminally differentiatied keratinocytes   (MGI Ref ID J:102493)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cell Biology Research
Signal Transduction

Dermatology Research
Other

Developmental Biology Research
Skin and Hair Texture Defects

Research Tools
lacZ Expression
Dermatology Research
Developmental Biology Research
Genetics Research
      Tissue/Cell Markers

Gnat2cpfl3 related

Sensorineural Research
Eye Defects

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tg(TCF/Lef1-lacZ)34Efu
Allele Name transgene insertion 34, Elaine Fuchs
Allele Type Transgenic (Reporter)
Common Name(s) TCF-betagal; TOPGAL; Tg(Fos-lacZ)34Efu; Top-Gal;
Mutation Made By Elaine Fuchs,   The Rockefeller University
Site of ExpressionlacZ expression occurs during early embryonic development in a subset of pluripotent embryonic basel cells of the epithelium and dermis of developing hair follicles. lacZ expression disappears during formation of hair germ and then reappears at E16.5 in hair follicles until 18 days after birth.
Expressed Gene lacZ, beta-galactosidase, E. coli
Promoter Fos, FBJ osteosarcoma oncogene, rat
General Note Homozygous transgenic mice are viable, fertile, normal in size, and do not display any gross physical or behavioral abnormalities.

Transgenic mice express beta-galactosidase in the presence of the lymphoid enhancer binding factor 1/transcription factor 3 (LEF1/TCF3) mediated signaling pathway and activated Beta-catenin (CATNB).

Transgenic mice display Beta-galactosidase activity during early embryonic development in a subset of pluripotent embryonic basal cells of the epithelium and dermis of developing hair follicles. Beta-galactosidase activity is not detected in the next stage of hair follicle development, formation of hair germs. At E16.5, transgene activity reappears in hair follicles and is detectable until 18 days after birth.

Molecular Note The transgene contains the lacZ gene under the control of a promoter consisting of three consensus lymphoid enhancer binding factor 1/transcription factor 3 (LEF/TCF)-binding motifs upstream of a minimal Fos promoter. This allele is responsive to canonical Wnt/beta-catenin signal transduction. [MGI Ref ID J:55937]
 
 
 
Allele Symbol Gnat2cpfl3
Allele Name cone photoreceptor function loss 3
Allele Type Spontaneous
Strain of Originvarious
Gene Symbol and Name Gnat2, guanine nucleotide binding protein, alpha transducing 2
Chromosome 3
Gene Common Name(s) ACHM4; AW490837; GNATC; Gnat-2; Gt-2; Tcalpha; expressed sequence AW490837;
General Note This allele has been detected in the following strains either by genotyping or complementation testing: ALS/LtJ, SENCARA/PtJ, SENCARB/PtJ, SENCARC/PtJ, PN/nBSwUmabJ. (J:122428)
Molecular Note A single nucleotide substitution of G to A at position 598 in exon 6. This mutation converts codon 200 from aspartic acid to asparagine. [MGI Ref ID J:122428]

Genotyping

Genotyping Information

Genotyping Protocols

Generic LacZ Melt Curve Analysis, Melt Curve Analysis
Generic LacZ QPCR, QPCR
Generic LacZ, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

DasGupta R; Fuchs E. 1999. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126(20):4557-68. [PubMed: 10498690]  [MGI Ref ID J:55937]

Additional References

Chang B; Dacey MS; Hawes NL; Hitchcock PF; Milam AH; Atmaca-Sonmez P; Nusinowitz S; Heckenlively JR. 2006. Cone photoreceptor function loss-3, a novel mouse model of achromatopsia due to a mutation in Gnat2. Invest Ophthalmol Vis Sci 47(11):5017-21. [PubMed: 17065522]  [MGI Ref ID J:122428]

Gnat2cpfl3 related

Alexander JJ; Umino Y; Everhart D; Chang B; Min SH; Li Q; Timmers AM; Hawes NL; Pang JJ; Barlow RB; Hauswirth WW. 2007. Restoration of cone vision in a mouse model of achromatopsia. Nat Med 13(6):685-7. [PubMed: 17515894]  [MGI Ref ID J:121897]

Allen AE; Cameron MA; Brown TM; Vugler AA; Lucas RJ. 2010. Visual responses in mice lacking critical components of all known retinal phototransduction cascades. PLoS One 5(11):e15063. [PubMed: 21124780]  [MGI Ref ID J:167121]

Altimus CM; Guler AD; Alam NM; Arman AC; Prusky GT; Sampath AP; Hattar S. 2010. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 13(9):1107-12. [PubMed: 20711184]  [MGI Ref ID J:165280]

Chang B; Dacey MS; Hawes NL; Hitchcock PF; Milam AH; Atmaca-Sonmez P; Nusinowitz S; Heckenlively JR. 2006. Cone photoreceptor function loss-3, a novel mouse model of achromatopsia due to a mutation in Gnat2. Invest Ophthalmol Vis Sci 47(11):5017-21. [PubMed: 17065522]  [MGI Ref ID J:122428]

Chang B; Hawes NL; Hurd RE; Wang J; Howell D; Davisson MT; Roderick TH; Nusinowitz S; Heckenlively JR. 2005. Mouse models of ocular diseases. Vis Neurosci 22(5):587-93. [PubMed: 16332269]  [MGI Ref ID J:156373]

Chang B; Hurd R; Wang J; Nishina P. 2013. Survey of common eye diseases in laboratory mouse strains. Invest Ophthalmol Vis Sci 54(7):4974-81. [PubMed: 23800770]  [MGI Ref ID J:198916]

Deng WT; Sakurai K; Liu J; Dinculescu A; Li J; Pang J; Min SH; Chiodo VA; Boye SL; Chang B; Kefalov VJ; Hauswirth WW. 2009. Functional interchangeability of rod and cone transducin alpha-subunits. Proc Natl Acad Sci U S A 106(42):17681-6. [PubMed: 19815523]  [MGI Ref ID J:153749]

Jones RS; Pedisich M; Carroll RC; Nawy S. 2014. Spatial organization of AMPAR subtypes in ON RGCs. J Neurosci 34(2):656-61. [PubMed: 24403163]  [MGI Ref ID J:205576]

Naarendorp F; Esdaille TM; Banden SM; Andrews-Labenski J; Gross OP; Pugh EN Jr. 2010. Dark light, rod saturation, and the absolute and incremental sensitivity of mouse cone vision. J Neurosci 30(37):12495-507. [PubMed: 20844144]  [MGI Ref ID J:164666]

Nusinowitz S; Ridder WH 3rd; Ramirez J. 2007. Temporal response properties of the primary and secondary rod-signaling pathways in normal and Gnat2 mutant mice. Exp Eye Res 84(6):1104-14. [PubMed: 17408617]  [MGI Ref ID J:126462]

Sakami S; Kolesnikov AV; Kefalov VJ; Palczewski K. 2014. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis. Hum Mol Genet 23(7):1723-41. [PubMed: 24214395]  [MGI Ref ID J:207143]

Umino Y; Solessio E; Barlow RB. 2008. Speed, spatial, and temporal tuning of rod and cone vision in mouse. J Neurosci 28(1):189-98. [PubMed: 18171936]  [MGI Ref ID J:131050]

Wang YV; Weick M; Demb JB. 2011. Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells. J Neurosci 31(21):7670-81. [PubMed: 21613480]  [MGI Ref ID J:191557]

Won J; Shi LY; Hicks W; Wang J; Hurd R; Naggert JK; Chang B; Nishina PM. 2011. Mouse model resources for vision research. J Ophthalmol 2011:391384. [PubMed: 21052544]  [MGI Ref ID J:166679]

Tg(TCF/Lef1-lacZ)34Efu related

Ahn Y; Sanderson BW; Klein OD; Krumlauf R. 2010. Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development 137(19):3221-31. [PubMed: 20724449]  [MGI Ref ID J:168361]

Ahn Y; Sims C; Logue JM; Weatherbee SD; Krumlauf R. 2013. Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development 140(3):583-93. [PubMed: 23293290]  [MGI Ref ID J:194074]

Ahrens MJ; Li Y; Jiang H; Dudley AT. 2009. Convergent extension movements in growth plate chondrocytes require gpi-anchored cell surface proteins. Development 136(20):3463-74. [PubMed: 19762422]  [MGI Ref ID J:153618]

Ahrens MJ; Romereim S; Dudley AT. 2011. A re-evaluation of two key reagents for in vivo studies of Wnt signaling. Dev Dyn :. [PubMed: 21793100]  [MGI Ref ID J:174609]

Aicher A; Kollet O; Heeschen C; Liebner S; Urbich C; Ihling C; Orlandi A; Lapidot T; Zeiher AM; Dimmeler S. 2008. The Wnt antagonist Dickkopf-1 mobilizes vasculogenic progenitor cells via activation of the bone marrow endosteal stem cell niche. Circ Res 103(8):796-803. [PubMed: 18776043]  [MGI Ref ID J:155149]

Aisagbonhi O; Rai M; Ryzhov S; Atria N; Feoktistov I; Hatzopoulos AK. 2011. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 4(4):469-83. [PubMed: 21324930]  [MGI Ref ID J:174256]

Al Alam D; Green M; Tabatabai Irani R; Parsa S; Danopoulos S; Sala FG; Branch J; El Agha E; Tiozzo C; Voswinckel R; Jesudason EC; Warburton D; Bellusci S. 2011. Contrasting expression of canonical Wnt signaling reporters TOPGAL, BATGAL and Axin2(LacZ) during murine lung development and repair. PLoS One 6(8):e23139. [PubMed: 21858009]  [MGI Ref ID J:176498]

Balli D; Zhang Y; Snyder J; Kalinichenko VV; Kalin TV. 2011. Endothelial cell-specific deletion of transcription factor FoxM1 increases urethane-induced lung carcinogenesis. Cancer Res 71(1):40-50. [PubMed: 21199796]  [MGI Ref ID J:167773]

Beaudoin GM 3rd; Sisk JM; Coulombe PA; Thompson CC. 2005. Hairless triggers reactivation of hair growth by promoting Wnt signaling. Proc Natl Acad Sci U S A 102(41):14653-8. [PubMed: 16195376]  [MGI Ref ID J:102493]

Bell SM; Schreiner CM; Wert SE; Mucenski ML; Scott WJ; Whitsett JA. 2008. R-spondin 2 is required for normal laryngeal-tracheal, lung and limb morphogenesis. Development 135(6):1049-58. [PubMed: 18256198]  [MGI Ref ID J:131960]

Bodmer D; Levine-Wilkinson S; Richmond A; Hirsh S; Kuruvilla R. 2009. Wnt5a mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons. J Neurosci 29(23):7569-81. [PubMed: 19515925]  [MGI Ref ID J:149814]

Bonnet N; Conway SJ; Ferrari SL. 2012. Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc Natl Acad Sci U S A 109(37):15048-53. [PubMed: 22927401]  [MGI Ref ID J:190032]

Boras-Granic K; Chang H; Grosschedl R; Hamel PA. 2006. Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland. Dev Biol 295(1):219-31. [PubMed: 16678815]  [MGI Ref ID J:110699]

Brechbuhl HM; Ghosh M; Smith MK; Smith RW; Li B; Hicks DA; Cole BB; Reynolds PR; Reynolds SD. 2011. beta-Catenin Dosage Is a Critical Determinant of Tracheal Basal Cell Fate Determination. Am J Pathol 179(1):367-79. [PubMed: 21703416]  [MGI Ref ID J:173999]

Brown A; Machan JT; Hayes L; Zervas M. 2011. Molecular organization and timing of Wnt1 expression define cohorts of midbrain dopamine neuron progenitors in vivo. J Comp Neurol 519(15):2978-3000. [PubMed: 21713770]  [MGI Ref ID J:176481]

Brown AS; Epstein DJ. 2011. Otic ablation of smoothened reveals direct and indirect requirements for Hedgehog signaling in inner ear development. Development 138(18):3967-76. [PubMed: 21831920]  [MGI Ref ID J:180898]

Brugmann SA; Allen NC; James AW; Mekonnen Z; Madan E; Helms JA. 2010. A primary cilia-dependent etiology for midline facial disorders. Hum Mol Genet 19(8):1577-92. [PubMed: 20106874]  [MGI Ref ID J:158523]

Burn SF; Webb A; Berry RL; Davies JA; Ferrer-Vaquer A; Hadjantonakis AK; Hastie ND; Hohenstein P. 2011. Calcium/NFAT signalling promotes early nephrogenesis. Dev Biol 352(2):288-98. [PubMed: 21295565]  [MGI Ref ID J:171469]

Cai X; Zhang W; Hu J; Zhang L; Sultana N; Wu B; Cai W; Zhou B; Cai CL. 2013. Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis. Development 140(15):3176-87. [PubMed: 23824573]  [MGI Ref ID J:198628]

Carpenter AC; Rao S; Wells JM; Campbell K; Lang RA. 2010. Generation of mice with a conditional null allele for Wntless. Genesis 48(9):554-8. [PubMed: 20614471]  [MGI Ref ID J:164701]

Cervantes S; Yamaguchi TP; Hebrok M. 2009. Wnt5a is essential for intestinal elongation in mice. Dev Biol 326(2):285-94. [PubMed: 19100728]  [MGI Ref ID J:145166]

Chen J; Stahl A; Krah NM; Seaward MR; Dennison RJ; Sapieha P; Hua J; Hatton CJ; Juan AM; Aderman CM; Willett KL; Guerin KI; Mammoto A; Campbell M; Smith LE. 2011. Wnt signaling mediates pathological vascular growth in proliferative retinopathy. Circulation 124(17):1871-81. [PubMed: 21969016]  [MGI Ref ID J:189464]

Chen M; Zhu M; Awad H; Li TF; Sheu TJ; Boyce BF; Chen D; O'Keefe RJ. 2008. Inhibition of beta-catenin signaling causes defects in postnatal cartilage development. J Cell Sci 121(Pt 9):1455-65. [PubMed: 18397998]  [MGI Ref ID J:139819]

Cheng SL; Shao JS; Cai J; Sierra OL; Towler DA. 2008. Msx2 exerts bone anabolism via canonical Wnt signaling. J Biol Chem 283(29):20505-22. [PubMed: 18487199]  [MGI Ref ID J:138745]

Cheng SL; Shao JS; Halstead LR; Distelhorst K; Sierra O; Towler DA. 2010. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/beta-catenin signaling and aortic fibrosis in diabetic arteriosclerosis. Circ Res 107(2):271-82. [PubMed: 20489161]  [MGI Ref ID J:175050]

Chu EY; Hens J; Andl T; Kairo A; Yamaguchi TP; Brisken C; Glick A; Wysolmerski JJ; Millar SE. 2004. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131(19):4819-29. [PubMed: 15342465]  [MGI Ref ID J:98338]

Daneman R; Agalliu D; Zhou L; Kuhnert F; Kuo CJ; Barres BA. 2009. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 106(2):641-6. [PubMed: 19129494]  [MGI Ref ID J:143865]

Day TF; Guo X; Garrett-Beal L; Yang Y. 2005. Wnt/beta-Catenin Signaling in Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation during Vertebrate Skeletogenesis. Dev Cell 8(5):739-50. [PubMed: 15866164]  [MGI Ref ID J:98427]

De Langhe SP; Carraro G; Tefft D; Li C; Xu X; Chai Y; Minoo P; Hajihosseini MK; Drouin J; Kaartinen V; Bellusci S. 2008. Formation and Differentiation of Multiple Mesenchymal Lineages during Lung Development Is Regulated by beta-catenin Signaling. PLoS ONE 3(1):e1516. [PubMed: 18231602]  [MGI Ref ID J:131535]

De Langhe SP; Carraro G; Warburton D; Hajihosseini MK; Bellusci S. 2006. Levels of mesenchymal FGFR2 signaling modulate smooth muscle progenitor cell commitment in the lung. Dev Biol 299(1):52-62. [PubMed: 16989802]  [MGI Ref ID J:114396]

Fromel T; Jungblut B; Hu J; Trouvain C; Barbosa-Sicard E; Popp R; Liebner S; Dimmeler S; Hammock BD; Fleming I. 2012. Soluble epoxide hydrolase regulates hematopoietic progenitor cell function via generation of fatty acid diols. Proc Natl Acad Sci U S A 109(25):9995-10000. [PubMed: 22665795]  [MGI Ref ID J:185508]

Fu J; Ivy Yu HM; Maruyama T; Mirando AJ; Hsu W. 2011. Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development. Dev Dyn 240(2):365-71. [PubMed: 21246653]  [MGI Ref ID J:167835]

Fuhrmann S; Riesenberg AN; Mathiesen AM; Brown EC; Vetter ML; Brown NL. 2009. Characterization of a transient TCF/LEF-responsive progenitor population in the embryonic mouse retina. Invest Ophthalmol Vis Sci 50(1):432-40. [PubMed: 18599572]  [MGI Ref ID J:146698]

Gao B; Song H; Bishop K; Elliot G; Garrett L; English MA; Andre P; Robinson J; Sood R; Minami Y; Economides AN; Yang Y. 2011. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell 20(2):163-76. [PubMed: 21316585]  [MGI Ref ID J:169766]

Gao J; DeRouen MC; Chen CH; Nguyen M; Nguyen NT; Ido H; Harada K; Sekiguchi K; Morgan BA; Miner JH; Oro AE; Marinkovich MP. 2008. Laminin-511 is an epithelial message promoting dermal papilla development and function during early hair morphogenesis. Genes Dev 22(15):2111-24. [PubMed: 18676816]  [MGI Ref ID J:139508]

Genander M; Halford MM; Xu NJ; Eriksson M; Yu Z; Qiu Z; Martling A; Greicius G; Thakar S; Catchpole T; Chumley MJ; Zdunek S; Wang C; Holm T; Goff SP; Pettersson S; Pestell RG; Henkemeyer M; Frisen J. 2009. Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. Cell 139(4):679-92. [PubMed: 19914164]  [MGI Ref ID J:157019]

Giangreco A; Lu L; Vickers C; Teixeira VH; Groot KR; Butler CR; Ilieva EV; George PJ; Nicholson AG; Sage EK; Watt FM; Janes SM. 2012. beta-Catenin determines upper airway progenitor cell fate and preinvasive squamous lung cancer progression by modulating epithelial-mesenchymal transition. J Pathol 226(4):575-87. [PubMed: 22081448]  [MGI Ref ID J:181809]

Glass DA 2nd; Bialek P; Ahn JD; Starbuck M; Patel MS; Clevers H; Taketo MM; Long F; McMahon AP; Lang RA; Karsenty G. 2005. Canonical wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8(5):751-64. [PubMed: 15866165]  [MGI Ref ID J:98430]

Grigoryan T; Stein S; Qi J; Wende H; Garratt AN; Nave KA; Birchmeier C; Birchmeier W. 2013. Wnt/Rspondin/beta-catenin signals control axonal sorting and lineage progression in Schwann cell development. Proc Natl Acad Sci U S A 110(45):18174-9. [PubMed: 24151333]  [MGI Ref ID J:202907]

Guo J; Liu M; Yang D; Bouxsein ML; Saito H; Galvin RJ; Kuhstoss SA; Thomas CC; Schipani E; Baron R; Bringhurst FR; Kronenberg HM. 2010. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab 11(2):161-71. [PubMed: 20142103]  [MGI Ref ID J:158620]

Hadjantonakis AK; Pisano E; Papaioannou VE. 2008. Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS ONE 3(6):e2511. [PubMed: 18575602]  [MGI Ref ID J:137163]

Hagan N; Zervas M. 2012. Wnt1 expression temporally allocates upper rhombic lip progenitors and defines their terminal cell fate in the cerebellum. Mol Cell Neurosci 49(2):217-29. [PubMed: 22173107]  [MGI Ref ID J:191519]

Hatsell SJ; Cowin P. 2006. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development 133(18):3661-70. [PubMed: 16914490]  [MGI Ref ID J:112460]

He F; Popkie AP; Xiong W; Li L; Wang Y; Phiel CJ; Chen Y. 2010. Gsk3beta is required in the epithelium for palatal elevation in mice. Dev Dyn 239(12):3235-46. [PubMed: 20981831]  [MGI Ref ID J:166721]

He F; Xiong W; Wang Y; Li L; Liu C; Yamagami T; Taketo MM; Zhou C; Chen Y. 2011. Epithelial Wnt/beta-catenin signaling regulates palatal shelf fusion through regulation of Tgfbeta3 expression. Dev Biol 350(2):511-9. [PubMed: 21185284]  [MGI Ref ID J:170579]

He F; Xiong W; Yu X; Espinoza-Lewis R; Liu C; Gu S; Nishita M; Suzuki K; Yamada G; Minami Y; Chen Y. 2008. Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development 135(23):3871-9. [PubMed: 18948417]  [MGI Ref ID J:144627]

Hiremath M; Dann P; Fischer J; Butterworth D; Boras-Granic K; Hens J; Van Houten J; Shi W; Wysolmerski J. 2012. Parathyroid hormone-related protein activates Wnt signaling to specify the embryonic mammary mesenchyme. Development 139(22):4239-49. [PubMed: 23034629]  [MGI Ref ID J:189075]

Holmberg V; Jalanko A; Isosomppi J; Fabritius AL; Peltonen L; Kopra O. 2004. The mouse ortholog of the neuronal ceroid lipofuscinosis CLN5 gene encodes a soluble lysosomal glycoprotein expressed in the developing brain. Neurobiol Dis 16(1):29-40. [PubMed: 15207259]  [MGI Ref ID J:91217]

Huang J; Dattilo LK; Rajagopal R; Liu Y; Kaartinen V; Mishina Y; Deng CX; Umans L; Zwijsen A; Roberts AB; Beebe DC. 2009. FGF-regulated BMP signaling is required for eyelid closure and to specify conjunctival epithelial cell fate. Development 136(10):1741-50. [PubMed: 19369394]  [MGI Ref ID J:148019]

Huang X; Litingtung Y; Chiang C. 2007. Ectopic sonic hedgehog signaling impairs telencephalic dorsal midline development: implication for human holoprosencephaly. Hum Mol Genet 16(12):1454-68. [PubMed: 17468181]  [MGI Ref ID J:125109]

Ip W; Shao W; Chiang YT; Jin T. 2012. The Wnt signaling pathway effector TCF7L2 is upregulated by insulin and represses hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 303(9):E1166-76. [PubMed: 22967502]  [MGI Ref ID J:191638]

Iwatsuki K; Liu HX; Gronder A; Singer MA; Lane TF; Grosschedl R; Mistretta CM; Margolskee RF. 2007. Wnt signaling interacts with Shh to regulate taste papilla development. Proc Natl Acad Sci U S A 104(7):2253-8. [PubMed: 17284610]  [MGI Ref ID J:119729]

Jamora C; Lee P; Kocieniewski P; Azhar M; Hosokawa R; Chai Y; Fuchs E. 2005. A signaling pathway involving TGF-beta2 and snail in hair follicle morphogenesis. PLoS Biol 3(1):e11. [PubMed: 15630473]  [MGI Ref ID J:97750]

Jang MH; Bonaguidi MA; Kitabatake Y; Sun J; Song J; Kang E; Jun H; Zhong C; Su Y; Guo JU; Wang MX; Sailor KA; Kim JY; Gao Y; Christian KM; Ming GL; Song H. 2013. Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis. Cell Stem Cell 12(2):215-23. [PubMed: 23395446]  [MGI Ref ID J:195148]

Jin YR; Han XH; Taketo MM; Yoon JK. 2012. Wnt9b-dependent FGF signaling is crucial for outgrowth of the nasal and maxillary processes during upper jaw and lip development. Development 139(10):1821-30. [PubMed: 22461561]  [MGI Ref ID J:184014]

Jin YR; Turcotte TJ; Crocker AL; Han XH; Yoon JK. 2011. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction. Dev Biol 352(1):1-13. [PubMed: 21237142]  [MGI Ref ID J:171482]

Johansson PA; Irmler M; Acampora D; Beckers J; Simeone A; Gotz M. 2013. The transcription factor Otx2 regulates choroid plexus development and function. Development 140(5):1055-66. [PubMed: 23364326]  [MGI Ref ID J:194049]

Joo JH; Taxter TJ; Munguba GC; Kim YH; Dhaduvai K; Dunn NW; Degan WJ; Oh SP; Sugrue SP. 2010. Pinin modulates expression of an intestinal homeobox gene, Cdx2, and plays an essential role for small intestinal morphogenesis. Dev Biol 345(2):191-203. [PubMed: 20637749]  [MGI Ref ID J:164807]

Kahn J; Shwartz Y; Blitz E; Krief S; Sharir A; Breitel DA; Rattenbach R; Relaix F; Maire P; Rountree RB; Kingsley DM; Zelzer E. 2009. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell 16(5):734-43. [PubMed: 19460349]  [MGI Ref ID J:148688]

Kamiya N; Kaartinen VM; Mishina Y. 2011. Loss-of-function of ACVR1 in osteoblasts increases bone mass and activates canonical Wnt signaling through suppression of Wnt inhibitors SOST and DKK1. Biochem Biophys Res Commun 414(2):326-30. [PubMed: 21945937]  [MGI Ref ID J:178480]

Kamiya N; Kobayashi T; Mochida Y; Yu PB; Yamauchi M; Kronenberg HM; Mishina Y. 2010. Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J Bone Miner Res 25(2):200-10. [PubMed: 19874086]  [MGI Ref ID J:179863]

Kamiya N; Ye L; Kobayashi T; Mochida Y; Yamauchi M; Kronenberg HM; Feng JQ; Mishina Y. 2008. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development 135(22):3801-11. [PubMed: 18927151]  [MGI Ref ID J:143588]

Kim BM; Buchner G; Miletich I; Sharpe PT; Shivdasani RA. 2005. The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev Cell 8(4):611-22. [PubMed: 15809042]  [MGI Ref ID J:98305]

Kim BM; Mao J; Taketo MM; Shivdasani RA. 2007. Phases of canonical Wnt signaling during the development of mouse intestinal epithelium. Gastroenterology 133(2):529-38. [PubMed: 17681174]  [MGI Ref ID J:128278]

Kim BM; Miletich I; Mao J; McMahon AP; Sharpe PA; Shivdasani RA. 2007. Independent functions and mechanisms for homeobox gene Barx1 in patterning mouse stomach and spleen. Development 134(20):3603-13. [PubMed: 17855428]  [MGI Ref ID J:128378]

Kousteni S; Almeida M; Han L; Bellido T; Jilka RL; Manolagas SC. 2007. Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor. Mol Cell Biol 27(4):1516-30. [PubMed: 17158928]  [MGI Ref ID J:118245]

Kovalovsky D; Yu Y; Dose M; Emmanouilidou A; Konstantinou T; Germar K; Aghajani K; Guo Z; Mandal M; Gounari F. 2009. Beta-catenin/Tcf determines the outcome of thymic selection in response to alphabetaTCR signaling. J Immunol 183(6):3873-84. [PubMed: 19717519]  [MGI Ref ID J:152395]

Koyama E; Shibukawa Y; Nagayama M; Sugito H; Young B; Yuasa T; Okabe T; Ochiai T; Kamiya N; Rountree RB; Kingsley DM; Iwamoto M; Enomoto-Iwamoto M; Pacifici M. 2008. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316(1):62-73. [PubMed: 18295755]  [MGI Ref ID J:135666]

Krutzfeldt J; Stoffel M. 2010. Regulation of wingless-type MMTV integration site family (WNT) signalling in pancreatic islets from wild-type and obese mice. Diabetologia 53(1):123-7. [PubMed: 19898815]  [MGI Ref ID J:156548]

Kuhnert F; Mancuso MR; Shamloo A; Wang HT; Choksi V; Florek M; Su H; Fruttiger M; Young WL; Heilshorn SC; Kuo CJ. 2010. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330(6006):985-9. [PubMed: 21071672]  [MGI Ref ID J:166127]

Lancaster MA; Louie CM; Silhavy JL; Sintasath L; Decambre M; Nigam SK; Willert K; Gleeson JG. 2009. Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat Med 15(9):1046-54. [PubMed: 19718039]  [MGI Ref ID J:154321]

Leightner AC; Hommerding CJ; Peng Y; Salisbury JL; Gainullin VG; Czarnecki PG; Sussman CR; Harris PC. 2013. The Meckel syndrome protein meckelin (TMEM67) is a key regulator of cilia function but is not required for tissue planar polarity. Hum Mol Genet 22(10):2024-40. [PubMed: 23393159]  [MGI Ref ID J:194966]

Lewis SL; Khoo PL; Andrea De Young R; Bildsoe H; Wakamiya M; Behringer RR; Mukhopadhyay M; Westphal H; Tam PP. 2007. Genetic interaction of Gsc and Dkk1 in head morphogenesis of the mouse. Mech Dev 124(2):157-165. [PubMed: 17127040]  [MGI Ref ID J:119933]

Lewis SL; Khoo PL; De Young RA; Steiner K; Wilcock C; Mukhopadhyay M; Westphal H; Jamieson RV; Robb L; Tam PP. 2008. Dkk1 and Wnt3 interact to control head morphogenesis in the mouse. Development 135(10):1791-801. [PubMed: 18403408]  [MGI Ref ID J:134688]

Li D; Zhang W; Liu Y; Haneline LS; Shou W. 2012. Lack of plakoglobin in epidermis leads to keratoderma. J Biol Chem 287(13):10435-43. [PubMed: 22315228]  [MGI Ref ID J:183271]

Li J; Huang X; Xu X; Mayo J; Bringas P Jr; Jiang R; Wang S; Chai Y. 2011. SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development 138(10):1977-89. [PubMed: 21490069]  [MGI Ref ID J:171428]

Li TF; Chen D; Wu Q; Chen M; Sheu TJ; Schwarz EM; Drissi H; Zuscik M; O'Keefe RJ. 2006. Transforming growth factor-beta stimulates cyclin D1 expression through activation of beta-catenin signaling in chondrocytes. J Biol Chem 281(30):21296-304. [PubMed: 16690606]  [MGI Ref ID J:116442]

Li Y; Gordon J; Manley NR; Litingtung Y; Chiang C. 2008. Bmp4 is required for tracheal formation: a novel mouse model for tracheal agenesis. Dev Biol 322(1):145-55. [PubMed: 18692041]  [MGI Ref ID J:142133]

Lien WH; Klezovitch O; Null M; Vasioukhin V. 2008. alphaE-catenin is not a significant regulator of beta-catenin signaling in the developing mammalian brain. J Cell Sci 121(Pt 9):1357-62. [PubMed: 18397997]  [MGI Ref ID J:139820]

Lin C; Yin Y; Long F; Ma L. 2008. Tissue-specific requirements of beta-catenin in external genitalia development. Development 135(16):2815-25. [PubMed: 18635608]  [MGI Ref ID J:139251]

Liu F; Chu EY; Watt B; Zhang Y; Gallant NM; Andl T; Yang SH; Lu MM; Piccolo S; Schmidt-Ullrich R; Taketo MM; Morrisey EE; Atit R; Dlugosz AA; Millar SE. 2008. Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol 313(1):210-24. [PubMed: 18022614]  [MGI Ref ID J:130228]

Liu F; Thirumangalathu S; Gallant NM; Yang SH; Stoick-Cooper CL; Reddy ST; Andl T; Taketo MM; Dlugosz AA; Moon RT; Barlow LA; Millar SE. 2007. Wnt-beta-catenin signaling initiates taste papilla development. Nat Genet 39(1):106-12. [PubMed: 17128274]  [MGI Ref ID J:117476]

Liu H; Fergusson MM; Castilho RM; Liu J; Cao L; Chen J; Malide D; Rovira II; Schimel D; Kuo CJ; Gutkind JS; Hwang PM; Finkel T. 2007. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317(5839):803-6. [PubMed: 17690294]  [MGI Ref ID J:123536]

Lobov IB; Rao S; Carroll TJ; Vallance JE; Ito M; Ondr JK; Kurup S; Glass DA; Patel MS; Shu W; Morrisey EE; McMahon AP; Karsenty G; Lang RA. 2005. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437(7057):417-21. [PubMed: 16163358]  [MGI Ref ID J:101493]

Lyubimova A; Garber JJ; Upadhyay G; Sharov A; Anastasoaie F; Yajnik V; Cotsarelis G; Dotto GP; Botchkarev V; Snapper SB. 2010. Neural Wiskott-Aldrich syndrome protein modulates Wnt signaling and is required for hair follicle cycling in mice. J Clin Invest 120(2):446-56. [PubMed: 20071778]  [MGI Ref ID J:156678]

Merrill BJ; Pasolli HA; Polak L; Rendl M; Garcia-Garcia MJ; Anderson KV; Fuchs E. 2004. Tcf3: a transcriptional regulator of axis induction in the early embryo. Development 131(2):263-74. [PubMed: 14668413]  [MGI Ref ID J:90402]

Miller LA; Smith AN; Taketo MM; Lang RA. 2006. Optic cup and facial patterning defects in ocular ectoderm beta-catenin gain-of-function mice. BMC Dev Biol 6:14. [PubMed: 16539717]  [MGI Ref ID J:109351]

Miyagawa S; Harada M; Matsumaru D; Tanaka K; Inoue C; Nakahara C; Haraguchi R; Matsushita S; Suzuki K; Nakagata N; Ng RC; Akita K; Lui VC; Yamada G. 2014. Disruption of the temporally regulated cloaca endodermal beta-catenin signaling causes anorectal malformations. Cell Death Differ 21(6):990-7. [PubMed: 24632946]  [MGI Ref ID J:210318]

Miyagawa S; Moon A; Haraguchi R; Inoue C; Harada M; Nakahara C; Suzuki K; Matsumaru D; Kaneko T; Matsuo I; Yang L; Taketo MM; Iguchi T; Evans SM; Yamada G. 2009. Dosage-dependent hedgehog signals integrated with Wnt/{beta}-catenin signaling regulate external genitalia formation as an appendicular program. Development 136(23):3969-78. [PubMed: 19906864]  [MGI Ref ID J:154979]

Munne PM; Tummers M; Jarvinen E; Thesleff I; Jernvall J. 2009. Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role of dental mesenchyme in limiting tooth induction. Development 136(3):393-402. [PubMed: 19141669]  [MGI Ref ID J:144193]

Narhi K; Tummers M; Ahtiainen L; Itoh N; Thesleff I; Mikkola ML. 2012. Sostdc1 defines the size and number of skin appendage placodes. Dev Biol 364(2):149-61. [PubMed: 22509524]  [MGI Ref ID J:183911]

Nemeth MJ; Kirby MR; Bodine DM. 2006. Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation. Proc Natl Acad Sci U S A 103(37):13783-8. [PubMed: 16945912]  [MGI Ref ID J:113745]

Norrmen C; Ivanov KI; Cheng J; Zangger N; Delorenzi M; Jaquet M; Miura N; Puolakkainen P; Horsley V; Hu J; Augustin HG; Yla-Herttuala S; Alitalo K; Petrova TV. 2009. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 185(3):439-57. [PubMed: 19398761]  [MGI Ref ID J:149138]

Okubo T; Hogan BL. 2004. Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J Biol 3(3):11. [PubMed: 15186480]  [MGI Ref ID J:91317]

Okubo T; Pevny LH; Hogan BL. 2006. Sox2 is required for development of taste bud sensory cells. Genes Dev 20(19):2654-9. [PubMed: 17015430]  [MGI Ref ID J:112945]

Pan Y; Woodbury A; Esko JD; Grobe K; Zhang X. 2006. Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development. Development 133(24):4933-44. [PubMed: 17107998]  [MGI Ref ID J:119651]

Pasca di Magliano M; Biankin AV; Heiser PW; Cano DA; Gutierrez PJ; Deramaudt T; Segara D; Dawson AC; Kench JG; Henshall SM; Sutherland RL; Dlugosz A; Rustgi AK; Hebrok M. 2007. Common activation of canonical wnt signaling in pancreatic adenocarcinoma. PLoS ONE 2(11):e1155. [PubMed: 17982507]  [MGI Ref ID J:130408]

Pierreux CE; Poll AV; Kemp CR; Clotman F; Maestro MA; Cordi S; Ferrer J; Leyns L; Rousseau GG; Lemaigre FP. 2006. The transcription factor hepatocyte nuclear factor-6 controls the development of pancreatic ducts in the mouse. Gastroenterology 130(2):532-41. [PubMed: 16472605]  [MGI Ref ID J:125042]

Placencio VR; Sharif-Afshar AR; Li X; Huang H; Uwamariya C; Neilson EG; Shen MM; Matusik RJ; Hayward SW; Bhowmick NA. 2008. Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Res 68(12):4709-18. [PubMed: 18559517]  [MGI Ref ID J:138897]

Plikus MV; Mayer JA; de la Cruz D; Baker RE; Maini PK; Maxson R; Chuong CM. 2008. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451(7176):340-4. [PubMed: 18202659]  [MGI Ref ID J:131404]

Prochazka J; Pantalacci S; Churava S; Rothova M; Lambert A; Lesot H; Klein O; Peterka M; Laudet V; Peterkova R. 2010. Patterning by heritage in mouse molar row development. Proc Natl Acad Sci U S A 107(35):15497-502. [PubMed: 20709958]  [MGI Ref ID J:163666]

Qian L; Mahaffey JP; Alcorn HL; Anderson KV. 2011. Tissue-specific roles of Axin2 in the inhibition and activation of Wnt signaling in the mouse embryo. Proc Natl Acad Sci U S A 108(21):8692-7. [PubMed: 21555575]  [MGI Ref ID J:171894]

Quasnichka H; Slater SC; Beeching CA; Boehm M; Sala-Newby GB; George SJ. 2006. Regulation of smooth muscle cell proliferation by beta-catenin/T-cell factor signaling involves modulation of cyclin D1 and p21 expression. Circ Res 99(12):1329-37. [PubMed: 17122440]  [MGI Ref ID J:163131]

Qyang Y; Martin-Puig S; Chiravuri M; Chen S; Xu H; Bu L; Jiang X; Lin L; Granger A; Moretti A; Caron L; Wu X; Clarke J; Taketo MM; Laugwitz KL; Moon RT; Gruber P; Evans SM; Ding S; Chien KR. 2007. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell 1(2):165-79. [PubMed: 18371348]  [MGI Ref ID J:149713]

Rakowiecki S; Epstein DJ. 2013. Divergent roles for Wnt/beta-catenin signaling in epithelial maintenance and breakdown during semicircular canal formation. Development 140(8):1730-9. [PubMed: 23487315]  [MGI Ref ID J:195122]

Rao S; Lobov IB; Vallance JE; Tsujikawa K; Shiojima I; Akunuru S; Walsh K; Benjamin LE; Lang RA. 2007. Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development 134(24):4449-58. [PubMed: 18039971]  [MGI Ref ID J:135278]

Regard JB; Cherman N; Palmer D; Kuznetsov SA; Celi FS; Guettier JM; Chen M; Bhattacharyya N; Wess J; Coughlin SR; Weinstein LS; Collins MT; Robey PG; Yang Y. 2011. Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proc Natl Acad Sci U S A 108(50):20101-6. [PubMed: 22106277]  [MGI Ref ID J:180451]

Reynolds SD; Zemke AC; Giangreco A; Brockway BL; Teisanu RM; Drake JA; Mariani T; Di PY; Taketo MM; Stripp BR. 2008. Conditional stabilization of beta-catenin expands the pool of lung stem cells. Stem Cells 26(5):1337-46. [PubMed: 18356571]  [MGI Ref ID J:185114]

Rhee H; Polak L; Fuchs E. 2006. Lhx2 maintains stem cell character in hair follicles. Science 312(5782):1946-9. [PubMed: 16809539]  [MGI Ref ID J:110119]

Riccomagno MM; Takada S; Epstein DJ. 2005. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 19(13):1612-23. [PubMed: 15961523]  [MGI Ref ID J:99408]

Romano RA; Smalley K; Liu S; Sinha S. 2010. Abnormal hair follicle development and altered cell fate of follicular keratinocytes in transgenic mice expressing DeltaNp63alpha. Development 137(9):1431-9. [PubMed: 20335364]  [MGI Ref ID J:168262]

Ruiz-Herguido C; Guiu J; D'Altri T; Ingles-Esteve J; Dzierzak E; Espinosa L; Bigas A. 2012. Hematopoietic stem cell development requires transient Wnt/beta-catenin activity. J Exp Med 209(8):1457-68. [PubMed: 22802352]  [MGI Ref ID J:189158]

Sala FG; Del Moral PM; Tiozzo C; Alam DA; Warburton D; Grikscheit T; Veltmaat JM; Bellusci S. 2011. FGF10 controls the patterning of the tracheal cartilage rings via Shh. Development 138(2):273-82. [PubMed: 21148187]  [MGI Ref ID J:167739]

Samuel MS; Lopez JI; McGhee EJ; Croft DR; Strachan D; Timpson P; Munro J; Schroder E; Zhou J; Brunton VG; Barker N; Clevers H; Sansom OJ; Anderson KI; Weaver VM; Olson MF. 2011. Actomyosin-Mediated Cellular Tension Drives Increased Tissue Stiffness and beta-Catenin Activation to Induce Epidermal Hyperplasia and Tumor Growth. Cancer Cell 19(6):776-91. [PubMed: 21665151]  [MGI Ref ID J:173558]

Schaniel C; Sirabella D; Qiu J; Niu X; Lemischka IR; Moore KA. 2011. Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells. Blood 118(9):2420-9. [PubMed: 21652676]  [MGI Ref ID J:176938]

Shao JS; Cheng SL; Pingsterhaus JM; Charlton-Kachigian N; Loewy AP; Towler DA. 2005. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 115(5):1210-20. [PubMed: 15841209]  [MGI Ref ID J:98092]

Shi F; Hu L; Edge AS. 2013. Generation of hair cells in neonatal mice by beta-catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci U S A 110(34):13851-6. [PubMed: 23918377]  [MGI Ref ID J:200672]

Shu W; Guttentag S; Wang Z; Andl T; Ballard P; Lu MM; Piccolo S; Birchmeier W; Whitsett JA; Millar SE; Morrisey EE. 2005. Wnt/beta-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev Biol 283(1):226-39. [PubMed: 15907834]  [MGI Ref ID J:99391]

Smith AN; Miller LA; Song N; Taketo MM; Lang RA. 2005. The duality of beta-catenin function: a requirement in lens morphogenesis and signaling suppression of lens fate in periocular ectoderm. Dev Biol 285(2):477-89. [PubMed: 16102745]  [MGI Ref ID J:101264]

Smith RW; Hicks DA; Reynolds SD. 2012. Roles for beta-catenin and doxycycline in the regulation of respiratory epithelial cell frequency and function. Am J Respir Cell Mol Biol 46(1):115-24. [PubMed: 21852686]  [MGI Ref ID J:191911]

Song L; Li Y; Wang K; Wang YZ; Molotkov A; Gao L; Zhao T; Yamagami T; Wang Y; Gan Q; Pleasure DE; Zhou CJ. 2009. Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion. Development 136(18):3161-71. [PubMed: 19700620]  [MGI Ref ID J:152320]

Suomalainen M; Thesleff I. 2009. Patterns of Wnt pathway activity in the mouse incisor indicate absence of Wnt/beta-catenin signaling in the epithelial stem cells. Dev Dyn 239(1):364-372. [PubMed: 19806668]  [MGI Ref ID J:155223]

Takeo M; Chou WC; Sun Q; Lee W; Rabbani P; Loomis C; Taketo MM; Ito M. 2013. Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature 499(7457):228-32. [PubMed: 23760480]  [MGI Ref ID J:204559]

Taniguchi N; Carames B; Kawakami Y; Amendt BA; Komiya S; Lotz M. 2009. Chromatin protein HMGB2 regulates articular cartilage surface maintenance via beta-catenin pathway. Proc Natl Acad Sci U S A 106(39):16817-22. [PubMed: 19805379]  [MGI Ref ID J:153213]

Tian Y; Yuan L; Goss AM; Wang T; Yang J; Lepore JJ; Zhou D; Schwartz RJ; Patel V; Cohen ED; Morrisey EE. 2010. Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development. Dev Cell 18(2):275-87. [PubMed: 20159597]  [MGI Ref ID J:158582]

Trowbridge JJ; Scott MP; Bhatia M. 2006. Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration. Proc Natl Acad Sci U S A 103(38):14134-9. [PubMed: 16968775]  [MGI Ref ID J:113717]

Tsaousi A; Williams H; Lyon CA; Taylor V; Swain A; Johnson JL; George SJ. 2011. Wnt4/beta-catenin signaling induces VSMC proliferation and is associated with intimal thickening. Circ Res 108(4):427-36. [PubMed: 21193738]  [MGI Ref ID J:183499]

Ukita K; Hirahara S; Oshima N; Imuta Y; Yoshimoto A; Jang CW; Oginuma M; Saga Y; Behringer RR; Kondoh H; Sasaki H. 2009. Wnt signaling maintains the notochord fate for progenitor cells and supports the posterior extension of the notochord. Mech Dev 126(10):791-803. [PubMed: 19720144]  [MGI Ref ID J:153634]

Usongo M; Rizk A; Farookhi R. 2012. beta-Catenin/Tcf signaling in murine oocytes identifies nonovulatory follicles. Reproduction 144(6):669-76. [PubMed: 23006471]  [MGI Ref ID J:195947]

Ustiyan V; Wang IC; Ren X; Zhang Y; Snyder J; Xu Y; Wert SE; Lessard JL; Kalin TV; Kalinichenko VV. 2009. Forkhead box M1 transcriptional factor is required for smooth muscle cells during embryonic development of blood vessels and esophagus. Dev Biol 336(2):266-79. [PubMed: 19835856]  [MGI Ref ID J:154909]

Veltmaat JM; Relaix F; Le LT; Kratochwil K; Sala FG; van Veelen W; Rice R; Spencer-Dene B; Mailleux AA; Rice DP; Thiery JP; Bellusci S. 2006. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133(12):2325-35. [PubMed: 16720875]  [MGI Ref ID J:109476]

Volckaert T; Campbell A; Dill E; Li C; Minoo P; De Langhe S. 2013. Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development 140(18):3731-42. [PubMed: 23924632]  [MGI Ref ID J:204465]

Volckaert T; Dill E; Campbell A; Tiozzo C; Majka S; Bellusci S; De Langhe SP. 2011. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest 121(11):4409-19. [PubMed: 21985786]  [MGI Ref ID J:178444]

Voutilainen M; Lindfors PH; Lefebvre S; Ahtiainen L; Fliniaux I; Rysti E; Murtoniemi M; Schneider P; Schmidt-Ullrich R; Mikkola ML. 2012. Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-kappaB. Proc Natl Acad Sci U S A 109(15):5744-9. [PubMed: 22451941]  [MGI Ref ID J:183539]

Wang IC; Snyder J; Zhang Y; Lander J; Nakafuku Y; Lin J; Chen G; Kalin TV; Whitsett JA; Kalinichenko VV. 2012. Foxm1 mediates cross talk between Kras/mitogen-activated protein kinase and canonical Wnt pathways during development of respiratory epithelium. Mol Cell Biol 32(19):3838-50. [PubMed: 22826436]  [MGI Ref ID J:188926]

Wiedau-Pazos M; Wong E; Solomon E; Alarcon M; Geschwind DH. 2009. Wnt-pathway activation during the early stage of neurodegeneration in FTDP-17 mice. Neurobiol Aging 30(1):14-21. [PubMed: 17604878]  [MGI Ref ID J:145819]

Woo J; Miletich I; Kim BM; Sharpe PT; Shivdasani RA. 2011. Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation. PLoS One 6(7):e22493. [PubMed: 21799872]  [MGI Ref ID J:175765]

Wu X; Tu X; Joeng KS; Hilton MJ; Williams DA; Long F. 2008. Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell 133(2):340-53. [PubMed: 18423204]  [MGI Ref ID J:145305]

Xiong Y; Li W; Shang C; Chen RM; Han P; Yang J; Stankunas K; Wu B; Pan M; Zhou B; Longaker MT; Chang CP. 2013. Brg1 governs a positive feedback circuit in the hair follicle for tissue regeneration and repair. Dev Cell 25(2):169-81. [PubMed: 23602386]  [MGI Ref ID J:196957]

Yan L; Della Coletta L; Powell KL; Shen J; Thames H; Aldaz CM; MacLeod MC. 2011. Activation of the canonical Wnt/beta-catenin pathway in ATF3-induced mammary tumors. PLoS One 6(1):e16515. [PubMed: 21304988]  [MGI Ref ID J:169544]

Yu HM; Jerchow B; Sheu TJ; Liu B; Costantini F; Puzas JE; Birchmeier W; Hsu W. 2005. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132(8):1995-2005. [PubMed: 15790973]  [MGI Ref ID J:98523]

Zemke AC; Teisanu RM; Giangreco A; Drake JA; Brockway BL; Reynolds SD; Stripp BR. 2009. beta-Catenin is not necessary for maintenance or repair of the bronchiolar epithelium. Am J Respir Cell Mol Biol 41(5):535-43. [PubMed: 19213872]  [MGI Ref ID J:166202]

Zhang Y; Call MK; Yeh LK; Liu H; Kochel T; Wang IJ; Chu PH; Taketo MM; Jester JV; Kao WW; Liu CY. 2010. Aberrant expression of a beta-catenin gain-of-function mutant induces hyperplastic transformation in the mouse cornea. J Cell Sci 123(Pt 8):1285-94. [PubMed: 20332116]  [MGI Ref ID J:159631]

Zhao J; Kim KA; De Vera J; Palencia S; Wagle M; Abo A. 2009. R-Spondin1 protects mice from chemotherapy or radiation-induced oral mucositis through the canonical Wnt/beta-catenin pathway. Proc Natl Acad Sci U S A 106(7):2331-6. [PubMed: 19179402]  [MGI Ref ID J:146284]

Zhou CJ; Molotkov A; Song L; Li Y; Pleasure DE; Pleasure SJ; Wang YZ. 2008. Ocular coloboma and dorsoventral neuroretinal patterning defects in Lrp6 mutant eyes. Dev Dyn 237(12):3681-9. [PubMed: 18985738]  [MGI Ref ID J:143210]

del Moral PM; De Langhe SP; Sala FG; Veltmaat JM; Tefft D; Wang K; Warburton D; Bellusci S. 2006. Differential role of FGF9 on epithelium and mesenchyme in mouse embryonic lung. Dev Biol 293(1):77-89. [PubMed: 16494859]  [MGI Ref ID J:108388]

van Amerongen R; Fuerer C; Mizutani M; Nusse R. 2012. Wnt5a can both activate and repress Wnt/beta-catenin signaling during mouse embryonic development. Dev Biol 369(1):101-14. [PubMed: 22771246]  [MGI Ref ID J:187621]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX11

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, hemizygous mice may be bred together or to wildtype (noncarrier) mice from the colony. The coat color expected from breeding is Albino.
Mating System+/+ sibling x Hemizygote         (Female x Male)   16-APR-08
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $239.00Female or MaleHemizygous for Tg(TCF/Lef1-lacZ)34Efu  
Price per Pair (US dollars $)Pair Genotype
$311.00Hemizygous for Tg(Fos-lacZ)34Efu x Noncarrier  
$311.00Noncarrier x Hemizygous for Tg(Fos-lacZ)34Efu  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $310.70Female or MaleHemizygous for Tg(TCF/Lef1-lacZ)34Efu  
Price per Pair (US dollars $)Pair Genotype
$404.30Hemizygous for Tg(Fos-lacZ)34Efu x Noncarrier  
$404.30Noncarrier x Hemizygous for Tg(Fos-lacZ)34Efu  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

  Control
   Noncarrier
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Important Note

This strain may be homozygous for Gnat2cpfl3, cone photoreceptor function loss 3, which affects bright light (photopic) vision.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)