Strain Name:

B6;D2-Tg(TcrLCMV)327Sdz/JDvsJ

Stock Number:

004694

Order this mouse

Availability:

Under Development - Now Accepting Orders

Estimated Available for Distribution Date: 15-DEC-14
Mice carry the non-cytopathic LCM virus and a transgenic TCR allowing the examination of T-cell tolerance to two independent antigens with the same transgenic mouse line.

Description

Strain Information

Type Mutant Stock; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Mating SystemHomozygote x Homozygote         (Female x Male)   09-JUN-14
Specieslaboratory mouse
H2 Haplotypeb
GenerationN2F8p+
Generation Definitions
 
Donating InvestigatorDr. David Serreze,   The Jackson Laboratory

Appearance
black
Related Genotype: a/a

Description
These mice carry a T-cell receptor (Tcra-V2, Tcra-J TA31 / Tcrb-V8.1, Tcrb-D, Tcrb-J 2.4) specific for LCMV (lymphocytic choriomeningitis virus), H2-Db . They offer the unique possibility to examine T-cell tolerance to two independent antigens with the same transgenic mouse line. First, T-cell tolerance to LCMV has been studied in transgenic mice carrying the non-cytopathic LCM virus after neonatal infection. Second, the transgenic TCR use the beta-chain variable gene segment Tcrb-V8.1 that reacts preferentially with Mlsa (mixed lymphocyte stimulatory) antigen. Ten to twenty copies of the Tcr transgene are reportedly integrated on the same chromosome. The animals are on a mixed C57BL/6 and DBA/2 background but the MHC haplotype has been checked and found to be H2b.

Development
Zinkernagel et al, established a set of LCMV-specific cytotoxic T-cell clones from lethally irradiated B10.BR/SgSn(H-2K reconstituted with T-cell depleted C57BL/10Sn (H-2bbone marrow cells. The rearranged TCR alpha (Tcra-V2 and Tcra-J TA31) and beta (Tcrb-V8.1, TcrB-D, TcrB-J2.4) chain gene sequences from clone P14 were incorporated into transgene contructs regulated by the H-2Kbpromoter and co-injected into B6D2F2 fertilized embryos. 10-20 copies of both the alpha and beta transgenes co-integrated on the same chromosome in male founder number 327. Founder 327 was backcrossed to C57BL/6J for one generation prior to being intercrossed to make this a homozygous strain. This strain is maintained by homozygous sibling matings.

Control Information

  Control
   See control note: There are no appropriate physiological controls for this mutant strain. However, if you must have a control you may use any of the following strains: B6D2F1/J (Stock No. 100006), C57BL/6J (Stock No. 000664), and DBA/2J (Stock No. 000671). These strains also serve as DNA controls.
   100006 B6D2F1/J (approximate)
   000664 C57BL/6J (approximate)
   000671 DBA/2J (approximate)
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Tg(TcrLCMV)327Sdz allele
004257   NOD.Cg-Prkdcscid Tg(TcrLCMV)327Sdz/DvsJ
004696   NOD.Cg-Tg(TcrLCMV)327Sdz/DvsJ
View Strains carrying   Tg(TcrLCMV)327Sdz     (2 strains)

Strains carrying other alleles of Tcra
005308   B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005895   B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003199   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRA)B1Jg/J
002116   B6.129S2-Tcratm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005023   B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
004554   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRaAI4)1Dvs/DvsJ
002115   B6;129S2-Tcratm1Mom/J
002408   B6;SJL-Tg(TcrAND)53Hed/J
007848   BXSB.129P2(Cg)-Tcratm1Mjo/TheoJ
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002045   C.SJL-Tcrac/SlkJ
002047   C.SJL-Tcrba Tcrac/SlkJ
014639   C57BL/6-Tg(Cd4-TcraDN32D3)1Aben/J
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
005307   CBy.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
004444   NOD.129P2(C)-Tcratm1Mjo/DoiJ
006436   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcraAI4)1Dvs/DvsJ
004347   NOD.Cg-Rag1tm1Mom Tg(TcraAI4)1Dvs/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
005686   NOD.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
004460   NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006303   NOD.FVB-Tg(TcraBDC12-4.1)10Jos/GseJ
004334   NOD/ShiLt-Tg(TcraAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcra     (46 strains)

Strains carrying other alleles of Tcrb
005308   B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005895   B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003200   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRB)C14Jg/J
002122   B6.129P2-Tcrbtm1Mom Tcrdtm1Mom/J
002118   B6.129P2-Tcrbtm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005023   B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
008430   B6.Cg-Tg(Tcrb)HRBAll/J
004555   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRbAI4)1Dvs/DvsJ
002121   B6;129P-Tcrbtm1Mom Tcrdtm1Mom/J
002117   B6;129P2-Tcrbtm1Mom/J
002408   B6;SJL-Tg(TcrAND)53Hed/J
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002047   C.SJL-Tcrba Tcrac/SlkJ
002046   C.SJL-Tcrba/SlkJ
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
003540   C57L/J-Tg(Tcrb)93Vbo/J
005307   CBy.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
007081   CByJ.129P2(B6)-Tcrbtm1Mom/J
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
023082   NOD.129P2(Cg)-Tcrbtm1Mom/MnkaJ
006437   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcrbAI4)1Dvs/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
005686   NOD.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
004460   NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006304   NOD.FVB-Tg(TcrbBDC12-4.1)82Gse/GseJ
004335   NOD/ShiLt-Tg(TcrbAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcrb     (48 strains)

Phenotype

Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Tg(TcrLCMV)327Sdz/0

        involves: C57BL/6 * DBA/2
  • immune system phenotype
  • decreased CD8-positive, alpha-beta T cell number
    • number of CD8+ T cells in spleens of transgenic Mlsa mice is reduced 4-fold compared to uninfected transgenic Mlsb but ~4-fold higher than LCMV-infected Mlsb mice   (MGI Ref ID J:77696)
  • decreased T cell proliferation
    • response of uninfected transgenic Mlsa spleen cells to LCMV is reduced ~3-fold   (MGI Ref ID J:77696)
  • decreased cytotoxic T cell cytolysis
    • lysis of LCMV-infected target cells is decreased ~3-fold in uninfected transgenic mice positive for mixed-lymphocyte stimulatory (Mlsa) antigen compared to transgenic mice positive for Mlsb antigen   (MGI Ref ID J:77696)
    • LCMV-infected Mlsb show decreased significantly reduced proliferation and specific lysis compared to uninfected transgenic mice   (MGI Ref ID J:77696)
  • decreased double-positive T cell number
    • numbers of CD4+CD8+ thymocytes are drastically reduced in LCMV-tolerant (carrier) transgenic mice   (MGI Ref ID J:77696)
  • thymus hypoplasia
    • numbers of double-positive thymocytes and CD8+ thymocytes are drastically reduced in transgenic mice   (MGI Ref ID J:77696)
  • hematopoietic system phenotype
  • decreased CD8-positive, alpha-beta T cell number
    • number of CD8+ T cells in spleens of transgenic Mlsa mice is reduced 4-fold compared to uninfected transgenic Mlsb but ~4-fold higher than LCMV-infected Mlsb mice   (MGI Ref ID J:77696)
  • decreased T cell proliferation
    • response of uninfected transgenic Mlsa spleen cells to LCMV is reduced ~3-fold   (MGI Ref ID J:77696)
  • decreased cytotoxic T cell cytolysis
    • lysis of LCMV-infected target cells is decreased ~3-fold in uninfected transgenic mice positive for mixed-lymphocyte stimulatory (Mlsa) antigen compared to transgenic mice positive for Mlsb antigen   (MGI Ref ID J:77696)
    • LCMV-infected Mlsb show decreased significantly reduced proliferation and specific lysis compared to uninfected transgenic mice   (MGI Ref ID J:77696)
  • decreased double-positive T cell number
    • numbers of CD4+CD8+ thymocytes are drastically reduced in LCMV-tolerant (carrier) transgenic mice   (MGI Ref ID J:77696)
  • thymus hypoplasia
    • numbers of double-positive thymocytes and CD8+ thymocytes are drastically reduced in transgenic mice   (MGI Ref ID J:77696)
  • endocrine/exocrine gland phenotype
  • thymus hypoplasia
    • numbers of double-positive thymocytes and CD8+ thymocytes are drastically reduced in transgenic mice   (MGI Ref ID J:77696)

Tg(TcrLCMV)327Sdz/?

        involves: C57BL/6 * DBA/2J
  • immune system phenotype
  • abnormal T cell differentiation
    • T cells expressing the transgene preferentially develop into CD8+ peripheral T cells   (MGI Ref ID J:97610)
    • there is only minimal rearrangement of endogenous TCRalpha chains needed in double-positive thymocytes to express a transgenic TCR, so that mice have very few CD4 single-positive thymocytes or CD4+ peripheral T cells   (MGI Ref ID J:97610)
  • decreased CD4-positive, alpha beta T cell number
    • very few CD4+T cells are found in the thymus or periphery   (MGI Ref ID J:97610)
  • hematopoietic system phenotype
  • abnormal T cell differentiation
    • T cells expressing the transgene preferentially develop into CD8+ peripheral T cells   (MGI Ref ID J:97610)
    • there is only minimal rearrangement of endogenous TCRalpha chains needed in double-positive thymocytes to express a transgenic TCR, so that mice have very few CD4 single-positive thymocytes or CD4+ peripheral T cells   (MGI Ref ID J:97610)
  • decreased CD4-positive, alpha beta T cell number
    • very few CD4+T cells are found in the thymus or periphery   (MGI Ref ID J:97610)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Research Tools
Immunology, Inflammation and Autoimmunity Research
      T Cell Receptor Transgenics

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tg(TcrLCMV)327Sdz
Allele Name transgene insertion 327, Birgit Ledermann
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) P14; P14 TCR; P14 TCR-alphabeta (Valpha2Vbeta8.1); P14 TCRValpha2Vbeta8; P14-TCR; TCR LCMV; TCR P14; TCR-Tg; TgTcr;
Mutation Made ByDr. Rolf Zinkernagel,   University of Zurich
Strain of Origin(C57BL/6 x DBA/2)F2
Expressed Gene Tcra, T cell receptor alpha chain, mouse, laboratory
Expressed Gene Tcrb, T cell receptor beta chain, mouse, laboratory
Promoter Tcra, T cell receptor alpha chain, mouse, laboratory
Promoter Tcrb, T cell receptor beta chain, mouse, laboratory
General Note Transgenic mice carry a T-cell receptor (Tcra-V2, Tcra-J TA31 / Tcrb-V8.1, Tcrb-D, Tcrb-J 2.4) specific for LCMV (lymphocytic choriomeningitis virus), H2-Db.
Molecular Note The transgene carries both Tcra and Tcrb. Ten to twenty copies of the Tcr transgene were reported to have integrated on the same chromosome. At least two transgenic lines are known to exist. Line 327 is the representative line. The second line is 318. [MGI Ref ID J:77696]
 
 

Genotyping

Genotyping Information

Genotyping Protocols

Tg(TcrLCMV)327Sdz-qPCR, QPCR
Tg(TcrLCMV)327Sdz, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Pircher H; Burki K; Lang R; Hengartner H; Zinkernagel RM. 1989. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342(6249):559-61. [PubMed: 2573841]  [MGI Ref ID J:77696]

Additional References

Kerry SE; Buslepp J; Cramer LA; Maile R; Hensley LL; Nielsen AI; Kavathas P; Vilen BJ; Collins EJ; Frelinger JA. 2003. Interplay between TCR affinity and necessity of coreceptor ligation: high-affinity peptide-MHC/TCR interaction overcomes lack of CD8 engagement. J Immunol 171(9):4493-503. [PubMed: 14568922]  [MGI Ref ID J:86195]

Tg(TcrLCMV)327Sdz related

Agenes F; Dangy JP; Kirberg J. 2008. T cell receptor contact to restricting MHC molecules is a prerequisite for peripheral interclonal T cell competition. J Exp Med 205(12):2735-43. [PubMed: 19015305]  [MGI Ref ID J:141380]

Aichele P; Unsoeld H; Koschella M; Schweier O; Kalinke U; Vucikuja S. 2006. CD8 T cells specific for lymphocytic choriomeningitis virus require type I IFN receptor for clonal expansion. J Immunol 176(8):4525-9. [PubMed: 16585541]  [MGI Ref ID J:131168]

Alam MU; Harken JA; Knorn AM; Elford AR; Wigmore K; Ohashi PS; Millar DG. 2009. Transgenic expression of Hsc70 in pancreatic islets enhances autoimmune diabetes in response to beta cell damage. J Immunol 183(9):5728-37. [PubMed: 19812207]  [MGI Ref ID J:156620]

Angelov GS; Guillaume P; Luescher IF. 2009. CD8beta knockout mice mount normal anti-viral CD8+ T cell responses--but why? Int Immunol 21(2):123-35. [PubMed: 19088062]  [MGI Ref ID J:144531]

Azzam HS; DeJarnette JB; Huang K; Emmons R; Park CS; Sommers CL; El-Khoury D; Shores EW; Love PE. 2001. Fine tuning of TCR signaling by CD5. J Immunol 166(9):5464-72. [PubMed: 11313384]  [MGI Ref ID J:106735]

Bachmann MF; Waterhouse P; Speiser DE; McKall-Faienza K; Mak TW; Ohashi PS. 1998. Normal responsiveness of CTLA-4-deficient anti-viral cytotoxic T cells. J Immunol 160(1):95-100. [PubMed: 9551960]  [MGI Ref ID J:111103]

Bahl K; Kim SK; Calcagno C; Ghersi D; Puzone R; Celada F; Selin LK; Welsh RM. 2006. IFN-induced attrition of CD8 T cells in the presence or absence of cognate antigen during the early stages of viral infections. J Immunol 176(7):4284-95. [PubMed: 16547266]  [MGI Ref ID J:129873]

Bedenikovic G; Crouse J; Oxenius A. 2014. T-cell help dependence of memory CD8+ T-cell expansion upon vaccinia virus challenge relies on CD40 signaling. Eur J Immunol 44(1):115-26. [PubMed: 24108445]  [MGI Ref ID J:208658]

Beinke S; Phee H; Clingan JM; Schlessinger J; Matloubian M; Weiss A. 2010. Proline-rich tyrosine kinase-2 is critical for CD8 T-cell short-lived effector fate. Proc Natl Acad Sci U S A 107(37):16234-9. [PubMed: 20805505]  [MGI Ref ID J:164360]

Beisner DR; Chu IH; Arechiga AF; Hedrick SM; Walsh CM. 2003. The requirements for Fas-associated death domain signaling in mature T cell activation and survival. J Immunol 171(1):247-56. [PubMed: 12817005]  [MGI Ref ID J:132831]

Berg-Brown NN; Gronski MA; Jones RG; Elford AR; Deenick EK; Odermatt B; Littman DR; Ohashi PS. 2004. PKCtheta signals activation versus tolerance in vivo. J Exp Med 199(6):743-52. [PubMed: 15024044]  [MGI Ref ID J:123989]

Biro J; Wurch A; Potocnik AJ; Falk I; Mossmann H; Eichmann K. 1999. Regulation of T cell receptor (TCR) beta gene expression by CD3 complex signaling in immature thymocytes: implications for TCRbeta allelic exclusion. Proc Natl Acad Sci U S A 96(7):3882-7. [PubMed: 10097132]  [MGI Ref ID J:123031]

Blohm U; Potthoff D; van der Kogel AJ; Pircher H. 2006. Solid tumors 'melt' from the inside after successful CD8 T cell attack. Eur J Immunol 36(2):468-77. [PubMed: 16385625]  [MGI Ref ID J:113858]

Bosco N; Agenes F; Ceredig R. 2005. Effects of increasing IL-7 availability on lymphocytes during and after lymphopenia-induced proliferation. J Immunol 175(1):162-70. [PubMed: 15972643]  [MGI Ref ID J:100611]

Boyman O; Ramsey C; Kim DM; Sprent J; Surh CD. 2008. IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T Cell expansion without lymphopenia. J Immunol 180(11):7265-75. [PubMed: 18490726]  [MGI Ref ID J:136336]

Brabb T; von Dassow P; Ordonez N; Schnabel B; Duke B; Goverman J. 2000. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J Exp Med 192(6):871-80. [PubMed: 10993917]  [MGI Ref ID J:107210]

Brandle D; Brduscha-Riem K; Hayday AC; Owen MJ; Hengartner H; Pircher H. 1995. T cell development and repertoire of mice expressing a single T cell receptor alpha chain. Eur J Immunol 25(9):2650-5. [PubMed: 7589140]  [MGI Ref ID J:146736]

Brehm MA; Daniels KA; Welsh RM. 2005. Rapid production of TNF-alpha following TCR engagement of naive CD8 T cells. J Immunol 175(8):5043-9. [PubMed: 16210607]  [MGI Ref ID J:119124]

Calzascia T; Pellegrini M; Lin A; Garza KM; Elford AR; Shahinian A; Ohashi PS; Mak TW. 2008. CD4 T cells, lymphopenia, and IL-7 in a multistep pathway to autoimmunity. Proc Natl Acad Sci U S A 105(8):2999-3004. [PubMed: 18287017]  [MGI Ref ID J:132821]

Chandele A; Joshi NS; Zhu J; Paul WE; Leonard WJ; Kaech SM. 2008. Formation of IL-7Ralphahigh and IL-7Ralphalow CD8 T cells during infection is regulated by the opposing functions of GABPalpha and Gfi-1. J Immunol 180(8):5309-19. [PubMed: 18390712]  [MGI Ref ID J:134240]

Chang JT; Ciocca ML; Kinjyo I; Palanivel VR; McClurkin CE; Dejong CS; Mooney EC; Kim JS; Steinel NC; Oliaro J; Yin CC; Florea BI; Overkleeft HS; Berg LJ; Russell SM; Koretzky GA; Jordan MS; Reiner SL. 2011. Asymmetric Proteasome Segregation as a Mechanism for Unequal Partitioning of the Transcription Factor T-bet during T Lymphocyte Division. Immunity 34(4):492-504. [PubMed: 21497118]  [MGI Ref ID J:171335]

Choo DK; Murali-Krishna K; Anita R; Ahmed R. 2010. Homeostatic turnover of virus-specific memory CD8 T cells occurs stochastically and is independent of CD4 T cell help. J Immunol 185(6):3436-44. [PubMed: 20733203]  [MGI Ref ID J:163530]

Christensen JE; Nansen A; Moos T; Lu B; Gerard C; Christensen JP; Thomsen AR. 2004. Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3. J Neurosci 24(20):4849-58. [PubMed: 15152045]  [MGI Ref ID J:96905]

Condotta SA; Rai D; James BR; Griffith TS; Badovinac VP. 2013. Sustained and Incomplete Recovery of Naive CD8+ T Cell Precursors after Sepsis Contributes to Impaired CD8+ T Cell Responses to Infection. J Immunol 190(5):1991-2000. [PubMed: 23355736]  [MGI Ref ID J:193472]

Costello PS; Nicolas RH; Watanabe Y; Rosewell I; Treisman R. 2004. Ternary complex factor SAP-1 is required for Erk-mediated thymocyte positive selection. Nat Immunol 5(3):289-98. [PubMed: 14770179]  [MGI Ref ID J:88515]

Crompton T; Moore M; MacDonald HR; Malissen B. 1994. Double-negative thymocyte subsets in CD3 zeta chain-deficient mice: absence of HSA+CD44-CD25- cells. Eur J Immunol 24(8):1903-7. [PubMed: 7520000]  [MGI Ref ID J:112990]

Crozat K; Guiton R; Contreras V; Feuillet V; Dutertre CA; Ventre E; Vu Manh TP; Baranek T; Storset AK; Marvel J; Boudinot P; Hosmalin A; Schwartz-Cornil I; Dalod M. 2010. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1283-92. [PubMed: 20479118]  [MGI Ref ID J:163424]

Dalheimer SL; Zeng L; Draves KE; Hassaballa A; Jiwa NN; Parrish TD; Clark EA; Yankee TM. 2009. Gads-deficient thymocytes are blocked at the transitional single positive CD4+ stage. Eur J Immunol 39(5):1395-404. [PubMed: 19337995]  [MGI Ref ID J:148102]

Davidson D; Schraven B; Veillette A. 2007. PAG-associated FynT regulates calcium signaling and promotes anergy in T lymphocytes. Mol Cell Biol 27(5):1960-73. [PubMed: 17210649]  [MGI Ref ID J:118860]

Decaluwe H; Taillardet M; Corcuff E; Munitic I; Law HK; Rocha B; Riviere Y; Di Santo JP. 2010. {gamma}c deficiency precludes CD8+ T cell memory despite formation of potent T cell effectors. Proc Natl Acad Sci U S A 107(20):9311-6. [PubMed: 20439728]  [MGI Ref ID J:160570]

Deenick EK; Po L; Chapatte L; Murakami K; Lu YC; Elford AR; Saibil SD; Ruland J; Gerondakis S; Mak TW; Ohashi PS. 2009. c-Rel phenocopies PKCtheta but not Bcl-10 in regulating CD8(+) T-cell activation versus tolerance. Eur J Immunol 40(3):867-877. [PubMed: 19950170]  [MGI Ref ID J:157735]

Dejean AS; Beisner DR; Ch'en IL; Kerdiles YM; Babour A; Arden KC; Castrillon DH; DePinho RA; Hedrick SM. 2009. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol 10(5):504-13. [PubMed: 19363483]  [MGI Ref ID J:148279]

Dervovic DD; Liang HC; Cannons JL; Elford AR; Mohtashami M; Ohashi PS; Schwartzberg PL; Zuniga-Pflucker JC. 2013. Cellular and molecular requirements for the selection of in vitro-generated CD8 T cells reveal a role for Notch. J Immunol 191(4):1704-15. [PubMed: 23851691]  [MGI Ref ID J:205691]

Dudda JC; Salaun B; Ji Y; Palmer DC; Monnot GC; Merck E; Boudousquie C; Utzschneider DT; Escobar TM; Perret R; Muljo SA; Hebeisen M; Rufer N; Zehn D; Donda A; Restifo NP; Held W; Gattinoni L; Romero P. 2013. MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity 38(4):742-53. [PubMed: 23601686]  [MGI Ref ID J:196960]

Ehl S; Hombach J; Aichele P; Hengartner H; Zinkernagel RM. 1997. Bystander activation of cytotoxic T cells: studies on the mechanism and evaluation of in vivo significance in a transgenic mouse model. J Exp Med 185(7):1241-51. [PubMed: 9104811]  [MGI Ref ID J:107413]

Elsaesser H; Sauer K; Brooks DG. 2009. IL-21 is required to control chronic viral infection. Science 324(5934):1569-72. [PubMed: 19423777]  [MGI Ref ID J:150018]

Ferrero I; Grosjean F; Fiorini E; Macdonald HR. 2007. A critical lineage-nonspecific role for pTalpha in mediating allelic and isotypic exclusion in TCRbeta-transgenic mice. Eur J Immunol 37(11):3220-8. [PubMed: 17918204]  [MGI Ref ID J:126317]

Flatz L; Hegazy AN; Bergthaler A; Verschoor A; Claus C; Fernandez M; Gattinoni L; Johnson S; Kreppel F; Kochanek S; Broek M; Radbruch A; Levy F; Lambert PH; Siegrist CA; Restifo NP; Lohning M; Ochsenbein AF; Nabel GJ; Pinschewer DD. 2010. Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity. Nat Med 16(3):339-45. [PubMed: 20139992]  [MGI Ref ID J:158626]

Ford MS; Young KJ; Zhang Z; Ohashi PS; Zhang L. 2002. The immune regulatory function of lymphoproliferative double negative T cells in vitro and in vivo. J Exp Med 196(2):261-7. [PubMed: 12119351]  [MGI Ref ID J:120698]

Fung-Leung WP; Wallace VA; Gray D; Sha WC; Pircher H; Teh HS; Loh DY; Mak TW. 1993. CD8 is needed for positive selection but differentially required for negative selection of T cells during thymic ontogeny. Eur J Immunol 23(1):212-6. [PubMed: 8419174]  [MGI Ref ID J:112993]

Giordano M; Roncagalli R; Bourdely P; Chasson L; Buferne M; Yamasaki S; Beyaert R; van Loo G; Auphan-Anezin N; Schmitt-Verhulst AM; Verdeil G. 2014. The tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proc Natl Acad Sci U S A 111(30):11115-20. [PubMed: 25024217]  [MGI Ref ID J:212245]

Gondek DC; Devries V; Nowak EC; Lu LF; Bennett KA; Scott ZA; Noelle RJ. 2008. Transplantation survival is maintained by granzyme B+ regulatory cells and adaptive regulatory T cells. J Immunol 181(7):4752-60. [PubMed: 18802078]  [MGI Ref ID J:141831]

Gronski MA; Boulter JM; Moskophidis D; Nguyen LT; Holmberg K; Elford AR; Deenick EK; Kim HO; Penninger JM; Odermatt B; Gallimore A; Gascoigne NR; Ohashi PS. 2004. TCR affinity and negative regulation limit autoimmunity. Nat Med 10(11):1234-9. [PubMed: 15467726]  [MGI Ref ID J:94025]

Grundemann C; Schwartzkopff S; Koschella M; Schweier O; Peters C; Voehringer D; Pircher H. 2010. The NK receptor KLRG1 is dispensable for virus-induced NK and CD8+ T-cell differentiation and function in vivo. Eur J Immunol 40(5):1303-14. [PubMed: 20201037]  [MGI Ref ID J:160955]

Gu X; Laouar A; Wan J; Daheshia M; Lieberman J; Yokoyama WM; Katz HR; Manjunath N. 2003. The gp49B1 inhibitory receptor regulates the IFN-gamma responses of T cells and NK cells. J Immunol 170(8):4095-101. [PubMed: 12682239]  [MGI Ref ID J:134418]

Gu Y; Chae HD; Siefring JE; Jasti AC; Hildeman DA; Williams DA. 2006. RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat Immunol 7(11):1182-1190. [PubMed: 17028588]  [MGI Ref ID J:113565]

Gupta A; Probst HC; Vuong V; Landshammer A; Muth S; Yagita H; Schwendener R; Pruschy M; Knuth A; van den Broek M. 2012. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J Immunol 189(2):558-66. [PubMed: 22685313]  [MGI Ref ID J:189554]

Hamada H; Garcia-Hernandez Mde L; Reome JB; Misra SK; Strutt TM; McKinstry KK; Cooper AM; Swain SL; Dutton RW. 2009. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol 182(6):3469-81. [PubMed: 19265125]  [MGI Ref ID J:145928]

Hansen AK; Regner M; Bonefeld CM; Boding L; Kongsbak M; Odum N; Mullbacher A; Geisler C; von Essen MR. 2011. TCR down-regulation boosts T-cell-mediated cytotoxicity and protection against poxvirus infections. Eur J Immunol 41(7):1948-57. [PubMed: 21590764]  [MGI Ref ID J:177291]

Harlan DM; Hengartner H; Huang ML; Kang YH; Abe R; Moreadith RW; Pircher H; Gray GS; Ohashi PS; Freeman GJ; et al.. 1994. Mice expressing both B7-1 and viral glycoprotein on pancreatic beta cells along with glycoprotein-specific transgenic T cells develop diabetes due to a breakdown of T-lymphocyte unresponsiveness. Proc Natl Acad Sci U S A 91(8):3137-41. [PubMed: 7512724]  [MGI Ref ID J:209714]

Harp JR; Gilchrist MA; Onami TM. 2010. Memory T cells are enriched in lymph nodes of selectin-ligand-deficient mice. J Immunol 185(10):5751-61. [PubMed: 20937846]  [MGI Ref ID J:165638]

Henrickson SE; Perro M; Loughhead SM; Senman B; Stutte S; Quigley M; Alexe G; Iannacone M; Flynn MP; Omid S; Jesneck JL; Imam S; Mempel TR; Mazo IB; Haining WN; von Andrian UH. 2013. Antigen availability determines CD8(+) T cell-dendritic cell interaction kinetics and memory fate decisions. Immunity 39(3):496-507. [PubMed: 24054328]  [MGI Ref ID J:208207]

Henry CJ; Ornelles DA; Mitchell LM; Brzoza-Lewis KL; Hiltbold EM. 2008. IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J Immunol 181(12):8576-84. [PubMed: 19050277]  [MGI Ref ID J:142058]

Hermans IF; Ritchie DS; Daish A; Yang J; Kehry MR; Ronchese F. 1999. Impaired ability of MHC class II-/- dendritic cells to provide tumor protection is rescued by CD40 ligation. J Immunol 163(1):77-81. [PubMed: 10384102]  [MGI Ref ID J:55653]

Hernandez MG; Shen L; Rock KL. 2007. CD40-CD40 ligand interaction between dendritic cells and CD8+ T cells is needed to stimulate maximal T cell responses in the absence of CD4+ T cell help. J Immunol 178(5):2844-52. [PubMed: 17312128]  [MGI Ref ID J:144111]

Holderried TA; Lang PA; Kim HJ; Cantor H. 2013. Genetic disruption of CD8+ Treg activity enhances the immune response to viral infection. Proc Natl Acad Sci U S A 110(52):21089-94. [PubMed: 24324159]  [MGI Ref ID J:206132]

Iannacone M; Sitia G; Isogawa M; Whitmire JK; Marchese P; Chisari FV; Ruggeri ZM; Guidotti LG. 2008. Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci U S A 105(2):629-34. [PubMed: 18184798]  [MGI Ref ID J:131089]

Intlekofer AM; Takemoto N; Kao C; Banerjee A; Schambach F; Northrop JK; Shen H; Wherry EJ; Reiner SL. 2007. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J Exp Med 204(9):2015-21. [PubMed: 17698591]  [MGI Ref ID J:126087]

Intlekofer AM; Takemoto N; Wherry EJ; Longworth SA; Northrup JT; Palanivel VR; Mullen AC; Gasink CR; Kaech SM; Miller JD; Gapin L; Ryan K; Russ AP; Lindsten T; Orange JS; Goldrath AW; Ahmed R; Reiner SL. 2005. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6(12):1236-44. [PubMed: 16273099]  [MGI Ref ID J:112679]

Ishigame H; Mosaheb MM; Sanjabi S; Flavell RA. 2013. Truncated form of TGF-betaRII, but not its absence, induces memory CD8+ T cell expansion and lymphoproliferative disorder in mice. J Immunol 190(12):6340-50. [PubMed: 23686479]  [MGI Ref ID J:204845]

Jeannet G; Boudousquie C; Gardiol N; Kang J; Huelsken J; Held W. 2010. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc Natl Acad Sci U S A 107(21):9777-82. [PubMed: 20457902]  [MGI Ref ID J:160546]

Jeon MS; Atfield A; Venuprasad K; Krawczyk C; Sarao R; Elly C; Yang C; Arya S; Bachmaier K; Su L; Bouchard D; Jones R; Gronski M; Ohashi P; Wada T; Bloom D; Fathman CG; Liu YC; Penninger JM. 2004. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity 21(2):167-77. [PubMed: 15308098]  [MGI Ref ID J:93595]

Jones RG; Parsons M; Bonnard M; Chan VS; Yeh WC; Woodgett JR; Ohashi PS. 2000. Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J Exp Med 191(10):1721-34. [PubMed: 10811865]  [MGI Ref ID J:62176]

Jost PJ; Weiss S; Ferch U; Gross O; Mak TW; Peschel C; Ruland J. 2007. Bcl10/Malt1 signaling is essential for TCR-induced NF-kappaB activation in thymocytes but dispensable for positive or negative selection. J Immunol 178(2):953-60. [PubMed: 17202357]  [MGI Ref ID J:142625]

Kagi D; Ho A; Odermatt B; Zakarian A; Ohashi PS; Mak TW. 1999. TNF receptor 1-dependent beta cell toxicity as an effector pathway in autoimmune diabetes. J Immunol 162(8):4598-605. [PubMed: 10201999]  [MGI Ref ID J:120458]

Kao C; Oestreich KJ; Paley MA; Crawford A; Angelosanto JM; Ali MA; Intlekofer AM; Boss JM; Reiner SL; Weinmann AS; Wherry EJ. 2011. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 12(7):663-71. [PubMed: 21623380]  [MGI Ref ID J:174315]

Kaufmann M; Blaser C; Takashima S; Schwartz-Albiez R; Tsuji S; Pircher H. 1999. Identification of an alpha2,6-sialyltransferase induced early after lymphocyte activation. Int Immunol 11(5):731-8. [PubMed: 10330278]  [MGI Ref ID J:56212]

Keller AM; Schildknecht A; Xiao Y; van den Broek M; Borst J. 2008. Expression of costimulatory ligand CD70 on steady-state dendritic cells breaks CD8+ T cell tolerance and permits effective immunity. Immunity 29(6):934-46. [PubMed: 19062317]  [MGI Ref ID J:142683]

Keppler SJ; Aichele P. 2011. Signal 3 requirement for memory CD8+ T-cell activation is determined by the infectious pathogen. Eur J Immunol 41(11):3176-86. [PubMed: 21830209]  [MGI Ref ID J:179523]

Keppler SJ; Theil K; Vucikuja S; Aichele P. 2009. Effector T-cell differentiation during viral and bacterial infections: Role of direct IL-12 signals for cell fate decision of CD8(+) T cells. Eur J Immunol 39(7):1774-1783. [PubMed: 19548244]  [MGI Ref ID J:150269]

Kirberg J; Bosco N; Deloulme JC; Ceredig R; Agenes F. 2008. Peripheral T lymphocytes recirculating back into the thymus can mediate thymocyte positive selection. J Immunol 181(2):1207-14. [PubMed: 18606674]  [MGI Ref ID J:137464]

Koelsch U; Schraven B; Simeoni L. 2008. SIT and TRIM determine T cell fate in the thymus. J Immunol 181(9):5930-9. [PubMed: 18941181]  [MGI Ref ID J:140748]

Krawczyk C; Oliveira-dos-Santos A; Sasaki T; Griffiths E; Ohashi PS; Snapper S; Alt F; Penninger JM. 2002. Vav1 controls integrin clustering and MHC/peptide-specific cell adhesion to antigen-presenting cells. Immunity 16(3):331-43. [PubMed: 11911819]  [MGI Ref ID J:111206]

Kreutzfeldt M; Bergthaler A; Fernandez M; Bruck W; Steinbach K; Vorm M; Coras R; Blumcke I; Bonilla WV; Fleige A; Forman R; Muller W; Becher B; Misgeld T; Kerschensteiner M; Pinschewer DD; Merkler D. 2013. Neuroprotective intervention by interferon-gamma blockade prevents CD8+ T cell-mediated dendrite and synapse loss. J Exp Med 210(10):2087-103. [PubMed: 23999498]  [MGI Ref ID J:202844]

Ksionda O; Saveliev A; Kochl R; Rapley J; Faroudi M; Smith-Garvin JE; Wulfing C; Rittinger K; Carter T; Tybulewicz VL. 2012. Mechanism and function of Vav1 localization in TCR signaling. J Cell Sci :. [PubMed: 22956543]  [MGI Ref ID J:190160]

Lang KS; Georgiev P; Recher M; Navarini AA; Bergthaler A; Heikenwalder M; Harris NL; Junt T; Odermatt B; Clavien PA; Pircher H; Akira S; Hengartner H; Zinkernagel RM. 2006. Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling. J Clin Invest 116(9):2456-63. [PubMed: 16955143]  [MGI Ref ID J:114665]

Lang KS; Recher M; Junt T; Navarini AA; Harris NL; Freigang S; Odermatt B; Conrad C; Ittner LM; Bauer S; Luther SA; Uematsu S; Akira S; Hengartner H; Zinkernagel RM. 2005. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat Med 11(2):138-45. [PubMed: 15654326]  [MGI Ref ID J:96036]

Laouar A; Haridas V; Vargas D; Zhinan X; Chaplin D; van Lier RA; Manjunath N. 2005. CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nat Immunol 6(7):698-706. [PubMed: 15937486]  [MGI Ref ID J:99148]

Lee MS; Wogensen L; Shizuru J; Oldstone MB; Sarvetnick N. 1994. Pancreatic islet production of murine interleukin-10 does not inhibit immune-mediated tissue destruction. J Clin Invest 93(3):1332-8. [PubMed: 8132775]  [MGI Ref ID J:17133]

Liadis N; Murakami K; Eweida M; Elford AR; Sheu L; Gaisano HY; Hakem R; Ohashi PS; Woo M. 2005. Caspase-3-Dependent {beta}-Cell Apoptosis in the Initiation of Autoimmune Diabetes Mellitus. Mol Cell Biol 25(9):3620-9. [PubMed: 15831467]  [MGI Ref ID J:97650]

Liao MJ; Zhang XX; Hill R; Gao J; Qumsiyeh MB; Nichols W; Van Dyke T. 1998. No requirement for V(D)J recombination in p53-deficient thymic lymphoma. Mol Cell Biol 18(6):3495-501. [PubMed: 9584189]  [MGI Ref ID J:47667]

Lin AC; Dissanayake D; Dhanji S; Elford AR; Ohashi PS. 2011. Different toll-like receptor stimuli have a profound impact on cytokines required to break tolerance and induce autoimmunity. PLoS One 6(9):e23940. [PubMed: 21931625]  [MGI Ref ID J:177886]

Lovo E; Zhang M; Wang L; Ashton-Rickardt PG. 2012. Serine protease inhibitor 6 is required to protect dendritic cells from the kiss of death. J Immunol 188(3):1057-63. [PubMed: 22227570]  [MGI Ref ID J:181216]

Lykens JE; Terrell CE; Zoller EE; Risma K; Jordan MB. 2011. Perforin is a critical physiologic regulator of T-cell activation. Blood 118(3):618-26. [PubMed: 21606480]  [MGI Ref ID J:174873]

Magnan A; Di Bartolo V; Mura AM; Boyer C; Richelme M; Lin YL; Roure A; Gillet A; Arrieumerlou C; Acuto O; Malissen B; Malissen M. 2001. T cell development and T cell responses in mice with mutations affecting tyrosines 292 or 315 of the ZAP-70 protein tyrosine kinase. J Exp Med 194(4):491-505. [PubMed: 11514605]  [MGI Ref ID J:71099]

Mak TW; Hakem A; McPherson JP; Shehabeldin A; Zablocki E; Migon E; Duncan GS; Bouchard D; Wakeham A; Cheung A; Karaskova J; Sarosi I; Squire J; Marth J; Hakem R. 2000. Brcal required for T cell lineage development but not TCR loci rearrangement. Nat Immunol 1(1):77-82. [PubMed: 10881179]  [MGI Ref ID J:63282]

Marquez ME; Ellmeier W; Sanchez-Guajardo V; Freitas AA; Acuto O; Di Bartolo V. 2005. CD8 T cell sensory adaptation dependent on TCR avidity for self-antigens. J Immunol 175(11):7388-97. [PubMed: 16301646]  [MGI Ref ID J:122169]

Marshall HD; Prince AL; Berg LJ; Welsh RM. 2010. IFN-alphabeta and self-MHC divert CD8 T cells into a distinct differentiation pathway characterized by rapid acquisition of effector functions. J Immunol 185(3):1419-28. [PubMed: 20592282]  [MGI Ref ID J:162457]

Matter M; Mumprecht S; Pinschewer DD; Pavelic V; Yagita H; Krautwald S; Borst J; Ochsenbein AF. 2005. Virus-induced polyclonal B cell activation improves protective CTL memory via retained CD27 expression on memory CTL. Eur J Immunol 35(11):3229-39. [PubMed: 16231287]  [MGI Ref ID J:113775]

Matter M; Odermatt B; Yagita H; Nuoffer JM; Ochsenbein AF. 2006. Elimination of chronic viral infection by blocking CD27 signaling. J Exp Med 203(9):2145-55. [PubMed: 16923852]  [MGI Ref ID J:124567]

Matter M; Pavelic V; Pinschewer DD; Mumprecht S; Eschli B; Giroglou T; von Laer D; Ochsenbein AF. 2007. Decreased tumor surveillance after adoptive T-cell therapy. Cancer Res 67(15):7467-76. [PubMed: 17671217]  [MGI Ref ID J:123912]

Matter MS; Claus C; Ochsenbein AF. 2008. CD4(+) T cell help improves CD8(+) T cell memory by retained CD27 expression. Eur J Immunol 38(7):1847-56. [PubMed: 18506879]  [MGI Ref ID J:137313]

Mazo IB; Honczarenko M; Leung H; Cavanagh LL; Bonasio R; Weninger W; Engelke K; Xia L; McEver RP; Koni PA; Silberstein LE; von Andrian UH. 2005. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22(2):259-70. [PubMed: 15723813]  [MGI Ref ID J:96675]

Merck E; Voyle RB; MacDonald HR. 2009. Ly49D engagement on T lymphocytes induces TCR-independent activation and CD8 effector functions that control tumor growth. J Immunol 182(1):183-92. [PubMed: 19109149]  [MGI Ref ID J:143041]

Mittelstadt PR; Monteiro JP; Ashwell JD. 2012. Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness. J Clin Invest 122(7):2384-94. [PubMed: 22653054]  [MGI Ref ID J:189951]

Miyakoda M; Kimura D; Yuda M; Chinzei Y; Shibata Y; Honma K; Yui K. 2008. Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection. J Immunol 181(2):1420-8. [PubMed: 18606696]  [MGI Ref ID J:137658]

Montoya M; Edwards MJ; Reid DM; Borrow P. 2005. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice: analysis of the involvement of type 1 IFN. J Immunol 174(4):1851-61. [PubMed: 15699111]  [MGI Ref ID J:96536]

Morris SC; Heidorn SM; Herbert DR; Perkins C; Hildeman DA; Khodoun MV; Finkelman FD. 2009. Endogenously produced IL-4 nonredundantly stimulates CD8+ T cell proliferation. J Immunol 182(3):1429-38. [PubMed: 19155490]  [MGI Ref ID J:144327]

Mumprecht S; Schurch C; Schwaller J; Solenthaler M; Ochsenbein AF. 2009. Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood 114(8):1528-36. [PubMed: 19420358]  [MGI Ref ID J:152278]

Munitic I; Kuka M; Allam A; Scoville JP; Ashwell JD. 2013. CD70 deficiency impairs effector CD8 T cell generation and viral clearance but is dispensable for the recall response to lymphocytic choriomeningitis virus. J Immunol 190(3):1169-79. [PubMed: 23269247]  [MGI Ref ID J:193042]

Muth S; Schutze K; Hain T; Yagita H; Schild H; Probst HC. 2014. A CD40/CD40L feedback loop drives the breakdown of CD8(+) T-cell tolerance following depletion of suppressive CD4(+) T cells. Eur J Immunol 44(4):1099-107. [PubMed: 24420080]  [MGI Ref ID J:209382]

Muth S; Schutze K; Schild H; Probst HC. 2012. Release of dendritic cells from cognate CD4+ T-cell recognition results in impaired peripheral tolerance and fatal cytotoxic T-cell mediated autoimmunity. Proc Natl Acad Sci U S A 109(23):9059-64. [PubMed: 22615402]  [MGI Ref ID J:184841]

Nanjappa SG; Walent JH; Morre M; Suresh M. 2008. Effects of IL-7 on memory CD8 T cell homeostasis are influenced by the timing of therapy in mice. J Clin Invest 118(3):1027-39. [PubMed: 18246202]  [MGI Ref ID J:135264]

Nansen A; Jensen T; Christensen JP; Andreasen SO; Ropke C; Marker O; Thomsen AR. 1999. Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus. J Immunol 163(11):6114-22. [PubMed: 10570301]  [MGI Ref ID J:58651]

Nil A; Firat E; Sobek V; Eichmann K; Niedermann G. 2004. Expression of housekeeping and immunoproteasome subunit genes is differentially regulated in positively and negatively selecting thymic stroma subsets. Eur J Immunol 34(10):2681-9. [PubMed: 15368284]  [MGI Ref ID J:115499]

Nitta T; Murata S; Sasaki K; Fujii H; Ripen AM; Ishimaru N; Koyasu S; Tanaka K; Takahama Y. 2010. Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 32(1):29-40. [PubMed: 20045355]  [MGI Ref ID J:157648]

Ohashi PS; Oehen S; Buerki K; Pircher H; Ohashi CT; Odermatt B; Malissen B; Zinkernagel RM; Hengartner H. 1991. Ablation of 'tolerance' and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65(2):305-17. [PubMed: 1901764]  [MGI Ref ID J:81285]

Ou R; Zhang M; Huang L; Moskophidis D. 2008. Control of virus-specific CD8+ T-cell exhaustion and immune-mediated pathology by E3 ubiquitin ligase Cbl-b during chronic viral infection. J Virol 82(7):3353-68. [PubMed: 18199651]  [MGI Ref ID J:153308]

Pearce EL; Mullen AC; Martins GA; Krawczyk CM; Hutchins AS; Zediak VP; Banica M; DiCioccio CB; Gross DA; Mao CA; Shen H; Cereb N; Yang SY; Lindsten T; Rossant J; Hunter CA; Reiner SL. 2003. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302(5647):1041-3. [PubMed: 14605368]  [MGI Ref ID J:154842]

Pellegrini M; Calzascia T; Elford AR; Shahinian A; Lin AE; Dissanayake D; Dhanji S; Nguyen LT; Gronski MA; Morre M; Assouline B; Lahl K; Sparwasser T; Ohashi PS; Mak TW. 2009. Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nat Med 15(5):528-36. [PubMed: 19396174]  [MGI Ref ID J:149567]

Penninger JM; Sirard C; Mittrucker HW; Chidgey A; Kozieradzki I; Nghiem M; Hakem A; Kimura T; Timms E; Boyd R; Taniguchi T; Matsuyama T; Mak TW. 1997. The interferon regulatory transcription factor IRF-1 controls positive and negative selection of CD8+ thymocytes. Immunity 7(2):243-54. [PubMed: 9285409]  [MGI Ref ID J:111439]

Phillips T; Opferman JT; Shah R; Liu N; Froelich CJ; Ashton-Rickardt PG. 2004. A role for the granzyme B inhibitor serine protease inhibitor 6 in CD8+ memory cell homeostasis. J Immunol 173(6):3801-9. [PubMed: 15356127]  [MGI Ref ID J:92766]

Pipkin ME; Sacks JA; Cruz-Guilloty F; Lichtenheld MG; Bevan MJ; Rao A. 2010. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32(1):79-90. [PubMed: 20096607]  [MGI Ref ID J:157692]

Pircher H; Moskophidis D; Rohrer U; Burki K; Hengartner H; Zinkernagel RM. 1990. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature 346(6285):629-33. [PubMed: 1696684]  [MGI Ref ID J:133485]

Posevitz V; Arndt B; Krieger T; Warnecke N; Schraven B; Simeoni L. 2008. Regulation of T cell homeostasis by the transmembrane adaptor protein SIT. J Immunol 180(3):1634-42. [PubMed: 18209059]  [MGI Ref ID J:131507]

Puglielli MT; Zajac AJ; van der Most RG; Dzuris JL; Sette A; Altman JD; Ahmed R. 2001. In vivo selection of a lymphocytic choriomeningitis virus variant that affects recognition of the GP33-43 epitope by H-2Db but not H-2Kb. J Virol 75(11):5099-107. [PubMed: 11333891]  [MGI Ref ID J:69366]

Romagnoli PA; Premenko-Lanier MF; Loria GD; Altman JD. 2013. CD8 T cell memory recall is enhanced by novel direct interactions with CD4 T cells enabled by MHC class II transferred from APCs. PLoS One 8(2):e56999. [PubMed: 23441229]  [MGI Ref ID J:199409]

Ruedl C; Storni T; Lechner F; Bachi T; Bachmann MF. 2002. Cross-presentation of virus-like particles by skin-derived CD8(-) dendritic cells: a dispensable role for TAP. Eur J Immunol 32(3):818-25. [PubMed: 11870626]  [MGI Ref ID J:115370]

Sandau MM; Winstead CJ; Jameson SC. 2007. IL-15 is required for sustained lymphopenia-driven proliferation and accumulation of CD8 T cells. J Immunol 179(1):120-5. [PubMed: 17579029]  [MGI Ref ID J:149423]

Serreze DV; Johnson EA; Chapman HD; Graser RT; Marron MP; DiLorenzo TP; Silveira P; Yoshimura Y; Nathenson SG; Joyce S. 2001. Autoreactive diabetogenic T-cells in NOD mice can efficiently expand from a greatly reduced precursor pool. Diabetes 50(9):1992-2000. [PubMed: 11522664]  [MGI Ref ID J:71050]

Setoguchi R; Taniuchi I; Bevan MJ. 2009. ThPOK derepression is required for robust CD8 T cell responses to viral infection. J Immunol 183(7):4467-74. [PubMed: 19734230]  [MGI Ref ID J:152786]

Shamim M; Nanjappa SG; Singh A; Plisch EH; LeBlanc SE; Walent J; Svaren J; Seroogy C; Suresh M. 2007. Cbl-b regulates antigen-induced TCR down-regulation and IFN-gamma production by effector CD8 T cells without affecting functional avidity. J Immunol 179(11):7233-43. [PubMed: 18025165]  [MGI Ref ID J:154825]

Shin J; O'Brien TF; Grayson JM; Zhong XP. 2012. Differential regulation of primary and memory CD8 T cell immune responses by diacylglycerol kinases. J Immunol 188(5):2111-7. [PubMed: 22271650]  [MGI Ref ID J:181278]

Shiroki F; Matsuda S; Doi T; Fujiwara M; Mochizuki Y; Kadowaki T; Suzuki H; Koyasu S. 2007. The p85alpha regulatory subunit of class IA phosphoinositide 3-kinase regulates beta-selection in thymocyte development. J Immunol 178(3):1349-56. [PubMed: 17237381]  [MGI Ref ID J:143661]

Simeoni L; Posevitz V; Kolsch U; Meinert I; Bruyns E; Pfeffer K; Reinhold D; Schraven B. 2005. The transmembrane adapter protein SIT regulates thymic development and peripheral T-cell functions. Mol Cell Biol 25(17):7557-68. [PubMed: 16107703]  [MGI Ref ID J:100408]

Sinai P; Nguyen C; Schatzle JD; Wulfing C. 2010. Transience in polarization of cytolytic effectors is required for efficient killing and controlled by Cdc42. Proc Natl Acad Sci U S A 107(26):11912-7. [PubMed: 20547841]  [MGI Ref ID J:161369]

Sinclair LV; Finlay D; Feijoo C; Cornish GH; Gray A; Ager A; Okkenhaug K; Hagenbeek TJ; Spits H; Cantrell DA. 2008. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol 9(5):513-21. [PubMed: 18391955]  [MGI Ref ID J:134510]

Speiser DE; Miranda R; Zakarian A; Bachmann MF; McKall-Faienza K; Odermatt B; Hanahan D; Zinkernagel RM; Ohashi PS. 1997. Self antigens expressed by solid tumors Do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J Exp Med 186(5):645-53. [PubMed: 9271580]  [MGI Ref ID J:149958]

Sun G; Liu X; Mercado P; Jenkinson SR; Kypriotou M; Feigenbaum L; Galera P; Bosselut R. 2005. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat Immunol 6(4):373-81. [PubMed: 15750595]  [MGI Ref ID J:97610]

Sun JC; Williams MA; Bevan MJ. 2004. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5(9):927-33. [PubMed: 15300249]  [MGI Ref ID J:92169]

Suzuki H; Wu J; Hossain K; Ohhata T; Du J; Akhand AA; Hayakawa A; Kimura H; Hagiwara M; Nakashima I. 2003. Involvement of MKK6 in TCRalphabeta(int)CD69lo: a target population for apoptotic cell death in thymocytes. FASEB J 17(11):1538-40. [PubMed: 12824301]  [MGI Ref ID J:100093]

Suzuki N; Suzuki S; Millar DG; Unno M; Hara H; Calzascia T; Yamasaki S; Yokosuka T; Chen NJ; Elford AR; Suzuki J; Takeuchi A; Mirtsos C; Bouchard D; Ohashi PS; Yeh WC; Saito T. 2006. A critical role for the innate immune signaling molecule IRAK-4 in T cell activation. Science 311(5769):1927-32. [PubMed: 16574867]  [MGI Ref ID J:107198]

Swee LK; Guimaraes CP; Sehrawat S; Spooner E; Barrasa MI; Ploegh HL. 2013. Sortase-mediated modification of alphaDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proc Natl Acad Sci U S A 110(4):1428-33. [PubMed: 23297227]  [MGI Ref ID J:193709]

Takemoto N; Intlekofer AM; Northrup JT; Wherry EJ; Reiner SL. 2006. Cutting Edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J Immunol 177(11):7515-9. [PubMed: 17114419]  [MGI Ref ID J:140606]

Tarakhovsky A; Kanner SB; Hombach J; Ledbetter JA; Muller W; Killeen N; Rajewsky K. 1995. A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science 269(5223):535-7. [PubMed: 7542801]  [MGI Ref ID J:89249]

Tchaptchet S; Kirberg J; Freudenberg N; Schamel WW; Galanos C; Freudenberg MA. 2010. Innate, antigen-independent role for T cells in the activation of the immune system by Propionibacterium acnes. Eur J Immunol 40(9):2506-16. [PubMed: 20690177]  [MGI Ref ID J:165743]

Tinoco R; Alcalde V; Yang Y; Sauer K; Zuniga EI. 2009. Cell-intrinsic transforming growth factor-beta signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity 31(1):145-57. [PubMed: 19604493]  [MGI Ref ID J:151576]

Trifari S; Pipkin ME; Bandukwala HS; Aijo T; Bassein J; Chen R; Martinez GJ; Rao A. 2013. MicroRNA-directed program of cytotoxic CD8+ T-cell differentiation. Proc Natl Acad Sci U S A 110(46):18608-13. [PubMed: 24163352]  [MGI Ref ID J:202902]

Tsai S; Shameli A; Yamanouchi J; Clemente-Casares X; Wang J; Serra P; Yang Y; Medarova Z; Moore A; Santamaria P. 2010. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32(4):568-80. [PubMed: 20381385]  [MGI Ref ID J:179859]

Uehara S; Grinberg A; Farber JM; Love PE. 2002. A role for CCR9 in T lymphocyte development and migration. J Immunol 168(6):2811-9. [PubMed: 11884450]  [MGI Ref ID J:110846]

Ugolini S; Arpin C; Anfossi N; Walzer T; Cambiaggi A; Forster R; Lipp M; Toes RE; Melief CJ; Marvel J; Vivier E. 2001. Involvement of inhibitory NKRs in the survival of a subset of memory-phenotype CD8+ T cells. Nat Immunol 2(5):430-5. [PubMed: 11323697]  [MGI Ref ID J:133096]

Unsoeld H; Mueller K; Schleicher U; Bogdan C; Zwirner J; Voehringer D; Pircher H. 2007. Abrogation of CCL21 chemokine function by transgenic over-expression impairs T cell immunity to local infections. Int Immunol 19(11):1281-9. [PubMed: 17914120]  [MGI Ref ID J:125752]

Utzschneider DT; Legat A; Fuertes Marraco SA; Carrie L; Luescher I; Speiser DE; Zehn D. 2013. T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat Immunol 14(6):603-10. [PubMed: 23644506]  [MGI Ref ID J:197317]

Varanasi V; Khan AA; Chervonsky AV. 2014. Loss of the death receptor CD95 (Fas) expression by dendritic cells protects from a chronic viral infection. Proc Natl Acad Sci U S A 111(23):8559-64. [PubMed: 24912151]  [MGI Ref ID J:211624]

Wall EM; Milne K; Martin ML; Watson PH; Theiss P; Nelson BH. 2007. Spontaneous mammary tumors differ widely in their inherent sensitivity to adoptively transferred T cells. Cancer Res 67(13):6442-50. [PubMed: 17616705]  [MGI Ref ID J:122846]

Wallace VA; Kawai K; Levelt CN; Kishihara K; Molina T; Timms E; Pircher H; Penninger J; Ohashi PS; Eichmann K; Mak TW. 1995. T lymphocyte development in p56lck deficient mice: allelic exclusion of the TcR beta locus is incomplete but thymocyte development is not restored by TcR beta or TcR alpha beta transgenes. Eur J Immunol 25(5):1312-8. [PubMed: 7774634]  [MGI Ref ID J:25742]

Wallace VA; Penninger JM; Kishihara K; Timms E; Shahinian A; Pircher H; Kundig TM; Ohashi PS; Mak TW. 1997. Alterations in the level of CD45 surface expression affect the outcome of thymic selection. J Immunol 158(7):3205-14. [PubMed: 9120275]  [MGI Ref ID J:110837]

Wang B; Sharma A; Maile R; Saad M; Collins EJ; Frelinger JA. 2002. Peptidic termini play a significant role in TCR recognition. J Immunol 169(6):3137-45. [PubMed: 12218131]  [MGI Ref ID J:120444]

Wang J; Tsai S; Shameli A; Yamanouchi J; Alkemade G; Santamaria P. 2010. In situ recognition of autoantigen as an essential gatekeeper in autoimmune CD8+ T cell inflammation. Proc Natl Acad Sci U S A 107(20):9317-22. [PubMed: 20439719]  [MGI Ref ID J:160286]

Wang S; Villablanca EJ; De Calisto J; Gomes DC; Nguyen DD; Mizoguchi E; Kagan JC; Reinecker HC; Hacohen N; Nagler C; Xavier RJ; Rossi-Bergmann B; Chen YB; Blomhoff R; Snapper SB; Mora JR. 2011. MyD88-dependent TLR1/2 signals educate dendritic cells with gut-specific imprinting properties. J Immunol 187(1):141-50. [PubMed: 21646294]  [MGI Ref ID J:176180]

Waterhouse P; Bachmann MF; Penninger JM; Ohashi PS; Mak TW. 1997. Normal thymic selection, normal viability and decreased lymphoproliferation in T cell receptor-transgenic CTLA-4-deficient mice. Eur J Immunol 27(8):1887-92. [PubMed: 9295023]  [MGI Ref ID J:42659]

Waugh C; Sinclair L; Finlay D; Bayascas JR; Cantrell D. 2009. Phosphoinositide (3,4,5)-triphosphate binding to phosphoinositide-dependent kinase 1 regulates a protein kinase B/Akt signaling threshold that dictates T-cell migration, not proliferation. Mol Cell Biol 29(21):5952-62. [PubMed: 19703999]  [MGI Ref ID J:153995]

Weinhold M; Sommermeyer D; Uckert W; Blankenstein T. 2007. Dual T cell receptor expressing CD8+ T cells with tumor- and self-specificity can inhibit tumor growth without causing severe autoimmunity. J Immunol 179(8):5534-42. [PubMed: 17911640]  [MGI Ref ID J:153018]

West EE; Youngblood B; Tan WG; Jin HT; Araki K; Alexe G; Konieczny BT; Calpe S; Freeman GJ; Terhorst C; Haining WN; Ahmed R. 2011. Tight Regulation of Memory CD8(+) T Cells Limits Their Effectiveness during Sustained High Viral Load. Immunity 35(2):285-98. [PubMed: 21856186]  [MGI Ref ID J:176042]

Whitmire JK; Eam B; Benning N; Whitton JL. 2007. Direct interferon-gamma signaling dramatically enhances CD4+ and CD8+ T cell memory. J Immunol 179(2):1190-7. [PubMed: 17617612]  [MGI Ref ID J:149391]

Wiede F; La Gruta NL; Tiganis T. 2014. PTPN2 attenuates T-cell lymphopenia-induced proliferation. Nat Commun 5:3073. [PubMed: 24445916]  [MGI Ref ID J:206438]

Wiesel M; Crouse J; Bedenikovic G; Sutherland A; Joller N; Oxenius A. 2012. Type-I IFN drives the differentiation of short-lived effector CD8(+) T cells in vivo. Eur J Immunol 42(2):320-9. [PubMed: 22102057]  [MGI Ref ID J:179817]

Wiesel M; Joller N; Ehlert AK; Crouse J; Sporri R; Bachmann MF; Oxenius A. 2010. Th cells act via two synergistic pathways to promote antiviral CD8+ T cell responses. J Immunol 185(9):5188-97. [PubMed: 20881183]  [MGI Ref ID J:165190]

Wiesel M; Kratky W; Oxenius A. 2011. Type I IFN substitutes for T cell help during viral infections. J Immunol 186(2):754-63. [PubMed: 21160039]  [MGI Ref ID J:168770]

Wingender G; Berg M; Jungerkes F; Diehl L; Sullivan BA; Kronenberg M; Limmer A; Knolle PA. 2006. Immediate antigen-specific effector functions by TCR-transgenic CD8+ NKT cells. Eur J Immunol 36(3):570-82. [PubMed: 16506291]  [MGI Ref ID J:114826]

Wolf AI; Buehler D; Hensley SE; Cavanagh LL; Wherry EJ; Kastner P; Chan S; Weninger W. 2009. Plasmacytoid dendritic cells are dispensable during primary influenza virus infection. J Immunol 182(2):871-9. [PubMed: 19124730]  [MGI Ref ID J:143495]

Xie Y; Zhang H; Li W; Deng Y; Munegowda MA; Chibbar R; Qureshi M; Xiang J. 2010. Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J Immunol 185(9):5268-78. [PubMed: 20881190]  [MGI Ref ID J:165185]

Xiong Y; Castro E; Yagi R; Zhu J; Lesourne R; Love PE; Feigenbaum L; Bosselut R. 2013. Thpok-independent repression of Runx3 by Gata3 during CD4(+) T-cell differentiation in the thymus. Eur J Immunol 43(4):918-28. [PubMed: 23310955]  [MGI Ref ID J:195075]

Yan J; Parekh VV; Mendez-Fernandez Y; Olivares-Villagomez D; Dragovic S; Hill T; Roopenian DC; Joyce S; Van Kaer L. 2006. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J Exp Med 203(3):647-59. [PubMed: 16505142]  [MGI Ref ID J:122479]

Yin X; Ladi E; Chan SW; Li O; Killeen N; Kappes DJ; Robey EA. 2007. CCR7 expression in developing thymocytes is linked to the CD4 versus CD8 lineage decision. J Immunol 179(11):7358-64. [PubMed: 18025179]  [MGI Ref ID J:154818]

Zamisch M; Tian L; Grenningloh R; Xiong Y; Wildt KF; Ehlers M; Ho IC; Bosselut R. 2009. The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. J Exp Med 206(12):2685-99. [PubMed: 19917777]  [MGI Ref ID J:155097]

Zhang B; Zhang Y; Niu L; Vella AT; Mittler RS. 2010. Dendritic cells and Stat3 are essential for CD137-induced CD8 T cell activation-induced cell death. J Immunol 184(9):4770-8. [PubMed: 20351189]  [MGI Ref ID J:160463]

Zhang M; Park SM; Wang Y; Shah R; Liu N; Murmann AE; Wang CR; Peter ME; Ashton-Rickardt PG. 2006. Serine protease inhibitor 6 protects cytotoxic T cells from self-inflicted injury by ensuring the integrity of cytotoxic granules. Immunity 24(4):451-61. [PubMed: 16618603]  [MGI Ref ID J:113349]

Zhang N; Bevan MJ. 2013. Transforming growth factor-beta signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39(4):687-96. [PubMed: 24076049]  [MGI Ref ID J:208203]

Zhang ZX; Yang L; Young KJ; DuTemple B; Zhang L. 2000. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 6(7):782-9. [PubMed: 10888927]  [MGI Ref ID J:118729]

Zimmermann C; Rawiel M; Blaser C; Kaufmann M; Pircher H. 1996. Homeostatic regulation of CD8+ T cells after antigen challenge in the absence of Fas (CD95). Eur J Immunol 26(12):2903-10. [PubMed: 8977284]  [MGI Ref ID J:37076]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX11

Colony Maintenance

Breeding & HusbandryWhile maintaining a live colony, homozygous mice may be mated together.
Mating SystemHomozygote x Homozygote         (Female x Male)   09-JUN-14

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


 

This strain is currently Under Development - Now Accepting Orders.
Estimated Available for Distribution Date: 15-DEC-14

Please note: You may now place orders for this strain although it is not yet ready for distribution. Estimated available for distribution dates are provided to keep customers better informed on strains under development. Please note that our Colony Managers routinely monitor the target date and edit it based on breeding performance and other factors. The length of time it takes to make a new strain available for distribution depends on genotype, age, number of animals sent by the Donating Investigator, breeding performance, additional strain development (backcrossing, making homozygous), and anticipated demand for the strain.

Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $232.00Female or MaleHomozygous for Tg(TcrLCMV)327Sdz  
Price per Pair (US dollars $)Pair Genotype
$464.00Homozygous for Tg(TcrLCMV)327Sdz x Homozygous for Tg(TcrLCMV)327Sdz  

Standard Supply

Under Development - Now Accepting Orders The strain development process (i.e. importation, rederivation, and colony expansion) usually takes six to nine months.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $301.60Female or MaleHomozygous for Tg(TcrLCMV)327Sdz  
Price per Pair (US dollars $)Pair Genotype
$603.20Homozygous for Tg(TcrLCMV)327Sdz x Homozygous for Tg(TcrLCMV)327Sdz  

Standard Supply

Under Development - Now Accepting Orders The strain development process (i.e. importation, rederivation, and colony expansion) usually takes six to nine months.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Under Development - Now Accepting Orders The strain development process (i.e. importation, rederivation, and colony expansion) usually takes six to nine months.

General Supply Notes

Control Information

  Control
   See control note: There are no appropriate physiological controls for this mutant strain. However, if you must have a control you may use any of the following strains: B6D2F1/J (Stock No. 100006), C57BL/6J (Stock No. 000664), and DBA/2J (Stock No. 000671). These strains also serve as DNA controls.
   100006 B6D2F1/J (approximate)
   000664 C57BL/6J (approximate)
   000671 DBA/2J (approximate)
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)