Strain Name:


Stock Number:


Order this mouse


Cryopreserved - Ready for recovery

Use Restrictions Apply, see Terms of Use


The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Type Congenic; Mutant Strain; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
H2 Haplotypeg7
Donating InvestigatorDr. Jeffrey A. Bluestone,   University of California, San Francisco

albino, pink-eyed
Related Genotype: A/A Tyrc/Tyrc

NOD mice heterozygous for the Cd28tm1Mak mutation are viable, fertile; exhibiting diabetes onset and incidence similar to NOD. NOD mice homozygous for Cd28tm1Mak experience rapid onset Type 1 diabetes in both males and females. When stimulated with anti-Cd3 mAB, T cells from CD28 deficient NOD mice proliferate poorly when compared with wildtype controls. Nor do T cells proliferate in culture after the mice have been immunized with ovalbumin (OVA) in complete Freund┐s adjuvant. The IL-2 level of T-cells from mice that have been stimulated with either anti-Cd3 or OVA was significantly reduced. However, when challenged with GAD the CD28 deficient mice produced normal levels of IL-2. RT-PCR indicates a dramatic increase in the amount of IFNgamma and decreased IL4 compared to heterozygous controls. 1.5% of CD4 T cells from homozygous mice express CD25, while 6.5% of the CD4 T cells express CD25 in their wildtype cohorts.

This model is useful for studying the CTLA4/CD28:CD80/CD86 pathways in the regulation of self tolerance and susceptibility to autoimmune diseases.

Cd28, located on Chr. 1, 30.1cM, is involved in costimulatory signaling important for T cell activation. A construct containing a neomycin expression cassette replacing part of exon 2 of Cd28 was transfected into D3 (129S2/SvPas derived) embryonic stem cells (ES cells). These ES cells were injected into C57BL/6 blastocysts. As reported by Lenschow et al 1996, chimeric founders were initially mated to C57BL/6 and intercrossed to generate Cd28 deficient mice. B6 congenic mice homozygous for the mutation were subsequently mated to NOD for 4 generations, Lenschow et al 1996, prior to making homozygous. In 2006, the T1DR received mice heterozygous for the mutation at generation N11.

Control Information

   Wild-type from the colony
   001976 NOD/ShiLtJ
  Considerations for Choosing Controls

Related Strains

Strains carrying   Cd28tm1Mak allele
002666   B6.129S2-Cd28tm1Mak/J
002667   C.129S2(B6)-Cd28tm1Mak/J
View Strains carrying   Cd28tm1Mak     (2 strains)

Strains carrying other alleles of Cd28
017607   B6.129S4-Cd28tm1Shr Ctla4tm1Shr/J
012302   B6.129X1-Cd28tm1Jmg/Mmjax
012305   B6.129X1-Cd28tm2.1Jmg/Mmjax
024282   C57BL/6-Cd28tm1Ltu/J
View Strains carrying other alleles of Cd28     (4 strains)


Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype


  • immune system phenotype
  • abnormal CD4-positive, alpha-beta T cell physiology
    • only 1.5% of CD4 T cells in homozygotes express CD25 compared to 6.5% in wild-type   (MGI Ref ID J:61905)
  • abnormal response to transplant
    • CD28-deficient NOD mice injected with CD4+CD25+ NOD T cells showed significant delay in the development of diabetes with no disease apparent through 15 weeks of age, whereas transfer of CD4+CD25+ T cells resulted in diabetes development by 11 weeks of age   (MGI Ref ID J:61905)
  • increased T cell proliferation
    • expansion of transferred CD25-depleted T cells from Tg(TcraBDC2.5)1Doi Tg(TcrbBDC2.5)2Doi is dramatically accelerated compared to NOD controls; there are 5-fold more autoreactive transferred T cells in pancreatic lymph nodes compared to NOD mice   (MGI Ref ID J:93421)
  • increased susceptibility to autoimmune diabetes
    • mice show higher incidence of diabetes compared to Cd40lg, Cd28 double null mice   (MGI Ref ID J:93421)
  • hematopoietic system phenotype
  • abnormal CD4-positive, alpha-beta T cell physiology
    • only 1.5% of CD4 T cells in homozygotes express CD25 compared to 6.5% in wild-type   (MGI Ref ID J:61905)
  • increased T cell proliferation
    • expansion of transferred CD25-depleted T cells from Tg(TcraBDC2.5)1Doi Tg(TcrbBDC2.5)2Doi is dramatically accelerated compared to NOD controls; there are 5-fold more autoreactive transferred T cells in pancreatic lymph nodes compared to NOD mice   (MGI Ref ID J:93421)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.


        involves: 129S2/SvPas * NOD
  • immune system phenotype
  • abnormal T-helper 1 physiology
    • Th1 responses are enhanced in these mice   (MGI Ref ID J:35353)
    • splenic T cells secrete high levels of IFN-gamma while expressing very little to no IL-4 upon stimulation   (MGI Ref ID J:35353)
  • abnormal T-helper 2 physiology
    • Th2 responses are dampened in these mice   (MGI Ref ID J:35353)
    • splenic T cells secrete high levels of IFN-gamma while expressing very little to no IL-4 upon stimulation   (MGI Ref ID J:35353)
    • serum contains significantly less of the Th2-dependent anti-GAD IgG2a antibodies   (MGI Ref ID J:35353)
  • decreased IgG2a level
    • serum contains significantly less of the Th2-dependent anti-GAD IgG2a antibodies   (MGI Ref ID J:35353)
  • decreased T cell proliferation
    • T cells stimulated in vitro proliferate much less than controls to anti-CD3   (MGI Ref ID J:35353)
    • T cells fail to proliferate when restimulated with OVA peptide   (MGI Ref ID J:35353)
    • T cells also produce less IL-2 during these in vitro stimulations   (MGI Ref ID J:35353)
  • decreased interleukin-2 secretion
    • T cells also produce less IL-2 during stimulation with anti-CD3 antibody or upon restimulation with OVA peptide   (MGI Ref ID J:35353)
    • T cells secrete the same amout of IL-2 as controls when stimulated with the diabetic autoantigen GAD   (MGI Ref ID J:35353)
  • decreased interleukin-4 secretion
    • T cell secrete little to no IL-4 upon activation in vitro   (MGI Ref ID J:35353)
  • increased interferon-gamma secretion
    • splenic T cells secrete high levels of IFN-gamma, sometimes as much as 4-fold compared to controls   (MGI Ref ID J:35353)
  • increased susceptibility to autoimmune diabetes
    • 70-80% of female mice in the fourth backcross onto the NOD strain are hyperglycemic by 24 weeks of age compared to 30% for non-transgenic littermate controls   (MGI Ref ID J:35353)
    • nearly 90% of male mice in this backcross are hyperglycemic by 24 weeks of age compared to 10% of non-transgenic littermate controls   (MGI Ref ID J:35353)
  • hematopoietic system phenotype
  • abnormal T-helper 1 physiology
    • Th1 responses are enhanced in these mice   (MGI Ref ID J:35353)
    • splenic T cells secrete high levels of IFN-gamma while expressing very little to no IL-4 upon stimulation   (MGI Ref ID J:35353)
  • abnormal T-helper 2 physiology
    • Th2 responses are dampened in these mice   (MGI Ref ID J:35353)
    • splenic T cells secrete high levels of IFN-gamma while expressing very little to no IL-4 upon stimulation   (MGI Ref ID J:35353)
    • serum contains significantly less of the Th2-dependent anti-GAD IgG2a antibodies   (MGI Ref ID J:35353)
  • decreased IgG2a level
    • serum contains significantly less of the Th2-dependent anti-GAD IgG2a antibodies   (MGI Ref ID J:35353)
  • decreased T cell proliferation
    • T cells stimulated in vitro proliferate much less than controls to anti-CD3   (MGI Ref ID J:35353)
    • T cells fail to proliferate when restimulated with OVA peptide   (MGI Ref ID J:35353)
    • T cells also produce less IL-2 during these in vitro stimulations   (MGI Ref ID J:35353)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Diabetes and Obesity Research
Type 1 Diabetes (IDDM)

Cd28tm1Mak related

Immunology, Inflammation and Autoimmunity Research
CD Antigens, Antigen Receptors, and Histocompatibility Markers

Genes & Alleles

Gene & Allele Information provided by MGI

Allele Symbol Cd28tm1Mak
Allele Name targeted mutation 1, Tak Mak
Allele Type Targeted (Null/Knockout)
Common Name(s) CD28-; CD28KO;
Mutation Made ByDr. Tak Mak,   University Health Network/Un of Toronto
Strain of Origin129S2/SvPas
ES Cell Line NameD3
ES Cell Line Strain129S2/SvPas
Gene Symbol and Name Cd28, CD28 antigen
Chromosome 1
Gene Common Name(s) CD28RNA; Tp44;
Molecular Note A genomic fragment containing part of exon 2 was replaced by a neomycin resistance cassette. Flow-cytometry analysis on peripheral blood lymphocytes demonstrated that the protein was not expressed in these cells in homozygous mice. [MGI Ref ID J:14194]


Genotyping Information

Genotyping Protocols

Cd28tm1Makalternate1, Separated PCR
Cd28tm1Makalternate1, Standard PCR
Cd28tm1Mak, Standard PCR

Helpful Links

Genotyping resources and troubleshooting


References provided by MGI

Additional References

Cd28tm1Mak related

Afshar-Sterle S; Zotos D; Bernard NJ; Scherger AK; Rodling L; Alsop AE; Walker J; Masson F; Belz GT; Corcoran LM; O'Reilly LA; Strasser A; Smyth MJ; Johnstone R; Tarlinton DM; Nutt SL; Kallies A. 2014. Fas ligand-mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas. Nat Med 20(3):283-90. [PubMed: 24487434]  [MGI Ref ID J:208773]

Ait-Oufella H; Salomon BL; Potteaux S; Robertson AK; Gourdy P; Zoll J; Merval R; Esposito B; Cohen JL; Fisson S; Flavell RA; Hansson GK; Klatzmann D; Tedgui A; Mallat Z. 2006. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 12(2):178-80. [PubMed: 16462800]  [MGI Ref ID J:105800]

Akbari O; Stock P; Meyer EH; Freeman GJ; Sharpe AH; Umetsu DT; DeKruyff RH. 2008. ICOS/ICOSL interaction is required for CD4+ invariant NKT cell function and homeostatic survival. J Immunol 180(8):5448-56. [PubMed: 18390727]  [MGI Ref ID J:134254]

Akiba H; Takeda K; Kojima Y; Usui Y; Harada N; Yamazaki T; Ma J; Tezuka K; Yagita H; Okumura K. 2005. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol 175(4):2340-8. [PubMed: 16081804]  [MGI Ref ID J:107507]

Alegre ML; Shiels H; Thompson CB; Gajewski TF. 1998. Expression and function of CTLA-4 in Th1 and Th2 cells. J Immunol 161(7):3347-56. [PubMed: 9759851]  [MGI Ref ID J:115196]

Ali M; Weinreich M; Balcaitis S; Cooper CJ; Fink PJ. 2003. Differential regulation of peripheral CD4+ T cell tolerance induced by deletion and TCR revision. J Immunol 171(11):6290-6. [PubMed: 14634147]  [MGI Ref ID J:132828]

Andreasen SO; Christensen JE; Marker O; Thomsen AR. 2000. Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. J Immunol 164(7):3689-97. [PubMed: 10725727]  [MGI Ref ID J:123023]

Arens R; Loewendorf A; Redeker A; Sierro S; Boon L; Klenerman P; Benedict CA; Schoenberger SP. 2011. Differential B7-CD28 Costimulatory Requirements for Stable and Inflationary Mouse Cytomegalovirus-Specific Memory CD8 T Cell Populations. J Immunol 186(7):3874-81. [PubMed: 21357256]  [MGI Ref ID J:170700]

Arimura Y; Ezaki T; Koyanagi M; Uchiyama T; Koyasu S; Yagi J. 2010. Reduced T cell expansion by a superantigen as a result of impaired B cell development in mice deficient for the p85alpha regulatory subunit of PI3K. J Leukoc Biol 87(3):493-500. [PubMed: 20007249]  [MGI Ref ID J:158856]

Arjunaraja S; Massari P; Wetzler LM; Lees A; Colino J; Snapper CM. 2012. The nature of an in vivo anti-capsular polysaccharide response is markedly influenced by the composition and/or architecture of the bacterial subcapsular domain. J Immunol 188(2):569-77. [PubMed: 22156342]  [MGI Ref ID J:180885]

Asai T; Choi BK; Kwon PM; Kim WY; Kim JD; Vinay DS; Gebhardt BM; Kwon BS. 2007. Blockade of the 4-1BB (CD137)/4-1BBL and/or CD28/CD80/CD86 costimulatory pathways promotes corneal allograft survival in mice. Immunology 121(3):349-58. [PubMed: 17376197]  [MGI Ref ID J:125540]

Aumeunier A; Grela F; Ramadan A; Pham Van L; Bardel E; Gomez Alcala A; Jeannin P; Akira S; Bach JF; Thieblemont N. 2010. Systemic Toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice. PLoS One 5(7):e11484. [PubMed: 20628601]  [MGI Ref ID J:163119]

Bai XF; Liu JQ; Liu X; Guo Y; Cox K; Wen J; Zheng P; Liu Y. 2000. The heat-stable antigen determines pathogenicity of self-reactive T cells in experimental autoimmune encephalomyelitis. J Clin Invest 105(9):1227-32. [PubMed: 10791997]  [MGI Ref ID J:120498]

Beck JM; Blackmon MB; Rose CM; Kimzey SL; Preston AM; Green JM. 2003. T cell costimulatory molecule function determines susceptibility to infection with Pneumocystis carinii in mice. J Immunol 171(4):1969-77. [PubMed: 12902500]  [MGI Ref ID J:121189]

Belghith M; Bluestone JA; Barriot S; Megret J; Bach JF; Chatenoud L. 2003. TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9(9):1202-8. [PubMed: 12937416]  [MGI Ref ID J:85362]

Berg-Brown NN; Gronski MA; Jones RG; Elford AR; Deenick EK; Odermatt B; Littman DR; Ohashi PS. 2004. PKCtheta signals activation versus tolerance in vivo. J Exp Med 199(6):743-52. [PubMed: 15024044]  [MGI Ref ID J:123989]

Bergqvist P; Gardby E; Stensson A; Bemark M; Lycke NY. 2006. Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J Immunol 177(11):7772-83. [PubMed: 17114448]  [MGI Ref ID J:140700]

Bertram EM; Lau P; Watts TH. 2002. Temporal Segregation of 4-1BB Versus CD28-Mediated Costimulation: 4-1BB Ligand Influences T Cell Numbers Late in the Primary Response and Regulates the Size of the T Cell Memory Response Following Influenza Infection. J Immunol 168(8):3777-85. [PubMed: 11937529]  [MGI Ref ID J:75925]

Bertram EM; Tafuri A; Shahinian A; Chan VS; Hunziker L; Recher M; Ohashi PS; Mak TW; Watts TH. 2002. Role of ICOS versus CD28 in antiviral immunity. Eur J Immunol 32(12):3376-85. [PubMed: 12432568]  [MGI Ref ID J:80851]

Bhatia S; Sun K; Almo SC; Nathenson SG; Hodes RJ. 2010. Dynamic equilibrium of B7-1 dimers and monomers differentially affects immunological synapse formation and T cell activation in response to TCR/CD28 stimulation. J Immunol 184(4):1821-8. [PubMed: 20065109]  [MGI Ref ID J:159491]

Blazar BR; Lees CJ; Martin PJ; Noelle RJ; Kwon B; Murphy W; Taylor PA. 2000. Host T cells resist graft-versus-host disease mediated by donor leukocyte infusions. J Immunol 165(9):4901-9. [PubMed: 11046015]  [MGI Ref ID J:118027]

Boenisch O; D'Addio F; Watanabe T; Elyaman W; Magee CN; Yeung MY; Padera RF; Rodig SJ; Murayama T; Tanaka K; Yuan X; Ueno T; Jurisch A; Mfarrej B; Akiba H; Yagita H; Najafian N. 2010. TIM-3: a novel regulatory molecule of alloimmune activation. J Immunol 185(10):5806-19. [PubMed: 20956339]  [MGI Ref ID J:165781]

Boone DL; Dassopoulos T; Lodolce JP; Chai S; Chien M; Ma A. 2002. Interleukin-2-deficient mice develop colitis in the absence of CD28 costimulation. Inflamm Bowel Dis 8(1):35-42. [PubMed: 11837936]  [MGI Ref ID J:113015]

Bour-Jordan H; Salomon BL; Thompson HL; Santos R; Abbas AK; Bluestone JA. 2007. Constitutive expression of B7-1 on B cells uncovers autoimmunity toward the B cell compartment in the nonobese diabetic mouse. J Immunol 179(2):1004-12. [PubMed: 17617592]  [MGI Ref ID J:131077]

Bour-Jordan H; Salomon BL; Thompson HL; Szot GL; Bernhard MR; Bluestone JA. 2004. Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J Clin Invest 114(7):979-87. [PubMed: 15467837]  [MGI Ref ID J:93421]

Bry L; Brigl M; Brenner MB. 2006. CD4+-T-cell effector functions and costimulatory requirements essential for surviving mucosal infection with Citrobacter rodentium. Infect Immun 74(1):673-81. [PubMed: 16369024]  [MGI Ref ID J:104251]

Buhlmann JE; Elkin SK; Sharpe AH. 2003. A Role for the B7-1/B7-2:CD28/CTLA-4 Pathway During Negative Selection. J Immunol 170(11):5421-8. [PubMed: 12759417]  [MGI Ref ID J:83454]

Burne MJ; Daniels F; El Ghandour A; Mauiyyedi S; Colvin RB; O'Donnell MP; Rabb H. 2001. Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest 108(9):1283-90. [PubMed: 11696572]  [MGI Ref ID J:118005]

Burr JS; Kimzey SL; Randolph DR; Green JM. 2001. CD28 and CTLA4 coordinately regulate airway inflammatory cell recruitment and T-helper cell differentiation after inhaled allergen. Am J Respir Cell Mol Biol 24(5):563-8. [PubMed: 11350825]  [MGI Ref ID J:114405]

Byrum JN; Van Komen JS; Rodgers W. 2013. CD28 sensitizes TCR Ca(2)(+) signaling during Ag-independent polarization of plasma membrane rafts. J Immunol 191(6):3073-81. [PubMed: 23966623]  [MGI Ref ID J:205860]

Calzascia T; Pellegrini M; Lin A; Garza KM; Elford AR; Shahinian A; Ohashi PS; Mak TW. 2008. CD4 T cells, lymphopenia, and IL-7 in a multistep pathway to autoimmunity. Proc Natl Acad Sci U S A 105(8):2999-3004. [PubMed: 18287017]  [MGI Ref ID J:132821]

Cannons JL; Choi Y; Watts TH. 2000. Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4-1BB-dependent immune response. J Immunol 165(11):6193-204. [PubMed: 11086053]  [MGI Ref ID J:118025]

Cawthon AG; Kroger CJ; Alexander-Miller MA. 2004. High avidity CD8+ T cells generated from CD28-deficient or wildtype mice exhibit a differential dependence on lipid raft integrity for activation. Cell Immunol 227(2):148-55. [PubMed: 15135297]  [MGI Ref ID J:89576]

Chakravarti S; Hassell JR. 1991. Assignment of the gene for perlecan to mouse chromosome 4 Am J Hum Genet 49 (suppl):338 (Abstr.).  [MGI Ref ID J:12098]

Chang TT; Jabs C; Sobel RA; Kuchroo VK; Sharpe AH. 1999. Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. J Exp Med 190(5):733-40. [PubMed: 10477557]  [MGI Ref ID J:57613]

Chapoval SP; David CS. 2003. CD28 costimulation is critical for experimental allergic asthma in HLA-DQ8 transgenic mice. Clin Immunol 106(2):83-94. [PubMed: 12672399]  [MGI Ref ID J:82789]

Chen L; Cheng W; Shivshankar P; Lei L; Zhang X; Wu Y; Yeh IT; Zhong G. 2009. Distinct roles of CD28- and CD40 ligand-mediated costimulation in the development of protective immunity and pathology during Chlamydia muridarum urogenital infection in mice. Infect Immun 77(7):3080-9. [PubMed: 19398542]  [MGI Ref ID J:150306]

Chen Q; Cannons JL; Paton JC; Akiba H; Schwartzberg PL; Snapper CM. 2008. A novel ICOS-independent, but CD28- and SAP-dependent, pathway of T cell-dependent, polysaccharide-specific humoral immunity in response to intact Streptococcus pneumoniae versus pneumococcal conjugate vaccine. J Immunol 181(12):8258-66. [PubMed: 19050242]  [MGI Ref ID J:142078]

Chen Y; Shen S; Gorentla BK; Gao J; Zhong XP. 2012. Murine regulatory T cells contain hyperproliferative and death-prone subsets with differential ICOS expression. J Immunol 188(4):1698-707. [PubMed: 22231701]  [MGI Ref ID J:181206]

Chitnis T; Najafian N; Abdallah KA; Dong V; Yagita H; Sayegh MH; Khoury SJ. 2001. CD28-independent induction of experimental autoimmune encephalomyelitis. J Clin Invest 107(5):575-83. [PubMed: 11238558]  [MGI Ref ID J:120551]

Cho JH; Kim HO; Surh CD; Sprent J. 2010. T cell receptor-dependent regulation of lipid rafts controls naive CD8+ T cell homeostasis. Immunity 32(2):214-26. [PubMed: 20137986]  [MGI Ref ID J:157928]

Christensen JE; Christensen JP; Kristensen NN; Hansen NJ; Stryhn A; Thomsen AR. 2002. Role of CD28 co-stimulation in generation and maintenance of virus-specific T cells. Int Immunol 14(7):701-11. [PubMed: 12096029]  [MGI Ref ID J:113535]

Chung DR; Kasper DL; Panzo RJ; Chtinis T; Grusby MJ; Sayegh MH; Tzianabos AO. 2003. CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol 170(4):1958-63. [PubMed: 12574364]  [MGI Ref ID J:81809]

Chung Y; Nurieva R; Esashi E; Wang YH; Zhou D; Gapin L; Dong C. 2008. A critical role of costimulation during intrathymic development of invariant NK T cells. J Immunol 180(4):2276-83. [PubMed: 18250436]  [MGI Ref ID J:131999]

Compton HL; Farrell JP. 2002. CD28 costimulation and parasite dose combine to influence the susceptibility of BALB/c mice to infection with Leishmania major. J Immunol 168(3):1302-8. [PubMed: 11801669]  [MGI Ref ID J:127289]

Dautigny N; Le Campion A; Lucas B. 1999. Timing and casting for actors of thymic negative selection. J Immunol 162(3):1294-302. [PubMed: 9973382]  [MGI Ref ID J:124433]

DeBenedette MA; Wen T; Bachmann MF; Ohashi PS; Barber BH; Stocking KL; Peschon JJ; Watts TH. 1999. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J Immunol 163(9):4833-41. [PubMed: 10528184]  [MGI Ref ID J:76373]

Delogu A; Schebesta A; Sun Q; Aschenbrenner K; Perlot T; Busslinger M. 2006. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24(3):269-81. [PubMed: 16546096]  [MGI Ref ID J:113322]

Demirci G; Amanullah F; Kewalaramani R; Yagita H; Strom TB; Sayegh MH; Li XC. 2004. Critical role of OX40 in CD28 and CD154-independent rejection. J Immunol 172(3):1691-8. [PubMed: 14734751]  [MGI Ref ID J:87657]

Dodson LF; Boomer JS; Deppong CM; Shah DD; Sim J; Bricker TL; Russell JH; Green JM. 2009. Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol Cell Biol 29(13):3710-21. [PubMed: 19398586]  [MGI Ref ID J:149888]

Ekkens MJ; Liu Z; Liu Q; Foster A; Whitmire J; Pesce J; Sharpe AH; Urban JF; Gause WC. 2002. Memory Th2 effector cells can develop in the absence of B7-1/B7-2, CD28 interactions, and effector Th cells after priming with an intestinal nematode parasite. J Immunol 168(12):6344-51. [PubMed: 12055251]  [MGI Ref ID J:123794]

Elias RM; Sardinha LR; Bastos KR; Zago CA; da Silva AP; Alvarez JM; Lima MR. 2005. Role of CD28 in polyclonal and specific T and B cell responses required for protection against blood stage malaria. J Immunol 174(2):790-9. [PubMed: 15634900]  [MGI Ref ID J:95837]

Ellyard JI; Chia T; Rodriguez-Pinilla SM; Martin JL; Hu X; Navarro-Gonzalez M; Garcia JF; Delfau-Larue MH; Montes-Moreno S; Gaulard P; Cook MC; Walters G; Piris MA; Vinuesa CG. 2012. Heterozygosity for Roquinsan leads to angioimmunoblastic T-cell lymphoma-like tumors in mice. Blood 120(4):812-21. [PubMed: 22700722]  [MGI Ref ID J:189087]

Fallarino F; Fields PE; Gajewski TF. 1998. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J Exp Med 188(1):205-10. [PubMed: 9653097]  [MGI Ref ID J:111538]

Fang D; Liu YC. 2001. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nat Immunol 2(9):870-5. [PubMed: 11526404]  [MGI Ref ID J:125680]

Ferguson SE; Han S; Kelsoe G; Thompson CB. 1996. CD28 is required for germinal center formation. J Immunol 156(12):4576-81. [PubMed: 8648099]  [MGI Ref ID J:110668]

Fischbein MP; Ardehali A; Yun J; Schoenberger S; Laks H; Irie Y; Dempsey P; Cheng G; Fishbein MC; Bonavida B. 2000. CD40 signaling replaces CD4+ lymphocytes and its blocking prevents chronic rejection of heart transplants. J Immunol 165(12):7316-22. [PubMed: 11120867]  [MGI Ref ID J:118395]

Flano E; Husain SM; Sample JT; Woodland DL; Blackman MA. 2000. Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J Immunol 165(2):1074-81. [PubMed: 10878386]  [MGI Ref ID J:120495]

Freitas do Rosario AP; Muxel SM; Rodriguez-Malaga SM; Sardinha LR; Zago CA; Castillo-Mendez SI; Alvarez JM; D'Imperio Lima MR. 2008. Gradual decline in malaria-specific memory T cell responses leads to failure to maintain long-term protective immunity to Plasmodium chabaudi AS despite persistence of B cell memory and circulating antibody. J Immunol 181(12):8344-55. [PubMed: 19050251]  [MGI Ref ID J:142073]

Friedline RH ; Brown DS ; Nguyen H ; Kornfeld H ; Lee J ; Zhang Y ; Appleby M ; Der SD ; Kang J ; Chambers CA. 2009. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med 206(2):421-34. [PubMed: 19188497]  [MGI Ref ID J:146644]

Friend LD; Shah DD; Deppong C; Lin J; Bricker TL; Juehne TI; Rose CM; Green JM. 2006. A dose-dependent requirement for the proline motif of CD28 in cellular and humoral immunity revealed by a targeted knockin mutant. J Exp Med 203(9):2121-33. [PubMed: 16908623]  [MGI Ref ID J:124570]

Fukada K; Koyanagi M; Arimura Y; Ogiuchi H; Uchiyama T; Yagi J. 2005. CD28 is required for induction and maintenance of immunological memory in toxin-reactive CD4+ T cells in vivo. Cell Immunol 238(2):103-12. [PubMed: 16600196]  [MGI Ref ID J:108140]

Fuse S; Zhang W; Usherwood EJ. 2008. Control of memory CD8+ T cell differentiation by CD80/CD86-CD28 costimulation and restoration by IL-2 during the recall response. J Immunol 180(2):1148-57. [PubMed: 18178855]  [MGI Ref ID J:130942]

Gao JX; Chang X; Zheng X; Wen J; Yin L; Du P; Zheng P; Liu Y. 2004. A new role for CD28 in the survival of autoreactive T cells in the periphery after chronic exposure to autoantigen. Int Immunol 16(10):1403-9. [PubMed: 15314039]  [MGI Ref ID J:93659]

Garcon F; Patton DT; Emery JL; Hirsch E; Rottapel R; Sasaki T; Okkenhaug K. 2008. CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. Blood 111(3):1464-71. [PubMed: 18006698]  [MGI Ref ID J:130753]

Gardby E; Wrammert J; Schon K; Ekman L; Leanderson T; Lycke N. 2003. Strong differential regulation of serum and mucosal IgA responses as revealed in CD28-deficient mice using cholera toxin adjuvant. J Immunol 170(1):55-63. [PubMed: 12496383]  [MGI Ref ID J:135141]

Gause WC; Chen SJ; Greenwald RJ; Halvorson MJ; Lu P; Zhou XD; Morris SC; Lee KP; June CH; Finkelman FD; Urban JF; Abe R. 1997. CD28 dependence of T cell differentiation to IL-4 production varies with the particular type 2 immune response. J Immunol 158(9):4082-7. [PubMed: 9126966]  [MGI Ref ID J:110674]

Geldhof AB; Moser M; Lespagnard L; Thielemans K; De Baetselier P. 1998. Interleukin-12-activated natural killer cells recognize B7 costimulatory molecules on tumor cells and autologous dendritic cells. Blood 91(1):196-206. [PubMed: 9414285]  [MGI Ref ID J:45067]

Gelman AE; LaRosa DF; Zhang J; Walsh PT; Choi Y; Sunyer JO; Turka LA. 2006. The adaptor molecule MyD88 activates PI-3 kinase signaling in CD4+ T cells and enables CpG oligodeoxynucleotide-mediated costimulation. Immunity 25(5):783-93. [PubMed: 17055754]  [MGI Ref ID J:116106]

Girvin AM; Dal Canto MC; Miller SD. 2002. CD40/CD40L interaction is essential for the induction of EAE in the absence of CD28-mediated co-stimulation. J Autoimmun 18(2):83-94. [PubMed: 11908941]  [MGI Ref ID J:119134]

Girvin AM; Dal Canto MC; Rhee L; Salomon B; Sharpe A; Bluestone JA; Miller SD. 2000. A critical role for B7/CD28 costimulation in experimental autoimmune encephalomyelitis: a comparative study using costimulatory molecule-deficient mice and monoclonal antibody blockade. J Immunol 164(1):136-43. [PubMed: 10605004]  [MGI Ref ID J:109892]

Gogishvili T; Luhder F; Goebbels S; Beer-Hammer S; Pfeffer K; Hunig T. 2013. Cell-intrinsic and -extrinsic control of Treg-cell homeostasis and function revealed by induced CD28 deletion. Eur J Immunol 43(1):188-93. [PubMed: 23065717]  [MGI Ref ID J:191101]

Graham DB; Bell MP; Huntoon CJ; Griffin MD; Tai X; Singer A; McKean DJ. 2006. CD28 ligation costimulates cell death but not maturation of double-positive thymocytes due to defective ERK MAPK signaling. J Immunol 177(9):6098-107. [PubMed: 17056536]  [MGI Ref ID J:140523]

Gray Parkin K; Stephan RP; Apilado RG; Lill-Elghanian DA; Lee KP; Saha B; Witte PL. 2002. Expression of CD28 by bone marrow stromal cells and its involvement in B lymphopoiesis. J Immunol 169(5):2292-302. [PubMed: 12193694]  [MGI Ref ID J:120690]

Green JM; Karpitskiy V; Kimzey SL; Shaw AS. 2000. Coordinate regulation of T cell activation by CD2 and CD28. J Immunol 164(7):3591-5. [PubMed: 10725714]  [MGI Ref ID J:111620]

Green JM; Noel PJ; Sperling AI; Walunas TL; Gray GS; Bluestone JA; Thompson CB. 1994. Absence of B7-dependent responses in CD28-deficient mice. Immunity 1(6):501-8. [PubMed: 7534617]  [MGI Ref ID J:189425]

Grujic M; Bartholdy C; Remy M; Pinschewer DD; Christensen JP; Thomsen AR. 2010. The role of CD80/CD86 in generation and maintenance of functional virus-specific CD8+ T cells in mice infected with lymphocytic choriomeningitis virus. J Immunol 185(3):1730-43. [PubMed: 20601595]  [MGI Ref ID J:162454]

Guo F; Iclozan C; Suh WK; Anasetti C; Yu XZ. 2008. CD28 controls differentiation of regulatory T cells from naive CD4 T cells. J Immunol 181(4):2285-91. [PubMed: 18684917]  [MGI Ref ID J:140198]

Habiro K; Kotani M; Omoto K; Kobayashi S; Tanabe K; Shimmura H; Suzuki K; Hayashi T; Toma H; Abe R. 2003. Mechanism of allorecognition and skin graft rejection in CD28 and CD40 ligand double-deficient mice. Transplantation 76(5):854-8. [PubMed: 14501867]  [MGI Ref ID J:126214]

Hagen KA; Moses CT; Drasler EF; Podetz-Pedersen KM; Jameson SC; Khoruts A. 2004. A role for CD28 in lymphopenia-induced proliferation of CD4 T cells. J Immunol 173(6):3909-15. [PubMed: 15356139]  [MGI Ref ID J:92743]

Haile ST; Dalal SP; Clements V; Tamada K; Ostrand-Rosenberg S. 2013. Soluble CD80 restores T cell activation and overcomes tumor cell programmed death ligand 1-mediated immune suppression. J Immunol 191(5):2829-36. [PubMed: 23918985]  [MGI Ref ID J:205796]

Hancock WW; Tsai TL; Madaio MP; Gasser DL. 2003. Cutting Edge: Multiple autoimmune pathways in kd/kd mice. J Immunol 171(6):2778-81. [PubMed: 12960297]  [MGI Ref ID J:85380]

Hao Z; Duncan GS; Seagal J; Su YW; Hong C; Haight J; Chen NJ; Elia A; Wakeham A; Li WY; Liepa J; Wood GA; Casola S; Rajewsky K; Mak TW. 2008. Fas receptor expression in germinal-center B cells is essential for T and B lymphocyte homeostasis. Immunity 29(4):615-27. [PubMed: 18835195]  [MGI Ref ID J:141441]

Harada Y; Tokushima M; Matsumoto Y; Ogawa S; Otsuka M; Hayashi K; Weiss BD; June CH; Abe R. 2001. Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated costimulation in vivo. J Immunol 166(6):3797-803. [PubMed: 11238622]  [MGI Ref ID J:126654]

Havarinasab S; Haggqvist B; Bjorn E; Pollard KM; Hultman P. 2005. Immunosuppressive and autoimmune effects of thimerosal in mice. Toxicol Appl Pharmacol 204(2):109-21. [PubMed: 15808517]  [MGI Ref ID J:97345]

Havarinasab S; Pollard KM; Hultman P. 2009. Gold- and silver-induced murine autoimmunity--requirement for cytokines and CD28 in murine heavy metal-induced autoimmunity. Clin Exp Immunol 155(3):567-76. [PubMed: 19077085]  [MGI Ref ID J:146057]

Hayakawa Y; Takeda K; Yagita H; Van Kaer L; Saiki I; Okumura K. 2001. Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways. J Immunol 166(10):6012-8. [PubMed: 11342617]  [MGI Ref ID J:110892]

Hazlett LD; McClellan S; Barrett R; Rudner X. 2001. B7/CD28 costimulation is critical in susceptibility to Pseudomonas aeruginosa corneal infection: a comparative study using monoclonal antibody blockade and CD28-deficient mice. J Immunol 166(2):1292-9. [PubMed: 11145712]  [MGI Ref ID J:66855]

Heinly C; Sempowski G; Lee D; Patel D; McDermott P; Scearce R; Thompson C; Haynes B. 2001. Comparison of thymocyte development and cytokine production in CD7-deficient, CD28-deficient and CD7/CD28 double-deficient mice. Int Immunol 13(2):157-66. [PubMed: 11157849]  [MGI Ref ID J:67177]

Hendriks J; Xiao Y; Borst J. 2003. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J Exp Med 198(9):1369-80. [PubMed: 14581610]  [MGI Ref ID J:86461]

Herold KC; Lu J; Rulifson I; Vezys V; Taub D; Grusby MJ; Bluestone JA. 1997. Regulation of C-C chemokine production by murine T cells by CD28/B7 costimulation. J Immunol 159(9):4150-3. [PubMed: 9379007]  [MGI Ref ID J:110673]

Hofstetter AR; Ford ML; Sullivan LC; Wilson JJ; Hadley A; Brooks AG; Lukacher AE. 2012. MHC class Ib-restricted CD8 T cells differ in dependence on CD4 T cell help and CD28 costimulation over the course of mouse polyomavirus infection. J Immunol 188(7):3071-9. [PubMed: 22393155]  [MGI Ref ID J:183086]

Holsti MA; Chitnis T; Panzo RJ; Bronson RT; Yagita H; Sayegh MH; Tzianabos AO. 2004. Regulation of postsurgical fibrosis by the programmed death-1 inhibitory pathway. J Immunol 172(9):5774-81. [PubMed: 15100324]  [MGI Ref ID J:89694]

Honstettre A; Meghari S; Nunes JA; Lepidi H; Raoult D; Olive D; Mege JL. 2006. Role for the CD28 molecule in the control of Coxiella burnetii infection. Infect Immun 74(3):1800-8. [PubMed: 16495554]  [MGI Ref ID J:107388]

Howland KC; Ausubel LJ; London CA; Abbas AK. 2000. The roles of CD28 and CD40 ligand in T cell activation and tolerance. J Immunol 164(9):4465-70. [PubMed: 10779746]  [MGI Ref ID J:110821]

Huang J; Lo PF; Zal T; Gascoigne NR; Smith BA; Levin SD; Grey HM. 2002. CD28 plays a critical role in the segregation of PKC theta within the immunologic synapse. Proc Natl Acad Sci U S A 99(14):9369-73. [PubMed: 12077322]  [MGI Ref ID J:126523]

Iliopoulou BP; Alroy J; Huber BT. 2007. CD28 deficiency exacerbates joint inflammation upon Borrelia burgdorferi infection, resulting in the development of chronic Lyme arthritis. J Immunol 179(12):8076-82. [PubMed: 18056348]  [MGI Ref ID J:155039]

Irla M; Guerri L; Guenot J; Serge A; Lantz O; Liston A; Imhof BA; Palmer E; Reith W. 2012. Antigen recognition by autoreactive CD4(+) thymocytes drives homeostasis of the thymic medulla. PLoS One 7(12):e52591. [PubMed: 23300712]  [MGI Ref ID J:195832]

Jarmin SJ; David R; Ma L; Chai JG; Dewchand H; Takesono A; Ridley AJ; Okkenhaug K; Marelli-Berg FM. 2008. T cell receptor-induced phosphoinositide-3-kinase p110delta activity is required for T cell localization to antigenic tissue in mice. J Clin Invest 118(3):1154-64. [PubMed: 18259608]  [MGI Ref ID J:135309]

Kaneda H; Takeda K; Ota T; Kaduka Y; Akiba H; Ikarashi Y; Wakasugi H; Kronenberg M; Kinoshita K; Yagita H; Okumura K. 2005. ICOS costimulates invariant NKT cell activation. Biochem Biophys Res Commun 327(1):201-7. [PubMed: 15629449]  [MGI Ref ID J:95353]

Kang J; Huddleston SJ; Fraser JM; Khoruts A. 2008. De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J Leukoc Biol 83(5):1230-9. [PubMed: 18270248]  [MGI Ref ID J:134458]

Kawai K; Shahinian A; Mak TW; Ohashi PS. 1996. Skin allograft rejection in CD28-deficient mice. Transplantation 61(3):352-5. [PubMed: 8610339]  [MGI Ref ID J:31421]

Kemball CC; Lee ED; Szomolanyi-Tsuda E; Pearson TC; Larsen CP; Lukacher AE. 2006. Costimulation requirements for antiviral CD8+ T cells differ for acute and persistent phases of polyoma virus infection. J Immunol 176(3):1814-24. [PubMed: 16424212]  [MGI Ref ID J:126419]

Kim G; Turovskaya O; Levin M; Byrne FR; Whoriskey JS; McCabe JG; Kronenberg M. 2008. Spontaneous colitis occurrence in transgenic mice with altered B7-mediated costimulation. J Immunol 181(8):5278-88. [PubMed: 18832683]  [MGI Ref ID J:140772]

Kim IJ; Flano E; Woodland DL; Blackman MA. 2002. Antibody-mediated control of persistent gamma-herpesvirus infection. J Immunol 168(8):3958-64. [PubMed: 11937552]  [MGI Ref ID J:126189]

Kimzey SL; Liu P; Green JM. 2004. Requirement for CD28 in the effector phase of allergic airway inflammation. J Immunol 173(1):632-40. [PubMed: 15210826]  [MGI Ref ID J:90926]

King CG; Buckler JL; Kobayashi T; Hannah JR; Bassett G; Kim T; Pearce EL; Kim GG; Turka LA; Choi Y. 2008. Cutting edge: requirement for TRAF6 in the induction of T cell anergy. J Immunol 180(1):34-8. [PubMed: 18097000]  [MGI Ref ID J:130882]

King CL; Xianli J; June CH; Abe R; Lee KP. 1996. CD28-deficient mice generate an impaired Th2 response to Schistosoma mansoni infection. Eur J Immunol 26(10):2448-55. [PubMed: 8898959]  [MGI Ref ID J:112979]

Kishimoto H; Sprent J. 1999. Several different cell surface molecules control negative selection of medullary thymocytes. J Exp Med 190(1):65-73. [PubMed: 10429671]  [MGI Ref ID J:56164]

Kishimoto K; Dong VM; Issazadeh S; Fedoseyeva EV; Waaga AM; Yamada A; Sho M; Benichou G; Auchincloss H Jr; Grusby MJ; Khoury SJ; Sayegh MH. 2000. The role of CD154-CD40 versus CD28-B7 costimulatory pathways in regulating allogeneic Th1 and Th2 responses in vivo. J Clin Invest 106(1):63-72. [PubMed: 10880049]  [MGI Ref ID J:63156]

Kleinschnitz C; Schwab N; Kraft P; Hagedorn I; Dreykluft A; Schwarz T; Austinat M; Nieswandt B; Wiendl H; Stoll G. 2010. Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115(18):3835-42. [PubMed: 20215643]  [MGI Ref ID J:160239]

Komatsu N; Hori S. 2007. Full restoration of peripheral Foxp3+ regulatory T cell pool by radioresistant host cells in scurfy bone marrow chimeras. Proc Natl Acad Sci U S A 104(21):8959-64. [PubMed: 17494743]  [MGI Ref ID J:121851]

Kondo S; Kooshesh F; Wang B; Fujisawa H; Sauder DN. 1996. Contribution of the CD28 molecule to allergic and irritant-induced skin reactions in CD28 -/- mice. J Immunol 157(11):4822-9. [PubMed: 8943384]  [MGI Ref ID J:37043]

Kopf M; Coyle AJ; Schmitz N; Barner M; Oxenius A; Gallimore A; Gutierrez-Ramos JC; Bachmann MF. 2000. Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection. J Exp Med 192(1):53-61. [PubMed: 10880526]  [MGI Ref ID J:63142]

Krawczyk CM; Jones RG; Atfield A; Bachmaier K; Arya S; Odermatt B; Ohashi PS; Penninger JM. 2005. Differential control of CD28-regulated in vivo immunity by the E3 ligase Cbl-b. J Immunol 174(3):1472-8. [PubMed: 15661906]  [MGI Ref ID J:96411]

Kurtz J; Raval F; Vallot C; Der J; Sykes M. 2009. CTLA-4 on alloreactive CD4 T cells interacts with recipient CD80/86 to promote tolerance. Blood 113(15):3475-84. [PubMed: 19179471]  [MGI Ref ID J:148296]

Laird RM; Wolf BJ; Princiotta MF; Hayes SM. 2013. gammadelta T cells acquire effector fates in the thymus and differentiate into cytokine-producing effectors in a listeria model of infection independently of CD28 costimulation. PLoS One 8(5):e63178. [PubMed: 23671671]  [MGI Ref ID J:200526]

Lambrecht BN; De Veerman M; Coyle AJ; Gutierrez-Ramos JC; Thielemans K; Pauwels RA. 2000. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest 106(4):551-9. [PubMed: 10953030]  [MGI Ref ID J:115351]

Landrigan A; Wong MT; Utz PJ. 2011. CpG and non-CpG oligodeoxynucleotides directly costimulate mouse and human CD4+ T cells through a TLR9- and MyD88-independent mechanism. J Immunol 187(6):3033-43. [PubMed: 21844387]  [MGI Ref ID J:179244]

Lee BJ; Reiter SK; Anderson M; Sarawar SR. 2002. CD28(-/-) Mice Show Defects in Cellular and Humoral Immunity but Are Able To Control Infection with Murine Gammaherpesvirus 68. J Virol 76(6):3049-53. [PubMed: 11861872]  [MGI Ref ID J:74756]

Lenschow DJ; Herold KC; Rhee L; Patel B; Koons A; Qin HY; Fuchs E; Singh B; Thompson CB; Bluestone JA. 1996. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 5(3):285-93. [PubMed: 8808683]  [MGI Ref ID J:35353]

Li R; Page DM. 2001. Requirement for a complex array of costimulators in the negative selection of autoreactive thymocytes in vivo. J Immunol 166(10):6050-6. [PubMed: 11342622]  [MGI Ref ID J:110925]

Liang Y; Cucchetti M; Roncagalli R; Yokosuka T; Malzac A; Bertosio E; Imbert J; Nijman IJ; Suchanek M; Saito T; Wulfing C; Malissen B; Malissen M. 2013. The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat Immunol 14(8):858-66. [PubMed: 23793062]  [MGI Ref ID J:205441]

Lin H; Rathmell JC; Gray GS; Thompson CB; Leiden JM; Alegre ML. 1998. Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28. J Exp Med 188(1):199-204. [PubMed: 9653096]  [MGI Ref ID J:115143]

Linterman MA ; Rigby RJ ; Wong R ; Silva D ; Withers D ; Anderson G ; Verma NK ; Brink R ; Hutloff A ; Goodnow CC ; Vinuesa CG. 2009. Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity 30(2):228-41. [PubMed: 19217324]  [MGI Ref ID J:146622]

Lio CW; Dodson LF; Deppong CM; Hsieh CS; Green JM. 2010. CD28 facilitates the generation of Foxp3(-) cytokine responsive regulatory T cell precursors. J Immunol 184(11):6007-13. [PubMed: 20421644]  [MGI Ref ID J:161233]

Liu P; Aitken K; Kong YY; Opavsky MA; Martino T; Dawood F; Wen WH; Kozieradzki I; Bachmaier K; Straus D; Mak TW; Penninger JM. 2000. The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat Med 6(4):429-34. [PubMed: 10742150]  [MGI Ref ID J:119597]

Liu Q; Arseculeratne C; Liu Z; Whitmire J; Grusby MJ; Finkelman FD; Darling TN; Cheever AW; Swearengen J; Urban JF; Gause WC. 2004. Simultaneous deficiency in CD28 and STAT6 results in chronic ectoparasite-induced inflammatory skin disease. Infect Immun 72(7):3706-15. [PubMed: 15213110]  [MGI Ref ID J:90987]

Loke P; Zang X; Hsuan L; Waitz R; Locksley RM; Allen JE; Allison JP. 2005. Inducible costimulator is required for type 2 antibody isotype switching but not T helper cell type 2 responses in chronic nematode infection. Proc Natl Acad Sci U S A 102(28):9872-7. [PubMed: 15994233]  [MGI Ref ID J:99858]

Mahmud SA; Manlove LS; Schmitz HM; Xing Y; Wang Y; Owen DL; Schenkel JM; Boomer JS; Green JM; Yagita H; Chi H; Hogquist KA; Farrar MA. 2014. Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat Immunol 15(5):473-81. [PubMed: 24633226]  [MGI Ref ID J:210316]

Maier S; Tertilt C; Chambron N; Gerauer K; Huser N; Heidecke CD; Pfeffer K. 2001. Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28-/- mice. Nat Med 7(5):557-62. [PubMed: 11329056]  [MGI Ref ID J:69096]

Mamura M; Lee W; Sullivan TJ; Felici A; Sowers AL; Allison JP; Letterio JJ. 2004. CD28 disruption exacerbates inflammation in Tgf-beta1-/- mice: in vivo suppression by CD4+CD25+ regulatory T cells independent of autocrine TGF-beta1. Blood 103(12):4594-601. [PubMed: 15016653]  [MGI Ref ID J:90915]

Marks E; Verolin M; Stensson A; Lycke N. 2007. Differential CD28 and Inducible Costimulatory Molecule Signaling Requirements for Protective CD4+ T-Cell-Mediated Immunity against Genital Tract Chlamydia trachomatis Infection. Infect Immun 75(9):4638-47. [PubMed: 17635872]  [MGI Ref ID J:123920]

Martin-Fontecha A; Assarsson E; Carbone E; Karre K; Ljunggren HG. 1999. Triggering of murine NK cells by CD40 and CD86 (B7-2). J Immunol 162(10):5910-6. [PubMed: 10229827]  [MGI Ref ID J:110890]

Martins GA; Campanelli AP; Silva RB; Tadokoro CE; Russo M; Cunha FQ; Rizzo LV; Silva JS. 2004. CD28 is required for T cell activation and IFN-gamma production by CD4+ and CD8+ T cells in response to Trypanosoma cruzi infection. Microbes Infect 6(13):1133-44. [PubMed: 15488732]  [MGI Ref ID J:105590]

Mathur M; Herrmann K; Qin Y; Gulmen F; Li X; Krimins R; Weinstock J; Elliott D; Bluestone JA; Padrid P. 1999. CD28 interactions with either CD80 or CD86 are sufficient to induce allergic airway inflammation in mice. Am J Respir Cell Mol Biol 21(4):498-509. [PubMed: 10502560]  [MGI Ref ID J:59459]

Matsuda JL; Gapin L; Baron JL; Sidobre S; Stetson DB; Mohrs M; Locksley RM; Kronenberg M. 2003. Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci U S A 100(14):8395-400. [PubMed: 12829795]  [MGI Ref ID J:126209]

Meagher C; Tang Q; Fife BT; Bour-Jordan H; Wu J; Pardoux C; Bi M; Melli K; Bluestone JA. 2008. Spontaneous development of a pancreatic exocrine disease in CD28-deficient NOD mice. J Immunol 180(12):7793-803. [PubMed: 18523243]  [MGI Ref ID J:137030]

Mencacci A; Montagnoli C; Bacci A; Cenci E; Pitzurra L; Spreca A; Kopf M; Sharpe AH; Romani L. 2002. CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J Immunol 169(6):3180-90. [PubMed: 12218136]  [MGI Ref ID J:120204]

Millar DG; Garza KM; Odermatt B; Elford AR; Ono N; Li Z; Ohashi PS. 2003. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 9(12):1469-76. [PubMed: 14625545]  [MGI Ref ID J:99614]

Mingueneau M; Roncagalli R; Gregoire C; Kissenpfennig A; Miazek A; Archambaud C; Wang Y; Perrin P; Bertosio E; Sansoni A; Richelme S; Locksley RM; Aguado E; Malissen M; Malissen B. 2009. Loss of the LAT adaptor converts antigen-responsive T cells into pathogenic effectors that function independently of the T cell receptor. Immunity 31(2):197-208. [PubMed: 19682930]  [MGI Ref ID J:151840]

Mittrucker HW; Kursar M; Kohler A; Hurwitz R; Kaufmann SH. 2001. Role of CD28 for the Generation and Expansion of Antigen-Specific CD8(+) T Lymphocytes During Infection with Listeria monocytogenes. J Immunol 167(10):5620-7. [PubMed: 11698433]  [MGI Ref ID J:72680]

Mittrucker HW; Shahinian A; Bouchard D; Kundig TM; Mak TW. 1996. Induction of unresponsiveness and impaired T cell expansion by staphylococcal enterotoxin B in CD28-deficient mice. J Exp Med 183(6):2481-8. [PubMed: 8676068]  [MGI Ref ID J:33610]

Montagnoli C; Bacci A; Bozza S; Gaziano R; Mosci P; Sharpe AH; Romani L. 2002. B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J Immunol 169(11):6298-308. [PubMed: 12444136]  [MGI Ref ID J:118777]

Montagnoli C; Fallarino F; Gaziano R; Bozza S; Bellocchio S; Zelante T; Kurup WP; Pitzurra L; Puccetti P; Romani L. 2006. Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. J Immunol 176(3):1712-23. [PubMed: 16424201]  [MGI Ref ID J:126452]

Montandon R; Korniotis S; Layseca-Espinosa E; Gras C; Megret J; Ezine S; Dy M; Zavala F. 2013. Innate pro-B-cell progenitors protect against type 1 diabetes by regulating autoimmune effector T cells. Proc Natl Acad Sci U S A 110(24):E2199-208. [PubMed: 23716674]  [MGI Ref ID J:197396]

Moran AE; Holzapfel KL; Xing Y; Cunningham NR; Maltzman JS; Punt J; Hogquist KA. 2011. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 208(6):1279-89. [PubMed: 21606508]  [MGI Ref ID J:172415]

Najafian N; Chitnis T; Salama AD; Zhu B; Benou C; Yuan X; Clarkson MR; Sayegh MH; Khoury SJ. 2003. Regulatory functions of CD8+CD28- T cells in an autoimmune disease model. J Clin Invest 112(7):1037-48. [PubMed: 14523041]  [MGI Ref ID J:85805]

Ndhlovu LC; Ishii N; Murata K; Sato T; Sugamura K. 2001. Critical involvement of OX40 ligand signals in the T cell priming events during experimental autoimmune encephalomyelitis. J Immunol 167(5):2991-9. [PubMed: 11509650]  [MGI Ref ID J:119463]

Nishina H; Bachmann M; Oliveira-dos-Santos AJ; Kozieradzki I; Fischer KD; Odermatt B; Wakeham A; Shahinian A; Takimoto H; Bernstein A; Mak TW; Woodgett JR; Ohashi PS; Penninger JM. 1997. Impaired CD28-mediated interleukin 2 production and proliferation in stress kinase SAPK/ERK1 kinase (SEK1)/mitogen-activated protein kinase kinase 4 (MKK4)-deficient T lymphocytes. J Exp Med 186(6):941-53. [PubMed: 9294148]  [MGI Ref ID J:77850]

Njau MN; Kim JH; Chappell CP; Ravindran R; Thomas L; Pulendran B; Jacob J. 2012. CD28-B7 interaction modulates short- and long-lived plasma cell function. J Immunol 189(6):2758-67. [PubMed: 22908331]  [MGI Ref ID J:190234]

Noel PJ; Alegre ML; Reiner SL; Thompson CB. 1998. Impaired negative selection in CD28-deficient mice. Cell Immunol 187(2):131-8. [PubMed: 9732701]  [MGI Ref ID J:49639]

Noel PJ; Boise LH; Green JM; Thompson CB. 1996. CD28 costimulation prevents cell death during primary T cell activation. J Immunol 157(2):636-42. [PubMed: 8752911]  [MGI Ref ID J:110619]

Nolan A; Kobayashi H; Naveed B; Kelly A; Hoshino Y; Hoshino S; Karulf MR; Rom WN; Weiden MD; Gold JA. 2009. Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis. PLoS One 4(8):e6600. [PubMed: 19672303]  [MGI Ref ID J:152470]

Nurieva R; Thomas S; Nguyen T; Martin-Orozco N; Wang Y; Kaja MK; Yu XZ; Dong C. 2006. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J 25(11):2623-33. [PubMed: 16724117]  [MGI Ref ID J:109521]

Obar JJ; Molloy MJ; Jellison ER; Stoklasek TA; Zhang W; Usherwood EJ; Lefrancois L. 2010. CD4+ T cell regulation of CD25 expression controls development of short-lived effector CD8+ T cells in primary and secondary responses. Proc Natl Acad Sci U S A 107(1):193-8. [PubMed: 19966302]  [MGI Ref ID J:156498]

Oderup C; Cederbom L; Makowska A; Cilio CM; Ivars F. 2006. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology 118(2):240-9. [PubMed: 16771859]  [MGI Ref ID J:111948]

Ogawa S; Watanabe M; Sakurai Y; Inutake Y; Watanabe S; Tai X; Abe R. 2013. CD28 signaling in primary CD4+ T cells: identification of both tyrosine phosphorylation-dependent and phosphorylation-independent pathways. Int Immunol 25(12):671-81. [PubMed: 24048955]  [MGI Ref ID J:203113]

Okazaki T; Nakao A; Nakano H; Takahashi F; Takahashi K; Shimozato O; Takeda K; Yagita H; Okumura K. 2001. Impairment of bleomycin-induced lung fibrosis in CD28-deficient mice. J Immunol 167(4):1977-81. [PubMed: 11489978]  [MGI Ref ID J:120414]

Oliveira-dos-Santos AJ; Ho A; Tada Y; Lafaille JJ; Tonegawa S; Mak TW; Penninger JM. 1999. CD28 costimulation is crucial for the development of spontaneous autoimmune encephalomyelitis. J Immunol 162(8):4490-5. [PubMed: 10201986]  [MGI Ref ID J:112149]

Ou X; Xu S; Lam KP. 2012. Deficiency in TNFRSF13B (TACI) expands T-follicular helper and germinal center B cells via increased ICOS-ligand expression but impairs plasma cell survival. Proc Natl Acad Sci U S A 109(38):15401-6. [PubMed: 22949644]  [MGI Ref ID J:190155]

Ouyang W; Beckett O; Ma Q; Li MO. 2010. Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32(5):642-53. [PubMed: 20471291]  [MGI Ref ID J:160693]

Padigel UM; Perrin PJ; Farrell JP. 2001. The Development of a Th1-Type Response and Resistance to Leishmania major Infection in the Absence of CD40-CD40L Costimulation. J Immunol 167(10):5874-9. [PubMed: 11698463]  [MGI Ref ID J:72682]

Pagan AJ; Pepper M; Chu HH; Green JM; Jenkins MK. 2012. CD28 promotes CD4+ T cell clonal expansion during infection independently of its YMNM and PYAP motifs. J Immunol 189(6):2909-17. [PubMed: 22896637]  [MGI Ref ID J:189943]

Pasare C; Medzhitov R. 2004. Toll-dependent control mechanisms of CD4 T cell activation. Immunity 21(5):733-41. [PubMed: 15539158]  [MGI Ref ID J:93824]

Pihlgren M; Silva AB; Madani R; Giriens V; Waeckerle-Men Y; Fettelschoss A; Hickman DT; Lopez-Deber MP; Ndao DM; Vukicevic M; Buccarello AL; Gafner V; Chuard N; Reis P; Piorkowska K; Pfeifer A; Kundig TM; Muhs A; Johansen P. 2013. TLR4- and TRIF-dependent stimulation of B lymphocytes by peptide liposomes enables T cell-independent isotype switch in mice. Blood 121(1):85-94. [PubMed: 23144170]  [MGI Ref ID J:192819]

Pollard KM; Arnush M; Hultman P; Kono DH. 2004. Costimulation requirements of induced murine systemic autoimmune disease. J Immunol 173(9):5880-7. [PubMed: 15494542]  [MGI Ref ID J:146416]

Prlic M; Blazar BR; Khoruts A; Zell T; Jameson SC. 2001. Homeostatic expansion occurs independently of costimulatory signals. J Immunol 167(10):5664-8. [PubMed: 11698438]  [MGI Ref ID J:118723]

Qin H; Wang L; Feng T; Elson CO; Niyongere SA; Lee SJ; Reynolds SL; Weaver CT; Roarty K; Serra R; Benveniste EN; Cong Y. 2009. TGF-{beta} Promotes Th17 Cell Development through Inhibition of SOCS3. J Immunol 183(1):97-105. [PubMed: 19535626]  [MGI Ref ID J:150117]

Ramos-Hernandez N; Ramon HE; Beal AM; Laroche A; Dekleva EA; Oliver PM. 2013. Ndfip1 enforces a requirement for CD28 costimulation by limiting IL-2 production. J Immunol 191(4):1536-46. [PubMed: 23851689]  [MGI Ref ID J:205692]

Raue HP; Slifka MK. 2007. Pivotal advance: CTLA-4+ T cells exhibit normal antiviral functions during acute viral infection. J Leukoc Biol 81(5):1165-75. [PubMed: 17215523]  [MGI Ref ID J:121853]

Reichmann G; Villegas EN; Craig L; Peach R; Hunter CA. 1999. The CD28/B7 interaction is not required for resistance to Toxoplasma gondii in the brain but contributes to the development of immunopathology. J Immunol 163(6):3354-62. [PubMed: 10477605]  [MGI Ref ID J:119601]

Reiter R; Pfeffer K. 2002. Impaired germinal centre formation and humoral immune response in the absence of CD28 and interleukin-4. Immunology 106(2):222-8. [PubMed: 12047751]  [MGI Ref ID J:113529]

Ribot JC; Debarros A; Mancio-Silva L; Pamplona A; Silva-Santos B. 2012. B7-CD28 costimulatory signals control the survival and proliferation of murine and human gammadelta T cells via IL-2 production. J Immunol 189(3):1202-8. [PubMed: 22732586]  [MGI Ref ID J:189789]

Riella LV; Ueno T; Batal I; De Serres SA; Bassil R; Elyaman W; Yagita H; Medina-Pestana JO; Chandraker A; Najafian N. 2011. Blockade of Notch ligand Delta1 promotes allograft survival by inhibiting alloreactive Th1 cells and cytotoxic T cell generation. J Immunol 187(9):4629-38. [PubMed: 21949024]  [MGI Ref ID J:179438]

Rivas EI; Driver JP; Garabatos N; Presa M; Mora C; Rodriguez F; Serreze DV; Stratmann T. 2011. Targeting of a T cell agonist Peptide to lysosomes by DNA vaccination induces tolerance in the nonobese diabetic mouse. J Immunol 186(7):4078-87. [PubMed: 21346228]  [MGI Ref ID J:170837]

Rivas FV; O'Herrin S; Gajewski TF. 2001. CD28 is not required for c-Jun N-terminal kinase activation in T cells. J Immunol 167(6):3123-8. [PubMed: 11544297]  [MGI Ref ID J:118768]

Rogers PR; Song J; Gramaglia I; Killeen N; Croft M. 2001. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15(3):445-55. [PubMed: 11567634]  [MGI Ref ID J:71803]

Rojo JM; Pini E; Ojeda G; Bello R; Dong C; Flavell RA; Dianzani U; Portoles P. 2008. CD4+ICOS+ T lymphocytes inhibit T cell activation 'in vitro' and attenuate autoimmune encephalitis 'in vivo'. Int Immunol 20(4):577-89. [PubMed: 18310064]  [MGI Ref ID J:133495]

Ronchetti S; Nocentini G; Bianchini R; Krausz LT; Migliorati G; Riccardi C. 2007. Glucocorticoid-induced TNFR-related protein lowers the threshold of CD28 costimulation in CD8+ T cells. J Immunol 179(9):5916-26. [PubMed: 17947665]  [MGI Ref ID J:153004]

Rozanski CH; Arens R; Carlson LM; Nair J; Boise LH; Chanan-Khan AA; Schoenberger SP; Lee KP. 2011. Sustained antibody responses depend on CD28 function in bone marrow-resident plasma cells. J Exp Med 208(7):1435-46. [PubMed: 21690252]  [MGI Ref ID J:176810]

Rummel T; Batchelder J; Flaherty P; LaFleur G; Nanavati P; Burns JM; Weidanz WP. 2004. CD28 costimulation is required for the expression of T-cell-dependent cell-mediated immunity against blood-stage Plasmodium chabaudi malaria parasites. Infect Immun 72(10):5768-74. [PubMed: 15385476]  [MGI Ref ID J:93119]

Sabzevari H; Kantor J; Jaigirdar A; Tagaya Y; Naramura M; Hodge J; Bernon J; Schlom J. 2001. Acquisition of CD80 (B7-1) by T cells. J Immunol 166(4):2505-13. [PubMed: 11160311]  [MGI Ref ID J:126137]

Saha B; Harlan DM; Lee KP; June CH; Abe R. 1996. Protection against lethal toxic shock by targeted disruption of the CD28 gene. J Exp Med 183(6):2675-80. [PubMed: 8676089]  [MGI Ref ID J:110685]

Salek-Ardakani S; Arens R; Flynn R; Sette A; Schoenberger SP; Croft M. 2009. Preferential use of B7.2 and not B7.1 in priming of vaccinia virus-specific CD8 T cells. J Immunol 182(5):2909-18. [PubMed: 19234186]  [MGI Ref ID J:146248]

Salek-Ardakani S; Flynn R; Arens R; Yagita H; Smith GL; Borst J; Schoenberger SP; Croft M. 2011. The TNFR family members OX40 and CD27 link viral virulence to protective T cell vaccines in mice. J Clin Invest 121(1):296-307. [PubMed: 21183789]  [MGI Ref ID J:171838]

Salomon B; Lenschow DJ; Rhee L; Ashourian N; Singh B; Sharpe A; Bluestone JA. 2000. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12(4):431-40. [PubMed: 10795741]  [MGI Ref ID J:61905]

Sanchez-Lockhart M; Kim M; Miller J. 2011. Cutting edge: A role for inside-out signaling in TCR regulation of CD28 ligand binding. J Immunol 187(11):5515-9. [PubMed: 22068237]  [MGI Ref ID J:179677]

Sanchez-Lockhart M; Miller J. 2006. Engagement of CD28 outside of the immunological synapse results in up-regulation of IL-2 mRNA stability but not IL-2 transcription. J Immunol 176(8):4778-84. [PubMed: 16585571]  [MGI Ref ID J:131187]

Scheu S; Alferink J; Potzel T; Barchet W; Kalinke U; Pfeffer K. 2002. Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin beta in mesenteric lymph node genesis. J Exp Med 195(12):1613-24. [PubMed: 12070288]  [MGI Ref ID J:77250]

Semple K; Nguyen A; Yu Y; Wang H; Anasetti C; Yu XZ. 2011. Strong CD28 costimulation suppresses induction of regulatory T cells from naive precursors through Lck signaling. Blood 117(11):3096-103. [PubMed: 21245484]  [MGI Ref ID J:170513]

Sempowski GD; Cross SJ; Heinly CS; Scearce RM; Haynes BF. 2004. CD7 and CD28 are required for murine CD4+CD25+ regulatory T cell homeostasis and prevention of thyroiditis. J Immunol 172(2):787-94. [PubMed: 14707048]  [MGI Ref ID J:87357]

Sepulveda H; Cerwenka A; Morgan T; Dutton RW. 1999. CD28, IL-2-independent costimulatory pathways for CD8 T lymphocyte activation. J Immunol 163(3):1133-42. [PubMed: 10415007]  [MGI Ref ID J:118773]

Shahinian A; Pfeffer K; Lee KP; Kundig TM; Kishihara K; Wakeham A; Kawai K; Ohashi PS; Thompson CB; Mak TW. 1993. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261(5121):609-12. [PubMed: 7688139]  [MGI Ref ID J:14194]

Shedlock DJ; Whitmire JK; Tan J; MacDonald AS; Ahmed R; Shen H. 2003. Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection. J Immunol 170(4):2053-63. [PubMed: 12574376]  [MGI Ref ID J:126911]

Shi M; Ye Z; Umeshappa KS; Moyana T; Xiang J. 2007. Alpha tumor necrosis factor contributes to CD8(+) T cell survival in the transition phase. Biochem Biophys Res Commun 360(3):702-7. [PubMed: 17618911]  [MGI Ref ID J:123025]

Shi Z; Rifa'i M; Lee YH; Shiku H; Isobe K; Suzuki H. 2008. Importance of CD80/CD86-CD28 interactions in the recognition of target cells by CD8+CD122+ regulatory T cells. Immunology 124(1):121-8. [PubMed: 18205792]  [MGI Ref ID J:136528]

Shilling RA; Clay BS; Tesciuba AG; Berry EL; Lu T; Moore TV; Bandukwala HS; Tong J; Weinstock JV; Flavell RA; Horan T; Yoshinaga SK; Welcher AA; Cannon JL; Sperling AI. 2009. CD28 and ICOS play complementary non-overlapping roles in the development of Th2 immunity in vivo. Cell Immunol 259(2):177-84. [PubMed: 19646680]  [MGI Ref ID J:152804]

Singbartl K; Bockhorn SG; Zarbock A; Schmolke M; Van Aken H. 2005. T cells modulate neutrophil-dependent acute renal failure during endotoxemia: critical role for CD28. J Am Soc Nephrol 16(3):720-8. [PubMed: 15689402]  [MGI Ref ID J:110055]

Singh N; Chandler PR; Seki Y; Baban B; Takezaki M; Kahler DJ; Munn DH; Larsen CP; Mellor AL; Iwashima M. 2007. Role of CD28 in fatal autoimmune disorder in scurfy mice. Blood 110(4):1199-206. [PubMed: 17463170]  [MGI Ref ID J:145393]

Singh N; Yamamoto M; Takami M; Seki Y; Takezaki M; Mellor AL; Iwashima M. 2010. CD4(+)CD25(+) regulatory T cells resist a novel form of CD28- and Fas-dependent p53-induced T cell apoptosis. J Immunol 184(1):94-104. [PubMed: 19949106]  [MGI Ref ID J:159002]

So T; Croft M. 2007. Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells. J Immunol 179(3):1427-30. [PubMed: 17641007]  [MGI Ref ID J:149955]

Song J; Salek-Ardakani S; So T; Croft M. 2007. The kinases aurora B and mTOR regulate the G1-S cell cycle progression of T lymphocytes. Nat Immunol 8(1):64-73. [PubMed: 17128276]  [MGI Ref ID J:116607]

Sperling AI; Green JM; Mosley RL; Smith PL; DiPaolo RJ; Klein JR; Bluestone JA; Thompson CB. 1995. CD43 is a murine T cell costimulatory receptor that functions independently of CD28. J Exp Med 182(1):139-46. [PubMed: 7790813]  [MGI Ref ID J:26220]

Spierings DC; Lemmens EE; Grewal K; Schoenberger SP; Green DR. 2006. Duration of CTL activation regulates IL-2 production required for autonomous clonal expansion. Eur J Immunol 36(7):1707-17. [PubMed: 16791878]  [MGI Ref ID J:115790]

Srivastava S; Koch MA; Pepper M; Campbell DJ. 2014. Type I interferons directly inhibit regulatory T cells to allow optimal antiviral T cell responses during acute LCMV infection. J Exp Med 211(5):961-74. [PubMed: 24711580]  [MGI Ref ID J:212399]

Stack RM; Thompson CB; Fitch FW. 1998. IL-4 enhances long-term survival of CD28-deficient T cells. J Immunol 160(5):2255-62. [PubMed: 9498765]  [MGI Ref ID J:107190]

Stojanovic A; Fiegler N; Brunner-Weinzierl M; Cerwenka A. 2014. CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-gamma production in response to mature dendritic cells. J Immunol 192(9):4184-91. [PubMed: 24688023]  [MGI Ref ID J:209967]

Sugita S; Futagami Y; Horie S; Mochizuki M. 2007. Transforming growth factor beta-producing Foxp3(+)CD8(+)CD25(+) T cells induced by iris pigment epithelial cells display regulatory phenotype and acquire regulatory functions. Exp Eye Res 85(5):626-36. [PubMed: 17720157]  [MGI Ref ID J:132325]

Sugita S; Keino H; Futagami Y; Takase H; Mochizuki M; Stein-Streilein J; Streilein JW. 2006. B7+ iris pigment epithelial cells convert T cells into CTLA-4+, B7-expressing CD8+ regulatory T cells. Invest Ophthalmol Vis Sci 47(12):5376-84. [PubMed: 17122127]  [MGI Ref ID J:123098]

Sugita S; Ng TF; Lucas PJ; Gress RE; Streilein JW. 2006. B7+ iris pigment epithelium induce CD8+ T regulatory cells; both suppress CTLA-4+ T cells. J Immunol 176(1):118-27. [PubMed: 16365402]  [MGI Ref ID J:126250]

Sugita S; Ng TF; Schwartzkopff J; Streilein JW. 2004. CTLA-4+CD8+ T cells that encounter B7-2+ iris pigment epithelial cells express their own B7-2 to achieve global suppression of T cell activation. J Immunol 172(7):4184-94. [PubMed: 15034031]  [MGI Ref ID J:88713]

Sugita S; Streilein JW. 2003. Iris pigment epithelium expressing CD86 (B7-2) directly suppresses T cell activation in vitro via binding to cytotoxic T lymphocyte-associated antigen 4. J Exp Med 198(1):161-71. [PubMed: 12835481]  [MGI Ref ID J:84466]

Suh WK; Tafuri A; Berg-Brown NN; Shahinian A; Plyte S; Duncan GS; Okada H; Wakeham A; Odermatt B; Ohashi PS; Mak TW. 2004. The inducible costimulator plays the major costimulatory role in humoral immune responses in the absence of CD28. J Immunol 172(10):5917-23. [PubMed: 15128772]  [MGI Ref ID J:89869]

Suresh M; Whitmire JK; Harrington LE; Larsen CP; Pearson TC; Altman JD; Ahmed R. 2001. Role of CD28-B7 Interactions in Generation and Maintenance of CD8 T Cell Memory. J Immunol 167(10):5565-73. [PubMed: 11698427]  [MGI Ref ID J:72679]

Suzuki T; Ogawa S; Tanabe K; Tahara H; Abe R; Kishimoto H. 2008. Induction of antitumor immune response by homeostatic proliferation and CD28 signaling. J Immunol 180(7):4596-605. [PubMed: 18354182]  [MGI Ref ID J:132988]

Tada Y; Nagasawa K; Ho A; Morito F; Koarada S; Ushiyama O; Suzuki N; Ohta A; Mak TW. 1999. Role of the costimulatory molecule CD28 in the development of lupus in MRL/lpr mice. J Immunol 163(6):3153-9. [PubMed: 10477582]  [MGI Ref ID J:57601]

Tada Y; Nagasawa K; Ho A; Morito F; Ushiyama O; Suzuki N; Ohta H; Mak TW. 1999. CD28-deficient mice are highly resistant to collagen-induced arthritis. J Immunol 162(1):203-8. [PubMed: 9886387]  [MGI Ref ID J:51637]

Tai X; Cowan M; Feigenbaum L; Singer A. 2005. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6(2):152-62. [PubMed: 15640801]  [MGI Ref ID J:95668]

Tai X; Van Laethem F; Sharpe AH; Singer A. 2007. Induction of autoimmune disease in CTLA-4 / mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc Natl Acad Sci U S A 104(34):13756-61. [PubMed: 17702861]  [MGI Ref ID J:124096]

Takahashi T; Tagami T; Yamazaki S; Uede T; Shimizu J; Sakaguchi N; Mak TW; Sakaguchi S. 2000. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192(2):303-10. [PubMed: 10899917]  [MGI Ref ID J:63484]

Taleb S; Herbin O; Ait-Oufella H; Verreth W; Gourdy P; Barateau V; Merval R; Esposito B; Clement K; Holvoet P; Tedgui A; Mallat Z. 2007. Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis. Arterioscler Thromb Vasc Biol 27(12):2691-8. [PubMed: 17690315]  [MGI Ref ID J:147531]

Taneja V; Taneja N; Behrens M; Griffiths MM; Luthra HS; David CS. 2005. Requirement for CD28 may not be absolute for collagen-induced arthritis: study with HLA-DQ8 transgenic mice. J Immunol 174(2):1118-25. [PubMed: 15634938]  [MGI Ref ID J:95828]

Tang Q; Adams JY; Tooley AJ; Bi M; Fife BT; Serra P; Santamaria P; Locksley RM; Krummel MF; Bluestone JA. 2006. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7(1):83-92. [PubMed: 16311599]  [MGI Ref ID J:129176]

Tang Q; Henriksen KJ; Boden EK; Tooley AJ; Ye J; Subudhi SK; Zheng XX; Strom TB; Bluestone JA. 2003. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 171(7):3348-52. [PubMed: 14500627]  [MGI Ref ID J:120383]

Tang Q; Smith JA; Szot GL; Zhou P; Alegre ML; Henriksen KJ; Thompson CB; Bluestone JA. 2003. CD28/B7 regulation of anti-CD3-mediated immunosuppression in vivo. J Immunol 170(3):1510-6. [PubMed: 12538715]  [MGI Ref ID J:126890]

Toto P; Feliciani C; Amerio P; Suzuki H; Wang B; Shivji GM; Woodley D; Sauder DN. 2000. Immune modulation in pemphigus vulgaris: role of CD28 and IL-10. J Immunol 164(1):522-9. [PubMed: 10605050]  [MGI Ref ID J:125983]

Tsukada J; Ozaki A; Hanada T; Chinen T; Abe R; Yoshimura A; Kubo M. 2005. The role of suppressor of cytokine signaling 1 as a negative regulator for aberrant expansion of CD8{alpha}+ dendritic cell subset. Int Immunol 17(9):1167-78. [PubMed: 16091384]  [MGI Ref ID J:100705]

Uchiyama R; Hasegawa H; Kameda Y; Ueda K; Kobayashi Y; Komuro I; Takano H. 2012. Role of regulatory T cells in atheroprotective effects of granulocyte colony-stimulating factor. J Mol Cell Cardiol 52(5):1038-47. [PubMed: 22285481]  [MGI Ref ID J:183696]

Ueno T; Yeung MY; McGrath M; Yang S; Zaman N; Snawder B; Padera RF; Magee CN; Gorbatov R; Hashiguchi M; Azuma M; Freeman GJ; Sayegh MH; Najafian N. 2012. Intact B7-H3 signaling promotes allograft prolongation through preferential suppression of Th1 effector responses. Eur J Immunol 42(9):2343-53. [PubMed: 22733595]  [MGI Ref ID J:187942]

Vacchio MS; Hodes RJ. 2003. CD28 costimulation is required for in vivo induction of peripheral tolerance in CD8 T cells. J Exp Med 197(1):19-26. [PubMed: 12515810]  [MGI Ref ID J:109348]

Vacchio MS; Williams JA; Hodes RJ. 2005. A novel role for CD28 in thymic selection: elimination of CD28/B7 interactions increases positive selection. Eur J Immunol 35(2):418-27. [PubMed: 15657954]  [MGI Ref ID J:95546]

Vaeth M; Gogishvili T; Bopp T; Klein M; Berberich-Siebelt F; Gattenloehner S; Avots A; Sparwasser T; Grebe N; Schmitt E; Hunig T; Serfling E; Bodor J. 2011. Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1). Proc Natl Acad Sci U S A 108(6):2480-5. [PubMed: 21262800]  [MGI Ref ID J:169110]

VanLith ML; Kohlgraf KG; Sivinski CL; Tempero RM; Hollingsworth MA. 2002. MUC1-specific anti-tumor responses: molecular requirements for CD4-mediated responses. Int Immunol 14(8):873-82. [PubMed: 12147624]  [MGI Ref ID J:113544]

Vang KB; Yang J; Pagan AJ; Li LX; Wang J; Green JM; Beg AA; Farrar MA. 2010. Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J Immunol 184(8):4074-7. [PubMed: 20228198]  [MGI Ref ID J:159880]

Vella AT; Mitchell T; Groth B; Linsley PS; Green JM; Thompson CB; Kappler JW; Marrack P. 1997. CD28 engagement and proinflammatory cytokines contribute to T cell expansion and long-term survival in vivo. J Immunol 158(10):4714-20. [PubMed: 9144484]  [MGI Ref ID J:110667]

Vidric M; Suh WK; Dianzani U; Mak TW; Watts TH. 2005. Cooperation between 4-1BB and ICOS in the immune response to influenza virus revealed by studies of CD28/ICOS-deficient mice. J Immunol 175(11):7288-96. [PubMed: 16301634]  [MGI Ref ID J:122143]

Villegas EN; Elloso MM; Reichmann G; Peach R; Hunter CA. 1999. Role of CD28 in the generation of effector and memory responses required for resistance to Toxoplasma gondii. J Immunol 163(6):3344-53. [PubMed: 10477604]  [MGI Ref ID J:119602]

Villegas EN; Lieberman LA; Mason N; Blass SL; Zediak VP; Peach R; Horan T; Yoshinaga S; Hunter CA. 2002. A role for inducible costimulator protein in the CD28- independent mechanism of resistance to Toxoplasma gondii. J Immunol 169(2):937-43. [PubMed: 12097399]  [MGI Ref ID J:123835]

Vitry MA; De Trez C; Goriely S; Dumoutier L; Akira S; Ryffel B; Carlier Y; Letesson JJ; Muraille E. 2012. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun 80(12):4271-80. [PubMed: 23006848]  [MGI Ref ID J:190620]

Walunas TL; Lenschow DJ; Bakker CY; Linsley PS; Freeman GJ; Green JM; Thompson CB; Bluestone JA. 1994. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5):405-13. [PubMed: 7882171]  [MGI Ref ID J:189426]

Wen T; Kono K; Shahinian A; Kiessling R; Mak TW; Klein G. 1997. CD28 is not required for rejection of unmanipulated syngeneic and autologous tumors. Eur J Immunol 27(8):1988-93. [PubMed: 9295036]  [MGI Ref ID J:42096]

Wiest DL; Ashe JM; Howcroft TK; Lee HM; Kemper DM; Negishi I ; Singer DS ; Singer A ; Abe R. 1997. A spontaneously arising mutation in the DLAARN motif of murine ZAP-70 abrogates kinase activity and arrests thymocyte development. Immunity 6(6):663-71. [PubMed: 9208839]  [MGI Ref ID J:41170]

Williams CA; Murray SE; Weinberg AD; Parker DC. 2007. OX40-mediated differentiation to effector function requires IL-2 receptor signaling but not CD28, CD40, IL-12Rbeta2, or T-bet. J Immunol 178(12):7694-702. [PubMed: 17548606]  [MGI Ref ID J:148588]

Williams JA; Lumsden JM; Yu X; Feigenbaum L; Zhang J; Steinberg SM; Hodes RJ. 2008. Regulation of thymic NKT cell development by the B7-CD28 costimulatory pathway. J Immunol 181(2):907-17. [PubMed: 18606642]  [MGI Ref ID J:137437]

Williams JA; Sharrow SO; Adams AJ; Hodes RJ. 2002. CD40 ligand functions non-cell autonomously to promote deletion of self-reactive thymocytes. J Immunol 168(6):2759-65. [PubMed: 11884443]  [MGI Ref ID J:126679]

Wohlfert EA; Gorelik L; Mittler R; Flavell RA; Clark RB. 2006. Cutting edge: deficiency in the E3 ubiquitin ligase Cbl-b results in a multifunctional defect in T cell TGF-beta sensitivity in vitro and in vivo. J Immunol 176(3):1316-20. [PubMed: 16424156]  [MGI Ref ID J:126434]

Wolfraim LA; Letterio JJ. 2005. Cutting edge: p27Kip1 deficiency reduces the requirement for CD28-mediated costimulation in naive CD8+ but not CD4+ T lymphocytes. J Immunol 174(5):2481-4. [PubMed: 15728451]  [MGI Ref ID J:97741]

Wong SC; Tan AH; Lam KP. 2009. Functional hierarchy and relative contribution of the CD28/B7 and ICOS/B7-H2 costimulatory pathways to T cell-mediated delayed-type hypersensitivity. Cell Immunol 256(1-2):64-71. [PubMed: 19249753]  [MGI Ref ID J:148551]

Wu Y; Zhou Q; Zheng P; Liu Y. 1998. CD28-independent induction of T helper cells and immunoglobulin class switches requires costimulation by the heat-stable antigen. J Exp Med 187(7):1151-6. [PubMed: 9529332]  [MGI Ref ID J:76971]

Wu ZQ; Khan AQ; Shen Y; Schartman J; Peach R; Lees A; Mond JJ; Gause WC; Snapper CM. 2000. B7 requirements for primary and secondary protein- and polysaccharide-specific Ig isotype responses to Streptococcus pneumoniae. J Immunol 165(12):6840-8. [PubMed: 11120807]  [MGI Ref ID J:118398]

Xiao Y; Hendriks J; Langerak P; Jacobs H; Borst J. 2004. CD27 is acquired by primed B cells at the centroblast stage and promotes germinal center formation. J Immunol 172(12):7432-41. [PubMed: 15187121]  [MGI Ref ID J:90837]

Yamada A; Salama AD; Sho M; Najafian N; Ito T; Forman JP; Kewalramani R; Sandner S; Harada H; Clarkson MR; Mandelbrot DA; Sharpe AH; Oshima H; Yagita H; Chalasani G; Lakkis FG; Auchincloss H Jr; Sayegh MH. 2005. CD70 signaling is critical for CD28-independent CD8+ T cell-mediated alloimmune responses in vivo. J Immunol 174(3):1357-64. [PubMed: 15661893]  [MGI Ref ID J:136519]

Yamaguchi T; Kishi A; Osaki M; Morikawa H; Prieto-Martin P; Wing K; Saito T; Sakaguchi S. 2013. Construction of self-recognizing regulatory T cells from conventional T cells by controlling CTLA-4 and IL-2 expression. Proc Natl Acad Sci U S A 110(23):E2116-25. [PubMed: 23690575]  [MGI Ref ID J:197416]

Yao S; Zhu Y; Zhu G; Augustine M; Zheng L; Goode DJ; Broadwater M; Ruff W; Flies S; Xu H; Flies D; Luo L; Wang S; Chen L. 2011. B7-h2 is a costimulatory ligand for CD28 in human. Immunity 34(5):729-40. [PubMed: 21530327]  [MGI Ref ID J:172609]

Yin D; Zhang L; Wang R; Radvanyi L; Haudenschild C; Fang Q; Kehry MR; Shi Y. 1999. Ligation of CD28 in vivo induces CD40 ligand expression and promotes B cell survival. J Immunol 163(8):4328-34. [PubMed: 10510372]  [MGI Ref ID J:119231]

Ying H; Yang L; Qiao G; Li Z; Zhang L; Yin F; Xie D; Zhang J. 2010. Cutting edge: CTLA-4-B7 interaction suppresses Th17 cell differentiation. J Immunol 185(3):1375-8. [PubMed: 20601598]  [MGI Ref ID J:162452]

Yokosuka T; Kobayashi W; Takamatsu M; Sakata-Sogawa K; Zeng H; Hashimoto-Tane A; Yagita H; Tokunaga M; Saito T. 2010. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 33(3):326-39. [PubMed: 20870175]  [MGI Ref ID J:164647]

Yu D. 2007. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA Nature 450:299-304.  [MGI Ref ID J:127784]

Yu X; Fournier S; Allison JP; Sharpe AH; Hodes RJ. 2000. The role of B7 costimulation in CD4/CD8 T cell homeostasis. J Immunol 164(7):3543-53. [PubMed: 10725709]  [MGI Ref ID J:112266]

Yu XZ; Liang Y; Nurieva RI; Guo F; Anasetti C; Dong C. 2006. Opposing effects of ICOS on graft-versus-host disease mediated by CD4 and CD8 T cells. J Immunol 176(12):7394-401. [PubMed: 16751384]  [MGI Ref ID J:132339]

Zehntner SP; Brisebois M; Tran E; Owens T; Fournier S. 2003. Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease. FASEB J 17(13):1910-2. [PubMed: 12923072]  [MGI Ref ID J:127902]

Zhang J; Bardos T; Li D; Gal I; Vermes C; Xu J; Mikecz K; Finnegan A; Lipkowitz S; Glant TT. 2002. Cutting edge: regulation of T cell activation threshold by CD28 costimulation through targeting Cbl-b for ubiquitination. J Immunol 169(5):2236-40. [PubMed: 12193687]  [MGI Ref ID J:120676]

Zheng X; Gao JX; Chang X; Wang Y; Liu Y; Wen J; Zhang H; Zhang J; Liu Y; Zheng P. 2004. B7-CD28 interaction promotes proliferation and survival but suppresses differentiation of CD4-CD8- T cells in the thymus. J Immunol 173(4):2253-61. [PubMed: 15294937]  [MGI Ref ID J:92731]

Zheng X; Zhang H; Yin L; Wang CR; Liu Y; Zheng P. 2008. Modulation of NKT cell development by B7-CD28 interaction: an expanding horizon for costimulation. PLoS ONE 3(7):e2703. [PubMed: 18628995]  [MGI Ref ID J:139280]

van der Graaf CA; Netea MG; Verschueren I; van der Meer JW; Kullberg BJ. 2005. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect Immun 73(11):7458-64. [PubMed: 16239547]  [MGI Ref ID J:104193]

Health & husbandry

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, heterozygous mice may be bred together.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls

Pricing for USA, Canada and Mexico shipping destinations View International Pricing


Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2140.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing


Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2782.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

General Supply Notes

Control Information

   Wild-type from the colony
   001976 NOD/ShiLtJ
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

See Terms of Use tab for General Terms and Conditions

The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use

General Terms and Conditions

For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration


JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty


In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.