Strain Name:

B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J

Stock Number:

005023

Order this mouse

Availability:

Repository- Live

This transgenic strain carries a rearranged T cell receptor transgene specific for the mouse homologue (pmelSi or pmel-17) of human premelanosome protein (referred to as PMEL, SILV or gp100), and the T lymphocyte specific Thy1a (Thy1.1) allele. These transgenic mice provide a tumor model system for studies related to immunotherapy, and for studying in vivo T-cell biology

Description

Strain Information

Former Names B6.Cg Thy1a-Tg(TcraTcrb)8Rest/J    (Changed: 15-DEC-04 )
C57BL/6-Tg(TcraTcrb)8Rest/J    (Changed: 15-DEC-04 )
pmel-1    (Changed: 15-DEC-04 )
Type Congenic; Mutant Strain; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemHomozygote x Homozygote         (Female x Male)   01-MAR-06
Specieslaboratory mouse
GenerationN?+N2F4 (17-JUL-13)
Generation Definitions
 
Donating Investigator Nicholas P. Restifo,   National Cancer Institute

Description
This transgenic strain carries a rearranged T cell receptor transgene specific for the mouse homologue (pmel-17) of human SILV (gp100), an enzyme involved in pigment synthesis that is expressed by the majority of malignant melanoma cells including B16 melanoma, as well as by normal melanocytes. In mice from founder line 8 the transgenic integration was determined to be on Chromosome 2, in the 3' UTR of the serine threonine kinase 39 (Stk39) gene. STK39 is involved in the cellular stress response pathway. The strain is also homozygous for the T lymphocyte specific Thy1a (Thy1.1) allele. CD8+ T cells express a Tcra-V1/Tcrb-V13- transgenic TCR that recognizes an epitope of pmel-17 corresponding to amino acids 25-33 of gp100 presented by H2-Db MHC class I molecules. Greater than 95% of the CD8+ T cells in transgenic mice expressed the transgenic TCR based on the expression of Vbeta13, amounting to about 20% of all splenocytes. T cells in blood and spleen generally expressed baseline levels of the activation/effector markers CD25, CD44, and CD69, indicating that most of the transgenic cells were in the naive state. These transgenic mice in conjunction with the poorly immunogenic B16 melanoma, a highly aggressive tumor in C57BL/6 mice, provide a physiologically relevant tumor model system for studies related to immunotherapy. In addition, these transgenic mice are useful for studying in vivo T-cell biology such as TCR-ligand interactions, T-cell activation, thymic selection, cross-presentation of antigens, process of thymic selection and central and peripheral T-cell tolerance and induction.

Development
Transgenic constructs containing rearranged alpha-chain and beta-chain of the T-cell receptor specific for the mouse homologue (pmel-17) of human SILV (gp100) were co-injected into fertilized C57BL/6 mouse eggs. Transgenic integration was on Chromosome 2, in the 3' UTR of the serine threonine kinase 39 (Stk39) gene. Mice from founder line 8 were bred to C57BL/6 mice, and then crossed with B6.PL-Thy1a/CyJ (Stock No.00406) mice.

A 32 SNP (single nucleotide polymorphism) panel analysis, with 27 markers covering all 19 chromosomes and the X chromosome, as well as 5 markers that distinguish between C57BL substrains, was performed on the rederived living colony at The Jackson Laboratory Repository. While the 27 markers throughout the genome suggest a C57BL/6 genetic background, 3 of 5 markers that determine different C57BL substrains were found to be segregating. This may be due to contributions from the PL/J regions in B6.PL-Thy1a/CyJ.

Control Information

  Control
   000406 B6.PL-Thy1a/CyJ
 
  Considerations for Choosing Controls

Related Strains

View Strains carrying   Thy1a     (20 strains)

Strains carrying other alleles of Tcra
005308   B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005895   B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003199   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRA)B1Jg/J
002116   B6.129S2-Tcratm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
004554   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRaAI4)1Dvs/DvsJ
002115   B6;129S2-Tcratm1Mom/J
004694   B6;D2-Tg(TcrLCMV)327Sdz/JDvsJ
002408   B6;SJL-Tg(TcrAND)53Hed/J
007848   BXSB.129P2(Cg)-Tcratm1Mjo/TheoJ
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002045   C.SJL-Tcrac/SlkJ
002047   C.SJL-Tcrba Tcrac/SlkJ
014639   C57BL/6-Tg(Cd4-TcraDN32D3)1Aben/J
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
005307   CBy.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
004444   NOD.129P2(C)-Tcratm1Mjo/DoiJ
006436   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcraAI4)1Dvs/DvsJ
026243   NOD.Cg-(rs4135590-rs13480186) H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
026624   NOD.Cg-(rs6385855-rs13480186) H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
004257   NOD.Cg-Prkdcscid Tg(TcrLCMV)327Sdz/DvsJ
004347   NOD.Cg-Rag1tm1Mom Tg(TcraAI4)1Dvs/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
005686   NOD.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
004696   NOD.Cg-Tg(TcrLCMV)327Sdz/DvsJ
004460   NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006303   NOD.FVB-Tg(TcraBDC12-4.1)10Jos/GseJ
004334   NOD/ShiLt-Tg(TcraAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcra     (50 strains)

Strains carrying other alleles of Tcrb
005308   B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005895   B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003200   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRB)C14Jg/J
002122   B6.129P2-Tcrbtm1Mom Tcrdtm1Mom/J
002118   B6.129P2-Tcrbtm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
008430   B6.Cg-Tg(Tcrb)HRBAll/J
004555   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRbAI4)1Dvs/DvsJ
002121   B6;129P-Tcrbtm1Mom Tcrdtm1Mom/J
002117   B6;129P2-Tcrbtm1Mom/J
004694   B6;D2-Tg(TcrLCMV)327Sdz/JDvsJ
002408   B6;SJL-Tg(TcrAND)53Hed/J
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002047   C.SJL-Tcrba Tcrac/SlkJ
002046   C.SJL-Tcrba/SlkJ
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
003540   C57L/J-Tg(Tcrb)93Vbo/J
005307   CBy.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
007081   CByJ.129P2(B6)-Tcrbtm1Mom/J
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
023082   NOD.129P2(Cg)-Tcrbtm1Mom/MnkaJ
006437   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcrbAI4)1Dvs/DvsJ
026243   NOD.Cg-(rs4135590-rs13480186) H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
026624   NOD.Cg-(rs6385855-rs13480186) H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
004257   NOD.Cg-Prkdcscid Tg(TcrLCMV)327Sdz/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
005686   NOD.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
004696   NOD.Cg-Tg(TcrLCMV)327Sdz/DvsJ
004460   NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006304   NOD.FVB-Tg(TcrbBDC12-4.1)82Gse/GseJ
004335   NOD/ShiLt-Tg(TcrbAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcrb     (52 strains)

Strains carrying other alleles of Thy1
017798   B6.Cg-Mapttm1Hnd Tg(Thy1-MAPT*)3610Gds/Mmjax
009126   B6.Cg-Nos2tm1Lau Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
008730   B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
007901   B6.Cg-Tg(Thy1-Brainbow1.0)HLich/J
007911   B6.Cg-Tg(Thy1-Brainbow1.1)MLich/J
007921   B6.Cg-Tg(Thy1-Brainbow2.1)RLich/J
003710   B6.Cg-Tg(Thy1-CFP)23Jrs/J
014131   B6.Cg-Tg(Thy1-CFP)IJrs/GfngJ
007940   B6.Cg-Tg(Thy1-CFP/COX8A)C1Lich/J
007967   B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich/J
012597   B6.Cg-Tg(Thy1-COL25A1)861Yfu/J
007612   B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J
007615   B6.Cg-Tg(Thy1-COP4/EYFP)9Gfng/J
013161   B6.Cg-Tg(Thy1-Clomeleon)1Gjau/J
007919   B6.Cg-Tg(Thy1-EGFP)OJrs/GfngJ
005630   B6.Cg-Tg(Thy1-EYFP)15Jrs/J
009611   B6.Cg-Tg(Thy1-Nlgn1)6Hnes/J
009612   B6.Cg-Tg(Thy1-Nlgn2)6Hnes/J
021069   B6.Cg-Tg(Thy1-PA-GFP)5Rmpl/J
021070   B6.Cg-Tg(Thy1-PA-GFP)6Rmpl/J
003709   B6.Cg-Tg(Thy1-YFP)16Jrs/J
003782   B6.Cg-Tg(Thy1-YFP)HJrs/J
005627   B6.Cg-Tg(Thy1-YFP/Syp)10Jrs/J
007606   B6.Cg-Tg(Thy1-cre/ERT2,-EYFP)AGfng/J
004807   B6;129-Psen1tm1Mpm Tg(APPSwe,tauP301L)1Lfa/Mmjax
007910   B6;CBA-Tg(Thy1-Brainbow1.0)LLich/J
011070   B6;CBA-Tg(Thy1-EGFP)SJrs/NdivJ
017892   B6;CBA-Tg(Thy1-GCaMP2.2c)8Gfng/J
017893   B6;CBA-Tg(Thy1-GCaMP3)6Gfng/J
014130   B6;CBA-Tg(Thy1-YFP)GJrs/GfngJ
014651   B6;CBA-Tg(Thy1-spH)21Vnmu/J
015814   B6;CBA-Tg(Thy1-spH)64Vnmu/FrkJ
012341   B6;SJL-Tg(Thy1-COP3/EYFP)1Gfng/J
012344   B6;SJL-Tg(Thy1-COP3/EYFP)4Gfng/J
012348   B6;SJL-Tg(Thy1-COP3/EYFP)8Gfng/J
012350   B6;SJL-Tg(Thy1-COP4*H134R/EYFP)20Gfng/J
008004   B6;SJL-Tg(Thy1-ECFP/VAMP2)1Sud/J
012836   B6;SJL-Tg(Thy1-TARDBP)4Singh/J
007610   B6;SJL-Tg(Thy1-cre/ERT2,-EYFP)VGfng/J
012332   B6;SJL-Tg(Thy1-hop/EYFP)2Gfng/J
012334   B6;SJL-Tg(Thy1-hop/EYFP)4Gfng/J
006554   B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
025401   B6SJL-Tg(Thy1-COX8A/Dendra)57Gmnf/J
017590   B6SJL-Tg(Thy1-DCTN1*G59S)M2Pcw/J
007880   B6SJL-Tg(Thy1-Stx1a/EYFP)1Sud/J
007856   B6SJL-Tg(Thy1-Syt1/ECFP)1Sud/J
017589   B6SJL-Tg(Thy1-TARDBP*G298S)S97Pcw/J
024703   C3A.Cg-Pde6b+Tg(Thy1-CFP)23Jrs/SjJ
007027   C57BL/6-Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
010800   C57BL/6-Tg(Thy1-PTGS2)300Kand/J
010703   C57BL/6-Tg(Thy1-PTGS2)303Kand/J
012769   C57BL/6-Tg(Thy1-Sncg)HvP36Putt/J
024339   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.11Dkim/J
025393   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.17Dkim/J
024276   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.5Dkim/J
025776   C57BL/6J-Tg(Thy1-GCaMP6s)GP4.12Dkim/J
024275   C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J
025533   C57BL/6N-Sncatm1Mjff Tg(Thy1-SNCA)15Mjff/J
016936   C57BL/6N-Tg(Thy1-SNCA)12Mjff/J
017682   C57BL/6N-Tg(Thy1-SNCA)15Mjff/J
024704   D2.Cg-Gpnmb+Tg(Thy1-CFP)23Jrs/SjJ
025018   D2.Cg-Gpnmb+Tg(Thy1-YFP)HJrs/SjJ
018671   D2.Cg-Tg(Thy1-CFP)23Jrs/SjJ
024705   D2.Cg-Tg(Thy1-YFP)HJrs/SjJ
025019   D2.Cg-Tg(Thy1-YFP/Syp)10Jrs/SjJ
008230   FVB(Cg)-Tg(Thy1-SOD1*G93A)T3Hgrd/J
006143   FVB/N-Tg(Thy1-cre)1Vln/J
021226   STOCK Tg(Thy1-Brainbow3.1)18Jrs/J
021225   STOCK Tg(Thy1-Brainbow3.1)3Jrs/J
021227   STOCK Tg(Thy1-Brainbow3.2)7Jrs/J
013162   STOCK Tg(Thy1-Clomeleon)12Gjau/J
013163   STOCK Tg(Thy1-Clomeleon)13Gjau/J
007788   STOCK Tg(Thy1-EGFP)MJrs/J
012708   STOCK Tg(Thy1-cre/ERT2,-EYFP)HGfng/PyngJ
View Strains carrying other alleles of Thy1     (74 strains)

Phenotype

Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Tg(TcraTcrb)8Rest/?

        C57BL/6-Tg(TcraTcrb)8Rest
  • immune system phenotype
  • abnormal CD8-positive, alpha-beta cytotoxic T cell morphology
    • over 95 % of the CD8 T cells present in circulation express the transgenic TCR that is specific for the H2-Db restricted epitope of Silv (gp100), a protein that is highly expressed in melanoma cells   (MGI Ref ID J:85058)
    • these transgenic T cells constitute about 20% of spleen cells   (MGI Ref ID J:85058)
    • the baseline levels of activation markers for the transgenic T cells indicate that most of cells are in a nażve state   (MGI Ref ID J:85058)
  • abnormal cytotoxic T cell physiology
    • upon in vitro stimulation with the immunogenic epitope of gp100, CD8 T cells are activated and proliferate extensively   (MGI Ref ID J:85058)
  • increased interferon-gamma secretion
    • CD 8 T cells produce large amounts of IFN-gamma when cultured in the presence of melanoma cells   (MGI Ref ID J:85058)
    • large number of IFN-gamma producing CD8 T cells are found in melanoma tumors that have regressed due to treatment with gp100 vaccine, IL-2, and adoptive transfer of transgenic CD8 T cells   (MGI Ref ID J:85058)
  • tumorigenesis
  • altered tumor susceptibility
    • despite the presence of large number of anti-gp100 CD8 T cells, transplanted melanoma tumors that express gp100 have the same growth kinetics as tumors transplanted into control mice   (MGI Ref ID J:85058)
    • adoptive transfer of transgenic splenocytes into normal mice bearing melanoma tumors also has no effect on tumor growth   (MGI Ref ID J:85058)
    • there is a modest delay in tumor growth when mice that are recipients of transgenic T cells are also vaccinated with peptides that mimic the gp100 epitope   (MGI Ref ID J:85058)
    • when IL-2 is administered with the vaccine, there is a large regression in tumor size in mice that are also recipients of transgenic T cells   (MGI Ref ID J:85058)
    • mice bearing melanoma tumors that receive vaccine, transgenic T cells, and IL-2 have survival times of over 1 year compared to controls that die within 2 months   (MGI Ref ID J:85058)
  • hematopoietic system phenotype
  • abnormal CD8-positive, alpha-beta cytotoxic T cell morphology
    • over 95 % of the CD8 T cells present in circulation express the transgenic TCR that is specific for the H2-Db restricted epitope of Silv (gp100), a protein that is highly expressed in melanoma cells   (MGI Ref ID J:85058)
    • these transgenic T cells constitute about 20% of spleen cells   (MGI Ref ID J:85058)
    • the baseline levels of activation markers for the transgenic T cells indicate that most of cells are in a nażve state   (MGI Ref ID J:85058)
  • abnormal cytotoxic T cell physiology
    • upon in vitro stimulation with the immunogenic epitope of gp100, CD8 T cells are activated and proliferate extensively   (MGI Ref ID J:85058)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Thy1a related

Immunology, Inflammation and Autoimmunity Research
CD Antigens, Antigen Receptors, and Histocompatibility Markers

Research Tools
Genetics Research
      Tissue/Cell Markers
      Tissue/Cell Markers: T cell specific surface marker
Immunology, Inflammation and Autoimmunity Research
      T cell specific surface marker

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tg(TcraTcrb)8Rest
Allele Name transgene insertion 8, Nicholas Restifo
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) Pmel-1; Pmel-I; pmel-17;
Mutation Made By Marc Theoret,   NIH
Strain of OriginC57BL/6
Expressed Gene Tcra, T cell receptor alpha chain, mouse, laboratory
Expressed Gene Tcrb, T cell receptor beta chain, mouse, laboratory
Promoter Tcra, T cell receptor alpha chain, mouse, laboratory
Promoter Tcrb, T cell receptor beta chain, mouse, laboratory
Molecular Note These coinjected transgenes encode an H2-Db-restricted Valpha1 Vbeta13 T-cell receptor that recognizes a peptide comprising amino acids 25-33 of the protein known as pmel-17/gp100, a pigment biosynthetic enzyme that is encoded by the mouse Si (silver) gene and is expressed both in normal melanocytes and in malignant melanoma. The insertion is accompanied by a 157-bp deletion (chr2: 68,208,872?68,209,029 bp - build unknown). [MGI Ref ID J:208902] [MGI Ref ID J:85058]
 
 
 
Allele Symbol Thy1a
Allele Name a variant
Allele Type Not Applicable
Common Name(s) Thy-1.1; Thy1.1; Thy1a; theta-AKR; thetaAKR;
Site of ExpressionThe Thy1 locus determines a surface antigen present on cells of the thymus, a number of mouse leukemias, brain, and in lesser amounts on lymph node and spleen cells.
Gene Symbol and Name Thy1, thymus cell antigen 1, theta
Chromosome 9
Gene Common Name(s) CD7; CD90; T25; Thy 1.2; Thy-1; Thy-1.2; Thy1.1; Thy1.2; theta;
General Note

The Thy1 locus determines a surface antigen present on cells of the thymus, a number of mouse leukemias, brain, and in lesser amounts on lymph node and spleen cells. The allele Thy1a determines an antigenic specificity, Thy-1.1, found in the AKR and RF strains; the allele Thy1b determines an antigenic specificity, Thy-1.2, found in the C3HeB/Fe and many other strains (J:5243, J:5012, J:4469). The Thy1 antigen is probably present on all T lymphocytes and absent from all B lymphocytes, and it thus serves as a valuable T-cell marker (J:5243). It is very widely used in experiments designed to determine the distribution and function of T-cells. Thy1 specifies a T-cell surface glycoprotein, T25, with a molecular weight of 25 kDa (J:5707). The protein appears to be anchored in the cell membrane by a lipid that is either phosphotidylinositol or closely related to it (J:12016). Thy1 may function in the cell membrane as a signal transduction molecule (J:8333). The Thy1 locus, or possibly a gene closely linked to it, controls quantitative expression of a protein that isthe same size as Thy1 and is expressed on thymus and brain but not on lymph node and spleen cells (J:7900).

Molecular Note The allele Thy1a determines an antigenic specificity, Thy-1.1, found in the AKR and RF strains.

Genotyping

Genotyping Information

Genotyping Protocols

Tg(TcraTcrb)8Rest, QPCR
Tg(TcraTcrb)8Rest, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Additional References

Thy1a related

Azzi J; Skartsis N; Mounayar M; Magee CN; Batal I; Ting C; Moore R; Riella LV; Ohori S; Abdoli R; Smith B; Fiorina P; Heathcote D; Bakhos T; Ashton-Rickardt PG; Abdi R. 2013. Serine protease inhibitor 6 plays a critical role in protecting murine granzyme B-producing regulatory T cells. J Immunol 191(5):2319-27. [PubMed: 23913965]  [MGI Ref ID J:205809]

Beck PL; Li Y; Wong J; Chen CW; Keenan CM; Sharkey KA; McCafferty DM. 2007. Inducible nitric oxide synthase from bone marrow-derived cells plays a critical role in regulating colonic inflammation. Gastroenterology 132(5):1778-90. [PubMed: 17449036]  [MGI Ref ID J:128325]

Brinkman CC; Rouhani SJ; Srinivasan N; Engelhard VH. 2013. Peripheral tissue homing receptors enable T cell entry into lymph nodes and affect the anatomical distribution of memory cells. J Immunol 191(5):2412-25. [PubMed: 23926324]  [MGI Ref ID J:205788]

Chen TT; Li L; Chung DH; Allen CD; Torti SV; Torti FM; Cyster JG; Chen CY; Brodsky FM; Niemi EC; Nakamura MC; Seaman WE; Daws MR. 2005. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med 202(7):955-65. [PubMed: 16203866]  [MGI Ref ID J:107466]

Cuda CM; Wan S; Sobel ES; Croker BP; Morel L. 2007. Murine lupus susceptibility locus Sle1a controls regulatory T cell number and function through multiple mechanisms. J Immunol 179(11):7439-47. [PubMed: 18025188]  [MGI Ref ID J:154964]

D'Eustachio P; Owens GC; Edelman GM; Cunningham BA. 1985. Chromosomal location of the gene encoding the neural cell adhesion molecule (N-CAM) in the mouse. Proc Natl Acad Sci U S A 82(22):7631-5. [PubMed: 3865183]  [MGI Ref ID J:8111]

Dewals B; Hoving JC; Horsnell WG; Brombacher F. 2010. Control of Schistosoma mansoni egg-induced inflammation by IL-4-responsive CD4(+)CD25(-)CD103(+)Foxp3(-) cells is IL-10-dependent. Eur J Immunol 40(10):2837-47. [PubMed: 20821727]  [MGI Ref ID J:165816]

Divangahi M; Desjardins D; Nunes-Alves C; Remold HG; Behar SM. 2010. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 11(8):751-8. [PubMed: 20622882]  [MGI Ref ID J:162390]

Dolfi DV; Duttagupta PA; Boesteanu AC; Mueller YM; Oliai CH; Borowski AB; Katsikis PD. 2011. Dendritic cells and CD28 costimulation are required to sustain virus-specific CD8+ T cell responses during the effector phase in vivo. J Immunol 186(8):4599-608. [PubMed: 21389258]  [MGI Ref ID J:172460]

Ertelt JM; Buyukbasaran EZ; Jiang TT; Rowe JH; Xin L; Way SS. 2013. B7-1/B7-2 blockade overrides the activation of protective CD8 T cells stimulated in the absence of Foxp3+ regulatory T cells. J Leukoc Biol 94(2):367-76. [PubMed: 23744647]  [MGI Ref ID J:204423]

Fife BT; Griffin MD; Abbas AK; Locksley RM; Bluestone JA. 2006. Inhibition of T cell activation and autoimmune diabetes using a B cell surface-linked CTLA-4 agonist. J Clin Invest 116(8):2252-61. [PubMed: 16886063]  [MGI Ref ID J:113109]

Green MC; Sweet HO. 1975. [Hx - Hm - W.] Mouse News Lett 52:38.  [MGI Ref ID J:13675]

Huang W; Huang F; Kannan AK; Hu J; August A. 2014. ITK tunes IL-4-induced development of innate memory CD8+ T cells in a gammadelta T and invariant NKT cell-independent manner. J Leukoc Biol 96(1):55-63. [PubMed: 24620029]  [MGI Ref ID J:212002]

Inlay MA; Bhattacharya D; Sahoo D; Serwold T; Seita J; Karsunky H; Plevritis SK; Dill DL; Weissman IL. 2009. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev 23(20):2376-81. [PubMed: 19833765]  [MGI Ref ID J:154864]

Kelly LM; Pereira JP; Yi T; Xu Y; Cyster JG. 2011. EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J Immunol 187(6):3026-32. [PubMed: 21844396]  [MGI Ref ID J:179238]

Klebanoff CA; Spencer SP; Torabi-Parizi P; Grainger JR; Roychoudhuri R; Ji Y; Sukumar M; Muranski P; Scott CD; Hall JA; Ferreyra GA; Leonardi AJ; Borman ZA; Wang J; Palmer DC; Wilhelm C; Cai R; Sun J; Napoli JL; Danner RL; Gattinoni L; Belkaid Y; RestifoNP. 2013. Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J Exp Med 210(10):1961-76. [PubMed: 23999499]  [MGI Ref ID J:203429]

Krieg C; Letourneau S; Pantaleo G; Boyman O. 2010. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci U S A 107(26):11906-11. [PubMed: 20547866]  [MGI Ref ID J:161365]

Lee SY; Goverman JM. 2013. The influence of T cell Ig mucin-3 signaling on central nervous system autoimmune disease is determined by the effector function of the pathogenic T cells. J Immunol 190(10):4991-9. [PubMed: 23562810]  [MGI Ref ID J:202569]

Leiter EH. 1998. NOD Mice and Related Strains: Origins, Husbandry and Biology Introduction. In: NOD Mice and Related Strains: Research Applications in Diabetes, AIDS, Cancer, and Other Diseases. RG Landes, Austin.  [MGI Ref ID J:110093]

Mitchell JS; Burbach BJ; Srivastava R; Fife BT; Shimizu Y. 2013. Multistage T cell-dendritic cell interactions control optimal CD4 T cell activation through the ADAP-SKAP55-signaling module. J Immunol 191(5):2372-83. [PubMed: 23918975]  [MGI Ref ID J:205802]

Pauken KE; Jenkins MK; Azuma M; Fife BT. 2013. PD-1, but not PD-L1, expressed by islet-reactive CD4+ T cells suppresses infiltration of the pancreas during type 1 diabetes. Diabetes 62(8):2859-69. [PubMed: 23545706]  [MGI Ref ID J:208973]

REIF AE; ALLEN JM. 1964. THE AKR THYMIC ANTIGEN AND ITS DISTRIBUTION IN LEUKEMIAS AND NERVOUS TISSUES. J Exp Med 120:413-33. [PubMed: 14207060]  [MGI Ref ID J:24839]

Rabenstein H; Behrendt AC; Ellwart JW; Naumann R; Horsch M; Beckers J; Obst R. 2014. Differential kinetics of antigen dependency of CD4+ and CD8+ T cells. J Immunol 192(8):3507-17. [PubMed: 24639353]  [MGI Ref ID J:210002]

Ranheim EA; Tarbell KV; Krogsgaard M; Mallet-Designe V; Teyton L; McDevitt HO; Weissman IL. 2004. Selection of aberrant class II restricted CD8+ T cells in NOD mice expressing a glutamic acid decarboxylase (GAD)65-specific T cell receptor transgene. Autoimmunity 37(8):555-67. [PubMed: 15763918]  [MGI Ref ID J:128250]

Read S; Hogan TV; Zwar TD; Gleeson PA; Van Driel IR. 2007. Prevention of autoimmune gastritis in mice requires extra-thymic T-cell deletion and suppression by regulatory T cells. Gastroenterology 133(2):547-58. [PubMed: 17603058]  [MGI Ref ID J:128303]

Reif AE; Allen JM. 1966. Mouse thymic iso-antigens. Nature 209(22):521-3. [PubMed: 5919593]  [MGI Ref ID J:5012]

Rodeghero R; Cao Y; Olalekan SA; Iwakua Y; Glant TT; Finnegan A. 2013. Location of CD4+ T cell priming regulates the differentiation of Th1 and Th17 cells and their contribution to arthritis. J Immunol 190(11):5423-35. [PubMed: 23630349]  [MGI Ref ID J:204778]

Sercan O; Stoycheva D; Hammerling GJ; Arnold B; Schuler T. 2010. IFN-gamma receptor signaling regulates memory CD8+ T cell differentiation. J Immunol 184(6):2855-62. [PubMed: 20164422]  [MGI Ref ID J:160112]

Uhl M; Kepp O; Jusforgues-Saklani H; Vicencio JM; Kroemer G; Albert ML. 2009. Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 16(7):991-1005. [PubMed: 19229247]  [MGI Ref ID J:164191]

Voehringer D; Liang HE; Locksley RM. 2008. Homeostasis and effector function of lymphopenia-induced 'memory-like' T cells in constitutively T cell-depleted mice. J Immunol 180(7):4742-53. [PubMed: 18354198]  [MGI Ref ID J:133382]

Wang L; Jameson SC; Hogquist KA. 2009. Epidermal Langerhans cells are not required for UV-induced immunosuppression. J Immunol 183(9):5548-53. [PubMed: 19843938]  [MGI Ref ID J:156799]

Wuthrich M; Ersland K; Pick-Jacobs JC; Gern BH; Frye CA; Sullivan TD; Brennan MB; Filutowicz HI; O'Brien K; Korthauer KD; Schultz-Cherry S; Klein BS. 2012. Limited model antigen expression by transgenic fungi induces disparate fates during differentiation of adoptively transferred T cell receptor transgenic CD4+ T cells: robust activation and proliferation with weak effector function during recall. Infect Immun 80(2):787-97. [PubMed: 22124658]  [MGI Ref ID J:180817]

Wuthrich M; Warner T; Klein BS. 2005. IL-12 is required for induction but not maintenance of protective, memory responses to Blastomyces dermatitidis: implications for vaccine development in immune-deficient hosts. J Immunol 175(8):5288-97. [PubMed: 16210634]  [MGI Ref ID J:119110]

Xiao Z; Mescher MF; Jameson SC. 2007. Detuning CD8 T cells: down-regulation of CD8 expression, tetramer binding, and response during CTL activation. J Exp Med 204(11):2667-77. [PubMed: 17954566]  [MGI Ref ID J:126126]

Ysebrant de Lendonck L; Tonon S; Nguyen M; Vandevenne P; Welsby I; Martinet V; Molle C; Charbonnier LM; Leo O; Goriely S. 2013. Interferon regulatory factor 3 controls interleukin-17 expression in CD8 T lymphocytes. Proc Natl Acad Sci U S A 110(34):E3189-97. [PubMed: 23918362]  [MGI Ref ID J:200677]

Yu Y; Cho HI; Wang D; Kaosaard K; Anasetti C; Celis E; Yu XZ. 2013. Adoptive Transfer of Tc1 or Tc17 Cells Elicits Antitumor Immunity against Established Melanoma through Distinct Mechanisms. J Immunol 190(4):1873-81. [PubMed: 23315072]  [MGI Ref ID J:193239]

Zaleski M; Klein J. 1974. Immune response of mice to Thy-1. 1 antigen: genetic control by alleles at the Ir-5 locus loosely linked to the H-2 complex. J Immunol 113(4):1170-7. [PubMed: 4606643]  [MGI Ref ID J:5487]

Zaleski MB. 1975. Immune response of mice to the Thy-1.1 antigen: effect of the Ir-5 alleles studies in 129/J and B10.129(6M) mice Immunogenetics 2:241-8.  [MGI Ref ID J:30773]

Zecher D; Li Q; Oberbarnscheidt MH; Demetris AJ; Shlomchik WD; Rothstein DM; Lakkis FG. 2010. NK cells delay allograft rejection in lymphopenic hosts by downregulating the homeostatic proliferation of CD8+ T cells. J Immunol 184(12):6649-57. [PubMed: 20483732]  [MGI Ref ID J:161405]

Tg(TcraTcrb)8Rest related

Antony PA; Paulos CM; Ahmadzadeh M; Akpinarli A; Palmer DC; Sato N; Kaiser A; Hinrichs CS; Klebanoff CA; Tagaya Y; Restifo NP. 2006. Interleukin-2-dependent mechanisms of tolerance and immunity in vivo. J Immunol 176(9):5255-66. [PubMed: 16621991]  [MGI Ref ID J:115150]

Antony PA; Piccirillo CA; Akpinarli A; Finkelstein SE; Speiss PJ; Surman DR; Palmer DC; Chan CC; Klebanoff CA; Overwijk WW; Rosenberg SA; Restifo NP. 2005. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174(5):2591-601. [PubMed: 15728465]  [MGI Ref ID J:129825]

Barbee SD; Alberola-Ila J. 2006. Phosphatidylinositol 3-kinase improves the efficiency of positive selection. Int Immunol 18(6):921-30. [PubMed: 16636016]  [MGI Ref ID J:109137]

Berezhnoy A; Castro I; Levay A; Malek TR; Gilboa E. 2014. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J Clin Invest 124(1):188-97. [PubMed: 24292708]  [MGI Ref ID J:207926]

Byrne KT; Zhang P; Steinberg SM; Turk MJ. 2014. Autoimmune vitiligo does not require the ongoing priming of naive CD8 T cells for disease progression or associated protection against melanoma. J Immunol 192(4):1433-9. [PubMed: 24403535]  [MGI Ref ID J:209399]

Cho HI; Lee YR; Celis E. 2011. Interferon gamma limits the effectiveness of melanoma peptide vaccines. Blood 117(1):135-44. [PubMed: 20889921]  [MGI Ref ID J:168428]

Cho HI; Reyes-Vargas E; Delgado JC; Celis E. 2012. A potent vaccination strategy that circumvents lymphodepletion for effective antitumor adoptive T-cell therapy. Cancer Res 72(8):1986-95. [PubMed: 22367213]  [MGI Ref ID J:185632]

Chung JS; Tomihari M; Tamura K; Kojima T; Cruz PD Jr; Ariizumi K. 2013. The DC-HIL ligand syndecan-4 is a negative regulator of T-cell allo-reactivity responsible for graft-versus-host disease. Immunology 138(2):173-82. [PubMed: 23113638]  [MGI Ref ID J:193761]

Cote AL; Byrne KT; Steinberg SM; Zhang P; Turk MJ. 2011. Protective CD8 memory T cell responses to mouse melanoma are generated in the absence of CD4 T cell help. PLoS One 6(10):e26491. [PubMed: 22046294]  [MGI Ref ID J:178078]

Cote AL; Zhang P; O'Sullivan JA; Jacobs VL; Clemis CR; Sakaguchi S; Guevara-Patino JA; Turk MJ. 2011. Stimulation of the glucocorticoid-induced TNF receptor family-related receptor on CD8 T cells induces protective and high-avidity T cell responses to tumor-specific antigens. J Immunol 186(1):275-83. [PubMed: 21106849]  [MGI Ref ID J:168740]

Dolcetti L; Peranzoni E; Ugel S; Marigo I; Fernandez Gomez A; Mesa C; Geilich M; Winkels G; Traggiai E; Casati A; Grassi F; Bronte V. 2010. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40(1):22-35. [PubMed: 19941314]  [MGI Ref ID J:155684]

Dudda JC; Salaun B; Ji Y; Palmer DC; Monnot GC; Merck E; Boudousquie C; Utzschneider DT; Escobar TM; Perret R; Muljo SA; Hebeisen M; Rufer N; Zehn D; Donda A; Restifo NP; Held W; Gattinoni L; Romero P. 2013. MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity 38(4):742-53. [PubMed: 23601686]  [MGI Ref ID J:196960]

Fujita M; Zhu X; Ueda R; Sasaki K; Kohanbash G; Kastenhuber ER; McDonald HA; Gibson GA; Watkins SC; Muthuswamy R; Kalinski P; Okada H. 2009. Effective immunotherapy against murine gliomas using type 1 polarizing dendritic cells--significant roles of CXCL10. Cancer Res 69(4):1587-95. [PubMed: 19190335]  [MGI Ref ID J:146507]

Garaude J; Kent A; van Rooijen N; Blander JM. 2012. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci Transl Med 4(120):120ra16. [PubMed: 22323829]  [MGI Ref ID J:183811]

Gattinoni L; Ranganathan A; Surman DR; Palmer DC; Antony PA; Theoret MR; Heimann DM; Rosenberg SA; Restifo NP. 2006. CTLA-4 dysregulation of self/tumor-reactive CD8+ T-cell function is CD4+ T-cell dependent. Blood 108(12):3818-23. [PubMed: 16882704]  [MGI Ref ID J:140448]

Gattinoni L; Zhong XS; Palmer DC; Ji Y; Hinrichs CS; Yu Z; Wrzesinski C; Boni A; Cassard L; Garvin LM; Paulos CM; Muranski P; Restifo NP. 2009. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15(7):808-13. [PubMed: 19525962]  [MGI Ref ID J:151525]

He S; Wang J; Kato K; Xie F; Varambally S; Mineishi S; Kuick R; Mochizuki K; Liu Y; Nieves E; Mani RS; Chinnaiyan AM; Marquez VE; Zhang Y. 2012. Inhibition of histone methylation arrests ongoing graft-versus-host disease in mice by selectively inducing apoptosis of alloreactive effector T cells. Blood 119(5):1274-82. [PubMed: 22117046]  [MGI Ref ID J:181783]

Hinrichs CS; Borman ZA; Cassard L; Gattinoni L; Spolski R; Yu Z; Sanchez-Perez L; Muranski P; Kern SJ; Logun C; Palmer DC; Ji Y; Reger RN; Leonard WJ; Danner RL; Rosenberg SA; Restifo NP. 2009. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc Natl Acad Sci U S A 106(41):17469-74. [PubMed: 19805141]  [MGI Ref ID J:153682]

Hinrichs CS; Kaiser A; Paulos CM; Cassard L; Sanchez-Perez L; Heemskerk B; Wrzesinski C; Borman ZA; Muranski P; Restifo NP. 2009. Type 17 CD8+ T cells display enhanced antitumor immunity. Blood 114(3):596-9. [PubMed: 19471017]  [MGI Ref ID J:150734]

Hinrichs CS; Spolski R; Paulos CM; Gattinoni L; Kerstann KW; Palmer DC; Klebanoff CA; Rosenberg SA; Leonard WJ; Restifo NP. 2008. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111(11):5326-33. [PubMed: 18276844]  [MGI Ref ID J:135563]

Hirschhorn-Cymerman D; Budhu S; Kitano S; Liu C; Zhao F; Zhong H; Lesokhin AM; Avogadri-Connors F; Yuan J; Li Y; Houghton AN; Merghoub T; Wolchok JD. 2012. Induction of tumoricidal function in CD4+ T cells is associated with concomitant memory and terminally differentiated phenotype. J Exp Med 209(11):2113-26. [PubMed: 23008334]  [MGI Ref ID J:190959]

Ho PC; Meeth KM; Tsui YC; Srivastava B; Bosenberg MW; Kaech SM. 2014. Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNgamma. Cancer Res 74(12):3205-17. [PubMed: 24736544]  [MGI Ref ID J:212454]

Ji Y; Abrams N; Zhu W; Salinas E; Yu Z; Palmer DC; Jailwala P; Franco Z; Roychoudhuri R; Stahlberg E; Gattinoni L; Restifo NP. 2014. Identification of the Genomic Insertion Site of Pmel-1 TCR alpha and beta Transgenes by Next-Generation Sequencing. PLoS One 9(5):e96650. [PubMed: 24827921]  [MGI Ref ID J:208902]

Ji Y; Pos Z; Rao M; Klebanoff CA; Yu Z; Sukumar M; Reger RN; Palmer DC; Borman ZA; Muranski P; Wang E; Schrump DS; Marincola FM; Restifo NP; Gattinoni L. 2011. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat Immunol 12(12):1230-7. [PubMed: 22057288]  [MGI Ref ID J:179007]

Keller AM; Schildknecht A; Xiao Y; van den Broek M; Borst J. 2008. Expression of costimulatory ligand CD70 on steady-state dendritic cells breaks CD8+ T cell tolerance and permits effective immunity. Immunity 29(6):934-46. [PubMed: 19062317]  [MGI Ref ID J:142683]

Kerkar SP; Goldszmid RS; Muranski P; Chinnasamy D; Yu Z; Reger RN; Leonardi AJ; Morgan RA; Wang E; Marincola FM; Trinchieri G; Rosenberg SA; Restifo NP. 2011. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 121(12):4746-57. [PubMed: 22056381]  [MGI Ref ID J:184027]

Kerkar SP; Muranski P; Kaiser A; Boni A; Sanchez-Perez L; Yu Z; Palmer DC; Reger RN; Borman ZA; Zhang L; Morgan RA; Gattinoni L; Rosenberg SA; Trinchieri G; Restifo NP. 2010. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res 70(17):6725-34. [PubMed: 20647327]  [MGI Ref ID J:163632]

Klebanoff CA; Finkelstein SE; Surman DR; Lichtman MK; Gattinoni L; Theoret MR; Grewal N; Spiess PJ; Antony PA; Palmer DC; Tagaya Y; Rosenberg SA; Waldmann TA; Restifo NP. 2004. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A 101(7):1969-74. [PubMed: 14762166]  [MGI Ref ID J:90388]

Klebanoff CA; Spencer SP; Torabi-Parizi P; Grainger JR; Roychoudhuri R; Ji Y; Sukumar M; Muranski P; Scott CD; Hall JA; Ferreyra GA; Leonardi AJ; Borman ZA; Wang J; Palmer DC; Wilhelm C; Cai R; Sun J; Napoli JL; Danner RL; Gattinoni L; Belkaid Y; RestifoNP. 2013. Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J Exp Med 210(10):1961-76. [PubMed: 23999499]  [MGI Ref ID J:203429]

Kohlhapp FJ; Zloza A; O'Sullivan JA; Moore TV; Lacek AT; Jagoda MC; McCracken J; Cole DJ; Guevara-Patino JA. 2012. CD8(+) T cells sabotage their own memory potential through IFN-gamma-dependent modification of the IL-12/IL-15 receptor alpha axis on dendritic cells. J Immunol 188(8):3639-47. [PubMed: 22430740]  [MGI Ref ID J:184140]

Kohlmeyer J; Cron M; Landsberg J; Bald T; Renn M; Mikus S; Bondong S; Wikasari D; Gaffal E; Hartmann G; Tuting T. 2009. Complete regression of advanced primary and metastatic mouse melanomas following combination chemoimmunotherapy. Cancer Res 69(15):6265-74. [PubMed: 19622767]  [MGI Ref ID J:150944]

Leithauser F; Meinhardt-Krajina T; Fink K; Wotschke B; Moller P; Reimann J. 2006. Foxp3-expressing CD103+ regulatory T cells accumulate in dendritic cell aggregates of the colonic mucosa in murine transfer colitis. Am J Pathol 168(6):1898-909. [PubMed: 16723705]  [MGI Ref ID J:109127]

Lesokhin AM; Hohl TM; Kitano S; Cortez C; Hirschhorn-Cymerman D; Avogadri F; Rizzuto GA; Lazarus JJ; Pamer EG; Houghton AN; Merghoub T; Wolchok JD. 2012. Monocytic CCR2+ Myeloid-Derived Suppressor Cells Promote Immune Escape by Limiting Activated CD8 T-cell Infiltration into the Tumor Microenvironment. Cancer Res 72(4):876-86. [PubMed: 22174368]  [MGI Ref ID J:181100]

Ly LV; Sluijter M; Versluis M; Luyten GP; van der Burg SH; Melief CJ; Jager MJ; van Hall T. 2010. Peptide vaccination after T-cell transfer causes massive clonal expansion, tumor eradication, and manageable cytokine storm. Cancer Res 70(21):8339-46. [PubMed: 20940397]  [MGI Ref ID J:165795]

Ly LV; Sluijter M; van der Burg SH; Jager MJ; van Hall T. 2013. Effective cooperation of monoclonal antibody and Peptide vaccine for the treatment of mouse melanoma. J Immunol 190(1):489-96. [PubMed: 23203930]  [MGI Ref ID J:190828]

Mace TA; Zhong L; Kilpatrick C; Zynda E; Lee CT; Capitano M; Minderman H; Repasky EA. 2011. Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. J Leukoc Biol 90(5):951-62. [PubMed: 21873456]  [MGI Ref ID J:179226]

Marigo I; Bosio E; Solito S; Mesa C; Fernandez A; Dolcetti L; Ugel S; Sonda N; Bicciato S; Falisi E; Calabrese F; Basso G; Zanovello P; Cozzi E; Mandruzzato S; Bronte V. 2010. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32(6):790-802. [PubMed: 20605485]  [MGI Ref ID J:162002]

Mosenson JA; Zloza A; Nieland JD; Garrett-Mayer E; Eby JM; Huelsmann EJ; Kumar P; Denman CJ; Lacek AT; Kohlhapp FJ; Alamiri A; Hughes T; Bines SD; Kaufman HL; Overbeck A; Mehrotra S; Hernandez C; Nishimura MI; Guevara-Patino JA; Le Poole IC. 2013. Mutant HSP70 reverses autoimmune depigmentation in vitiligo. Sci Transl Med 5(174):174ra28. [PubMed: 23447019]  [MGI Ref ID J:213320]

Muranski P; Borman ZA; Kerkar SP; Klebanoff CA; Ji Y; Sanchez-Perez L; Sukumar M; Reger RN; Yu Z; Kern SJ; Roychoudhuri R; Ferreyra GA; Shen W; Durum SK; Feigenbaum L; Palmer DC; Antony PA; Chan CC; Laurence A; Danner RL; Gattinoni L; Restifo NP. 2011. Th17 Cells Are Long Lived and Retain a Stem Cell-like Molecular Signature. Immunity 35(6):972-85. [PubMed: 22177921]  [MGI Ref ID J:179285]

Nakahara T; Uchi H; Lesokhin AM; Avogadri F; Rizzuto GA; Hirschhorn-Cymerman D; Panageas KS; Merghoub T; Wolchok JD; Houghton AN. 2010. Cyclophosphamide enhances immunity by modulating the balance of dendritic cell subsets in lymphoid organs. Blood 115(22):4384-92. [PubMed: 20154220]  [MGI Ref ID J:161569]

Overwijk WW; Theoret MR; Finkelstein SE; Surman DR; de Jong LA; Vyth-Dreese FA; Dellemijn TA; Antony PA; Spiess PJ; Palmer DC; Heimann DM; Klebanoff CA; Yu Z; Hwang LN; Feigenbaum L; Kruisbeek AM; Rosenberg SA; Restifo NP. 2003. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569-80. [PubMed: 12925674]  [MGI Ref ID J:85058]

Qian J; Yi H; Guo C; Yu X; Zuo D; Chen X; Kane JM 3rd; Repasky EA; Subjeck JR; Wang XY. 2011. CD204 suppresses large heat shock protein-facilitated priming of tumor antigen gp100-specific T cells and chaperone vaccine activity against mouse melanoma. J Immunol 187(6):2905-14. [PubMed: 21832164]  [MGI Ref ID J:179257]

Quezada SA; Peggs KS; Simpson TR; Shen Y; Littman DR; Allison JP. 2008. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205(9):2125-38. [PubMed: 18725522]  [MGI Ref ID J:138811]

Ramakrishnan R; Tyurin VA; Veglia F; Condamine T; Amoscato A; Mohammadyani D; Johnson JJ; Zhang LM; Klein-Seetharaman J; Celis E; Kagan VE; Gabrilovich DI. 2014. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol 192(6):2920-31. [PubMed: 24554775]  [MGI Ref ID J:209897]

Ramanathan S; Dubois S; Gagnon J; Leblanc C; Mariathasan S; Ferbeyre G; Rottapel R; Ohashi PS; Ilangumaran S. 2010. Regulation of cytokine-driven functional differentiation of CD8 T cells by suppressor of cytokine signaling 1 controls autoimmunity and preserves their proliferative capacity toward foreign antigens. J Immunol 185(1):357-66. [PubMed: 20519645]  [MGI Ref ID J:161432]

Rashighi M; Agarwal P; Richmond JM; Harris TH; Dresser K; Su MW; Zhou Y; Deng A; Hunter CA; Luster AD; Harris JE. 2014. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med 6(223):223ra23. [PubMed: 24523323]  [MGI Ref ID J:213685]

Rizzuto GA; Merghoub T; Hirschhorn-Cymerman D; Liu C; Lesokhin AM; Sahawneh D; Zhong H; Panageas KS; Perales MA; Altan-Bonnet G; Wolchok JD; Houghton AN. 2009. Self-antigen-specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response. J Exp Med 206(4):849-66. [PubMed: 19332877]  [MGI Ref ID J:147866]

Rodriguez GM; D'Urbano D; Bobbala D; Chen XL; Yeganeh M; Ramanathan S; Ilangumaran S. 2013. SOCS1 Prevents Potentially Skin-Reactive Cytotoxic T Lymphocytes from Gaining the Ability to Cause Inflammatory Lesions. J Invest Dermatol 133(8):2013-22. [PubMed: 23443260]  [MGI Ref ID J:198836]

Rommelfanger DM; Wongthida P; Diaz RM; Kaluza KM; Thompson JM; Kottke TJ; Vile RG. 2012. Systemic combination virotherapy for melanoma with tumor antigen-expressing vesicular stomatitis virus and adoptive T-cell transfer. Cancer Res 72(18):4753-64. [PubMed: 22836753]  [MGI Ref ID J:191328]

Salem ML; Al-Khami AA; El-Naggar SA; Diaz-Montero CM; Chen Y; Cole DJ. 2010. Cyclophosphamide induces dynamic alterations in the host microenvironments resulting in a Flt3 ligand-dependent expansion of dendritic cells. J Immunol 184(4):1737-47. [PubMed: 20083664]  [MGI Ref ID J:159482]

Sharma MD; Hou DY; Baban B; Koni PA; He Y; Chandler PR; Blazar BR; Mellor AL; Munn DH. 2010. Reprogrammed foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice. Immunity 33(6):942-54. [PubMed: 21145762]  [MGI Ref ID J:167291]

Shimizu K; Asakura M; Shinga J; Sato Y; Kitahara S; Hoshino K; Kaisho T; Schoenberger SP; Ezaki T; Fujii S. 2013. Invariant NKT cells induce plasmacytoid dendritic cell (DC) cross-talk with conventional DCs for efficient memory CD8+ T cell induction. J Immunol 190(11):5609-19. [PubMed: 23630347]  [MGI Ref ID J:204779]

Shin JH; Park HB; Oh YM; Lim DP; Lee JE; Seo HH; Lee SJ; Eom HS; Kim IH; Lee SH; Choi K. 2012. Positive conversion of negative signaling of CTLA4 potentiates antitumor efficacy of adoptive T-cell therapy in murine tumor models. Blood 119(24):5678-87. [PubMed: 22538857]  [MGI Ref ID J:188643]

Shrimali RK; Yu Z; Theoret MR; Chinnasamy D; Restifo NP; Rosenberg SA. 2010. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70(15):6171-80. [PubMed: 20631075]  [MGI Ref ID J:162231]

Shu CJ; Radu CG; Shelly SM; Vo DD; Prins R; Ribas A; Phelps ME; Witte ON. 2009. Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. Int Immunol 21(2):155-65. [PubMed: 19106231]  [MGI Ref ID J:144521]

Sonda N; Simonato F; Peranzoni E; Cali B; Bortoluzzi S; Bisognin A; Wang E; Marincola FM; Naldini L; Gentner B; Trautwein C; Sackett SD; Zanovello P; Molon B; Bronte V. 2013. miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis. Immunity 38(6):1236-49. [PubMed: 23809164]  [MGI Ref ID J:207573]

Stephan MT; Moon JJ; Um SH; Bershteyn A; Irvine DJ. 2010. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med 16(9):1035-41. [PubMed: 20711198]  [MGI Ref ID J:164443]

Tomihari M; Chung JS; Akiyoshi H; Cruz PD Jr; Ariizumi K. 2010. DC-HIL/glycoprotein Nmb promotes growth of melanoma in mice by inhibiting the activation of tumor-reactive T cells. Cancer Res 70(14):5778-87. [PubMed: 20570888]  [MGI Ref ID J:162479]

Waite MR; Skaggs K; Kaviany P; Skidmore JM; Causeret F; Martin JF; Martin DM. 2012. Distinct populations of GABAergic neurons in mouse rhombomere 1 express but do not require the homeodomain transcription factor PITX2. Mol Cell Neurosci 49(1):32-43. [PubMed: 21925604]  [MGI Ref ID J:189488]

Wang H; Yu X; Guo C; Zuo D; Fisher PB; Subjeck JR; Wang XY. 2013. Enhanced endoplasmic reticulum entry of tumor antigen is crucial for cross-presentation induced by dendritic cell-targeted vaccination. J Immunol 191(12):6010-21. [PubMed: 24218449]  [MGI Ref ID J:207139]

Wang Y; Sparwasser T; Figlin R; Kim HL. 2014. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition. Cancer Res 74(8):2217-28. [PubMed: 24574514]  [MGI Ref ID J:210527]

Xiao H; Peng Y; Hong Y; Huang L; Guo ZS; Bartlett DL; Fu N; Munn DH; Mellor A; He Y. 2013. Local administration of TLR ligands rescues the function of tumor-infiltrating CD8 T cells and enhances the antitumor effect of lentivector immunization. J Immunol 190(11):5866-73. [PubMed: 23610140]  [MGI Ref ID J:204787]

Yang Q; Li G; Zhu Y; Liu L; Chen E; Turnquist H; Zhang X; Finn OJ; Chen X; Lu B. 2011. IL-33 synergizes with TCR and IL-12 signaling to promote the effector function of CD8+ T cells. Eur J Immunol 41(11):3351-60. [PubMed: 21887788]  [MGI Ref ID J:179516]

Yi H; Yu X; Gao P; Wang Y; Baek SH; Chen X; Kim HL; Subjeck JR; Wang XY. 2009. Pattern recognition scavenger receptor SRA/CD204 down-regulates Toll-like receptor 4 signaling-dependent CD8 T-cell activation. Blood 113(23):5819-28. [PubMed: 19349620]  [MGI Ref ID J:149497]

Yu X; Guo C; Yi H; Qian J; Fisher PB; Subjeck JR; Wang XY. 2013. A multifunctional chimeric chaperone serves as a novel immune modulator inducing therapeutic antitumor immunity. Cancer Res 73(7):2093-103. [PubMed: 23333935]  [MGI Ref ID J:196898]

Yu Y; Cho HI; Wang D; Kaosaard K; Anasetti C; Celis E; Yu XZ. 2013. Adoptive Transfer of Tc1 or Tc17 Cells Elicits Antitumor Immunity against Established Melanoma through Distinct Mechanisms. J Immunol 190(4):1873-81. [PubMed: 23315072]  [MGI Ref ID J:193239]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX11

Colony Maintenance

Breeding & HusbandryTransgenic constructs containing the mouse alpha-chain and beta-chain of a T-cell receptor were used to create transgenic animals on a C57BL/6 background. The mice were then crossed to B6.PL-Thy1a/CyJ (Stock No.00406). The strain is maintained homozygous for the transgenic insert and homozygous for the Thy1a allele.
Mating SystemHomozygote x Homozygote         (Female x Male)   01-MAR-06
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $232.00Female or MaleHomozygous for Thy1a, Homozygous for Tg(TcraTcrb)8Rest  
Price per Pair (US dollars $)Pair Genotype
$464.00Homozygous for Thy1a, Homozygous for Tg(TcraTcrb)8Rest x Homozygous for Thy1a, Homozygous for Tg(TcraTcrb)8Rest  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $301.60Female or MaleHomozygous for Thy1a, Homozygous for Tg(TcraTcrb)8Rest  
Price per Pair (US dollars $)Pair Genotype
$603.20Homozygous for Thy1a, Homozygous for Tg(TcraTcrb)8Rest x Homozygous for Thy1a, Homozygous for Tg(TcraTcrb)8Rest  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

  Control
   000406 B6.PL-Thy1a/CyJ
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)