Strain Name:


Stock Number:


Order this mouse


Repository- Live

Use Restrictions Apply, see Terms of Use
Common Names: TrifLps2;    
Macrophages in these mice fail to produce tumor necrosis factor (TNF) upon challenge from synthetic lipid A, endotoxin lipopolysaccharide (LPS), and dsRNA. These mice may be useful in studies of immunodeficiency and host response to bacterial endotoxins and viruses.


Strain Information

Former Names C57BL/6J-AW046014Lps2/J    (Changed: 06-JUL-05 )
Type Chemically Induced Mutation; Coisogenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Mating SystemHomozygote x Homozygote         (Female x Male)   01-MAR-06
Specieslaboratory mouse
Background Strain C57BL/6
GenerationF3+5N1F4 (31-DEC-08)
Generation Definitions
Donating Investigator Bruce Beutler,   University of Texas Southwestern Medical

Mice that are homozygous for the mutation are viable, fertile, normal in size and do not display any gross physical or behavioral abnormalities. This single base pair deletion mutation was induced by ENU mutagenesis. Unlike wildtype macrophages, macrophages derived from these animals fail to respond to synthetic lipid A, endotoxin lipopolysaccharide (LPS), and dsRNA with production of tumor necrosis factor (TNF). Macrophages are less susceptible to LPS-induced cytotoxicity. Nitrous oxide and type I interferon production in activated macrophages is impaired. Homozygotes exhibit increased susceptibility to mouse cytomegalovirus. Although homozygotes are resistant to challenges with LPS, the mice will become ill and some may die.

This strain was developed using ENU mutagenesis of male C57BL/6 mice. The founding male (#9324) was selected from the F3 generation using a screening protocol for macrophage response to lipid A and endotoxin lopopolyscaccharide (LPS). The ENU treatment induced a single base pair deletion at codon 708.

Control Information

   000664 C57BL/6J
  Considerations for Choosing Controls


Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Herpes Simplex Encephalitis, Susceptibility to, 4   (TICAM1)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype


  • vision/eye phenotype
  • abnormal retinal progenitor cell morphology
    • more proliferating cells in the retina at 6 days of age   (MGI Ref ID J:141070)
    • neuronal differentiation of precursors   (MGI Ref ID J:141070)
  • nervous system phenotype
  • *normal* nervous system phenotype
    • no neurological defects after cerebral ischemia/reperfusion (as with controls)   (MGI Ref ID J:155613)
    • infarct size similar to controls   (MGI Ref ID J:155613)
  • digestive/alimentary phenotype
  • abnormal enterocyte physiology
    • flagellin stimulated primary intestinal epithelial cells display dramatically suppressed production of keratinocyte-derived cytokine, macrophage inflammatory protein 3 alpha, and IL-6   (MGI Ref ID J:167340)
  • decreased susceptibility to induced colitis
    • significantly improved survival from experimental colitis induced with dextran sodium sulfate and flagellin treatment   (MGI Ref ID J:167340)
    • much less histological damage to colon epithelium in induced colitis   (MGI Ref ID J:167340)
    • recovery from colitis is improved   (MGI Ref ID J:167340)
  • immune system phenotype
  • *normal* immune system phenotype
    • flagellin induction of IFN-beta production is unaffected   (MGI Ref ID J:131353)
    • abnormal circulating tumor necrosis factor level
      • ethanol containing diet fails to cause a significant increase in serum TNF as occurs in controls   (MGI Ref ID J:138963)
    • abnormal cytokine secretion
      • flagellin stimulated primary intestinal epithelial cells display dramatically suppressed production of keratinocyte-derived cytokine and macrophage inflammatory protein 3 alpha   (MGI Ref ID J:167340)
      • IL-1beta strongly induces keratinocyte-derived cytokine production   (MGI Ref ID J:167340)
      • decreased interleukin-6 secretion
        • flagellin stimulated primary intestinal epithelial cells display dramatically suppressed production   (MGI Ref ID J:167340)
    • decreased susceptibility to induced colitis
      • significantly improved survival from experimental colitis induced with dextran sodium sulfate and flagellin treatment   (MGI Ref ID J:167340)
      • much less histological damage to colon epithelium in induced colitis   (MGI Ref ID J:167340)
      • recovery from colitis is improved   (MGI Ref ID J:167340)
  • growth/size/body region phenotype
  • abnormal postnatal growth/weight/body size
    • resistant to weight loss in experimental colitis   (MGI Ref ID J:167340)
  • liver/biliary system phenotype
  • decreased susceptibility to hepatic steatosis
    • fail to develop ethanol induced liver steatosis as occurs in controls   (MGI Ref ID J:138963)
  • homeostasis/metabolism phenotype
  • abnormal circulating tumor necrosis factor level
    • ethanol containing diet fails to cause a significant increase in serum TNF as occurs in controls   (MGI Ref ID J:138963)


  • homeostasis/metabolism phenotype
  • decreased susceptibility to injury
    • following induction of necrotizing enterocolitis, mice exhibit preservation of the small intestinal mucosa compared with wild-type mice   (MGI Ref ID J:193668)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.


        involves: C57BL/6
  • immune system phenotype
  • abnormal cytokine secretion
    • cytokine secretion induced by naked polyI:C is severely impaired by 5- to 10-fold   (MGI Ref ID J:110201)
    • however, secretion induced by transfected polyI:C is unaffected   (MGI Ref ID J:110201)
    • decreased tumor necrosis factor secretion
      • TNF production in response to LPS, synthetic lipid A, and dsRNA is decreased or abolished   (MGI Ref ID J:84896)
  • abnormal macrophage physiology
    • responses of macrophages to LPS are reduced, with decreased or abolished apoptosis, nitric oxide production, TNF production, and type I interferon production   (MGI Ref ID J:84896)
    • decreased macrophage apoptosis   (MGI Ref ID J:84896)
      • greatly reduced apoptosis of Tlr3 and Tlr4 stimulated macrophage   (MGI Ref ID J:92674)
    • decreased macrophage cytokine production
      • type I inferferon activity is undetected in culture medium of LPS- or dsRNA-activated macrophages   (MGI Ref ID J:84896)
      • no production of type I interferons in response to mouse cytomegalovirus   (MGI Ref ID J:84896)
    • decreased macrophage nitric oxide production
      • LPS-induced nitric oxide production by macrophages is abolished   (MGI Ref ID J:84896)
  • decreased circulating tumor necrosis factor level
    • 10,000 fold reduction in the TNF alpha response to lipopolysaccharide   (MGI Ref ID J:86521)
  • decreased susceptibility to bacterial infection
    • diminished response to lipopolysaccharide   (MGI Ref ID J:86521)
    • 10,000 fold reduction in the TNF alpha response to lipopolysaccharide   (MGI Ref ID J:86521)
    • considerable protection against Yersinia enterocolitica induced apoptosis of macrophage   (MGI Ref ID J:92674)
  • decreased susceptibility to endotoxin shock
    • though some mice become ill and die after intraperitoneal lipopolysaccharide (LPS) injection, the survival rate is significantly greater than that of wild-type   (MGI Ref ID J:84896)
  • increased susceptibility to viral infection
    • mice are more susceptible to cytomegalovirus infection, with increased lethality and higher viral titers than wild-type mice   (MGI Ref ID J:84896)
    • macrophage cultures infected with Vaccinia virus show higher viral titers than control macrophages   (MGI Ref ID J:84896)
  • homeostasis/metabolism phenotype
  • decreased circulating tumor necrosis factor level
    • 10,000 fold reduction in the TNF alpha response to lipopolysaccharide   (MGI Ref ID J:86521)
  • decreased macrophage nitric oxide production
    • LPS-induced nitric oxide production by macrophages is abolished   (MGI Ref ID J:84896)
  • cellular phenotype
  • decreased macrophage apoptosis   (MGI Ref ID J:84896)
    • greatly reduced apoptosis of Tlr3 and Tlr4 stimulated macrophage   (MGI Ref ID J:92674)
  • hematopoietic system phenotype
  • abnormal macrophage physiology
    • responses of macrophages to LPS are reduced, with decreased or abolished apoptosis, nitric oxide production, TNF production, and type I interferon production   (MGI Ref ID J:84896)
    • decreased macrophage apoptosis   (MGI Ref ID J:84896)
      • greatly reduced apoptosis of Tlr3 and Tlr4 stimulated macrophage   (MGI Ref ID J:92674)
    • decreased macrophage cytokine production
      • type I inferferon activity is undetected in culture medium of LPS- or dsRNA-activated macrophages   (MGI Ref ID J:84896)
      • no production of type I interferons in response to mouse cytomegalovirus   (MGI Ref ID J:84896)
    • decreased macrophage nitric oxide production
      • LPS-induced nitric oxide production by macrophages is abolished   (MGI Ref ID J:84896)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Immunology, Inflammation and Autoimmunity Research

Research Tools
Immunology, Inflammation and Autoimmunity Research
      genes regulating susceptibility to infectious disease and endotoxin

Genes & Alleles

Gene & Allele Information provided by MGI

Allele Symbol Ticam1Lps2
Allele Name lipopolysaccharide 2
Allele Type Chemically induced (ENU)
Common Name(s) Lps; Lps2; Lps2-; TRIF-; Ticam1-; TrifLps2; Trifm;
Mutation Made By Bruce Beutler,   University of Texas Southwestern Medical
Strain of OriginC57BL/6J
Gene Symbol and Name Ticam1, toll-like receptor adaptor molecule 1
Chromosome 17
Gene Common Name(s) AW046014; AW547018; IIAE6; MyD88-3; PRVTIRB; TICAM-1; TRIF; expressed sequence AW046014; expressed sequence AW547018;
Molecular Note ENU mutagenesis induced the deletion of a single guanine within codon 708, resulting in a frameshift mutation. The mutation was predicted to replace 24 C-terminal residues with 11 unrelated residues. The mutation was initially detected by screening macrophages for their competence to respond to LPS. [MGI Ref ID J:84896] [MGI Ref ID J:86521]


Genotyping Information

Genotyping Protocols

Ticam1Lps2 End Point, End Point Analysis

Helpful Links

Genotyping resources and troubleshooting


References provided by MGI

Selected Reference(s)

Hoebe K; Du X; Georgel P; Janssen E; Tabeta K; Kim SO; Goode J; Lin P; Mann N; Mudd S; Crozat K; Sovath S; Han J; Beutler B. 2003. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424(6950):743-8. [PubMed: 12872135]  [MGI Ref ID J:84896]

Additional References

Hoebe K; Janssen EM; Kim SO; Alexopoulou L; Flavell RA; Han J; Beutler B. 2003. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat Immunol 4(12):1223-9. [PubMed: 14625548]  [MGI Ref ID J:86617]

Ticam1Lps2 related

Aachoui Y; Leaf IA; Hagar JA; Fontana MF; Campos CG; Zak DE; Tan MH; Cotter PA; Vance RE; Aderem A; Miao EA. 2013. Caspase-11 protects against bacteria that escape the vacuole. Science 339(6122):975-8. [PubMed: 23348507]  [MGI Ref ID J:193387]

Afrazi A; Branca MF; Sodhi CP; Good M; Yamaguchi Y; Egan CE; Lu P; Jia H; Shaffiey S; Lin J; Ma C; Vincent G; Prindle T Jr; Weyandt S; Neal MD; Ozolek JA; Wiersch J; Tschurtschenthaler M; Shiota C; Gittes GK; Billiar TR; Mollen K; Kaser A; Blumberg R; Hackam DJ. 2014. Toll-like receptor 4-mediated endoplasmic reticulum stress in intestinal crypts induces necrotizing enterocolitis. J Biol Chem 289(14):9584-99. [PubMed: 24519940]  [MGI Ref ID J:212438]

Albacker LA; Chaudhary V; Chang YJ; Kim HY; Chuang YT; Pichavant M; Dekruyff RH; Savage PB; Umetsu DT. 2013. Invariant natural killer T cells recognize a fungal glycosphingolipid that can induce airway hyperreactivity. Nat Med 19(10):1297-304. [PubMed: 23995283]  [MGI Ref ID J:202034]

Ali OA; Verbeke C; Johnson C; Sands RW; Lewin SA; White D; Doherty E; Dranoff G; Mooney DJ. 2014. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants. Cancer Res 74(6):1670-81. [PubMed: 24480625]  [MGI Ref ID J:208326]

Arnold CN; Pirie E; Dosenovic P; McInerney GM; Xia Y; Wang N; Li X; Siggs OM; Karlsson Hedestam GB; Beutler B. 2012. A forward genetic screen reveals roles for Nfkbid, Zeb1, and Ruvbl2 in humoral immunity. Proc Natl Acad Sci U S A :. [PubMed: 22761313]  [MGI Ref ID J:185495]

Ashtekar AR; Zhang P; Katz J; Deivanayagam CC; Rallabhandi P; Vogel SN; Michalek SM. 2008. TLR4-mediated activation of dendritic cells by the heat shock protein DnaK from Francisella tularensis. J Leukoc Biol 84(6):1434-46. [PubMed: 18708593]  [MGI Ref ID J:142302]

Baccarella A; Fontana MF; Chen EC; Kim CC. 2013. Toll-like receptor 7 mediates early innate immune responses to malaria. Infect Immun 81(12):4431-42. [PubMed: 24042114]  [MGI Ref ID J:202330]

Barrio L; Saez de Guinoa J; Carrasco YR. 2013. TLR4 signaling shapes B cell dynamics via MyD88-dependent pathways and Rac GTPases. J Immunol 191(7):3867-75. [PubMed: 23997213]  [MGI Ref ID J:205953]

Bhattacharyya S; Ratajczak CK; Vogt SK; Kelley C; Colonna M; Schreiber RD; Muglia LJ. 2010. TAK1 targeting by glucocorticoids determines JNK and IkappaB regulation in Toll-like receptor-stimulated macrophages. Blood 115(10):1921-31. [PubMed: 20065289]  [MGI Ref ID J:158841]

Blasius AL; Arnold CN; Georgel P; Rutschmann S; Xia Y; Lin P; Ross C; Li X; Smart NG; Beutler B. 2010. Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 107(46):19973-8. [PubMed: 21045126]  [MGI Ref ID J:166600]

Bourgeois C; Majer O; Frohner IE; Lesiak-Markowicz I; Hildering KS; Glaser W; Stockinger S; Decker T; Akira S; Muller M; Kuchler K. 2011. Conventional Dendritic Cells Mount a Type I IFN Response against Candida spp. Requiring Novel Phagosomal TLR7-Mediated IFN-{beta} Signaling. J Immunol 186(5):3104-12. [PubMed: 21282509]  [MGI Ref ID J:169378]

Brandl K; Sun L; Neppl C; Siggs OM; Le Gall SM; Tomisato W; Li X; Du X; Maennel DN; Blobel CP; Beutler B. 2010. MyD88 signaling in nonhematopoietic cells protects mice against induced colitis by regulating specific EGF receptor ligands. Proc Natl Acad Sci U S A 107(46):19967-72. [PubMed: 21041656]  [MGI Ref ID J:166602]

Brandt EB; Gibson AM; Bass S; Rydyznski C; Khurana Hershey GK. 2013. Exacerbation of allergen-induced eczema in TLR4- and TRIF-deficient mice. J Immunol 191(7):3519-25. [PubMed: 23997219]  [MGI Ref ID J:205950]

Brzezinska AA; Johnson JL; Munafo DB; Ellis BA; Catz SD. 2009. Signalling mechanisms for Toll-like receptor-activated neutrophil exocytosis: key roles for interleukin-1-receptor-associated kinase-4 and phosphatidylinositol 3-kinase but not Toll/IL-1 receptor (TIR) domain-containing adaptor inducing IFN-beta (TRIF). Immunology 127(3):386-97. [PubMed: 19019092]  [MGI Ref ID J:155996]

Buchholz BM; Billiar TR; Bauer AJ. 2010. Dominant role of the MyD88-dependent signaling pathway in mediating early endotoxin-induced murine ileus. Am J Physiol Gastrointest Liver Physiol 299(2):G531-8. [PubMed: 20508155]  [MGI Ref ID J:163354]

Calderon Toledo C; Rogers TJ; Svensson M; Tati R; Fischer H; Svanborg C; Karpman D. 2008. Shiga toxin-mediated disease in MyD88-deficient mice infected with Escherichia coli O157:H7. Am J Pathol 173(5):1428-39. [PubMed: 18832584]  [MGI Ref ID J:143430]

Cao AT; Yao S; Stefka AT; Liu Z; Qin H; Liu H; Evans-Marin HL; Elson CO; Nagler CR; Cong Y. 2014. TLR4 regulates IFN-gamma and IL-17 production by both thymic and induced Foxp3+ Tregs during intestinal inflammation. J Leukoc Biol 96(5):895-905. [PubMed: 25015957]  [MGI Ref ID J:220139]

Case CL; Kohler LJ; Lima JB; Strowig T; de Zoete MR; Flavell RA; Zamboni DS; Roy CR. 2013. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc Natl Acad Sci U S A 110(5):1851-6. [PubMed: 23307811]  [MGI Ref ID J:211694]

Cekic C; Casella CR; Sag D; Antignano F; Kolb J; Suttles J; Hughes MR; Krystal G; Mitchell TC. 2011. MyD88-Dependent SHIP1 Regulates Proinflammatory Signaling Pathways in Dendritic Cells after Monophosphoryl Lipid A Stimulation of TLR4. J Immunol 186(7):3858-65. [PubMed: 21339365]  [MGI Ref ID J:170844]

Cervantes-Barragan L; Gil-Cruz C; Pastelin-Palacios R; Lang KS; Isibasi A; Ludewig B; Lopez-Macias C. 2009. TLR2 and TLR4 signaling shapes specific antibody responses to Salmonella typhi antigens. Eur J Immunol 39(1):126-35. [PubMed: 19130558]  [MGI Ref ID J:143726]

Cha HR; Ko HJ; Kim ED; Chang SY; Seo SU; Cuburu N; Ryu S; Kim S; Kweon MN. 2011. Mucosa-associated epithelial chemokine/CCL28 expression in the uterus attracts CCR10+ IgA plasma cells following mucosal vaccination via estrogen control. J Immunol 187(6):3044-52. [PubMed: 21832166]  [MGI Ref ID J:179255]

Chan YR; Liu JS; Pociask DA; Zheng M; Mietzner TA; Berger T; Mak TW; Clifton MC; Strong RK; Ray P; Kolls JK. 2009. Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. J Immunol 182(8):4947-56. [PubMed: 19342674]  [MGI Ref ID J:147498]

Chang EY; Guo B; Doyle SE; Cheng G. 2007. Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J Immunol 178(11):6705-9. [PubMed: 17513714]  [MGI Ref ID J:147854]

Chassin C; Goujon JM; Darche S; du Merle L; Bens M; Cluzeaud F; Werts C; Ogier-Denis E; Le Bouguenec C; Buzoni-Gatel D; Vandewalle A. 2006. Renal collecting duct epithelial cells react to pyelonephritis-associated Escherichia coli by activating distinct TLR4-dependent and -independent inflammatory pathways. J Immunol 177(7):4773-84. [PubMed: 16982918]  [MGI Ref ID J:139309]

Chen S; Sorrentino R; Shimada K; Bulut Y; Doherty TM; Crother TR; Arditi M. 2008. Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and -independent signaling and is reciprocally modulated by liver X receptor activation. J Immunol 181(10):7186-93. [PubMed: 18981140]  [MGI Ref ID J:140935]

Chi H; Barry SP; Roth RJ; Wu JJ; Jones EA; Bennett AM; Flavell RA. 2006. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci U S A 103(7):2274-9. [PubMed: 16461893]  [MGI Ref ID J:106068]

Choi YJ; Im E; Chung HK; Pothoulakis C; Rhee SH. 2010. TRIF mediates Toll-like receptor 5-induced signaling in intestinal epithelial cells. J Biol Chem 285(48):37570-8. [PubMed: 20855887]  [MGI Ref ID J:167340]

Clavarino G; Claudio N; Dalet A; Terawaki S; Couderc T; Chasson L; Ceppi M; Schmidt EK; Wenger T; Lecuit M; Gatti E; Pierre P. 2012. Protein phosphatase 1 subunit Ppp1r15a/GADD34 regulates cytokine production in polyinosinic:polycytidylic acid-stimulated dendritic cells. Proc Natl Acad Sci U S A 109(8):3006-11. [PubMed: 22315398]  [MGI Ref ID J:182014]

Cook MC; Vinuesa CG; Goodnow CC. 2006. ENU-mutagenesis: insight into immune function and pathology. Curr Opin Immunol 18(5):627-33. [PubMed: 16889948]  [MGI Ref ID J:211461]

Copin R; De Baetselier P; Carlier Y; Letesson JJ; Muraille E. 2007. MyD88-dependent activation of B220-CD11b+LY-6C+ dendritic cells during Brucella melitensis infection. J Immunol 178(8):5182-91. [PubMed: 17404301]  [MGI Ref ID J:145275]

Copin R; Vitry MA; Hanot Mambres D; Machelart A; De Trez C; Vanderwinden JM; Magez S; Akira S; Ryffel B; Carlier Y; Letesson JJ; Muraille E. 2012. In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice. PLoS Pathog 8(3):e1002575. [PubMed: 22479178]  [MGI Ref ID J:195395]

Croker B; Crozat K; Berger M; Xia Y; Sovath S; Schaffer L; Eleftherianos I; Imler JL; Beutler B. 2007. ATP-sensitive potassium channels mediate survival during infection in mammals and insects. Nat Genet 39(12):1453-60. [PubMed: 18026101]  [MGI Ref ID J:126658]

Croker BA; Lawson BR; Berger M; Eidenschenk C; Blasius AL; Moresco EM; Sovath S; Cengia L; Shultz LD; Theofilopoulos AN; Pettersson S; Beutler BA. 2008. Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger. Proc Natl Acad Sci U S A 105(39):15028-33. [PubMed: 18806225]  [MGI Ref ID J:142845]

De Trez C; Pajak B; Brait M; Glaichenhaus N; Urbain J; Moser M; Lauvau G; Muraille E. 2005. TLR4 and Toll-IL-1 receptor domain-containing adapter-inducing IFN-beta, but not MyD88, regulate Escherichia coli-induced dendritic cell maturation and apoptosis in vivo. J Immunol 175(2):839-46. [PubMed: 16002681]  [MGI Ref ID J:100715]

Ding A; Yu H; Yang J; Shi S; Ehrt S. 2005. Induction of macrophage-derived SLPI by Mycobacterium tuberculosis depends on TLR2 but not MyD88. Immunology 116(3):381-9. [PubMed: 16236128]  [MGI Ref ID J:103462]

Duggan JM; You D; Cleaver JO; Larson DT; Garza RJ; Guzman Pruneda FA; Tuvim MJ; Zhang J; Dickey BF; Evans SE. 2011. Synergistic interactions of TLR2/6 and TLR9 induce a high level of resistance to lung infection in mice. J Immunol 186(10):5916-26. [PubMed: 21482737]  [MGI Ref ID J:173084]

Eigenbrod T; Franchi L; Munoz-Planillo R; Kirschning CJ; Freudenberg MA; Nunez G; Dalpke A. 2012. Bacterial RNA mediates activation of caspase-1 and IL-1beta release independently of TLRs 3, 7, 9 and TRIF but is dependent on UNC93B. J Immunol 189(1):328-36. [PubMed: 22634614]  [MGI Ref ID J:188954]

Embry CA; Franchi L; Nunez G; Mitchell TC. 2011. Mechanism of impaired NLRP3 inflammasome priming by monophosphoryl lipid A. Sci Signal 4(171):ra28. [PubMed: 21540455]  [MGI Ref ID J:185335]

Famakin BM; Mou Y; Ruetzler CA; Bembry J; Maric D; Hallenbeck JM. 2011. Disruption of downstream MyD88 or TRIF Toll-like receptor signaling does not protect against cerebral ischemia. Brain Res 1388:148-56. [PubMed: 21376021]  [MGI Ref ID J:172528]

Ferwerda G; Kullberg BJ; de Jong DJ; Girardin SE; Langenberg DM; van Crevel R; Ottenhoff TH; Van der Meer JW; Netea MG. 2007. Mycobacterium paratuberculosis is recognized by Toll-like receptors and NOD2. J Leukoc Biol 82(4):1011-8. [PubMed: 17652449]  [MGI Ref ID J:125203]

Fleige H; Ravens S; Moschovakis GL; Bolter J; Willenzon S; Sutter G; Haussler S; Kalinke U; Prinz I; Forster R. 2014. IL-17-induced CXCL12 recruits B cells and induces follicle formation in BALT in the absence of differentiated FDCs. J Exp Med 211(4):643-51. [PubMed: 24663215]  [MGI Ref ID J:211677]

Foldi J; Chung AY; Xu H; Zhu J; Outtz HH; Kitajewski J; Li Y; Hu X; Ivashkiv LB. 2010. Autoamplification of Notch signaling in macrophages by TLR-induced and RBP-J-dependent induction of Jagged1. J Immunol 185(9):5023-31. [PubMed: 20870935]  [MGI Ref ID J:165202]

Fransen F; Stenger RM; Poelen MC; van Dijken HH; Kuipers B; Boog CJ; van Putten JP; van Els CA; van der Ley P. 2010. Differential effect of TLR2 and TLR4 on the immune response after immunization with a vaccine against Neisseria meningitidis or Bordetella pertussis. PLoS One 5(12):e15692. [PubMed: 21203418]  [MGI Ref ID J:168338]

Gaddis DE; Michalek SM; Katz J. 2011. TLR4 signaling via MyD88 and TRIF differentially shape the CD4+ T cell response to Porphyromonas gingivalis hemagglutinin B. J Immunol 186(10):5772-83. [PubMed: 21498664]  [MGI Ref ID J:173221]

Gais P; Tiedje C; Altmayr F; Gaestel M; Weighardt H; Holzmann B. 2010. TRIF signaling stimulates translation of TNF-alpha mRNA via prolonged activation of MK2. J Immunol 184(10):5842-8. [PubMed: 20375303]  [MGI Ref ID J:161009]

Gandhapudi SK; Chilton PM; Mitchell TC. 2013. TRIF is required for TLR4 mediated adjuvant effects on T cell clonal expansion. PLoS One 8(2):e56855. [PubMed: 23457630]  [MGI Ref ID J:197179]

Gasse P; Mary C; Guenon I; Noulin N; Charron S; Schnyder-Candrian S; Schnyder B; Akira S; Quesniaux VF; Lagente V; Ryffel B; Couillin I. 2007. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest 117(12):3786-99. [PubMed: 17992263]  [MGI Ref ID J:130776]

Gavin AL; Hoebe K; Duong B; Ota T; Martin C; Beutler B; Nemazee D. 2006. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314(5807):1936-8. [PubMed: 17185603]  [MGI Ref ID J:116772]

Georgel P; Jiang Z; Kunz S; Janssen E; Mols J; Hoebe K; Bahram S; Oldstone MB; Beutler B. 2007. Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology 362(2):304-13. [PubMed: 17292937]  [MGI Ref ID J:124488]

Geuking MB; Cahenzli J; Lawson MA; Ng DC; Slack E; Hapfelmeier S; McCoy KD; Macpherson AJ. 2011. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34(5):794-806. [PubMed: 21596591]  [MGI Ref ID J:172118]

Gitlin L; Barchet W; Gilfillan S; Cella M; Beutler B; Flavell RA; Diamond MS; Colonna M. 2006. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A 103(22):8459-64. [PubMed: 16714379]  [MGI Ref ID J:110201]

Grobner S; Schulz S; Soldanova I; Gunst DS; Waibel M; Wesselborg S; Borgmann S; Autenrieth IB. 2007. Absence of Toll-like receptor 4 signaling results in delayed Yersinia enterocolitica YopP-induced cell death of dendritic cells. Infect Immun 75(1):512-7. [PubMed: 17074859]  [MGI Ref ID J:116649]

Guilliams M; Crozat K; Henri S; Tamoutounour S; Grenot P; Devilard E; de Bovis B; Alexopoulou L; Dalod M; Malissen B. 2010. Skin-draining lymph nodes contain dermis-derived CD103(-) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells. Blood 115(10):1958-68. [PubMed: 20068222]  [MGI Ref ID J:158129]

Guo B; Chang EY; Cheng G. 2008. The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 118(5):1680-90. [PubMed: 18382764]  [MGI Ref ID J:136169]

Ha H; Lee JH; Kim HN; Kwak HB; Kim HM; Lee SE; Rhee JH; Kim HH; Lee ZH. 2008. Stimulation by TLR5 modulates osteoclast differentiation through STAT1/IFN-beta. J Immunol 180(3):1382-9. [PubMed: 18209032]  [MGI Ref ID J:131353]

Hakim F; Wang Y; Zhang SX; Zheng J; Yolcu ES; Carreras A; Khalyfa A; Shirwan H; Almendros I; Gozal D. 2014. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res 74(5):1329-37. [PubMed: 24448240]  [MGI Ref ID J:208152]

Hassan F; Ren D; Zhang W; Merkel TJ; Gu XX. 2012. Moraxella catarrhalis activates murine macrophages through multiple toll like receptors and has reduced clearance in lungs from TLR4 mutant mice. PLoS One 7(5):e37610. [PubMed: 22662179]  [MGI Ref ID J:187305]

He S; Liang Y; Shao F; Wang X. 2011. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A 108(50):20054-9. [PubMed: 22123964]  [MGI Ref ID J:180434]

Henao-Mejia J; Elinav E; Jin C; Hao L; Mehal WZ; Strowig T; Thaiss CA; Kau AL; Eisenbarth SC; Jurczak MJ; Camporez JP; Shulman GI; Gordon JI; Hoffman HM; Flavell RA. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179-85. [PubMed: 22297845]  [MGI Ref ID J:181354]

Hitotsumatsu O; Ahmad RC; Tavares R; Wang M; Philpott D; Turer EE; Lee BL; Shiffin N; Advincula R; Malynn BA; Werts C; Ma A. 2008. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28(3):381-90. [PubMed: 18342009]  [MGI Ref ID J:132994]

Hoebe K; Du X; Goode J; Mann N; Beutler B. 2003. Lps2: a new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening. J Endotoxin Res 9(4):250-5. [PubMed: 12935356]  [MGI Ref ID J:86521]

Hua F; Wang J; Sayeed I; Ishrat T; Atif F; Stein DG. 2009. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice. Biochem Biophys Res Commun 390(3):678-83. [PubMed: 19825364]  [MGI Ref ID J:155613]

Huber S; Gagliani N; Zenewicz LA; Huber FJ; Bosurgi L; Hu B; Hedl M; Zhang W; O'Connor W Jr; Murphy AJ; Valenzuela DM; Yancopoulos GD; Booth CJ; Cho JH; Ouyang W; Abraham C; Flavell RA. 2012. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491(7423):259-63. [PubMed: 23075849]  [MGI Ref ID J:189217]

Janot L; Sirard JC; Secher T; Noulin N; Fick L; Akira S; Uematsu S; Didierlaurent A; Hussell T; Ryffel B; Erard F. 2009. Radioresistant cells expressing TLR5 control the respiratory epithelium's innate immune responses to flagellin. Eur J Immunol 39(6):1587-96. [PubMed: 19424969]  [MGI Ref ID J:149549]

Janssen E; Tabeta K; Barnes MJ; Rutschmann S; McBride S; Bahjat KS; Schoenberger SP; Theofilopoulos AN; Beutler B; Hoebe K. 2006. Efficient T cell activation via a Toll-Interleukin 1 Receptor-independent pathway. Immunity 24(6):787-99. [PubMed: 16782034]  [MGI Ref ID J:113369]

Johnson J; Molle C; Aksoy E; Goldman M; Goriely S; Willems F. 2011. A conventional protein kinase C inhibitor targeting IRF-3-dependent genes differentially regulates IL-12 family members. Mol Immunol 48(12-13):1484-93. [PubMed: 21550664]  [MGI Ref ID J:172365]

Kaiser WJ; Sridharan H; Huang C; Mandal P; Upton JW; Gough PJ; Sehon CA; Marquis RW; Bertin J; Mocarski ES. 2013. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288(43):31268-79. [PubMed: 24019532]  [MGI Ref ID J:204906]

Kaiser WJ; Upton JW; Long AB; Livingston-Rosanoff D; Daley-Bauer LP; Hakem R; Caspary T; Mocarski ES. 2011. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471(7338):368-72. [PubMed: 21368762]  [MGI Ref ID J:170815]

Kang YJ; Kim SO; Shimada S; Otsuka M; Seit-Nebi A; Kwon BS; Watts TH; Han J. 2007. Cell surface 4-1BBL mediates sequential signaling pathways 'downstream' of TLR and is required for sustained TNF production in macrophages. Nat Immunol 8(6):601-9. [PubMed: 17496895]  [MGI Ref ID J:122393]

Keck S; Muller I; Fejer G; Savic I; Tchaptchet S; Nielsen PJ; Galanos C; Huber M; Freudenberg MA. 2011. Absence of TRIF signaling in lipopolysaccharide-stimulated murine mast cells. J Immunol 186(9):5478-88. [PubMed: 21441453]  [MGI Ref ID J:173118]

Kelly-Scumpia KM; Scumpia PO; Weinstein JS; Delano MJ; Cuenca AG; Nacionales DC; Wynn JL; Lee PY; Kumagai Y; Efron PA; Akira S; Wasserfall C; Atkinson MA; Moldawer LL. 2011. B cells enhance early innate immune responses during bacterial sepsis. J Exp Med 208(8):1673-82. [PubMed: 21746813]  [MGI Ref ID J:177607]

Kezic J; Taylor S; Gupta S; Planck SR; Rosenzweig HL; Rosenbaum JT. 2011. Endotoxin-induced uveitis is primarily dependent on radiation-resistant cells and on MyD88 but not TRIF. J Leukoc Biol 90(2):305-11. [PubMed: 21610198]  [MGI Ref ID J:175728]

Kim KI; Malakhova OA; Hoebe K; Yan M; Beutler B; Zhang DE. 2005. Enhanced antibacterial potential in UBP43-deficient mice against Salmonella typhimurium infection by up-regulating type I IFN signaling. J Immunol 175(2):847-54. [PubMed: 16002682]  [MGI Ref ID J:100695]

Kim S; Takahashi H; Lin WW; Descargues P; Grivennikov S; Kim Y; Luo JL; Karin M. 2009. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457(7225):102-6. [PubMed: 19122641]  [MGI Ref ID J:143870]

Kinjo Y; Illarionov P; Vela JL; Pei B; Girardi E; Li X; Li Y; Imamura M; Kaneko Y; Okawara A; Miyazaki Y; Gomez-Velasco A; Rogers P; Dahesh S; Uchiyama S; Khurana A; Kawahara K; Yesilkaya H; Andrew PW; Wong CH; Kawakami K; Nizet V; Besra GS; Tsuji M; Zajonc DM; Kronenberg M. 2011. Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat Immunol 12(10):966-74. [PubMed: 21892173]  [MGI Ref ID J:176440]

Kinjo Y; Tupin E; Wu D; Fujio M; Garcia-Navarro R; Benhnia MR; Zajonc DM; Ben-Menachem G; Ainge GD; Painter GF; Khurana A; Hoebe K; Behar SM; Beutler B; Wilson IA; Tsuji M; Sellati TJ; Wong CH; Kronenberg M. 2006. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7(9):978-86. [PubMed: 16921381]  [MGI Ref ID J:112627]

Kleinman ME; Yamada K; Takeda A; Chandrasekaran V; Nozaki M; Baffi JZ; Albuquerque RJ; Yamasaki S; Itaya M; Pan Y; Appukuttan B; Gibbs D; Yang Z; Kariko K; Ambati BK; Wilgus TA; DiPietro LA; Sakurai E; Zhang K; Smith JR; Taylor EW; Ambati J. 2008. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452(7187):591-7. [PubMed: 18368052]  [MGI Ref ID J:133772]

Kochs G; Bauer S; Vogt C; Frenz T; Tschopp J; Kalinke U; Waibler Z. 2010. Thogoto virus infection induces sustained type I interferon responses that depend on RIG-I-like helicase signaling of conventional dendritic cells. J Virol 84(23):12344-50. [PubMed: 20861272]  [MGI Ref ID J:165800]

Kono DH; Haraldsson MK; Lawson BR; Pollard KM; Koh YT; Du X; Arnold CN; Baccala R; Silverman GJ; Beutler BA; Theofilopoulos AN. 2009. Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus. Proc Natl Acad Sci U S A 106(29):12061-6. [PubMed: 19574451]  [MGI Ref ID J:150798]

Kovalenko A; Kim JC; Kang TB; Rajput A; Bogdanov K; Dittrich-Breiholz O; Kracht M; Brenner O; Wallach D. 2009. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J Exp Med 206(10):2161-77. [PubMed: 19720838]  [MGI Ref ID J:153779]

Lacroix-Lamande S; Fanton d'Andon M; Michel E; Ratet G; Philpott DJ; Girardin SE; Boneca IG; Vandewalle A; Werts C. 2012. Downregulation of the Na/K-ATPase Pump by Leptospiral Glycolipoprotein Activates the NLRP3 Inflammasome. J Immunol 188(6):2805-14. [PubMed: 22323544]  [MGI Ref ID J:181854]

Landrigan A; Wong MT; Utz PJ. 2011. CpG and non-CpG oligodeoxynucleotides directly costimulate mouse and human CD4+ T cells through a TLR9- and MyD88-independent mechanism. J Immunol 187(6):3033-43. [PubMed: 21844387]  [MGI Ref ID J:179244]

Layoun A; Huang H; Calve A; Santos MM. 2012. Toll-Like Receptor Signal Adaptor Protein MyD88 Is Required for Sustained Endotoxin-Induced Acute Hypoferremic Response in Mice. Am J Pathol 180(6):2340-50. [PubMed: 22497726]  [MGI Ref ID J:184700]

Lee SH; Hu LL; Gonzalez-Navajas J; Seo GS; Shen C; Brick J; Herdman S; Varki N; Corr M; Lee J; Raz E. 2010. ERK activation drives intestinal tumorigenesis in Apc(min/+) mice. Nat Med 16(6):665-70. [PubMed: 20473309]  [MGI Ref ID J:161529]

Li H; Matte-Martone C; Tan HS; Venkatesan S; McNiff J; Demetris AJ; Jain D; Lakkis F; Rothstein D; Shlomchik WD. 2011. Graft-versus-host disease is independent of innate signaling pathways triggered by pathogens in host hematopoietic cells. J Immunol 186(1):230-41. [PubMed: 21098219]  [MGI Ref ID J:168013]

Long EM; Klimowicz AC; Paula-Neto HA; Millen B; McCafferty DM; Kubes P; Robbins SM. 2011. A subclass of acylated anti-inflammatory mediators usurp Toll-like receptor 2 to inhibit neutrophil recruitment through peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A 108(39):16357-62. [PubMed: 21930915]  [MGI Ref ID J:177141]

Martinon F; Chen X; Lee AH; Glimcher LH. 2010. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11(5):411-8. [PubMed: 20351694]  [MGI Ref ID J:158967]

McAleer JP; Rossi RJ; Vella AT. 2009. Lipopolysaccharide potentiates effector T cell accumulation into nonlymphoid tissues through TRIF. J Immunol 182(9):5322-30. [PubMed: 19380779]  [MGI Ref ID J:147718]

McAllister CS; Lakhdari O; Pineton de Chambrun G; Gareau MG; Broquet A; Lee GH; Shenouda S; Eckmann L; Kagnoff MF. 2013. TLR3, TRIF, and Caspase 8 Determine Double-Stranded RNA-Induced Epithelial Cell Death and Survival In Vivo. J Immunol 190(1):418-27. [PubMed: 23209324]  [MGI Ref ID J:190822]

McBride S; Hoebe K; Georgel P; Janssen E. 2006. Cell-associated double-stranded RNA enhances antitumor activity through the production of type I IFN. J Immunol 177(9):6122-8. [PubMed: 17056539]  [MGI Ref ID J:140522]

McDonald B; Pittman K; Menezes GB; Hirota SA; Slaba I; Waterhouse CC; Beck PL; Muruve DA; Kubes P. 2010. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330(6002):362-6. [PubMed: 20947763]  [MGI Ref ID J:164871]

McWhirter SM; Barbalat R; Monroe KM; Fontana MF; Hyodo M; Joncker NT; Ishii KJ; Akira S; Colonna M; Chen ZJ; Fitzgerald KA; Hayakawa Y; Vance RE. 2009. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J Exp Med 206(9):1899-911. [PubMed: 19652017]  [MGI Ref ID J:152182]

Miller JC; Maylor-Hagen H; Ma Y; Weis JH; Weis JJ. 2010. The Lyme disease spirochete Borrelia burgdorferi utilizes multiple ligands, including RNA, for interferon regulatory factor 3-dependent induction of type I interferon-responsive genes. Infect Immun 78(7):3144-53. [PubMed: 20404081]  [MGI Ref ID J:160987]

Miyahira AK; Shahangian A; Hwang S; Sun R; Cheng G. 2009. TANK-binding kinase-1 plays an important role during in vitro and in vivo type I IFN responses to DNA virus infections. J Immunol 182(4):2248-57. [PubMed: 19201879]  [MGI Ref ID J:144789]

Molenaar R; Knippenberg M; Goverse G; Olivier BJ; de Vos AF; O'Toole T; Mebius RE. 2011. Expression of retinaldehyde dehydrogenase enzymes in mucosal dendritic cells and gut-draining lymph node stromal cells is controlled by dietary vitamin A. J Immunol 186(4):1934-42. [PubMed: 21220692]  [MGI Ref ID J:169171]

Molle C; Goldman M; Goriely S. 2010. Critical role of the IFN-stimulated gene factor 3 complex in TLR-mediated IL-27p28 gene expression revealing a two-step activation process. J Immunol 184(4):1784-92. [PubMed: 20083668]  [MGI Ref ID J:159478]

Molle C; Nguyen M; Flamand V; Renneson J; Trottein F; De Wit D; Willems F; Goldman M; Goriely S. 2007. IL-27 synthesis induced by TLR ligation critically depends on IFN regulatory factor 3. J Immunol 178(12):7607-15. [PubMed: 17548596]  [MGI Ref ID J:148591]

Morgado P; Ong YC; Boothroyd JC; Lodoen MB. 2011. Toxoplasma gondii induces B7-2 expression through activation of JNK signal transduction. Infect Immun 79(11):4401-12. [PubMed: 21911468]  [MGI Ref ID J:177770]

Moses T; Wagner L; Fleming SD. 2009. TLR4-mediated Cox-2 expression increases intestinal ischemia/reperfusion-induced damage. J Leukoc Biol 86(4):971-80. [PubMed: 19564573]  [MGI Ref ID J:153441]

Nalle SC; Kwak HA; Edelblum KL; Joseph NE; Singh G; Khramtsova GF; Mortenson ED; Savage PA; Turner JR. 2014. Recipient NK cell inactivation and intestinal barrier loss are required for MHC-matched graft-versus-host disease. Sci Transl Med 6(243):243ra87. [PubMed: 24990882]  [MGI Ref ID J:215677]

Nemazee D; Gavin A; Hoebe K; Beutler B. 2006. Immunology: Toll-like receptors and antibody responses. Nature 441(7091):E4; discussion E4. [PubMed: 16710369]  [MGI Ref ID J:108795]

Ngoi SM; Tovey MG; Vella AT. 2008. Targeting poly(I:C) to the TLR3-independent pathway boosts effector CD8 T cell differentiation through IFN-alpha/beta. J Immunol 181(11):7670-80. [PubMed: 19017955]  [MGI Ref ID J:142198]

Noulin N; Quesniaux VF; Schnyder-Candrian S; Schnyder B; Maillet I; Robert T; Vargaftig BB; Ryffel B; Couillin I. 2005. Both hemopoietic and resident cells are required for MyD88-dependent pulmonary inflammatory response to inhaled endotoxin. J Immunol 175(10):6861-9. [PubMed: 16272344]  [MGI Ref ID J:119696]

Ochi A; Nguyen AH; Bedrosian AS; Mushlin HM; Zarbakhsh S; Barilla R; Zambirinis CP; Fallon NC; Rehman A; Pylayeva-Gupta Y; Badar S; Hajdu CH; Frey AB; Bar-Sagi D; Miller G. 2012. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med 209(9):1671-87. [PubMed: 22908323]  [MGI Ref ID J:191814]

Orr MT; Duthie MS; Windish HP; Lucas EA; Guderian JA; Hudson TE; Shaverdian N; O'Donnell J; Desbien AL; Reed SG; Coler RN. 2013. MyD88 and TRIF synergistic interaction is required for TH1-cell polarization with a synthetic TLR4 agonist adjuvant. Eur J Immunol 43(9):2398-408. [PubMed: 23716300]  [MGI Ref ID J:201345]

Park K; Scott AL. 2010. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J Leukoc Biol 88(6):1081-7. [PubMed: 20699362]  [MGI Ref ID J:166647]

Peck-Palmer OM; Unsinger J; Chang KC; Davis CG; McDunn JE; Hotchkiss RS. 2008. Deletion of MyD88 markedly attenuates sepsis-induced T and B lymphocyte apoptosis but worsens survival. J Leukoc Biol 83(4):1009-18. [PubMed: 18211965]  [MGI Ref ID J:134048]

Pihlgren M; Silva AB; Madani R; Giriens V; Waeckerle-Men Y; Fettelschoss A; Hickman DT; Lopez-Deber MP; Ndao DM; Vukicevic M; Buccarello AL; Gafner V; Chuard N; Reis P; Piorkowska K; Pfeifer A; Kundig TM; Muhs A; Johansen P. 2013. TLR4- and TRIF-dependent stimulation of B lymphocytes by peptide liposomes enables T cell-independent isotype switch in mice. Blood 121(1):85-94. [PubMed: 23144170]  [MGI Ref ID J:192819]

Pletneva M; Fan H; Park JJ; Radojcic V; Jie C; Yu Y; Chan C; Redwood A; Pardoll D; Housseau F. 2009. IFN-producing killer dendritic cells are antigen-presenting cells endowed with t-cell cross-priming capacity. Cancer Res 69(16):6607-14. [PubMed: 19679552]  [MGI Ref ID J:151929]

Pott J; Stockinger S; Torow N; Smoczek A; Lindner C; McInerney G; Backhed F; Baumann U; Pabst O; Bleich A; Hornef MW. 2012. Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility. PLoS Pathog 8(5):e1002670. [PubMed: 22570612]  [MGI Ref ID J:195388]

Prantner D; Darville T; Nagarajan UM. 2010. Stimulator of IFN gene is critical for induction of IFN-beta during Chlamydia muridarum infection. J Immunol 184(5):2551-60. [PubMed: 20107183]  [MGI Ref ID J:159659]

Pulskens WP; Teske GJ; Butter LM; Roelofs JJ; van der Poll T; Florquin S; Leemans JC. 2008. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS ONE 3(10):e3596. [PubMed: 18974879]  [MGI Ref ID J:143920]

Reino DC; Pisarenko V; Palange D; Doucet D; Bonitz RP; Lu Q; Colorado I; Sheth SU; Chandler B; Kannan KB; Ramanathan M; Xu da Z; Deitch EA; Feinman R. 2011. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice. PLoS One 6(8):e14829. [PubMed: 21829592]  [MGI Ref ID J:176529]

Ribes S; Regen T; Meister T; Tauber SC; Schutze S; Mildner A; Mack M; Hanisch UK; Nau R. 2013. Resistance of the Brain to Escherichia coli K1 Infection Depends on MyD88 Signaling and the Contribution of Neutrophils and Monocytes. Infect Immun 81(5):1810-9. [PubMed: 23478323]  [MGI Ref ID J:194902]

Rivas MN; Koh YT; Chen A; Nguyen A; Lee YH; Lawson G; Chatila TA. 2012. MyD88 is critically involved in immune tolerance breakdown at environmental interfaces of Foxp3-deficient mice. J Clin Invest 122(5):1933-47. [PubMed: 22466646]  [MGI Ref ID J:184544]

Rivera A; Ro G; Van Epps HL; Simpson T; Leiner I; Sant'Angelo DB; Pamer EG. 2006. Innate immune activation and CD4+ T cell priming during respiratory fungal infection. Immunity 25(4):665-75. [PubMed: 17027299]  [MGI Ref ID J:114879]

Rowley SM; Kuriakose T; Dockery LM; Tran-Ngyuen T; Gingerich AD; Wei L; Watford WT. 2014. Tumor progression locus 2 (Tpl2) kinase promotes chemokine receptor expression and macrophage migration during acute inflammation. J Biol Chem 289(22):15788-97. [PubMed: 24713702]  [MGI Ref ID J:214118]

Ruckdeschel K; Pfaffinger G; Haase R; Sing A; Weighardt H; Hacker G; Holzmann B; Heesemann J. 2004. Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol 173(5):3320-8. [PubMed: 15322195]  [MGI Ref ID J:92674]

Schilling JD; Machkovech HM; He L; Diwan A; Schaffer JE. 2013. TLR4 activation under lipotoxic conditions leads to synergistic macrophage cell death through a TRIF-dependent pathway. J Immunol 190(3):1285-96. [PubMed: 23275600]  [MGI Ref ID J:193036]

Schmieder A; Schledzewski K; Michel J; Schonhaar K; Morias Y; Bosschaerts T; Van den Bossche J; Dorny P; Sauer A; Sticht C; Geraud C; Waibler Z; Beschin A; Goerdt S. 2012. The CD20 homolog Ms4a8a integrates pro- and anti-inflammatory signals in novel M2-like macrophages and is expressed in parasite infection. Eur J Immunol 42(11):2971-82. [PubMed: 22806454]  [MGI Ref ID J:188718]

Schulke S; Wolfheimer S; Gadermaier G; Wangorsch A; Siebeneicher S; Briza P; Spreitzer I; Schiller D; Loeschner B; Uematsu S; Ryffel B; Akira S; Waibler Z; Vieths S; Toda M; Scheurer S. 2014. Prevention of intestinal allergy in mice by rflaA:Ova is associated with enforced antigen processing and TLR5-dependent IL-10 secretion by mDC. PLoS One 9(2):e87822. [PubMed: 24516564]  [MGI Ref ID J:212957]

Serbina NV; Hohl TM; Cherny M; Pamer EG. 2009. Selective expansion of the monocytic lineage directed by bacterial infection. J Immunol 183(3):1900-10. [PubMed: 19596996]  [MGI Ref ID J:151581]

Shalaby KH; Allard-Coutu A; O'Sullivan MJ; Nakada E; Qureshi ST; Day BJ; Martin JG. 2013. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the TLR4-TRIF pathway. J Immunol 191(2):922-33. [PubMed: 23776177]  [MGI Ref ID J:205448]

Shechter R; Ronen A; Rolls A; London A; Bakalash S; Young MJ; Schwartz M. 2008. Toll-like receptor 4 restricts retinal progenitor cell proliferation. J Cell Biol 183(3):393-400. [PubMed: 18981228]  [MGI Ref ID J:141070]

Shen H; Tesar BM; Walker WE; Goldstein DR. 2008. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation. J Immunol 181(3):1849-58. [PubMed: 18641322]  [MGI Ref ID J:139237]

Shi S; Blumenthal A; Hickey CM; Gandotra S; Levy D; Ehrt S. 2005. Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1. J Immunol 175(5):3318-28. [PubMed: 16116224]  [MGI Ref ID J:113220]

Shigeoka AA; Holscher TD; King AJ; Hall FW; Kiosses WB; Tobias PS; Mackman N; McKay DB. 2007. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. J Immunol 178(10):6252-8. [PubMed: 17475853]  [MGI Ref ID J:146120]

Shimada K; Crother TR; Karlin J; Chen S; Chiba N; Ramanujan VK; Vergnes L; Ojcius DM; Arditi M. 2011. Caspase-1 Dependent IL-1beta Secretion Is Critical for Host Defense in a Mouse Model of Chlamydia pneumoniae Lung Infection. PLoS One 6(6):e21477. [PubMed: 21731762]  [MGI Ref ID J:174428]

Siggs OM; Xiao N; Wang Y; Shi H; Tomisato W; Li X; Xia Y; Beutler B. 2012. iRhom2 is required for the secretion of mouse TNFalpha. Blood 119(24):5769-71. [PubMed: 22550345]  [MGI Ref ID J:187583]

Slack E; Hapfelmeier S; Stecher B; Velykoredko Y; Stoel M; Lawson MA; Geuking MB; Beutler B; Tedder TF; Hardt WD; Bercik P; Verdu EF; McCoy KD; Macpherson AJ. 2009. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325(5940):617-20. [PubMed: 19644121]  [MGI Ref ID J:150933]

Smith LS; Gharib SA; Frevert CW; Martin TR. 2010. Effects of age on the synergistic interactions between lipopolysaccharide and mechanical ventilation in mice. Am J Respir Cell Mol Biol 43(4):475-86. [PubMed: 19901347]  [MGI Ref ID J:177814]

Sodhi CP; Neal MD; Siggers R; Sho S; Ma C; Branca MF; Prindle T Jr; Russo AM; Afrazi A; Good M; Brower-Sinning R; Firek B; Morowitz MJ; Ozolek JA; Gittes GK; Billiar TR; Hackam DJ. 2012. Intestinal epithelial Toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology 143(3):708-18.e1-5. [PubMed: 22796522]  [MGI Ref ID J:193668]

Sotolongo J; Espana C; Echeverry A; Siefker D; Altman N; Zaias J; Santaolalla R; Ruiz J; Schesser K; Adkins B; Fukata M. 2011. Host innate recognition of an intestinal bacterial pathogen induces TRIF-dependent protective immunity. J Exp Med 208(13):2705-16. [PubMed: 22124111]  [MGI Ref ID J:179052]

Tang H; Cao W; Kasturi SP; Ravindran R; Nakaya HI; Kundu K; Murthy N; Kepler TB; Malissen B; Pulendran B. 2010. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11(7):608-17. [PubMed: 20495560]  [MGI Ref ID J:161857]

Tarallo V; Hirano Y; Gelfand BD; Dridi S; Kerur N; Kim Y; Cho WG; Kaneko H; Fowler BJ; Bogdanovich S; Albuquerque RJ; Hauswirth WW; Chiodo VA; Kugel JF; Goodrich JA; Ponicsan SL; Chaudhuri G; Murphy MP; Dunaief JL; Ambati BK; Ogura Y; Yoo JW; Lee DK; Provost P; Hinton DR; Nunez G; Baffi JZ; Kleinman ME; Ambati J. 2012. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149(4):847-59. [PubMed: 22541070]  [MGI Ref ID J:186198]

Tchaptchet S; Gumenscheimer M; Kalis C; Freudenberg N; Holscher C; Kirschning CJ; Lamers M; Galanos C; Freudenberg MA. 2012. TLR9-dependent and independent pathways drive activation of the immune system by Propionibacterium acnes. PLoS One 7(6):e39155. [PubMed: 22745710]  [MGI Ref ID J:187937]

Tesar BM; Jiang D; Liang J; Palmer SM; Noble PW; Goldstein DR. 2006. The role of hyaluronan degradation products as innate alloimmune agonists. Am J Transplant 6(11):2622-35. [PubMed: 17049055]  [MGI Ref ID J:135969]

Togbe D; Aurore G; Noulin N; Quesniaux VF; Schnyder-Candrian S; Schnyder B; Vasseur V; Akira S; Hoebe K; Beutler B; Ryffel B; Couillin I. 2006. Nonredundant roles of TIRAP and MyD88 in airway response to endotoxin, independent of TRIF, IL-1 and IL-18 pathways. Lab Invest 86(11):1126-35. [PubMed: 16983331]  [MGI Ref ID J:114842]

Togbe D; Schofield L; Grau GE; Schnyder B; Boissay V; Charron S; Rose S; Beutler B; Quesniaux VF; Ryffel B. 2007. Murine cerebral malaria development is independent of toll-like receptor signaling. Am J Pathol 170(5):1640-8. [PubMed: 17456769]  [MGI Ref ID J:121070]

Velazquez P; Wei B; McPherson M; Mendoza LM; Nguyen SL; Turovskaya O; Kronenberg M; Huang TT; Schrage M; Lobato LN; Fujiwara D; Brewer S; Arditi M; Cheng G; Sartor RB; Newberry RD; Braun J. 2008. Villous B cells of the small intestine are specialized for invariant NK T cell dependence. J Immunol 180(7):4629-38. [PubMed: 18354186]  [MGI Ref ID J:133099]

Wang L; Gordon RA; Huynh L; Su X; Park Min KH; Han J; Arthur JS; Kalliolias GD; Ivashkiv LB. 2010. Indirect inhibition of Toll-like receptor and type I interferon responses by ITAM-coupled receptors and integrins. Immunity 32(4):518-30. [PubMed: 20362473]  [MGI Ref ID J:160755]

Watts BA 3rd; George T; Good DW. 2013. Lumen LPS inhibits HCOFormula absorption in the medullary thick ascending limb through TLR4-PI3K-Akt-mTOR-dependent inhibition of basolateral Na+/H+ exchange. Am J Physiol Renal Physiol 305(4):F451-62. [PubMed: 23698118]  [MGI Ref ID J:200847]

Watts BA 3rd; George T; Sherwood ER; Good DW. 2011. Basolateral LPS inhibits NHE3 and HCOFormula absorption through TLR4/MyD88-dependent ERK activation in medullary thick ascending limb. Am J Physiol Cell Physiol 301(6):C1296-306. [PubMed: 21881005]  [MGI Ref ID J:178333]

Wei B; Su TT; Dalwadi H; Stephan RP; Fujiwara D; Huang TT; Brewer S; Chen L; Arditi M; Borneman J; Rawlings DJ; Braun J. 2008. Resident enteric microbiota and CD8(+) T cells shape the abundance of marginal zone B cells. Eur J Immunol 38(12):3411-3425. [PubMed: 19009526]  [MGI Ref ID J:141389]

Weighardt H; Jusek G; Mages J; Lang R; Hoebe K; Beutler B; Holzmann B. 2004. Identification of a TLR4- and TRIF-dependent activation program of dendritic cells. Eur J Immunol 34(2):558-64. [PubMed: 14768061]  [MGI Ref ID J:115469]

Weighardt H; Mages J; Jusek G; Kaiser-Moore S; Lang R; Holzmann B. 2006. Organ-specific role of MyD88 for gene regulation during polymicrobial peritonitis. Infect Immun 74(6):3618-32. [PubMed: 16714594]  [MGI Ref ID J:109233]

Weiss G; Maaetoft-Udsen K; Stifter SA; Hertzog P; Goriely S; Thomsen AR; Paludan SR; Frokiaer H. 2012. MyD88 drives the IFN-beta response to Lactobacillus acidophilus in dendritic cells through a mechanism involving IRF1, IRF3, and IRF7. J Immunol 189(6):2860-8. [PubMed: 22896628]  [MGI Ref ID J:189947]

Werts C; le Bourhis L; Liu J; Magalhaes JG; Carneiro LA; Fritz JH; Stockinger S; Balloy V; Chignard M; Decker T; Philpott DJ; Ma X; Girardin SE. 2007. Nod1 and Nod2 induce CCL5/RANTES through the NF-kappaB pathway. Eur J Immunol 37(9):2499-508. [PubMed: 17705131]  [MGI Ref ID J:124337]

Wieland CW; Florquin S; Maris NA; Hoebe K; Beutler B; Takeda K; Akira S; van der Poll T. 2005. The MyD88-dependent, but not the MyD88-independent, pathway of TLR4 signaling is important in clearing nontypeable haemophilus influenzae from the mouse lung. J Immunol 175(9):6042-9. [PubMed: 16237099]  [MGI Ref ID J:119385]

Wiersinga WJ; Wieland CW; Roelofs JJ; van der Poll T. 2008. MyD88 dependent signaling contributes to protective host defense against Burkholderia pseudomallei. PLoS ONE 3(10):e3494. [PubMed: 18946505]  [MGI Ref ID J:144629]

Yazji I; Sodhi CP; Lee EK; Good M; Egan CE; Afrazi A; Neal MD; Jia H; Lin J; Ma C; Branca MF; Prindle T; Richardson WM; Ozolek J; Billiar TR; Binion DG; Gladwin MT; Hackam DJ. 2013. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proc Natl Acad Sci U S A 110(23):9451-6. [PubMed: 23650378]  [MGI Ref ID J:197450]

Zanoni I; Spreafico R; Bodio C; Di Gioia M; Cigni C; Broggi A; Gorletta T; Caccia M; Chirico G; Sironi L; Collini M; Colombo MP; Garbi N; Granucci F. 2013. IL-15 cis presentation is required for optimal NK cell activation in lipopolysaccharide-mediated inflammatory conditions. Cell Rep 4(6):1235-49. [PubMed: 24055061]  [MGI Ref ID J:203792]

Zeng M; Hu Z; Shi X; Li X; Zhan X; Li XD; Wang J; Choi JH; Wang KW; Purrington T; Tang M; Fina M; DeBerardinis RJ; Moresco EM; Pedersen G; McInerney GM; Hedestam GB; Chen ZJ; Beutler B. 2014. MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science 346(6216):1486-92. [PubMed: 25525240]  [MGI Ref ID J:217372]

Zeng-Brouwers J; Beckmann J; Nastase MV; Iozzo RV; Schaefer L. 2014. De novo expression of circulating biglycan evokes an innate inflammatory tissue response via MyD88/TRIF pathways. Matrix Biol 35:132-42. [PubMed: 24361484]  [MGI Ref ID J:215418]

Zhao XJ; Dong Q; Bindas J; Piganelli JD; Magill A; Reiser J; Kolls JK. 2008. TRIF and IRF-3 binding to the TNF promoter results in macrophage TNF dysregulation and steatosis induced by chronic ethanol. J Immunol 181(5):3049-56. [PubMed: 18713975]  [MGI Ref ID J:138963]

Zhao Y; De Trez C; Flynn R; Ware CF; Croft M; Salek-Ardakani S. 2009. The adaptor molecule MyD88 directly promotes CD8 T cell responses to vaccinia virus. J Immunol 182(10):6278-86. [PubMed: 19414781]  [MGI Ref ID J:148237]

de Freitas A; Banerjee S; Xie N; Cui H; Davis KI; Friggeri A; Fu M; Abraham E; Liu G. 2012. Identification of TLT2 as an engulfment receptor for apoptotic cells. J Immunol 188(12):6381-8. [PubMed: 22573805]  [MGI Ref ID J:188882]

van 't Veer C; van den Pangaart PS; Kruijswijk D; Florquin S; de Vos AF; van der Poll T. 2011. Delineation of the Role of Toll-like Receptor Signaling during Peritonitis by a Gradually Growing Pathogenic Escherichia coli. J Biol Chem 286(42):36603-18. [PubMed: 21690093]  [MGI Ref ID J:177619]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX11

Colony Maintenance

Breeding & HusbandryThis strain originated on a C57BL/6 background. Heterozygotes were intercrossed to generate homozygotes. SPF (Specific Pathogen Free) conditions should be implemented as these mice are immunodeficient.
Mating SystemHomozygote x Homozygote         (Female x Male)   01-MAR-06
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls

Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $205.90Female or MaleHomozygous for Ticam1Lps2  
Price per Pair (US dollars $)Pair Genotype
$411.80Homozygous for Ticam1Lps2 x Homozygous for Ticam1Lps2  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $267.70Female or MaleHomozygous for Ticam1Lps2  
Price per Pair (US dollars $)Pair Genotype
$535.40Homozygous for Ticam1Lps2 x Homozygous for Ticam1Lps2  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

   000664 C57BL/6J
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

See Terms of Use tab for General Terms and Conditions

The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use

General Terms and Conditions

For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration


JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty


In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.