Strain Name:

B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ

Stock Number:

005308

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Use Restrictions Apply, see Terms of Use

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names B10.Cg Hc1 H2d H2-T18c-Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ    (Changed: 06-SEP-05 )
B10.Cg Hc1 H2d H2-T18c-Tg(TcraCl4,TcrbCl4)1Scr/ScrJ    (Changed: 01-SEP-05 )
Type Congenic; Major Histocompatibility Congenic; Mutant Strain; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating System+/+ sibling x Hemizygote         (Female x Male)   03-OCT-08
Specieslaboratory mouse
Background Strain B10.D2-Hc1 H2d H2-T18c/nSnJ
Donor Strain (C57BL/6J x BALB/c)F1
H2 Haplotyped
GenerationN21p (17-JUL-05)
Generation Definitions
 
Donating Investigator Linda Sherman,   The Scripps Research Institute

Appearance
black
Related Genotype: a/a

Description
Transgenic mice are viable, fertile, normal in size, normoglycemic and do not display any gross physical or behavioral abnormalities.The TCR expressed from this transgene is specific for influenza virus A/PR/8 hemagglutinin (HA) in the context of the MHC class I molecule H2-Kd. Both thymic and peripheral T-cell populations are skewed toward CD8+ cells. The majority of thymocytes and virtually all CD8+ T cells in lymph nodes express the transgenic TCR beta chain. About 40% of peripheral blood CD8+ T cells react with the HA peptide presented by H2-Kd. When mated with Tg(Ins2-HA)165Bri, double transgenic neonates have similar levels of V-beta 8 and total number of thymocytes as Tg(TcraCl4,TcrbCl4) mice however the double transgenics become spontaneously diabetic after birth and die within 10 days.

This transgenic model is useful in the study of T-cell activation, cross presentation of antigens, process of thymic selection, peripheral tolerance and the immune response to influenza.

Development
The Tcra and Tcrb transgenes encode a Tcr cDNA from Clone 4 derived from a B10.D2-Hc1 H2d H2-T18c/nSn mouse previously immunized with Influenza virus A/PR/8. The clone 4 transgenic constructs were co-injected and co-inserted in (C57BL/6 x BALB/c)F1 oocytes. Transgene positive mice were backcrossed to B10.D2-Hc1 H2d H2-T18c for 20 generations. In 2005, The Jackson Laboratory received B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ (Clone4 TCR) at generation N20 and backcrossed it to B10.D2-Hc1 H2d H2-T18c/nSnJ (Stock No. 000463) one generation prior to maintaining by brother-sister matings.

Control Information

  Control
   Noncarrier
 
  Considerations for Choosing Controls

Related Strains

View Strains carrying   H2d     (14 strains)

Strains carrying   Hc1 allele
000470   AK.M-H2m H2-T18a/nSnJ
000463   B10.D2-Hc1 H2d H2-T18c/nSnJ
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
004306   NOD.CBALs-Hc1/LtJ
View Strains carrying   Hc1     (4 strains)

Strains carrying   Tg(TcraCl4,TcrbCl4)1Shrm allele
005307   CBy.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005686   NOD.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
View Strains carrying   Tg(TcraCl4,TcrbCl4)1Shrm     (2 strains)

View Strains carrying other alleles of H2-T18     (32 strains)

Strains carrying other alleles of H2
006500   129.NOD-(D17Mit175-H2)/J
001649   A.BY H2bc H2-T18f/SnJ-Dstncorn1/J
000140   A.BY-H2bc H2-T18f/SnJ
000472   A.CA-H2f H2-T18a/SnJ
000471   A.SW-H2s H2-T18b/SnJ
001066   A.TH-H2t2/SfDvEgMobJ
001067   A.TL-H2t1/SfDvEgMobJ
002089   AK.B6-H2b Fv1b/J
002090   AK.B6-H2b/J
001094   AK.L-H2b/1CyTyJ
001095   AK.L-H2oz2/CyJ
001096   AK.L-H2oz3/CyJ
000470   AK.M-H2m H2-T18a/nSnJ
003851   ALR.NOD-(D17Mit30-D17Mit123)/Lt
000469   B10.A-H2a H2-T18a/SgSnJ
000468   B10.A-H2h2/(2R)SgSnJ
001150   B10.A-H2h4/(4R)SgDvEgJ
001149   B10.A-H2i3/(3R)SgDvEgJ
000467   B10.A-H2i5 H2-T18a/(5R)SgSnJ
000466   B10.AKM-H2m H2-T18a/SnJ
001954   B10.AQR-H2y1/KljMcdJ
000465   B10.BR-H2k2 H2-T18a/SgSnJ
004804   B10.BR-H2k2 H2-T18a/SgSnJJrep
010514   B10.Cg-H2g Tg(Cd4-Klra1)6295Dl/J
006446   B10.Cg-H2h4 Sh3pxd2bnee/GrsrJ
006102   B10.Cg-H2k Tg(Il2/NFAT-luc)83Rinc/J
006100   B10.Cg-H2k Tg(NFkB/Fos-luc)26Rinc/J
002024   B10.D1-H2q/SgJ
001163   B10.D2-H2bm23/EgJ
001164   B10.D2-H2dm1/EgJ
001151   B10.D2-H2g3/(103R)EgJ
001153   B10.D2-H2i7/(107R)EgJ
001152   B10.D2-H2ia/(106R)EgJ
000464   B10.DA-H2qp1 H2-T18b/(80NS)SnJ
001823   B10.F-H2bp5/(14R)J
001818   B10.F-H2pb1/(13R)J
001012   B10.HTG-H2g/2CyJ
000999   B10.HTG-H2g/3CyJ
001894   B10.LG-H2ar1/J
000459   B10.M-H2f H2-T18a?/SnJ
002225   B10.M-H2f/nMob Fmn1ld-2J/J
001068   B10.M-H2f/nMobJ
000739   B10.M-H2fm2/MobJ
001154   B10.MBR-H2bq1/SxEgJ
010972   B10.NOD-(rs13459151-rs13483054)/1107MrkJ
001825   B10.P-H2kp1/(10R)SgJ
003199   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRA)B1Jg/J
003200   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRB)C14Jg/J
000458   B10.PL-H2u H2-T18a/(73NS)SnJ
000457   B10.RIII-H2r H2-T18b/(71NS)SnJ
001069   B10.RIII-H2r/(71NS)nMobJ
001760   B10.S-H2as1/(8R)/J
001953   B10.S-H2s/SgMcdJ
001817   B10.S-H2sm1/(12R)SgJ
001650   B10.S-H2t4/(9R)/J
000456   B10.SM H2v H2-T18b/(70NS)Sn-cw/J
001155   B10.T-H2y2/(6R)SgDvEgJ
000445   B10.WB-H2j H2-T18b/SnJ
000444   B10.Y-H2pa H2-T18c/SnJ
003483   B6 x B10.D1-H2q/SgJ-Nox3het-2J/J
003561   B6 x B10.PL-H2u/(73NS)Sn-Hxl/J
002995   B6 x C.B10-H2b/LiMcdJ-Fbn2fp-2J/J
003584   B6.129S2-H2dlAb1-Ea/J
001148   B6.AK-H2k/FlaEgJ
001895   B6.AK-H2k/J
001160   B6.C-H2bm10/KhEgJ
001161   B6.C-H2bm11/KhEgJ
000364   B6.C-H2bm2/ByJ
000369   B6.C-H2bm4/ByJ
001158   B6.C-H2bm7/KhEgJ
001429   B6.C-H2g6/J
005715   B6.Cg H2g7-Tg(Ins2-CD80)3B7Flv/LwnJ
007958   B6.Cg-H2b3/FlaCmwJ
007959   B6.Cg-H2b4/FlaCmwJ
005717   B6.Cg-Sostdc1shk H2g7/GrsrJ
003068   B6.NOD-(Csf2-D11Mit42) (D17Mit21-D17Mit10)/J
004554   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRaAI4)1Dvs/DvsJ
004555   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRbAI4)1Dvs/DvsJ
003300   B6.NOD-(D17Mit21-D17Mit10)/LtJ
003069   B6.NOD-(D1Mit3-Bcl2) (D17Mit21-D17Mit10)/LtJ
003071   B6.NOD-(D1Mit5.1-D1Mit15) (D17Mit21-D17Mit10)/J
003067   B6.NOD-(D3Mit132-Tshb) (D17Mit21-D17Mit10)/J
003066   B6.NOD-(D6Mit54-D6Mit14) (D17Mit21-D17Mit10)/J
024949   B6.NOD-(D11Mit167) H2g7/DvsJ
025223   B6.NOD-(D11Mit167-D11Mit48) H2g7/DvsJ
000944   B6.SJL-H2b C3c/2CyJ
000966   B6.SJL-H2s C3c/1CyJ
000945   B6.SW/1CyJ
003374   B6;129S2-H2dlAb1-Ea/J
003240   B6;B10.A-H2a-Tg(H2KmPCC)2939Stoe/J
002844   BALB.5R-H2i5/LilJ
001165   BALB/c-H2dm2/KhEgJ
001041   BKS.B6-H2b/J
001892   BRVR.B10-H2b/J
002845   C.B-H2b Tg(H2-Dd)D8Gja/LilJ
001952   C.B10-H2b/LilMcdJ
001768   C3.Cg-Irs1Sml H2b/GrsrJ
000443   C3.HTG-H2g H2-T18b?/SnJ
000441   C3.JK-H2j H2-T18b/SnJ
000440   C3.LG-H2ar1/CkcCyJ
000439   C3.NB-H2p H2-T18c?/SnJ
000438   C3.SW-H2b/SnJ
000473   C3H-H2o2 C4bb/SfSnJ
001156   C57BL/6J-H2bm3/EgJ
001157   C57BL/6Kh-H2bm5/KhEgJ
000436   D1.DA-H2qp1/SnJ
000435   D1.LP-H2b H2-T18b?/SnJ
000434   LP.RIII-H2r H2-T18b/SnJ
001383   LT.MA-Glo1b H2k/J
002591   NOD.B10Sn-H2b/J
026243   NOD.Cg-(D9rs4135590-D9rs13480186)H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
026624   NOD.Cg-(D9rs6385855-D9rs13480186)H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
006935   NOD.Cg-H2b thnh/J
004447   NOD.Cg-H2h4/DilTacUmmJ
001626   NOD.NON-H2nb1/LtJ
002032   NOD.SW-H2q/J
001976   NOD/ShiLtJ
001627   NON.NOD-H2g7/LtJ
001308   STOCK H2473a/J
View Strains carrying other alleles of H2     (119 strains)

Strains carrying other alleles of Hc
000645   A/HeJ
000646   A/J
000647   A/WySnJ
000648   AKR/J
000460   B10.D2-Hc0 H2d H2-T18c/o2SnJ
000461   B10.D2-Hc0 H2d H2-T18c/oSnJ
022980   C57BL/6N-Hctm1a(EUCOMM)Wtsi/J
000657   CE/J
000671   DBA/2J
007048   DBA/2J-Gpnmb+/SjJ
001800   FVB/NJ
001491   FVB/NMob
000674   I/LnJ
001303   NOD.CB17-Prkdcscid/J
001976   NOD/ShiLtJ
000684   NZB/BlNJ
000682   RF/J
000688   ST/bJ
000689   SWR/J
View Strains carrying other alleles of Hc     (19 strains)

Strains carrying other alleles of Tcra
005895   B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003199   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRA)B1Jg/J
002116   B6.129S2-Tcratm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005023   B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
004554   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRaAI4)1Dvs/DvsJ
002115   B6;129S2-Tcratm1Mom/J
004694   B6;D2-Tg(TcrLCMV)327Sdz/JDvsJ
002408   B6;SJL-Tg(TcrAND)53Hed/J
007848   BXSB.129P2(Cg)-Tcratm1Mjo/TheoJ
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002045   C.SJL-Tcrac/SlkJ
002047   C.SJL-Tcrba Tcrac/SlkJ
014639   C57BL/6-Tg(Cd4-TcraDN32D3)1Aben/J
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
004444   NOD.129P2(C)-Tcratm1Mjo/DoiJ
006436   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcraAI4)1Dvs/DvsJ
026243   NOD.Cg-(D9rs4135590-D9rs13480186)H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
026624   NOD.Cg-(D9rs6385855-D9rs13480186)H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
004257   NOD.Cg-Prkdcscid Tg(TcrLCMV)327Sdz/DvsJ
004347   NOD.Cg-Rag1tm1Mom Tg(TcraAI4)1Dvs/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
004696   NOD.Cg-Tg(TcrLCMV)327Sdz/DvsJ
004460   NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006303   NOD.FVB-Tg(TcraBDC12-4.1)10Jos/GseJ
004334   NOD/ShiLt-Tg(TcraAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcra     (48 strains)

Strains carrying other alleles of Tcrb
005895   B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003200   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRB)C14Jg/J
002122   B6.129P2-Tcrbtm1Mom Tcrdtm1Mom/J
002118   B6.129P2-Tcrbtm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005023   B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
008430   B6.Cg-Tg(Tcrb)HRBAll/J
004555   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRbAI4)1Dvs/DvsJ
002121   B6;129P-Tcrbtm1Mom Tcrdtm1Mom/J
002117   B6;129P2-Tcrbtm1Mom/J
004694   B6;D2-Tg(TcrLCMV)327Sdz/JDvsJ
002408   B6;SJL-Tg(TcrAND)53Hed/J
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002047   C.SJL-Tcrba Tcrac/SlkJ
002046   C.SJL-Tcrba/SlkJ
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
003540   C57L/J-Tg(Tcrb)93Vbo/J
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
007081   CByJ.129P2(B6)-Tcrbtm1Mom/J
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
023082   NOD.129P2(Cg)-Tcrbtm1Mom/MnkaJ
006437   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcrbAI4)1Dvs/DvsJ
026243   NOD.Cg-(D9rs4135590-D9rs13480186)H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
026624   NOD.Cg-(D9rs6385855-D9rs13480186)H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
004257   NOD.Cg-Prkdcscid Tg(TcrLCMV)327Sdz/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
004696   NOD.Cg-Tg(TcrLCMV)327Sdz/DvsJ
004460   NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006304   NOD.FVB-Tg(TcrbBDC12-4.1)82Gse/GseJ
004335   NOD/ShiLt-Tg(TcrbAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcrb     (50 strains)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Complement Component 5 Deficiency; C5D   (C5)
Eculizumab, Poor Response to   (C5)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Tg(TcraCl4,TcrbCl4)1Shrm/?

        B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm
  • immune system phenotype
  • abnormal CD8-positive, alpha-beta T cell differentiation
    • the majority of mature CD8 T cells in the periphery express the transgenic T cell receptor (TCR) that is specific for influenza virus hemagglutinin (HA) peptide presented by MHC-Class I H2-Kd   (MGI Ref ID J:99756)
    • 40% of the CD8 T cells in the blood are reactive to HA peptide presented by H2-Kd   (MGI Ref ID J:99756)
    • most thymocytes also express the transgenic TCR   (MGI Ref ID J:99756)
  • abnormal T cell subpopulation ratio
    • skewing toward the development of single-positive CD8 T cells is evident in the thymus   (MGI Ref ID J:99756)
    • there are 4-fold more CD8 T cells than CD4 T cells found in the lymph nodes   (MGI Ref ID J:99756)
  • hematopoietic system phenotype
  • abnormal CD8-positive, alpha-beta T cell differentiation
    • the majority of mature CD8 T cells in the periphery express the transgenic T cell receptor (TCR) that is specific for influenza virus hemagglutinin (HA) peptide presented by MHC-Class I H2-Kd   (MGI Ref ID J:99756)
    • 40% of the CD8 T cells in the blood are reactive to HA peptide presented by H2-Kd   (MGI Ref ID J:99756)
    • most thymocytes also express the transgenic TCR   (MGI Ref ID J:99756)
  • abnormal T cell subpopulation ratio
    • skewing toward the development of single-positive CD8 T cells is evident in the thymus   (MGI Ref ID J:99756)
    • there are 4-fold more CD8 T cells than CD4 T cells found in the lymph nodes   (MGI Ref ID J:99756)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Immunology, Inflammation and Autoimmunity Research
Rearranged Antigen-Specific T Cell Receptor Transgenes

Research Tools
Cancer Research
      tumor immunology
Diabetes and Obesity Research
Immunology, Inflammation and Autoimmunity Research
      T Cell Receptor Transgenics

H2d related

Immunology, Inflammation and Autoimmunity Research
CD Antigens, Antigen Receptors, and Histocompatibility Markers

Hc1 related
Immunodeficiency
      specific complement deficiency, control

Research Tools
Immunology, Inflammation and Autoimmunity Research
      specific complement deficiency, C5 complement, control

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol H2d
Allele Name d variant
Allele Type Spontaneous
Strain of Originvarious
Gene Symbol and Name H2, histocompatibility-2, MHC
Chromosome 17
Gene Common Name(s) H-2; MHC-II;
General Note The d variant has been observed in the following strains: DBA/2, DBA/2J BALB/c, BALB/cByJ, BALB/cJ, C57BLKS, NZB.
 
Allele Symbol Hc1
Allele Name sufficient
Allele Type Not Applicable
Common Name(s) C5 sufficient; C5-s; C5-suf;
Gene Symbol and Name Hc, hemolytic complement
Chromosome 2
Gene Common Name(s) C5; C5D; C5a; C5b; CPAMD4; ECLZB; He;
General Note

Hc was identified as a candidate gene for Abhr2 in a microarray analysis of lung mRNA from A/J, C3H/HeJ, and (A/J x C3H/HeJ)F1 x A/J backcross animals. Hc genotype shows statistically significant correlation to allergen-induced bronchial hyperresponsive phenotype. The C3H/HeJ allele does not have the 2 bp deletion and is associated with resistance to allergen-induced bronchial hyperresponsiveness. (J:108211)

Molecular Note This allele does not contain the 2 base "TA" deletion found in the Hc0 allele and is found in the following mouse strains BALB/cJ, C57BL/6J, DBA/1J, and B10.D2/nSnJ. This is equivalent to the wild-type allele. [MGI Ref ID J:23983]
 
Allele Symbol Tg(TcraCl4,TcrbCl4)1Shrm
Allele Name transgene insertion 1, Linda Sherman
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) (HA)-TCR; C4; CL-4; CL-4 TCR; CL4; CL4-TCR; Clone 4; Clone-4 TCR; clone 4 TCR;
Mutation Made By Linda Sherman,   The Scripps Research Institute
Strain of Origin(C57BL/6 x BALB/c)F1
Expressed Gene Tcra, T cell receptor alpha chain, mouse, laboratory
Expressed Gene Tcrb, T cell receptor beta chain, mouse, laboratory
Promoter Tcra, T cell receptor alpha chain, mouse, laboratory
Promoter Tcrb, T cell receptor beta chain, mouse, laboratory
Molecular Note Tcra and Tcrb cDNAs were isolated from Clone-4, a CTL line derived from a B10.D2-Hc1 H2d H2-t18c/nSnJ mouse immunized with influenza virus A/PR/8. A Tcra cDNA fragment representing the V-J exon, containing Valpha10, was cloned into a Tcra shuttle vector that includes a mouse Tcra-V promoter, the immunoglobulin heavy-chain enhancer EH, and the Tcra-C genes with some flanking DNA. Likewise, a Tcrb cDNA fragment representing the VDJ exon, containing Vbeta8.2, was cloned into a Tcrb shuttle vector including a mouse Tcrb-V promoter, EH, and the Tcrb-C genes with some flanking DNA. The plasmid constructs were coinjected. This transgenic TCR specifically recognizes influenza virus A/PR/8 hemagglutinin restricted by MHC class I H2kb. [MGI Ref ID J:90982] [MGI Ref ID J:99756]
 
 
 
Gene Symbol and Name H2-T18, histocompatibility 2, T region locus 18
Chromosome 17
Gene Common Name(s) H-2T18; TL Ag; Tla; thymus leukemia antigen;

Genotyping

Genotyping Information

Genotyping Protocols

Tg(TcraCl4,TcrbCl4)1Shrm,

MELT


Tg(TcraCl4,TcrbCl4)1Shrm, Separated PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Morgan DJ; Liblau R; Scott B; Fleck S; McDevitt HO; Sarvetnick N; Lo D; Sherman LA. 1996. CD8(+) T cell-mediated spontaneous diabetes in neonatal mice. J Immunol 157(3):978-83. [PubMed: 8757600]  [MGI Ref ID J:99756]

Additional References

H2d related

Addis-Lieser E; Kohl J; Chiaramonte MG. 2005. Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis. J Immunol 175(3):1894-902. [PubMed: 16034133]  [MGI Ref ID J:107269]

Bakir HY; Tomiyama-Miyaji C; Watanabe H; Nagura T; Kawamura T; Sekikawa H; Abo T. 2006. Reasons why DBA/2 mice are resistant to malarial infection: expansion of CD3int B220+ gammadelta T cells with double-negative CD4- CD8- phenotype in the liver. Immunology 117(1):127-35. [PubMed: 16423048]  [MGI Ref ID J:106141]

Bassi EJ; Moraes-Vieira PM; Moreira-Sa CS; Almeida DC; Vieira LM; Cunha CS; Hiyane MI; Basso AS; Pacheco-Silva A; Camara NO. 2012. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes 61(10):2534-45. [PubMed: 22688334]  [MGI Ref ID J:208536]

Bhadra S; Lozano MM; Payne SM; Dudley JP. 2006. Endogenous MMTV Proviruses Induce Susceptibility to Both Viral and Bacterial Pathogens. PLoS Pathog 2(12):e128. [PubMed: 17140288]  [MGI Ref ID J:120299]

Bode J; Dutow P; Sommer K; Janik K; Glage S; Tummler B; Munder A; Laudeley R; Sachse KW; Klos A. 2012. A new role of the complement system: C3 provides protection in a mouse model of lung infection with intracellular Chlamydia psittaci. PLoS One 7(11):e50327. [PubMed: 23189195]  [MGI Ref ID J:194784]

Buhlmann JE; Gonzalez M; Ginther B; Panoskaltsis-Mortari A; Blazar BR; Greiner DL; Rossini AA; Flavell R; Noelle RJ. 1999. Cutting edge: sustained expansion of CD8+ T cells requires CD154 expression by Th cells in acute graft versus host disease. J Immunol 162(8):4373-6. [PubMed: 10201970]  [MGI Ref ID J:119788]

Casati A; Frascoli M; Traggiai E; Proietti M; Schenk U; Grassi F. 2011. Cell-autonomous regulation of hematopoietic stem cell cycling activity by ATP. Cell Death Differ 18(3):396-404. [PubMed: 20798687]  [MGI Ref ID J:186980]

Chiorazzi N; Fox DA; Katz DH. 1977. Hapten-specific IgE antibody responses in mice. VII. Conversion of IgE non-responder strains to IgE responders by elimination of suppressor T cell activity. J Immunol 118(1):48-54. [PubMed: 299762]  [MGI Ref ID J:5739]

Clarke SR; Barnden M; Kurts C; Carbone FR; Miller JF; Heath WR. 2000. Characterization of the ovalbumin-specific TCR transgenic line OT-I: MHC elements for positive and negative selection. Immunol Cell Biol 78(2):110-7. [PubMed: 10762410]  [MGI Ref ID J:133645]

Croxford AL; Akilli-Ozturk O; Rieux-Laucat F; Forster I; Waisman A; Buch T. 2008. MHC-restricted T cell receptor signaling is required for alphabeta TCR replacement of the pre T cell receptor. Eur J Immunol 38(2):391-9. [PubMed: 18203137]  [MGI Ref ID J:131357]

Dalloul AH; Ngo K; Fung-Leung WP. 1996. CD4-negative cytotoxic T cells with a T cell receptor alpha/beta intermediate expression in CD8-deficient mice. Eur J Immunol 26(1):213-8. [PubMed: 8566069]  [MGI Ref ID J:112982]

El-Sawy T; Belperio JA; Strieter RM; Remick DG; Fairchild RL. 2005. Inhibition of polymorphonuclear leukocyte-mediated graft damage synergizes with short-term costimulatory blockade to prevent cardiac allograft rejection. Circulation 112(3):320-31. [PubMed: 15998678]  [MGI Ref ID J:117219]

Fischer Lindahl K. 1997. On naming H2 haplotypes: functional significance of MHC class Ib alleles. Immunogenetics 46(1):53-62. [PubMed: 9148789]  [MGI Ref ID J:41130]

Ford MS; Zhang ZX; Chen W; Zhang L. 2006. Double-negative T regulatory cells can develop outside the thymus and do not mature from CD8+ T cell precursors. J Immunol 177(5):2803-9. [PubMed: 16920915]  [MGI Ref ID J:139556]

Fu G; Vallee S; Rybakin V; McGuire MV; Ampudia J; Brockmeyer C; Salek M; Fallen PR; Hoerter JA; Munshi A; Huang YH; Hu J; Fox HS; Sauer K; Acuto O; Gascoigne NR. 2009. Themis controls thymocyte selection through regulation of T cell antigen receptor-mediated signaling. Nat Immunol 10(8):848-56. [PubMed: 19597499]  [MGI Ref ID J:151074]

Gershwin ME; Castles JJ; Ikeda RM; Erickson K; Montero J. 1979. Studies of congenitally immunologic mutant New Zealand mice. I. Autoimmune features of hereditarily asplenic (Dh/+) NZB mice; reduction of naturally occurring thymocytotoxic antibody and normal suppressor function. J Immunol 122(2):710-7. [PubMed: 310848]  [MGI Ref ID J:12036]

Ghendler Y; Hussey RE; Witte T; Mizoguchi E; Clayton LK; Bhan AK; Koyasu S; Chang HC; Reinherz EL. 1997. Double-positive T cell receptor(high) thymocytes are resistant to peptide/major histocompatibility complex ligand-induced negative selection. Eur J Immunol 27(9):2279-89. [PubMed: 9341770]  [MGI Ref ID J:133112]

Gubbels MR; Jorgensen TN; Metzger TE; Menze K; Steele H; Flannery SA; Rozzo SJ; Kotzin BL. 2005. Effects of MHC and gender on lupus-like autoimmunity in Nba2 congenic mice. J Immunol 175(9):6190-6. [PubMed: 16237116]  [MGI Ref ID J:119371]

Huijbers IJ; Soudja SM; Uyttenhove C; Buferne M; Inderberg-Suso EM; Colau D; Pilotte L; Powis de Tenbossche CG; Chomez P; Brasseur F; Schmitt-Verhulst AM; Van den Eynde BJ. 2012. Minimal tolerance to a tumor antigen encoded by a cancer-germline gene. J Immunol 188(1):111-21. [PubMed: 22140254]  [MGI Ref ID J:180807]

Kerkar SP; Goldszmid RS; Muranski P; Chinnasamy D; Yu Z; Reger RN; Leonardi AJ; Morgan RA; Wang E; Marincola FM; Trinchieri G; Rosenberg SA; Restifo NP. 2011. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 121(12):4746-57. [PubMed: 22056381]  [MGI Ref ID J:184027]

Klein J; Figueroa F; David CS. 1983. H-2 haplotypes, genes and antigens: second listing. II. The H-2 complex. Immunogenetics 17(6):553-96. [PubMed: 6407984]  [MGI Ref ID J:7097]

Knudsen NP; Norskov-Lauritsen S; Dolganov GM; Schoolnik GK; Lindenstrom T; Andersen P; Agger EM; Aagaard C. 2014. Tuberculosis vaccine with high predicted population coverage and compatibility with modern diagnostics. Proc Natl Acad Sci U S A 111(3):1096-101. [PubMed: 24395772]  [MGI Ref ID J:206476]

Krupnick AS; Gelman AE; Barchet W; Richardson S; Kreisel FH; Turka LA; Colonna M; Patterson GA; Kreisel D. 2005. Murine vascular endothelium activates and induces the generation of allogeneic CD4+25+Foxp3+ regulatory T cells. J Immunol 175(10):6265-70. [PubMed: 16272276]  [MGI Ref ID J:119348]

Laky K; Lewis JM; Tigelaar RE; Puddington L. 2003. Distinct requirements for IL-7 in development of TCR gamma delta cells during fetal and adult life. J Immunol 170(8):4087-94. [PubMed: 12682238]  [MGI Ref ID J:125438]

Legge KL; Braciale TJ. 2005. Lymph node dendritic cells control CD8+ T cell responses through regulated FasL expression. Immunity 23(6):649-59. [PubMed: 16356862]  [MGI Ref ID J:113311]

Mendiratta SK; Kovalik JP; Hong S; Singh N; Martin WD; Van Kaer L. 1999. Peptide dependency of alloreactive CD4+ T cell responses. Int Immunol 11(3):351-60. [PubMed: 10221647]  [MGI Ref ID J:110542]

Miyashita N; Migita S; Moriwaki K. 1987. Effects of H-2 complex and non-H-2 background on urethane-induced chromosomal aberrations in mice. Mutat Res 176(1):59-67. [PubMed: 3099189]  [MGI Ref ID J:109945]

Murphy DB. 1986. Overview: the murine MHC. In: Handbook of Experimental Immunology. Vol. 3, Genetic and Molecular Immunology. Blackwell Scientific Publ., Oxford.  [MGI Ref ID J:30731]

Murphy WJ; Raziuddin A; Mason L; Kumar V; Bennett M; Longo DL. 1995. NK cell subsets in the regulation of murine hematopoiesis. I. 5E6+ NK cells promote hematopoietic growth in H-2d strain mice. J Immunol 155(6):2911-7. [PubMed: 7673708]  [MGI Ref ID J:28582]

Nakajima H; Leonard WJ. 1999. Role of Bcl-2 in alpha beta T cell development in mice deficient in the common cytokine receptor gamma-chain: the requirement for Bcl-2 differs depending on the TCR/MHC affinity. J Immunol 162(2):782-90. [PubMed: 9916699]  [MGI Ref ID J:52019]

Oberg L; Johansson S; Michaelsson J; Tomasello E; Vivier E; Karre K; Hoglund P. 2004. Loss or mismatch of MHC class I is sufficient to trigger NK cell-mediated rejection of resting lymphocytes in vivo - role of KARAP/DAP12-dependent and -independent pathways. Eur J Immunol 34(6):1646-53. [PubMed: 15162434]  [MGI Ref ID J:115484]

Ophir E; Or-Geva N; Gurevich I; Tal O; Eidelstein Y; Shezen E; Margalit R; Lask A; Shakhar G; Hagin D; Bachar-Lustig E; Reich-Zeliger S; Beilhack A; Negrin R; Reisner Y. 2013. Murine anti-third-party central-memory CD8(+) T cells promote hematopoietic chimerism under mild conditioning: lymph-node sequestration and deletion of anti-donor T cells. Blood 121(7):1220-8. [PubMed: 23223359]  [MGI Ref ID J:194621]

Porcellini S; Traggiai E; Schenk U; Ferrera D; Matteoli M; Lanzavecchia A; Michalak M; Grassi F. 2006. Regulation of peripheral T cell activation by calreticulin. J Exp Med 203(2):461-71. [PubMed: 16492806]  [MGI Ref ID J:119147]

Poulin LF; Habran C; Stordeur P; Goldman M; McKenzie A; Van Snick J; Renauld JC; Braun MY. 2005. Interleukin-9 stimulates the production of interleukin-5 in CD4+ T cells. Eur Cytokine Netw 16(3):233-9. [PubMed: 16266865]  [MGI Ref ID J:115764]

Reed-Loisel LM; Sullivan BA; Laur O; Jensen PE. 2005. An MHC class Ib-restricted TCR that cross-reacts with an MHC class Ia molecule. J Immunol 174(12):7746-52. [PubMed: 15944277]  [MGI Ref ID J:109978]

Rodrigues OR; Moura RA; Gomes-Pereira S; Santos-Gomes GM. 2006. H-2 complex influences cytokine gene expression in Leishmania infantum-infected macrophages. Cell Immunol 243(2):118-26. [PubMed: 17316586]  [MGI Ref ID J:120728]

Rowland SL; Leahy KF; Halverson R; Torres RM; Pelanda R. 2010. BAFF receptor signaling aids the differentiation of immature B cells into transitional B cells following tonic BCR signaling. J Immunol 185(8):4570-81. [PubMed: 20861359]  [MGI Ref ID J:164719]

Santiago ML; Montano M; Benitez R; Messer RJ; Yonemoto W; Chesebro B; Hasenkrug KJ; Greene WC. 2008. Apobec3 encodes Rfv3, a gene influencing neutralizing antibody control of retrovirus infection. Science 321(5894):1343-6. [PubMed: 18772436]  [MGI Ref ID J:138778]

Schmitt J; Roderfeld M; Sabrane K; Zhang P; Tian Y; Mertens JC; Frei P; Stieger B; Weber A; Mullhaupt B; Roeb E; Geier A. 2012. Complement factor C5 deficiency significantly delays the progression of biliary fibrosis in bile duct-ligated mice. Biochem Biophys Res Commun 418(3):445-50. [PubMed: 22277671]  [MGI Ref ID J:181268]

Sho M; Yamada A; Najafian N; Salama AD; Harada H; Sandner SE; Sanchez-Fueyo A; Zheng XX; Strom TB; Sayegh MH. 2002. Physiological mechanisms of regulating alloimmunity: cytokines, CTLA-4, CD25+ cells, and the alloreactive T cell clone size. J Immunol 169(7):3744-51. [PubMed: 12244168]  [MGI Ref ID J:120408]

Smyth LA; Ratnasothy K; Moreau A; Alcock S; Sagoo P; Meader L; Tanriver Y; Buckland M; Lechler R; Lombardi G. 2013. Tolerogenic Donor-Derived Dendritic Cells Risk Sensitization In Vivo owing to Processing and Presentation by Recipient APCs. J Immunol 190(9):4848-60. [PubMed: 23536635]  [MGI Ref ID J:195514]

Sutton VR; Waterhouse NJ; Browne KA; Sedelies K; Ciccone A; Anthony D; Koskinen A; Mullbacher A; Trapani JA. 2007. Residual active granzyme B in cathepsin C-null lymphocytes is sufficient for perforin-dependent target cell apoptosis. J Cell Biol 176(4):425-33. [PubMed: 17283185]  [MGI Ref ID J:119725]

Ueno T; Habicht A; Clarkson MR; Albin MJ; Yamaura K; Boenisch O; Popoola J; Wang Y; Yagita H; Akiba H; Ansari MJ; Yang J; Turka LA; Rothstein DM; Padera RF; Najafian N; Sayegh MH. 2008. The emerging role of T cell Ig mucin 1 in alloimmune responses in an experimental mouse transplant model. J Clin Invest 118(2):742-51. [PubMed: 18172549]  [MGI Ref ID J:131045]

Varadhachary AS; Monestier M; Salgame P. 2001. Reciprocal induction of IL-10 and IL-12 from macrophages by low-density lipoprotein and its oxidized forms. Cell Immunol 213(1):45-51. [PubMed: 11747355]  [MGI Ref ID J:115363]

Venkatesan P; Finch RG; Wakelin D. 1993. MHC haplotype influences primary Giardia muris infections in H-2 congenic strains of mice. Int J Parasitol 23(5):661-4. [PubMed: 8225770]  [MGI Ref ID J:21687]

Wang L; Han R; Lee I; Hancock AS; Xiong G; Gunn MD; Hancock WW. 2005. Permanent survival of fully MHC-mismatched islet allografts by targeting a single chemokine receptor pathway. J Immunol 175(10):6311-8. [PubMed: 16272282]  [MGI Ref ID J:119345]

Zhang ZX; Yang L; Young KJ; DuTemple B; Zhang L. 2000. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 6(7):782-9. [PubMed: 10888927]  [MGI Ref ID J:118729]

Zhou P; Szot GL; Guo Z; Kim O; He G; Wang J; Grusby MJ; Newell KA; Thistlethwaite JR; Bluestone JA; Alegre ML. 2000. Role of STAT4 and STAT6 signaling in allograft rejection and CTLA4-Ig-mediated tolerance. J Immunol 165(10):5580-7. [PubMed: 11067913]  [MGI Ref ID J:119580]

Zosky GR; Larcombe AN; White OJ; Burchell JT; von Garnier C; Holt PG; Turner DJ; Wikstrom ME; Sly PD; Stumbles PA. 2009. Airway hyperresponsiveness is associated with activated CD4+ T cells in the airways. Am J Physiol Lung Cell Mol Physiol 297(2):L373-9. [PubMed: 19482896]  [MGI Ref ID J:151339]

Hc1 related

Actor JK; Breij E; Wetsel RA; Hoffmann H; Hunter RL Jr; Jagannath C. 2001. A role for complement C5 in organism containment and granulomatous response during murine tuberculosis. Scand J Immunol 53(5):464-74. [PubMed: 11309154]  [MGI Ref ID J:103981]

Addis-Lieser E; Kohl J; Chiaramonte MG. 2005. Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis. J Immunol 175(3):1894-902. [PubMed: 16034133]  [MGI Ref ID J:107269]

Bode J; Dutow P; Sommer K; Janik K; Glage S; Tummler B; Munder A; Laudeley R; Sachse KW; Klos A. 2012. A new role of the complement system: C3 provides protection in a mouse model of lung infection with intracellular Chlamydia psittaci. PLoS One 7(11):e50327. [PubMed: 23189195]  [MGI Ref ID J:194784]

Girardi G; Berman J; Redecha P; Spruce L; Thurman JM; Kraus D; Hollmann TJ; Casali P; Caroll MC; Wetsel RA; Lambris JD; Holers VM; Salmon JE. 2003. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 112(11):1644-54. [PubMed: 14660741]  [MGI Ref ID J:86845]

Howell GR; Soto I; Ryan M; Graham LC; Smith RS; John SW. 2013. Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice. J Neuroinflammation 10(1):76. [PubMed: 23806181]  [MGI Ref ID J:199369]

Ji H; Gauguier D; Ohmura K; Gonzalez A; Duchatelle V; Danoy P; Garchon HJ; Degott C; Lathrop M; Benoist C; Mathis D. 2001. Genetic influences on the end-stage effector phase of arthritis. J Exp Med 194(3):321-30. [PubMed: 11489951]  [MGI Ref ID J:70882]

Karp CL; Grupe A; Schadt E; Ewart SL; Keane-Moore M; Cuomo PJ; Kohl J; Wahl L; Kuperman D; Germer S; Aud D; Peltz G; Wills-Karp M. 2000. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol 1(3):221-6. [PubMed: 10973279]  [MGI Ref ID J:108211]

Kawikova I; Paliwal V; Szczepanik M; Itakura A; Fukui M; Campos RA; Geba GP; Homer RJ; Iliopoulou BP; Pober JS; Tsuji RF; Askenase PW. 2004. Airway hyper-reactivity mediated by B-1 cell immunoglobulin M antibody generating complement C5a at 1 day post-immunization in a murine hapten model of non-atopic asthma. Immunology 113(2):234-45. [PubMed: 15379984]  [MGI Ref ID J:92933]

Kirimanjeswara GS; Mann PB; Pilione M; Kennett MJ; Harvill ET. 2005. The complex mechanism of antibody-mediated clearance of Bordetella from the lungs requires TLR4. J Immunol 175(11):7504-11. [PubMed: 16301658]  [MGI Ref ID J:122156]

Kwan WH; Hashimoto D; Paz-Artal E; Ostrow K; Greter M; Raedler H; Medof ME; Merad M; Heeger PS. 2012. Antigen-presenting cell-derived complement modulates graft-versus-host disease. J Clin Invest 122(6):2234-8. [PubMed: 22585573]  [MGI Ref ID J:190492]

Liu Q; He S; Groysman L; Shaked D; Russin J; Cen S; Mack WJ. 2013. White matter injury due to experimental chronic cerebral hypoperfusion is associated with C5 deposition. PLoS One 8(12):e84802. [PubMed: 24386419]  [MGI Ref ID J:209840]

Mahesh J; Daly J; Cheadle WG; Kotwal GJ. 1999. Elucidation of the early events contributing to zymosan-induced multiple organ dysfunction syndrome using MIP-1alpha, C3 knockout, and C5-deficient mice. Shock 12(5):340-9. [PubMed: 10565608]  [MGI Ref ID J:59655]

Miller CG; Cook DN; Kotwal GJ. 1996. Two chemotactic factors, C5a and MIP-1alpha, dramatically alter the mortality from zymosan-induced multiple organ dysfunction syndrome (MODS): C5a contributes to MODS while MIP-1alpha has a protective role. Mol Immunol 33(14):1135-7. [PubMed: 9047380]  [MGI Ref ID J:38592]

Mocco J; Mack WJ; Ducruet AF; Sosunov SA; Sughrue ME; Hassid BG; Nair MN; Laufer I; Komotar RJ; Claire M; Holland H; Pinsky DJ; Connolly ES Jr. 2006. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res 99(2):209-17. [PubMed: 16778128]  [MGI Ref ID J:123658]

Mori L; de Libero G. 1998. Genetic control of susceptibility to collagen-induced arthritis in T cell receptor beta-chain transgenic mice. Arthritis Rheum 41(2):256-62. [PubMed: 9485083]  [MGI Ref ID J:134111]

Moulton RA; Mashruwala MA; Smith AK; Lindsey DR; Wetsel RA; Haviland DL; Hunter RL; Jagannath C. 2007. Complement C5a anaphylatoxin is an innate determinant of dendritic cell-induced Th1 immunity to Mycobacterium bovis BCG infection in mice. J Leukoc Biol 82(4):956-67. [PubMed: 17675563]  [MGI Ref ID J:125190]

Niculescu T; Weerth S; Niculescu F; Cudrici C; Rus V; Raine CS; Shin ML; Rus H. 2004. Effects of complement C5 on apoptosis in experimental autoimmune encephalomyelitis. J Immunol 172(9):5702-6. [PubMed: 15100315]  [MGI Ref ID J:89686]

Nilsson UR; Muller-Eberhard HJ. 1967. Deficiency of the fifth component of complement in mice with an inherited complement defect. J Exp Med 125(1):1-16. [PubMed: 4959665]  [MGI Ref ID J:5016]

Ooi YM; Colten HR. 1979. Genetic defect in secretion of complement C5 in mice. Nature 282(5735):207-8. [PubMed: 492335]  [MGI Ref ID J:6214]

Patel SN; Berghout J; Lovegrove FE; Ayi K; Conroy A; Serghides L; Min-oo G; Gowda DC; Sarma JV; Rittirsch D; Ward PA; Liles WC; Gros P; Kain KC. 2008. C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J Exp Med 205(5):1133-43. [PubMed: 18426986]  [MGI Ref ID J:136298]

Pritchard MT; McMullen MR; Stavitsky AB; Cohen JI; Lin F; Medof ME; Nagy LE. 2007. Differential contributions of C3, C5, and decay-accelerating factor to ethanol-induced fatty liver in mice. Gastroenterology 132(3):1117-26. [PubMed: 17383432]  [MGI Ref ID J:128218]

Redecha P; Tilley R; Tencati M; Salmon JE; Kirchhofer D; Mackman N; Girardi G. 2007. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood 110(7):2423-31. [PubMed: 17536017]  [MGI Ref ID J:147022]

Tanaka D; Kagari T; Doi H; Shimozato T. 2006. Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis. Immunology 119(2):195-202. [PubMed: 16836650]  [MGI Ref ID J:118551]

Wetsel RA; Fleischer DT; Haviland DL. 1990. Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5'-exon. J Biol Chem 265(5):2435-40. [PubMed: 2303408]  [MGI Ref ID J:23983]

Wheat WH; Wetsel R; Falus A; Tack BF; Strunk RC. 1987. The fifth component of complement (C5) in the mouse. Analysis of the molecular basis for deficiency. J Exp Med 165(5):1442-7. [PubMed: 3572304]  [MGI Ref ID J:8690]

Younger JG; Shankar-Sinha S; Mickiewicz M; Brinkman AS; Valencia GA; Sarma JV; Younkin EM; Standiford TJ; Zetoune FS; Ward PA. 2003. Murine complement interactions with Pseudomonas aeruginosa and their consequences during pneumonia. Am J Respir Cell Mol Biol 29(4):432-8. [PubMed: 14500254]  [MGI Ref ID J:94613]

Zhou W; Farrar CA; Abe K; Pratt JR; Marsh JE; Wang Y; Stahl GL; Sacks SH. 2000. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest 105(10):1363-71. [PubMed: 10811844]  [MGI Ref ID J:120567]

Tg(TcraCl4,TcrbCl4)1Shrm related

Andrews DM; Estcourt MJ; Andoniou CE; Wikstrom ME; Khong A; Voigt V; Fleming P; Tabarias H; Hill GR; van der Most RG; Scalzo AA; Smyth MJ; Degli-Esposti MA. 2010. Innate immunity defines the capacity of antiviral T cells to limit persistent infection. J Exp Med 207(6):1333-43. [PubMed: 20513749]  [MGI Ref ID J:163415]

Bercovici N; Heurtier A; Vizler C; Pardigon N; Cambouris C; Desreumaux P; Liblau R. 2000. Systemic administration of agonist peptide blocks the progression of spontaneous CD8-mediated autoimmune diabetes in transgenic mice without bystander damage. J Immunol 165(1):202-10. [PubMed: 10861053]  [MGI Ref ID J:62874]

Brown DM; Dilzer AM; Meents DL; Swain SL. 2006. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J Immunol 177(5):2888-98. [PubMed: 16920924]  [MGI Ref ID J:139502]

Bunt SK; Yang L; Sinha P; Clements VK; Leips J; Ostrand-Rosenberg S. 2007. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67(20):10019-26. [PubMed: 17942936]  [MGI Ref ID J:126013]

Busick RY; Yammani RD; Alexander-Miller MA. 2011. Differentiation-dependent differences in murine T cell susceptibility to negative regulation by the lung. Am J Respir Cell Mol Biol 44(5):597-605. [PubMed: 21216971]  [MGI Ref ID J:185024]

Caminschi I; Ahmet F; Heger K; Brady J; Nutt SL; Vremec D; Pietersz S; Lahoud MH; Schofield L; Hansen DS; O'Keeffe M; Smyth MJ; Bedoui S; Davey GM; Villadangos JA; Heath WR; Shortman K. 2007. Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. J Exp Med 204(11):2579-90. [PubMed: 17923506]  [MGI Ref ID J:126110]

Cornet A; Savidge TC; Cabarrocas J; Deng WL; Colombel JF; Lassmann H; Desreumaux P; Liblau RS. 2001. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease? Proc Natl Acad Sci U S A 98(23):13306-11. [PubMed: 11687633]  [MGI Ref ID J:131274]

Dolcetti L; Peranzoni E; Ugel S; Marigo I; Fernandez Gomez A; Mesa C; Geilich M; Winkels G; Traggiai E; Casati A; Grassi F; Bronte V. 2010. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40(1):22-35. [PubMed: 19941314]  [MGI Ref ID J:155684]

Gallina G; Dolcetti L; Serafini P; De Santo C; Marigo I; Colombo MP; Basso G; Brombacher F; Borrello I; Zanovello P; Bicciato S; Bronte V. 2006. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116(10):2777-90. [PubMed: 17016559]  [MGI Ref ID J:114986]

Griseri T; Beaudoin L; Novak J; Mars LT; Lepault F; Liblau R; Lehuen A. 2005. Invariant NKT cells exacerbate type 1 diabetes induced by CD8 T cells. J Immunol 175(4):2091-101. [PubMed: 16081775]  [MGI Ref ID J:107517]

Grosso JF; Kelleher CC; Harris TJ; Maris CH; Hipkiss EL; De Marzo A; Anders R; Netto G; Getnet D; Bruno TC; Goldberg MV; Pardoll DM; Drake CG. 2007. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 117(11):3383-92. [PubMed: 17932562]  [MGI Ref ID J:127434]

Haile LA; von Wasielewski R; Gamrekelashvili J; Kruger C; Bachmann O; Westendorf AM; Buer J; Liblau R; Manns MP; Korangy F; Greten TF. 2008. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135(3):871-81, 881.e1-5. [PubMed: 18674538]  [MGI Ref ID J:141965]

Harden JL; Gu T; Kilinc MO; Rowswell-Turner RB; Virtuoso LP; Egilmez NK. 2011. Dichotomous effects of IFN-gamma on dendritic cell function determine the extent of IL-12-driven antitumor T cell immunity. J Immunol 187(1):126-32. [PubMed: 21632715]  [MGI Ref ID J:175928]

Hernandez J; Aung S; Redmond WL; Sherman LA. 2001. Phenotypic and functional analysis of CD8(+) T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J Exp Med 194(6):707-17. [PubMed: 11560988]  [MGI Ref ID J:100011]

Herve J; Dubreil L; Tardif V; Terme M; Pogu S; Anegon I; Rozec B; Gauthier C; Bach JM; Blancou P. 2013. beta2-Adrenoreceptor Agonist Inhibits Antigen Cross-Presentation by Dendritic Cells. J Immunol 190(7):3163-71. [PubMed: 23420884]  [MGI Ref ID J:194464]

Hill M; Deghmane AE; Segovia M; Zarantonelli ML; Tilly G; Blancou P; Beriou G; Josien R; Anegon I; Hong E; Ruckly C; Antignac A; Ghachi ME; Boneca IG; Taha MK; Cuturi MC. 2011. Penicillin Binding Proteins as Danger Signals: Meningococcal Penicillin Binding Protein 2 Activates Dendritic Cells through Toll-Like Receptor 4. PLoS One 6(10):e23995. [PubMed: 22046231]  [MGI Ref ID J:178081]

Horkheimer I; Quigley M; Zhu J; Huang X; Chao NJ; Yang Y. 2009. Induction of type I IFN is required for overcoming tumor-specific T-cell tolerance after stem cell transplantation. Blood 113(21):5330-9. [PubMed: 19279333]  [MGI Ref ID J:148951]

Huang X; Yang Y. 2006. The fate of effector CD8 T cells in vivo is controlled by the duration of antigen stimulation. Immunology 118(3):361-71. [PubMed: 16827897]  [MGI Ref ID J:111931]

Janicki CN; Jenkinson SR; Williams NA; Morgan DJ. 2008. Loss of CTL function among high-avidity tumor-specific CD8+ T cells following tumor infiltration. Cancer Res 68(8):2993-3000. [PubMed: 18413769]  [MGI Ref ID J:133958]

Kim TS; Hufford MM; Sun J; Fu YX; Braciale TJ. 2010. Antigen persistence and the control of local T cell memory by migrant respiratory dendritic cells after acute virus infection. J Exp Med 207(6):1161-72. [PubMed: 20513748]  [MGI Ref ID J:163416]

Kousis PC; Henderson BW; Maier PG; Gollnick SO. 2007. Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res 67(21):10501-10. [PubMed: 17974994]  [MGI Ref ID J:127142]

Kovalovsky D; Yu Y; Dose M; Emmanouilidou A; Konstantinou T; Germar K; Aghajani K; Guo Z; Mandal M; Gounari F. 2009. Beta-catenin/Tcf determines the outcome of thymic selection in response to alphabetaTCR signaling. J Immunol 183(6):3873-84. [PubMed: 19717519]  [MGI Ref ID J:152395]

Kreiter S; Selmi A; Diken M; Koslowski M; Britten CM; Huber C; Tureci O; Sahin U. 2010. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70(22):9031-40. [PubMed: 21045153]  [MGI Ref ID J:166704]

Kreuwel HT; Morgan DJ; Krahl T; Ko A; Sarvetnick N; Sherman LA. 1999. Comparing the relative role of perforin/granzyme versus Fas/Fas ligand cytotoxic pathways in CD8+ T cell-mediated insulin-dependent diabetes mellitus. J Immunol 163(8):4335-41. [PubMed: 10510373]  [MGI Ref ID J:100013]

Langlois RA; Legge KL. 2010. Plasmacytoid dendritic cells enhance mortality during lethal influenza infections by eliminating virus-specific CD8 T cells. J Immunol 184(8):4440-6. [PubMed: 20220091]  [MGI Ref ID J:160053]

Lin KL; Suzuki Y; Nakano H; Ramsburg E; Gunn MD. 2008. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J Immunol 180(4):2562-72. [PubMed: 18250467]  [MGI Ref ID J:131979]

Lu Z; Yuan L; Zhou X; Sotomayor E; Levitsky HI; Pardoll DM. 2000. CD40-independent pathways of T cell help for priming of CD8(+) cytotoxic T lymphocytes. J Exp Med 191(3):541-50. [PubMed: 10662799]  [MGI Ref ID J:115118]

Lyman MA; Aung S; Biggs JA; Sherman LA. 2004. A spontaneously arising pancreatic tumor does not promote the differentiation of naive CD8+ T lymphocytes into effector CTL. J Immunol 172(11):6558-67. [PubMed: 15153470]  [MGI Ref ID J:90532]

Magnusson FC; Liblau RS; von Boehmer H; Pittet MJ; Lee JW; Turley SJ; Khazaie K. 2008. Direct presentation of antigen by lymph node stromal cells protects against CD8 T-cell-mediated intestinal autoimmunity. Gastroenterology 134(4):1028-37. [PubMed: 18395084]  [MGI Ref ID J:136124]

Marangoni F; Murooka TT; Manzo T; Kim EY; Carrizosa E; Elpek NM; Mempel TR. 2013. The Transcription Factor NFAT Exhibits Signal Memory during Serial T Cell Interactions with Antigen-Presenting Cells. Immunity 38(2):237-49. [PubMed: 23313588]  [MGI Ref ID J:193241]

Marigo I; Bosio E; Solito S; Mesa C; Fernandez A; Dolcetti L; Ugel S; Sonda N; Bicciato S; Falisi E; Calabrese F; Basso G; Zanovello P; Cozzi E; Mandruzzato S; Bronte V. 2010. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32(6):790-802. [PubMed: 20605485]  [MGI Ref ID J:162002]

Martinez X; Kreuwel HT; Redmond WL; Trenney R; Hunter K; Rosen H; Sarvetnick N; Wicker LS; Sherman LA. 2005. CD8+ T Cell Tolerance in Nonobese Diabetic Mice Is Restored by Insulin-Dependent Diabetes Resistance Alleles. J Immunol 175(3):1677-85. [PubMed: 16034108]  [MGI Ref ID J:100008]

Matsumura S; Wang B; Kawashima N; Braunstein S; Badura M; Cameron TO; Babb JS; Schneider RJ; Formenti SC; Dustin ML; Demaria S. 2008. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol 181(5):3099-107. [PubMed: 18713980]  [MGI Ref ID J:138960]

McGill J; Van Rooijen N; Legge KL. 2010. IL-15 trans-presentation by pulmonary dendritic cells promotes effector CD8 T cell survival during influenza virus infection. J Exp Med 207(3):521-34. [PubMed: 20212069]  [MGI Ref ID J:158808]

Morgan DJ; Kreuwel HT; Fleck S; Levitsky HI; Pardoll DM; Sherman LA. 1998. Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160(2):643-51. [PubMed: 9551898]  [MGI Ref ID J:45169]

Morgan DJ; Kurts C; Kreuwel HT; Holst KL; Heath WR; Sherman LA. 1999. Ontogeny of T cell tolerance to peripherally expressed antigens. Proc Natl Acad Sci U S A 96(7):3854-8. [PubMed: 10097127]  [MGI Ref ID J:109899]

Morgan DJ; Nugent CT; Raveney BJ; Sherman LA. 2004. In a transgenic model of spontaneous autoimmune diabetes, expression of a protective class II MHC molecule results in thymic deletion of diabetogenic CD8+ T cells. J Immunol 172(2):1000-8. [PubMed: 14707073]  [MGI Ref ID J:100010]

Novy P; Huang X; Leonard WJ; Yang Y. 2011. Intrinsic IL-21 Signaling Is Critical for CD8 T Cell Survival and Memory Formation in Response to Vaccinia Viral Infection. J Immunol 186(5):2729-38. [PubMed: 21257966]  [MGI Ref ID J:169411]

Novy P; Quigley M; Huang X; Yang Y. 2007. CD4 T cells are required for CD8 T cell survival during both primary and memory recall responses. J Immunol 179(12):8243-51. [PubMed: 18056368]  [MGI Ref ID J:155035]

Pang S; Zhang L; Wang H; Yi Z; Li L; Gao L; Zhao J; Tisch R; Katz JD; Wang B. 2009. CD8(+) T cells specific for beta cells encounter their cognate antigens in the islets of NOD mice. Eur J Immunol 39(10):2716-24. [PubMed: 19658094]  [MGI Ref ID J:153282]

Patten PA; Rock EP; Sonoda T; Fazekas de St Groth B; Jorgensen JL; Davis MM. 1993. Transfer of putative complementarity-determining region loops of T cell receptor V domains confers toxin reactivity but not peptide/MHC specificity. J Immunol 150(6):2281-94. [PubMed: 7680688]  [MGI Ref ID J:90982]

Pletneva M; Fan H; Park JJ; Radojcic V; Jie C; Yu Y; Chan C; Redwood A; Pardoll D; Housseau F. 2009. IFN-producing killer dendritic cells are antigen-presenting cells endowed with t-cell cross-priming capacity. Cancer Res 69(16):6607-14. [PubMed: 19679552]  [MGI Ref ID J:151929]

Quigley M; Huang X; Yang Y. 2008. STAT1 signaling in CD8 T cells is required for their clonal expansion and memory formation following viral infection in vivo. J Immunol 180(4):2158-64. [PubMed: 18250422]  [MGI Ref ID J:131918]

Quigley M; Martinez J; Huang X; Yang Y. 2009. A critical role for direct TLR2-MyD88 signaling in CD8 T-cell clonal expansion and memory formation following vaccinia viral infection. Blood 113(10):2256-64. [PubMed: 18948575]  [MGI Ref ID J:146096]

Redmond WL; Marincek BC; Sherman LA. 2005. Distinct requirements for deletion versus anergy during CD8 T cell peripheral tolerance in vivo. J Immunol 174(4):2046-53. [PubMed: 15699134]  [MGI Ref ID J:100009]

Redmond WL; Wei CH; Kreuwel HT; Sherman LA. 2008. The apoptotic pathway contributing to the deletion of naive CD8 T cells during the induction of peripheral tolerance to a cross-presented self-antigen. J Immunol 180(8):5275-82. [PubMed: 18390708]  [MGI Ref ID J:134242]

Saxena A; Bauer J; Scheikl T; Zappulla J; Audebert M; Desbois S; Waisman A; Lassmann H; Liblau RS; Mars LT. 2008. Cutting edge: Multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes. J Immunol 181(3):1617-21. [PubMed: 18641296]  [MGI Ref ID J:137838]

Saxena A; Desbois S; Carrie N; Lawand M; Mars LT; Liblau RS. 2012. Tc17 CD8+ T cells potentiate Th1-mediated autoimmune diabetes in a mouse model. J Immunol 189(6):3140-9. [PubMed: 22904307]  [MGI Ref ID J:189912]

Scheikl T; Pignolet B; Dalard C; Desbois S; Raison D; Yamazaki M; Saoudi A; Bauer J; Lassmann H; Hardin-Pouzet H; Liblau RS. 2012. Cutting edge: neuronal recognition by CD8 T cells elicits central diabetes insipidus. J Immunol 188(10):4731-5. [PubMed: 22504649]  [MGI Ref ID J:188672]

Sepulveda H; Cerwenka A; Morgan T; Dutton RW. 1999. CD28, IL-2-independent costimulatory pathways for CD8 T lymphocyte activation. J Immunol 163(3):1133-42. [PubMed: 10415007]  [MGI Ref ID J:118773]

Shanker A; Brooks AD; Jacobsen KM; Wine JW; Wiltrout RH; Yagita H; Sayers TJ. 2009. Antigen presented by tumors in vivo determines the nature of CD8+ T-cell cytotoxicity. Cancer Res 69(16):6615-23. [PubMed: 19654302]  [MGI Ref ID J:151764]

Sinha P; Clements VK; Fulton AM; Ostrand-Rosenberg S. 2007. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507-13. [PubMed: 17483367]  [MGI Ref ID J:121303]

Sinha P; Okoro C; Foell D; Freeze HH; Ostrand-Rosenberg S; Srikrishna G. 2008. Proinflammatory s100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666-75. [PubMed: 18802069]  [MGI Ref ID J:141292]

Stoklasek TA; Colpitts SL; Smilowitz HM; Lefrancois L. 2010. MHC Class I and TCR Avidity Control the CD8 T Cell Response to IL-15/IL-15R{alpha} Complex. J Immunol 185(11):6857-65. [PubMed: 21041729]  [MGI Ref ID J:166134]

Sun J; Dodd H; Moser EK; Sharma R; Braciale TJ. 2011. CD4(+) T cell help and innate-derived IL-27 induce Blimp-1-dependent IL-10 production by antiviral CTLs. Nat Immunol 12(4):327-34. [PubMed: 21297642]  [MGI Ref ID J:170347]

Tosiek MJ; Bader SR; Gruber AD; Buer J; Gereke M; Bruder D. 2012. CD8(+) T cells responding to alveolar self-antigen lack CD25 expression and fail to precipitate autoimmunity. Am J Respir Cell Mol Biol 47(6):869-78. [PubMed: 22984087]  [MGI Ref ID J:204043]

Tosiek MJ; Gruber AD; Bader SR; Mauel S; Hoymann HG; Prettin S; Tschernig T; Buer J; Gereke M; Bruder D. 2011. CD4+CD25+Foxp3+ Regulatory T Cells Are Dispensable for Controlling CD8+ T Cell-Mediated Lung Inflammation. J Immunol 186(11):6106-18. [PubMed: 21518973]  [MGI Ref ID J:173195]

Uhl M; Kepp O; Jusforgues-Saklani H; Vicencio JM; Kroemer G; Albert ML. 2009. Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 16(7):991-1005. [PubMed: 19229247]  [MGI Ref ID J:164191]

VanOosten RL; Griffith TS. 2007. Activation of tumor-specific CD8+ T Cells after intratumoral Ad5-TRAIL/CpG oligodeoxynucleotide combination therapy. Cancer Res 67(24):11980-90. [PubMed: 18089829]  [MGI Ref ID J:129272]

Wada S; Yoshimura K; Hipkiss EL; Harris TJ; Yen HR; Goldberg MV; Grosso JF; Getnet D; Demarzo AM; Netto GJ; Anders R; Pardoll DM; Drake CG. 2009. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res 69(10):4309-18. [PubMed: 19435909]  [MGI Ref ID J:148472]

Wallet MA; Sen P; Flores RR; Wang Y; Yi Z; Huang Y; Mathews CE; Earp HS; Matsushima G; Wang B; Tisch R. 2008. MerTK is required for apoptotic cell-induced T cell tolerance. J Exp Med 205(1):219-32. [PubMed: 18195070]  [MGI Ref ID J:131291]

Wei CH; Sherman LA. 2007. N-terminal trimer extension of nominal CD8 T cell epitopes is sufficient to promote cross-presentation to cognate CD8 T cells in vivo. J Immunol 179(12):8280-6. [PubMed: 18056372]  [MGI Ref ID J:155198]

Winau F; Hegasy G; Weiskirchen R; Weber S; Cassan C; Sieling PA; Modlin RL; Liblau RS; Gressner AM; Kaufmann SH. 2007. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 26(1):117-29. [PubMed: 17239632]  [MGI Ref ID J:118321]

Witherden DA; Watanabe M; Garijo O; Rieder SE; Sarkisyan G; Cronin SJ; Verdino P; Wilson IA; Kumanogoh A; Kikutani H; Teyton L; Fischer WH; Havran WL. 2012. The CD100 Receptor Interacts with Its Plexin B2 Ligand to Regulate Epidermal gammadelta T Cell Function. Immunity 37(2):314-25. [PubMed: 22902232]  [MGI Ref ID J:187369]

Woo SR; Turnis ME; Goldberg MV; Bankoti J; Selby M; Nirschl CJ; Bettini ML; Gravano DM; Vogel P; Liu CL; Tangsombatvisit S; Grosso JF; Netto G; Smeltzer MP; Chaux A; Utz PJ; Workman CJ; Pardoll DM; Korman AJ; Drake CG; Vignali DA. 2012. Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-cell Function to Promote Tumoral Immune Escape. Cancer Res 72(4):917-927. [PubMed: 22186141]  [MGI Ref ID J:181097]

Yi Z; Li L; Garland A; He Q; Wang H; Katz JD; Tisch R; Wang B. 2012. IFN-gamma receptor deficiency prevents diabetes induction by diabetogenic CD4+, but not CD8+, T cells. Eur J Immunol 42(8):2010-8. [PubMed: 22865049]  [MGI Ref ID J:187880]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Colony Maintenance

Mating System+/+ sibling x Hemizygote         (Female x Male)   03-OCT-08
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2525.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3283.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

General Supply Notes

Control Information

  Control
   Noncarrier
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)