Strain Name:

B10.Cg-H2d Tg(Ins2-HA)165Bri/ShrmJ

Stock Number:

005534

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Other products are available, see Purchasing Information for Cryopreserved Embryos

Use Restrictions Apply, see Terms of Use

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names B10.Cg Hc1 H2d H2-T18c-Tg(Ins2-HA)165Bri/ShrmJ    (Changed: 18-JAN-06 )
Type Congenic; Major Histocompatibility Congenic; Mutant Strain; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
Background Strain B10.D2-Hc1 H2d H2-T18c/nSn
Donor Strain (C57BL/6 x SJL)F2
H2 Haplotyped
GenerationN10F20+F2+N1p
Generation Definitions
 
Donating Investigator Linda Sherman,   The Scripps Research Institute

Appearance
black
Related Genotype: A/? Tyrc/Tyrc

Description
Transgenic mice are viable, fertile, normal in size, normoglycemic and do not display any gross physical or behavioral abnormalities. Mice homozygote for the transgene have silver grey fur color. Hemizygous and wildtype mice are black. Immunohistochemistry reveals pancreatic islet cell expression of the transgene and no expression in the spleen, kidney or thymus. Isolated islets stain normally for insulin and are morphologically indistinguishable from control islets. Additional functional studies found no expression in bone marrow. Histology revealed no insulitis and the single transgenic mice do not become diabetic. T-cell proliferation assays, Cytotoxic Lymphocyte (CTL) assays, and adoptive transfer studies performed using transgenic mice indicate significantly reduced class 1 and class II T-cell responses compared to controls. Hemagglutination inhibition assays of sera from HA primed transgenic mice indicate antibody titers slightly lower but nearly equivalent to HA primed control mice. Antibody titers of all transgenic mice tested were significantly higher than preimmune levels. When mated with Tg(TcraCl4,TcrbCl4) mice, the double transgenic neonates become spontaneously diabetic after birth and die within 10 days.

This is a good model for studying peripheral tolerance.

Development
B10.Cg-H2d Tg(Ins2-HA)165Bri/ShrmJ expresses influenza hemagglutinin (HA) molecule from the well characterized influenza A/PR/8/34 under the control of the rat insulin 2 promoter (Ins2). This transgene was injected into (C57BL/6J x SJL)F2 oocytes. Resulting progeny from founder line 2917-5 was backcrossed to H-2d stains BALB/cBy for 10 generations and B10.D2-Hc1 H2d H2-T18c/nSnJ) for 10 generations prior to intercrossing. In 2005, t he Jackson Laboratory received B10.Cg-H2d Tg(Ins2-HA)165Bri/ShrmJ at generation N10F20.

Control Information

  Control
   See control note: Stock number 000463 - B10.D2-Hc1 H2d H2-T18c/nSnJ serves as an approximate control.
   000463 B10.D2-Hc1 H2d H2-T18c/nSnJ (approximate)
 
  Considerations for Choosing Controls

Related Strains

View Strains carrying   H2d     (14 strains)

Strains carrying   Tg(Ins2-HA)165Bri allele
005533   C.Cg-Tg(Ins2-HA)165Bri/ShrmJ
005685   NOD.Cg-Tg(Ins2-HA)165Bri/ShrmJ
View Strains carrying   Tg(Ins2-HA)165Bri     (2 strains)

Strains carrying other alleles of H2
006500   129.NOD-(D17Mit175-H2)/J
001649   A.BY H2bc H2-T18f/SnJ-Dstncorn1/J
000140   A.BY-H2bc H2-T18f/SnJ
000472   A.CA-H2f H2-T18a/SnJ
000471   A.SW-H2s H2-T18b/SnJ
001066   A.TH-H2t2/SfDvEgMobJ
001067   A.TL-H2t1/SfDvEgMobJ
002089   AK.B6-H2b Fv1b/J
002090   AK.B6-H2b/J
001094   AK.L-H2b/1CyTyJ
001095   AK.L-H2oz2/CyJ
001096   AK.L-H2oz3/CyJ
000470   AK.M-H2m H2-T18a/nSnJ
003851   ALR.NOD-(D17Mit30-D17Mit123)/Lt
000469   B10.A-H2a H2-T18a/SgSnJ
000468   B10.A-H2h2/(2R)SgSnJ
001150   B10.A-H2h4/(4R)SgDvEgJ
001149   B10.A-H2i3/(3R)SgDvEgJ
000467   B10.A-H2i5 H2-T18a/(5R)SgSnJ
000466   B10.AKM-H2m H2-T18a/SnJ
001954   B10.AQR-H2y1/KljMcdJ
000465   B10.BR-H2k2 H2-T18a/SgSnJ
004804   B10.BR-H2k2 H2-T18a/SgSnJJrep
010514   B10.Cg-H2g Tg(Cd4-Klra1)6295Dl/J
006446   B10.Cg-H2h4 Sh3pxd2bnee/GrsrJ
006102   B10.Cg-H2k Tg(Il2/NFAT-luc)83Rinc/J
006100   B10.Cg-H2k Tg(NFkB/Fos-luc)26Rinc/J
002024   B10.D1-H2q/SgJ
001163   B10.D2-H2bm23/EgJ
001164   B10.D2-H2dm1/EgJ
001151   B10.D2-H2g3/(103R)EgJ
001153   B10.D2-H2i7/(107R)EgJ
001152   B10.D2-H2ia/(106R)EgJ
000464   B10.DA-H2qp1 H2-T18b/(80NS)SnJ
001823   B10.F-H2bp5/(14R)J
001818   B10.F-H2pb1/(13R)J
001012   B10.HTG-H2g/2CyJ
000999   B10.HTG-H2g/3CyJ
001894   B10.LG-H2ar1/J
000459   B10.M-H2f H2-T18a?/SnJ
002225   B10.M-H2f/nMob Fmn1ld-2J/J
001068   B10.M-H2f/nMobJ
000739   B10.M-H2fm2/MobJ
001154   B10.MBR-H2bq1/SxEgJ
010972   B10.NOD-(rs13459151-rs13483054)/1107MrkJ
001825   B10.P-H2kp1/(10R)SgJ
003199   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRA)B1Jg/J
003200   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRB)C14Jg/J
000458   B10.PL-H2u H2-T18a/(73NS)SnJ
000457   B10.RIII-H2r H2-T18b/(71NS)SnJ
001069   B10.RIII-H2r/(71NS)nMobJ
001760   B10.S-H2as1/(8R)/J
001953   B10.S-H2s/SgMcdJ
001817   B10.S-H2sm1/(12R)SgJ
001650   B10.S-H2t4/(9R)/J
000456   B10.SM H2v H2-T18b/(70NS)Sn-cw/J
001155   B10.T-H2y2/(6R)SgDvEgJ
000445   B10.WB-H2j H2-T18b/SnJ
000444   B10.Y-H2pa H2-T18c/SnJ
003483   B6 x B10.D1-H2q/SgJ-Nox3het-2J/J
003561   B6 x B10.PL-H2u/(73NS)Sn-Hxl/J
002995   B6 x C.B10-H2b/LiMcdJ-Fbn2fp-2J/J
003584   B6.129S2-H2dlAb1-Ea/J
001148   B6.AK-H2k/FlaEgJ
001895   B6.AK-H2k/J
001160   B6.C-H2bm10/KhEgJ
001161   B6.C-H2bm11/KhEgJ
000364   B6.C-H2bm2/ByJ
000369   B6.C-H2bm4/ByJ
001158   B6.C-H2bm7/KhEgJ
001429   B6.C-H2g6/J
005715   B6.Cg H2g7-Tg(Ins2-CD80)3B7Flv/LwnJ
007958   B6.Cg-H2b3/FlaCmwJ
007959   B6.Cg-H2b4/FlaCmwJ
005717   B6.Cg-Sostdc1shk H2g7/GrsrJ
003068   B6.NOD-(Csf2-D11Mit42) (D17Mit21-D17Mit10)/J
004554   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRaAI4)1Dvs/DvsJ
004555   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRbAI4)1Dvs/DvsJ
003300   B6.NOD-(D17Mit21-D17Mit10)/LtJ
003069   B6.NOD-(D1Mit3-Bcl2) (D17Mit21-D17Mit10)/LtJ
003071   B6.NOD-(D1Mit5.1-D1Mit15) (D17Mit21-D17Mit10)/J
003067   B6.NOD-(D3Mit132-Tshb) (D17Mit21-D17Mit10)/J
003066   B6.NOD-(D6Mit54-D6Mit14) (D17Mit21-D17Mit10)/J
024949   B6.NOD-(D11Mit167) H2g7/DvsJ
025223   B6.NOD-(D11Mit167-D11Mit48) H2g7/DvsJ
000944   B6.SJL-H2b C3c/2CyJ
000966   B6.SJL-H2s C3c/1CyJ
000945   B6.SW/1CyJ
003374   B6;129S2-H2dlAb1-Ea/J
003240   B6;B10.A-H2a-Tg(H2KmPCC)2939Stoe/J
002844   BALB.5R-H2i5/LilJ
001165   BALB/c-H2dm2/KhEgJ
001041   BKS.B6-H2b/J
001892   BRVR.B10-H2b/J
002845   C.B-H2b Tg(H2-Dd)D8Gja/LilJ
001952   C.B10-H2b/LilMcdJ
001768   C3.Cg-Irs1Sml H2b/GrsrJ
000443   C3.HTG-H2g H2-T18b?/SnJ
000441   C3.JK-H2j H2-T18b/SnJ
000440   C3.LG-H2ar1/CkcCyJ
000439   C3.NB-H2p H2-T18c?/SnJ
000438   C3.SW-H2b/SnJ
000473   C3H-H2o2 C4bb/SfSnJ
001156   C57BL/6J-H2bm3/EgJ
001157   C57BL/6Kh-H2bm5/KhEgJ
000436   D1.DA-H2qp1/SnJ
000435   D1.LP-H2b H2-T18b?/SnJ
000434   LP.RIII-H2r H2-T18b/SnJ
001383   LT.MA-Glo1b H2k/J
002591   NOD.B10Sn-H2b/J
026243   NOD.Cg-(rs4135590-rs13480186)B10.BR-H2-k2H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
026624   NOD.Cg-(rs6385855-rs13480186<)B10.BR-H2-k2H2k2Tg(ILK3mHEL)3Ccg Tg(TcrHEL3A9)1Mmd/SlsgJ
006935   NOD.Cg-H2b thnh/J
004447   NOD.Cg-H2h4/DilTacUmmJ
001626   NOD.NON-H2nb1/LtJ
002032   NOD.SW-H2q/J
001976   NOD/ShiLtJ
001627   NON.NOD-H2g7/LtJ
001308   STOCK H2473a/J
View Strains carrying other alleles of H2     (119 strains)

Strains carrying other alleles of Ins2
005500   B6.C-Tg(Ins2-GP)34-20Olds/MvhJ
005715   B6.Cg H2g7-Tg(Ins2-CD80)3B7Flv/LwnJ
004826   B6.Cg-Tg(Ins2-NP)25-3Olds/MhvJ
003573   B6.Cg-Tg(Ins2-cre)25Mgn/J
018960   B6N.Cg-Tg(Ins2-cre)25Mgn/J
005713   C.Cg-Tg(Ins2-CD80)3B7Flv/LwnJ
004827   C.Cg-Tg(Ins2-NP)25-3Olds/MvhJ
005432   C57BL/6-Tg(Ins2-OVA)307Wehi/WehiJ
005433   C57BL/6-Tg(Ins2-OVA)59Wehi/WehiJ
005431   C57BL/6-Tg(Ins2-TFRC/OVA)296Wehi/WehiJ
005564   FVB(Cg)-Tg(Ins2-CALM1)26Ove Tg(Cryaa-TAg)1Ove/PneJ
008232   FVB/N-Tg(Ins2-IAPP)RHFSoel/J
005522   NOD-Tg(Ins2*Y16A)1Ell/GseJ
005523   NOD-Tg(Ins2*Y16A)3Ell/GseJ
003499   NOD-Tg(Ins2-Fasl)24Ach
004346   NOD.Cg-Prkdcscid Tg(Ins2-CD80)3B7Flv/DvsJ
004230   NOD.Cg-Prkdcscid Tg(Ins2-E3)1Dvs/DvsJ
003843   NOD.Cg-Prkdcscid Tg(Ins2-GAD2)1Lt/LtJ
003844   NOD.Cg-Prkdcscid Tg(Ins2-GAD2)2Lt/LtJ
007840   NOD.Cg-Prkdcscid Tg(Ins2-CD86)12B70Flv/FswJ
005524   NOD.Cg-Tg(Ins2*Y16A)1Ell Ins1tm1Jja Ins2tm1Jja/GseJ
005525   NOD.Cg-Tg(Ins2*Y16A)3Ell Ins1tm1Jja Ins2tm1Jja/GseJ
006254   NOD.Cg-Tg(Ins2-Ccl21b)2Cys/JbsJ
006154   NOD.Cg-Tg(Ins2-Cxcl13)1Cys/JbsJ
003869   NOD.Cg-Tg(Ins2-E3)1Dvs/DvsJ
002380   NOD.Cg-Tg(Ins2-TAg)1Lt Prkdcscid/DvsJ
023972   NOD.Cg-Tg(Ins2-cre/ERT)1Dam/SbwJ
004602   NOD.Cg-Tg(Ins2-rtTA)2Doi/DoiJ
004937   NOD.Cg-Tg(Ins2-tTA)1Doi/DoiJ
005734   NOD/Lt-Tg(Ins2-rtTA)1Ach/AchJ
005870   NOD/ShiLt(Cg)-Tg(Ins2-GAD2)2Lt/J
006777   NOD/ShiLt-Tg(Ins2-Cd274)2Mdos/MdosJ
005733   NOD/ShiLt-Tg(Ins2-Fas*I246N)1Ach/AchJ
003074   NOD/ShiLt-Tg(Ins2-GAD2)1Lt/LtJ
002033   NOD/ShiLt-Tg(Ins2-TAg)1Lt/J
004986   NOD/ShiLt-Tg(Ins2-cre)3Lt/LtJ
003855   NOD/ShiLt-Tg(Ins2-cre)5Lt/LtJ
004987   NOD/ShiLt-Tg(Ins2-cre)6Lt/LtJ
004226   NOD/ShiLtDvs-Tg(Ins2-E3*309)5Dvs/DvsJ
004227   NOD/ShiLtDvs-Tg(Ins2-E3*704)2Dvs/DvsJ
004968   NOD/ShiLtDvs-Tg(Ins2-E3*734)3Dvs/DvsJ
004990   NOD/ShiLtDvs-Tg(Ins2-E3*734)4Dvs/DvsJ
005714   NOR.Cg-Tg(Ins2-CD80)3B7Flv/LwnJ
008122   STOCK Tg(Ins2-cre/ERT)1Dam/J
008755   STOCK Tg(Ins2-rtTA)2Efr Tg(teto-DTA)1Gfi/J
008250   STOCK Tg(Ins2-rtTA)2Efr/J
View Strains carrying other alleles of Ins2     (46 strains)

Strains carrying other alleles of HA
012278   STOCK Tg(Piwil1)1Ghan/J
012275   STOCK Tg(Piwil2)1Ghan/J
012280   STOCK Tg(Piwil4)1Ghan/J
View Strains carrying other alleles of HA     (3 strains)

Phenotype

Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Tg(Ins2-HA)165Bri/0

        B10.Cg- H2d Tg(Ins2-HA)165Bri/ShrmJ
  • immune system phenotype
  • *normal* immune system phenotype
    • mice exhibit no evidence of autoimmunity   (MGI Ref ID J:86430)
    • abnormal CD4-positive, alpha-beta T cell physiology
      • mice exhibit decreased HA-specific response compared with wild-type mice   (MGI Ref ID J:86430)
      • however, mice that are irradiated and transplanted with wild-type lymphocyte mount a CD4+ T cells response to HA   (MGI Ref ID J:86430)
    • decreased T cell proliferation
      • following priming with HA peptides   (MGI Ref ID J:86430)
  • endocrine/exocrine gland phenotype
  • *normal* endocrine/exocrine gland phenotype
    • islet beta cells exhibit normal morphology   (MGI Ref ID J:86430)
  • hematopoietic system phenotype
  • abnormal CD4-positive, alpha-beta T cell physiology
    • mice exhibit decreased HA-specific response compared with wild-type mice   (MGI Ref ID J:86430)
    • however, mice that are irradiated and transplanted with wild-type lymphocyte mount a CD4+ T cells response to HA   (MGI Ref ID J:86430)
  • decreased T cell proliferation
    • following priming with HA peptides   (MGI Ref ID J:86430)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Immunology, Inflammation and Autoimmunity Research
CD Antigens, Antigen Receptors, and Histocompatibility Markers
Inflammation
Rearranged Antigen-Specific T Cell Receptor Transgenes
T Cell Receptor Signaling Defects

Research Tools
Cancer Research
      specific T cell deficiency
      tumor immunology
Diabetes and Obesity Research
Immunology, Inflammation and Autoimmunity Research
      T Cell Receptor Transgenics

H2d related

Immunology, Inflammation and Autoimmunity Research
CD Antigens, Antigen Receptors, and Histocompatibility Markers

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol H2d
Allele Name d variant
Allele Type Spontaneous
Strain of Originvarious
Gene Symbol and Name H2, histocompatibility-2, MHC
Chromosome 17
Gene Common Name(s) H-2; MHC-II;
General Note The d variant has been observed in the following strains: DBA/2, DBA/2J BALB/c, BALB/cByJ, BALB/cJ, C57BLKS, NZB.
 
Allele Symbol Tg(Ins2-HA)165Bri
Allele Name transgene insertion 165, Ralph Brinster
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) 2917-5; Ins-HA; InsHA; RIP-HA; Tg(Ins-2,HA)Bri165;
Mutation Made ByDr. Ralph Brinster,   University of Pennsylvania
Expressed Gene HA, influenza hemagglutinin,
Promoter Ins2, insulin 2, rat
Molecular Note The transgenic construct consisted of the rat insulin 2 promoter fused to sequence encoding influenza hemagglutinin (HA) followed by the 3' untranslated region and polyadenylation signal from the H2-Ea. HA was from influenza A/PR/8/34. This rat insulin 2 promoter is active in pancreatic beta-cells. [MGI Ref ID J:86430]
 
 

Genotyping

Genotyping Information

Genotyping Protocols

Tg(Ins2-HA)165Bri, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Lo D; Freedman J; Hesse S; Palmiter RD; Brinster RL; Sherman LA. 1992. Peripheral tolerance to an islet cell-specific hemagglutinin transgene affects both CD4+ and CD8+ T cells. Eur J Immunol 22(4):1013-22. [PubMed: 1348026]  [MGI Ref ID J:86430]

Additional References

H2d related

Addis-Lieser E; Kohl J; Chiaramonte MG. 2005. Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis. J Immunol 175(3):1894-902. [PubMed: 16034133]  [MGI Ref ID J:107269]

Bakir HY; Tomiyama-Miyaji C; Watanabe H; Nagura T; Kawamura T; Sekikawa H; Abo T. 2006. Reasons why DBA/2 mice are resistant to malarial infection: expansion of CD3int B220+ gammadelta T cells with double-negative CD4- CD8- phenotype in the liver. Immunology 117(1):127-35. [PubMed: 16423048]  [MGI Ref ID J:106141]

Bassi EJ; Moraes-Vieira PM; Moreira-Sa CS; Almeida DC; Vieira LM; Cunha CS; Hiyane MI; Basso AS; Pacheco-Silva A; Camara NO. 2012. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes 61(10):2534-45. [PubMed: 22688334]  [MGI Ref ID J:208536]

Bhadra S; Lozano MM; Payne SM; Dudley JP. 2006. Endogenous MMTV Proviruses Induce Susceptibility to Both Viral and Bacterial Pathogens. PLoS Pathog 2(12):e128. [PubMed: 17140288]  [MGI Ref ID J:120299]

Bode J; Dutow P; Sommer K; Janik K; Glage S; Tummler B; Munder A; Laudeley R; Sachse KW; Klos A. 2012. A new role of the complement system: C3 provides protection in a mouse model of lung infection with intracellular Chlamydia psittaci. PLoS One 7(11):e50327. [PubMed: 23189195]  [MGI Ref ID J:194784]

Buhlmann JE; Gonzalez M; Ginther B; Panoskaltsis-Mortari A; Blazar BR; Greiner DL; Rossini AA; Flavell R; Noelle RJ. 1999. Cutting edge: sustained expansion of CD8+ T cells requires CD154 expression by Th cells in acute graft versus host disease. J Immunol 162(8):4373-6. [PubMed: 10201970]  [MGI Ref ID J:119788]

Casati A; Frascoli M; Traggiai E; Proietti M; Schenk U; Grassi F. 2011. Cell-autonomous regulation of hematopoietic stem cell cycling activity by ATP. Cell Death Differ 18(3):396-404. [PubMed: 20798687]  [MGI Ref ID J:186980]

Chiorazzi N; Fox DA; Katz DH. 1977. Hapten-specific IgE antibody responses in mice. VII. Conversion of IgE non-responder strains to IgE responders by elimination of suppressor T cell activity. J Immunol 118(1):48-54. [PubMed: 299762]  [MGI Ref ID J:5739]

Clarke SR; Barnden M; Kurts C; Carbone FR; Miller JF; Heath WR. 2000. Characterization of the ovalbumin-specific TCR transgenic line OT-I: MHC elements for positive and negative selection. Immunol Cell Biol 78(2):110-7. [PubMed: 10762410]  [MGI Ref ID J:133645]

Croxford AL; Akilli-Ozturk O; Rieux-Laucat F; Forster I; Waisman A; Buch T. 2008. MHC-restricted T cell receptor signaling is required for alphabeta TCR replacement of the pre T cell receptor. Eur J Immunol 38(2):391-9. [PubMed: 18203137]  [MGI Ref ID J:131357]

Dalloul AH; Ngo K; Fung-Leung WP. 1996. CD4-negative cytotoxic T cells with a T cell receptor alpha/beta intermediate expression in CD8-deficient mice. Eur J Immunol 26(1):213-8. [PubMed: 8566069]  [MGI Ref ID J:112982]

El-Sawy T; Belperio JA; Strieter RM; Remick DG; Fairchild RL. 2005. Inhibition of polymorphonuclear leukocyte-mediated graft damage synergizes with short-term costimulatory blockade to prevent cardiac allograft rejection. Circulation 112(3):320-31. [PubMed: 15998678]  [MGI Ref ID J:117219]

Fischer Lindahl K. 1997. On naming H2 haplotypes: functional significance of MHC class Ib alleles. Immunogenetics 46(1):53-62. [PubMed: 9148789]  [MGI Ref ID J:41130]

Ford MS; Zhang ZX; Chen W; Zhang L. 2006. Double-negative T regulatory cells can develop outside the thymus and do not mature from CD8+ T cell precursors. J Immunol 177(5):2803-9. [PubMed: 16920915]  [MGI Ref ID J:139556]

Fu G; Vallee S; Rybakin V; McGuire MV; Ampudia J; Brockmeyer C; Salek M; Fallen PR; Hoerter JA; Munshi A; Huang YH; Hu J; Fox HS; Sauer K; Acuto O; Gascoigne NR. 2009. Themis controls thymocyte selection through regulation of T cell antigen receptor-mediated signaling. Nat Immunol 10(8):848-56. [PubMed: 19597499]  [MGI Ref ID J:151074]

Gershwin ME; Castles JJ; Ikeda RM; Erickson K; Montero J. 1979. Studies of congenitally immunologic mutant New Zealand mice. I. Autoimmune features of hereditarily asplenic (Dh/+) NZB mice; reduction of naturally occurring thymocytotoxic antibody and normal suppressor function. J Immunol 122(2):710-7. [PubMed: 310848]  [MGI Ref ID J:12036]

Ghendler Y; Hussey RE; Witte T; Mizoguchi E; Clayton LK; Bhan AK; Koyasu S; Chang HC; Reinherz EL. 1997. Double-positive T cell receptor(high) thymocytes are resistant to peptide/major histocompatibility complex ligand-induced negative selection. Eur J Immunol 27(9):2279-89. [PubMed: 9341770]  [MGI Ref ID J:133112]

Gubbels MR; Jorgensen TN; Metzger TE; Menze K; Steele H; Flannery SA; Rozzo SJ; Kotzin BL. 2005. Effects of MHC and gender on lupus-like autoimmunity in Nba2 congenic mice. J Immunol 175(9):6190-6. [PubMed: 16237116]  [MGI Ref ID J:119371]

Huijbers IJ; Soudja SM; Uyttenhove C; Buferne M; Inderberg-Suso EM; Colau D; Pilotte L; Powis de Tenbossche CG; Chomez P; Brasseur F; Schmitt-Verhulst AM; Van den Eynde BJ. 2012. Minimal tolerance to a tumor antigen encoded by a cancer-germline gene. J Immunol 188(1):111-21. [PubMed: 22140254]  [MGI Ref ID J:180807]

Kerkar SP; Goldszmid RS; Muranski P; Chinnasamy D; Yu Z; Reger RN; Leonardi AJ; Morgan RA; Wang E; Marincola FM; Trinchieri G; Rosenberg SA; Restifo NP. 2011. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 121(12):4746-57. [PubMed: 22056381]  [MGI Ref ID J:184027]

Klein J; Figueroa F; David CS. 1983. H-2 haplotypes, genes and antigens: second listing. II. The H-2 complex. Immunogenetics 17(6):553-96. [PubMed: 6407984]  [MGI Ref ID J:7097]

Knudsen NP; Norskov-Lauritsen S; Dolganov GM; Schoolnik GK; Lindenstrom T; Andersen P; Agger EM; Aagaard C. 2014. Tuberculosis vaccine with high predicted population coverage and compatibility with modern diagnostics. Proc Natl Acad Sci U S A 111(3):1096-101. [PubMed: 24395772]  [MGI Ref ID J:206476]

Krupnick AS; Gelman AE; Barchet W; Richardson S; Kreisel FH; Turka LA; Colonna M; Patterson GA; Kreisel D. 2005. Murine vascular endothelium activates and induces the generation of allogeneic CD4+25+Foxp3+ regulatory T cells. J Immunol 175(10):6265-70. [PubMed: 16272276]  [MGI Ref ID J:119348]

Laky K; Lewis JM; Tigelaar RE; Puddington L. 2003. Distinct requirements for IL-7 in development of TCR gamma delta cells during fetal and adult life. J Immunol 170(8):4087-94. [PubMed: 12682238]  [MGI Ref ID J:125438]

Legge KL; Braciale TJ. 2005. Lymph node dendritic cells control CD8+ T cell responses through regulated FasL expression. Immunity 23(6):649-59. [PubMed: 16356862]  [MGI Ref ID J:113311]

Mendiratta SK; Kovalik JP; Hong S; Singh N; Martin WD; Van Kaer L. 1999. Peptide dependency of alloreactive CD4+ T cell responses. Int Immunol 11(3):351-60. [PubMed: 10221647]  [MGI Ref ID J:110542]

Miyashita N; Migita S; Moriwaki K. 1987. Effects of H-2 complex and non-H-2 background on urethane-induced chromosomal aberrations in mice. Mutat Res 176(1):59-67. [PubMed: 3099189]  [MGI Ref ID J:109945]

Murphy DB. 1986. Overview: the murine MHC. In: Handbook of Experimental Immunology. Vol. 3, Genetic and Molecular Immunology. Blackwell Scientific Publ., Oxford.  [MGI Ref ID J:30731]

Murphy WJ; Raziuddin A; Mason L; Kumar V; Bennett M; Longo DL. 1995. NK cell subsets in the regulation of murine hematopoiesis. I. 5E6+ NK cells promote hematopoietic growth in H-2d strain mice. J Immunol 155(6):2911-7. [PubMed: 7673708]  [MGI Ref ID J:28582]

Nakajima H; Leonard WJ. 1999. Role of Bcl-2 in alpha beta T cell development in mice deficient in the common cytokine receptor gamma-chain: the requirement for Bcl-2 differs depending on the TCR/MHC affinity. J Immunol 162(2):782-90. [PubMed: 9916699]  [MGI Ref ID J:52019]

Oberg L; Johansson S; Michaelsson J; Tomasello E; Vivier E; Karre K; Hoglund P. 2004. Loss or mismatch of MHC class I is sufficient to trigger NK cell-mediated rejection of resting lymphocytes in vivo - role of KARAP/DAP12-dependent and -independent pathways. Eur J Immunol 34(6):1646-53. [PubMed: 15162434]  [MGI Ref ID J:115484]

Ophir E; Or-Geva N; Gurevich I; Tal O; Eidelstein Y; Shezen E; Margalit R; Lask A; Shakhar G; Hagin D; Bachar-Lustig E; Reich-Zeliger S; Beilhack A; Negrin R; Reisner Y. 2013. Murine anti-third-party central-memory CD8(+) T cells promote hematopoietic chimerism under mild conditioning: lymph-node sequestration and deletion of anti-donor T cells. Blood 121(7):1220-8. [PubMed: 23223359]  [MGI Ref ID J:194621]

Porcellini S; Traggiai E; Schenk U; Ferrera D; Matteoli M; Lanzavecchia A; Michalak M; Grassi F. 2006. Regulation of peripheral T cell activation by calreticulin. J Exp Med 203(2):461-71. [PubMed: 16492806]  [MGI Ref ID J:119147]

Poulin LF; Habran C; Stordeur P; Goldman M; McKenzie A; Van Snick J; Renauld JC; Braun MY. 2005. Interleukin-9 stimulates the production of interleukin-5 in CD4+ T cells. Eur Cytokine Netw 16(3):233-9. [PubMed: 16266865]  [MGI Ref ID J:115764]

Reed-Loisel LM; Sullivan BA; Laur O; Jensen PE. 2005. An MHC class Ib-restricted TCR that cross-reacts with an MHC class Ia molecule. J Immunol 174(12):7746-52. [PubMed: 15944277]  [MGI Ref ID J:109978]

Rodrigues OR; Moura RA; Gomes-Pereira S; Santos-Gomes GM. 2006. H-2 complex influences cytokine gene expression in Leishmania infantum-infected macrophages. Cell Immunol 243(2):118-26. [PubMed: 17316586]  [MGI Ref ID J:120728]

Rowland SL; Leahy KF; Halverson R; Torres RM; Pelanda R. 2010. BAFF receptor signaling aids the differentiation of immature B cells into transitional B cells following tonic BCR signaling. J Immunol 185(8):4570-81. [PubMed: 20861359]  [MGI Ref ID J:164719]

Santiago ML; Montano M; Benitez R; Messer RJ; Yonemoto W; Chesebro B; Hasenkrug KJ; Greene WC. 2008. Apobec3 encodes Rfv3, a gene influencing neutralizing antibody control of retrovirus infection. Science 321(5894):1343-6. [PubMed: 18772436]  [MGI Ref ID J:138778]

Schmitt J; Roderfeld M; Sabrane K; Zhang P; Tian Y; Mertens JC; Frei P; Stieger B; Weber A; Mullhaupt B; Roeb E; Geier A. 2012. Complement factor C5 deficiency significantly delays the progression of biliary fibrosis in bile duct-ligated mice. Biochem Biophys Res Commun 418(3):445-50. [PubMed: 22277671]  [MGI Ref ID J:181268]

Sho M; Yamada A; Najafian N; Salama AD; Harada H; Sandner SE; Sanchez-Fueyo A; Zheng XX; Strom TB; Sayegh MH. 2002. Physiological mechanisms of regulating alloimmunity: cytokines, CTLA-4, CD25+ cells, and the alloreactive T cell clone size. J Immunol 169(7):3744-51. [PubMed: 12244168]  [MGI Ref ID J:120408]

Smyth LA; Ratnasothy K; Moreau A; Alcock S; Sagoo P; Meader L; Tanriver Y; Buckland M; Lechler R; Lombardi G. 2013. Tolerogenic Donor-Derived Dendritic Cells Risk Sensitization In Vivo owing to Processing and Presentation by Recipient APCs. J Immunol 190(9):4848-60. [PubMed: 23536635]  [MGI Ref ID J:195514]

Sutton VR; Waterhouse NJ; Browne KA; Sedelies K; Ciccone A; Anthony D; Koskinen A; Mullbacher A; Trapani JA. 2007. Residual active granzyme B in cathepsin C-null lymphocytes is sufficient for perforin-dependent target cell apoptosis. J Cell Biol 176(4):425-33. [PubMed: 17283185]  [MGI Ref ID J:119725]

Ueno T; Habicht A; Clarkson MR; Albin MJ; Yamaura K; Boenisch O; Popoola J; Wang Y; Yagita H; Akiba H; Ansari MJ; Yang J; Turka LA; Rothstein DM; Padera RF; Najafian N; Sayegh MH. 2008. The emerging role of T cell Ig mucin 1 in alloimmune responses in an experimental mouse transplant model. J Clin Invest 118(2):742-51. [PubMed: 18172549]  [MGI Ref ID J:131045]

Varadhachary AS; Monestier M; Salgame P. 2001. Reciprocal induction of IL-10 and IL-12 from macrophages by low-density lipoprotein and its oxidized forms. Cell Immunol 213(1):45-51. [PubMed: 11747355]  [MGI Ref ID J:115363]

Venkatesan P; Finch RG; Wakelin D. 1993. MHC haplotype influences primary Giardia muris infections in H-2 congenic strains of mice. Int J Parasitol 23(5):661-4. [PubMed: 8225770]  [MGI Ref ID J:21687]

Wang L; Han R; Lee I; Hancock AS; Xiong G; Gunn MD; Hancock WW. 2005. Permanent survival of fully MHC-mismatched islet allografts by targeting a single chemokine receptor pathway. J Immunol 175(10):6311-8. [PubMed: 16272282]  [MGI Ref ID J:119345]

Zhang ZX; Yang L; Young KJ; DuTemple B; Zhang L. 2000. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 6(7):782-9. [PubMed: 10888927]  [MGI Ref ID J:118729]

Zhou P; Szot GL; Guo Z; Kim O; He G; Wang J; Grusby MJ; Newell KA; Thistlethwaite JR; Bluestone JA; Alegre ML. 2000. Role of STAT4 and STAT6 signaling in allograft rejection and CTLA4-Ig-mediated tolerance. J Immunol 165(10):5580-7. [PubMed: 11067913]  [MGI Ref ID J:119580]

Zosky GR; Larcombe AN; White OJ; Burchell JT; von Garnier C; Holt PG; Turner DJ; Wikstrom ME; Sly PD; Stumbles PA. 2009. Airway hyperresponsiveness is associated with activated CD4+ T cells in the airways. Am J Physiol Lung Cell Mol Physiol 297(2):L373-9. [PubMed: 19482896]  [MGI Ref ID J:151339]

Tg(Ins2-HA)165Bri related

Apostolou I; Hao Z; Rajewsky K; von Boehmer H. 2003. Effective destruction of Fas-deficient insulin-producing beta cells in type 1 diabetes. J Exp Med 198(7):1103-6. [PubMed: 14530378]  [MGI Ref ID J:85985]

Bercovici N; Heurtier A; Vizler C; Pardigon N; Cambouris C; Desreumaux P; Liblau R. 2000. Systemic administration of agonist peptide blocks the progression of spontaneous CD8-mediated autoimmune diabetes in transgenic mice without bystander damage. J Immunol 165(1):202-10. [PubMed: 10861053]  [MGI Ref ID J:62874]

Guo Z; Dose M; Kovalovsky D; Chang R; O'Neil J; Look AT; von Boehmer H; Khazaie K; Gounari F. 2007. Beta-catenin stabilization stalls the transition from double-positive to single-positive stage and predisposes thymocytes to malignant transformation. Blood 109(12):5463-72. [PubMed: 17317856]  [MGI Ref ID J:145430]

Hernandez J; Aung S; Redmond WL; Sherman LA. 2001. Phenotypic and functional analysis of CD8(+) T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J Exp Med 194(6):707-17. [PubMed: 11560988]  [MGI Ref ID J:100011]

Hill M; Deghmane AE; Segovia M; Zarantonelli ML; Tilly G; Blancou P; Beriou G; Josien R; Anegon I; Hong E; Ruckly C; Antignac A; Ghachi ME; Boneca IG; Taha MK; Cuturi MC. 2011. Penicillin Binding Proteins as Danger Signals: Meningococcal Penicillin Binding Protein 2 Activates Dendritic Cells through Toll-Like Receptor 4. PLoS One 6(10):e23995. [PubMed: 22046231]  [MGI Ref ID J:178081]

Kreuwel HT; Biggs JA; Pilip IM; Pamer EG; Lo D; Sherman LA. 2001. Defective CD8+ T cell peripheral tolerance in nonobese diabetic mice. J Immunol 167(2):1112-7. [PubMed: 11441123]  [MGI Ref ID J:107321]

Kreuwel HT; Morgan DJ; Krahl T; Ko A; Sarvetnick N; Sherman LA. 1999. Comparing the relative role of perforin/granzyme versus Fas/Fas ligand cytotoxic pathways in CD8+ T cell-mediated insulin-dependent diabetes mellitus. J Immunol 163(8):4335-41. [PubMed: 10510373]  [MGI Ref ID J:100013]

Lyman MA; Aung S; Biggs JA; Sherman LA. 2004. A spontaneously arising pancreatic tumor does not promote the differentiation of naive CD8+ T lymphocytes into effector CTL. J Immunol 172(11):6558-67. [PubMed: 15153470]  [MGI Ref ID J:90532]

Lyman MA; Nugent CT; Marquardt KL; Biggs JA; Pamer EG; Sherman LA. 2005. The fate of low affinity tumor-specific CD8+ T cells in tumor-bearing mice. J Immunol 174(5):2563-72. [PubMed: 15728462]  [MGI Ref ID J:97745]

Martinez X; Kreuwel HT; Redmond WL; Trenney R; Hunter K; Rosen H; Sarvetnick N; Wicker LS; Sherman LA. 2005. CD8+ T Cell Tolerance in Nonobese Diabetic Mice Is Restored by Insulin-Dependent Diabetes Resistance Alleles. J Immunol 175(3):1677-85. [PubMed: 16034108]  [MGI Ref ID J:100008]

Morgan DJ; Kreuwel HT; Fleck S; Levitsky HI; Pardoll DM; Sherman LA. 1998. Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160(2):643-51. [PubMed: 9551898]  [MGI Ref ID J:45169]

Morgan DJ; Kurts C; Kreuwel HT; Holst KL; Heath WR; Sherman LA. 1999. Ontogeny of T cell tolerance to peripherally expressed antigens. Proc Natl Acad Sci U S A 96(7):3854-8. [PubMed: 10097127]  [MGI Ref ID J:109899]

Morgan DJ; Liblau R; Scott B; Fleck S; McDevitt HO; Sarvetnick N; Lo D; Sherman LA. 1996. CD8(+) T cell-mediated spontaneous diabetes in neonatal mice. J Immunol 157(3):978-83. [PubMed: 8757600]  [MGI Ref ID J:99756]

Morgan DJ; Nugent CT; Raveney BJ; Sherman LA. 2004. In a transgenic model of spontaneous autoimmune diabetes, expression of a protective class II MHC molecule results in thymic deletion of diabetogenic CD8+ T cells. J Immunol 172(2):1000-8. [PubMed: 14707073]  [MGI Ref ID J:100010]

Pauza ME; Nguyen A; Wolfe T; Ho IC; Glimcher LH; von Herrath M; Lo D. 2001. Variable effects of transgenic c-Maf on autoimmune diabetes. Diabetes 50(1):39-46. [PubMed: 11147792]  [MGI Ref ID J:133138]

Redmond WL; Marincek BC; Sherman LA. 2005. Distinct requirements for deletion versus anergy during CD8 T cell peripheral tolerance in vivo. J Immunol 174(4):2046-53. [PubMed: 15699134]  [MGI Ref ID J:100009]

Redmond WL; Wei CH; Kreuwel HT; Sherman LA. 2008. The apoptotic pathway contributing to the deletion of naive CD8 T cells during the induction of peripheral tolerance to a cross-presented self-antigen. J Immunol 180(8):5275-82. [PubMed: 18390708]  [MGI Ref ID J:134242]

Saxena A; Desbois S; Carrie N; Lawand M; Mars LT; Liblau RS. 2012. Tc17 CD8+ T cells potentiate Th1-mediated autoimmune diabetes in a mouse model. J Immunol 189(6):3140-9. [PubMed: 22904307]  [MGI Ref ID J:189912]

Shanker A; Brooks AD; Jacobsen KM; Wine JW; Wiltrout RH; Yagita H; Sayers TJ. 2009. Antigen presented by tumors in vivo determines the nature of CD8+ T-cell cytotoxicity. Cancer Res 69(16):6615-23. [PubMed: 19654302]  [MGI Ref ID J:151764]

Smith SS; Patterson T; Pauza ME. 2005. Transgenic Ly-49A inhibits antigen-driven T cell activation and delays diabetes. J Immunol 174(7):3897-905. [PubMed: 15778344]  [MGI Ref ID J:97982]

VanOosten RL; Griffith TS. 2007. Activation of tumor-specific CD8+ T Cells after intratumoral Ad5-TRAIL/CpG oligodeoxynucleotide combination therapy. Cancer Res 67(24):11980-90. [PubMed: 18089829]  [MGI Ref ID J:129272]

Yi Z; Li L; Garland A; He Q; Wang H; Katz JD; Tisch R; Wang B. 2012. IFN-gamma receptor deficiency prevents diabetes induction by diabetogenic CD4+, but not CD8+, T cells. Eur J Immunol 42(8):2010-8. [PubMed: 22865049]  [MGI Ref ID J:187880]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2525.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Frozen Products

Price (US dollars $)
Frozen Embryo $1650.00

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryopreserved Embryos
    Available to most shipping destinations1
    This strain is also available as cryopreserved embryos2. Orders for cryopreserved embryos may be placed with our Customer Service Department. Experienced technicians at The Jackson Laboratory have recovered frozen embryos of this strain successfully. We will provide you enough embryos to perform two embryo transfers. The Jackson Laboratory does not guarantee successful recovery at your facility. For complete information on purchasing embryos, please visit our Cryopreserved Embryos web page.

    1 Shipments cannot be made to Australia due to Australian government import restrictions.
    2 Embryos for most strains are cryopreserved at the two cell stage while some strains are cryopreserved at the eight cell stage. If this information is important to you, please contact Customer Service.
  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3283.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Frozen Products

Price (US dollars $)
Frozen Embryo $2145.00

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryopreserved Embryos
    Available to most shipping destinations1
    This strain is also available as cryopreserved embryos2. Orders for cryopreserved embryos may be placed with our Customer Service Department. Experienced technicians at The Jackson Laboratory have recovered frozen embryos of this strain successfully. We will provide you enough embryos to perform two embryo transfers. The Jackson Laboratory does not guarantee successful recovery at your facility. For complete information on purchasing embryos, please visit our Cryopreserved Embryos web page.

    1 Shipments cannot be made to Australia due to Australian government import restrictions.
    2 Embryos for most strains are cryopreserved at the two cell stage while some strains are cryopreserved at the eight cell stage. If this information is important to you, please contact Customer Service.
  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

General Supply Notes

Control Information

  Control
   See control note: Stock number 000463 - B10.D2-Hc1 H2d H2-T18c/nSnJ serves as an approximate control.
   000463 B10.D2-Hc1 H2d H2-T18c/nSnJ (approximate)
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)