Strain Name:

NOD.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ

Stock Number:

005686

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Use Restrictions Apply, see Terms of Use
Common Names: NOD.Clone 4;     NOD.Clone-4 Tcr;     NOD.Clone4 Tcr;    

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names NOD.Cg-Thy1a/Thy1b Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ    (Changed: 20-OCT-06 )
Type Congenic; Mutant Strain; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
Background Strain NOD
Donor Strain (C57BL/6 x BALB/c)F1
H2 Haplotypeg7
GenerationN19F4+N1p (15-JAN-06)
Generation Definitions
 
Donating Investigator Linda Sherman,   The Scripps Research Institute

Appearance
pink-eyed, albino
Related Genotype: A/A Tyrc/Tyrc

Description
Transgenic mice, commonly referred to as NOD.clone-4 TCR, are viable, fertile, normal in size, normoglycemic and do not display any gross physical or behavioral abnormalities. The TCR expressed from this transgene is specific for influenza virus A/PR/8 hemagglutinin (HA) in the context of the MHC class I molecule H2-Kd. FACS analysis of pancreatic lymph node indicates CFSE treated NOD clone-4 T cells adoptively transferred into NOD.InsHA (Stock No. 005685) proliferate vigorously and there is a 2-3-fold increase in the percentage of dividing clone-4 TCR, CD8+ T cells when compared to BALB/cBy (Stock Nos. 005307 and 005533) or B10.D2 (Stock Nos. 005308 and 005534). HA specific reactivity not tolerance is observed.

This mouse is further modified with the Thy1a allele, rather than the alternate allele Thy1b present in C57BL/10, DBA/2, BALB/c and NOD/Lt mice. Thus, cell populations derived from these transgenic mice can be distinguished from syngeneic host and other mice with the alternate allele via flow cytometry. The presence of Thy1a serves as a marker for following donor CD8+ T cells in vitro.

This transgenic model is useful in the study of T-cell recognition of defined antigen, specifically HA, in the islets of NOD-InsHA mice.

Development
The Tcra and Tcrb transgenes encode a Tcr cDNA from Clone 4 derived from a B10.D2-Hc1 H2d H2-T18c/nSn mouse previously immunized with Influenza virus A/PR/8. The clone 4 transgenic constructs were co-injected and co-inserted in (C57BL/6 x BALB/c)F1 oocytes. Transgene positive mice were backcrossed to BALB/cBy-Thy1a congenic prior to crossing to NOD/Lt for 19 generations. In 2005, The Jackson Laboratory imported this transgenic strain at generation N19F4. Upon arrival the strain was mated to NOD/LtJ (stock No. 001976) prior to mating Tg/? x Tg/?. FACS analysis performed at The Jackson Laboratory confirms Thy1a allele is homozygous.

Control Information

  Control
   001976 NOD/ShiLtJ
 
  Considerations for Choosing Controls

Related Strains

View Strains carrying   Thy1a     (19 strains)

Strains carrying   Tg(TcraCl4,TcrbCl4)1Shrm allele
005308   B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005307   CBy.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
View Strains carrying   Tg(TcraCl4,TcrbCl4)1Shrm     (2 strains)

Strains carrying other alleles of Tcra
005895   B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003199   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRA)B1Jg/J
002116   B6.129S2-Tcratm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005023   B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
004554   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRaAI4)1Dvs/DvsJ
002115   B6;129S2-Tcratm1Mom/J
004694   B6;D2-Tg(TcrLCMV)327Sdz/JDvsJ
002408   B6;SJL-Tg(TcrAND)53Hed/J
007848   BXSB.129P2(Cg)-Tcratm1Mjo/TheoJ
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002045   C.SJL-Tcrac/SlkJ
002047   C.SJL-Tcrba Tcrac/SlkJ
014639   C57BL/6-Tg(Cd4-TcraDN32D3)1Aben/J
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
004444   NOD.129P2(C)-Tcratm1Mjo/DoiJ
006436   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcraAI4)1Dvs/DvsJ
004257   NOD.Cg-Prkdcscid Tg(TcrLCMV)327Sdz/DvsJ
004347   NOD.Cg-Rag1tm1Mom Tg(TcraAI4)1Dvs/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
004696   NOD.Cg-Tg(TcrLCMV)327Sdz/DvsJ
004460   NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006303   NOD.FVB-Tg(TcraBDC12-4.1)10Jos/GseJ
004334   NOD/ShiLt-Tg(TcraAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcra     (46 strains)

Strains carrying other alleles of Tcrb
005895   B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003200   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRB)C14Jg/J
002122   B6.129P2-Tcrbtm1Mom Tcrdtm1Mom/J
002118   B6.129P2-Tcrbtm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005023   B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
008430   B6.Cg-Tg(Tcrb)HRBAll/J
004555   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRbAI4)1Dvs/DvsJ
002121   B6;129P-Tcrbtm1Mom Tcrdtm1Mom/J
002117   B6;129P2-Tcrbtm1Mom/J
004694   B6;D2-Tg(TcrLCMV)327Sdz/JDvsJ
002408   B6;SJL-Tg(TcrAND)53Hed/J
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002047   C.SJL-Tcrba Tcrac/SlkJ
002046   C.SJL-Tcrba/SlkJ
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
003540   C57L/J-Tg(Tcrb)93Vbo/J
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
007081   CByJ.129P2(B6)-Tcrbtm1Mom/J
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
023082   NOD.129P2(Cg)-Tcrbtm1Mom/MnkaJ
006437   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcrbAI4)1Dvs/DvsJ
004257   NOD.Cg-Prkdcscid Tg(TcrLCMV)327Sdz/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
004696   NOD.Cg-Tg(TcrLCMV)327Sdz/DvsJ
004460   NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006304   NOD.FVB-Tg(TcrbBDC12-4.1)82Gse/GseJ
004335   NOD/ShiLt-Tg(TcrbAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcrb     (48 strains)

Strains carrying other alleles of Thy1
017798   B6.Cg-Mapttm1Hnd Tg(Thy1-MAPT*)3610Gds/Mmjax
009126   B6.Cg-Nos2tm1Lau Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
008730   B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
007901   B6.Cg-Tg(Thy1-Brainbow1.0)HLich/J
007911   B6.Cg-Tg(Thy1-Brainbow1.1)MLich/J
007921   B6.Cg-Tg(Thy1-Brainbow2.1)RLich/J
003710   B6.Cg-Tg(Thy1-CFP)23Jrs/J
014131   B6.Cg-Tg(Thy1-CFP)IJrs/GfngJ
007940   B6.Cg-Tg(Thy1-CFP/COX8A)C1Lich/J
007967   B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich/J
012597   B6.Cg-Tg(Thy1-COL25A1)861Yfu/J
007612   B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J
007615   B6.Cg-Tg(Thy1-COP4/EYFP)9Gfng/J
013161   B6.Cg-Tg(Thy1-Clomeleon)1Gjau/J
007919   B6.Cg-Tg(Thy1-EGFP)OJrs/GfngJ
005630   B6.Cg-Tg(Thy1-EYFP)15Jrs/J
009611   B6.Cg-Tg(Thy1-Nlgn1)6Hnes/J
009612   B6.Cg-Tg(Thy1-Nlgn2)6Hnes/J
021069   B6.Cg-Tg(Thy1-PA-GFP)5Rmpl/J
021070   B6.Cg-Tg(Thy1-PA-GFP)6Rmpl/J
003709   B6.Cg-Tg(Thy1-YFP)16Jrs/J
003782   B6.Cg-Tg(Thy1-YFP)HJrs/J
005627   B6.Cg-Tg(Thy1-YFP/Syp)10Jrs/J
007606   B6.Cg-Tg(Thy1-cre/ERT2,-EYFP)AGfng/J
004807   B6;129-Psen1tm1Mpm Tg(APPSwe,tauP301L)1Lfa/Mmjax
007910   B6;CBA-Tg(Thy1-Brainbow1.0)LLich/J
011070   B6;CBA-Tg(Thy1-EGFP)SJrs/NdivJ
017892   B6;CBA-Tg(Thy1-GCaMP2.2c)8Gfng/J
017893   B6;CBA-Tg(Thy1-GCaMP3)6Gfng/J
014130   B6;CBA-Tg(Thy1-YFP)GJrs/GfngJ
014651   B6;CBA-Tg(Thy1-spH)21Vnmu/J
015814   B6;CBA-Tg(Thy1-spH)64Vnmu/FrkJ
012341   B6;SJL-Tg(Thy1-COP3/EYFP)1Gfng/J
012344   B6;SJL-Tg(Thy1-COP3/EYFP)4Gfng/J
012348   B6;SJL-Tg(Thy1-COP3/EYFP)8Gfng/J
012350   B6;SJL-Tg(Thy1-COP4*H134R/EYFP)20Gfng/J
008004   B6;SJL-Tg(Thy1-ECFP/VAMP2)1Sud/J
012836   B6;SJL-Tg(Thy1-TARDBP)4Singh/J
007610   B6;SJL-Tg(Thy1-cre/ERT2,-EYFP)VGfng/J
012332   B6;SJL-Tg(Thy1-hop/EYFP)2Gfng/J
012334   B6;SJL-Tg(Thy1-hop/EYFP)4Gfng/J
006554   B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
025401   B6SJL-Tg(Thy1-COX8A/Dendra)57Gmnf/J
017590   B6SJL-Tg(Thy1-DCTN1*G59S)M2Pcw/J
007880   B6SJL-Tg(Thy1-Stx1a/EYFP)1Sud/J
007856   B6SJL-Tg(Thy1-Syt1/ECFP)1Sud/J
017589   B6SJL-Tg(Thy1-TARDBP*G298S)S97Pcw/J
024703   C3A.Cg-Pde6b+Tg(Thy1-CFP)23Jrs/SjJ
007027   C57BL/6-Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
010800   C57BL/6-Tg(Thy1-PTGS2)300Kand/J
010703   C57BL/6-Tg(Thy1-PTGS2)303Kand/J
012769   C57BL/6-Tg(Thy1-Sncg)HvP36Putt/J
024339   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.11Dkim/J
025393   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.17Dkim/J
024276   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.5Dkim/J
025776   C57BL/6J-Tg(Thy1-GCaMP6s)GP4.12Dkim/J
024275   C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J
025533   C57BL/6N-Sncatm1Mjff Tg(Thy1-SNCA)15Mjff/J
016936   C57BL/6N-Tg(Thy1-SNCA)12Mjff/J
017682   C57BL/6N-Tg(Thy1-SNCA)15Mjff/J
024704   D2.Cg-Gpnmb+Tg(Thy1-CFP)23Jrs/SjJ
025018   D2.Cg-Gpnmb+Tg(Thy1-YFP)HJrs/SjJ
018671   D2.Cg-Tg(Thy1-CFP)23Jrs/SjJ
024705   D2.Cg-Tg(Thy1-YFP)HJrs/SjJ
025019   D2.Cg-Tg(Thy1-YFP/Syp)10Jrs/SjJ
008230   FVB(Cg)-Tg(Thy1-SOD1*G93A)T3Hgrd/J
006143   FVB/N-Tg(Thy1-cre)1Vln/J
021226   STOCK Tg(Thy1-Brainbow3.1)18Jrs/J
021225   STOCK Tg(Thy1-Brainbow3.1)3Jrs/J
021227   STOCK Tg(Thy1-Brainbow3.2)7Jrs/J
013162   STOCK Tg(Thy1-Clomeleon)12Gjau/J
013163   STOCK Tg(Thy1-Clomeleon)13Gjau/J
007788   STOCK Tg(Thy1-EGFP)MJrs/J
012708   STOCK Tg(Thy1-cre/ERT2,-EYFP)HGfng/PyngJ
View Strains carrying other alleles of Thy1     (74 strains)

Phenotype

Phenotype Information

View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Hematological Research
Immunological Defects

Immunology, Inflammation and Autoimmunity Research
CD Antigens, Antigen Receptors, and Histocompatibility Markers
Immunodeficiency
Inflammation
Rearranged Antigen-Specific T Cell Receptor Transgenes
T Cell Receptor Signaling Defects

Research Tools
Cancer Research
      specific T cell deficiency
Diabetes and Obesity Research
Immunology, Inflammation and Autoimmunity Research
      T Cell Receptor Transgenics

Thy1a related

Immunology, Inflammation and Autoimmunity Research
CD Antigens, Antigen Receptors, and Histocompatibility Markers

Research Tools
Genetics Research
      Tissue/Cell Markers
      Tissue/Cell Markers: T cell specific surface marker
Immunology, Inflammation and Autoimmunity Research
      T cell specific surface marker

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tg(TcraCl4,TcrbCl4)1Shrm
Allele Name transgene insertion 1, Linda Sherman
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) (HA)-TCR; C4; CL-4; CL-4 TCR; CL4; CL4-TCR; Clone 4; Clone-4 TCR; clone 4 TCR;
Mutation Made By Linda Sherman,   The Scripps Research Institute
Strain of Origin(C57BL/6 x BALB/c)F1
Expressed Gene Tcra, T cell receptor alpha chain, mouse, laboratory
Expressed Gene Tcrb, T cell receptor beta chain, mouse, laboratory
Promoter Tcra, T cell receptor alpha chain, mouse, laboratory
Promoter Tcrb, T cell receptor beta chain, mouse, laboratory
Molecular Note Tcra and Tcrb cDNAs were isolated from Clone-4, a CTL line derived from a B10.D2-Hc1 H2d H2-t18c/nSnJ mouse immunized with influenza virus A/PR/8. A Tcra cDNA fragment representing the V-J exon, containing Valpha10, was cloned into a Tcra shuttle vector that includes a mouse Tcra-V promoter, the immunoglobulin heavy-chain enhancer EH, and the Tcra-C genes with some flanking DNA. Likewise, a Tcrb cDNA fragment representing the VDJ exon, containing Vbeta8.2, was cloned into a Tcrb shuttle vector including a mouse Tcrb-V promoter, EH, and the Tcrb-C genes with some flanking DNA. The plasmid constructs were coinjected. This transgenic TCR specifically recognizes influenza virus A/PR/8 hemagglutinin restricted by MHC class I H2kb. [MGI Ref ID J:90982] [MGI Ref ID J:99756]
 
 
 
Allele Symbol Thy1a
Allele Name a variant
Allele Type Not Applicable
Common Name(s) Thy-1.1; Thy1.1; Thy1a; theta-AKR; thetaAKR;
Site of ExpressionThe Thy1 locus determines a surface antigen present on cells of the thymus, a number of mouse leukemias, brain, and in lesser amounts on lymph node and spleen cells.
Gene Symbol and Name Thy1, thymus cell antigen 1, theta
Chromosome 9
Gene Common Name(s) CD7; CD90; T25; Thy 1.2; Thy-1; Thy-1.2; Thy1.1; Thy1.2; theta;
General Note

The Thy1 locus determines a surface antigen present on cells of the thymus, a number of mouse leukemias, brain, and in lesser amounts on lymph node and spleen cells. The allele Thy1a determines an antigenic specificity, Thy-1.1, found in the AKR and RF strains; the allele Thy1b determines an antigenic specificity, Thy-1.2, found in the C3HeB/Fe and many other strains (J:5243, J:5012, J:4469). The Thy1 antigen is probably present on all T lymphocytes and absent from all B lymphocytes, and it thus serves as a valuable T-cell marker (J:5243). It is very widely used in experiments designed to determine the distribution and function of T-cells. Thy1 specifies a T-cell surface glycoprotein, T25, with a molecular weight of 25 kDa (J:5707). The protein appears to be anchored in the cell membrane by a lipid that is either phosphotidylinositol or closely related to it (J:12016). Thy1 may function in the cell membrane as a signal transduction molecule (J:8333). The Thy1 locus, or possibly a gene closely linked to it, controls quantitative expression of a protein that isthe same size as Thy1 and is expressed on thymus and brain but not on lymph node and spleen cells (J:7900).

Molecular Note The allele Thy1a determines an antigenic specificity, Thy-1.1, found in the AKR and RF strains.

Genotyping

Genotyping Information

Genotyping Protocols

Tg(TcraCl4,TcrbCl4)1Shrm, Melt Curve Analysis
Tg(TcraCl4,TcrbCl4)1Shrm, Melt Curve Analysis
Tg(TcraCl4,TcrbCl4)1Shrm, Separated PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Martinez X; Kreuwel HT; Redmond WL; Trenney R; Hunter K; Rosen H; Sarvetnick N; Wicker LS; Sherman LA. 2005. CD8+ T Cell Tolerance in Nonobese Diabetic Mice Is Restored by Insulin-Dependent Diabetes Resistance Alleles. J Immunol 175(3):1677-85. [PubMed: 16034108]  [MGI Ref ID J:100008]

Additional References

Thy1a related

Azzi J; Skartsis N; Mounayar M; Magee CN; Batal I; Ting C; Moore R; Riella LV; Ohori S; Abdoli R; Smith B; Fiorina P; Heathcote D; Bakhos T; Ashton-Rickardt PG; Abdi R. 2013. Serine protease inhibitor 6 plays a critical role in protecting murine granzyme B-producing regulatory T cells. J Immunol 191(5):2319-27. [PubMed: 23913965]  [MGI Ref ID J:205809]

Beck PL; Li Y; Wong J; Chen CW; Keenan CM; Sharkey KA; McCafferty DM. 2007. Inducible nitric oxide synthase from bone marrow-derived cells plays a critical role in regulating colonic inflammation. Gastroenterology 132(5):1778-90. [PubMed: 17449036]  [MGI Ref ID J:128325]

Brinkman CC; Rouhani SJ; Srinivasan N; Engelhard VH. 2013. Peripheral tissue homing receptors enable T cell entry into lymph nodes and affect the anatomical distribution of memory cells. J Immunol 191(5):2412-25. [PubMed: 23926324]  [MGI Ref ID J:205788]

Chen TT; Li L; Chung DH; Allen CD; Torti SV; Torti FM; Cyster JG; Chen CY; Brodsky FM; Niemi EC; Nakamura MC; Seaman WE; Daws MR. 2005. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med 202(7):955-65. [PubMed: 16203866]  [MGI Ref ID J:107466]

Cuda CM; Wan S; Sobel ES; Croker BP; Morel L. 2007. Murine lupus susceptibility locus Sle1a controls regulatory T cell number and function through multiple mechanisms. J Immunol 179(11):7439-47. [PubMed: 18025188]  [MGI Ref ID J:154964]

D'Eustachio P; Owens GC; Edelman GM; Cunningham BA. 1985. Chromosomal location of the gene encoding the neural cell adhesion molecule (N-CAM) in the mouse. Proc Natl Acad Sci U S A 82(22):7631-5. [PubMed: 3865183]  [MGI Ref ID J:8111]

Dewals B; Hoving JC; Horsnell WG; Brombacher F. 2010. Control of Schistosoma mansoni egg-induced inflammation by IL-4-responsive CD4(+)CD25(-)CD103(+)Foxp3(-) cells is IL-10-dependent. Eur J Immunol 40(10):2837-47. [PubMed: 20821727]  [MGI Ref ID J:165816]

Divangahi M; Desjardins D; Nunes-Alves C; Remold HG; Behar SM. 2010. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 11(8):751-8. [PubMed: 20622882]  [MGI Ref ID J:162390]

Dolfi DV; Duttagupta PA; Boesteanu AC; Mueller YM; Oliai CH; Borowski AB; Katsikis PD. 2011. Dendritic cells and CD28 costimulation are required to sustain virus-specific CD8+ T cell responses during the effector phase in vivo. J Immunol 186(8):4599-608. [PubMed: 21389258]  [MGI Ref ID J:172460]

Ertelt JM; Buyukbasaran EZ; Jiang TT; Rowe JH; Xin L; Way SS. 2013. B7-1/B7-2 blockade overrides the activation of protective CD8 T cells stimulated in the absence of Foxp3+ regulatory T cells. J Leukoc Biol 94(2):367-76. [PubMed: 23744647]  [MGI Ref ID J:204423]

Fife BT; Griffin MD; Abbas AK; Locksley RM; Bluestone JA. 2006. Inhibition of T cell activation and autoimmune diabetes using a B cell surface-linked CTLA-4 agonist. J Clin Invest 116(8):2252-61. [PubMed: 16886063]  [MGI Ref ID J:113109]

Green MC; Sweet HO. 1975. [Hx - Hm - W.] Mouse News Lett 52:38.  [MGI Ref ID J:13675]

Huang W; Huang F; Kannan AK; Hu J; August A. 2014. ITK tunes IL-4-induced development of innate memory CD8+ T cells in a gammadelta T and invariant NKT cell-independent manner. J Leukoc Biol 96(1):55-63. [PubMed: 24620029]  [MGI Ref ID J:212002]

Inlay MA; Bhattacharya D; Sahoo D; Serwold T; Seita J; Karsunky H; Plevritis SK; Dill DL; Weissman IL. 2009. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev 23(20):2376-81. [PubMed: 19833765]  [MGI Ref ID J:154864]

Kelly LM; Pereira JP; Yi T; Xu Y; Cyster JG. 2011. EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J Immunol 187(6):3026-32. [PubMed: 21844396]  [MGI Ref ID J:179238]

Klebanoff CA; Spencer SP; Torabi-Parizi P; Grainger JR; Roychoudhuri R; Ji Y; Sukumar M; Muranski P; Scott CD; Hall JA; Ferreyra GA; Leonardi AJ; Borman ZA; Wang J; Palmer DC; Wilhelm C; Cai R; Sun J; Napoli JL; Danner RL; Gattinoni L; Belkaid Y; RestifoNP. 2013. Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J Exp Med 210(10):1961-76. [PubMed: 23999499]  [MGI Ref ID J:203429]

Krieg C; Letourneau S; Pantaleo G; Boyman O. 2010. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci U S A 107(26):11906-11. [PubMed: 20547866]  [MGI Ref ID J:161365]

Lee SY; Goverman JM. 2013. The influence of T cell Ig mucin-3 signaling on central nervous system autoimmune disease is determined by the effector function of the pathogenic T cells. J Immunol 190(10):4991-9. [PubMed: 23562810]  [MGI Ref ID J:202569]

Leiter EH. 1998. NOD Mice and Related Strains: Origins, Husbandry and Biology Introduction. In: NOD Mice and Related Strains: Research Applications in Diabetes, AIDS, Cancer, and Other Diseases. RG Landes, Austin.  [MGI Ref ID J:110093]

Mitchell JS; Burbach BJ; Srivastava R; Fife BT; Shimizu Y. 2013. Multistage T cell-dendritic cell interactions control optimal CD4 T cell activation through the ADAP-SKAP55-signaling module. J Immunol 191(5):2372-83. [PubMed: 23918975]  [MGI Ref ID J:205802]

Pauken KE; Jenkins MK; Azuma M; Fife BT. 2013. PD-1, but not PD-L1, expressed by islet-reactive CD4+ T cells suppresses infiltration of the pancreas during type 1 diabetes. Diabetes 62(8):2859-69. [PubMed: 23545706]  [MGI Ref ID J:208973]

REIF AE; ALLEN JM. 1964. THE AKR THYMIC ANTIGEN AND ITS DISTRIBUTION IN LEUKEMIAS AND NERVOUS TISSUES. J Exp Med 120:413-33. [PubMed: 14207060]  [MGI Ref ID J:24839]

Rabenstein H; Behrendt AC; Ellwart JW; Naumann R; Horsch M; Beckers J; Obst R. 2014. Differential kinetics of antigen dependency of CD4+ and CD8+ T cells. J Immunol 192(8):3507-17. [PubMed: 24639353]  [MGI Ref ID J:210002]

Ranheim EA; Tarbell KV; Krogsgaard M; Mallet-Designe V; Teyton L; McDevitt HO; Weissman IL. 2004. Selection of aberrant class II restricted CD8+ T cells in NOD mice expressing a glutamic acid decarboxylase (GAD)65-specific T cell receptor transgene. Autoimmunity 37(8):555-67. [PubMed: 15763918]  [MGI Ref ID J:128250]

Read S; Hogan TV; Zwar TD; Gleeson PA; Van Driel IR. 2007. Prevention of autoimmune gastritis in mice requires extra-thymic T-cell deletion and suppression by regulatory T cells. Gastroenterology 133(2):547-58. [PubMed: 17603058]  [MGI Ref ID J:128303]

Reif AE; Allen JM. 1966. Mouse thymic iso-antigens. Nature 209(22):521-3. [PubMed: 5919593]  [MGI Ref ID J:5012]

Rodeghero R; Cao Y; Olalekan SA; Iwakua Y; Glant TT; Finnegan A. 2013. Location of CD4+ T cell priming regulates the differentiation of Th1 and Th17 cells and their contribution to arthritis. J Immunol 190(11):5423-35. [PubMed: 23630349]  [MGI Ref ID J:204778]

Sercan O; Stoycheva D; Hammerling GJ; Arnold B; Schuler T. 2010. IFN-gamma receptor signaling regulates memory CD8+ T cell differentiation. J Immunol 184(6):2855-62. [PubMed: 20164422]  [MGI Ref ID J:160112]

Uhl M; Kepp O; Jusforgues-Saklani H; Vicencio JM; Kroemer G; Albert ML. 2009. Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 16(7):991-1005. [PubMed: 19229247]  [MGI Ref ID J:164191]

Voehringer D; Liang HE; Locksley RM. 2008. Homeostasis and effector function of lymphopenia-induced 'memory-like' T cells in constitutively T cell-depleted mice. J Immunol 180(7):4742-53. [PubMed: 18354198]  [MGI Ref ID J:133382]

Wang L; Jameson SC; Hogquist KA. 2009. Epidermal Langerhans cells are not required for UV-induced immunosuppression. J Immunol 183(9):5548-53. [PubMed: 19843938]  [MGI Ref ID J:156799]

Wuthrich M; Ersland K; Pick-Jacobs JC; Gern BH; Frye CA; Sullivan TD; Brennan MB; Filutowicz HI; O'Brien K; Korthauer KD; Schultz-Cherry S; Klein BS. 2012. Limited model antigen expression by transgenic fungi induces disparate fates during differentiation of adoptively transferred T cell receptor transgenic CD4+ T cells: robust activation and proliferation with weak effector function during recall. Infect Immun 80(2):787-97. [PubMed: 22124658]  [MGI Ref ID J:180817]

Wuthrich M; Warner T; Klein BS. 2005. IL-12 is required for induction but not maintenance of protective, memory responses to Blastomyces dermatitidis: implications for vaccine development in immune-deficient hosts. J Immunol 175(8):5288-97. [PubMed: 16210634]  [MGI Ref ID J:119110]

Xiao Z; Mescher MF; Jameson SC. 2007. Detuning CD8 T cells: down-regulation of CD8 expression, tetramer binding, and response during CTL activation. J Exp Med 204(11):2667-77. [PubMed: 17954566]  [MGI Ref ID J:126126]

Ysebrant de Lendonck L; Tonon S; Nguyen M; Vandevenne P; Welsby I; Martinet V; Molle C; Charbonnier LM; Leo O; Goriely S. 2013. Interferon regulatory factor 3 controls interleukin-17 expression in CD8 T lymphocytes. Proc Natl Acad Sci U S A 110(34):E3189-97. [PubMed: 23918362]  [MGI Ref ID J:200677]

Yu Y; Cho HI; Wang D; Kaosaard K; Anasetti C; Celis E; Yu XZ. 2013. Adoptive Transfer of Tc1 or Tc17 Cells Elicits Antitumor Immunity against Established Melanoma through Distinct Mechanisms. J Immunol 190(4):1873-81. [PubMed: 23315072]  [MGI Ref ID J:193239]

Zaleski M; Klein J. 1974. Immune response of mice to Thy-1. 1 antigen: genetic control by alleles at the Ir-5 locus loosely linked to the H-2 complex. J Immunol 113(4):1170-7. [PubMed: 4606643]  [MGI Ref ID J:5487]

Zaleski MB. 1975. Immune response of mice to the Thy-1.1 antigen: effect of the Ir-5 alleles studies in 129/J and B10.129(6M) mice Immunogenetics 2:241-8.  [MGI Ref ID J:30773]

Zecher D; Li Q; Oberbarnscheidt MH; Demetris AJ; Shlomchik WD; Rothstein DM; Lakkis FG. 2010. NK cells delay allograft rejection in lymphopenic hosts by downregulating the homeostatic proliferation of CD8+ T cells. J Immunol 184(12):6649-57. [PubMed: 20483732]  [MGI Ref ID J:161405]

Tg(TcraCl4,TcrbCl4)1Shrm related

Andrews DM; Estcourt MJ; Andoniou CE; Wikstrom ME; Khong A; Voigt V; Fleming P; Tabarias H; Hill GR; van der Most RG; Scalzo AA; Smyth MJ; Degli-Esposti MA. 2010. Innate immunity defines the capacity of antiviral T cells to limit persistent infection. J Exp Med 207(6):1333-43. [PubMed: 20513749]  [MGI Ref ID J:163415]

Bercovici N; Heurtier A; Vizler C; Pardigon N; Cambouris C; Desreumaux P; Liblau R. 2000. Systemic administration of agonist peptide blocks the progression of spontaneous CD8-mediated autoimmune diabetes in transgenic mice without bystander damage. J Immunol 165(1):202-10. [PubMed: 10861053]  [MGI Ref ID J:62874]

Brown DM; Dilzer AM; Meents DL; Swain SL. 2006. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J Immunol 177(5):2888-98. [PubMed: 16920924]  [MGI Ref ID J:139502]

Bunt SK; Yang L; Sinha P; Clements VK; Leips J; Ostrand-Rosenberg S. 2007. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67(20):10019-26. [PubMed: 17942936]  [MGI Ref ID J:126013]

Busick RY; Yammani RD; Alexander-Miller MA. 2011. Differentiation-dependent differences in murine T cell susceptibility to negative regulation by the lung. Am J Respir Cell Mol Biol 44(5):597-605. [PubMed: 21216971]  [MGI Ref ID J:185024]

Caminschi I; Ahmet F; Heger K; Brady J; Nutt SL; Vremec D; Pietersz S; Lahoud MH; Schofield L; Hansen DS; O'Keeffe M; Smyth MJ; Bedoui S; Davey GM; Villadangos JA; Heath WR; Shortman K. 2007. Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. J Exp Med 204(11):2579-90. [PubMed: 17923506]  [MGI Ref ID J:126110]

Cornet A; Savidge TC; Cabarrocas J; Deng WL; Colombel JF; Lassmann H; Desreumaux P; Liblau RS. 2001. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease? Proc Natl Acad Sci U S A 98(23):13306-11. [PubMed: 11687633]  [MGI Ref ID J:131274]

Dolcetti L; Peranzoni E; Ugel S; Marigo I; Fernandez Gomez A; Mesa C; Geilich M; Winkels G; Traggiai E; Casati A; Grassi F; Bronte V. 2010. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40(1):22-35. [PubMed: 19941314]  [MGI Ref ID J:155684]

Gallina G; Dolcetti L; Serafini P; De Santo C; Marigo I; Colombo MP; Basso G; Brombacher F; Borrello I; Zanovello P; Bicciato S; Bronte V. 2006. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116(10):2777-90. [PubMed: 17016559]  [MGI Ref ID J:114986]

Griseri T; Beaudoin L; Novak J; Mars LT; Lepault F; Liblau R; Lehuen A. 2005. Invariant NKT cells exacerbate type 1 diabetes induced by CD8 T cells. J Immunol 175(4):2091-101. [PubMed: 16081775]  [MGI Ref ID J:107517]

Grosso JF; Kelleher CC; Harris TJ; Maris CH; Hipkiss EL; De Marzo A; Anders R; Netto G; Getnet D; Bruno TC; Goldberg MV; Pardoll DM; Drake CG. 2007. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 117(11):3383-92. [PubMed: 17932562]  [MGI Ref ID J:127434]

Haile LA; von Wasielewski R; Gamrekelashvili J; Kruger C; Bachmann O; Westendorf AM; Buer J; Liblau R; Manns MP; Korangy F; Greten TF. 2008. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135(3):871-81, 881.e1-5. [PubMed: 18674538]  [MGI Ref ID J:141965]

Harden JL; Gu T; Kilinc MO; Rowswell-Turner RB; Virtuoso LP; Egilmez NK. 2011. Dichotomous effects of IFN-gamma on dendritic cell function determine the extent of IL-12-driven antitumor T cell immunity. J Immunol 187(1):126-32. [PubMed: 21632715]  [MGI Ref ID J:175928]

Hernandez J; Aung S; Redmond WL; Sherman LA. 2001. Phenotypic and functional analysis of CD8(+) T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J Exp Med 194(6):707-17. [PubMed: 11560988]  [MGI Ref ID J:100011]

Herve J; Dubreil L; Tardif V; Terme M; Pogu S; Anegon I; Rozec B; Gauthier C; Bach JM; Blancou P. 2013. beta2-Adrenoreceptor Agonist Inhibits Antigen Cross-Presentation by Dendritic Cells. J Immunol 190(7):3163-71. [PubMed: 23420884]  [MGI Ref ID J:194464]

Hill M; Deghmane AE; Segovia M; Zarantonelli ML; Tilly G; Blancou P; Beriou G; Josien R; Anegon I; Hong E; Ruckly C; Antignac A; Ghachi ME; Boneca IG; Taha MK; Cuturi MC. 2011. Penicillin Binding Proteins as Danger Signals: Meningococcal Penicillin Binding Protein 2 Activates Dendritic Cells through Toll-Like Receptor 4. PLoS One 6(10):e23995. [PubMed: 22046231]  [MGI Ref ID J:178081]

Horkheimer I; Quigley M; Zhu J; Huang X; Chao NJ; Yang Y. 2009. Induction of type I IFN is required for overcoming tumor-specific T-cell tolerance after stem cell transplantation. Blood 113(21):5330-9. [PubMed: 19279333]  [MGI Ref ID J:148951]

Huang X; Yang Y. 2006. The fate of effector CD8 T cells in vivo is controlled by the duration of antigen stimulation. Immunology 118(3):361-71. [PubMed: 16827897]  [MGI Ref ID J:111931]

Janicki CN; Jenkinson SR; Williams NA; Morgan DJ. 2008. Loss of CTL function among high-avidity tumor-specific CD8+ T cells following tumor infiltration. Cancer Res 68(8):2993-3000. [PubMed: 18413769]  [MGI Ref ID J:133958]

Kim TS; Hufford MM; Sun J; Fu YX; Braciale TJ. 2010. Antigen persistence and the control of local T cell memory by migrant respiratory dendritic cells after acute virus infection. J Exp Med 207(6):1161-72. [PubMed: 20513748]  [MGI Ref ID J:163416]

Kousis PC; Henderson BW; Maier PG; Gollnick SO. 2007. Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res 67(21):10501-10. [PubMed: 17974994]  [MGI Ref ID J:127142]

Kovalovsky D; Yu Y; Dose M; Emmanouilidou A; Konstantinou T; Germar K; Aghajani K; Guo Z; Mandal M; Gounari F. 2009. Beta-catenin/Tcf determines the outcome of thymic selection in response to alphabetaTCR signaling. J Immunol 183(6):3873-84. [PubMed: 19717519]  [MGI Ref ID J:152395]

Kreiter S; Selmi A; Diken M; Koslowski M; Britten CM; Huber C; Tureci O; Sahin U. 2010. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70(22):9031-40. [PubMed: 21045153]  [MGI Ref ID J:166704]

Kreuwel HT; Morgan DJ; Krahl T; Ko A; Sarvetnick N; Sherman LA. 1999. Comparing the relative role of perforin/granzyme versus Fas/Fas ligand cytotoxic pathways in CD8+ T cell-mediated insulin-dependent diabetes mellitus. J Immunol 163(8):4335-41. [PubMed: 10510373]  [MGI Ref ID J:100013]

Langlois RA; Legge KL. 2010. Plasmacytoid dendritic cells enhance mortality during lethal influenza infections by eliminating virus-specific CD8 T cells. J Immunol 184(8):4440-6. [PubMed: 20220091]  [MGI Ref ID J:160053]

Lin KL; Suzuki Y; Nakano H; Ramsburg E; Gunn MD. 2008. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J Immunol 180(4):2562-72. [PubMed: 18250467]  [MGI Ref ID J:131979]

Lu Z; Yuan L; Zhou X; Sotomayor E; Levitsky HI; Pardoll DM. 2000. CD40-independent pathways of T cell help for priming of CD8(+) cytotoxic T lymphocytes. J Exp Med 191(3):541-50. [PubMed: 10662799]  [MGI Ref ID J:115118]

Lyman MA; Aung S; Biggs JA; Sherman LA. 2004. A spontaneously arising pancreatic tumor does not promote the differentiation of naive CD8+ T lymphocytes into effector CTL. J Immunol 172(11):6558-67. [PubMed: 15153470]  [MGI Ref ID J:90532]

Magnusson FC; Liblau RS; von Boehmer H; Pittet MJ; Lee JW; Turley SJ; Khazaie K. 2008. Direct presentation of antigen by lymph node stromal cells protects against CD8 T-cell-mediated intestinal autoimmunity. Gastroenterology 134(4):1028-37. [PubMed: 18395084]  [MGI Ref ID J:136124]

Marangoni F; Murooka TT; Manzo T; Kim EY; Carrizosa E; Elpek NM; Mempel TR. 2013. The Transcription Factor NFAT Exhibits Signal Memory during Serial T Cell Interactions with Antigen-Presenting Cells. Immunity 38(2):237-49. [PubMed: 23313588]  [MGI Ref ID J:193241]

Marigo I; Bosio E; Solito S; Mesa C; Fernandez A; Dolcetti L; Ugel S; Sonda N; Bicciato S; Falisi E; Calabrese F; Basso G; Zanovello P; Cozzi E; Mandruzzato S; Bronte V. 2010. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32(6):790-802. [PubMed: 20605485]  [MGI Ref ID J:162002]

Matsumura S; Wang B; Kawashima N; Braunstein S; Badura M; Cameron TO; Babb JS; Schneider RJ; Formenti SC; Dustin ML; Demaria S. 2008. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol 181(5):3099-107. [PubMed: 18713980]  [MGI Ref ID J:138960]

McGill J; Van Rooijen N; Legge KL. 2010. IL-15 trans-presentation by pulmonary dendritic cells promotes effector CD8 T cell survival during influenza virus infection. J Exp Med 207(3):521-34. [PubMed: 20212069]  [MGI Ref ID J:158808]

Morgan DJ; Kreuwel HT; Fleck S; Levitsky HI; Pardoll DM; Sherman LA. 1998. Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160(2):643-51. [PubMed: 9551898]  [MGI Ref ID J:45169]

Morgan DJ; Kurts C; Kreuwel HT; Holst KL; Heath WR; Sherman LA. 1999. Ontogeny of T cell tolerance to peripherally expressed antigens. Proc Natl Acad Sci U S A 96(7):3854-8. [PubMed: 10097127]  [MGI Ref ID J:109899]

Morgan DJ; Liblau R; Scott B; Fleck S; McDevitt HO; Sarvetnick N; Lo D; Sherman LA. 1996. CD8(+) T cell-mediated spontaneous diabetes in neonatal mice. J Immunol 157(3):978-83. [PubMed: 8757600]  [MGI Ref ID J:99756]

Morgan DJ; Nugent CT; Raveney BJ; Sherman LA. 2004. In a transgenic model of spontaneous autoimmune diabetes, expression of a protective class II MHC molecule results in thymic deletion of diabetogenic CD8+ T cells. J Immunol 172(2):1000-8. [PubMed: 14707073]  [MGI Ref ID J:100010]

Novy P; Huang X; Leonard WJ; Yang Y. 2011. Intrinsic IL-21 Signaling Is Critical for CD8 T Cell Survival and Memory Formation in Response to Vaccinia Viral Infection. J Immunol 186(5):2729-38. [PubMed: 21257966]  [MGI Ref ID J:169411]

Novy P; Quigley M; Huang X; Yang Y. 2007. CD4 T cells are required for CD8 T cell survival during both primary and memory recall responses. J Immunol 179(12):8243-51. [PubMed: 18056368]  [MGI Ref ID J:155035]

Pang S; Zhang L; Wang H; Yi Z; Li L; Gao L; Zhao J; Tisch R; Katz JD; Wang B. 2009. CD8(+) T cells specific for beta cells encounter their cognate antigens in the islets of NOD mice. Eur J Immunol 39(10):2716-24. [PubMed: 19658094]  [MGI Ref ID J:153282]

Patten PA; Rock EP; Sonoda T; Fazekas de St Groth B; Jorgensen JL; Davis MM. 1993. Transfer of putative complementarity-determining region loops of T cell receptor V domains confers toxin reactivity but not peptide/MHC specificity. J Immunol 150(6):2281-94. [PubMed: 7680688]  [MGI Ref ID J:90982]

Pletneva M; Fan H; Park JJ; Radojcic V; Jie C; Yu Y; Chan C; Redwood A; Pardoll D; Housseau F. 2009. IFN-producing killer dendritic cells are antigen-presenting cells endowed with t-cell cross-priming capacity. Cancer Res 69(16):6607-14. [PubMed: 19679552]  [MGI Ref ID J:151929]

Quigley M; Huang X; Yang Y. 2008. STAT1 signaling in CD8 T cells is required for their clonal expansion and memory formation following viral infection in vivo. J Immunol 180(4):2158-64. [PubMed: 18250422]  [MGI Ref ID J:131918]

Quigley M; Martinez J; Huang X; Yang Y. 2009. A critical role for direct TLR2-MyD88 signaling in CD8 T-cell clonal expansion and memory formation following vaccinia viral infection. Blood 113(10):2256-64. [PubMed: 18948575]  [MGI Ref ID J:146096]

Redmond WL; Marincek BC; Sherman LA. 2005. Distinct requirements for deletion versus anergy during CD8 T cell peripheral tolerance in vivo. J Immunol 174(4):2046-53. [PubMed: 15699134]  [MGI Ref ID J:100009]

Redmond WL; Wei CH; Kreuwel HT; Sherman LA. 2008. The apoptotic pathway contributing to the deletion of naive CD8 T cells during the induction of peripheral tolerance to a cross-presented self-antigen. J Immunol 180(8):5275-82. [PubMed: 18390708]  [MGI Ref ID J:134242]

Saxena A; Bauer J; Scheikl T; Zappulla J; Audebert M; Desbois S; Waisman A; Lassmann H; Liblau RS; Mars LT. 2008. Cutting edge: Multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes. J Immunol 181(3):1617-21. [PubMed: 18641296]  [MGI Ref ID J:137838]

Saxena A; Desbois S; Carrie N; Lawand M; Mars LT; Liblau RS. 2012. Tc17 CD8+ T cells potentiate Th1-mediated autoimmune diabetes in a mouse model. J Immunol 189(6):3140-9. [PubMed: 22904307]  [MGI Ref ID J:189912]

Scheikl T; Pignolet B; Dalard C; Desbois S; Raison D; Yamazaki M; Saoudi A; Bauer J; Lassmann H; Hardin-Pouzet H; Liblau RS. 2012. Cutting edge: neuronal recognition by CD8 T cells elicits central diabetes insipidus. J Immunol 188(10):4731-5. [PubMed: 22504649]  [MGI Ref ID J:188672]

Sepulveda H; Cerwenka A; Morgan T; Dutton RW. 1999. CD28, IL-2-independent costimulatory pathways for CD8 T lymphocyte activation. J Immunol 163(3):1133-42. [PubMed: 10415007]  [MGI Ref ID J:118773]

Shanker A; Brooks AD; Jacobsen KM; Wine JW; Wiltrout RH; Yagita H; Sayers TJ. 2009. Antigen presented by tumors in vivo determines the nature of CD8+ T-cell cytotoxicity. Cancer Res 69(16):6615-23. [PubMed: 19654302]  [MGI Ref ID J:151764]

Sinha P; Clements VK; Fulton AM; Ostrand-Rosenberg S. 2007. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507-13. [PubMed: 17483367]  [MGI Ref ID J:121303]

Sinha P; Okoro C; Foell D; Freeze HH; Ostrand-Rosenberg S; Srikrishna G. 2008. Proinflammatory s100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666-75. [PubMed: 18802069]  [MGI Ref ID J:141292]

Stoklasek TA; Colpitts SL; Smilowitz HM; Lefrancois L. 2010. MHC Class I and TCR Avidity Control the CD8 T Cell Response to IL-15/IL-15R{alpha} Complex. J Immunol 185(11):6857-65. [PubMed: 21041729]  [MGI Ref ID J:166134]

Sun J; Dodd H; Moser EK; Sharma R; Braciale TJ. 2011. CD4(+) T cell help and innate-derived IL-27 induce Blimp-1-dependent IL-10 production by antiviral CTLs. Nat Immunol 12(4):327-34. [PubMed: 21297642]  [MGI Ref ID J:170347]

Tosiek MJ; Bader SR; Gruber AD; Buer J; Gereke M; Bruder D. 2012. CD8(+) T cells responding to alveolar self-antigen lack CD25 expression and fail to precipitate autoimmunity. Am J Respir Cell Mol Biol 47(6):869-78. [PubMed: 22984087]  [MGI Ref ID J:204043]

Tosiek MJ; Gruber AD; Bader SR; Mauel S; Hoymann HG; Prettin S; Tschernig T; Buer J; Gereke M; Bruder D. 2011. CD4+CD25+Foxp3+ Regulatory T Cells Are Dispensable for Controlling CD8+ T Cell-Mediated Lung Inflammation. J Immunol 186(11):6106-18. [PubMed: 21518973]  [MGI Ref ID J:173195]

Uhl M; Kepp O; Jusforgues-Saklani H; Vicencio JM; Kroemer G; Albert ML. 2009. Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 16(7):991-1005. [PubMed: 19229247]  [MGI Ref ID J:164191]

VanOosten RL; Griffith TS. 2007. Activation of tumor-specific CD8+ T Cells after intratumoral Ad5-TRAIL/CpG oligodeoxynucleotide combination therapy. Cancer Res 67(24):11980-90. [PubMed: 18089829]  [MGI Ref ID J:129272]

Wada S; Yoshimura K; Hipkiss EL; Harris TJ; Yen HR; Goldberg MV; Grosso JF; Getnet D; Demarzo AM; Netto GJ; Anders R; Pardoll DM; Drake CG. 2009. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res 69(10):4309-18. [PubMed: 19435909]  [MGI Ref ID J:148472]

Wallet MA; Sen P; Flores RR; Wang Y; Yi Z; Huang Y; Mathews CE; Earp HS; Matsushima G; Wang B; Tisch R. 2008. MerTK is required for apoptotic cell-induced T cell tolerance. J Exp Med 205(1):219-32. [PubMed: 18195070]  [MGI Ref ID J:131291]

Wei CH; Sherman LA. 2007. N-terminal trimer extension of nominal CD8 T cell epitopes is sufficient to promote cross-presentation to cognate CD8 T cells in vivo. J Immunol 179(12):8280-6. [PubMed: 18056372]  [MGI Ref ID J:155198]

Winau F; Hegasy G; Weiskirchen R; Weber S; Cassan C; Sieling PA; Modlin RL; Liblau RS; Gressner AM; Kaufmann SH. 2007. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 26(1):117-29. [PubMed: 17239632]  [MGI Ref ID J:118321]

Witherden DA; Watanabe M; Garijo O; Rieder SE; Sarkisyan G; Cronin SJ; Verdino P; Wilson IA; Kumanogoh A; Kikutani H; Teyton L; Fischer WH; Havran WL. 2012. The CD100 Receptor Interacts with Its Plexin B2 Ligand to Regulate Epidermal gammadelta T Cell Function. Immunity 37(2):314-25. [PubMed: 22902232]  [MGI Ref ID J:187369]

Woo SR; Turnis ME; Goldberg MV; Bankoti J; Selby M; Nirschl CJ; Bettini ML; Gravano DM; Vogel P; Liu CL; Tangsombatvisit S; Grosso JF; Netto G; Smeltzer MP; Chaux A; Utz PJ; Workman CJ; Pardoll DM; Korman AJ; Drake CG; Vignali DA. 2012. Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-cell Function to Promote Tumoral Immune Escape. Cancer Res 72(4):917-927. [PubMed: 22186141]  [MGI Ref ID J:181097]

Yi Z; Li L; Garland A; He Q; Wang H; Katz JD; Tisch R; Wang B. 2012. IFN-gamma receptor deficiency prevents diabetes induction by diabetogenic CD4+, but not CD8+, T cells. Eur J Immunol 42(8):2010-8. [PubMed: 22865049]  [MGI Ref ID J:187880]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2525.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3283.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

General Supply Notes

Control Information

  Control
   001976 NOD/ShiLtJ
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)