Strain Name:

B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J

Stock Number:

005895

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Use Restrictions Apply, see Terms of Use
Common Names: B10.D2 Clone 1 Thy 1.1;     B10D2.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J;    
These Clone-1 TCR (also called Clone 1 Thy1.1 TCR or Cl.1 TCR) transgenic mice were designed to optimize conditions for tumor eradication by low avidity tumor-specific T cells and may also be useful in general studies of T cell avidity, tolerance, positive/negative selection, and activation.

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Type Coisogenic; Congenic; Major Histocompatibility Congenic; Mutant Strain; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
GenerationN8+N1F4pN1
Generation Definitions
 
Donating Investigator Linda Sherman,   The Scripps Research Institute

Description
Male mice that are hemizygous for the Clone-1 TCR (also called Clone 1 Thy1.1 TCR or Cl.1 TCR) transgene are viable, fertile, and normal in size. Females are very weak and have low fecundity. The donating investigator reports that all transgenic mice are prone to tumor development by 5-6 months of age. The transgene encodes a rearranged low avidity T cell receptor that recognizes an influenza virus hemagglutinin epitope (HA518-526) restricted by MHC class I H-2Kd. Flow cytometric analysis shows appropriate skewing towards the CD8+ T cell compartment in thymocytes and peripheral lymphocytes. Both naive and activated clone 1 T cells exhibit decreased responsiveness when presented with their cognate antigen in vitro and when transferred into mice expressing HA on pancreatic beta cells. CD8+ T cells can be induced to exhibit both effector function and antitumor activity. This mouse is further modified with the Thy1.1 allele, rather than the alternate allele present in C57BL/10, DBA/2, and BALB/c mice. Thus, cell populations derived from these transgenic mice can be distinguished from syngeneic host and other mice with the alternate allele via flow cytometry. These Clone-1 TCR (also called Clone 1 Thy1.1 TCR or Cl.1 TCR) transgenic mice were designed to optimize conditions for tumor eradication by low avidity tumor-specific T cells and may also be useful in general studies of T cell avidity, tolerance, positive/negative selection, and activation.

Of note, Clone-1 TCR mice are also available on a BALB/cByJ congenic background (see Stock No. 005922).

Development
A low avidity influenza hemagglutinin (HA)-specific CD8+ T cell clone (Clone 1) was expanded from the tolerant repertoire of a transgenic mouse expressing HA as a self-antigen on insulin-producing beta cells of the pancreatic islets (InsHA mouse). This T cell receptor sequence, specific for influenza virus HA518-526 epitope restricted by MHC class I H-2Kd, was cloned into Tcra-V1,Tcra-J(J11) and Tcrb-V8.2,Tcrb-D,Tcrb-J(J2.4) expression vectors. The facility generating this mutant used "B10D2/nSnJ" mice derived from Stock No. 000463 as founder stock. The constructs were co-injected into fertilized B10D2/nSnJ eggs. Transgenic mice were bred to B10D2/nSnJ mice for 8 generations. Thereafter, transgenic mice were bred to B10D2/nSnJ mice homozygous for the Thy1a allele (coding for the Thy1.1 leukocyte alloantigen) to generate transgenic mice homozygous for Thy1a. Upon arrival at The Jackson Laboratory, transgenic Thy1a/a males were bred with Stock No. 000463 or wildtype sibling (Thy1.1 positive) females to generate Clone 1 transgene positive Thy1.1 positive mice.

Control Information

  Control
   Noncarrier
 
  Considerations for Choosing Controls

Related Strains

View Strains carrying   H2d     (15 strains)

View Strains carrying   Thy1a     (19 strains)

Strains carrying   Tg(TcraCl1,TcrbCl1)1Shrm allele
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
View Strains carrying   Tg(TcraCl1,TcrbCl1)1Shrm     (1 strain)

Strains carrying other alleles of H2
006500   129.NOD-(D17Mit175-H2)/J
001649   A.BY H2bc H2-T18f/SnJ-Dstncorn1/J
000140   A.BY-H2bc H2-T18f/SnJ
000472   A.CA-H2f H2-T18a/SnJ
000471   A.SW-H2s H2-T18b/SnJ
001066   A.TH-H2t2/SfDvEgMobJ
001067   A.TL-H2t1/SfDvEgMobJ
002089   AK.B6-H2b Fv1b/J
002090   AK.B6-H2b/J
001094   AK.L-H2b/1CyTyJ
001095   AK.L-H2oz2/CyJ
001096   AK.L-H2oz3/CyJ
000470   AK.M-H2m H2-T18a/nSnJ
003851   ALR.NOD-(D17Mit30-D17Mit123)/Lt
000469   B10.A-H2a H2-T18a/SgSnJ
000468   B10.A-H2h2/(2R)SgSnJ
001150   B10.A-H2h4/(4R)SgDvEgJ
001149   B10.A-H2i3/(3R)SgDvEgJ
000467   B10.A-H2i5 H2-T18a/(5R)SgSnJ
000466   B10.AKM-H2m H2-T18a/SnJ
001954   B10.AQR-H2y1/KljMcdJ
000465   B10.BR-H2k2 H2-T18a/SgSnJ
004804   B10.BR-H2k2 H2-T18a/SgSnJJrep
010514   B10.Cg-H2g Tg(Cd4-Klra1)6295Dl/J
006446   B10.Cg-H2h4 Sh3pxd2bnee/GrsrJ
006102   B10.Cg-H2k Tg(Il2/NFAT-luc)83Rinc/J
006100   B10.Cg-H2k Tg(NFkB/Fos-luc)26Rinc/J
002024   B10.D1-H2q/SgJ
001163   B10.D2-H2bm23/EgJ
001164   B10.D2-H2dm1/EgJ
001151   B10.D2-H2g3/(103R)EgJ
001153   B10.D2-H2i7/(107R)EgJ
001152   B10.D2-H2ia/(106R)EgJ
000464   B10.DA-H2qp1 H2-T18b/(80NS)SnJ
001823   B10.F-H2bp5/(14R)J
001818   B10.F-H2pb1/(13R)J
001012   B10.HTG-H2g/2CyJ
000999   B10.HTG-H2g/3CyJ
001894   B10.LG-H2ar1/J
000459   B10.M-H2f H2-T18a?/SnJ
002225   B10.M-H2f/nMob Fmn1ld-2J/J
001068   B10.M-H2f/nMobJ
000739   B10.M-H2fm2/MobJ
001154   B10.MBR-H2bq1/SxEgJ
010972   B10.NOD-(rs13459151-rs13483054)/1107MrkJ
001825   B10.P-H2kp1/(10R)SgJ
003199   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRA)B1Jg/J
003200   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRB)C14Jg/J
000458   B10.PL-H2u H2-T18a/(73NS)SnJ
000457   B10.RIII-H2r H2-T18b/(71NS)SnJ
001069   B10.RIII-H2r/(71NS)nMobJ
001760   B10.S-H2as1/(8R)/J
001953   B10.S-H2s/SgMcdJ
001817   B10.S-H2sm1/(12R)SgJ
001650   B10.S-H2t4/(9R)/J
000456   B10.SM H2v H2-T18b/(70NS)Sn-cw/J
001155   B10.T-H2y2/(6R)SgDvEgJ
000445   B10.WB-H2j H2-T18b/SnJ
000444   B10.Y-H2pa H2-T18c/SnJ
003483   B6 x B10.D1-H2q/SgJ-Nox3het-2J/J
003561   B6 x B10.PL-H2u/(73NS)Sn-Hxl/J
002995   B6 x C.B10-H2b/LiMcdJ-Fbn2fp-2J/J
003584   B6.129S2-H2dlAb1-Ea/J
001148   B6.AK-H2k/FlaEgJ
001895   B6.AK-H2k/J
001160   B6.C-H2bm10/KhEgJ
001161   B6.C-H2bm11/KhEgJ
000364   B6.C-H2bm2/ByJ
000369   B6.C-H2bm4/ByJ
001158   B6.C-H2bm7/KhEgJ
001429   B6.C-H2g6/J
005715   B6.Cg H2g7-Tg(Ins2-CD80)3B7Flv/LwnJ
007958   B6.Cg-H2b3/FlaCmwJ
007959   B6.Cg-H2b4/FlaCmwJ
005717   B6.Cg-Sostdc1shk H2g7/GrsrJ
003068   B6.NOD-(Csf2-D11Mit42) (D17Mit21-D17Mit10)/J
004554   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRaAI4)1Dvs/DvsJ
004555   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRbAI4)1Dvs/DvsJ
003300   B6.NOD-(D17Mit21-D17Mit10)/LtJ
003069   B6.NOD-(D1Mit3-Bcl2) (D17Mit21-D17Mit10)/LtJ
003071   B6.NOD-(D1Mit5.1-D1Mit15) (D17Mit21-D17Mit10)/J
003067   B6.NOD-(D3Mit132-Tshb) (D17Mit21-D17Mit10)/J
003066   B6.NOD-(D6Mit54-D6Mit14) (D17Mit21-D17Mit10)/J
024949   B6.NOD-(D11Mit167) H2g7/DvsJ
025223   B6.NOD-(D11Mit167-D11Mit48) H2g7/DvsJ
000944   B6.SJL-H2b C3c/2CyJ
000966   B6.SJL-H2s C3c/1CyJ
000945   B6.SW/1CyJ
003374   B6;129S2-H2dlAb1-Ea/J
003240   B6;B10.A-H2a-Tg(H2KmPCC)2939Stoe/J
002844   BALB.5R-H2i5/LilJ
001165   BALB/c-H2dm2/KhEgJ
001041   BKS.B6-H2b/J
001892   BRVR.B10-H2b/J
002845   C.B-H2b Tg(H2-Dd)D8Gja/LilJ
001952   C.B10-H2b/LilMcdJ
001768   C3.Cg-Irs1Sml H2b/GrsrJ
000443   C3.HTG-H2g H2-T18b?/SnJ
000441   C3.JK-H2j H2-T18b/SnJ
000440   C3.LG-H2ar1/CkcCyJ
000439   C3.NB-H2p H2-T18c?/SnJ
000438   C3.SW-H2b/SnJ
000473   C3H-H2o2 C4bb/SfSnJ
001156   C57BL/6J-H2bm3/EgJ
001157   C57BL/6Kh-H2bm5/KhEgJ
000436   D1.DA-H2qp1/SnJ
000435   D1.LP-H2b H2-T18b?/SnJ
000434   LP.RIII-H2r H2-T18b/SnJ
001383   LT.MA-Glo1b H2k/J
002591   NOD.B10Sn-H2b/J
006935   NOD.Cg-H2b thnh/J
004447   NOD.Cg-H2h4/DilTacUmmJ
001626   NOD.NON-H2nb1/LtJ
002032   NOD.SW-H2q/J
001976   NOD/ShiLtJ
001627   NON.NOD-H2g7/LtJ
001308   STOCK H2473a/J
View Strains carrying other alleles of H2     (117 strains)

Strains carrying other alleles of Tcra
005308   B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003199   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRA)B1Jg/J
002116   B6.129S2-Tcratm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005023   B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
004554   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRaAI4)1Dvs/DvsJ
002115   B6;129S2-Tcratm1Mom/J
004694   B6;D2-Tg(TcrLCMV)327Sdz/JDvsJ
002408   B6;SJL-Tg(TcrAND)53Hed/J
007848   BXSB.129P2(Cg)-Tcratm1Mjo/TheoJ
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002045   C.SJL-Tcrac/SlkJ
002047   C.SJL-Tcrba Tcrac/SlkJ
014639   C57BL/6-Tg(Cd4-TcraDN32D3)1Aben/J
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
005307   CBy.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
004444   NOD.129P2(C)-Tcratm1Mjo/DoiJ
006436   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcraAI4)1Dvs/DvsJ
004257   NOD.Cg-Prkdcscid Tg(TcrLCMV)327Sdz/DvsJ
004347   NOD.Cg-Rag1tm1Mom Tg(TcraAI4)1Dvs/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
005686   NOD.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
004696   NOD.Cg-Tg(TcrLCMV)327Sdz/DvsJ
004460   NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006303   NOD.FVB-Tg(TcraBDC12-4.1)10Jos/GseJ
004334   NOD/ShiLt-Tg(TcraAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcra     (47 strains)

Strains carrying other alleles of Tcrb
005308   B10.Cg-H2d Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
002761   B10.Cg-Tg(TcrAND)53Hed/J
003147   B10.D2-Hc1 H2d H2-T18c/nSnJ-Tg(DO11.10)10Dlo/J
003200   B10.PL-H2u H2-T18a/(73NS)Sn-Tg(TCRB)C14Jg/J
002122   B6.129P2-Tcrbtm1Mom Tcrdtm1Mom/J
002118   B6.129P2-Tcrbtm1Mom/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
008684   B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005023   B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
005655   B6.Cg-Tg(Tcra,Tcrb)3Ayr/J
008428   B6.Cg-Tg(Tcra,Tcrb)HRCAll/J
008429   B6.Cg-Tg(Tcra,Tcrb)HRVAll/J
008006   B6.Cg-Tg(Tcra51-11.5,Tcrb51-11.5)AR206Ayr/J
004194   B6.Cg-Tg(TcraTcrb)425Cbn/J
005236   B6.Cg-Tg(TcraY1,TcrbY1)416Tev/J
008430   B6.Cg-Tg(Tcrb)HRBAll/J
004555   B6.NOD-(D17Mit21-D17Mit10) Tg(TCRbAI4)1Dvs/DvsJ
002121   B6;129P-Tcrbtm1Mom Tcrdtm1Mom/J
002117   B6;129P2-Tcrbtm1Mom/J
004694   B6;D2-Tg(TcrLCMV)327Sdz/JDvsJ
002408   B6;SJL-Tg(TcrAND)53Hed/J
021880   BXSB.B6-Tg(TcraTcrb)1100Mjb/DcrJ
004364   C.Cg-Tcratm1Mom Tcrbtm1Mom/J
003303   C.Cg-Tg(DO11.10)10Dlo/J
002047   C.SJL-Tcrba Tcrac/SlkJ
002046   C.SJL-Tcrba/SlkJ
011005   C57BL/6-Tg(H2-Kb-Tcra,-Tcrb)P25Ktk/J
006912   C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/J
003831   C57BL/6-Tg(TcraTcrb)1100Mjb/J
003540   C57L/J-Tg(Tcrb)93Vbo/J
005307   CBy.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
007081   CByJ.129P2(B6)-Tcrbtm1Mom/J
005694   D1Lac.Cg-Tg(Tcra,Tcrb)24Efro/J
017314   NOD-Tg(TcraTcrb)2H6Lwn/J
023082   NOD.129P2(Cg)-Tcrbtm1Mom/MnkaJ
006437   NOD.Cg-(Gpi1-D7Mit346)C57BL/6J Tg(TcrbAI4)1Dvs/DvsJ
004257   NOD.Cg-Prkdcscid Tg(TcrLCMV)327Sdz/DvsJ
009377   NOD.Cg-Rag1tm1Mom Tg(TcraBDC12-4.1)10Jos Tg(TcrbBDC12-4.1)82Gse/J
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
005686   NOD.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
004696   NOD.Cg-Tg(TcrLCMV)327Sdz/DvsJ
004460   NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ
010526   NOD.Cg-Tg(TcraTcrbNY4.1)1Pesa/DvsJ
005868   NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ
006304   NOD.FVB-Tg(TcrbBDC12-4.1)82Gse/GseJ
004335   NOD/ShiLt-Tg(TcrbAI4)1Dvs
018030   SJL.Cg-Tg(TcraTcrbVP2)1Bkim/J
002597   STOCK Tg(TcrHEL3A9)1Mmd/J
View Strains carrying other alleles of Tcrb     (49 strains)

Strains carrying other alleles of Thy1
017798   B6.Cg-Mapttm1Hnd Tg(Thy1-MAPT*)3610Gds/Mmjax
009126   B6.Cg-Nos2tm1Lau Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
008730   B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
007901   B6.Cg-Tg(Thy1-Brainbow1.0)HLich/J
007911   B6.Cg-Tg(Thy1-Brainbow1.1)MLich/J
007921   B6.Cg-Tg(Thy1-Brainbow2.1)RLich/J
003710   B6.Cg-Tg(Thy1-CFP)23Jrs/J
014131   B6.Cg-Tg(Thy1-CFP)IJrs/GfngJ
007940   B6.Cg-Tg(Thy1-CFP/COX8A)C1Lich/J
007967   B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich/J
012597   B6.Cg-Tg(Thy1-COL25A1)861Yfu/J
007612   B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J
007615   B6.Cg-Tg(Thy1-COP4/EYFP)9Gfng/J
013161   B6.Cg-Tg(Thy1-Clomeleon)1Gjau/J
007919   B6.Cg-Tg(Thy1-EGFP)OJrs/GfngJ
005630   B6.Cg-Tg(Thy1-EYFP)15Jrs/J
009611   B6.Cg-Tg(Thy1-Nlgn1)6Hnes/J
009612   B6.Cg-Tg(Thy1-Nlgn2)6Hnes/J
021069   B6.Cg-Tg(Thy1-PA-GFP)5Rmpl/J
021070   B6.Cg-Tg(Thy1-PA-GFP)6Rmpl/J
003709   B6.Cg-Tg(Thy1-YFP)16Jrs/J
003782   B6.Cg-Tg(Thy1-YFP)HJrs/J
005627   B6.Cg-Tg(Thy1-YFP/Syp)10Jrs/J
007606   B6.Cg-Tg(Thy1-cre/ERT2,-EYFP)AGfng/J
004807   B6;129-Psen1tm1Mpm Tg(APPSwe,tauP301L)1Lfa/Mmjax
007910   B6;CBA-Tg(Thy1-Brainbow1.0)LLich/J
011070   B6;CBA-Tg(Thy1-EGFP)SJrs/NdivJ
017892   B6;CBA-Tg(Thy1-GCaMP2.2c)8Gfng/J
017893   B6;CBA-Tg(Thy1-GCaMP3)6Gfng/J
014130   B6;CBA-Tg(Thy1-YFP)GJrs/GfngJ
014651   B6;CBA-Tg(Thy1-spH)21Vnmu/J
015814   B6;CBA-Tg(Thy1-spH)64Vnmu/FrkJ
012341   B6;SJL-Tg(Thy1-COP3/EYFP)1Gfng/J
012344   B6;SJL-Tg(Thy1-COP3/EYFP)4Gfng/J
012348   B6;SJL-Tg(Thy1-COP3/EYFP)8Gfng/J
012350   B6;SJL-Tg(Thy1-COP4*H134R/EYFP)20Gfng/J
008004   B6;SJL-Tg(Thy1-ECFP/VAMP2)1Sud/J
012836   B6;SJL-Tg(Thy1-TARDBP)4Singh/J
007610   B6;SJL-Tg(Thy1-cre/ERT2,-EYFP)VGfng/J
012332   B6;SJL-Tg(Thy1-hop/EYFP)2Gfng/J
012334   B6;SJL-Tg(Thy1-hop/EYFP)4Gfng/J
006554   B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
025401   B6SJL-Tg(Thy1-COX8A/Dendra)57Gmnf/J
017590   B6SJL-Tg(Thy1-DCTN1*G59S)M2Pcw/J
007880   B6SJL-Tg(Thy1-Stx1a/EYFP)1Sud/J
007856   B6SJL-Tg(Thy1-Syt1/ECFP)1Sud/J
017589   B6SJL-Tg(Thy1-TARDBP*G298S)S97Pcw/J
024703   C3A.Cg-Pde6b+Tg(Thy1-CFP)23Jrs/SjJ
007027   C57BL/6-Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
010800   C57BL/6-Tg(Thy1-PTGS2)300Kand/J
010703   C57BL/6-Tg(Thy1-PTGS2)303Kand/J
012769   C57BL/6-Tg(Thy1-Sncg)HvP36Putt/J
024339   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.11Dkim/J
025393   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.17Dkim/J
024276   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.5Dkim/J
025776   C57BL/6J-Tg(Thy1-GCaMP6s)GP4.12Dkim/J
024275   C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J
025533   C57BL/6N-Sncatm1Mjff Tg(Thy1-SNCA)15Mjff/J
016936   C57BL/6N-Tg(Thy1-SNCA)12Mjff/J
017682   C57BL/6N-Tg(Thy1-SNCA)15Mjff/J
024704   D2.Cg-Gpnmb+Tg(Thy1-CFP)23Jrs/SjJ
025018   D2.Cg-Gpnmb+Tg(Thy1-YFP)HJrs/SjJ
018671   D2.Cg-Tg(Thy1-CFP)23Jrs/SjJ
024705   D2.Cg-Tg(Thy1-YFP)HJrs/SjJ
025019   D2.Cg-Tg(Thy1-YFP/Syp)10Jrs/SjJ
008230   FVB(Cg)-Tg(Thy1-SOD1*G93A)T3Hgrd/J
006143   FVB/N-Tg(Thy1-cre)1Vln/J
021226   STOCK Tg(Thy1-Brainbow3.1)18Jrs/J
021225   STOCK Tg(Thy1-Brainbow3.1)3Jrs/J
021227   STOCK Tg(Thy1-Brainbow3.2)7Jrs/J
013162   STOCK Tg(Thy1-Clomeleon)12Gjau/J
013163   STOCK Tg(Thy1-Clomeleon)13Gjau/J
007788   STOCK Tg(Thy1-EGFP)MJrs/J
012708   STOCK Tg(Thy1-cre/ERT2,-EYFP)HGfng/PyngJ
View Strains carrying other alleles of Thy1     (74 strains)

Phenotype

Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Tg(TcraCl1,TcrbCl1)1Shrm/0

        B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm
  • immune system phenotype
  • abnormal T cell subpopulation ratio
    • mice hemizygous for this transgene exhibit skewing of thymic and lymph node T cell populations toward the CD8+ compartment   (MGI Ref ID J:97745)
  • reproductive system phenotype
  • abnormal fertility/fecundity
    • pregnant hemizygous female mice usually die before giving birth   (MGI Ref ID J:106230)
  • tumorigenesis
  • increased tumor incidence
    • some, but not all, hemizygous transgenic mice develop tumors at 5-6 months of age   (MGI Ref ID J:106230)
  • hematopoietic system phenotype
  • abnormal T cell subpopulation ratio
    • mice hemizygous for this transgene exhibit skewing of thymic and lymph node T cell populations toward the CD8+ compartment   (MGI Ref ID J:97745)
  • behavior/neurological phenotype
  • weakness
    • female mice hemizygous for this transgene exhibit general physiological weakness   (MGI Ref ID J:106230)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cancer Research
Tumor Resistance

Immunology, Inflammation and Autoimmunity Research
Rearranged Antigen-Specific T Cell Receptor Transgenes

Research Tools
Cancer Research
      anti-tumor activity
Immunology, Inflammation and Autoimmunity Research
      T Cell Receptor Transgenics

H2d related

Immunology, Inflammation and Autoimmunity Research
CD Antigens, Antigen Receptors, and Histocompatibility Markers

Thy1a related

Research Tools
Genetics Research
      Tissue/Cell Markers
      Tissue/Cell Markers: T cell specific surface marker
Immunology, Inflammation and Autoimmunity Research
      T cell specific surface marker

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol H2d
Allele Name d variant
Allele Type Spontaneous
Strain of Originvarious
Gene Symbol and Name H2, histocompatibility-2, MHC
Chromosome 17
Gene Common Name(s) H-2; MHC-II;
General Note The d variant has been observed in the following strains: DBA/2, DBA/2J BALB/c, BALB/cByJ, BALB/cJ, C57BLKS, NZB.
 
Allele Symbol Tg(TcraCl1,TcrbCl1)1Shrm
Allele Name transgene insertion 1, Linda Sherman
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) Clone-1 TCR;
Mutation Made By Linda Sherman,   The Scripps Research Institute
Strain of OriginB10.D2-Hc1 H2d H2-T18c/nSnJ
Expressed Gene Tcra, T cell receptor alpha chain, mouse, laboratory
Expressed Gene Tcrb, T cell receptor beta chain, mouse, laboratory
Promoter Tcra, T cell receptor alpha chain, mouse, laboratory
Promoter Tcrb, T cell receptor beta chain, mouse, laboratory
General Note CD8+ T cells bearing this transgene, when transferred to mice that develop pancreatic tumors expressing influenza virus HA, can be induced to exhibit both effector function and antitumor activity only if HA-responsive CD4+ T cells are co-transferred and the mice are subsequently infected with influenza virus. : J:97745
Molecular Note The transgene encodes a low avidity T cell receptor (TCR) that recognizes the influenza virus hemagglutinin (HA) epitope HA518-526 in the context of the H2-Kd MHC class I molecule. The rearranged Tcra and Tcrb genes, which have joined Valpha1/Jalpha11 and Vbeta8.2/D/Jbeta2.4, respectively, were amplified from cytotoxic T lymphocyte (CTL) clone 1. Clone 1 was derived from a transgenic B10.D2 mouse that expressed influenza virus HA as a self-antigen in pancreatic beta cells, which resulted in production of lower-avidity TCRs than those made by wild-type B10.D2 mice after infection with influenza virus strain A/PR/8/32. [MGI Ref ID J:97745]
 
 
 
Allele Symbol Thy1a
Allele Name a variant
Allele Type Not Applicable
Common Name(s) Thy-1.1; Thy1.1; Thy1a; theta-AKR; thetaAKR;
Site of ExpressionThe Thy1 locus determines a surface antigen present on cells of the thymus, a number of mouse leukemias, brain, and in lesser amounts on lymph node and spleen cells.
Gene Symbol and Name Thy1, thymus cell antigen 1, theta
Chromosome 9
Gene Common Name(s) CD7; CD90; T25; Thy 1.2; Thy-1; Thy-1.2; Thy1.1; Thy1.2; theta;
General Note

The Thy1 locus determines a surface antigen present on cells of the thymus, a number of mouse leukemias, brain, and in lesser amounts on lymph node and spleen cells. The allele Thy1a determines an antigenic specificity, Thy-1.1, found in the AKR and RF strains; the allele Thy1b determines an antigenic specificity, Thy-1.2, found in the C3HeB/Fe and many other strains (J:5243, J:5012, J:4469). The Thy1 antigen is probably present on all T lymphocytes and absent from all B lymphocytes, and it thus serves as a valuable T-cell marker (J:5243). It is very widely used in experiments designed to determine the distribution and function of T-cells. Thy1 specifies a T-cell surface glycoprotein, T25, with a molecular weight of 25 kDa (J:5707). The protein appears to be anchored in the cell membrane by a lipid that is either phosphotidylinositol or closely related to it (J:12016). Thy1 may function in the cell membrane as a signal transduction molecule (J:8333). The Thy1 locus, or possibly a gene closely linked to it, controls quantitative expression of a protein that isthe same size as Thy1 and is expressed on thymus and brain but not on lymph node and spleen cells (J:7900).

Molecular Note The allele Thy1a determines an antigenic specificity, Thy-1.1, found in the AKR and RF strains.

Genotyping

Genotyping Information

Genotyping Protocols

Tg(TcraCl1,TcrbCl1)1Shrm, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Lyman MA; Nugent CT; Marquardt KL; Biggs JA; Pamer EG; Sherman LA. 2005. The fate of low affinity tumor-specific CD8+ T cells in tumor-bearing mice. J Immunol 174(5):2563-72. [PubMed: 15728462]  [MGI Ref ID J:97745]

Additional References

H2d related

Addis-Lieser E; Kohl J; Chiaramonte MG. 2005. Opposing regulatory roles of complement factor 5 in the development of bleomycin-induced pulmonary fibrosis. J Immunol 175(3):1894-902. [PubMed: 16034133]  [MGI Ref ID J:107269]

Bakir HY; Tomiyama-Miyaji C; Watanabe H; Nagura T; Kawamura T; Sekikawa H; Abo T. 2006. Reasons why DBA/2 mice are resistant to malarial infection: expansion of CD3int B220+ gammadelta T cells with double-negative CD4- CD8- phenotype in the liver. Immunology 117(1):127-35. [PubMed: 16423048]  [MGI Ref ID J:106141]

Bassi EJ; Moraes-Vieira PM; Moreira-Sa CS; Almeida DC; Vieira LM; Cunha CS; Hiyane MI; Basso AS; Pacheco-Silva A; Camara NO. 2012. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes 61(10):2534-45. [PubMed: 22688334]  [MGI Ref ID J:208536]

Bhadra S; Lozano MM; Payne SM; Dudley JP. 2006. Endogenous MMTV Proviruses Induce Susceptibility to Both Viral and Bacterial Pathogens. PLoS Pathog 2(12):e128. [PubMed: 17140288]  [MGI Ref ID J:120299]

Bode J; Dutow P; Sommer K; Janik K; Glage S; Tummler B; Munder A; Laudeley R; Sachse KW; Klos A. 2012. A new role of the complement system: C3 provides protection in a mouse model of lung infection with intracellular Chlamydia psittaci. PLoS One 7(11):e50327. [PubMed: 23189195]  [MGI Ref ID J:194784]

Buhlmann JE; Gonzalez M; Ginther B; Panoskaltsis-Mortari A; Blazar BR; Greiner DL; Rossini AA; Flavell R; Noelle RJ. 1999. Cutting edge: sustained expansion of CD8+ T cells requires CD154 expression by Th cells in acute graft versus host disease. J Immunol 162(8):4373-6. [PubMed: 10201970]  [MGI Ref ID J:119788]

Casati A; Frascoli M; Traggiai E; Proietti M; Schenk U; Grassi F. 2011. Cell-autonomous regulation of hematopoietic stem cell cycling activity by ATP. Cell Death Differ 18(3):396-404. [PubMed: 20798687]  [MGI Ref ID J:186980]

Chiorazzi N; Fox DA; Katz DH. 1977. Hapten-specific IgE antibody responses in mice. VII. Conversion of IgE non-responder strains to IgE responders by elimination of suppressor T cell activity. J Immunol 118(1):48-54. [PubMed: 299762]  [MGI Ref ID J:5739]

Clarke SR; Barnden M; Kurts C; Carbone FR; Miller JF; Heath WR. 2000. Characterization of the ovalbumin-specific TCR transgenic line OT-I: MHC elements for positive and negative selection. Immunol Cell Biol 78(2):110-7. [PubMed: 10762410]  [MGI Ref ID J:133645]

Croxford AL; Akilli-Ozturk O; Rieux-Laucat F; Forster I; Waisman A; Buch T. 2008. MHC-restricted T cell receptor signaling is required for alphabeta TCR replacement of the pre T cell receptor. Eur J Immunol 38(2):391-9. [PubMed: 18203137]  [MGI Ref ID J:131357]

Dalloul AH; Ngo K; Fung-Leung WP. 1996. CD4-negative cytotoxic T cells with a T cell receptor alpha/beta intermediate expression in CD8-deficient mice. Eur J Immunol 26(1):213-8. [PubMed: 8566069]  [MGI Ref ID J:112982]

El-Sawy T; Belperio JA; Strieter RM; Remick DG; Fairchild RL. 2005. Inhibition of polymorphonuclear leukocyte-mediated graft damage synergizes with short-term costimulatory blockade to prevent cardiac allograft rejection. Circulation 112(3):320-31. [PubMed: 15998678]  [MGI Ref ID J:117219]

Fischer Lindahl K. 1997. On naming H2 haplotypes: functional significance of MHC class Ib alleles. Immunogenetics 46(1):53-62. [PubMed: 9148789]  [MGI Ref ID J:41130]

Ford MS; Zhang ZX; Chen W; Zhang L. 2006. Double-negative T regulatory cells can develop outside the thymus and do not mature from CD8+ T cell precursors. J Immunol 177(5):2803-9. [PubMed: 16920915]  [MGI Ref ID J:139556]

Fu G; Vallee S; Rybakin V; McGuire MV; Ampudia J; Brockmeyer C; Salek M; Fallen PR; Hoerter JA; Munshi A; Huang YH; Hu J; Fox HS; Sauer K; Acuto O; Gascoigne NR. 2009. Themis controls thymocyte selection through regulation of T cell antigen receptor-mediated signaling. Nat Immunol 10(8):848-56. [PubMed: 19597499]  [MGI Ref ID J:151074]

Gershwin ME; Castles JJ; Ikeda RM; Erickson K; Montero J. 1979. Studies of congenitally immunologic mutant New Zealand mice. I. Autoimmune features of hereditarily asplenic (Dh/+) NZB mice; reduction of naturally occurring thymocytotoxic antibody and normal suppressor function. J Immunol 122(2):710-7. [PubMed: 310848]  [MGI Ref ID J:12036]

Ghendler Y; Hussey RE; Witte T; Mizoguchi E; Clayton LK; Bhan AK; Koyasu S; Chang HC; Reinherz EL. 1997. Double-positive T cell receptor(high) thymocytes are resistant to peptide/major histocompatibility complex ligand-induced negative selection. Eur J Immunol 27(9):2279-89. [PubMed: 9341770]  [MGI Ref ID J:133112]

Gubbels MR; Jorgensen TN; Metzger TE; Menze K; Steele H; Flannery SA; Rozzo SJ; Kotzin BL. 2005. Effects of MHC and gender on lupus-like autoimmunity in Nba2 congenic mice. J Immunol 175(9):6190-6. [PubMed: 16237116]  [MGI Ref ID J:119371]

Huijbers IJ; Soudja SM; Uyttenhove C; Buferne M; Inderberg-Suso EM; Colau D; Pilotte L; Powis de Tenbossche CG; Chomez P; Brasseur F; Schmitt-Verhulst AM; Van den Eynde BJ. 2012. Minimal tolerance to a tumor antigen encoded by a cancer-germline gene. J Immunol 188(1):111-21. [PubMed: 22140254]  [MGI Ref ID J:180807]

Kerkar SP; Goldszmid RS; Muranski P; Chinnasamy D; Yu Z; Reger RN; Leonardi AJ; Morgan RA; Wang E; Marincola FM; Trinchieri G; Rosenberg SA; Restifo NP. 2011. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 121(12):4746-57. [PubMed: 22056381]  [MGI Ref ID J:184027]

Klein J; Figueroa F; David CS. 1983. H-2 haplotypes, genes and antigens: second listing. II. The H-2 complex. Immunogenetics 17(6):553-96. [PubMed: 6407984]  [MGI Ref ID J:7097]

Knudsen NP; Norskov-Lauritsen S; Dolganov GM; Schoolnik GK; Lindenstrom T; Andersen P; Agger EM; Aagaard C. 2014. Tuberculosis vaccine with high predicted population coverage and compatibility with modern diagnostics. Proc Natl Acad Sci U S A 111(3):1096-101. [PubMed: 24395772]  [MGI Ref ID J:206476]

Krupnick AS; Gelman AE; Barchet W; Richardson S; Kreisel FH; Turka LA; Colonna M; Patterson GA; Kreisel D. 2005. Murine vascular endothelium activates and induces the generation of allogeneic CD4+25+Foxp3+ regulatory T cells. J Immunol 175(10):6265-70. [PubMed: 16272276]  [MGI Ref ID J:119348]

Laky K; Lewis JM; Tigelaar RE; Puddington L. 2003. Distinct requirements for IL-7 in development of TCR gamma delta cells during fetal and adult life. J Immunol 170(8):4087-94. [PubMed: 12682238]  [MGI Ref ID J:125438]

Legge KL; Braciale TJ. 2005. Lymph node dendritic cells control CD8+ T cell responses through regulated FasL expression. Immunity 23(6):649-59. [PubMed: 16356862]  [MGI Ref ID J:113311]

Mendiratta SK; Kovalik JP; Hong S; Singh N; Martin WD; Van Kaer L. 1999. Peptide dependency of alloreactive CD4+ T cell responses. Int Immunol 11(3):351-60. [PubMed: 10221647]  [MGI Ref ID J:110542]

Miyashita N; Migita S; Moriwaki K. 1987. Effects of H-2 complex and non-H-2 background on urethane-induced chromosomal aberrations in mice. Mutat Res 176(1):59-67. [PubMed: 3099189]  [MGI Ref ID J:109945]

Murphy DB. 1986. Overview: the murine MHC. In: Handbook of Experimental Immunology. Vol. 3, Genetic and Molecular Immunology. Blackwell Scientific Publ., Oxford.  [MGI Ref ID J:30731]

Murphy WJ; Raziuddin A; Mason L; Kumar V; Bennett M; Longo DL. 1995. NK cell subsets in the regulation of murine hematopoiesis. I. 5E6+ NK cells promote hematopoietic growth in H-2d strain mice. J Immunol 155(6):2911-7. [PubMed: 7673708]  [MGI Ref ID J:28582]

Nakajima H; Leonard WJ. 1999. Role of Bcl-2 in alpha beta T cell development in mice deficient in the common cytokine receptor gamma-chain: the requirement for Bcl-2 differs depending on the TCR/MHC affinity. J Immunol 162(2):782-90. [PubMed: 9916699]  [MGI Ref ID J:52019]

Oberg L; Johansson S; Michaelsson J; Tomasello E; Vivier E; Karre K; Hoglund P. 2004. Loss or mismatch of MHC class I is sufficient to trigger NK cell-mediated rejection of resting lymphocytes in vivo - role of KARAP/DAP12-dependent and -independent pathways. Eur J Immunol 34(6):1646-53. [PubMed: 15162434]  [MGI Ref ID J:115484]

Ophir E; Or-Geva N; Gurevich I; Tal O; Eidelstein Y; Shezen E; Margalit R; Lask A; Shakhar G; Hagin D; Bachar-Lustig E; Reich-Zeliger S; Beilhack A; Negrin R; Reisner Y. 2013. Murine anti-third-party central-memory CD8(+) T cells promote hematopoietic chimerism under mild conditioning: lymph-node sequestration and deletion of anti-donor T cells. Blood 121(7):1220-8. [PubMed: 23223359]  [MGI Ref ID J:194621]

Porcellini S; Traggiai E; Schenk U; Ferrera D; Matteoli M; Lanzavecchia A; Michalak M; Grassi F. 2006. Regulation of peripheral T cell activation by calreticulin. J Exp Med 203(2):461-71. [PubMed: 16492806]  [MGI Ref ID J:119147]

Poulin LF; Habran C; Stordeur P; Goldman M; McKenzie A; Van Snick J; Renauld JC; Braun MY. 2005. Interleukin-9 stimulates the production of interleukin-5 in CD4+ T cells. Eur Cytokine Netw 16(3):233-9. [PubMed: 16266865]  [MGI Ref ID J:115764]

Reed-Loisel LM; Sullivan BA; Laur O; Jensen PE. 2005. An MHC class Ib-restricted TCR that cross-reacts with an MHC class Ia molecule. J Immunol 174(12):7746-52. [PubMed: 15944277]  [MGI Ref ID J:109978]

Rodrigues OR; Moura RA; Gomes-Pereira S; Santos-Gomes GM. 2006. H-2 complex influences cytokine gene expression in Leishmania infantum-infected macrophages. Cell Immunol 243(2):118-26. [PubMed: 17316586]  [MGI Ref ID J:120728]

Rowland SL; Leahy KF; Halverson R; Torres RM; Pelanda R. 2010. BAFF receptor signaling aids the differentiation of immature B cells into transitional B cells following tonic BCR signaling. J Immunol 185(8):4570-81. [PubMed: 20861359]  [MGI Ref ID J:164719]

Santiago ML; Montano M; Benitez R; Messer RJ; Yonemoto W; Chesebro B; Hasenkrug KJ; Greene WC. 2008. Apobec3 encodes Rfv3, a gene influencing neutralizing antibody control of retrovirus infection. Science 321(5894):1343-6. [PubMed: 18772436]  [MGI Ref ID J:138778]

Schmitt J; Roderfeld M; Sabrane K; Zhang P; Tian Y; Mertens JC; Frei P; Stieger B; Weber A; Mullhaupt B; Roeb E; Geier A. 2012. Complement factor C5 deficiency significantly delays the progression of biliary fibrosis in bile duct-ligated mice. Biochem Biophys Res Commun 418(3):445-50. [PubMed: 22277671]  [MGI Ref ID J:181268]

Sho M; Yamada A; Najafian N; Salama AD; Harada H; Sandner SE; Sanchez-Fueyo A; Zheng XX; Strom TB; Sayegh MH. 2002. Physiological mechanisms of regulating alloimmunity: cytokines, CTLA-4, CD25+ cells, and the alloreactive T cell clone size. J Immunol 169(7):3744-51. [PubMed: 12244168]  [MGI Ref ID J:120408]

Smyth LA; Ratnasothy K; Moreau A; Alcock S; Sagoo P; Meader L; Tanriver Y; Buckland M; Lechler R; Lombardi G. 2013. Tolerogenic Donor-Derived Dendritic Cells Risk Sensitization In Vivo owing to Processing and Presentation by Recipient APCs. J Immunol 190(9):4848-60. [PubMed: 23536635]  [MGI Ref ID J:195514]

Sutton VR; Waterhouse NJ; Browne KA; Sedelies K; Ciccone A; Anthony D; Koskinen A; Mullbacher A; Trapani JA. 2007. Residual active granzyme B in cathepsin C-null lymphocytes is sufficient for perforin-dependent target cell apoptosis. J Cell Biol 176(4):425-33. [PubMed: 17283185]  [MGI Ref ID J:119725]

Ueno T; Habicht A; Clarkson MR; Albin MJ; Yamaura K; Boenisch O; Popoola J; Wang Y; Yagita H; Akiba H; Ansari MJ; Yang J; Turka LA; Rothstein DM; Padera RF; Najafian N; Sayegh MH. 2008. The emerging role of T cell Ig mucin 1 in alloimmune responses in an experimental mouse transplant model. J Clin Invest 118(2):742-51. [PubMed: 18172549]  [MGI Ref ID J:131045]

Varadhachary AS; Monestier M; Salgame P. 2001. Reciprocal induction of IL-10 and IL-12 from macrophages by low-density lipoprotein and its oxidized forms. Cell Immunol 213(1):45-51. [PubMed: 11747355]  [MGI Ref ID J:115363]

Venkatesan P; Finch RG; Wakelin D. 1993. MHC haplotype influences primary Giardia muris infections in H-2 congenic strains of mice. Int J Parasitol 23(5):661-4. [PubMed: 8225770]  [MGI Ref ID J:21687]

Wang L; Han R; Lee I; Hancock AS; Xiong G; Gunn MD; Hancock WW. 2005. Permanent survival of fully MHC-mismatched islet allografts by targeting a single chemokine receptor pathway. J Immunol 175(10):6311-8. [PubMed: 16272282]  [MGI Ref ID J:119345]

Zhang ZX; Yang L; Young KJ; DuTemple B; Zhang L. 2000. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 6(7):782-9. [PubMed: 10888927]  [MGI Ref ID J:118729]

Zhou P; Szot GL; Guo Z; Kim O; He G; Wang J; Grusby MJ; Newell KA; Thistlethwaite JR; Bluestone JA; Alegre ML. 2000. Role of STAT4 and STAT6 signaling in allograft rejection and CTLA4-Ig-mediated tolerance. J Immunol 165(10):5580-7. [PubMed: 11067913]  [MGI Ref ID J:119580]

Zosky GR; Larcombe AN; White OJ; Burchell JT; von Garnier C; Holt PG; Turner DJ; Wikstrom ME; Sly PD; Stumbles PA. 2009. Airway hyperresponsiveness is associated with activated CD4+ T cells in the airways. Am J Physiol Lung Cell Mol Physiol 297(2):L373-9. [PubMed: 19482896]  [MGI Ref ID J:151339]

Thy1a related

Azzi J; Skartsis N; Mounayar M; Magee CN; Batal I; Ting C; Moore R; Riella LV; Ohori S; Abdoli R; Smith B; Fiorina P; Heathcote D; Bakhos T; Ashton-Rickardt PG; Abdi R. 2013. Serine protease inhibitor 6 plays a critical role in protecting murine granzyme B-producing regulatory T cells. J Immunol 191(5):2319-27. [PubMed: 23913965]  [MGI Ref ID J:205809]

Beck PL; Li Y; Wong J; Chen CW; Keenan CM; Sharkey KA; McCafferty DM. 2007. Inducible nitric oxide synthase from bone marrow-derived cells plays a critical role in regulating colonic inflammation. Gastroenterology 132(5):1778-90. [PubMed: 17449036]  [MGI Ref ID J:128325]

Brinkman CC; Rouhani SJ; Srinivasan N; Engelhard VH. 2013. Peripheral tissue homing receptors enable T cell entry into lymph nodes and affect the anatomical distribution of memory cells. J Immunol 191(5):2412-25. [PubMed: 23926324]  [MGI Ref ID J:205788]

Chen TT; Li L; Chung DH; Allen CD; Torti SV; Torti FM; Cyster JG; Chen CY; Brodsky FM; Niemi EC; Nakamura MC; Seaman WE; Daws MR. 2005. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med 202(7):955-65. [PubMed: 16203866]  [MGI Ref ID J:107466]

Cuda CM; Wan S; Sobel ES; Croker BP; Morel L. 2007. Murine lupus susceptibility locus Sle1a controls regulatory T cell number and function through multiple mechanisms. J Immunol 179(11):7439-47. [PubMed: 18025188]  [MGI Ref ID J:154964]

D'Eustachio P; Owens GC; Edelman GM; Cunningham BA. 1985. Chromosomal location of the gene encoding the neural cell adhesion molecule (N-CAM) in the mouse. Proc Natl Acad Sci U S A 82(22):7631-5. [PubMed: 3865183]  [MGI Ref ID J:8111]

Dewals B; Hoving JC; Horsnell WG; Brombacher F. 2010. Control of Schistosoma mansoni egg-induced inflammation by IL-4-responsive CD4(+)CD25(-)CD103(+)Foxp3(-) cells is IL-10-dependent. Eur J Immunol 40(10):2837-47. [PubMed: 20821727]  [MGI Ref ID J:165816]

Divangahi M; Desjardins D; Nunes-Alves C; Remold HG; Behar SM. 2010. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 11(8):751-8. [PubMed: 20622882]  [MGI Ref ID J:162390]

Dolfi DV; Duttagupta PA; Boesteanu AC; Mueller YM; Oliai CH; Borowski AB; Katsikis PD. 2011. Dendritic cells and CD28 costimulation are required to sustain virus-specific CD8+ T cell responses during the effector phase in vivo. J Immunol 186(8):4599-608. [PubMed: 21389258]  [MGI Ref ID J:172460]

Ertelt JM; Buyukbasaran EZ; Jiang TT; Rowe JH; Xin L; Way SS. 2013. B7-1/B7-2 blockade overrides the activation of protective CD8 T cells stimulated in the absence of Foxp3+ regulatory T cells. J Leukoc Biol 94(2):367-76. [PubMed: 23744647]  [MGI Ref ID J:204423]

Fife BT; Griffin MD; Abbas AK; Locksley RM; Bluestone JA. 2006. Inhibition of T cell activation and autoimmune diabetes using a B cell surface-linked CTLA-4 agonist. J Clin Invest 116(8):2252-61. [PubMed: 16886063]  [MGI Ref ID J:113109]

Green MC; Sweet HO. 1975. [Hx - Hm - W.] Mouse News Lett 52:38.  [MGI Ref ID J:13675]

Huang W; Huang F; Kannan AK; Hu J; August A. 2014. ITK tunes IL-4-induced development of innate memory CD8+ T cells in a gammadelta T and invariant NKT cell-independent manner. J Leukoc Biol 96(1):55-63. [PubMed: 24620029]  [MGI Ref ID J:212002]

Inlay MA; Bhattacharya D; Sahoo D; Serwold T; Seita J; Karsunky H; Plevritis SK; Dill DL; Weissman IL. 2009. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev 23(20):2376-81. [PubMed: 19833765]  [MGI Ref ID J:154864]

Kelly LM; Pereira JP; Yi T; Xu Y; Cyster JG. 2011. EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J Immunol 187(6):3026-32. [PubMed: 21844396]  [MGI Ref ID J:179238]

Klebanoff CA; Spencer SP; Torabi-Parizi P; Grainger JR; Roychoudhuri R; Ji Y; Sukumar M; Muranski P; Scott CD; Hall JA; Ferreyra GA; Leonardi AJ; Borman ZA; Wang J; Palmer DC; Wilhelm C; Cai R; Sun J; Napoli JL; Danner RL; Gattinoni L; Belkaid Y; RestifoNP. 2013. Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J Exp Med 210(10):1961-76. [PubMed: 23999499]  [MGI Ref ID J:203429]

Krieg C; Letourneau S; Pantaleo G; Boyman O. 2010. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci U S A 107(26):11906-11. [PubMed: 20547866]  [MGI Ref ID J:161365]

Lee SY; Goverman JM. 2013. The influence of T cell Ig mucin-3 signaling on central nervous system autoimmune disease is determined by the effector function of the pathogenic T cells. J Immunol 190(10):4991-9. [PubMed: 23562810]  [MGI Ref ID J:202569]

Leiter EH. 1998. NOD Mice and Related Strains: Origins, Husbandry and Biology Introduction. In: NOD Mice and Related Strains: Research Applications in Diabetes, AIDS, Cancer, and Other Diseases. RG Landes, Austin.  [MGI Ref ID J:110093]

Mitchell JS; Burbach BJ; Srivastava R; Fife BT; Shimizu Y. 2013. Multistage T cell-dendritic cell interactions control optimal CD4 T cell activation through the ADAP-SKAP55-signaling module. J Immunol 191(5):2372-83. [PubMed: 23918975]  [MGI Ref ID J:205802]

Pauken KE; Jenkins MK; Azuma M; Fife BT. 2013. PD-1, but not PD-L1, expressed by islet-reactive CD4+ T cells suppresses infiltration of the pancreas during type 1 diabetes. Diabetes 62(8):2859-69. [PubMed: 23545706]  [MGI Ref ID J:208973]

REIF AE; ALLEN JM. 1964. THE AKR THYMIC ANTIGEN AND ITS DISTRIBUTION IN LEUKEMIAS AND NERVOUS TISSUES. J Exp Med 120:413-33. [PubMed: 14207060]  [MGI Ref ID J:24839]

Rabenstein H; Behrendt AC; Ellwart JW; Naumann R; Horsch M; Beckers J; Obst R. 2014. Differential kinetics of antigen dependency of CD4+ and CD8+ T cells. J Immunol 192(8):3507-17. [PubMed: 24639353]  [MGI Ref ID J:210002]

Ranheim EA; Tarbell KV; Krogsgaard M; Mallet-Designe V; Teyton L; McDevitt HO; Weissman IL. 2004. Selection of aberrant class II restricted CD8+ T cells in NOD mice expressing a glutamic acid decarboxylase (GAD)65-specific T cell receptor transgene. Autoimmunity 37(8):555-67. [PubMed: 15763918]  [MGI Ref ID J:128250]

Read S; Hogan TV; Zwar TD; Gleeson PA; Van Driel IR. 2007. Prevention of autoimmune gastritis in mice requires extra-thymic T-cell deletion and suppression by regulatory T cells. Gastroenterology 133(2):547-58. [PubMed: 17603058]  [MGI Ref ID J:128303]

Reif AE; Allen JM. 1966. Mouse thymic iso-antigens. Nature 209(22):521-3. [PubMed: 5919593]  [MGI Ref ID J:5012]

Rodeghero R; Cao Y; Olalekan SA; Iwakua Y; Glant TT; Finnegan A. 2013. Location of CD4+ T cell priming regulates the differentiation of Th1 and Th17 cells and their contribution to arthritis. J Immunol 190(11):5423-35. [PubMed: 23630349]  [MGI Ref ID J:204778]

Sercan O; Stoycheva D; Hammerling GJ; Arnold B; Schuler T. 2010. IFN-gamma receptor signaling regulates memory CD8+ T cell differentiation. J Immunol 184(6):2855-62. [PubMed: 20164422]  [MGI Ref ID J:160112]

Uhl M; Kepp O; Jusforgues-Saklani H; Vicencio JM; Kroemer G; Albert ML. 2009. Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 16(7):991-1005. [PubMed: 19229247]  [MGI Ref ID J:164191]

Voehringer D; Liang HE; Locksley RM. 2008. Homeostasis and effector function of lymphopenia-induced 'memory-like' T cells in constitutively T cell-depleted mice. J Immunol 180(7):4742-53. [PubMed: 18354198]  [MGI Ref ID J:133382]

Wang L; Jameson SC; Hogquist KA. 2009. Epidermal Langerhans cells are not required for UV-induced immunosuppression. J Immunol 183(9):5548-53. [PubMed: 19843938]  [MGI Ref ID J:156799]

Wuthrich M; Ersland K; Pick-Jacobs JC; Gern BH; Frye CA; Sullivan TD; Brennan MB; Filutowicz HI; O'Brien K; Korthauer KD; Schultz-Cherry S; Klein BS. 2012. Limited model antigen expression by transgenic fungi induces disparate fates during differentiation of adoptively transferred T cell receptor transgenic CD4+ T cells: robust activation and proliferation with weak effector function during recall. Infect Immun 80(2):787-97. [PubMed: 22124658]  [MGI Ref ID J:180817]

Wuthrich M; Warner T; Klein BS. 2005. IL-12 is required for induction but not maintenance of protective, memory responses to Blastomyces dermatitidis: implications for vaccine development in immune-deficient hosts. J Immunol 175(8):5288-97. [PubMed: 16210634]  [MGI Ref ID J:119110]

Xiao Z; Mescher MF; Jameson SC. 2007. Detuning CD8 T cells: down-regulation of CD8 expression, tetramer binding, and response during CTL activation. J Exp Med 204(11):2667-77. [PubMed: 17954566]  [MGI Ref ID J:126126]

Ysebrant de Lendonck L; Tonon S; Nguyen M; Vandevenne P; Welsby I; Martinet V; Molle C; Charbonnier LM; Leo O; Goriely S. 2013. Interferon regulatory factor 3 controls interleukin-17 expression in CD8 T lymphocytes. Proc Natl Acad Sci U S A 110(34):E3189-97. [PubMed: 23918362]  [MGI Ref ID J:200677]

Yu Y; Cho HI; Wang D; Kaosaard K; Anasetti C; Celis E; Yu XZ. 2013. Adoptive Transfer of Tc1 or Tc17 Cells Elicits Antitumor Immunity against Established Melanoma through Distinct Mechanisms. J Immunol 190(4):1873-81. [PubMed: 23315072]  [MGI Ref ID J:193239]

Zaleski M; Klein J. 1974. Immune response of mice to Thy-1. 1 antigen: genetic control by alleles at the Ir-5 locus loosely linked to the H-2 complex. J Immunol 113(4):1170-7. [PubMed: 4606643]  [MGI Ref ID J:5487]

Zaleski MB. 1975. Immune response of mice to the Thy-1.1 antigen: effect of the Ir-5 alleles studies in 129/J and B10.129(6M) mice Immunogenetics 2:241-8.  [MGI Ref ID J:30773]

Zecher D; Li Q; Oberbarnscheidt MH; Demetris AJ; Shlomchik WD; Rothstein DM; Lakkis FG. 2010. NK cells delay allograft rejection in lymphopenic hosts by downregulating the homeostatic proliferation of CD8+ T cells. J Immunol 184(12):6649-57. [PubMed: 20483732]  [MGI Ref ID J:161405]

Tg(TcraCl1,TcrbCl1)1Shrm related

Janicki CN; Jenkinson SR; Williams NA; Morgan DJ. 2008. Loss of CTL function among high-avidity tumor-specific CD8+ T cells following tumor infiltration. Cancer Res 68(8):2993-3000. [PubMed: 18413769]  [MGI Ref ID J:133958]

Liu K; Anthony BA; Yearsly MM; Hamadani M; Gaughan A; Wang JJ; Devine SM; Hadley GA. 2011. CD103 deficiency prevents graft-versus-host disease but spares graft-versus-tumor effects mediated by alloreactive CD8 T cells. PLoS One 6(7):e21968. [PubMed: 21779359]  [MGI Ref ID J:175791]

Sherman L; Trenney RL. 2006. Overt phenotype of mice transgenic for CD8<sup>+</sup> Clone 1 T cell receptor Personal Communication :.  [MGI Ref ID J:106230]

Health & husbandry

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, breed female Stock No. 000463 to trangenic positive/Thy1a positive males. Transgenic females are very poor breeders.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2525.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3283.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Control Information

  Control
   Noncarrier
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Notice to customers in Canada.
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)