Strain Name:

FVB.Cg-Tg(Scgb1a1-rtTA)1Jaw/J

Stock Number:

006222

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Use Restrictions Apply, see Terms of Use
These CCSP-rtTA transgenic mice express the reverse tetracycline-controlled transactivator (rtTA) protein under the control of the rat CCSP (or Scgb1a1, secretoglobin, family 1A, member 1 (uteroglobin)) gene promoter, and provide a "Tet-On" tool that allows the inducible expression of genes in the developing and adult lung and respiratory epithelium.

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names STOCK Tg(Scgb1a1-rtTA)1Jaw/J    (Changed: 19-FEB-07 )
Type Congenic; Mutant Stock; Mutant Strain; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
 
Donating InvestigatorDr. Jeffrey Whitsett,   Children's Hospital Medical Center

Description
Mice hemizygous for the CCSP-rtTA transgene are viable, fertile, normal in size, and do not display any gross physical or behavioral abnormalities. These transgenic mice express the reverse tetracycline-controlled transactivator (rtTA) protein under the control of the rat Scgb1a1, secretoglobin, family 1A, member 1 (uteroglobin), gene promoter. rtTA activity is detected in bronchial and type II epithelial cells of lung tissue from adult transgenic mice and in embryos from pregnant females treated with the tetracycline analog doxycycline (dox). In the latter, rtTA-induced expression of a luciferase reporter under the regulation of a tetracycline-responsive promoter (TRE; tetO) has been detected as early as embryonic day 12.5. When hemizygotes are mated to a second transgenic strain carrying a gene of interest under the regulatory control of a TRE, expression of the target gene in the bitransgenic offspring can be regulated by dox; in the presence of dox, transcription of the target gene is induced in cells where rtTA is expressed. These CCSP-rtTA transgenic mice provide a "Tet-On" tool that allows the inducible expression of genes in the developing and adult lung and respiratory epithelium.

Of note, these CCSP-rtTA mice are available on different genetic backgrounds including FVB/N (Stock No. 006222), C57BL/6J (Stock No. 006232), and BALB/cJ (Stock No. 006242).

Importation of this model was supported by the Boomer Esiason Foundation.

Development
A transgenic construct containing 2.3kb sequence of the rat Scgb1a1, secretoglobin, family 1A, member 1 (uteroglobin), gene promoter, the reverse tetracycline regulatable transactivator protein (rtTA) gene, and 2.0kb sequence of the human grouth hormone gene, containing introns and polyadenylation site, was injected into C57BL/6 X 129 embryos. Founder mice were bred to FVB/N animals for at least 10 generations by the donating investigator.

Control Information

  Control
   Noncarrier
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Tg(Scgb1a1-rtTA)1Jaw allele
006232   B6.Cg-Tg(Scgb1a1-rtTA)1Jaw/J
006242   C.Cg-Tg(Scgb1a1-rtTA)1Jaw/J
View Strains carrying   Tg(Scgb1a1-rtTA)1Jaw     (2 strains)

View Strains carrying other alleles of Scgb1a1     (5 strains)

Strains carrying other alleles of rtTA
016567   129S.Cg-Tg(Hoxb7-rtTA*M2)2Cos/J
017983   B6.Cg-Col1a1tm9(tetO-Dnmt3b_i1)Jae Gt(ROSA)26Sortm1(rtTA*M2)Jae/J
014588   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm6(tetO-MSI2)Jae/J
014602   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm1(tetO-mCherry)Eggn/J
023749   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae Tg(tetO-Pou5f1,-Sox2,-Klf4,-Myc)1Srn/J
006965   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae/J
005670   B6.Cg-Gt(ROSA)26Sortm1(rtTA,EGFP)Nagy/J
016997   B6.Cg-Tg(Axin2-rtTA2S*M2)7Cos/J
012418   B6.Cg-Tg(CD68-rtTA2S*M2)3Mpil/Mmjax
014098   B6.Cg-Tg(GFAP-rtTA*M2)1Rmra/J
007176   B6.Cg-Tg(Pax8-rtTA2S*M2)1Koes/J
006235   B6.Cg-Tg(SFTPC-rtTA)5Jaw/J
021025   B6;129-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm1(tetO-cre)Haho/J
006911   B6;129-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm2(tetO-Pou5f1)Jae/J
016836   B6;129S4-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm7(tetO-HIST1H2BJ/GFP)Jae/J
012433   B6;C3-Tg(ACTA1-rtTA,tetO-cre)102Monk/J
021187   B6;FVB-Tg(Pbsn-rtTA*M2)42Xy/J
010574   B6;SJL-Tg(Gh1-rtTA)4-3Jek/J
007678   B6;SJL-Tg(KRT14-rtTA)208Jek/J
010576   B6;SJL-Tg(MMTV-rtTA)4-1Jek/J
010549   B6N.Cg-Tg(Prkcd-glc-1-rtTA)2And/J
016532   B6N.FVB(Cg)-Tg(CAG-rtTA3)4288Slowe/J
006245   C.Cg-Tg(SFTPC-rtTA)5Jaw/J
017955   C57BL/6-Tg(Gfap-rtTA,tetO-MAOB,-lacZ)1Jkan/J
008099   FVB-Tg(KRT14-rtTA)F42Efu/J
004127   FVB-Tg(Nes-rtTA)306Rvs/J
008326   FVB-Tg(Pomc-rtTA)1Rck/J
006225   FVB.Cg-Tg(SFTPC-rtTA)5Jaw/J
008202   FVB/N-Tg(NPHS2-rtTA2*M2)1Jbk/J
006875   FVB/N-Tg(Tagln-rtTA)E1Jwst/J
004602   NOD.Cg-Tg(Ins2-rtTA)2Doi/DoiJ
005734   NOD/Lt-Tg(Ins2-rtTA)1Ach/AchJ
011004   STOCK Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm3(tetO-Pou5f1,-Sox2,-Klf4,-Myc)Jae/J
011011   STOCK Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm4(tetO-Pou5f1,-Sox2,-Klf4,-Myc)Jae/J
011013   STOCK Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm5(tetO-Pou5f1,-Klf4,-Myc)Jae/J
005572   STOCK Gt(ROSA)26Sortm1(rtTA,EGFP)Nagy/J
016116   STOCK Waptm2(rtTA)Kuw/J
003273   STOCK Tg(CMV-rtTA)4Bjd/J
018156   STOCK Tg(Drd1a-rtTA)ARgmk/J
019110   STOCK Tg(Hoxb7-rtTA*M2)RS40BCos/Mmjax
008755   STOCK Tg(Ins2-rtTA)2Efr Tg(teto-DTA)1Gfi/J
008250   STOCK Tg(Ins2-rtTA)2Efr/J
017519   STOCK Tg(KRT5-rtTA)T2D6Sgkd/J
016146   STOCK Tg(SFTPC-rtTA)2Jaw/J
016145   STOCK Tg(Scgb1a1-rtTA)2Jaw/J
005493   STOCK Tg(Tek-rtTA,TRE-lacZ)1425Tpr/J
View Strains carrying other alleles of rtTA     (46 strains)

Additional Web Information

Tet Expression Systems

Phenotype

Phenotype Information

View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Developmental Biology Research
Internal/Organ Defects
      lung

Immunology, Inflammation and Autoimmunity Research
Cystic Fibrosis

Internal/Organ Research
Lung Defects

Research Tools
Cancer Research
      Tetop Tet System
Developmental Biology Research
Genetics Research
      Mutagenesis and Transgenesis
      Mutagenesis and Transgenesis: Tetop Tet System
Immunology, Inflammation and Autoimmunity Research
Internal/Organ Research
Tet Expression Systems
      tTA/rtTA Expressing Strains

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tg(Scgb1a1-rtTA)1Jaw
Allele Name transgene insertion 1, Jeffrey A Whitsett
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) CC10-rtTA; CCSP-rtTA; CCSPtg; Scgb1a1-rtTA; Tg(Ugb-rtTA)1Jaw;
Mutation Made ByDr. Jeffrey Whitsett,   Children's Hospital Medical Center
Strain of Origin129 and C57BL/6
Site of ExpressionExpresses rtTA in developing and adult lung.
Expressed Gene rtTA, reverse tetracycline-controlled transactivator, E. coli
The tetracycline repressor gene (Tetr), arose from chemically mutated Escherichia coli genome which was screened for tetracycline dependence (Gossen and Bujard, 1992). One mutant with a four amino acid residue change (rTetR) exhibited dependence on tetracycline for induction of the targeted gene and was used in the rtTA construct (Gossen et al, 1995). rTetr was fused at the C-terminus with the viral co-activator, virion protein 16 of the herpes simplex virus (VP-16).
Promoter Scgb1a1, secretoglobin, family 1A, member 1 (uteroglobin), rat
General Note Phenotypic Similarity to Human Syndrome: Bronchopulmonary dysplasia (J:130523, J:171488).
Molecular Note The transgene is composed of 2.3 kb of rat Ugb (Scgb1a1) promoter, a reverse tetracycline responsive transactivator gene (rt-TA), and 2 kb of human growth hormone sequences, which includes introns and a polyadenylation signal. Transgene expression was confirmed by RT-PCR analysis. The rat Scgb1a1 promoter is active in respiratory epithelial cells. [MGI Ref ID J:61736]
 
 

Genotyping

Genotyping Information

Genotyping Protocols

Tg(tTA),

MELT


Tg(tTA),

Probe


Tg(Scgb1a1-rtTA)1Jaw, Melt Curve Analysis
Tg(Scgb1a1-rtTA)1Jaw, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Tichelaar JW; Lu W; Whitsett JA. 2000. Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J Biol Chem 275(16):11858-64. [PubMed: 10766812]  [MGI Ref ID J:61736]

Additional References

Tg(Scgb1a1-rtTA)1Jaw related

Akbay EA; Koyama S; Carretero J; Altabef A; Tchaicha JH; Christensen CL; Mikse OR; Cherniack AD; Beauchamp EM; Pugh TJ; Wilkerson MD; Fecci PE; Butaney M; Reibel JB; Soucheray M; Cohoon TJ; Janne PA; Meyerson M; Hayes DN; Shapiro GI; Shimamura T; Sholl LM; Rodig SJ; Freeman GJ; Hammerman PS; Dranoff G; Wong KK. 2013. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 3(12):1355-63. [PubMed: 24078774]  [MGI Ref ID J:208198]

Akei H; Whitsett JA; Buroker M; Ninomiya T; Tatsumi H; Weaver TE; Ikegami M. 2006. Surface tension influences cell shape and phagocytosis in alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 291(4):L572-9. [PubMed: 16632521]  [MGI Ref ID J:121210]

Akeson AL; Greenberg JM; Cameron JE; Thompson FY; Brooks SK; Wiginton D; Whitsett JA. 2003. Temporal and spatial regulation of VEGF-A controls vascular patterning in the embryonic lung. Dev Biol 264(2):443-55. [PubMed: 14651929]  [MGI Ref ID J:86840]

Allen TD; Rodriguez EM; Jones KD; Bishop JM. 2011. Activated notch1 induces lung adenomas in mice and cooperates with myc in the generation of lung adenocarcinoma. Cancer Res 71(18):6010-8. [PubMed: 21803744]  [MGI Ref ID J:175757]

Allen TD; Zhu CQ; Jones KD; Yanagawa N; Tsao MS; Bishop JM. 2011. Interaction between MYC and MCL1 in the Genesis and Outcome of Non-Small-Cell Lung Cancer. Cancer Res 71(6):2212-21. [PubMed: 21406400]  [MGI Ref ID J:169920]

Backstrom E; Lappalainen U; Bry K. 2010. Maternal IL-1beta production prevents lung injury in a mouse model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 42(2):149-60. [PubMed: 19411613]  [MGI Ref ID J:168450]

Baluk P; Hogmalm A; Bry M; Alitalo K; Bry K; McDonald DM. 2013. Transgenic overexpression of interleukin-1beta induces persistent lymphangiogenesis but not angiogenesis in mouse airways. Am J Pathol 182(4):1434-47. [PubMed: 23391392]  [MGI Ref ID J:195210]

Bein K; Wesselkamper SC; Liu X; Dietsch M; Majumder N; Concel VJ; Medvedovic M; Sartor MA; Henning LN; Venditto C; Borchers MT; Barchowsky A; Weaver TE; Tichelaar JW; Prows DR; Korfhagen TR; Hardie WD; Bachurski CJ; Leikauf GD. 2009. Surfactant-associated protein B is critical to survival in nickel-induced injury in mice. Am J Respir Cell Mol Biol 41(2):226-36. [PubMed: 19131640]  [MGI Ref ID J:162298]

Berger AH; Chen M; Morotti A; Janas JA; Niki M; Bronson RT; Taylor BS; Ladanyi M; Van Aelst L; Politi K; Varmus HE; Pandolfi PP. 2013. DOK2 inhibits EGFR-mutated lung adenocarcinoma. PLoS One 8(11):e79526. [PubMed: 24255704]  [MGI Ref ID J:209686]

Borchers MT; Wesselkamper SC; Curull V; Ramirez-Sarmiento A; Sanchez-Font A; Garcia-Aymerich J; Coronell C; Lloreta J; Agusti AG; Gea J; Howington JA; Reed MF; Starnes SL; Harris NL; Vitucci M; Eppert BL; Motz GT; Fogel K; McGraw DW; Tichelaar JW; Orozco-Levi M. 2009. Sustained CTL activation by murine pulmonary epithelial cells promotes the development of COPD-like disease. J Clin Invest 119(3):636-49. [PubMed: 19197141]  [MGI Ref ID J:146484]

Broide DH; Lawrence T; Doherty T; Cho JY; Miller M; McElwain K; McElwain S; Karin M. 2005. Allergen-induced peribronchial fibrosis and mucus production mediated by IkappaB kinase beta-dependent genes in airway epithelium. Proc Natl Acad Sci U S A 102(49):17723-8. [PubMed: 16317067]  [MGI Ref ID J:104395]

Bry K; Whitsett JA; Lappalainen U. 2007. IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol 36(1):32-42. [PubMed: 16888287]  [MGI Ref ID J:130523]

Calvi C; Podowski M; Lopez-Mercado A; Metzger S; Misono K; Malinina A; Dikeman D; Poonyagariyon H; Ynalvez L; Derakhshandeh R; Le A; Merchant M; Schwall R; Neptune ER. 2013. Hepatocyte growth factor, a determinant of airspace homeostasis in the murine lung. PLoS Genet 9(2):e1003228. [PubMed: 23459311]  [MGI Ref ID J:195194]

Chen G; Korfhagen TR; Xu Y; Kitzmiller J; Wert SE; Maeda Y; Gregorieff A; Clevers H; Whitsett JA. 2009. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest 119(10):2914-24. [PubMed: 19759516]  [MGI Ref ID J:154639]

Chen SM; Cheng DS; Williams BJ; Sherrill TP; Han W; Chont M; Saint-Jean L; Christman JW; Sadikot RT; Yull FE; Blackwell TS. 2008. The nuclear factor kappa-B pathway in airway epithelium regulates neutrophil recruitment and host defence following Pseudomonas aeruginosa infection. Clin Exp Immunol 153(3):420-8. [PubMed: 18647324]  [MGI Ref ID J:139025]

Chen Z; Sasaki T; Tan X; Carretero J; Shimamura T; Li D; Xu C; Wang Y; Adelmant GO; Capelletti M; Lee HJ; Rodig SJ; Borgman C; Park SI; Kim HR; Padera R; Marto JA; Gray NS; Kung AL; Shapiro GI; Janne PA; Wong KK. 2010. Inhibition of ALK, PI3K/MEK, and HSP90 in Murine Lung Adenocarcinoma Induced by EML4-ALK Fusion Oncogene. Cancer Res 70(23):9827-9836. [PubMed: 20952506]  [MGI Ref ID J:166724]

Cheng DS; Han W; Chen SM; Sherrill TP; Chont M; Park GY; Sheller JR; Polosukhin VV; Christman JW; Yull FE; Blackwell TS. 2007. Airway epithelium controls lung inflammation and injury through the NF-kappa B pathway. J Immunol 178(10):6504-13. [PubMed: 17475880]  [MGI Ref ID J:146109]

Cho HC; Lai CY; Shao LE; Yu J. 2011. Identification of Tumorigenic Cells in KrasG12D-Induced Lung Adenocarcinoma. Cancer Res 71(23):7250-8. [PubMed: 22088965]  [MGI Ref ID J:178608]

Clark JC; Tichelaar JW; Wert SE; Itoh N; Perl AK; Stahlman MT; Whitsett JA. 2001. FGF-10 disrupts lung morphogenesis and causes pulmonary adenomas in vivo. Am J Physiol Lung Cell Mol Physiol 280(4):L705-15. [PubMed: 11238011]  [MGI Ref ID J:68525]

Clauss M; Voswinckel R; Rajashekhar G; Sigua NL; Fehrenbach H; Rush NI; Schweitzer KS; Yildirim AO; Kamocki K; Fisher AJ; Gu Y; Safadi B; Nikam S; Hubbard WC; Tuder RM; Twigg HL 3rd; Presson RG; Sethi S; Petrache I. 2011. Lung endothelial monocyte-activating protein 2 is a mediator of cigarette smoke-induced emphysema in mice. J Clin Invest 121(6):2470-9. [PubMed: 21576822]  [MGI Ref ID J:173904]

Dance-Barnes ST; Kock ND; Floyd HS; Moore JE; Mosley LJ; D'Agostino RB Jr; Pettenati MJ; Miller MS. 2008. Effects of mutant human Ki-ras(G12C) gene dosage on murine lung tumorigenesis and signaling to its downstream effectors. Toxicol Appl Pharmacol 231(1):77-84. [PubMed: 18565564]  [MGI Ref ID J:139881]

Dance-Barnes ST; Kock ND; Moore JE; Lin EY; Mosley LJ; D'Agostino RB Jr; McCoy TP; Townsend AJ; Miller MS. 2009. Lung tumor promotion by curcumin. Carcinogenesis 30(6):1016-23. [PubMed: 19359593]  [MGI Ref ID J:149324]

De Paepe ME; Gundavarapu S; Tantravahi U; Pepperell JR; Haley SA; Luks FI; Mao Q. 2008. Fas-ligand-induced apoptosis of respiratory epithelial cells causes disruption of postcanalicular alveolar development. Am J Pathol 173(1):42-56. [PubMed: 18535181]  [MGI Ref ID J:137382]

De Paepe ME; Mao Q; Ghanta S; Hovanesian V; Padbury JF. 2011. Alveolar epithelial cell therapy with human cord blood-derived hematopoietic progenitor cells. Am J Pathol 178(3):1329-39. [PubMed: 21356383]  [MGI Ref ID J:169681]

Duran A; Linares JF; Galvez AS; Wikenheiser K; Flores JM; Diaz-Meco MT; Moscat J. 2008. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13(4):343-54. [PubMed: 18394557]  [MGI Ref ID J:136133]

Engelman JA; Chen L; Tan X; Crosby K; Guimaraes AR; Upadhyay R; Maira M; McNamara K; Perera SA; Song Y; Chirieac LR; Kaur R; Lightbown A; Simendinger J; Li T; Padera RF; Garcia-Echeverria C; Weissleder R; Mahmood U; Cantley LC; Wong KK. 2008. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351-6. [PubMed: 19029981]  [MGI Ref ID J:142254]

Fisher GH; Wellen SL; Klimstra D; Lenczowski JM; Tichelaar JW; Lizak MJ; Whitsett JA; Koretsky A; Varmus HE. 2001. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 15(24):3249-62. [PubMed: 11751631]  [MGI Ref ID J:73468]

Floyd HS; Farnsworth CL; Kock ND; Mizesko MC; Little JL; Dance ST; Everitt J; Tichelaar J; Whitsett JA; Miller MS. 2005. Conditional expression of the mutant Ki-rasG12C allele results in formation of benign lung adenomas: development of a novel mouse lung tumor model. Carcinogenesis 26(12):2196-206. [PubMed: 16051643]  [MGI Ref ID J:102839]

Fulkerson PC; Fischetti CA; Hassman LM; Nikolaidis NM; Rothenberg ME. 2006. Persistent effects induced by IL-13 in the lung. Am J Respir Cell Mol Biol 35(3):337-46. [PubMed: 16645178]  [MGI Ref ID J:137329]

Fulkerson PC; Fischetti CA; Rothenberg ME. 2006. Eosinophils and CCR3 regulate interleukin-13 transgene-induced pulmonary remodeling. Am J Pathol 169(6):2117-26. [PubMed: 17148674]  [MGI Ref ID J:116219]

Galvez AS; Duran A; Linares JF; Pathrose P; Castilla EA; Abu-Baker S; Leitges M; Diaz-Meco MT; Moscat J. 2009. Protein kinase Czeta represses the interleukin-6 promoter and impairs tumorigenesis in vivo. Mol Cell Biol 29(1):104-15. [PubMed: 18955501]  [MGI Ref ID J:144073]

Geunes-Boyer S; Beers MF; Perfect JR; Heitman J; Wright JR. 2012. Surfactant protein D facilitates Cryptococcus neoformans infection. Infect Immun 80(7):2444-53. [PubMed: 22547543]  [MGI Ref ID J:186678]

Glaros S; Cirrincione GM; Palanca A; Metzger D; Reisman D. 2008. Targeted knockout of BRG1 potentiates lung cancer development. Cancer Res 68(10):3689-96. [PubMed: 18483251]  [MGI Ref ID J:135031]

Hardie WD; Davidson C; Ikegami M; Leikauf GD; Le Cras TD; Prestridge A; Whitsett JA; Korfhagen TR. 2008. EGF receptor tyrosine kinase inhibitors diminish transforming growth factor-alpha-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294(6):L1217-25. [PubMed: 18424623]  [MGI Ref ID J:136799]

Hardie WD; Korfhagen TR; Sartor MA; Prestridge A; Medvedovic M; Le Cras TD; Ikegami M; Wesselkamper SC; Davidson C; Dietsch M; Nichols W; Whitsett JA; Leikauf GD. 2007. Genomic profile of matrix and vasculature remodeling in TGF-alpha induced pulmonary fibrosis. Am J Respir Cell Mol Biol 37(3):309-21. [PubMed: 17496152]  [MGI Ref ID J:138490]

Hardie WD; Le Cras TD; Jiang K; Tichelaar JW; Azhar M; Korfhagen TR. 2004. Conditional expression of transforming growth factor-alpha in adult mouse lung causes pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 286(4):L741-9. [PubMed: 14660483]  [MGI Ref ID J:101255]

Hogmalm A; Backstrom E; Bry M; Lappalainen U; Lukkarinen HP; Bry K. 2012. Role of CXC chemokine receptor-2 in a murine model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 47(6):746-58. [PubMed: 22865624]  [MGI Ref ID J:204048]

Hogmalm A; Bry M; Strandvik B; Bry K. 2014. IL-1beta expression in the distal lung epithelium disrupts lung morphogenesis and epithelial cell differentiation in fetal mice. Am J Physiol Lung Cell Mol Physiol 306(1):L23-34. [PubMed: 24186874]  [MGI Ref ID J:210908]

Hogmalm A; Sheppard D; Lappalainen U; Bry K. 2010. beta6 Integrin subunit deficiency alleviates lung injury in a mouse model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 43(1):88-98. [PubMed: 19717813]  [MGI Ref ID J:174259]

Ikegami M; Le Cras TD; Hardie WD; Stahlman MT; Whitsett JA; Korfhagen TR. 2005. TGF-alpha perturbs surfactant homeostasis in vivo. Am J Physiol Lung Cell Mol Physiol 289(1):L34-43. [PubMed: 15764643]  [MGI Ref ID J:101248]

Ikegami M; Weaver TE; Grant SN; Whitsett JA. 2009. Pulmonary surfactant surface tension influences alveolar capillary shape and oxygenation. Am J Respir Cell Mol Biol 41(4):433-9. [PubMed: 19202005]  [MGI Ref ID J:164632]

Ikegami M; Whitsett JA; Martis PC; Weaver TE. 2005. Reversibility of lung inflammation caused by SP-B deficiency. Am J Physiol Lung Cell Mol Physiol 289(6):L962-70. [PubMed: 16024721]  [MGI Ref ID J:105014]

Inoue D; Kubo H; Taguchi K; Suzuki T; Komatsu M; Motohashi H; Yamamoto M. 2011. Inducible disruption of autophagy in the lung causes airway hyper-responsiveness. Biochem Biophys Res Commun 405(1):13-8. [PubMed: 21185264]  [MGI Ref ID J:168468]

Ji H; Li D; Chen L; Shimamura T; Kobayashi S; McNamara K; Mahmood U; Mitchell A; Sun Y; Al-Hashem R; Chirieac LR; Padera R; Bronson RT; Kim W; Janne PA; Shapiro GI; Tenen D; Johnson BE; Weissleder R; Sharpless NE; Wong KK. 2006. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9(6):485-95. [PubMed: 16730237]  [MGI Ref ID J:110131]

Ji H; Zhao X; Yuza Y; Shimamura T; Li D; Protopopov A; Jung BL; McNamara K; Xia H; Glatt KA; Thomas RK; Sasaki H; Horner JW; Eck M; Mitchell A; Sun Y; Al-Hashem R; Bronson RT; Rabindran SK; Discafani CM; Maher E; Shapiro GI; Meyerson M; Wong KK. 2006. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc Natl Acad Sci U S A 103(20):7817-22. [PubMed: 16672372]  [MGI Ref ID J:110098]

Kawabata S; Mercado-Matos JR; Hollander MC; Donahue D; Wilson W 3rd; Regales L; Butaney M; Pao W; Wong KK; Janne PA; Dennis PA. 2014. Rapamycin Prevents the Development and Progression of Mutant Epidermal Growth Factor Receptor Lung Tumors with the Acquired Resistance Mutation T790M. Cell Rep 7(6):1824-32. [PubMed: 24931608]  [MGI Ref ID J:211778]

Kido T; Tomita T; Okamoto M; Cai Y; Matsumoto Y; Vinson C; Maru Y; Kimura S. 2011. FOXA1 plays a role in regulating secretoglobin 1a1 expression in the absence of CCAAT/enhancer binding protein activities in lung in vivo. Am J Physiol Lung Cell Mol Physiol 300(3):L441-52. [PubMed: 21224212]  [MGI Ref ID J:171159]

King NE; Zimmermann N; Pope SM; Fulkerson PC; Nikolaidis NM; Mishra A; Witte DP; Rothenberg ME. 2004. Expression and regulation of a disintegrin and metalloproteinase (ADAM) 8 in experimental asthma. Am J Respir Cell Mol Biol 31(3):257-65. [PubMed: 15087305]  [MGI Ref ID J:101654]

Konstantinidou G; Bey EA; Rabellino A; Schuster K; Maira MS; Gazdar AF; Amici A; Boothman DA; Scaglioni PP. 2009. Dual phosphoinositide 3-kinase/mammalian target of rapamycin blockade is an effective radiosensitizing strategy for the treatment of non-small cell lung cancer harboring K-RAS mutations. Cancer Res 69(19):7644-52. [PubMed: 19789349]  [MGI Ref ID J:153586]

Konstantinidou G; Ramadori G; Torti F; Kangasniemi K; Ramirez RE; Cai Y; Behrens C; Dellinger MT; Brekken RA; Wistuba II; Heguy A; Teruya-Feldstein J; Scaglioni PP. 2013. RHOA-FAK is a required signaling axis for the maintenance of KRAS-driven lung adenocarcinomas. Cancer Discov 3(4):444-57. [PubMed: 23358651]  [MGI Ref ID J:198243]

Korfhagen TR; Kitzmiller J; Chen G; Sridharan A; Haitchi HM; Hegde RS; Divanovic S; Karp CL; Whitsett JA. 2012. SAM-pointed domain ETS factor mediates epithelial cell-intrinsic innate immune signaling during airway mucous metaplasia. Proc Natl Acad Sci U S A 109(41):16630-5. [PubMed: 23012424]  [MGI Ref ID J:190327]

Kramer EL; Deutsch GH; Sartor MA; Hardie WD; Ikegami M; Korfhagen TR; Le Cras TD. 2007. Perinatal increases in TGF-{alpha} disrupt the saccular phase of lung morphogenesis and cause remodeling: microarray analysis. Am J Physiol Lung Cell Mol Physiol 293(2):L314-27. [PubMed: 17468132]  [MGI Ref ID J:125842]

Kulkarni RM; Herman A; Ikegami M; Greenberg JM; Akeson AL. 2011. Lymphatic ontogeny and effect of hypoplasia in developing lung. Mech Dev 128(1-2):29-40. [PubMed: 20932899]  [MGI Ref ID J:170175]

Lange AW; Keiser AR; Wells JM; Zorn AM; Whitsett JA. 2009. Sox17 promotes cell cycle progression and inhibits TGF-beta/Smad3 signaling to initiate progenitor cell behavior in the respiratory epithelium. PLoS ONE 4(5):e5711. [PubMed: 19479035]  [MGI Ref ID J:148833]

Lappalainen U; Whitsett JA; Wert SE; Tichelaar JW; Bry K. 2005. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol 32(4):311-8. [PubMed: 15668323]  [MGI Ref ID J:107601]

Le A; Zielinski R; He C; Crow MT; Biswal S; Tuder RM; Becker PM. 2009. Pulmonary epithelial neuropilin-1 deletion enhances development of cigarette smoke-induced emphysema. Am J Respir Crit Care Med 180(5):396-406. [PubMed: 19520907]  [MGI Ref ID J:167963]

Le Cras TD; Hardie WD; Deutsch GH; Albertine KH; Ikegami M; Whitsett JA; Korfhagen TR. 2004. Transient induction of TGF-alpha disrupts lung morphogenesis, causing pulmonary disease in adulthood. Am J Physiol Lung Cell Mol Physiol 287(4):L718-29. [PubMed: 15090366]  [MGI Ref ID J:96207]

Le Cras TD; Korfhagen TR; Davidson C; Schmidt S; Fenchel M; Ikegami M; Whitsett JA; Hardie WD. 2010. Inhibition of PI3K by PX-866 prevents transforming growth factor-alpha-induced pulmonary fibrosis. Am J Pathol 176(2):679-86. [PubMed: 20042669]  [MGI Ref ID J:156598]

Le Cras TD; Spitzmiller RE; Albertine KH; Greenberg JM; Whitsett JA; Akeson AL. 2004. VEGF causes pulmonary hemorrhage, hemosiderosis, and air space enlargement in neonatal mice. Am J Physiol Lung Cell Mol Physiol 287(1):L134-42. [PubMed: 15033636]  [MGI Ref ID J:99999]

Li D; Shimamura T; Ji H; Chen L; Haringsma HJ; McNamara K; Liang MC; Perera SA; Zaghlul S; Borgman CL; Kubo S; Takahashi M; Sun Y; Chirieac LR; Padera RF; Lindeman NI; Janne PA; Thomas RK; Meyerson ML; Eck MJ; Engelman JA; Shapiro GI; Wong KK. 2007. Bronchial and Peripheral Murine Lung Carcinomas Induced by T790M-L858R Mutant EGFR Respond to HKI-272 and Rapamycin Combination Therapy. Cancer Cell 12(1):81-93. [PubMed: 17613438]  [MGI Ref ID J:122849]

Li Y; Du H; Qin Y; Roberts J; Cummings OW; Yan C. 2007. Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Res 67(18):8494-503. [PubMed: 17875688]  [MGI Ref ID J:124864]

Li Y; Qu P; Wu L; Li B; Du H; Yan C. 2011. Api6/AIM/Sp{alpha}/CD5L Overexpression in Alveolar Type II Epithelial Cells Induces Spontaneous Lung Adenocarcinoma. Cancer Res 71(16):5488-99. [PubMed: 21697282]  [MGI Ref ID J:175455]

Lian X; Qin Y; Hossain SA; Yang L; White A; Xu H; Shipley JM; Li T; Senior RM; Du H; Yan C. 2005. Overexpression of Stat3C in pulmonary epithelium protects against hyperoxic lung injury. J Immunol 174(11):7250-6. [PubMed: 15905571]  [MGI Ref ID J:98964]

Lin S; Ikegami M; Xu Y; Bosserhoff AK; Malkinson AM; Shannon JM. 2008. Misexpression of MIA disrupts lung morphogenesis and causes neonatal death. Dev Biol 316(2):441-55. [PubMed: 18342301]  [MGI Ref ID J:135990]

Lu TX; Munitz A; Rothenberg ME. 2009. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182(8):4994-5002. [PubMed: 19342679]  [MGI Ref ID J:147494]

Lukkarinen H; Hogmalm A; Lappalainen U; Bry K. 2009. Matrix metalloproteinase-9 deficiency worsens lung injury in a model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 41(1):59-68. [PubMed: 19097983]  [MGI Ref ID J:161580]

Madala SK; Edukulla R; Phatak M; Schmidt S; Davidson C; Acciani TH; Korfhagen TR; Medvedovic M; Lecras TD; Wagner K; Hardie WD. 2014. Dual targeting of MEK and PI3K pathways attenuates established and progressive pulmonary fibrosis. PLoS One 9(1):e86536. [PubMed: 24475138]  [MGI Ref ID J:212716]

Madala SK; Korfhagen TR; Schmidt S; Davidson C; Edukulla R; Ikegami M; Violette SM; Weinreb PH; Sheppard D; Hardie WD. 2014. Inhibition of the alphavbeta6 integrin leads to limited alteration of TGF-alpha-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 306(8):L726-35. [PubMed: 24508732]  [MGI Ref ID J:210166]

Madala SK; Schmidt S; Davidson C; Ikegami M; Wert S; Hardie WD. 2012. MEK-ERK pathway modulation ameliorates pulmonary fibrosis associated with epidermal growth factor receptor activation. Am J Respir Cell Mol Biol 46(3):380-8. [PubMed: 22021337]  [MGI Ref ID J:194580]

Manwani N; Gagnon S; Post M; Joza S; Muglia L; Cornejo S; Kaplan F; Sweezey NB. 2010. Reduced viability of mice with lung epithelial-specific knockout of glucocorticoid receptor. Am J Respir Cell Mol Biol 43(5):599-606. [PubMed: 20042713]  [MGI Ref ID J:177810]

Mason-Richie NA; Mistry MJ; Gettler CA; Elayyadi A; Wikenheiser-Brokamp KA. 2008. Retinoblastoma function is essential for establishing lung epithelial quiescence after injury. Cancer Res 68(11):4068-76. [PubMed: 18519665]  [MGI Ref ID J:136426]

Meylan E; Dooley AL; Feldser DM; Shen L; Turk E; Ouyang C; Jacks T. 2009. Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 462(7269):104-7. [PubMed: 19847165]  [MGI Ref ID J:154041]

Miller M; Tam AB; Cho JY; Doherty TA; Pham A; Khorram N; Rosenthal P; Mueller JL; Hoffman HM; Suzukawa M; Niwa M; Broide DH. 2012. ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. Proc Natl Acad Sci U S A 109(41):16648-53. [PubMed: 23011799]  [MGI Ref ID J:190332]

Motz GT; Eppert BL; Wortham BW; Amos-Kroohs RM; Flury JL; Wesselkamper SC; Borchers MT. 2010. Chronic cigarette smoke exposure primes NK cell activation in a mouse model of chronic obstructive pulmonary disease. J Immunol 184(8):4460-9. [PubMed: 20228194]  [MGI Ref ID J:160049]

Mucenski ML; Nation JM; Thitoff AR; Besnard V; Xu Y; Wert SE; Harada N; Taketo MM; Stahlman MT; Whitsett JA. 2005. Beta-catenin regulates differentiation of respiratory epithelial cells in vivo. Am J Physiol Lung Cell Mol Physiol 289(6):L971-9. [PubMed: 16040629]  [MGI Ref ID J:105013]

Mucenski ML; Wert SE; Nation JM; Loudy DE; Huelsken J; Birchmeier W; Morrisey EE; Whitsett JA. 2003. beta-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem 278(41):40231-8. [PubMed: 12885771]  [MGI Ref ID J:85946]

Nesslein LL; Melton KR; Ikegami M; Na CL; Wert SE; Rice WR; Whitsett JA; Weaver TE. 2005. Partial SP-B deficiency perturbs lung function and causes air space abnormalities. Am J Physiol Lung Cell Mol Physiol 288(6):L1154-61. [PubMed: 15722377]  [MGI Ref ID J:101247]

Nielsen CH; Kimura RH; Withofs N; Tran PT; Miao Z; Cochran JR; Cheng Z; Felsher D; Kjaer A; Willmann JK; Gambhir SS. 2010. PET imaging of tumor neovascularization in a transgenic mouse model with a novel 64Cu-DOTA-knottin peptide. Cancer Res 70(22):9022-30. [PubMed: 21062977]  [MGI Ref ID J:166856]

Park KS; Korfhagen TR; Bruno MD; Kitzmiller JA; Wan H; Wert SE; Khurana Hershey GK; Chen G; Whitsett JA. 2007. SPDEF regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest 117(4):978-88. [PubMed: 17347682]  [MGI Ref ID J:121284]

Park KS; Wells JM; Zorn AM; Wert SE; Whitsett JA. 2006. Sox17 influences the differentiation of respiratory epithelial cells. Dev Biol 294(1):192-202. [PubMed: 16574095]  [MGI Ref ID J:109303]

Perera SA; Li D; Shimamura T; Raso MG; Ji H; Chen L; Borgman CL; Zaghlul S; Brandstetter KA; Kubo S; Takahashi M; Chirieac LR; Padera RF; Bronson RT; Shapiro GI; Greulich H; Meyerson M; Guertler U; Chesa PG; Solca F; Wistuba II; Wong KK. 2009. HER2YVMA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy. Proc Natl Acad Sci U S A 106(2):474-9. [PubMed: 19122144]  [MGI Ref ID J:143874]

Perl AK; Tichelaar JW; Whitsett JA. 2002. Conditional gene expression in the respiratory epithelium of the mouse. Transgenic Res 11(1):21-9. [PubMed: 11874100]  [MGI Ref ID J:129109]

Perl AK; Wert SE; Loudy DE; Shan Z; Blair PA; Whitsett JA. 2005. Conditional recombination reveals distinct subsets of epithelial cells in trachea, bronchi, and alveoli. Am J Respir Cell Mol Biol 33(5):455-62. [PubMed: 16055670]  [MGI Ref ID J:132772]

Pirazzoli V; Nebhan C; Song X; Wurtz A; Walther Z; Cai G; Zhao Z; Jia P; de Stanchina E; Shapiro EM; Gale M; Yin R; Horn L; Carbone DP; Stephens PJ; Miller V; Gettinger S; Pao W; Politi K. 2014. Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1. Cell Rep 7(4):999-1008. [PubMed: 24813888]  [MGI Ref ID J:211798]

Politi K; Fan PD; Shen R; Zakowski M; Varmus H. 2010. Erlotinib resistance in mouse models of epidermal growth factor receptor-induced lung adenocarcinoma. Dis Model Mech 3(1-2):111-9. [PubMed: 20007486]  [MGI Ref ID J:157671]

Politi K; Zakowski MF; Fan PD; Schonfeld EA; Pao W; Varmus HE. 2006. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 20(11):1496-510. [PubMed: 16705038]  [MGI Ref ID J:109092]

Premsrirut PK; Dow LE; Kim SY; Camiolo M; Malone CD; Miething C; Scuoppo C; Zuber J; Dickins RA; Kogan SC; Shroyer KR; Sordella R; Hannon GJ; Lowe SW. 2011. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145(1):145-58. [PubMed: 21458673]  [MGI Ref ID J:171191]

Qu P; Du H; Wang X; Yan C. 2009. Matrix metalloproteinase 12 overexpression in lung epithelial cells plays a key role in emphysema to lung bronchioalveolar adenocarcinoma transition. Cancer Res 69(18):7252-61. [PubMed: 19706765]  [MGI Ref ID J:152404]

Redente EF; Dwyer-Nield LD; Merrick DT; Raina K; Agarwal R; Pao W; Rice PL; Shroyer KR; Malkinson AM. 2010. Tumor progression stage and anatomical site regulate tumor-associated macrophage and bone marrow-derived monocyte polarization. Am J Pathol 176(6):2972-85. [PubMed: 20431028]  [MGI Ref ID J:161329]

Regales L; Balak MN; Gong Y; Politi K; Sawai A; Le C; Koutcher JA; Solit DB; Rosen N; Zakowski MF; Pao W. 2007. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors. PLoS ONE 2(8):e810. [PubMed: 17726540]  [MGI Ref ID J:128700]

Regales L; Gong Y; Shen R; de Stanchina E; Vivanco I; Goel A; Koutcher JA; Spassova M; Ouerfelli O; Mellinghoff IK; Zakowski MF; Politi KA; Pao W. 2009. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest 119(10):3000-10. [PubMed: 19759520]  [MGI Ref ID J:154637]

Ren X; Shah TA; Ustiyan V; Zhang Y; Shinn J; Chen G; Whitsett JA; Kalin TV; Kalinichenko VV. 2013. FOXM1 promotes allergen-induced goblet cell metaplasia and pulmonary inflammation. Mol Cell Biol 33(2):371-86. [PubMed: 23149934]  [MGI Ref ID J:194103]

Sato A; Yamada N; Ogawa Y; Ikegami M. 2013. CCAAT/enhancer-binding protein-alpha suppresses lung tumor development in mice through the p38alpha MAP kinase pathway. PLoS One 8(2):e57013. [PubMed: 23437297]  [MGI Ref ID J:197191]

Scaglioni PP; Yung TM; Cai LF; Erdjument-Bromage H; Kaufman AJ; Singh B; Teruya-Feldstein J; Tempst P; Pandolfi PP. 2006. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126(2):269-83. [PubMed: 16873060]  [MGI Ref ID J:144680]

Schuster K; Venkateswaran N; Rabellino A; Girard L; Pena-Llopis S; Scaglioni PP. 2014. Nullifying the CDKN2AB locus promotes mutant K-ras lung tumorigenesis. Mol Cancer Res 12(6):912-23. [PubMed: 24618618]  [MGI Ref ID J:211558]

Sisson TH; Hanson KE; Subbotina N; Patwardhan A; Hattori N; Simon RH. 2002. Inducible lung-specific urokinase expression reduces fibrosis and mortality after lung injury in mice. Am J Physiol Lung Cell Mol Physiol 283(5):L1023-32. [PubMed: 12376355]  [MGI Ref ID J:80184]

Sotillo R; Schvartzman JM; Socci ND; Benezra R. 2010. Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464(7287):436-40. [PubMed: 20173739]  [MGI Ref ID J:158125]

Stallings-Mann ML; Waldmann J; Zhang Y; Miller E; Gauthier ML; Visscher DW; Downey GP; Radisky ES; Fields AP; Radisky DC. 2012. Matrix metalloproteinase induction of rac1b, a key effector of lung cancer progression. Sci Transl Med 4(142):142ra95. [PubMed: 22786680]  [MGI Ref ID J:186694]

Sullivan JP; Spinola M; Dodge M; Raso MG; Behrens C; Gao B; Schuster K; Shao C; Larsen JE; Sullivan LA; Honorio S; Xie Y; Scaglioni PP; DiMaio JM; Gazdar AF; Shay JW; Wistuba II; Minna JD. 2010. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 70(23):9937-48. [PubMed: 21118965]  [MGI Ref ID J:166963]

Takahashi H; Ogata H; Nishigaki R; Broide DH; Karin M. 2010. Tobacco Smoke Promotes Lung Tumorigenesis by Triggering IKKbeta- and JNK1-Dependent Inflammation. Cancer Cell 17(1):89-97. [PubMed: 20129250]  [MGI Ref ID J:156928]

Tomita T; Kido T; Kurotani R; Iemura S; Sterneck E; Natsume T; Vinson C; Kimura S. 2008. CAATT/enhancer-binding proteins alpha and delta interact with NKX2-1 to synergistically activate mouse secretoglobin 3A2 gene expression. J Biol Chem 283(37):25617-27. [PubMed: 18632661]  [MGI Ref ID J:141842]

Tran PT; Bendapudi PK; Lin HJ; Choi P; Koh S; Chen J; Horng G; Hughes NP; Schwartz LH; Miller VA; Kawashima T; Kitamura T; Paik D; Felsher DW. 2011. Survival and death signals can predict tumor response to therapy after oncogene inactivation. Sci Transl Med 3(103):103ra99. [PubMed: 21974937]  [MGI Ref ID J:178317]

Tran PT; Shroff EH; Burns TF; Thiyagarajan S; Das ST; Zabuawala T; Chen J; Cho YJ; Luong R; Tamayo P; Salih T; Aziz K; Adam SJ; Vicent S; Nielsen CH; Withofs N; Sweet-Cordero A; Gambhir SS; Rudin CM; Felsher DW. 2012. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant kras-induced lung tumorigenesis. PLoS Genet 8(5):e1002650. [PubMed: 22654667]  [MGI Ref ID J:185196]

Tran TP; Fan AC; Bendapudi PK; Koh S; Komatsubara K; Chen J; Horng G; Bellovin DI; Giuriato S; Wang CS; Whitsett JA; Felsher DW. 2008. Combined Inactivation of MYC and K-Ras oncogenes reverses tumorigenesis in lung adenocarcinomas and lymphomas. PLoS ONE 3(5):e2125. [PubMed: 18461184]  [MGI Ref ID J:136212]

Ustiyan V; Wert SE; Ikegami M; Wang IC; Kalin TV; Whitsett JA; Kalinichenko VV. 2012. Foxm1 transcription factor is critical for proliferation and differentiation of Clara cells during development of conducting airways. Dev Biol 370(2):198-212. [PubMed: 22885335]  [MGI Ref ID J:188138]

Vergadi E; Chang MS; Lee C; Liang OD; Liu X; Fernandez-Gonzalez A; Mitsialis SA; Kourembanas S. 2011. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation 123(18):1986-95. [PubMed: 21518986]  [MGI Ref ID J:183742]

Volckaert T; Dill E; Campbell A; Tiozzo C; Majka S; Bellusci S; De Langhe SP. 2011. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest 121(11):4409-19. [PubMed: 21985786]  [MGI Ref ID J:178444]

Walter AO; Sjin RT; Haringsma HJ; Ohashi K; Sun J; Lee K; Dubrovskiy A; Labenski M; Zhu Z; Wang Z; Sheets M; St Martin T; Karp R; van Kalken D; Chaturvedi P; Niu D; Nacht M; Petter RC; Westlin W; Lin K; Jaw-Tsai S; Raponi M; Van Dyke T; Etter J; Weaver Z; Pao W; Singh J; Simmons AD; Harding TC; Allen A. 2013. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov 3(12):1404-15. [PubMed: 24065731]  [MGI Ref ID J:208204]

Wan H; Kaestner KH; Ang SL; Ikegami M; Finkelman FD; Stahlman MT; Fulkerson PC; Rothenberg ME; Whitsett JA. 2004. Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 131(4):953-64. [PubMed: 14757645]  [MGI Ref ID J:88601]

Wang IC; Zhang Y; Snyder J; Sutherland MJ; Burhans MS; Shannon JM; Park HJ; Whitsett JA; Kalinichenko VV. 2010. Increased expression of FoxM1 transcription factor in respiratory epithelium inhibits lung sacculation and causes Clara cell hyperplasia. Dev Biol 347(2):301-14. [PubMed: 20816795]  [MGI Ref ID J:166616]

Weaver Z; Difilippantonio S; Carretero J; Martin PL; El Meskini R; Iacovelli AJ; Gumprecht M; Kulaga A; Guerin T; Schlomer J; Baran M; Kozlov S; McCann T; Mena S; Al-Shahrour F; Alexander D; Wong KK; Van Dyke T. 2012. Temporal molecular and biological assessment of an erlotinib-resistant lung adenocarcinoma model reveals markers of tumor progression and treatment response. Cancer Res 72(22):5921-33. [PubMed: 22969147]  [MGI Ref ID J:193215]

Weng Y; Fang C; Turesky RJ; Behr M; Kaminsky LS; Ding X. 2007. Determination of the role of target tissue metabolism in lung carcinogenesis using conditional cytochrome P450 reductase-null mice. Cancer Res 67(16):7825-32. [PubMed: 17699788]  [MGI Ref ID J:124316]

Wesselkamper SC; Eppert BL; Motz GT; Lau GW; Hassett DJ; Borchers MT. 2008. NKG2D is critical for NK cell activation in host defense against Pseudomonas aeruginosa respiratory infection. J Immunol 181(8):5481-9. [PubMed: 18832705]  [MGI Ref ID J:140762]

Wu L; Du H; Li Y; Qu P; Yan C. 2011. Signal Transducer and Activator of Transcription 3 (Stat3C) Promotes Myeloid-Derived Suppressor Cell Expansion and Immune Suppression during Lung Tumorigenesis. Am J Pathol 179(4):2131-41. [PubMed: 21864492]  [MGI Ref ID J:176288]

Wu L; Wang G; Qu P; Yan C; Du H. 2011. Overexpression of Dominant Negative Peroxisome Proliferator-Activated Receptor-gamma (PPARgamma) in Alveolar Type II Epithelial Cells Causes Inflammation and T-Cell Suppression in the Lung. Am J Pathol 178(5):2191-204. [PubMed: 21514433]  [MGI Ref ID J:171587]

Wu S; Platteau A; Chen S; McNamara G; Whitsett J; Bancalari E. 2010. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development. Am J Respir Cell Mol Biol 42(5):552-63. [PubMed: 19541844]  [MGI Ref ID J:171488]

Zhang L; Ikegami M; Dey CR; Korfhagen TR; Whitsett JA. 2002. Reversibility of Pulmonary Abnormalities by Conditional Replacement of Surfactant Protein D (SP-D) in Vivo. J Biol Chem 277(41):38709-13. [PubMed: 12163500]  [MGI Ref ID J:79450]

Zhou X; Bao H; Al-Hashem R; Ji H; Albert M; Wong KK; Sun Y. 2008. Magnetic resonance imaging of the response of a mouse model of non-small cell lung cancer to tyrosine kinase inhibitor treatment. Comp Med 58(3):276-81. [PubMed: 18589870]  [MGI Ref ID J:140430]

Zhou Y; Rideout WM 3rd; Zi T; Bressel A; Reddypalli S; Rancourt R; Woo JK; Horner JW; Chin L; Chiu MI; Bosenberg M; Jacks T; Clark SC; Depinho RA; Robinson MO; Heyer J. 2010. Chimeric mouse tumor models reveal differences in pathway activation between ERBB family- and KRAS-dependent lung adenocarcinomas. Nat Biotechnol 28(1):71-8. [PubMed: 20023657]  [MGI Ref ID J:208979]

de Paepe ME; Haley SA; Lacourse Z; Mao Q. 2010. Effects of Fas-ligand overexpression on alveolar type II cell growth kinetics in perinatal murine lungs. Pediatr Res 68(1):57-62. [PubMed: 20375852]  [MGI Ref ID J:174046]

Health & husbandry

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, hemizygous mice are bred to wildtype siblings.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2140.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2782.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Control Information

  Control
   Noncarrier
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)