Strain Name:


Stock Number:


Order this mouse


Repository- Live

Use Restrictions Apply, see Terms of Use
Common Names: CaMKII-tTA;    
When these Camk2a-tTA transgenic mice are mated to strain carrying a gene of interest under the regulatory control of a tetracycline-responsive promoter element (TRE; tetO), expression of the target gene can be blocked by administration of the tetracycline analog, doxycycline. These mice are a "Tet-Off" tool that allow the inducible expression of genes in forebrain neurons, and may be useful in studying brain disorders such as Alzheimer's, Parkinson's disease, or other neurodegenerative diseases.


Strain Information

Former Names B6.CBA-Tg(Camk2a-tTA)1Mmay/DboJ    (Changed: 28-AUG-07 )
Type Congenic; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemNoncarrier x Hemizygote         (Female x Male)   14-APR-08
Specieslaboratory mouse
GenerationN9+pN3F1 (17-OCT-14)
Generation Definitions
Donating InvestigatorDr. David R Borchelt,   University of Florida

Transgenic mice expressing the tetracycline-controlled transactivator protein (tTA) under regulatory control of the forebrain-specific calcium-calmodulin-dependent kinase II (Camk2a) promoter are viable and fertile. When hemizygotes are mated to a second strain carrying a gene of interest under the regulatory control of a tetracycline-responsive promoter element (TRE; tetO), expression of the target gene can be blocked by administration of the tetracycline analog, doxycycline (dox). These mice are a "Tet-Off" tool that allow the inducible expression of genes in forebrain neurons, and may be useful in studying brain disorders such as Alzheimer's disease (when used in conjunction with Stock No. 005706, Stock No. 007049, Stock No. 007051, Stock No. 007052), Parkinson's disease (Stock No. 013583), or other neurodegenerative diseases.

Of note, mice expressing Tg(Camk2a-tTA)1Mmay on the C57BL/6 background exhibit resistance to tTA-induced neurotoxicity (dentate gyrus granule cell layer atrophy). All other backgrounds tested (FVB/NJ, CBA/J, 129X1/SvJ, C3H/HeJ, DBA/1J) exhibit varying levels of neurotoxicity (Han et. al. 2012 J Neurosci 32:10574).

In an attempt to offer alleles on well-characterized or multiple genetic backgrounds, alleles are frequently moved to a genetic background different from that on which an allele was first characterized. It should be noted that the phenotype could vary from that originally described. We will modify the strain description if necessary as published results become available.

A transgenic construct was designed with ~8.5 kbp of the mouse CaMKIIalpha promoter placed upstream of the tetracycline-regulated transactivator (tTA or "Tet-Off") gene (flanked by an artificial intron and splice sites at the 5' end and by a polyadenylation signal from SV40 at the 3' end). Founder line B was established and maintained on a mixed B6;CBA genetic background upon its arrival at The Jackson Laboratory (as Stock No. 003010). These mice were obtained by Dr. David Borchelt (University of Florida) and then backcrossed to C57BL/6J inbred mice for at least eight generations prior to sending back to The Jackson Laboratory (as Stock No. 007004). Upon arrival, transgenic mice were bred to C57BL/6J inbred mice (Stock No. 000664) for at least one generation to establish the colony.

Control Information

   000664 C57BL/6J
  Considerations for Choosing Controls

Related Strains

Alzheimer's Disease Models
005987   129-Achetm1Loc/J
006409   129S1.129(Cg)-Tg(APPSw)40Btla/Mmjax
008077   129S1/Sv-Bchetm1Loc/J
016198   129S6.Cg-Tg(Camk2a-tTA)1Mmay/JlwsJ
014556   129S6/SvEv-Apoetm4Mae/J
006555   A.129(B6)-Tg(APPSw)40Btla/Mmjax
005708   B6.129-Apbb1tm1Quhu/J
004714   B6.129-Bace1tm1Pcw/J
004098   B6.129-Klc1tm1Gsn/J
004193   B6.129-Psen1tm1Mpm/J
003615   B6.129-Psen1tm1Shn/J
005300   B6.129-Tg(APPSw)40Btla/Mmjax
005617   B6.129P-Psen2tm1Bdes/J
002609   B6.129P2-Nos2tm1Lau/J
007685   B6.129P2-Psen1tm1Vln/J
007999   B6.129P2-Sorl1Gt(Ex255)Byg/J
008087   B6.129S1-Bchetm1Loc/J
002509   B6.129S2-Plautm1Mlg/J
005301   B6.129S2-Tg(APP)8.9Btla/J
004163   B6.129S4-Cdk5r1tm1Lht/J
010959   B6.129S4-Grk5tm1Rjl/J
010960   B6.129S4-Grk5tm2Rjl/J
002213   B6.129S4-Ngfrtm1Jae/J
006406   B6.129S4-Tg(APPSwLon)96Btla/Mmjax
006469   B6.129S4-Tg(PSEN1H163R)G9Btla/J
012564   B6.129S5-Dhcr24tm1Lex/SbpaJ
004142   B6.129S7-Aplp2tm1Dbo/J
004133   B6.129S7-Apptm1Dbo/J
007251   B6.129X1-Mapttm1Hnd/J
013040   B6.Cg-Apoetm1Unc Ins2Akita/J
005642   B6.Cg-Clutm1Jakh/J
005491   B6.Cg-Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
009126   B6.Cg-Nos2tm1Lau Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
005866   B6.Cg-Tg(APP695)3Dbo Tg(PSEN1dE9)S9Dbo/Mmjax
008730   B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
005864   B6.Cg-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax
007575   B6.Cg-Tg(CAG-Ngb,-EGFP)1Dgrn/J
016197   B6.Cg-Tg(CAG-OTC/CAT)4033Prab/J
005855   B6.Cg-Tg(Camk2a-Prkaca)426Tabe/J
004996   B6.Cg-Tg(DBH-Gal)1923Stei/J
007673   B6.Cg-Tg(Gad1-EGFP)3Gfng/J
004662   B6.Cg-Tg(PDGFB-APP)5Lms/J
006293   B6.Cg-Tg(PDGFB-APPSwInd)20Lms/2Mmjax
006006   B6.Cg-Tg(Prnp-APP)A-2Dbo/J
008596   B6.Cg-Tg(Prnp-Abca1)EHol/J
006005   B6.Cg-Tg(Prnp-App/APPswe)E1-2Dbo/Mmjax
007180   B6.Cg-Tg(Prnp-ITM2B/APP695*40)1Emcg/J
007182   B6.Cg-Tg(Prnp-ITM2B/APP695*42)A12Emcg/J
005999   B6.Cg-Tg(SBE/TK-luc)7Twc/J
012597   B6.Cg-Tg(Thy1-COL25A1)861Yfu/J
007051   B6.Cg-Tg(tetO-APPSwInd)102Dbo/Mmjax
007052   B6.Cg-Tg(tetO-APPSwInd)107Dbo/Mmjax
007049   B6.Cg-Tg(tetO-APPSwInd)885Dbo/Mmjax
009337   B6.FVB-Tg(Prnp-RTN3)2Yanr/J
006394   B6;129-Apba2tm1Sud Apba3tm1Sud Apba1tm1Sud/J
008364   B6;129-Chattm1(cre/ERT)Nat/J
008476   B6;129-Ncstntm1Sud/J
004807   B6;129-Psen1tm1Mpm Tg(APPSwe,tauP301L)1Lfa/Mmjax
007605   B6;129P-Psen1tm1Vln/J
005618   B6;129P2-Bace2tm1Bdes/J
008333   B6;129P2-Dldtm1Ptl/J
002596   B6;129P2-Nos2tm1Lau/J
003822   B6;129S-Psen1tm1Shn/J
012639   B6;129S4-Mapttm3(HDAC2)Jae/J
012869   B6;129S6-Apbb2tm1Her/J
006410   B6;129S6-Chattm2(cre)Lowl/J
005993   B6;129S6-Pcsk9tm1Jdh/J
008636   B6;C-Tg(Prnp-APP695*/EYFP)49Gsn/J
007002   B6;C3-Tg(Prnp-ITM2B/APP695*42)A12Emcg/Mmjax
008169   B6;C3-Tg(Prnp-MAPT*P301S)PS19Vle/J
000231   B6;C3Fe a/a-Csf1op/J
008850   B6;SJL-Tg(Mt1-LDLR)93-4Reh/AgnJ
003378   B6C3-Tg(APP695)3Dbo Tg(PSEN1)5Dbo/J
004462   B6C3-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax
003741   B6D2-Tg(Prnp-MAPT)43Vle/J
016556   B6N.129-Ptpn5tm1Pjlo/J
018957   B6N.129S6(B6)-Chattm2(cre)Lowl/J
024841   B6N.Cg-Tg(Prnp-MAPT*P301S)PS19Vle/J
006554   B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
012621   C.129S(B6)-Chrna3tm1.1Hwrt/J
002328   C.129S2-Plautm1Mlg/J
003375   C3B6-Tg(APP695)3Dbo/Mmjax
005087   C57BL/6-Tg(Camk2a-IDE)1Selk/J
005086   C57BL/6-Tg(Camk2a-MME)3Selk/J
008833   C57BL/6-Tg(Camk2a-UBB)3413-1Fwvl/J
007027   C57BL/6-Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
010800   C57BL/6-Tg(Thy1-PTGS2)300Kand/J
010703   C57BL/6-Tg(Thy1-PTGS2)303Kand/J
005706   C57BL/6-Tg(tetO-CDK5R1/GFP)337Lht/J
006618   C57BL/6-Tg(tetO-COX8A/EYFP)1Ksn/J
007677   CB6-Tg(Gad1-EGFP)G42Zjh/J
007072   CByJ.129P2(B6)-Nos2tm1Lau/J
006472   D2.129(B6)-Tg(APPSw)40Btla/Mmjax
007067   D2.129P2(B6)-Apoetm1Unc/J
013719   D2.Cg-Apoetm1Unc Ins2Akita/J
003718   FVB-Tg(GadGFP)45704Swn/J
013732   FVB-Tg(NPEPPS)1Skar/J
013156   FVB-Tg(tetO-CDK5R1*)1Vln/J
015815   FVB-Tg(tetO-MAPT*P301L)#Kha/JlwsJ
002329   FVB.129S2-Plautm1Mlg/J
025105   FVB.Cg-Tg(Camk2a-tTA)1Mmay/DboJ
003753   FVB/N-Tg(Eno2CDK5R1)1Jdm/J
006143   FVB/N-Tg(Thy1-cre)1Vln/J
025104   FVB/N-Tg(tetO/Prnp-MAPT*P301L,-luc)Y74Dbo/J
008051   NOD.129P2(B6)-Ctsbtm1Jde/RclJ
008390   STOCK Apptm1Sud/J
012640   STOCK Hdac2tm1.2Rdp/J
004808   STOCK Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
004779   STOCK Mapttm1(EGFP)Klt/J
014092   STOCK Tg(ACTB-tTA2,-MAPT/lacZ)1Luo/J
014544   STOCK Tg(tetO-ABL1*P242E*P249E)CPdav/J
View Alzheimer's Disease Models     (111 strains)

Huntington's Disease Models
007708   B6.129-Gt(ROSA)26Sortm1(HD*103Q)Xwy/J
003454   B6.129-Htttm3Mem/J
003597   B6.129-Htttm4Mem/J
003598   B6.129-Htttm5Mem/J
016094   B6.129P2-Git2Gt(XG510)Byg/WeisJ
016522   B6.129P2-Htttm2Detl/100J
004595   B6.129P2-Htttm2Detl/150J
021193   B6.129P2-Htttm2Detl/365J
016521   B6.129P2-Htttm2Detl/50J
002688   B6.129S4-Htttm1Mem/J
006471   B6.Cg-Tg(HDexon1)61Gpb/J
027432   B6.FVB-Tg(YAC128)53Hay/ChdiJ
008333   B6;129P2-Dldtm1Ptl/J
004360   B6;SJL-Tg(HD)63Aron/J
003627   B6C3-Tg(HD82Gln)81Gschi/J
002809   B6CBA-Tg(HDexon1)61Gpb/1J
002810   B6CBA-Tg(HDexon1)62Gpb/1J
006494   B6CBA-Tg(HDexon1)62Gpb/3J
027411   B6J.129S1(Cg)-Htttm2Mem/20ChdiJ
027409   B6J.129S1-Htttm1Mfc/140ChdiJ
027410   B6J.129S1-Htttm1Mfc/190ChdiJ
027412   B6J.129S4-Htttm1.1Pfs/80ChdiJ
027419   B6J.Cg-Tg(HDexon1)62Gpb/110ChdiJ
027423   B6J.Cg-Tg(HDexon1)62Gpb/240ChdiJ
027413   B6N.Cg-Htttm1Xen/45ChdiJ
027414   B6N.Cg-Htttm2Xen/45ChdiJ
027415   B6N.Cg-Htttm3Xen/80ChdiJ
027416   B6N.Cg-Htttm4Xen/80ChdiJ
027417   B6N.Cg-Htttm5Xen/105ChdiJ
027418   B6N.Cg-Htttm6Xen/105ChdiJ
016095   C.129P2(B6)-Git2Gt(XG510)Byg/WeisJ
008833   C57BL/6-Tg(Camk2a-UBB)3413-1Fwvl/J
007578   CBy.Cg-Tg(HDexon1)61Gpb/J
027433   FVB-Tg(HTT*97Q)LXwy/ChdiJ
013732   FVB-Tg(NPEPPS)1Skar/J
004938   FVB-Tg(YAC128)53Hay/J
025105   FVB.Cg-Tg(Camk2a-tTA)1Mmay/DboJ
012630   FVB/N-Tg(GFAP-HTT*160Q)31Xjl/J
008197   FVB/N-Tg(HTT*97Q)IXwy/J
007247   FVB/N-Tg(YAC353G6)W7Hay/J
003640   FVB/NJ-Tg(YAC72)2511Hay/J
007749   STOCK Hap1tm1Xjl/J
003453   STOCK Htttm2Mem/J
003455   STOCK Htttm4Mem/J
003456   STOCK Htttm5Mem/J
View Huntington's Disease Models     (45 strains)

Parkinson's Disease Models
005987   129-Achetm1Loc/J
007587   129S-Park2tm1Rpa/J
002779   129S-Parp1tm1Zqw/J
017001   129S.B6N-Plk2tm1Elan/J
016198   129S6.Cg-Tg(Camk2a-tTA)1Mmay/JlwsJ
004608   B6(Cg)-Htra2mnd2/J
021828   B6(SJL)-Lrrk2tm3.1Mjff/J
021830   B6(SJL)-Lrrk2tm4.1Mjff/GrsrJ
008133   B6.129-Sncbtm1Sud/J
008084   B6.129P2-Drd4tm1Dkg/J
004744   B6.129P2-Esr1tm1Ksk/J
013586   B6.129P2-Gt(ROSA)26Sortm1Nik/J
002609   B6.129P2-Nos2tm1Lau/J
008843   B6.129P2-Sncgtm1Vlb/J
016566   B6.129S-Hcn1tm2Kndl/J
003243   B6.129S-Tnfrsf1atm1Imx Tnfrsf1btm1Imx/J
004322   B6.129S1-Mapk10tm1Flv/J
003190   B6.129S2-Drd2tm1Low/J
006582   B6.129S4-Park2tm1Shn/J
017946   B6.129S4-Pink1tm1Shn/J
005934   B6.129S4-Ucp2tm1Lowl/J
004936   B6.129S6(Cg)-Spp1tm1Blh/J
012453   B6.129X1(FVB)-Lrrk2tm1.1Cai/J
017009   B6.129X1-Nfe2l2tm1Ywk/J
009346   B6.Cg-Lrrk2tm1.1Shn/J
005491   B6.Cg-Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
006577   B6.Cg-Park7tm1Shn/J
000567   B6.Cg-T2J +/+ Qkqk-v/J
003139   B6.Cg-Tg(DBHn-lacZ)8Rpk/J
007673   B6.Cg-Tg(Gad1-EGFP)3Gfng/J
012466   B6.Cg-Tg(Lrrk2)6Yue/J
012467   B6.Cg-Tg(Lrrk2*G2019S)2Yue/J
008323   B6.Cg-Tg(Mc4r-MAPT/Sapphire)21Rck/J
008321   B6.Cg-Tg(Npy-MAPT/Sapphire)1Rck/J
008324   B6.Cg-Tg(Pmch-MAPT/CFP)1Rck/J
008322   B6.Cg-Tg(Pomc-MAPT/Topaz)1Rck/J
007894   B6.Cg-Tg(Rgs4-EGFP)4Lvt/J
012588   B6.Cg-Tg(TH-ALPP)1Erav/J
012265   B6.Cg-Tg(THY1-SNCA*A30P)TS2Sud/J
008859   B6.Cg-Tg(THY1-SNCA*A53T)F53Sud/J
008135   B6.Cg-Tg(THY1-SNCA*A53T)M53Sud/J
008601   B6.Cg-Tg(Th-cre)1Tmd/J
013583   B6.Cg-Tg(tetO-LRRK2)C7874Cai/J
000544   B6.D2-Cacna1atg/J
012445   B6.FVB-Tg(LRRK2)WT1Mjfa/J
012446   B6.FVB-Tg(LRRK2*G2019S)1Mjfa/J
006660   B6.SJL-Slc6a3tm1.1(cre)Bkmn/J
008364   B6;129-Chattm1(cre/ERT)Nat/J
009688   B6;129-Dbhtm2(Th)Rpa Thtm1Rpa/J
008883   B6;129-Gt(ROSA)26Sortm1(SNCA*A53T)Djmo/TmdJ
008889   B6;129-Gt(ROSA)26Sortm2(SNCA*119)Djmo/TmdJ
008886   B6;129-Gt(ROSA)26Sortm3(SNCA*E46K)Djmo/TmdJ
009347   B6;129-Lrrk2tm1.1Shn/J
016209   B6;129-Lrrk2tm2.1Shn/J
016210   B6;129-Lrrk2tm3.1Shn/J
013050   B6;129-Pink1tm1Aub/J
004807   B6;129-Psen1tm1Mpm Tg(APPSwe,tauP301L)1Lfa/Mmjax
006390   B6;129-Sncatm1Sud Sncbtm1.1Sud/J
008532   B6;129-Thtm1(cre/Esr1)Nat/J
008333   B6;129P2-Dldtm1Ptl/J
008333   B6;129P2-Dldtm1Ptl/J
002596   B6;129P2-Nos2tm1Lau/J
003692   B6;129X1-Sncatm1Rosl/J
016575   B6;C3-Tg(PDGFB-LRRK2*G2019S)340Djmo/J
016576   B6;C3-Tg(PDGFB-LRRK2*R1441C)574Djmo/J
008169   B6;C3-Tg(Prnp-MAPT*P301S)PS19Vle/J
004479   B6;C3-Tg(Prnp-SNCA*A53T)83Vle/J
000231   B6;C3Fe a/a-Csf1op/J
012450   B6;D2-Tg(tetO-SNCA)1Cai/J
013725   B6;SJL-Tg(LRRK2)66Mjff/J
008473   B6;SJL-Tg(THY1-SNCA*A30P)M30Sud/J
008134   B6;SJL-Tg(THY1-SNCA*A30P)TS2Sud/J
016976   B6C3-Tg(tetO-SNCA*A53T)33Vle/J
000506   B6C3Fe a/a-Qkqk-v/J
003741   B6D2-Tg(Prnp-MAPT)43Vle/J
024841   B6N.Cg-Tg(Prnp-MAPT*P301S)PS19Vle/J
018768   B6N.Cg-Tg(SNCA*E46K)3Elan/J
012621   C.129S(B6)-Chrna3tm1.1Hwrt/J
016120   C57BL/6-Lrrk1tm1.1Mjff/J
012444   C57BL/6-Lrrk2tm1Mjfa/J
008389   C57BL/6-Tg(THY1-SNCA)1Sud/J
012769   C57BL/6-Tg(Thy1-Sncg)HvP36Putt/J
005706   C57BL/6-Tg(tetO-CDK5R1/GFP)337Lht/J
006618   C57BL/6-Tg(tetO-COX8A/EYFP)1Ksn/J
018785   C57BL/6J-Tg(LRRK2*G2019S)2AMjff/J
018786   C57BL/6J-Tg(LRRK2*R1441G)3IMjff/J
008245   C57BL/6J-Tg(Th-SNCA)5Eric/J
008239   C57BL/6J-Tg(Th-SNCA*A30P*A53T)39Eric/J
016122   C57BL/6N-Lrrk1tm1.1Mjff Lrrk2tm1.1Mjff/J
016121   C57BL/6N-Lrrk2tm1.1Mjff/J
016123   C57BL/6N-Sncatm1Mjff/J
016936   C57BL/6N-Tg(Thy1-SNCA)12Mjff/J
017682   C57BL/6N-Tg(Thy1-SNCA)15Mjff/J
007677   CB6-Tg(Gad1-EGFP)G42Zjh/J
025105   FVB.Cg-Tg(Camk2a-tTA)1Mmay/DboJ
009610   FVB/N-Tg(LRRK2)1Cjli/J
009609   FVB/N-Tg(LRRK2*G2019S)1Cjli/J
009604   FVB/N-Tg(LRRK2*R1441G)135Cjli/J
009090   FVB/NJ-Tg(Slc6a3-PARK2*Q311X)AXwy/J
017678   FVB;129-Pink1tm1Aub Tg(Prnp-SNCA*A53T)AAub/J
017744   FVB;129-Tg(Prnp-SNCA*A53T)AAub/J
010710   FVB;129S6-Sncatm1Nbm Tg(SNCA)1Nbm/J
010788   FVB;129S6-Sncatm1Nbm Tg(SNCA*A30P)1Nbm Tg(SNCA*A30P)2Nbm/J
010799   FVB;129S6-Sncatm1Nbm Tg(SNCA*A53T)1Nbm Tg(SNCA*A53T)2Nbm/J
004808   STOCK Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
000942   STOCK Pitx3ak/2J
014092   STOCK Tg(ACTB-tTA2,-MAPT/lacZ)1Luo/J
006340   STOCK Tg(Gad1-EGFP)98Agmo/J
017000   STOCK Tg(SNCA*E46K)3Elan/J
008474   STOCK Tg(THY1-SNCA*A53T)F53Sud/J
008132   STOCK Tg(THY1-Snca)M1mSud/J
012441   STOCK Tg(tetO-LRRK2*G2019S)E3Cai/J
012442   STOCK Tg(tetO-SNCA*A53T)E2Cai/J
012449   STOCK Tg(teto-LRRK2)C7874Cai/J
View Parkinson's Disease Models     (114 strains)

View Strains carrying   Tg(Camk2a-tTA)1Mmay     (5 strains)

View Strains carrying other alleles of Camk2a     (21 strains)

Strains carrying other alleles of tTA
008079   129S-Ppargtm2(tTA)Yba/J
011008   B6.129P2(Cg)-Gt(ROSA)26Sortm1(tTA)Roos/J
009602   B6.129S4(Cg)-Kcnn2tm2Jpad/J
009603   B6.129S4-Kcnn3tm1Jpad/J
008227   B6.129S4-Ppargtm3(tTA)Yba/J
016868   B6.Cg-Ssttm1.2(tTA2)Hze/J
003563   B6.Cg-Tg(Cebpb-tTA)5Bjd/J
003767   B6.Cg-Tg(Eno2tTA)5021Nes/J
003763   B6.Cg-Tg(Eno2tTA)5030Nes/J
018306   B6.Cg-Tg(Fos-tTA,Fos-EGFP*)1Mmay/J
005964   B6.Cg-Tg(GFAP-tTA)110Pop/J
002618   B6.Cg-Tg(MMTVtTA)1Mam/J
008284   B6.Cg-Tg(Scg2-tTA)1Jt/J
023970   B6.Cg-Tg(Sirpa-tTA)AUmri/J
023971   B6.Cg-Tg(Sirpa-tTA)SUmri/J
006361   B6.Cg-Tg(Sp7-tTA,tetO-EGFP/cre)1Amc/J
017722   B6.Cg-Tg(Tal1-tTA)19Dgt/J
017754   B6;129-Omptm1(tTA)Gogo/J
007585   B6;129S4-Npytm2Rpa/J
002709   B6;C3-Tg(TettTALuc)1Dgs/J
008344   B6;DBA-Tg(Fos-tTA,Fos-EGFP*)1Mmay Tg(tetO-lacZ,tTA*)1Mmay/J
010573   B6;SJL-Tg(Prl-tTA)6-5Jek/J
008082   B6;SJL-Tg(Tagln-tTA)1Mrab Tg(tetO-Mcpt1)1Mrab/J
008603   C.129P2(B6)-Gt(ROSA)26Sortm1(tTA)Roos/J
010712   C57BL/6-Tg(Camk2a-tTA)1Stl/J
013585   FVB-Tg(Cdh5-tTA)D5Lbjn/J
005625   FVB-Tg(Pcp2-tTA)3Horr/J
003170   FVB.Cg-Tg(Myh6-tTA)6Smbf/J
006209   FVB.Cg-Tg(Tal1-tTA)19Dgt/J
005942   FVB/N-Tg(Pf4-tTA/VP16)42Kra/J
004937   NOD.Cg-Tg(Ins2-tTA)1Doi/DoiJ
006999   STOCK Dbttm1Geh Tg(Cebpb-tTA)5Bjd Tg(tetO-DBT)A1Geh/J
008335   STOCK Foxa2tm1.1(rtTa)Moon/J
008600   STOCK Gt(ROSA)26Sortm1(tTA)Roos/J
005701   STOCK Pdx1tm1Macd/J
014092   STOCK Tg(ACTB-tTA2,-MAPT/lacZ)1Luo/J
003271   STOCK Tg(CMV-tTA)3Bjd/J
018124   STOCK Tg(Prnp-tTA)F959Sbp/J
009606   STOCK Tg(Six2-EGFP/cre)1Amc/J
003275   STOCK Tg(tetL)1Bjd/J
003274   STOCK Tg(tetNZL)2Bjd/J
View Strains carrying other alleles of tTA     (41 strains)

Additional Web Information

Tet Expression Systems

Visit our Huntington's Disease page for a full listing of Huntington's strains and research services.
Visit the Alzheimer's Disease Mouse Model Resource site for helpful information on Alzheimer's Disease and research resources.

Visit the Parkinson's Disease Resource site for helpful information on Parkinson's and research resources.


Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype


  • behavior/neurological phenotype
  • abnormal long term spatial reference memory
    • mice swim less distance in the target quadrant than controls when tested for long-term recall suggesting a memory consolidation impairment   (MGI Ref ID J:185792)
  • nervous system phenotype
  • *normal* nervous system phenotype
    • no evidence of overt dentate degeneration on the C57BL/6 congenic background as compared to C3H/He and CBA genetic backgrounds   (MGI Ref ID J:185792)
    • granule cell layer is similar to control at all time points studied   (MGI Ref ID J:185792)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.


        (B6.Cg-Tg(Camk2a-tTA)1Mmay x C3H/HeJ)F1
  • nervous system phenotype
  • abnormal dentate gyrus morphology
    • width of granule cell layer is 14% thinner than controls and the C57BL/6 congenic background   (MGI Ref ID J:185792)
  • hippocampal neuron degeneration
    • width of granule cell layer is 14% thinner than controls and the C57BL/6 congenic background   (MGI Ref ID J:185792)


        (B6.Cg-Tg(Camk2a-tTA)1Mmay x CBA/J)F1
  • nervous system phenotype
  • abnormal dentate gyrus morphology
    • width of granule cell layer is 30% thinner than controls and the C57BL/6 congenic background   (MGI Ref ID J:185792)
  • hippocampal neuron degeneration
    • width of granule cell layer is 30% thinner than controls and the C57BL/6 congenic background   (MGI Ref ID J:185792)


        (B6.Cg-Tg(Camk2a-tTA)1Mmay x 129X1/SvJ)F1
  • behavior/neurological phenotype
  • impaired contextual conditioning behavior
    • freezing in response to unsignaled foot shock decreases in mutant and increases in control during final minutes of 5 minute test   (MGI Ref ID J:185792)
  • nervous system phenotype
  • abnormal dentate gyrus morphology
    • width of granule cell layer is 27% thinner than controls and the C57BL/6 congenic background   (MGI Ref ID J:185792)
  • hippocampal neuron degeneration
    • width of granule cell layer is 27% thinner than controls and the C57BL/6 congenic background   (MGI Ref ID J:185792)


        (B6.Cg-Tg(Camk2a-tTA)1Mmay x DBA/1J)F1
  • nervous system phenotype
  • abnormal dentate gyrus morphology
    • width of granule cell layer is 17% thinner than controls and the C57BL/6 congenic background   (MGI Ref ID J:185792)
  • hippocampal neuron degeneration
    • width of granule cell layer is 17% thinner than controls and the C57BL/6 congenic background   (MGI Ref ID J:185792)


        (B6.Cg-Tg(Camk2a-tTA)1Mmay x FVB/NJ)F1
  • nervous system phenotype
  • abnormal dentate gyrus morphology
    • width of dentate gyrus granule cell layer is 21% thinner than controls and the C57BL/6 congenic background   (MGI Ref ID J:185792)
    • however, doxycycline administered in the first 6 weeks of life protects against cell loss   (MGI Ref ID J:185792)
  • hippocampal neuron degeneration
    • width of dentate gyrus granule cell layer is 21% thinner than controls and the C57BL/6 congenic background   (MGI Ref ID J:185792)
    • however, doxycycline administered in the first 6 weeks of life protects against cell loss   (MGI Ref ID J:185792)


        involves: C3H/HeJ * C57BL/6 * CBA
  • nervous system phenotype
  • abnormal dentate gyrus morphology
    • granule cell layer of the dentate gyrus is reduced and disorganized in 2 month old mice as compared to non-transgenic controls and the C57BL/6 congenic background   (MGI Ref ID J:185792)
    • cell loss is not observed in 2 week old mice   (MGI Ref ID J:185792)
    • width of granule cell layer is 42% thinner than controls by 2-4 months   (MGI Ref ID J:185792)
    • width of granule cell layer is 68% thinner than controls by 6-9 months   (MGI Ref ID J:185792)
    • however, when mice are reared on doxycycline, cell loss is not observed   (MGI Ref ID J:185792)
  • hippocampal neuron degeneration
    • neuronal degeneration is progressive   (MGI Ref ID J:185792)


        (B6.Cg-Tg(Camk2a-tTA)1Mmay x C3H/HeJ)F1 x C3H/HeJ
  • nervous system phenotype
  • abnormal dentate gyrus morphology
    • width of granule cell layer is 29% thinner than controls and C57BL/6 congenic background   (MGI Ref ID J:185792)
  • hippocampal neuron degeneration
    • width of granule cell layer is 29% thinner than controls and C57BL/6 congenic background   (MGI Ref ID J:185792)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Neurobiology Research
Alzheimer's Disease
Behavioral and Learning Defects
Huntington's disease
Parkinson's Disease
Tet Expression System
      tTA/rtTA Expressing Strains

Research Tools
Neurobiology Research
      Tetop Tet System
Tet Expression Systems
      tTA/rtTA Expressing Strains

Genes & Alleles

Gene & Allele Information provided by MGI

Allele Symbol Tg(Camk2a-tTA)1Mmay
Allele Name transgene insertion 1, Mark Mayford
Allele Type Transgenic (Transactivator)
Common Name(s) CAMK-rTA; CaMKII-tTA; CaMKIIalpha-tTA; CamDAT; Tg(CaMKIItTA)Mmay; Tgalpha-CaMkII-tTA; line B; pCaMKII-tTA;
Mutation Made ByDr. Mark Mayford,   The Scripps Research Institute
Site of ExpressionExpresses tTA in forebrain neurons.
Expressed Gene tTA, tetracycline-controlled transactivator, E. coli
The tetracycline-resistance gene (TetR), arose from chemically mutated Escherichia coli genome which was screened for tetracycline dependence (Gossen and Bujard, 1992). TetR was fused at the C-terminus with the viral co-activator, virion protein 16 of the herpes simplex virus (VP-16). The tetracycline-inhibitable transcription factor is a component of a bigenic system that allows doxycycline (a tetracycline analog) regulatable expression of genes that are under the direction of the tetracycline responsive promoter (TetOp)promoter.
Promoter Camk2a, calcium/calmodulin-dependent protein kinase II alpha, mouse, laboratory
General Note This transgene is line B.

Transgenic mice are viable, fertile, and display no overt phenotypic defects. Administration of tetracycline analogs such as doxycycline blocks transgene expression.

Molecular Note The transgene contains the tetracycline-controlled transactivator protein (tTA) under regulatory control of the forebrain specific calcium/calmodulin-dependent kinase II promoter. [MGI Ref ID J:37107]


Genotyping Information

Genotyping Protocols

Tg(tTA), Probe
Tg(tTA), Standard PCR

Helpful Links

Genotyping resources and troubleshooting


References provided by MGI

Selected Reference(s)

Mayford M; Bach ME; Huang YY; Wang L; Hawkins RD; Kandel ER. 1996. Control of memory formation through regulated expression of a CaMKII transgene. Science 274(5293):1678-83. [PubMed: 8939850]  [MGI Ref ID J:37107]

Additional References

Tg(Camk2a-tTA)1Mmay related

Ageta H; Ikegami S; Miura M; Masuda M; Migishima R; Hino T; Takashima N; Murayama A; Sugino H; Setou M; Kida S; Yokoyama M; Hasegawa Y; Tsuchida K; Aosaki T; Inokuchi K. 2010. Activin plays a key role in the maintenance of long-term memory and late-LTP. Learn Mem 17(4):176-85. [PubMed: 20332189]  [MGI Ref ID J:185839]

Ainsley JA; Drane L; Jacobs J; Kittelberger KA; Reijmers LG. 2014. Functionally diverse dendritic mRNAs rapidly associate with ribosomes following a novel experience. Nat Commun 5:4510. [PubMed: 25072471]  [MGI Ref ID J:212973]

Aleksic T; Baumann B; Wagner M; Adler G; Wirth T; Weber CK. 2007. Cellular immune reaction in the pancreas is induced by constitutively active IkappaB kinase-2. Gut 56(2):227-36. [PubMed: 16870717]  [MGI Ref ID J:130547]

Alexander GM; Rogan SC; Abbas AI; Armbruster BN; Pei Y; Allen JA; Nonneman RJ; Hartmann J; Moy SS; Nicolelis MA; McNamara JO; Roth BL. 2009. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63(1):27-39. [PubMed: 19607790]  [MGI Ref ID J:154952]

Alfieri JA; Pino NS; Igaz LM. 2014. Reversible behavioral phenotypes in a conditional mouse model of TDP-43 proteinopathies. J Neurosci 34(46):15244-59. [PubMed: 25392493]  [MGI Ref ID J:217404]

Alvarez-Saavedra M; Saez MA; Kang D; Zoghbi HY; Young JI. 2007. Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis. Hum Mol Genet 16(19):2315-25. [PubMed: 17635839]  [MGI Ref ID J:124365]

Badanich KA; Doremus-Fitzwater TL; Mulholland PJ; Randall PK; Delpire E; Becker HC. 2011. NR2B-deficient mice are more sensitive to the locomotor stimulant and depressant effects of ethanol. Genes Brain Behav 10(7):805-16. [PubMed: 21762461]  [MGI Ref ID J:188172]

Barco A; Patterson S; Alarcon JM; Gromova P; Mata-Roig M; Morozov A; Kandel ER. 2005. Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron 48(1):123-37. [PubMed: 16202713]  [MGI Ref ID J:105355]

Bedford L; Hay D; Devoy A; Paine S; Powe DG; Seth R; Gray T; Topham I; Fone K; Rezvani N; Mee M; Soane T; Layfield R; Sheppard PW; Ebendal T; Usoskin D; Lowe J; Mayer RJ. 2008. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 28(33):8189-98. [PubMed: 18701681]  [MGI Ref ID J:138991]

Bejar R; Yasuda R; Krugers H; Hood K; Mayford M. 2002. Transgenic calmodulin-dependent protein kinase II activation: dose-dependent effects on synaptic plasticity, learning, and memory. J Neurosci 22(13):5719-26. [PubMed: 12097524]  [MGI Ref ID J:112443]

Bertocchi I; Oberto A; Longo A; Mele P; Sabetta M; Bartolomucci A; Palanza P; Sprengel R; Eva C. 2011. Regulatory functions of limbic Y1 receptors in body weight and anxiety uncovered by conditional knockout and maternal care. Proc Natl Acad Sci U S A 108(48):19395-400. [PubMed: 22084082]  [MGI Ref ID J:180396]

Born HA; Kim JY; Savjani RR; Das P; Dabaghian YA; Guo Q; Yoo JW; Schuler DR; Cirrito JR; Zheng H; Golde TE; Noebels JL; Jankowsky JL. 2014. Genetic suppression of transgenic APP rescues Hypersynchronous network activity in a mouse model of Alzeimer's disease. J Neurosci 34(11):3826-40. [PubMed: 24623762]  [MGI Ref ID J:209607]

Cao L; Molina J; Abad C; Carmona-Mora P; Cardenas Oyarzo A; Young JI; Walz K. 2014. Correct developmental expression level of Rai1 in forebrain neurons is required for control of body weight, activity levels and learning and memory. Hum Mol Genet 23(7):1771-82. [PubMed: 24218365]  [MGI Ref ID J:207141]

Castello NA; Nguyen MH; Tran JD; Cheng D; Green KN; LaFerla FM. 2014. 7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss. PLoS One 9(3):e91453. [PubMed: 24614170]  [MGI Ref ID J:215124]

Chandrasekaran K; Hazelton JL; Wang Y; Fiskum G; Kristian T. 2006. Neuron-specific conditional expression of a mitochondrially targeted fluorescent protein in mice. J Neurosci 26(51):13123-7. [PubMed: 17182763]  [MGI Ref ID J:118452]

Chang KH; Multani PS; Sun KH; Vincent F; de Pablo Y; Ghosh S; Gupta R; Lee HP; Lee HG; Smith MA; Shah K. 2011. Nuclear envelope dispersion triggered by deregulated Cdk5 precedes neuronal death. Mol Biol Cell 22(9):1452-62. [PubMed: 21389115]  [MGI Ref ID J:182975]

Chen AP; Ohno M; Giese KP; Kuhn R; Chen RL; Silva AJ. 2006. Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory. J Neurosci Res 83(1):28-38. [PubMed: 16342120]  [MGI Ref ID J:107042]

Chen L; Ding Y; Cagniard B; Van Laar AD; Mortimer A; Chi W; Hastings TG; Kang UJ; Zhuang X. 2008. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 28(2):425-33. [PubMed: 18184785]  [MGI Ref ID J:131093]

Cheng HY; Dziema H; Papp J; Mathur DP; Koletar M; Ralph MR; Penninger JM; Obrietan K. 2006. The molecular gatekeeper Dexras1 sculpts the photic responsiveness of the mammalian circadian clock. J Neurosci 26(50):12984-95. [PubMed: 17167088]  [MGI Ref ID J:116668]

Cheng J; Ji D. 2013. Rigid firing sequences undermine spatial memory codes in a neurodegenerative mouse model. Elife 2:e00647. [PubMed: 23805379]  [MGI Ref ID J:207802]

Cheng N; Cai H; Belluscio L. 2011. In Vivo Olfactory Model of APP-Induced Neurodegeneration Reveals a Reversible Cell-Autonomous Function. J Neurosci 31(39):13699-704. [PubMed: 21957232]  [MGI Ref ID J:176127]

Chiu C; Reid CA; Tan HO; Davies PJ; Single FN; Koukoulas I; Berkovic SF; Tan SS; Sprengel R; Jones MV; Petrou S. 2008. Developmental impact of a familial GABAA receptor epilepsy mutation. Ann Neurol 64(3):284-93. [PubMed: 18825662]  [MGI Ref ID J:194736]

Chuhma N; Tanaka KF; Hen R; Rayport S. 2011. Functional connectome of the striatal medium spiny neuron. J Neurosci 31(4):1183-92. [PubMed: 21273403]  [MGI Ref ID J:188102]

Cook C; Dunmore JH; Murray ME; Scheffel K; Shukoor N; Tong J; Castanedes-Casey M; Phillips V; Rousseau L; Penuliar MS; Kurti A; Dickson DW; Petrucelli L; Fryer JD. 2014. Severe amygdala dysfunction in a MAPT transgenic mouse model of frontotemporal dementia. Neurobiol Aging 35(7):1769-77. [PubMed: 24503275]  [MGI Ref ID J:207366]

Crook ZR; Housman D. 2011. Huntington's disease: can mice lead the way to treatment? Neuron 69(3):423-35. [PubMed: 21315254]  [MGI Ref ID J:174750]

Cruz JC; Tseng HC; Goldman JA; Shih H; Tsai LH. 2003. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40(3):471-83. [PubMed: 14642273]  [MGI Ref ID J:104240]

Diaz-Hernandez M; Diez-Zaera M; Sanchez-Nogueiro J; Gomez-Villafuertes R; Canals JM; Alberch J; Miras-Portugal MT; Lucas JJ. 2009. Altered P2X7-receptor level and function in mouse models of Huntington's disease and therapeutic efficacy of antagonist administration. FASEB J 23(6):1893-906. [PubMed: 19171786]  [MGI Ref ID J:150552]

Drane L; Ainsley JA; Mayford MR; Reijmers LG. 2014. A transgenic mouse line for collecting ribosome-bound mRNA using the tetracycline transactivator system. Front Mol Neurosci 7:82. [PubMed: 25400545]  [MGI Ref ID J:215826]

DuBoff B; Gotz J; Feany MB. 2012. Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75(4):618-32. [PubMed: 22920254]  [MGI Ref ID J:188334]

Eckermann K; Mocanu MM; Khlistunova I; Biernat J; Nissen A; Hofmann A; Schonig K; Bujard H; Haemisch A; Mandelkow E; Zhou L; Rune G; Mandelkow EM. 2007. The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J Biol Chem 282(43):31755-65. [PubMed: 17716969]  [MGI Ref ID J:126788]

Elkharaz J; Ugun-Klusek A; Constantin-Teodosiu D; Lawler K; Mayer RJ; Billett E; Lowe J; Bedford L. 2013. Implications for oxidative stress and astrocytes following 26S proteasomal depletion in mouse forebrain neurones. Biochim Biophys Acta 1832(12):1930-8. [PubMed: 23851049]  [MGI Ref ID J:204108]

Engel T; Goni-Oliver P; Gomez-Ramos P; Moran MA; Lucas JJ; Avila J; Hernandez F. 2008. Hippocampal neuronal subpopulations are differentially affected in double transgenic mice overexpressing frontotemporal dementia and parkinsonism linked to chromosome 17 tau and glycogen synthase kinase-3beta. Neuroscience 157(4):772-80. [PubMed: 18951953]  [MGI Ref ID J:144874]

Engel T; Lucas JJ; Gomez-Ramos P; Moran MA; Avila J; Hernandez F. 2006. Cooexpression of FTDP-17 tau and GSK-3beta in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol Aging 27(9):1258-68. [PubMed: 16054268]  [MGI Ref ID J:113439]

Favilla C; Abel T; Kelly MP. 2008. Chronic Galphas signaling in the striatum increases anxiety-related behaviors independent of developmental effects. J Neurosci 28(51):13952-6. [PubMed: 19091983]  [MGI Ref ID J:143516]

Fleischmann A; Abdus-Saboor I; Sayed A; Shykind B. 2013. Functional interrogation of an odorant receptor locus reveals multiple axes of transcriptional regulation. PLoS Biol 11(5):e1001568. [PubMed: 23700388]  [MGI Ref ID J:201434]

Formentini L; Pereira MP; Sanchez-Cenizo L; Santacatterina F; Lucas JJ; Navarro C; Martinez-Serrano A; Cuezva JM. 2014. In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning. EMBO J 33(7):762-78. [PubMed: 24521670]  [MGI Ref ID J:208039]

Freudenberg F; Marx V; Mack V; Layer LE; Klugmann M; Seeburg PH; Sprengel R; Celikel T. 2013. GluA1 and its PDZ-interaction: a role in experience-dependent behavioral plasticity in the forced swim test. Neurobiol Dis 52:160-7. [PubMed: 23262314]  [MGI Ref ID J:197650]

Fridmacher V; Kaltschmidt B; Goudeau B; Ndiaye D; Rossi FM; Pfeiffer J; Kaltschmidt C; Israel A; Memet S. 2003. Forebrain-specific neuronal inhibition of nuclear factor-kappaB activity leads to loss of neuroprotection. J Neurosci 23(28):9403-8. [PubMed: 14561868]  [MGI Ref ID J:86217]

Fukui H; Moraes CT. 2009. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet 18(6):1028-36. [PubMed: 19095717]  [MGI Ref ID J:145737]

Fuster-Matanzo A; Llorens-Martin M; Sirerol-Piquer MS; Garcia-Verdugo JM; Avila J; Hernandez F. 2013. Dual effects of increased glycogen synthase kinase-3beta activity on adult neurogenesis. Hum Mol Genet 22(7):1300-15. [PubMed: 23257288]  [MGI Ref ID J:193849]

Giusti-Rodriguez P; Gao J; Graff J; Rei D; Soda T; Tsai LH. 2011. Synaptic Deficits Are Rescued in the p25/Cdk5 Model of Neurodegeneration by the Reduction of beta-Secretase (BACE1). J Neurosci 31(44):15751-6. [PubMed: 22049418]  [MGI Ref ID J:177847]

Gjoneska E; Pfenning AR; Mathys H; Quon G; Kundaje A; Tsai LH; Kellis M. 2015. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease. Nature 518(7539):365-9. [PubMed: 25693568]  [MGI Ref ID J:219866]

Gomez de Barreda E; Perez M; Gomez Ramos P; de Cristobal J; Martin-Maestro P; Moran A; Dawson HN; Vitek MP; Lucas JJ; Hernandez F; Avila J. 2010. Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiol Dis 37(3):622-9. [PubMed: 20004245]  [MGI Ref ID J:158536]

Gomez-Sintes R; Hernandez F; Bortolozzi A; Artigas F; Avila J; Zaratin P; Gotteland JP; Lucas JJ. 2007. Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO J 26(11):2743-54. [PubMed: 17510631]  [MGI Ref ID J:122627]

Gross C; Zhuang X; Stark K; Ramboz S; Oosting R; Kirby L; Santarelli L; Beck S; Hen R. 2002. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416(6879):396-400. [PubMed: 11919622]  [MGI Ref ID J:75722]

Gruart A; Benito E; Delgado-Garcia JM; Barco A. 2012. Enhanced cAMP response element-binding protein activity increases neuronal excitability, hippocampal long-term potentiation, and classical eyeblink conditioning in alert behaving mice. J Neurosci 32(48):17431-41. [PubMed: 23197734]  [MGI Ref ID J:193114]

Han HJ; Allen CC; Buchovecky CM; Yetman MJ; Born HA; Marin MA; Rodgers SP; Song BJ; Lu HC; Justice MJ; Probst FJ; Jankowsky JL. 2012. Strain background influences neurotoxicity and behavioral abnormalities in mice expressing the tetracycline transactivator. J Neurosci 32(31):10574-86. [PubMed: 22855807]  [MGI Ref ID J:185792]

Hansen KF; Sakamoto K; Wayman GA; Impey S; Obrietan K. 2010. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One 5(11):e15497. [PubMed: 21124738]  [MGI Ref ID J:167123]

Hasan MT; Schonig K; Berger S; Graewe W; Bujard H. 2001. Long-term, noninvasive imaging of regulated gene expression in living mice. Genesis 29(3):116-22. [PubMed: 11252052]  [MGI Ref ID J:127660]

Hawk JD; Bookout AL; Poplawski SG; Bridi M; Rao AJ; Sulewski ME; Kroener BT; Manglesdorf DJ; Abel T. 2012. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors. J Clin Invest 122(10):3593-602. [PubMed: 22996661]  [MGI Ref ID J:191754]

Heng MY; Lin ST; Verret L; Huang Y; Kamiya S; Padiath QS; Tong Y; Palop JJ; Huang EJ; Ptacek LJ; Fu YH. 2013. Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model. J Clin Invest 123(6):2719-29. [PubMed: 23676464]  [MGI Ref ID J:197168]

Hidvegi T; Schmidt BZ; Hale P; Perlmutter DH. 2005. Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. J Biol Chem 280(47):39002-15. [PubMed: 16183649]  [MGI Ref ID J:104112]

Hunsberger HC; Rudy CC; Batten SR; Gerhardt GA; Reed MN. 2015. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway. J Neurochem 132(2):169-82. [PubMed: 25319522]  [MGI Ref ID J:218026]

Igaz LM; Kwong LK; Lee EB; Chen-Plotkin A; Swanson E; Unger T; Malunda J; Xu Y; Winton MJ; Trojanowski JQ; Lee VM. 2011. Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest 121(2):726-38. [PubMed: 21206091]  [MGI Ref ID J:170756]

Isiegas C; McDonough C; Huang T; Havekes R; Fabian S; Wu LJ; Xu H; Zhao MG; Kim JI; Lee YS; Lee HR; Ko HG; Lee N; Choi SL; Lee JS; Son H; Zhuo M; Kaang BK; Abel T. 2008. A novel conditional genetic system reveals that increasing neuronal cAMP enhances memory and retrieval. J Neurosci 28(24):6220-30. [PubMed: 18550764]  [MGI Ref ID J:137375]

Jancic D; Lopez de Armentia M; Valor LM; Olivares R; Barco A. 2009. Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cereb Cortex 19(11):2535-47. [PubMed: 19213815]  [MGI Ref ID J:211460]

Jankowsky JL; Slunt HH; Gonzales V; Savonenko AV; Wen JC; Jenkins NA; Copeland NG; Younkin LH; Lester HA; Younkin SG; Borchelt DR. 2005. Persistent amyloidosis following suppression of Abeta production in a transgenic model of Alzheimer disease. PLoS Med 2(12):e355. [PubMed: 16279840]  [MGI Ref ID J:109829]

Jerecic J; Schulze CH; Jonas P; Sprengel R; Seeburg PH; Bischofberger J. 2001. Impaired NMDA receptor function in mouse olfactory bulb neurons by tetracycline-sensitive NR1 (N598R) expression. Brain Res Mol Brain Res 94(1-2):96-104. [PubMed: 11597769]  [MGI Ref ID J:130561]

Kaltschmidt B; Ndiaye D; Korte M; Pothion S; Arbibe L; Prullage M; Pfeiffer J; Lindecke A; Staiger V; Israel A; Kaltschmidt C; Memet S. 2006. NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Mol Cell Biol 26(8):2936-46. [PubMed: 16581769]  [MGI Ref ID J:107412]

Karlen A; Karlsson TE; Mattsson A; Lundstromer K; Codeluppi S; Pham TM; Backman CM; Ogren SO; Aberg E; Hoffman AF; Sherling MA; Lupica CR; Hoffer BJ; Spenger C; Josephson A; Brene S; Olson L. 2009. Nogo receptor 1 regulates formation of lasting memories. Proc Natl Acad Sci U S A 106(48):20476-81. [PubMed: 19915139]  [MGI Ref ID J:155587]

Kassai H; Sugaya Y; Noda S; Nakao K; Maeda T; Kano M; Aiba A. 2014. Selective activation of mTORC1 signaling recapitulates microcephaly, tuberous sclerosis, and neurodegenerative diseases. Cell Rep 7(5):1626-39. [PubMed: 24857653]  [MGI Ref ID J:211789]

Kelly MP; Stein JM; Vecsey CG; Favilla C; Yang X; Bizily SF; Esposito MF; Wand G; Kanes SJ; Abel T. 2009. Developmental etiology for neuroanatomical and cognitive deficits in mice overexpressing Galphas, a G-protein subunit genetically linked to schizophrenia. Mol Psychiatry 14(4):398-415, 347. [PubMed: 19030002]  [MGI Ref ID J:166114]

Kholodilov N; Kim SR; Yarygina O; Kareva T; Cho JW; Baohan A; Burke RE. 2011. Glial cell line-derived neurotrophic factor receptor-alpha1 expressed in striatum in trans regulates development and injury response of dopamine neurons of the substantia nigra. J Neurochem 116(4):486-98. [PubMed: 21133924]  [MGI Ref ID J:170428]

Klug JR; Mathur BN; Kash TL; Wang HD; Matthews RT; Robison AJ; Anderson ME; Deutch AY; Lovinger DM; Colbran RJ; Winder DG. 2012. Genetic inhibition of CaMKII in dorsal striatal medium spiny neurons reduces functional excitatory synapses and enhances intrinsic excitability. PLoS One 7(9):e45323. [PubMed: 23028932]  [MGI Ref ID J:191787]

Kolber BJ; Boyle MP; Wieczorek L; Kelley CL; Onwuzurike CC; Nettles SA; Vogt SK; Muglia LJ. 2010. Transient early-life forebrain corticotropin-releasing hormone elevation causes long-lasting anxiogenic and despair-like changes in mice. J Neurosci 30(7):2571-81. [PubMed: 20164342]  [MGI Ref ID J:157835]

Kopeikina KJ; Carlson GA; Pitstick R; Ludvigson AE; Peters A; Luebke JI; Koffie RM; Frosch MP; Hyman BT; Spires-Jones TL. 2011. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain. Am J Pathol 179(4):2071-82. [PubMed: 21854751]  [MGI Ref ID J:176290]

Koppel J; Jimenez H; Azose M; D'Abramo C; Acker C; Buthorn J; Greenwald BS; Lewis J; Lesser M; Liu Z; Davies P. 2014. Pathogenic tau species drive a psychosis-like phenotype in a mouse model of Alzheimer's disease. Behav Brain Res 275:27-33. [PubMed: 25151619]  [MGI Ref ID J:217067]

Krestel HE; Mihaljevic AL; Hoffman DA; Schneider A. 2004. Neuronal co-expression of EGFP and beta-galactosidase in mice causes neuropathology and premature death. Neurobiol Dis 17(2):310-8. [PubMed: 15474368]  [MGI Ref ID J:93090]

Krestel HE; Shimshek DR; Jensen V; Nevian T; Kim J; Geng Y; Bast T; Depaulis A; Schonig K; Schwenk F; Bujard H; Hvalby O; Sprengel R; Seeburg PH. 2004. A genetic switch for epilepsy in adult mice. J Neurosci 24(46):10568-78. [PubMed: 15548671]  [MGI Ref ID J:96556]

Kvajo M; McKellar H; Gogos JA. 2012. Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience 211:136-64. [PubMed: 21821099]  [MGI Ref ID J:184660]

Larsen RS; Corlew RJ; Henson MA; Roberts AC; Mishina M; Watanabe M; Lipton SA; Nakanishi N; Perez-Otano I; Weinberg RJ; Philpot BD. 2011. NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat Neurosci 14(3):338-44. [PubMed: 21297630]  [MGI Ref ID J:170349]

Le TT; McGovern VL; Alwine IE; Wang X; Massoni-Laporte A; Rich MM; Burghes AH. 2011. Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet 20(18):3578-91. [PubMed: 21672919]  [MGI Ref ID J:174960]

Lee AS; Duman RS; Pittenger C. 2008. A double dissociation revealing bidirectional competition between striatum and hippocampus during learning. Proc Natl Acad Sci U S A 105(44):17163-8. [PubMed: 18955704]  [MGI Ref ID J:144070]

Lee B; Cao R; Choi YS; Cho HY; Rhee AD; Hah CK; Hoyt KR; Obrietan K. 2009. The CREB/CRE transcriptional pathway: protection against oxidative stress-mediated neuronal cell death. J Neurochem 108(5):1251-65. [PubMed: 19141071]  [MGI Ref ID J:146168]

Lee HG; Casadesus G; Nunomura A; Zhu X; Castellani RJ; Richardson SL; Perry G; Felsher DW; Petersen RB; Smith MA. 2009. The neuronal expression of MYC causes a neurodegenerative phenotype in a novel transgenic mouse. Am J Pathol 174(3):891-7. [PubMed: 19164506]  [MGI Ref ID J:146151]

Leo D; Gainetdinov RR. 2013. Transgenic mouse models for ADHD. Cell Tissue Res :. [PubMed: 23681253]  [MGI Ref ID J:198682]

Li YC; Kellendonk C; Simpson EH; Kandel ER; Gao WJ. 2011. D2 receptor overexpression in the striatum leads to a deficit in inhibitory transmission and dopamine sensitivity in mouse prefrontal cortex. (Correction) Proc Natl Acad Sci U S A 108(29):12107-12. [PubMed: 21730148]  [MGI Ref ID J:174363]

Lian H; Yang L; Cole A; Sun L; Chiang AC; Fowler SW; Shim DJ; Rodriguez-Rivera J; Taglialatela G; Jankowsky JL; Lu HC; Zheng H. 2015. NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron 85(1):101-15. [PubMed: 25533482]  [MGI Ref ID J:219343]

Licht T; Dor-Wollman T; Ben-Zvi A; Rothe G; Keshet E. 2015. Vessel maturation schedule determines vulnerability to neuronal injuries of prematurity. J Clin Invest 125(3):1319-28. [PubMed: 25689256]  [MGI Ref ID J:220538]

Licht T; Eavri R; Goshen I; Shlomai Y; Mizrahi A; Keshet E. 2010. VEGF is required for dendritogenesis of newly born olfactory bulb interneurons. Development 137(2):261-71. [PubMed: 20040492]  [MGI Ref ID J:157255]

Lim Y; Kehm VM; Lee EB; Soper JH; Li C; Trojanowski JQ; Lee VM. 2011. {alpha}-Syn Suppression Reverses Synaptic and Memory Defects in a Mouse Model of Dementia with Lewy Bodies. J Neurosci 31(27):10076-87. [PubMed: 21734300]  [MGI Ref ID J:174555]

Lim Y; Kehm VM; Li C; Trojanowski JQ; Lee VM. 2010. Forebrain overexpression of alpha-synuclein leads to early postnatal hippocampal neuron loss and synaptic disruption. Exp Neurol 221(1):86-97. [PubMed: 19833127]  [MGI Ref ID J:156801]

Lin X; Parisiadou L; Gu XL; Wang L; Shim H; Sun L; Xie C; Long CX; Yang WJ; Ding J; Chen ZZ; Gallant PE; Tao-Cheng JH; Rudow G; Troncoso JC; Liu Z; Li Z; Cai H. 2009. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein. Neuron 64(6):807-27. [PubMed: 20064389]  [MGI Ref ID J:156512]

Lindeberg J; Mattsson R; Ebendal T. 2002. Timing the doxycycline yields different patterns of genomic recombination in brain neurons with a new inducible Cre transgene. J Neurosci Res 68(2):248-53. [PubMed: 11948670]  [MGI Ref ID J:82535]

Ljungberg MC; Ali YO; Zhu J; Wu CS; Oka K; Zhai RG; Lu HC. 2012. CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Hum Mol Genet 21(2):251-67. [PubMed: 22027994]  [MGI Ref ID J:179018]

Lopez ME; Klein AD; Dimbil UJ; Scott MP. 2011. Anatomically defined neuron-based rescue of neurodegenerative niemann-pick type C disorder. J Neurosci 31(12):4367-78. [PubMed: 21430138]  [MGI Ref ID J:170312]

Lopez de Armentia M; Jancic D; Olivares R; Alarcon JM; Kandel ER; Barco A. 2007. cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J Neurosci 27(50):13909-18. [PubMed: 18077703]  [MGI Ref ID J:130579]

Lopez-Menendez C; Gamir-Morralla A; Jurado-Arjona J; Higuero AM; Campanero MR; Ferrer I; Hernandez F; Avila J; Diaz-Guerra M; Iglesias T. 2013. Kidins220 accumulates with tau in human Alzheimer's disease and related models: modulation of its calpain-processing by GSK3beta/PP1 imbalance. Hum Mol Genet 22(3):466-82. [PubMed: 23118350]  [MGI Ref ID J:191216]

Lucas JJ; Hernandez F; Gomez-Ramos P; Moran MA; Hen R; Avila J. 2001. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20(1-2):27-39. [PubMed: 11226152]  [MGI Ref ID J:67070]

Mack V; Burnashev N; Kaiser KM; Rozov A; Jensen V; Hvalby O; Seeburg PH; Sakmann B; Sprengel R. 2001. Conditional restoration of hippocampal synaptic potentiation in Glur-A-deficient mice. Science 292(5526):2501-4. [PubMed: 11431570]  [MGI Ref ID J:76021]

Marxreiter F; Ettle B; May VE; Esmer H; Patrick C; Kragh CL; Klucken J; Winner B; Riess O; Winkler J; Masliah E; Nuber S. 2013. Glial A30P alpha-synuclein pathology segregates neurogenesis from anxiety-related behavior in conditional transgenic mice. Neurobiol Dis 59:38-51. [PubMed: 23867236]  [MGI Ref ID J:201663]

Marxreiter F; Nuber S; Kandasamy M; Klucken J; Aigner R; Burgmayer R; Couillard-Despres S; Riess O; Winkler J; Winner B. 2009. Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein. Eur J Neurosci 29(5):879-90. [PubMed: 19291219]  [MGI Ref ID J:147049]

May VE; Nuber S; Marxreiter F; Riess O; Winner B; Winkler J. 2012. Impaired olfactory bulb neurogenesis depends on the presence of human wild-type alpha-synuclein. Neuroscience 222:343-55. [PubMed: 22814000]  [MGI Ref ID J:192503]

McKinney BC; Schneider JS; Schafer GL; Lowing JL; Mohan S; Zhao MX; Heng MY; Albin RL; Seasholtz AF; Akil H; Murphy GG. 2008. Decreased locomotor activity in mice expressing tTA under control of the CaMKII alpha promoter. Genes Brain Behav 7(2):203-13. [PubMed: 17640289]  [MGI Ref ID J:145601]

Melnikova T; Fromholt S; Kim H; Lee D; Xu G; Price A; Moore BD; Golde TE; Felsenstein KM; Savonenko A; Borchelt DR. 2013. Reversible pathologic and cognitive phenotypes in an inducible model of Alzheimer-amyloidosis. J Neurosci 33(9):3765-79. [PubMed: 23447589]  [MGI Ref ID J:195259]

Menkes-Caspi N; Yamin HG; Kellner V; Spires-Jones TL; Cohen D; Stern EA. 2015. Pathological tau disrupts ongoing network activity. Neuron 85(5):959-66. [PubMed: 25704951]  [MGI Ref ID J:219856]

Messing L; Decker JM; Joseph M; Mandelkow E; Mandelkow EM. 2013. Cascade of tau toxicity in inducible hippocampal brain slices and prevention by aggregation inhibitors. Neurobiol Aging 34(5):1343-54. [PubMed: 23158765]  [MGI Ref ID J:203380]

Mocanu MM; Nissen A; Eckermann K; Khlistunova I; Biernat J; Drexler D; Petrova O; Schonig K; Bujard H; Mandelkow E; Zhou L; Rune G; Mandelkow EM. 2008. The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28(3):737-48. [PubMed: 18199773]  [MGI Ref ID J:131379]

Morozov A; Muzzio IA; Bourtchouladze R; Van-Strien N; Lapidus K; Yin D; Winder DG; Adams JP; Sweatt JD; Kandel ER. 2003. Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron 39(2):309-25. [PubMed: 12873387]  [MGI Ref ID J:128795]

Muyllaert D; Terwel D; Kremer A; Sennvik K; Borghgraef P; Devijver H; Dewachter I; Van Leuven F. 2008. Neurodegeneration and neuroinflammation in cdk5/p25-inducible mice: a model for hippocampal sclerosis and neocortical degeneration. Am J Pathol 172(2):470-85. [PubMed: 18202185]  [MGI Ref ID J:131373]

Myczek K; Yeung ST; Castello N; Baglietto-Vargas D; LaFerla FM. 2014. Hippocampal adaptive response following extensive neuronal loss in an inducible transgenic mouse model. PLoS One 9(9):e106009. [PubMed: 25184527]  [MGI Ref ID J:221533]

Nakagawa S; Kim JE; Lee R; Malberg JE; Chen J; Steffen C; Zhang YJ; Nestler EJ; Duman RS. 2002. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 22(9):3673-82. [PubMed: 11978843]  [MGI Ref ID J:128620]

Nakashiba T; Young JZ; McHugh TJ; Buhl DL; Tonegawa S. 2008. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 319(5867):1260-4. [PubMed: 18218862]  [MGI Ref ID J:131852]

Nicholls RE; Alarcon JM; Malleret G; Carroll RC; Grody M; Vronskaya S; Kandel ER. 2008. Transgenic mice lacking NMDAR-dependent LTD exhibit deficits in behavioral flexibility. Neuron 58(1):104-17. [PubMed: 18400167]  [MGI Ref ID J:135145]

Nicholls RE; Zhang XL; Bailey CP; Conklin BR; Kandel ER; Stanton PK. 2006. mGluR2 acts through inhibitory Galpha subunits to regulate transmission and long-term plasticity at hippocampal mossy fiber-CA3 synapses. Proc Natl Acad Sci U S A 103(16):6380-5. [PubMed: 16606834]  [MGI Ref ID J:109030]

Nie T; McDonough CB; Huang T; Nguyen PV; Abel T. 2007. Genetic disruption of protein kinase A anchoring reveals a role for compartmentalized kinase signaling in theta-burst long-term potentiation and spatial memory. J Neurosci 27(38):10278-88. [PubMed: 17881534]  [MGI Ref ID J:145104]

Niewoehner B; Single FN; Hvalby O; Jensen V; Borgloh SM; Seeburg PH; Rawlins JN; Sprengel R; Bannerman DM. 2007. Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur J Neurosci 25(3):837-46. [PubMed: 17313573]  [MGI Ref ID J:119834]

Nuber S; Petrasch-Parwez E; Winner B; Winkler J; von Horsten S; Schmidt T; Boy J; Kuhn M; Nguyen HP; Teismann P; Schulz JB; Neumann M; Pichler BJ; Reischl G; Holzmann C; Schmitt I; Bornemann A; Kuhn W; Zimmermann F; Servadio A; Riess O. 2008. Neurodegeneration and motor dysfunction in a conditional model of Parkinson's disease. J Neurosci 28(10):2471-84. [PubMed: 18322092]  [MGI Ref ID J:132774]

Odeh F; Leergaard TB; Boy J; Schmidt T; Riess O; Bjaalie JG. 2011. Atlas of transgenic Tet-Off Ca2+/calmodulin-dependent protein kinase II and prion protein promoter activity in the mouse brain. Neuroimage 54(4):2603-11. [PubMed: 21093594]  [MGI Ref ID J:204506]

Paine SM; Anderson G; Bedford K; Lawler K; Mayer RJ; Lowe J; Bedford L. 2013. Pale body-like inclusion formation and neurodegeneration following depletion of 26S proteasomes in mouse brain neurones are independent of alpha-synuclein. PLoS One 8(1):e54711. [PubMed: 23382946]  [MGI Ref ID J:195914]

Palais G; Nguyen Dinh Cat A; Friedman H; Panek-Huet N; Millet A; Tronche F; Gellen B; Mercadier JJ; Peterson A; Jaisser F. 2009. Targeted transgenesis at the HPRT locus: an efficient strategy to achieve tightly controlled in vivo conditional expression with the tet system. Physiol Genomics 37(2):140-6. [PubMed: 19141541]  [MGI Ref ID J:157969]

Parisiadou L; Xie C; Cho HJ; Lin X; Gu XL; Long CX; Lobbestael E; Baekelandt V; Taymans JM; Sun L; Cai H. 2009. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 29(44):13971-80. [PubMed: 19890007]  [MGI Ref ID J:154755]

Parisiadou L; Yu J; Sgobio C; Xie C; Liu G; Sun L; Gu XL; Lin X; Crowley NA; Lovinger DM; Cai H. 2014. LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity. Nat Neurosci 17(3):367-76. [PubMed: 24464040]  [MGI Ref ID J:206832]

Pavlopoulos E; Jones S; Kosmidis S; Close M; Kim C; Kovalerchik O; Small SA; Kandel ER. 2013. Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48. Sci Transl Med 5(200):200ra115. [PubMed: 23986399]  [MGI Ref ID J:213461]

Pickrell AM; Fukui H; Wang X; Pinto M; Moraes CT. 2011. The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions. J Neurosci 31(27):9895-904. [PubMed: 21734281]  [MGI Ref ID J:174561]

Pinto M; Pickrell AM; Fukui H; Moraes CT. 2013. Mitochondrial DNA damage in a mouse model of Alzheimer's disease decreases amyloid beta plaque formation. Neurobiol Aging 34(10):2399-407. [PubMed: 23702344]  [MGI Ref ID J:211726]

Pletnikov MV; Ayhan Y; Nikolskaia O; Xu Y; Ovanesov MV; Huang H; Mori S; Moran TH; Ross CA. 2008. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 13(2):173-86, 115. [PubMed: 17848917]  [MGI Ref ID J:146881]

Pogorelov VM; Nomura J; Kim J; Kannan G; Ayhan Y; Yang C; Taniguchi Y; Abazyan B; Valentine H; Krasnova IN; Kamiya A; Cadet JL; Wong DF; Pletnikov MV. 2012. Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model. Neuropharmacology 62(3):1242-51. [PubMed: 21315744]  [MGI Ref ID J:183592]

Pozueta J; Lefort R; Shelanski ML. 2013. Synaptic changes in Alzheimer's disease and its models. Neuroscience 251:51-65. [PubMed: 22687952]  [MGI Ref ID J:207068]

Pujadas L; Gruart A; Bosch C; Delgado L; Teixeira CM; Rossi D; de Lecea L; Martinez A; Delgado-Garcia JM; Soriano E. 2010. Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J Neurosci 30(13):4636-49. [PubMed: 20357114]  [MGI Ref ID J:159385]

Ramsden M; Kotilinek L; Forster C; Paulson J; McGowan E; SantaCruz K; Guimaraes A; Yue M; Lewis J; Carlson G; Hutton M; Ashe KH. 2005. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25(46):10637-47. [PubMed: 16291936]  [MGI Ref ID J:102973]

Robbins EM; Krupp AJ; Perez de Arce K; Ghosh AK; Fogel AI; Boucard A; Sudhof TC; Stein V; Biederer T. 2010. SynCAM 1 adhesion dynamically regulates synapse number and impacts plasticity and learning. Neuron 68(5):894-906. [PubMed: 21145003]  [MGI Ref ID J:167742]

Roberts AC; Diez-Garcia J; Rodriguiz RM; Lopez IP; Lujan R; Martinez-Turrillas R; Pico E; Henson MA; Bernardo DR; Jarrett TM; Clendeninn DJ; Lopez-Mascaraque L; Feng G; Lo DC; Wesseling JF; Wetsel WC; Philpot BD; Perez-Otano I. 2009. Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation. Neuron 63(3):342-56. [PubMed: 19679074]  [MGI Ref ID J:154942]

Rocher AB; Crimins JL; Amatrudo JM; Kinson MS; Todd-Brown MA; Lewis J; Luebke JI. 2010. Structural and functional changes in tau mutant mice neurons are not linked to the presence of NFTs. Exp Neurol 223(2):385-93. [PubMed: 19665462]  [MGI Ref ID J:162373]

Sahara N; Perez PD; Lin WL; Dickson DW; Ren Y; Zeng H; Lewis J; Febo M. 2014. Age-related decline in white matter integrity in a mouse model of tauopathy: an in vivo diffusion tensor magnetic resonance imaging study. Neurobiol Aging 35(6):1364-74. [PubMed: 24411290]  [MGI Ref ID J:213888]

Sakai N; Tsubokawa H; Matsuzaki M; Kajimoto T; Takahashi E; Ren Y; Ohmori S; Shirai Y; Matsubayashi H; Chen J; Duman RS; Kasai H; Saito N. 2004. Propagation of gammaPKC translocation along the dendrites of Purkinje cell in gammaPKC-GFP transgenic mice. Genes Cells 9(10):945-57. [PubMed: 15461665]  [MGI Ref ID J:133986]

Samuels BA; Hsueh YP; Shu T; Liang H; Tseng HC; Hong CJ; Su SC; Volker J; Neve RL; Yue DT; Tsai LH. 2007. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56(5):823-37. [PubMed: 18054859]  [MGI Ref ID J:169741]

Sano Y; Ornthanalai VG; Yamada K; Homma C; Suzuki H; Suzuki T; Murphy NP; Itohara S. 2009. X11-like protein deficiency is associated with impaired conflict resolution in mice. J Neurosci 29(18):5884-96. [PubMed: 19420255]  [MGI Ref ID J:148481]

Santacruz K; Lewis J; Spires T; Paulson J; Kotilinek L; Ingelsson M; Guimaraes A; DeTure M; Ramsden M; McGowan E; Forster C; Yue M; Orne J; Janus C; Mariash A; Kuskowski M; Hyman B; Hutton M; Ashe KH. 2005. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476-81. [PubMed: 16020737]  [MGI Ref ID J:99626]

Schirer Y; Malishkevich A; Ophir Y; Lewis J; Giladi E; Gozes I. 2014. Novel marker for the onset of frontotemporal dementia: early increase in activity-dependent neuroprotective protein (ADNP) in the face of Tau mutation. PLoS One 9(1):e87383. [PubMed: 24489906]  [MGI Ref ID J:212690]

Schmeisser MJ; Baumann B; Johannsen S; Vindedal GF; Jensen V; Hvalby OC; Sprengel R; Seither J; Maqbool A; Magnutzki A; Lattke M; Oswald F; Boeckers TM; Wirth T. 2012. IkappaB kinase/nuclear factor kappaB-dependent insulin-like growth factor 2 (Igf2) expression regulates synapse formation and spine maturation via Igf2 receptor signaling. J Neurosci 32(16):5688-703. [PubMed: 22514330]  [MGI Ref ID J:184438]

Schmidt-Strassburger U; Schips TG; Maier HJ; Kloiber K; Mannella F; Braunstein KE; Holzmann K; Ushmorov A; Liebau S; Boeckers TM; Wirth T. 2012. Expression of constitutively active FoxO3 in murine forebrain leads to a loss of neural progenitors. FASEB J 26(12):4990-5001. [PubMed: 22935140]  [MGI Ref ID J:193342]

Schonig K; Schwenk F; Rajewsky K; Bujard H. 2002. Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 30(23):e134. [PubMed: 12466566]  [MGI Ref ID J:81196]

Sorolla MA; Rodriguez-Colman MJ; Tamarit J; Tamarit J; Ortega Z; Lucas JJ; Ferrer I; Rosa J; Cabiscol E. 2010. Protein oxidation in Huntington disease affects energy production and vitamin B6 metabolism. Free Radic Biol Med 49(4):612-21. [PubMed: 20639122]  [MGI Ref ID J:162547]

Suh J; Rivest AJ; Nakashiba T; Tominaga T; Tonegawa S. 2011. Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory. Science :. [PubMed: 22052975]  [MGI Ref ID J:178297]

Sundaram JR; Chan ES; Poore CP; Pareek TK; Cheong WF; Shui G; Tang N; Low CM; Wenk MR; Kesavapany S. 2012. Cdk5/p25-Induced Cytosolic PLA2-Mediated Lysophosphatidylcholine Production Regulates Neuroinflammation and Triggers Neurodegeneration. J Neurosci 32(3):1020-34. [PubMed: 22262900]  [MGI Ref ID J:179887]

Sundaram JR; Poore CP; Sulaimee NH; Pareek T; Asad AB; Rajkumar R; Cheong WF; Wenk MR; Dawe GS; Chuang KH; Pant HC; Kesavapany S. 2013. Specific inhibition of p25/Cdk5 activity by the Cdk5 inhibitory peptide reduces neurodegeneration in vivo. J Neurosci 33(1):334-43. [PubMed: 23283346]  [MGI Ref ID J:193916]

Svenningsson P; Chergui K; Rachleff I; Flajolet M; Zhang X; Yacoubi ME; Vaugeois JM; Nomikos GG; Greengard P. 2006. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311(5757):77-80. [PubMed: 16400147]  [MGI Ref ID J:104116]

Sydow A; Van der Jeugd A; Zheng F; Ahmed T; Balschun D; Petrova O; Drexler D; Zhou L; Rune G; Mandelkow E; D'Hooge R; Alzheimer C; Mandelkow EM. 2011. Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic tau mutant. J Neurosci 31(7):2511-25. [PubMed: 21325519]  [MGI Ref ID J:169532]

Tanaka KF; Matsui K; Sasaki T; Sano H; Sugio S; Fan K; Hen R; Nakai J; Yanagawa Y; Hasuwa H; Okabe M; Deisseroth K; Ikenaka K; Yamanaka A. 2012. Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. Cell Rep 2(2):397-406. [PubMed: 22854021]  [MGI Ref ID J:186771]

Trantham-Davidson H; Vazdarjanova A; Dai R; Terry A; Bergson C. 2008. Up-regulation of calcyon results in locomotor hyperactivity and reduced anxiety in mice. Behav Brain Res 189(2):244-9. [PubMed: 18295356]  [MGI Ref ID J:181086]

Vazdarjanova A; Bunting K; Muthusamy N; Bergson C. 2011. Calcyon upregulation in adolescence impairs response inhibition and working memory in adulthood. Mol Psychiatry 16(6):672-84. [PubMed: 21403673]  [MGI Ref ID J:181085]

Wang L; Xie C; Greggio E; Parisiadou L; Shim H; Sun L; Chandran J; Lin X; Lai C; Yang WJ; Moore DJ; Dawson TM; Dawson VL; Chiosis G; Cookson MR; Cai H. 2008. The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J Neurosci 28(13):3384-91. [PubMed: 18367605]  [MGI Ref ID J:133490]

Ward NL; Putoczki T; Mearow K; Ivanco TL; Dumont DJ. 2005. Vascular-specific growth factor angiopoietin 1 is involved in the organization of neuronal processes. J Comp Neurol 482(3):244-56. [PubMed: 15690488]  [MGI Ref ID J:95553]

Ward SM; Himmelstein DS; Ren Y; Fu Y; Yu XW; Roberts K; Binder LI; Sahara N. 2014. TOC1: a valuable tool in assessing disease progression in the rTg4510 mouse model of tauopathy. Neurobiol Dis 67:37-48. [PubMed: 24631720]  [MGI Ref ID J:213657]

Weible AP; Schwarcz L; Wickersham IR; Deblander L; Wu H; Callaway EM; Seung HS; Kentros CG. 2010. Transgenic targeting of recombinant rabies virus reveals monosynaptic connectivity of specific neurons. J Neurosci 30(49):16509-13. [PubMed: 21147990]  [MGI Ref ID J:166740]

Wieczorek L; Maas JW Jr; Muglia LM; Vogt SK; Muglia LJ. 2010. Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory. PLoS One 5(10):e13385. [PubMed: 20976279]  [MGI Ref ID J:166523]

Wiltgen BJ; Law M; Ostlund S; Mayford M; Balleine BW. 2007. The influence of Pavlovian cues on instrumental performance is mediated by CaMKII activity in the striatum. Eur J Neurosci 25(8):2491-7. [PubMed: 17445244]  [MGI Ref ID J:125036]

Wortge S; Eshkind L; Cabezas-Wallscheid N; Lakaye B; Kim J; Heck R; Abassi Y; Diken M; Sprengel R; Bockamp E. 2010. Tetracycline-controlled transgene activation using the ROSA26-iM2-GFP knock-in mouse strain permits GFP monitoring of DOX-regulated transgene-expression. BMC Dev Biol 10:95. [PubMed: 20815887]  [MGI Ref ID J:165820]

Wu D; Qiu Y; Gao X; Yuan XB; Zhai Q. 2011. Overexpression of SIRT1 in Mouse Forebrain Impairs Lipid/Glucose Metabolism and Motor Function. PLoS One 6(6):e21759. [PubMed: 21738790]  [MGI Ref ID J:174424]

Yamamoto A; Lucas JJ; Hen R. 2000. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease [see comments] Cell 101(1):57-66. [PubMed: 10778856]  [MGI Ref ID J:61490]

Yamasaki TR; Blurton-Jones M; Morrissette DA; Kitazawa M; Oddo S; LaFerla FM. 2007. Neural stem cells improve memory in an inducible mouse model of neuronal loss. J Neurosci 27(44):11925-33. [PubMed: 17978032]  [MGI Ref ID J:127469]

Yasuda M; Johnson-Venkatesh EM; Zhang H; Parent JM; Sutton MA; Umemori H. 2011. Multiple forms of activity-dependent competition refine hippocampal circuits in vivo. Neuron 70(6):1128-42. [PubMed: 21689599]  [MGI Ref ID J:175245]

Yasuda M; Mayford MR. 2006. CaMKII activation in the entorhinal cortex disrupts previously encoded spatial memory. Neuron 50(2):309-18. [PubMed: 16630840]  [MGI Ref ID J:108340]

Ye X; Cai Q. 2014. Snapin-mediated BACE1 retrograde transport is essential for its degradation in lysosomes and regulation of APP processing in neurons. Cell Rep 6(1):24-31. [PubMed: 24373968]  [MGI Ref ID J:207508]

Yetman MJ; Jankowsky JL. 2013. Wild-type neural progenitors divide and differentiate normally in an amyloid-rich environment. J Neurosci 33(44):17335-41. [PubMed: 24174666]  [MGI Ref ID J:204201]

Yeung ST; Myczek K; Kang AP; Chabrier MA; Baglietto-Vargas D; Laferla FM. 2014. Impact of hippocampal neuronal ablation on neurogenesis and cognition in the aged brain. Neuroscience 259:214-22. [PubMed: 24316470]  [MGI Ref ID J:207913]

Yin DM; Chen YJ; Lu YS; Bean JC; Sathyamurthy A; Shen C; Liu X; Lin TW; Smith CA; Xiong WC; Mei L. 2013. Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1. Neuron 78(4):644-57. [PubMed: 23719163]  [MGI Ref ID J:201544]

Yin DM; Sun XD; Bean JC; Lin TW; Sathyamurthy A; Xiong WC; Gao TM; Chen YJ; Mei L. 2013. Regulation of spine formation by ErbB4 in PV-positive interneurons. J Neurosci 33(49):19295-303. [PubMed: 24305825]  [MGI Ref ID J:204147]

Yue M; Hanna A; Wilson J; Roder H; Janus C. 2011. Sex difference in pathology and memory decline in rTg4510 mouse model of tauopathy. Neurobiol Aging 32(4):590-603. [PubMed: 19427061]  [MGI Ref ID J:173738]

Zeng H; Horie K; Madisen L; Pavlova MN; Gragerova G; Rohde AD; Schimpf BA; Liang Y; Ojala E; Kramer F; Roth P; Slobodskaya O; Dolka I; Southon EA; Tessarollo L; Bornfeldt KE; Gragerov A; Pavlakis GN; Gaitanaris GA. 2008. An inducible and reversible mouse genetic rescue system. PLoS Genet 4(5):e1000069. [PubMed: 18464897]  [MGI Ref ID J:136987]

Zhou M; Rebholz H; Brocia C; Warner-Schmidt JL; Fienberg AA; Nairn AC; Greengard P; Flajolet M. 2010. Forebrain overexpression of CK1delta leads to down-regulation of dopamine receptors and altered locomotor activity reminiscent of ADHD. Proc Natl Acad Sci U S A 107(9):4401-6. [PubMed: 20145109]  [MGI Ref ID J:158611]

de Calignon A; Fox LM; Pitstick R; Carlson GA; Bacskai BJ; Spires-Jones TL; Hyman BT. 2010. Caspase activation precedes and leads to tangles. Nature 464(7292):1201-4. [PubMed: 20357768]  [MGI Ref ID J:159296]

de Calignon A; Polydoro M; Suarez-Calvet M; William C; Adamowicz DH; Kopeikina KJ; Pitstick R; Sahara N; Ashe KH; Carlson GA; Spires-Jones TL; Hyman BT. 2012. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73(4):685-97. [PubMed: 22365544]  [MGI Ref ID J:182498]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX12

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, hemizygous mice can be bred together, to wildtype (noncarrier) mice from the colony, or to C57BL/6J inbred mice (Stock No. 000664).
Mating SystemNoncarrier x Hemizygote         (Female x Male)   14-APR-08

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls

Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $239.00Female or MaleHemizygous for Tg(Camk2a-tTA)1Mmay  
Price per Pair (US dollars $)Pair Genotype
$313.00Hemizygous for Tg(Camk2a-tTA)1Mmay x Noncarrier  
$313.00Noncarrier x Hemizygous for Tg(Camk2a-tTA)1Mmay  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $310.70Female or MaleHemizygous for Tg(Camk2a-tTA)1Mmay  
Price per Pair (US dollars $)Pair Genotype
$406.90Hemizygous for Tg(Camk2a-tTA)1Mmay x Noncarrier  
$406.90Noncarrier x Hemizygous for Tg(Camk2a-tTA)1Mmay  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

   000664 C57BL/6J
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

See Terms of Use tab for General Terms and Conditions

The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use

General Terms and Conditions

For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration


JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty


In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.