Strain Name:

AK.129S7(B6)-Ldlrtm1Her/J

Stock Number:

007070

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Mice homozygous for this Ldlr (low density lipoprotein receptor) targeted mutation, Ldlrtm1Her, may be useful for studying lipid and leptin homeostasis, hyperglycemia, hypercholesterolemia, atherosclerosis, and the effects of diet on skin and coat.

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names AKR.129S7(B6)-Ldlrtm1Her/J    (Changed: 07-JUL-11 )
Type Congenic; Mutant Strain; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
GenerationN5F1pN1
Generation Definitions

Description
Mice homozygous for the Ldlrtm1Her mutation have an elevated serum cholesterol level of 200-400 mg/dl and they have very high levels (>2,000 mg/dl) when fed a high fat diet. Normal serum cholesterol in the mouse is 80-100 mg/dl. This mutant mouse strain may be useful in studies of lipid and leptin homeostasis, hyperglycemia, hypercholesterolemia, atherosclerosis, and the effects of diet on skin and coat.

In an attempt to offer alleles on well-characterized or multiple genetic backgrounds, alleles are frequently moved to a genetic background different from that on which an allele was first characterized. This is the case for the strain above. It should be noted that the phenotype could vary from that originally described. We will modify the strain description if necessary as published results become available.

Development
A targeting vector containing neomycin resistance and herpes simplex virus thymidine kinase genes was used to disrupt exon 4. The construct was electroporated into 129S7/SvEvBrd-Hprt1+ derived AB1 embryonic stem (ES) cells. Correctly targeted ES cells were injected into C57BL/6 blastocysts. The resulting chimeric animals were crossed to C57BL/6J mice, and then backcrossed to C57BL/6J for 10 generations. These B6.129S7-Ldlrtm1Her/J (Stock No. 002207) mice were then backcrossed to AKR/J (Stock No. 000648) using a speed congenic protocol to produce this strain.

Control Information

  Control
   000648 AKR/J
 
  Considerations for Choosing Controls

Related Strains

View Strains carrying   Ldlrtm1Her     (15 strains)

View Strains carrying other alleles of Ldlr     (4 strains)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Model with phenotypic similarity to human disease where etiologies involve orthologs. Human genes are associated with this disease. Orthologs of those genes appear in the mouse genotype(s).
Hypercholesterolemia, Familial
Models with phenotypic similarity to human diseases where etiology is unknown or involving genes where ortholog is unknown.
Fatty Liver Disease, Nonalcoholic, Susceptibility to, 1; NAFLD1
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Ldlrtm1Her/Ldlr+

        involves: 129S7/SvEvBrd * C57BL/6 * DBA/2
  • homeostasis/metabolism phenotype
  • hyperglycemia
    • streptozotocin (STZ) treatment leads to 3-fold higher level of blood glucose in mice fed a high fat diet   (MGI Ref ID J:100916)
    • these high glucose levels persist for at least 12 weeks after STZ treatment   (MGI Ref ID J:100916)

Ldlrtm1Her/Ldlr+

        B6.129S7-Ldlrtm1Her
  • homeostasis/metabolism phenotype
  • increased circulating cholesterol level
    • seen at 3-4 months of age   (MGI Ref ID J:72027)
  • increased circulating triglyceride level
    • seen at 3-4 months of age   (MGI Ref ID J:72027)

Ldlrtm1Her/Ldlrtm1Her

        involves: 129S7/SvEvBrd * C57BL/6
  • growth/size/body phenotype
  • decreased lean body mass   (MGI Ref ID J:84844)
  • obese
    • mice fed a diabetogenic high fat diet (35.5% carbohydrate and 36.6% fat) (DD diet) or a a diabetogenic high fat diet (35.5% carbohydrate and 36.6% fat) with 0.15% added cholesterol (DDC diet) exhibit weight gain leading to obesity; similar weight gain is seen regardless of diet   (MGI Ref ID J:175559)
  • homeostasis/metabolism phenotype
  • abnormal circulating amino acid level
    • mothers on a high fat diet have reduced plasma concentrations of phenylalanine, lysine, valine, isoleucine, and leucine   (MGI Ref ID J:146932)
    • levels of other amino acids are normal   (MGI Ref ID J:146932)
  • abnormal glucose homeostasis   (MGI Ref ID J:84844)
    • impaired glucose tolerance
      • glucose levels increase during a glucose tolerance test   (MGI Ref ID J:84844)
      • 30 minute insulin levels elevated   (MGI Ref ID J:84844)
    • increased circulating glucose level
      • increased fasting glucose levels after dexamethasone treatment   (MGI Ref ID J:84844)
    • increased circulating insulin level
      • after dexamethasone treatment   (MGI Ref ID J:84844)
    • insulin resistance
      • less likely to become hypoglycemic during an insulin tolerance test   (MGI Ref ID J:84844)
  • decreased circulating corticosterone level
    • levels in response to ACTH are significantly reduced   (MGI Ref ID J:108412)
  • increased circulating alanine transaminase level
    • ALT levels are increased in mice fed the DD diet and even more so in those fed the DDC diet   (MGI Ref ID J:175559)
  • increased circulating cholesterol level
    • similar levels of hypercholesterolemia are seen in mice fed the DD diet and those fed the DDC diet   (MGI Ref ID J:175559)
    • increased circulating LDL cholesterol level
      • clearance of 125I-LDL from circulation is retarded, uptake of DiI-LDL by hepatocytes is decreased, and uptake of 3H-CE-LDL by the liver is lower compared to wild-type   (MGI Ref ID J:102291)
  • increased circulating free fatty acid level
    • circulating fatty free acids are increased in mice fed the DD or the DDC diet, however levels are higher in the mice on the DDC diet   (MGI Ref ID J:175559)
  • increased circulating triglyceride level
    • similar levels of hypertriglyceridemia are seen in mice fed the DD diet and those fed the DDC diet   (MGI Ref ID J:175559)
  • increased liver cholesterol level
    • hepatic cholesterol levels are increased only in the mice fed the DDC diet   (MGI Ref ID J:175559)
  • increased liver triglyceride level
    • hepatic triglyceride levels are increased in mice fed the DD or the DDC diet, but higher in those on the DDC diet   (MGI Ref ID J:175559)
  • nervous system phenotype
  • abnormal hippocampus morphology
    • reduced cell proliferation in the hippocampus   (MGI Ref ID J:127270)
  • abnormal microglial cell morphology
    • on a Western diet, even small arterioles have associated microglia, sometimes within the basal lamina   (MGI Ref ID J:116493)
    • 2X as many arterioles have microglia   (MGI Ref ID J:116493)
  • abnormal synapse morphology
    • 32% of the cholesterol in the synaptic plasma membrane is in the exofacial leaflet as compared to 15% for controls   (MGI Ref ID J:43043)
    • cholesterol levels in the cytofacial leaflet are reduced   (MGI Ref ID J:43043)
    • cholesterol/phospholipid ratio in the synaptic plasma membrane is elevated   (MGI Ref ID J:43043)
    • fluidity of both the exofacial leaflet and the cytofacial leaflet of the synaptic plasma membrane are increased relative to controls   (MGI Ref ID J:43043)
  • abnormal synaptic bouton morphology   (MGI Ref ID J:127270)
    • reduced density of synaptophysin-immunoreactive presynaptic boutons in the CA1 of the hippocampus   (MGI Ref ID J:120389)
    • normal density of synaptophysin-immunoreactive presynaptic boutons in the dentate gyrus   (MGI Ref ID J:120389)
  • photoreceptor outer segment degeneration
    • mild degeneration   (MGI Ref ID J:132498)
  • cardiovascular system phenotype
  • abnormal arteriole morphology
    • wall thickness of brain arterioles having a lumen diameter of 15-40 um is greater than controls   (MGI Ref ID J:116493)
    • wall thickness increases on a Western diet   (MGI Ref ID J:116493)
    • wall thickness is directly related to the number of associated microglia   (MGI Ref ID J:116493)
  • abnormal choriocapillaris morphology
    • thickened endothelial basal lamina   (MGI Ref ID J:132498)
    • reduced number of fenestrations   (MGI Ref ID J:132498)
    • narrowing of lumina   (MGI Ref ID J:132498)
  • behavior/neurological phenotype
  • abnormal short term spatial reference memory   (MGI Ref ID J:120389)
    • mice fed a Western diet and tested in a T-maze demonstrate reduced alternation returning more frequently to the blind arm of the maze   (MGI Ref ID J:116493)
  • abnormal spatial learning
    • mice on a Western diet fail to show improved performance over time in a Morris water maze test   (MGI Ref ID J:116493)
    • somewhat slower swimming speed in the acquisition phase of a Morris water maze test   (MGI Ref ID J:120389)
    • less time spent in the target quadrant during a probe test   (MGI Ref ID J:120389)
  • vision/eye phenotype
  • abnormal Bruch membrane morphology
    • thickened (up to 0.8um on a high fat diet)   (MGI Ref ID J:132498)
    • enhanced condensation of collagenous and elastic fibers   (MGI Ref ID J:132498)
    • laminations disrupted and large vacuoles become diffusely distributed   (MGI Ref ID J:132498)
  • abnormal choriocapillaris morphology
    • thickened endothelial basal lamina   (MGI Ref ID J:132498)
    • reduced number of fenestrations   (MGI Ref ID J:132498)
    • narrowing of lumina   (MGI Ref ID J:132498)
  • abnormal retinal pigment epithelium morphology
    • decreased and irregular height   (MGI Ref ID J:132498)
    • basal membrane infoldings are less regular   (MGI Ref ID J:132498)
    • numerous vacuoles in cytoplasm   (MGI Ref ID J:132498)
  • photoreceptor outer segment degeneration
    • mild degeneration   (MGI Ref ID J:132498)
  • other phenotype
  • maternal effect
    • poor survival of pups from mothers on a high fat diet   (MGI Ref ID J:146932)
    • intrauterine growth restriction of pups from mothers on a high fat diet   (MGI Ref ID J:146932)
    • also reduced birth weight persisting to at least 90 days of age   (MGI Ref ID J:146932)
    • offspring with lower gonadal fat pad to body weight ratio   (MGI Ref ID J:146932)
    • offspring with larger atherosclerotic lesions   (MGI Ref ID J:146932)
  • hematopoietic system phenotype
  • abnormal microglial cell morphology
    • on a Western diet, even small arterioles have associated microglia, sometimes within the basal lamina   (MGI Ref ID J:116493)
    • 2X as many arterioles have microglia   (MGI Ref ID J:116493)
  • immune system phenotype
  • abnormal microglial cell morphology
    • on a Western diet, even small arterioles have associated microglia, sometimes within the basal lamina   (MGI Ref ID J:116493)
    • 2X as many arterioles have microglia   (MGI Ref ID J:116493)
  • liver inflammation
    • inflammatory cell foci is seen to a greater extend in the livers of mice fed the DDC diet than the DD diet   (MGI Ref ID J:175559)
  • pigmentation phenotype
  • abnormal retinal pigment epithelium morphology
    • decreased and irregular height   (MGI Ref ID J:132498)
    • basal membrane infoldings are less regular   (MGI Ref ID J:132498)
    • numerous vacuoles in cytoplasm   (MGI Ref ID J:132498)
  • cellular phenotype
  • increased hepatocyte apoptosis
    • DD diet fed mice show some apoptotic cells in the liver while those on the DDC diet have a larger increase   (MGI Ref ID J:175559)
  • oxidative stress
    • mice on the DDC diet exhibit an increase in hepatic oxidative stress   (MGI Ref ID J:175559)
  • liver/biliary system phenotype
  • hepatic steatosis
    • mice fed the DD diet exhibit diffuse macrovesicular steatosis with limited inflammation and fibrosis in the liver   (MGI Ref ID J:175559)
    • mice fed the DDC diet exhibit both macrovesicular and microvesicular steatosis in the liver   (MGI Ref ID J:175559)
  • increased hepatocyte apoptosis
    • DD diet fed mice show some apoptotic cells in the liver while those on the DDC diet have a larger increase   (MGI Ref ID J:175559)
  • increased liver cholesterol level
    • hepatic cholesterol levels are increased only in the mice fed the DDC diet   (MGI Ref ID J:175559)
  • increased liver triglyceride level
    • hepatic triglyceride levels are increased in mice fed the DD or the DDC diet, but higher in those on the DDC diet   (MGI Ref ID J:175559)
  • increased liver weight
    • mice on the DD diet and on the DDC diet exhibit higher liver weights than regular chow-fed mice   (MGI Ref ID J:175559)
  • liver fibrosis
    • intrasinusoidal and pericellular fibrosis is seen to a greater extend in the livers of mice fed the DDC diet than the DD diet   (MGI Ref ID J:175559)
  • liver inflammation
    • inflammatory cell foci is seen to a greater extend in the livers of mice fed the DDC diet than the DD diet   (MGI Ref ID J:175559)

Ldlrtm1Her/Ldlrtm1Her

        involves: 129S7/SvEvBrd
  • homeostasis/metabolism phenotype
  • abnormal circulating cholesterol level
    • circulating VLDL/LDL cholesterol levels are increased compared to in Apobec1tm1Chan homozygotes and wild-type mice   (MGI Ref ID J:48202)
    • abnormal circulating LDL cholesterol level
      • LDL clearance is slowed   (MGI Ref ID J:84694)
      • increased circulating LDL cholesterol level
        • male mice have a marked increase in plasma LDL cholesterol compared to wild-type   (MGI Ref ID J:114949)
        • in wild-type mice parabiosed with Ldlr-null mice (resulting in shared circulation), plasma total cholesterol levels did not increase significantly over pre-surgery levels   (MGI Ref ID J:114949)
        • on a chow diet, plasma LDL levels were higher than both those of wild-type mice and Ldlrap1tm1Her homozygous mutant mice   (MGI Ref ID J:84694)
        • plasma LDL levels become further elevated on high cholesterol diets   (MGI Ref ID J:84694)
        • plasma levels are increased 2.5 fold relative to controls   (MGI Ref ID J:169834)
    • increased circulating cholesterol level
      • when fed a chow diet or Western-type diet for 2 and 4 weeks, mice exhibit increased serum cholesterol levels compared to in Apobec1tm1Chan homozygotes and wild-type mice   (MGI Ref ID J:48202)
      • plasma cholesterol level is 196mg/dl on a normal diet   (MGI Ref ID J:84694)
      • increased circulating LDL cholesterol level
        • male mice have a marked increase in plasma LDL cholesterol compared to wild-type   (MGI Ref ID J:114949)
        • in wild-type mice parabiosed with Ldlr-null mice (resulting in shared circulation), plasma total cholesterol levels did not increase significantly over pre-surgery levels   (MGI Ref ID J:114949)
        • on a chow diet, plasma LDL levels were higher than both those of wild-type mice and Ldlrap1tm1Her homozygous mutant mice   (MGI Ref ID J:84694)
        • plasma LDL levels become further elevated on high cholesterol diets   (MGI Ref ID J:84694)
        • plasma levels are increased 2.5 fold relative to controls   (MGI Ref ID J:169834)
  • increased circulating triglyceride level
    • when fed a chow diet or a Western-type diet for 2 and 4 weeks, mice exhibit increased serum triglyceride levels compared to in Apobec1tm1Chan homozygotes and wild-type mice   (MGI Ref ID J:48202)

Ldlrtm1Her/Ldlrtm1Her

        involves: 129S6/SvEvTac * 129S7/SvEvBrd * C57BL/6
  • cardiovascular system phenotype
  • atherosclerotic lesions
    • atherosclerosis in both aortic arch and descending aorta   (MGI Ref ID J:96110)
  • homeostasis/metabolism phenotype
  • increased circulating cholesterol level
    • hypercholesterolemic   (MGI Ref ID J:96110)

Ldlrtm1Her/Ldlrtm1Her

        B6.129S7-Ldlrtm1Her
  • homeostasis/metabolism phenotype
  • abnormal circulating cholesterol level
    • when fed a western style diet for 12 weeks, male mice exhibit a higher circulating cholesterol level than in Ldlrtm1Her Scd1ab-2J homozygotes   (MGI Ref ID J:130278)
    • streptozotocin (STZ) induced diabetes leads to blood cholesterol levels that are twice those of non-diabetic mice 6 weeks post-induction and three times greater 8 weeks post- induction   (MGI Ref ID J:100916)
    • decreased circulating HDL cholesterol level
      • when fed a high-cholesterol diet, NMR proton spectra of lipids indicates a level of photon intensity for HDL of 0.77 compared to 0.83 in wild-type mice   (MGI Ref ID J:130794)
    • increased circulating cholesterol level   (MGI Ref ID J:135078)
      • mice develop severe cholesterolemia when receiving a high fat diet from 6 to 30 weeks (elevated levels are detected at 6, 15, and 30 weeks)   (MGI Ref ID J:61287)
      • 10 fold increase in total cholesterol on a high fat diet compared to a 150% increase for controls   (MGI Ref ID J:137264)
      • 3 fold cholesterol elevation on a normal diet relative to controls   (MGI Ref ID J:137264)
      • seen at 3-4 months of age   (MGI Ref ID J:72027)
      • increased circulating HDL cholesterol level
        • slightly elevated at 3 and 8 months of age   (MGI Ref ID J:72027)
      • increased circulating LDL cholesterol level   (MGI Ref ID J:72027)
        • when fed a high cholesterol diet, NMR proton spectra of lipids indicates a level of photon intensity for LDL of 0.88 compared to 0.84 in wild-type mice   (MGI Ref ID J:130794)
      • increased circulating VLDL cholesterol level
        • when fed a high cholesterol diet, NMR proton spectra of lipids indicates a level of photon intensity for VLDL of 0.92 compared to 0.88 in wild-type mice   (MGI Ref ID J:130794)
        • compared to in Ldlrtm1Her Scd1ab-2J homozygotes when fed a western style diet for 12 weeks   (MGI Ref ID J:130278)
  • abnormal triglyceride level   (MGI Ref ID J:130278)
    • increased circulating triglyceride level
      • elevated on a high fat diet   (MGI Ref ID J:137264)
      • seen at 3-4 months of age   (MGI Ref ID J:72027)
      • when fed a western style diet for 12 weeks, female mice exhibit a higher circulating triglyceride level than in Ldlrtm1Her Scd1ab-2J homozygotes   (MGI Ref ID J:130278)
      • increased circulating VLDL triglyceride level
        • compared to in Ldlrtm1Her Scd1ab-2J homozygotes when fed a western style diet for 12 weeks   (MGI Ref ID J:130278)
    • increased liver triglyceride level
      • when fed a western style diet for 12 weeks, mice exhibit a 5-fold higher hepatic triglyceride level than in Ldlrtm1Her Scd1ab-2J homozygotes   (MGI Ref ID J:130278)
  • amyloid beta deposits
    • increased amyloid beta 40 but not amyloid beta 42 on a high fat diet   (MGI Ref ID J:137264)
  • decreased circulating interleukin-10 level   (MGI Ref ID J:130794)
  • hyperglycemia
    • when fed a western style diet for 12 weeks   (MGI Ref ID J:130278)
    • streptozotocin (STZ) treatment leads to 3-fold higher level of blood glucose in mice fed a high fat diet   (MGI Ref ID J:100916)
    • these high glucose levels persist for at least 12 weeks after STZ treatment   (MGI Ref ID J:100916)
  • impaired glucose tolerance
    • when fed a western style diet for 12 weeks   (MGI Ref ID J:130278)
  • increased circulating insulin level
    • when fed a western style diet for 12 weeks   (MGI Ref ID J:130278)
  • increased circulating interleukin-1 beta level   (MGI Ref ID J:137264)
  • increased circulating interleukin-6 level   (MGI Ref ID J:137264)
  • increased circulating tumor necrosis factor level
    • increased TNFalpha levels   (MGI Ref ID J:137264)
  • increased liver cholesterol level
    • livers exhibit slightly, but significantly, higher levels of cholesterol   (MGI Ref ID J:72027)
  • adipose tissue phenotype
  • abnormal fat pad morphology
    • increased when fed a western style diet for 12 weeks   (MGI Ref ID J:130278)
  • increased percent body fat
    • when fed a western style diet for 12 weeks   (MGI Ref ID J:130278)
  • growth/size/body phenotype
  • decreased susceptibility to weight gain
    • lower body weight on a low cholesterol diet than controls on any diet   (MGI Ref ID J:135078)
  • increased percent body fat
    • when fed a western style diet for 12 weeks   (MGI Ref ID J:130278)
  • increased susceptibility to weight gain
    • when fed a western style diet for 12 weeks   (MGI Ref ID J:130278)
  • cardiovascular system phenotype
  • atherosclerotic lesions   (MGI Ref ID J:110061)
    • increased susceptibility to atherosclerosis   (MGI Ref ID J:135078)
      • after 12 weeks on a high cholesterol diet, mice exhibit extensive intimal thickening and 60% to 80% of the aortic surface is sudanophilic unlike in wild-type mice   (MGI Ref ID J:130794)
      • after 12 weeks on a high cholesterol diet, mice exhibit endothelial disruption and an accumulation of macrophage and foam cells at the site of atherosclerotic plaques   (MGI Ref ID J:130794)
      • high-fat diet leads to atherosclerosis   (MGI Ref ID J:100916)
      • STZ-induced diabetes leads to an almost 3-fold greater size in total lesion area in the aorta compared to non-diabetic Ldlr tm1Her homozyogotes   (MGI Ref ID J:100916)
      • 4 weeks on the Western diet mice have lesions of small fatty streaks on the aorta   (MGI Ref ID J:110061)
  • immune system phenotype
  • abnormal microglial cell morphology
    • increased number of microglia in the hippocampus   (MGI Ref ID J:137264)
  • decreased circulating interleukin-10 level   (MGI Ref ID J:130794)
  • increased circulating interleukin-1 beta level   (MGI Ref ID J:137264)
  • increased circulating interleukin-6 level   (MGI Ref ID J:137264)
  • increased circulating tumor necrosis factor level
    • increased TNFalpha levels   (MGI Ref ID J:137264)
  • liver/biliary system phenotype
  • hepatic steatosis
    • when fed a western style diet for 12 weeks   (MGI Ref ID J:130278)
  • increased liver cholesterol level
    • livers exhibit slightly, but significantly, higher levels of cholesterol   (MGI Ref ID J:72027)
  • increased liver triglyceride level
    • when fed a western style diet for 12 weeks, mice exhibit a 5-fold higher hepatic triglyceride level than in Ldlrtm1Her Scd1ab-2J homozygotes   (MGI Ref ID J:130278)
  • behavior/neurological phenotype
  • abnormal spatial learning
    • take longer to reach the target site in a Morris water maze when fed a high cholesterol diet   (MGI Ref ID J:135078)
  • abnormal spatial working memory
    • deficient performance in a water radial arm maze regardless of the diet   (MGI Ref ID J:137264)
  • hyperactivity
    • travel greater distances and spend more time in motion in an open field test   (MGI Ref ID J:135078)
  • increased grip strength
    • perform better than controls on a hanging bar test   (MGI Ref ID J:135078)
  • nervous system phenotype
  • abnormal CNS glial cell morphology   (MGI Ref ID J:137264)
    • abnormal astrocyte morphology
      • increased numbers of reactive astrocytes   (MGI Ref ID J:137264)
      • further increase in reactive astrocytes on a high fat diet   (MGI Ref ID J:137264)
    • abnormal microglial cell morphology
      • increased number of microglia in the hippocampus   (MGI Ref ID J:137264)
  • amyloid beta deposits
    • increased amyloid beta 40 but not amyloid beta 42 on a high fat diet   (MGI Ref ID J:137264)
  • hematopoietic system phenotype
  • abnormal microglial cell morphology
    • increased number of microglia in the hippocampus   (MGI Ref ID J:137264)

Ldlrtm1Her/Ldlrtm1Her

        B6.129S7-Ldlrtm1Her/J
  • homeostasis/metabolism phenotype
  • *normal* homeostasis/metabolism phenotype
    • mice fed a Western diet exhibit normal HDL cholesterol   (MGI Ref ID J:149005)
    • decreased circulating triglyceride level
      • when fed regular chow or a high fat diet for 16 weeks, serum triglyceride levels are decreased compared to similarly treated Apoa1tm1Unc Ldlrtm1Her homozygotes   (MGI Ref ID J:85174)
    • increased cholesterol level
      • when fed a high fat diet, mice exhibit an increase in cholesterol content in the adrenal gland   (MGI Ref ID J:85174)
      • increased circulating cholesterol level
        • whether are fed a high fat diet or regular chow, plasma cholesterol levels are increased relative to similarly treated Apoa1tm1Unc Ldlrtm1Her homozygotes   (MGI Ref ID J:85174)
        • when fed a high fat diet, mice exhibit a greater increase in VLDL and LDL (6-fold) compared to Ldlrtm1Her homozygotes (3-fold)   (MGI Ref ID J:85174)
        • 15 fold higher on a normal diet than controls   (MGI Ref ID J:104609)
        • 40 fold higher than controls on a high fat diet   (MGI Ref ID J:104609)
        • increased circulating HDL cholesterol level
          • when fed regular chow or a high fat diet for 16 weeks, serum HDL levels are increased compared to similarly treated Apoa1tm1Unc Ldlrtm1Her homozygotes   (MGI Ref ID J:85174)
        • increased circulating LDL cholesterol level
          • when fed a high fat diet, mice exhibit a greater increase in VLDL and LDL (6-fold) compared to Ldlrtm1Her homozygotes (3-fold)   (MGI Ref ID J:85174)
          • when fed a Western diet compared to Ldlrtm1Her homozygotes fed regular chow   (MGI Ref ID J:149005)
        • increased circulating VLDL cholesterol level
          • when fed a high fat diet, mice exhibit a greater increase in VLDL and LDL (6-fold) compared to Ldlrtm1Her homozygotes (3-fold)   (MGI Ref ID J:85174)
          • when fed a Western diet   (MGI Ref ID J:149005)
      • increased liver cholesterol level
        • when fed a high fat diet, mice exhibit a greater increase in liver cholesterol content (11-fold) compared to in similarly treated Apoa1tm1Unc Ldlrtm1Her homozygotes (2.5-fold)   (MGI Ref ID J:85174)
    • increased circulating triglyceride level
      • when fed a Western diet   (MGI Ref ID J:149005)
  • liver/biliary system phenotype
  • abnormal liver physiology
    • LDL updake is decreased by about 2X   (MGI Ref ID J:106146)
  • hepatic steatosis
    • when fed a high fat diet, mice exhibit larger diameter and more frequent lipid droplets than in Apoa1tm1Unc Ldlrtm1Her homozygotes   (MGI Ref ID J:85174)
  • increased liver cholesterol level
    • when fed a high fat diet, mice exhibit a greater increase in liver cholesterol content (11-fold) compared to in similarly treated Apoa1tm1Unc Ldlrtm1Her homozygotes (2.5-fold)   (MGI Ref ID J:85174)
  • endocrine/exocrine gland phenotype
  • abnormal adrenal gland morphology
    • when fed a high fat diet, mice exhibit an increase in cholesterol content in the adrenal gland   (MGI Ref ID J:85174)
  • cardiovascular system phenotype
  • atherosclerotic lesions
    • after 8 or 20 weeks on a cholesterol diet aortic lesion size is increased compared to mice that are homozygous for both Ldlrtm1Her and Ifngtm1Ts   (MGI Ref ID J:103072)
  • integument phenotype
  • alopecia
    • when fed a high fat diet   (MGI Ref ID J:85174)
  • scaly skin
    • when fed a high fat diet   (MGI Ref ID J:85174)
  • thick skin
    • when fed a high fat diet   (MGI Ref ID J:85174)

Ldlrtm1Her/Ldlrtm1Her

        involves: 129P2/OlaHsd * 129S7/SvEvBrd * C57BL/6 * DBA
  • homeostasis/metabolism phenotype
  • abnormal circulating protein level
    • increase in APOB-100   (MGI Ref ID J:75567)
  • abnormal lipid homeostasis
    • the HDL phospholipid fraction contains less 16:0 and 18:0 species and is enriched for 20:4 and 22:6 species compared to Apoetm1Unc single mutants   (MGI Ref ID J:75567)
    • abnormal cholesterol homeostasis
      • plasma cholesterol is nearly equal distribution between the HDL and LDL fractions   (MGI Ref ID J:75567)
      • increase in the APOB lipoprotein cholesterol level compared to wild-type controls   (MGI Ref ID J:75567)
      • there is a 2.3 fold decrease in the ratio of saturated + monounsaturated/polyunsaturated cholesterol ester fatty acid species compared to Apoetm1Unc single mutants   (MGI Ref ID J:75567)
      • the ratio of saturated + monounsaturated/polyunsaturated cholesterol ester fatty acid species in the LDL fraction is significantly decreased compared to Apoetm1Unc single mutants   (MGI Ref ID J:75567)

Ldlrtm1Her/Ldlrtm1Her

        involves: 129S7/SvEvBrd * C57BL/6 * SJL
  • homeostasis/metabolism phenotype
  • increased circulating cholesterol level
    • total cholesterol greatly elevated   (MGI Ref ID J:114480)
    • increased circulating LDL cholesterol level
      • greatly elevated   (MGI Ref ID J:114480)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cardiovascular Research
Atherosclerosis
Hypercholesterolemia

Diabetes and Obesity Research
Hyperglycemia

Internal/Organ Research
Liver Defects

Metabolism Research
Lipid Metabolism

Ldlrtm1Her related

Cardiovascular Research
Atherosclerosis
Hypercholesterolemia

Metabolism Research
Lipid Metabolism

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Ldlrtm1Her
Allele Name targeted mutation 1, Joachim Herz
Allele Type Targeted (Null/Knockout)
Common Name(s) LDLR KO; LDLR-; LDLr-KO; LDLr0; LDLrKO; Ldlrtm1Her;
Mutation Made ByDr. Joachim Herz,   Univ of Texas Southwest Med Ctr Dallas
Strain of Origin129S7/SvEvBrd-Hprt<+>
ES Cell Line NameAB1
ES Cell Line Strain129S7/SvEvBrd-Hprt<+>
Site of ExpressionImmunoblot analysis of liver membranes detected a truncated protein in homozygous mutant animals.
Gene Symbol and Name Ldlr, low density lipoprotein receptor
Chromosome 9
Gene Common Name(s) FH; FHC; LDLCQ2;
General Note When used in bone marrow transplant into Ldlrtm1Her homozygous mice, Abca1tm1Jdm Abcg1tm1Dgen homozygous cells accelerate the development of atherosclerosis. (J:130777)
Phenotypic Similarity to Human Syndrome: Type 1 Diabetic Macrovascular Disease (J:174983)
Molecular Note Insertion of a neomycin resistance cassette into exon 4. The authors predict that the targeted allele would encode a truncated non-functional protein that will not bind LDL, and that lacks a membrane spanning segment. Immunoblot analysis of liver membranes detected a truncated protein in homozygous mutant animals. [MGI Ref ID J:37394]

Genotyping

Genotyping Information

Genotyping Protocols

Ldlr tm1Her, Fast MCA
Ldlr tm1Her, High Resolution Melting
Ldlr tm1Her, Separated PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Ishibashi S; Brown MS; Goldstein JL; Gerard RD; Hammer RE; Herz J. 1993. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery [see comments] J Clin Invest 92(2):883-93. [PubMed: 8349823]  [MGI Ref ID J:37394]

Additional References

Ldlrtm1Her related

Accad M; Smith SJ; Newland DL; Sanan DA; King LE Jr; Linton MF; Fazio S; Farese RV Jr. 2000. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1 [see comments] J Clin Invest 105(6):711-9. [PubMed: 10727439]  [MGI Ref ID J:61147]

Adachi H; Kondo T; Koh GY; Nagy A; Oike Y; Araki E. 2011. Angptl4 deficiency decreases serum triglyceride levels in low-density lipoprotein receptor knockout mice and streptozotocin-induced diabetic mice. Biochem Biophys Res Commun 409(2):177-80. [PubMed: 21549101]  [MGI Ref ID J:172599]

Afek A; Keren G; Harats D; George J. 2001. Whole body hyperthermia accelerates atherogenesis in low-density lipoprotein receptor deficient mice. Exp Mol Pathol 71(1):63-72. [PubMed: 11502098]  [MGI Ref ID J:106255]

Ahmad PJ; Trcka D; Xue S; Franco C; Speer MY; Giachelli CM; Bendeck MP. 2009. Discoidin domain receptor-1 deficiency attenuates atherosclerotic calcification and smooth muscle cell-mediated mineralization. Am J Pathol 175(6):2686-96. [PubMed: 19893047]  [MGI Ref ID J:155320]

Ait-Oufella H; Kinugawa K; Zoll J; Simon T; Boddaert J; Heeneman S; Blanc-Brude O; Barateau V; Potteaux S; Merval R; Esposito B; Teissier E; Daemen MJ; Leseche G; Boulanger C; Tedgui A; Mallat Z. 2007. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115(16):2168-77. [PubMed: 17420351]  [MGI Ref ID J:135906]

Ait-Oufella H; Pouresmail V; Simon T; Blanc-Brude O; Kinugawa K; Merval R; Offenstadt G; Leseche G; Cohen PL; Tedgui A; Mallat Z. 2008. Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler Thromb Vasc Biol 28(8):1429-31. [PubMed: 18467644]  [MGI Ref ID J:159811]

Ait-Oufella H; Salomon BL; Potteaux S; Robertson AK; Gourdy P; Zoll J; Merval R; Esposito B; Cohen JL; Fisson S; Flavell RA; Hansson GK; Klatzmann D; Tedgui A; Mallat Z. 2006. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 12(2):178-80. [PubMed: 16462800]  [MGI Ref ID J:105800]

Albrecht C; Preusch MR; Hofmann G; Morris-Rosenfeld S; Blessing E; Rosenfeld ME; Katus HA; Bea F. 2010. Egr-1 deficiency in bone marrow-derived cells reduces atherosclerotic lesion formation in a hyperlipidaemic mouse model. Cardiovasc Res 86(2):321-9. [PubMed: 20110335]  [MGI Ref ID J:175882]

Alger HM; Brown JM; Sawyer JK; Kelley KL; Shah R; Wilson MD; Willingham MC; Rudel LL. 2010. Inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) prevents dietary cholesterol-associated steatosis by enhancing hepatic triglyceride mobilization. J Biol Chem 285(19):14267-74. [PubMed: 20231283]  [MGI Ref ID J:162960]

Allred KF; Smart EJ; Wilson ME. 2006. Estrogen receptor-alpha mediates gender differences in atherosclerosis induced by HIV protease inhibitors. J Biol Chem 281(3):1419-25. [PubMed: 16299001]  [MGI Ref ID J:107322]

Altenburg M; Arbones-Mainar J; Johnson L; Wilder J; Maeda N. 2008. Human LDL receptor enhances sequestration of ApoE4 and VLDL remnants on the surface of hepatocytes but not their internalization in mice. Arterioscler Thromb Vasc Biol 28(6):1104-10. [PubMed: 18369154]  [MGI Ref ID J:149026]

Angeli V; Llodra J; Rong JX; Satoh K; Ishii S; Shimizu T; Fisher EA; Randolph GJ. 2004. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21(4):561-74. [PubMed: 15485633]  [MGI Ref ID J:93917]

Anggraeni VY; Emoto N; Yagi K; Mayasari DS; Nakayama K; Izumikawa T; Kitagawa H; Hirata K. 2011. Correlation of C4ST-1 and ChGn-2 expression with chondroitin sulfate chain elongation in atherosclerosis. Biochem Biophys Res Commun 406(1):36-41. [PubMed: 21284936]  [MGI Ref ID J:170936]

Arai S; Shelton JM; Chen M; Bradley MN; Castrillo A; Bookout AL; Mak PA; Edwards PA; Mangelsdorf DJ; Tontonoz P; Miyazaki T. 2005. A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab 1(3):201-13. [PubMed: 16054063]  [MGI Ref ID J:129845]

Aslanian AM; Chapman HA; Charo IF. 2005. Transient role for CD1d-restricted natural killer T cells in the formation of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 25(3):628-32. [PubMed: 15591216]  [MGI Ref ID J:110061]

Aslanian AM; Charo IF. 2006. Targeted disruption of the scavenger receptor and chemokine CXCL16 accelerates atherosclerosis. Circulation 114(6):583-90. [PubMed: 16880330]  [MGI Ref ID J:123851]

Asterholm IW; Rutkowski JM; Fujikawa T; Cho YR; Fukuda M; Tao C; Wang ZV; Gupta RK; Elmquist JK; Scherer PE. 2014. Elevated resistin levels induce central leptin resistance and increased atherosclerotic progression in mice. Diabetologia 57(6):1209-18. [PubMed: 24623101]  [MGI Ref ID J:210884]

Avraham-Davidi I; Ely Y; Pham VN; Castranova D; Grunspan M; Malkinson G; Gibbs-Bar L; Mayseless O; Allmog G; Lo B; Warren CM; Chen TT; Ungos J; Kidd K; Shaw K; Rogachev I; Wan W; Murphy PM; Farber SA; Carmel L; Shelness GS; Iruela-Arispe ML; Weinstein BM; Yaniv K. 2012. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nat Med 18(6):967-73. [PubMed: 22581286]  [MGI Ref ID J:187459]

Azhar S; Luo Y; Medicherla S; Reaven E. 1999. Upregulation of selective cholesteryl ester uptake pathway in mice with deletion of low-density lipoprotein receptor function. J Cell Physiol 180(2):190-202. [PubMed: 10395289]  [MGI Ref ID J:56099]

Babaev VR; Chew JD; Ding L; Davis S; Breyer MD; Breyer RM; Oates JA; Fazio S; Linton MF. 2008. Macrophage EP4 deficiency increases apoptosis and suppresses early atherosclerosis. Cell Metab 8(6):492-501. [PubMed: 19041765]  [MGI Ref ID J:144376]

Babaev VR; Ding L; Reese J; Morrow JD; Breyer MD; Dey SK; Fazio S; Linton MF. 2006. Cyclooxygenase-1 deficiency in bone marrow cells increases early atherosclerosis in apolipoprotein E- and low-density lipoprotein receptor-null mice. Circulation 113(1):108-17. [PubMed: 16380543]  [MGI Ref ID J:121507]

Babaev VR; Ishiguro H; Ding L; Yancey PG; Dove DE; Kovacs WJ; Semenkovich CF; Fazio S; Linton MF. 2007. Macrophage expression of peroxisome proliferator-activated receptor-alpha reduces atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 116(12):1404-12. [PubMed: 17724261]  [MGI Ref ID J:139843]

Babaev VR; Yancey PG; Ryzhov SV; Kon V; Breyer MD; Magnuson MA; Fazio S; Linton MF. 2005. Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 25(8):1647-53. [PubMed: 15947238]  [MGI Ref ID J:114332]

Baldan A; Pei L; Lee R; Tarr P; Tangirala RK; Weinstein MM; Frank J; Li AC; Tontonoz P; Edwards PA. 2006. Impaired development of atherosclerosis in hyperlipidemic Ldlr-/- and ApoE-/- mice transplanted with Abcg1-/- bone marrow. Arterioscler Thromb Vasc Biol 26(10):2301-7. [PubMed: 16888235]  [MGI Ref ID J:128048]

Barish GD; Yu RT; Karunasiri MS; Becerra D; Kim J; Tseng TW; Tai LJ; Leblanc M; Diehl C; Cerchietti L; Miller YI; Witztum JL; Melnick AM; Dent AL; Tangirala RK; Evans RM. 2012. The Bcl6-SMRT/NCoR cistrome represses inflammation to attenuate atherosclerosis. Cell Metab 15(4):554-62. [PubMed: 22465074]  [MGI Ref ID J:184208]

Barlic J; Murphy PM. 2007. Chemokine regulation of atherosclerosis. J Leukoc Biol 82(2):226-36. [PubMed: 17329566]  [MGI Ref ID J:123530]

Bartelt A; Bruns OT; Reimer R; Hohenberg H; Ittrich H; Peldschus K; Kaul MG; Tromsdorf UI; Weller H; Waurisch C; Eychmuller A; Gordts PL; Rinninger F; Bruegelmann K; Freund B; Nielsen P; Merkel M; Heeren J. 2011. Brown adipose tissue activity controls triglyceride clearance. Nat Med 17(2):200-5. [PubMed: 21258337]  [MGI Ref ID J:168555]

Barthwal MK; Anzinger JJ; Xu Q; Bohnacker T; Wymann MP; Kruth HS. 2013. Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation. PLoS One 8(3):e58054. [PubMed: 23536783]  [MGI Ref ID J:199527]

Bassett CM; Edel AL; Patenaude AF; McCullough RS; Blackwood DP; Chouinard PY; Paquin P; Lamarche B; Pierce GN. 2010. Dietary vaccenic acid has antiatherogenic effects in LDLr-/- mice. J Nutr 140(1):18-24. [PubMed: 19923390]  [MGI Ref ID J:155556]

Basso F; Amar MJ; Wagner EM; Vaisman B; Paigen B; Santamarina-Fojo S; Remaley AT. 2006. Enhanced ABCG1 expression increases atherosclerosis in LDLr-KO mice on a western diet. Biochem Biophys Res Commun 351(2):398-404. [PubMed: 17070501]  [MGI Ref ID J:116554]

Basso F; Freeman LA; Ko C; Joyce C; Amar MJ; Shamburek RD; Tansey T; Thomas F; Wu J; Paigen B; Remaley AT; Santamarina-Fojo S; Brewer HB Jr. 2007. Hepatic ABCG5/G8 overexpression reduces apoB-lipoproteins and atherosclerosis when cholesterol absorption is inhibited. J Lipid Res 48(1):114-26. [PubMed: 17060690]  [MGI Ref ID J:117682]

Bavendiek U; Zirlik A; LaClair S; MacFarlane L; Libby P; Schonbeck U. 2005. Atherogenesis in mice does not require CD40 ligand from bone marrow-derived cells. Arterioscler Thromb Vasc Biol 25(6):1244-9. [PubMed: 15746436]  [MGI Ref ID J:114293]

Becker L; Liu NC; Averill MM; Yuan W; Pamir N; Peng Y; Irwin AD; Fu X; Bornfeldt KE; Heinecke JW. 2012. Unique proteomic signatures distinguish macrophages and dendritic cells. PLoS One 7(3):e33297. [PubMed: 22428014]  [MGI Ref ID J:186914]

Becker M; Rabe K; Lebherz C; Zugwurst J; Goke B; Parhofer KG; Lehrke M; Broedl UC. 2010. Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels, and atherosclerosis in LDL receptor knockout mice on high-fat diet. Diabetes 59(11):2898-903. [PubMed: 20724582]  [MGI Ref ID J:169337]

Bell TA 3rd; Kelley K; Wilson MD; Sawyer JK; Rudel LL. 2007. Dietary fat-induced alterations in atherosclerosis are abolished by ACAT2-deficiency in ApoB100 only, LDLr-/- mice. Arterioscler Thromb Vasc Biol 27(6):1396-402. [PubMed: 17431188]  [MGI Ref ID J:134910]

Bernal-Mizrachi C; Weng S; Feng C; Finck BN; Knutsen RH; Leone TC; Coleman T; Mecham RP; Kelly DP; Semenkovich CF. 2003. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Nat Med 9(8):1069-75. [PubMed: 12847522]  [MGI Ref ID J:84844]

Bernhagen J; Krohn R; Lue H; Gregory JL; Zernecke A; Koenen RR; Dewor M; Georgiev I; Schober A; Leng L; Kooistra T; Fingerle-Rowson G; Ghezzi P; Kleemann R; McColl SR; Bucala R; Hickey MJ; Weber C. 2007. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13(5):587-596. [PubMed: 17435771]  [MGI Ref ID J:121807]

Bhasin KK; van Nas A; Martin LJ; Davis RC; Devaskar SU; Lusis AJ. 2009. Maternal low-protein diet or hypercholesterolemia reduces circulating essential amino acids and leads to intrauterine growth restriction. Diabetes 58(3):559-66. [PubMed: 19073773]  [MGI Ref ID J:146932]

Bhatia VK; Yun S; Leung V; Grimsditch DC; Benson GM; Botto MB; Boyle JJ; Haskard DO. 2007. Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice. Am J Pathol 170(1):416-26. [PubMed: 17200212]  [MGI Ref ID J:117210]

Bie J; Wang J; Yuan Q; Kakiyama G; Ghosh SS; Ghosh S. 2014. Liver-specific transgenic expression of cholesteryl ester hydrolase reduces atherosclerosis in Ldlr-/- mice. J Lipid Res 55(4):729-38. [PubMed: 24563511]  [MGI Ref ID J:208896]

Bie J; Zhao B; Ghosh S. 2011. Atherosclerotic lesion progression is attenuated by reconstitution with bone marrow from macrophage-specific cholesteryl ester hydrolase transgenic mice. Am J Physiol Regul Integr Comp Physiol 301(4):R967-74. [PubMed: 21795638]  [MGI Ref ID J:178811]

Bie J; Zhao B; Song J; Ghosh S. 2010. Improved insulin sensitivity in high fat- and high cholesterol-fed Ldlr-/- mice with macrophage-specific transgenic expression of cholesteryl ester hydrolase: role of macrophage inflammation and infiltration into adipose tissue. J Biol Chem 285(18):13630-7. [PubMed: 20189995]  [MGI Ref ID J:163056]

Bieghs V; Van Gorp PJ; Wouters K; Hendrikx T; Gijbels MJ; van Bilsen M; Bakker J; Binder CJ; Lutjohann D; Staels B; Hofker MH; Shiri-Sverdlov R. 2012. LDL receptor knock-out mice are a physiological model particularly vulnerable to study the onset of inflammation in non-alcoholic fatty liver disease. PLoS One 7(1):e30668. [PubMed: 22295101]  [MGI Ref ID J:184219]

Bietrix F; Lombardo E; van Roomen CP; Ottenhoff R; Vos M; Rensen PC; Verhoeven AJ; Aerts JM; Groen AK. 2010. Inhibition of glycosphingolipid synthesis induces a profound reduction of plasma cholesterol and inhibits atherosclerosis development in APOE*3 Leiden and low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 30(5):931-7. [PubMed: 20167657]  [MGI Ref ID J:175820]

Billon-Gales A; Fontaine C; Douin-Echinard V; Delpy L; Berges H; Calippe B; Lenfant F; Laurell H; Guery JC; Gourdy P; Arnal JF. 2009. Endothelial estrogen receptor-alpha plays a crucial role in the atheroprotective action of 17beta-estradiol in low-density lipoprotein receptor-deficient mice. Circulation 120(25):2567-76. [PubMed: 19996016]  [MGI Ref ID J:168125]

Billon-Gales A; Fontaine C; Filipe C; Douin-Echinard V; Fouque MJ; Flouriot G; Gourdy P; Lenfant F; Laurell H; Krust A; Chambon P; Arnal JF. 2009. The transactivating function 1 of estrogen receptor alpha is dispensable for the vasculoprotective actions of 17beta-estradiol. Proc Natl Acad Sci U S A 106(6):2053-8. [PubMed: 19188600]  [MGI Ref ID J:144952]

Billon-Gales A; Krust A; Fontaine C; Abot A; Flouriot G; Toutain C; Berges H; Gadeau AP; Lenfant F; Gourdy P; Chambon P; Arnal JF. 2011. Activation function 2 (AF2) of estrogen receptor-alpha is required for the atheroprotective action of estradiol but not to accelerate endothelial healing. Proc Natl Acad Sci U S A 108(32):13311-6. [PubMed: 21788522]  [MGI Ref ID J:175619]

Binder CJ; Hartvigsen K; Chang MK; Miller M; Broide D; Palinski W; Curtiss LK; Corr M; Witztum JL. 2004. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 114(3):427-37. [PubMed: 15286809]  [MGI Ref ID J:118092]

Binder CJ; Horkko S; Dewan A; Chang MK; Kieu EP; Goodyear CS; Shaw PX; Palinski W; Witztum JL; Silverman GJ. 2003. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 9(6):736-43. [PubMed: 12740573]  [MGI Ref ID J:83726]

Bischoff ED; Daige CL; Petrowski M; Dedman H; Pattison J; Juliano J; Li AC; Schulman IG. 2010. Non-redundant roles for LXRalpha and LXRbeta in atherosclerosis susceptibility in low density lipoprotein receptor knockout mice. J Lipid Res 51(5):900-6. [PubMed: 20388921]  [MGI Ref ID J:160160]

Bjorkegren JL; Hagg S; Talukdar HA; Foroughi Asl H; Jain RK; Cedergren C; Shang MM; Rossignoli A; Takolander R; Melander O; Hamsten A; Michoel T; Skogsberg J. 2014. Plasma cholesterol-induced lesion networks activated before regression of early, mature, and advanced atherosclerosis. PLoS Genet 10(2):e1004201. [PubMed: 24586211]  [MGI Ref ID J:211003]

Blasiole DA; Oler AT; Attie AD. 2008. Regulation of ApoB secretion by the low density lipoprotein receptor requires exit from the endoplasmic reticulum and interaction with ApoE or ApoB. J Biol Chem 283(17):11374-81. [PubMed: 18272520]  [MGI Ref ID J:136523]

Boisvert WA; Rose DM; Johnson KA; Fuentes ME; Lira SA; Curtiss LK; Terkeltaub RA. 2006. Up-regulated expression of the CXCR2 Ligand KC/GRO-alpha in atherosclerotic lesions plays a central role in macrophage accumulation and lesion progression. Am J Pathol 168(4):1385-95. [PubMed: 16565511]  [MGI Ref ID J:107325]

Boisvert WA; Santiago R; Curtiss LK; Terkeltaub RA. 1998. A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest 101(2):353-63. [PubMed: 9435307]  [MGI Ref ID J:45392]

Bol V; Desjardins F; Reusens B; Balligand JL; Remacle C. 2010. Does early mismatched nutrition predispose to hypertension and atherosclerosis, in male mice? PLoS One 5(9):. [PubMed: 20844591]  [MGI Ref ID J:165129]

Bolduc V; Baraghis E; Duquette N; Thorin-Trescases N; Lambert J; Lesage F; Thorin E. 2012. Catechin prevents severe dyslipidemia-associated changes in wall biomechanics of cerebral arteries in LDLr-/-:hApoB+/+ mice and improves cerebral blood flow. Am J Physiol Heart Circ Physiol 302(6):H1330-9. [PubMed: 22268108]  [MGI Ref ID J:186586]

Bolduc V; Drouin A; Gillis MA; Duquette N; Thorin-Trescases N; Frayne-Robillard I; Des Rosiers C; Tardif JC; Thorin E. 2011. Heart rate-associated mechanical stress impairs carotid but not cerebral artery compliance in dyslipidemic atherosclerotic mice. Am J Physiol Heart Circ Physiol 301(5):H2081-92. [PubMed: 21926346]  [MGI Ref ID J:178785]

Bolick DT; Skaflen MD; Johnson LE; Kwon SC; Howatt D; Daugherty A; Ravichandran KS; Hedrick CC. 2009. G2A deficiency in mice promotes macrophage activation and atherosclerosis. Circ Res 104(3):318-27. [PubMed: 19106413]  [MGI Ref ID J:163438]

Bonfleur ML; Vanzela EC; Ribeiro RA; de Gabriel Dorighello G; de Franca Carvalho CP; Collares-Buzato CB; Carneiro EM; Boschero AC; de Oliveira HC. 2010. Primary hypercholesterolaemia impairs glucose homeostasis and insulin secretion in low-density lipoprotein receptor knockout mice independently of high-fat diet and obesity. Biochim Biophys Acta 1801(2):183-90. [PubMed: 19913637]  [MGI Ref ID J:164825]

Bostrom MA; Boyanovsky BB; Jordan CT; Wadsworth MP; Taatjes DJ; de Beer FC; Webb NR. 2007. Group v secretory phospholipase A2 promotes atherosclerosis: evidence from genetically altered mice. Arterioscler Thromb Vasc Biol 27(3):600-6. [PubMed: 17204667]  [MGI Ref ID J:149057]

Bot M; Bot I; Lopez-Vales R; van de Lest CH; Saulnier-Blache JS; Helms JB; David S; van Berkel TJ; Biessen EA. 2010. Atherosclerotic lesion progression changes lysophosphatidic acid homeostasis to favor its accumulation. Am J Pathol 176(6):3073-84. [PubMed: 20431029]  [MGI Ref ID J:161328]

Bot M; Van Veldhoven PP; de Jager SC; Johnson J; Nijstad N; Van Santbrink PJ; Westra MM; Van Der Hoeven G; Gijbels MJ; Muller-Tidow C; Varga G; Tietge UJ; Kuiper J; Van Berkel TJ; Nofer JR; Bot I; Biessen EA. 2013. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice. PLoS One 8(5):e63360. [PubMed: 23700419]  [MGI Ref ID J:200844]

Bot M; de Jager SC; MacAleese L; Lagraauw HM; van Berkel TJ; Quax PH; Kuiper J; Heeren RM; Biessen EA; Bot I. 2013. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation. J Lipid Res 54(5):1265-74. [PubMed: 23396975]  [MGI Ref ID J:196303]

Boucher P; Gotthardt M; Li WP; Anderson RG; Herz J. 2003. LRP: role in vascular wall integrity and protection from atherosclerosis. Science 300(5617):329-32. [PubMed: 12690199]  [MGI Ref ID J:82871]

Boucher P; Li WP; Matz RL; Takayama Y; Auwerx J; Anderson RG; Herz J. 2007. LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome. PLoS ONE 2(5):e448. [PubMed: 17505534]  [MGI Ref ID J:129347]

Bovenschen N; Mertens K; Hu L; Havekes LM; van Vlijmen BJ. 2005. LDL receptor cooperates with LDL receptor-related protein in regulating plasma levels of coagulation factor VIII in vivo. Blood 106(3):906-12. [PubMed: 15840700]  [MGI Ref ID J:117317]

Boyanovsky B; Zack M; Forrest K; Webb NR. 2009. The capacity of group V sPLA2 to increase atherogenicity of ApoE-/- and LDLR-/- mouse LDL in vitro predicts its atherogenic role in vivo. Arterioscler Thromb Vasc Biol 29(4):532-8. [PubMed: 19164803]  [MGI Ref ID J:159779]

Boyanovsky BB; van der Westhuyzen DR; Webb NR. 2005. Group V secretory phospholipase A2-modified low density lipoprotein promotes foam cell formation by a SR-A- and CD36-independent process that involves cellular proteoglycans. J Biol Chem 280(38):32746-52. [PubMed: 16040605]  [MGI Ref ID J:102157]

Bretillon L; Acar N; Seeliger MW; Santos M; Maire MA; Juaneda P; Martine L; Gregoire S; Joffre C; Bron AM; Creuzot-Garcher C. 2008. ApoB100,LDLR-/- mice exhibit reduced electroretinographic response and cholesteryl esters deposits in the retina. Invest Ophthalmol Vis Sci 49(4):1307-14. [PubMed: 18385042]  [MGI Ref ID J:136142]

Broedl UC; Maugeais C; Millar JS; Jin W; Moore RE; Fuki IV; Marchadier D; Glick JM; Rader DJ. 2004. Endothelial lipase promotes the catabolism of ApoB-containing lipoproteins. Circ Res 94(12):1554-61. [PubMed: 15117821]  [MGI Ref ID J:100064]

Brown JM; Bell TA 3rd; Alger HM; Sawyer JK; Smith TL; Kelley K; Shah R; Wilson MD; Davis MA; Lee RG; Graham MJ; Crooke RM; Rudel LL. 2008. Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem 283(16):10522-34. [PubMed: 18281279]  [MGI Ref ID J:136556]

Brown JM; Chung S; Sawyer JK; Degirolamo C; Alger HM; Nguyen T; Zhu X; Duong MN; Wibley AL; Shah R; Davis MA; Kelley K; Wilson MD; Kent C; Parks JS; Rudel LL. 2008. Inhibition of stearoyl-coenzyme A desaturase 1 dissociates insulin resistance and obesity from atherosclerosis. Circulation 118(14):1467-75. [PubMed: 18794388]  [MGI Ref ID J:158044]

Brown JM; Chung S; Sawyer JK; Degirolamo C; Alger HM; Nguyen TM; Zhu X; Duong MN; Brown AL; Lord C; Shah R; Davis MA; Kelley K; Wilson MD; Madenspacher J; Fessler MB; Parks JS; Rudel LL. 2010. Combined therapy of dietary fish oil and stearoyl-CoA desaturase 1 inhibition prevents the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 30(1):24-30. [PubMed: 19834103]  [MGI Ref ID J:171803]

Brunham LR; Singaraja RR; Duong M; Timmins JM; Fievet C; Bissada N; Kang MH; Samra A; Fruchart JC; McManus B; Staels B; Parks JS; Hayden MR. 2009. Tissue-specific roles of ABCA1 influence susceptibility to atherosclerosis. Arterioscler Thromb Vasc Biol 29(4):548-54. [PubMed: 19201688]  [MGI Ref ID J:159775]

Bu DX; Tarrio M; Maganto-Garcia E; Stavrakis G; Tajima G; Lederer J; Jarolim P; Freeman GJ; Sharpe AH; Lichtman AH. 2011. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler Thromb Vasc Biol 31(5):1100-7. [PubMed: 21393583]  [MGI Ref ID J:191478]

Buga GM; Frank JS; Mottino GA; Hakhamian A; Narasimha A; Watson AD; Yekta B; Navab M; Reddy ST; Anantharamaiah GM; Fogelman AM. 2008. D-4F reduces EO6 immunoreactivity, SREBP-1c mRNA levels, and renal inflammation in LDL receptor-null mice fed a Western diet. J Lipid Res 49(1):192-205. [PubMed: 17925450]  [MGI Ref ID J:130095]

Buga GM; Frank JS; Mottino GA; Hendizadeh M; Hakhamian A; Tillisch JH; Reddy ST; Navab M; Anantharamaiah GM; Ignarro LJ; Fogelman AM. 2006. D-4F decreases brain arteriole inflammation and improves cognitive performance in LDL receptor-null mice on a Western diet. J Lipid Res 47(10):2148-60. [PubMed: 16835442]  [MGI Ref ID J:116493]

Buono C; Binder CJ; Stavrakis G; Witztum JL; Glimcher LH; Lichtman AH. 2005. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci U S A 102(5):1596-601. [PubMed: 15665085]  [MGI Ref ID J:96110]

Buono C; Come CE; Stavrakis G; Maguire GF; Connelly PW; Lichtman AH. 2003. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol 23(3):454-60. [PubMed: 12615659]  [MGI Ref ID J:103072]

Buono C; Come CE; Witztum JL; Maguire GF; Connelly PW; Carroll M; Lichtman AH. 2002. Influence of C3 deficiency on atherosclerosis. Circulation 105(25):3025-31. [PubMed: 12081998]  [MGI Ref ID J:103349]

Burkhardt R; Sundermann S; Ludwig D; Ceglarek U; Holdt LM; Thiery J; Teupser D. 2011. Cosegregation of aortic root atherosclerosis and intermediate lipid phenotypes on chromosomes 2 and 8 in an intercross of C57BL/6 and BALBc/ByJ low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 31(4):775-84. [PubMed: 21252064]  [MGI Ref ID J:184168]

Burkhardt R; Toh SA; Lagor WR; Birkeland A; Levin M; Li X; Robblee M; Fedorov VD; Yamamoto M; Satoh T; Akira S; Kathiresan S; Breslow JL; Rader DJ. 2010. Trib1 is a lipid- and myocardial infarction-associated gene that regulates hepatic lipogenesis and VLDL production in mice. J Clin Invest 120(12):4410-4. [PubMed: 21084752]  [MGI Ref ID J:171867]

Burleigh ME; Babaev VR; Oates JA; Harris RC; Gautam S; Riendeau D; Marnett LJ; Morrow JD; Fazio S; Linton MF. 2002. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 105(15):1816-23. [PubMed: 11956125]  [MGI Ref ID J:103220]

Cain WJ; Millar JS; Himebauch AS; Tietge UJ; Maugeais C; Usher D; Rader DJ. 2005. Lipoprotein [a] is cleared from the plasma primarily by the liver in a process mediated by apolipoprotein [a]. J Lipid Res 46(12):2681-91. [PubMed: 16150825]  [MGI Ref ID J:106146]

Calara F; Silvestre M; Casanada F; Yuan N; Napoli C; Palinski W. 2001. Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol 195(2):257-63. [PubMed: 11592107]  [MGI Ref ID J:71794]

Caligiuri G; Levy B; Pernow J; Thoren P; Hansson GK. 1999. Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci U S A 96(12):6920-4. [PubMed: 10359814]  [MGI Ref ID J:55973]

Campbell IC; Weiss D; Suever JD; Virmani R; Veneziani A; Vito RP; Oshinski JN; Taylor WR. 2013. Biomechanical modeling and morphology analysis indicates plaque rupture due to mechanical failure unlikely in atherosclerosis-prone mice. Am J Physiol Heart Circ Physiol 304(3):H473-86. [PubMed: 23203971]  [MGI Ref ID J:194633]

Cao D; Fukuchi K; Wan H; Kim H; Li L. 2006. Lack of LDL receptor aggravates learning deficits and amyloid deposits in Alzheimer transgenic mice. Neurobiol Aging 27(11):1632-43. [PubMed: 16236385]  [MGI Ref ID J:114480]

Carpenter B; Lin Y; Stoll S; Raffai RL; McCuskey R; Wang R. 2005. VEGF is crucial for the hepatic vascular development required for lipoprotein uptake. Development 132(14):3293-303. [PubMed: 15944181]  [MGI Ref ID J:100427]

Casagrande V; Menghini R; Menini S; Marino A; Marchetti V; Cavalera M; Fabrizi M; Hribal ML; Pugliese G; Gentileschi P; Schillaci O; Porzio O; Lauro D; Sbraccia P; Lauro R; Federici M. 2012. Overexpression of tissue inhibitor of metalloproteinase 3 in macrophages reduces atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 32(1):74-81. [PubMed: 22015660]  [MGI Ref ID J:195978]

Casquero AC; Berti JA; Salerno AG; Bighetti EJ; Cazita PM; Ketelhuth DF; Gidlund M; Oliveira HC. 2006. Atherosclerosis is enhanced by testosterone deficiency and attenuated by CETP expression in transgenic mice. J Lipid Res 47(7):1526-34. [PubMed: 16603720]  [MGI Ref ID J:112057]

Cassis LA; Gupte M; Thayer S; Zhang X; Charnigo R; Howatt DA; Rateri DL; Daugherty A. 2009. ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice. Am J Physiol Heart Circ Physiol 296(5):H1660-5. [PubMed: 19252100]  [MGI Ref ID J:150893]

Cassis LA; Rateri DL; Lu H; Daugherty A. 2007. Bone marrow transplantation reveals that recipient AT1a receptors are required to initiate angiotensin II-induced atherosclerosis and aneurysms. Arterioscler Thromb Vasc Biol 27(2):380-6. [PubMed: 17158350]  [MGI Ref ID J:130546]

Castellani LW; Chang JJ; Wang X; Lusis AJ; Reynolds WF. 2006. Transgenic mice express human MPO -463G/A alleles at atherosclerotic lesions, developing hyperlipidemia and obesity in -463G males. J Lipid Res 47(7):1366-77. [PubMed: 16639078]  [MGI Ref ID J:112085]

Catanozi S; Rocha JC; Passarelli M; Guzzo ML; Alves C; Furukawa LN; Nunes VS; Nakandakare ER; Heimann JC; Quintao EC. 2003. Dietary sodium chloride restriction enhances aortic wall lipid storage and raises plasma lipid concentration in LDL receptor knockout mice. J Lipid Res 44(4):727-32. [PubMed: 12562870]  [MGI Ref ID J:120709]

Cazita PM; Berti JA; Aoki C; Gidlund M; Harada LM; Nunes VS; Quintao EC; Oliveira HC. 2003. Cholesteryl ester transfer protein expression attenuates atherosclerosis in ovariectomized mice. J Lipid Res 44(1):33-40. [PubMed: 12518020]  [MGI Ref ID J:120685]

Chadjichristos CE; Matter CM; Roth I; Sutter E; Pelli G; Luscher TF; Chanson M; Kwak BR. 2006. Reduced connexin43 expression limits neointima formation after balloon distension injury in hypercholesterolemic mice. Circulation 113(24):2835-43. [PubMed: 16769907]  [MGI Ref ID J:122443]

Chakraborty M; Lou C; Huan C; Kuo MS; Park TS; Cao G; Jiang XC. 2013. Myeloid cell-specific serine palmitoyltransferase subunit 2 haploinsufficiency reduces murine atherosclerosis. J Clin Invest 123(4):1784-97. [PubMed: 23549085]  [MGI Ref ID J:197606]

Chan JC; Piper DE; Cao Q; Liu D; King C; Wang W; Tang J; Liu Q; Higbee J; Xia Z; Di Y; Shetterly S; Arimura Z; Salomonis H; Romanow WG; Thibault ST; Zhang R; Cao P; Yang XP; Yu T; Lu M; Retter MW; Kwon G; Henne K; Pan O; Tsai MM; Fuchslocher B; Yang E; Zhou L; Lee KJ; Daris M; Sheng J; Wang Y; Shen WD; Yeh WC; Emery M; Walker NP; Shan B; Schwarz M; Jackson SM. 2009. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A 106(24):9820-5. [PubMed: 19443683]  [MGI Ref ID J:150005]

Chellan B; Koroleva EP; Sontag TJ; Tumanov AV; Fu YX; Getz GS; Reardon CA. 2013. LIGHT/TNFSR14 can regulate hepatic lipase expression by hepatocytes independent of T cells and Kupffer cells. PLoS One 8(1):e54719. [PubMed: 23355893]  [MGI Ref ID J:195803]

Chen CT; Ma DW; Kim JH; Mount HT; Bazinet RP. 2008. The low density lipoprotein receptor is not necessary for maintaining mouse brain polyunsaturated fatty acid concentrations. J Lipid Res 49(1):147-52. [PubMed: 17932396]  [MGI Ref ID J:130078]

Chen X; Rateri DL; Howatt DA; Balakrishnan A; Moorleghen JJ; Morris AJ; Charnigo R; Cassis LA; Daugherty A. 2013. Amlodipine reduces AngII-induced aortic aneurysms and atherosclerosis in hypercholesterolemic mice. PLoS One 8(11):e81743. [PubMed: 24244746]  [MGI Ref ID J:209689]

Chen Z; Fitzgerald RL; Li G; Davidson NO; Schonfeld G. 2004. Hepatic secretion of apoB-100 is impaired in hypobetalipoproteinemic mice with an apoB-38.9-specifying allele. J Lipid Res 45(1):155-63. [PubMed: 13130124]  [MGI Ref ID J:87974]

Cheng SL; Shao JS; Halstead LR; Distelhorst K; Sierra O; Towler DA. 2010. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/beta-catenin signaling and aortic fibrosis in diabetic arteriosclerosis. Circ Res 107(2):271-82. [PubMed: 20489161]  [MGI Ref ID J:175050]

Choi JH; Cheong C; Dandamudi DB; Park CG; Rodriguez A; Mehandru S; Velinzon K; Jung IH; Yoo JY; Oh GT; Steinman RM. 2011. Flt3 Signaling-Dependent Dendritic Cells Protect against Atherosclerosis. Immunity 35(5):819-31. [PubMed: 22078798]  [MGI Ref ID J:178831]

Choi JH; Nam KH; Kim J; Baek MW; Park JE; Park HY; Kwon HJ; Kwon OS; Kim DY; Oh GT. 2005. Trichostatin A exacerbates atherosclerosis in low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 25(11):2404-9. [PubMed: 16141407]  [MGI Ref ID J:116800]

Christoffersen C; Benn M; Christensen PM; Gordts PL; Roebroek AJ; Frikke-Schmidt R; Tybjaerg-Hansen A; Dahlback B; Nielsen LB. 2012. The plasma concentration of HDL-associated apoM is influenced by LDL receptor-mediated clearance of apoB-containing particles. J Lipid Res 53(10):2198-204. [PubMed: 22826357]  [MGI Ref ID J:188041]

Christoffersen C; Jauhiainen M; Moser M; Porse B; Ehnholm C; Boesl M; Dahlback B; Nielsen LB. 2008. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice. J Biol Chem 283(4):1839-47. [PubMed: 18006500]  [MGI Ref ID J:130647]

Christoffersen C; Pedersen TX; Gordts PL; Roebroek AJ; Dahlback B; Nielsen LB. 2010. Opposing effects of apolipoprotein m on catabolism of apolipoprotein B-containing lipoproteins and atherosclerosis. Circ Res 106(10):1624-34. [PubMed: 20360257]  [MGI Ref ID J:172136]

Coenen KR; Gruen ML; Chait A; Hasty AH. 2007. Diet-induced increases in adiposity, but not plasma lipids, promote macrophage infiltration into white adipose tissue. Diabetes 56(3):564-73. [PubMed: 17327423]  [MGI Ref ID J:122029]

Coenen KR; Gruen ML; Lee-Young RS; Puglisi MJ; Wasserman DH; Hasty AH. 2009. Impact of macrophage toll-like receptor 4 deficiency on macrophage infiltration into adipose tissue and the artery wall in mice. Diabetologia 52(2):318-28. [PubMed: 19052722]  [MGI Ref ID J:144370]

Coenen KR; Hasty AH. 2007. Obesity potentiates development of fatty liver and insulin resistance, but not atherosclerosis, in high-fat diet-fed agouti LDLR-deficient mice. Am J Physiol Endocrinol Metab 293(2):E492-9. [PubMed: 17566116]  [MGI Ref ID J:123342]

Collins AR; Gupte AA; Ji R; Ramirez MR; Minze LJ; Liu JZ; Arredondo M; Ren Y; Deng T; Wang J; Lyon CJ; Hsueh WA. 2012. Myeloid deletion of nuclear factor erythroid 2-related factor 2 increases atherosclerosis and liver injury. Arterioscler Thromb Vasc Biol 32(12):2839-46. [PubMed: 23023374]  [MGI Ref ID J:208317]

Curtiss LK; Black AS; Bonnet DJ; Tobias PS. 2012. Atherosclerosis induced by endogenous and exogenous toll-like receptor (TLR)1 or TLR6 agonists. J Lipid Res 53(10):2126-32. [PubMed: 22822027]  [MGI Ref ID J:188042]

Cybulsky MI; Iiyama K; Li H; Zhu S; Chen M; Iiyama M; Davis V; Gutierrez-Ramos JC; Connelly PW; Milstone DS. 2001. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107(10):1255-62. [PubMed: 11375415]  [MGI Ref ID J:69597]

Cyrus T; Tang LX; Rokach J; FitzGerald GA; Pratico D. 2001. Lipid peroxidation and platelet activation in murine atherosclerosis. Circulation 104(16):1940-5. [PubMed: 11602498]  [MGI Ref ID J:103216]

Daissormont IT; Christ A; Temmerman L; Sampedro Millares S; Seijkens T; Manca M; Rousch M; Poggi M; Boon L; van der Loos C; Daemen M; Lutgens E; Halvorsen B; Aukrust P; Janssen E; Biessen EA. 2011. Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity. Circ Res 109(12):1387-95. [PubMed: 22021930]  [MGI Ref ID J:192720]

Dandapat A; Hu CP; Chen J; Liu Y; Khan JA; Remeo F; Carey RM; Hermonat PL; Mehta JL. 2008. Over-expression of angiotensin II type 2 receptor (agtr2) decreases collagen accumulation in atherosclerotic plaque. Biochem Biophys Res Commun 366(4):871-7. [PubMed: 18037370]  [MGI Ref ID J:130186]

Daugherty A; Rateri DL; Howatt DA; Charnigo R; Cassis LA. 2013. PD123319 augments angiotensin II-induced abdominal aortic aneurysms through an AT2 receptor-independent mechanism. PLoS One 8(4):e61849. [PubMed: 23593499]  [MGI Ref ID J:200118]

Davies MR; Lund RJ; Mathew S; Hruska KA. 2005. Low turnover osteodystrophy and vascular calcification are amenable to skeletal anabolism in an animal model of chronic kidney disease and the metabolic syndrome. J Am Soc Nephrol 16(4):917-28. [PubMed: 15743994]  [MGI Ref ID J:110048]

Day SM; Reeve JL; Pedersen B; Farris DM; Myers DD; Im M; Wakefield TW; Mackman N; Fay WP. 2005. Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall. Blood 105(1):192-8. [PubMed: 15339841]  [MGI Ref ID J:96377]

Deane R; Sagare A; Hamm K; Parisi M; Lane S; Finn MB; Holtzman DM; Zlokovic BV. 2008. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118(12):4002-13. [PubMed: 19033669]  [MGI Ref ID J:144730]

Deevska GM; Rozenova KA; Giltiay NV; Chambers MA; White J; Boyanovsky BB; Wei J; Daugherty A; Smart EJ; Reid MB; Merrill AH Jr; Nikolova-Karakashian M. 2009. Acid Sphingomyelinase Deficiency Prevents Diet-induced Hepatic Triacylglycerol Accumulation and Hyperglycemia in Mice. J Biol Chem 284(13):8359-68. [PubMed: 19074137]  [MGI Ref ID J:148558]

Degrace P; Moindrot B; Mohamed I; Gresti J; Du ZY; Chardigny JM; Sebedio JL; Clouet P. 2006. Upregulation of liver VLDL receptor and FAT/CD36 expression in LDLR-/- apoB100/100 mice fed trans-10,cis-12 conjugated linoleic acid. J Lipid Res 47(12):2647-55. [PubMed: 16957181]  [MGI Ref ID J:117203]

Denis M; Marcinkiewicz J; Zaid A; Gauthier D; Poirier S; Lazure C; Seidah NG; Prat A. 2012. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation 125(7):894-901. [PubMed: 22261195]  [MGI Ref ID J:196628]

Depner CM; Torres-Gonzalez M; Tripathy S; Milne G; Jump DB. 2012. Menhaden oil decreases high-fat diet-induced markers of hepatic damage, steatosis, inflammation, and fibrosis in obese ldlr-/- mice. J Nutr 142(8):1495-503. [PubMed: 22739374]  [MGI Ref ID J:186393]

Derwall M; Malhotra R; Lai CS; Beppu Y; Aikawa E; Seehra JS; Zapol WM; Bloch KD; Yu PB. 2012. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol 32(3):613-22. [PubMed: 22223731]  [MGI Ref ID J:195959]

Devlin CM; Kuriakose G; Hirsch E; Tabas I. 2002. Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Proc Natl Acad Sci U S A 99(9):6280-5. [PubMed: 11983917]  [MGI Ref ID J:76336]

Devlin CM; Leventhal AR; Kuriakose G; Schuchman EH; Williams KJ; Tabas I. 2008. Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler Thromb Vasc Biol 28(10):1723-30. [PubMed: 18669882]  [MGI Ref ID J:148825]

Dichek HL; Agrawal N; El Andaloussi N; Qian K. 2006. Attenuated corticosterone response to chronic ACTH stimulation in hepatic lipase-deficient mice: evidence for a role for hepatic lipase in adrenal physiology. Am J Physiol Endocrinol Metab 290(5):E908-15. [PubMed: 16368783]  [MGI Ref ID J:108412]

Dichek HL; Johnson SM; Akeefe H; Lo GT; Sage E; Yap CE; Mahley RW. 2001. Hepatic lipase overexpression lowers remnant and LDL levels by a noncatalytic mechanism in LDL receptor-deficient mice. J Lipid Res 42(2):201-10. [PubMed: 11181749]  [MGI Ref ID J:68351]

Dichek HL; Qian K; Agrawal N. 2004. Divergent effects of the catalytic and bridging functions of hepatic lipase on atherosclerosis. Arterioscler Thromb Vasc Biol 24(9):1696-702. [PubMed: 15205216]  [MGI Ref ID J:134693]

Dichek HL; Qian K; Agrawal N. 2004. The bridging function of hepatic lipase clears plasma cholesterol in LDL receptor-deficient 'apoB-48-only' and 'apoB-100-only' mice. J Lipid Res 45(3):551-60. [PubMed: 14679168]  [MGI Ref ID J:88634]

Ding Z; Mizeracki AM; Hu C; Mehta JL. 2013. LOX-1 deletion and macrophage trafficking in atherosclerosis. Biochem Biophys Res Commun 440(2):210-4. [PubMed: 24036126]  [MGI Ref ID J:211431]

Dong Y; Zhang M; Liang B; Xie Z; Zhao Z; Asfa S; Choi HC; Zou MH. 2010. Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 121(6):792-803. [PubMed: 20124121]  [MGI Ref ID J:170442]

Doring Y; Manthey HD; Drechsler M; Lievens D; Megens RT; Soehnlein O; Busch M; Manca M; Koenen RR; Pelisek J; Daemen MJ; Lutgens E; Zenke M; Binder CJ; Weber C; Zernecke A. 2012. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 125(13):1673-83. [PubMed: 22388324]  [MGI Ref ID J:198616]

Drechsler M; Megens RT; van Zandvoort M; Weber C; Soehnlein O. 2010. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122(18):1837-45. [PubMed: 20956207]  [MGI Ref ID J:179481]

Drouin A; Bolduc V; Thorin-Trescases N; Belanger E; Fernandes P; Baraghis E; Lesage F; Gillis MA; Villeneuve L; Hamel E; Ferland G; Thorin E. 2010. Catechin treatment improves cerebrovascular flow-mediated dilation and learning abilities in atherosclerotic mice. Am J Physiol Heart Circ Physiol :. [PubMed: 21186270]  [MGI Ref ID J:167205]

Duewell P; Kono H; Rayner KJ; Sirois CM; Vladimer G; Bauernfeind FG; Abela GS; Franchi L; Nunez G; Schnurr M; Espevik T; Lien E; Fitzgerald KA; Rock KL; Moore KJ; Wright SD; Hornung V; Latz E. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357-61. [PubMed: 20428172]  [MGI Ref ID J:159453]

Dullens SP; Mensink RP; Bragt MC; Kies AK; Plat J. 2008. Effects of emulsified policosanols with different chain lengths on cholesterol metabolism in heterozygous LDL receptor-deficient mice. J Lipid Res 49(4):790-6. [PubMed: 18162663]  [MGI Ref ID J:133589]

Dupasquier CM; Dibrov E; Kneesh AL; Cheung PK; Lee KG; Alexander HK; Yeganeh BK; Moghadasian MH; Pierce GN. 2007. Dietary flaxseed inhibits atherosclerosis in the LDL receptor-deficient mouse in part through antiproliferative and anti-inflammatory actions. Am J Physiol Heart Circ Physiol 293(4):H2394-402. [PubMed: 17616740]  [MGI Ref ID J:126120]

Eberle C; Merki E; Yamashita T; Johnson S; Armando AM; Quehenberger O; Napoli C; Palinski W. 2012. Maternal immunization affects in utero programming of insulin resistance and type 2 diabetes. PLoS One 7(9):e45361. [PubMed: 23028961]  [MGI Ref ID J:192004]

Egan KM; Lawson JA; Fries S; Koller B; Rader DJ; Smyth EM; Fitzgerald GA. 2004. COX-2-derived prostacyclin confers atheroprotection on female mice. Science 306(5703):1954-7. [PubMed: 15550624]  [MGI Ref ID J:105640]

Elder GA; Cho JY; English DF; Franciosi S; Schmeidler J; Sosa MA; Gasperi RD; Fisher EA; Mathews PM; Haroutunian V; Buxbaum JD. 2007. Elevated plasma cholesterol does not affect brain Abeta in mice lacking the low-density lipoprotein receptor. J Neurochem 102(4):1220-31. [PubMed: 17472705]  [MGI Ref ID J:124132]

Elder GA; Ragnauth A; Dorr N; Franciosi S; Schmeidler J; Haroutunian V; Buxbaum JD. 2008. Increased locomotor activity in mice lacking the low-density lipoprotein receptor. Behav Brain Res 191(2):256-265. [PubMed: 18466986]  [MGI Ref ID J:135078]

Erickson RP; Bhattacharyya A; Hunter RJ; Heidenreich RA; Cherrington NJ. 2005. Liver disease with altered bile acid transport in Niemann-Pick C mice on a high-fat, 1% cholesterol diet. Am J Physiol Gastrointest Liver Physiol 289(2):G300-7. [PubMed: 15790756]  [MGI Ref ID J:100351]

Erickson RP; Kiela M; Garver WS; Krishnan K; Heidenreich RA. 2001. Cholesterol signaling at the endoplasmic reticulum occurs in npc1(-/-) but not in npc1(-/-), LDLR(-/-) mice. Biochem Biophys Res Commun 284(2):326-30. [PubMed: 11394880]  [MGI Ref ID J:69915]

Eriksson EE; Xie X; Werr J; Thoren P; Lindbom L. 2001. Direct viewing of atherosclerosis in vivo: plaque invasion by leukocytes is initiated by the endothelial selectins. FASEB J 15(7):1149-57. [PubMed: 11344083]  [MGI Ref ID J:120455]

Eriksson EE; Xie X; Werr J; Thoren P; Lindbom L. 2001. Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med 194(2):205-18. [PubMed: 11457895]  [MGI Ref ID J:118726]

Espirito Santo SM; Pires NM; Boesten LS; Gerritsen G; Bovenschen N; van Dijk KW; Jukema JW; Princen HM; Bensadoun A; Li WP; Herz J; Havekes LM; van Vlijmen BJ. 2004. Hepatic low-density lipoprotein receptor-related protein deficiency in mice increases atherosclerosis independent of plasma cholesterol. Blood 103(10):3777-82. [PubMed: 14739216]  [MGI Ref ID J:90547]

Estrada-Smith D; Collins AR; Wang X; Crockett C; Castellani L; Lusis AJ; Davis RC. 2006. Impact of chromosome 2 obesity loci on cardiovascular complications of insulin resistance in LDL receptor-deficient C57BL/6 mice. Diabetes 55(8):2265-71. [PubMed: 16873689]  [MGI Ref ID J:116503]

Fan J; Stukas S; Wong C; Chan J; May S; Devalle N; Hirsch-Reinshagen V; Wilkinson A; Oda MN; Wellington CL. 2011. An ABCA1-independent pathway for recycling a poorly lipidated 8.1 nm apolipoprotein E particle from glia. J Lipid Res 52(9):1605-16. [PubMed: 21705806]  [MGI Ref ID J:175557]

Farris SD; Hu JH; Krishnan R; Emery I; Chu T; Du L; Kremen M; Dichek HL; Gold E; Ramsey SA; Dichek DA. 2011. Mechanisms of urokinase plasminogen activator (uPA)-mediated atherosclerosis: role of the uPA receptor and S100A8/A9 proteins. J Biol Chem 286(25):22665-77. [PubMed: 21536666]  [MGI Ref ID J:174810]

Fazio S; Babaev VR; Burleigh ME; Major AS; Hasty AH; Linton MF. 2002. Physiological expression of macrophage apoE in the artery wall reduces atherosclerosis in severely hyperlipidemic mice. J Lipid Res 43(10):1602-9. [PubMed: 12364544]  [MGI Ref ID J:79439]

Fazio S; Hasty AH; Carter KJ; Murray AB; Price JO; Linton MF. 1997. Leukocyte low density lipoprotein receptor (LDL-R) does not contribute to LDL clearance in vivo: bone marrow transplantation studies in the mouse. J Lipid Res 38(2):391-400. [PubMed: 9162757]  [MGI Ref ID J:38840]

Feig JE; Parathath S; Rong JX; Mick SL; Vengrenyuk Y; Grauer L; Young SG; Fisher EA. 2011. Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 123(9):989-98. [PubMed: 21339485]  [MGI Ref ID J:183750]

Feig JE; Pineda-Torra I; Sanson M; Bradley MN; Vengrenyuk Y; Bogunovic D; Gautier EL; Rubinstein D; Hong C; Liu J; Wu C; van Rooijen N; Bhardwaj N; Garabedian M; Tontonoz P; Fisher EA. 2010. LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J Clin Invest 120(12):4415-24. [PubMed: 21041949]  [MGI Ref ID J:171875]

Feng Y; Schouteden S; Geenens R; Van Duppen V; Herijgers P; Holvoet P; Van Veldhoven PP; Verfaillie CM. 2012. Hematopoietic stem/progenitor cell proliferation and differentiation is differentially regulated by high-density and low-density lipoproteins in mice. PLoS One 7(11):e47286. [PubMed: 23144813]  [MGI Ref ID J:194860]

Findeisen HM; Gizard F; Zhao Y; Cohn D; Heywood EB; Jones KL; Lovett DH; Howatt DA; Daugherty A; Bruemmer D. 2011. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol 31(2):253-60. [PubMed: 21088250]  [MGI Ref ID J:184181]

Foks AC; Ran IA; Frodermann V; Bot I; van Santbrink PJ; Kuiper J; van Puijvelde GH. 2013. Agonistic anti-TIGIT treatment inhibits T cell responses in LDLr deficient mice without affecting atherosclerotic lesion development. PLoS One 8(12):e83134. [PubMed: 24376654]  [MGI Ref ID J:211124]

Foks AC; van Puijvelde GH; Bot I; ter Borg MN; Habets KL; Johnson JL; Yagita H; van Berkel TJ; Kuiper J. 2013. Interruption of the OX40-OX40 ligand pathway in LDL receptor-deficient mice causes regression of atherosclerosis. J Immunol 191(9):4573-80. [PubMed: 24068673]  [MGI Ref ID J:206243]

Fontana K; Campos GE; Staron RS; da Cruz-Hofling MA. 2013. Effects of anabolic steroids and high-intensity aerobic exercise on skeletal muscle of transgenic mice. PLoS One 8(11):e80909. [PubMed: 24260508]  [MGI Ref ID J:209673]

Forte TM; Subbanagounder G; Berliner JA; Blanche PJ; Clermont AO; Jia Z; Oda MN; Krauss RM; Bielicki JK. 2002. Altered activities of anti-atherogenic enzymes LCAT, paraoxonase, and platelet-activating factor acetylhydrolase in atherosclerosis-susceptible mice. J Lipid Res 43(3):477-85. [PubMed: 11893784]  [MGI Ref ID J:75568]

Fougerat A; Gayral S; Gourdy P; Schambourg A; Ruckle T; Schwarz MK; Rommel C; Hirsch E; Arnal JF; Salles JP; Perret B; Breton-Douillon M; Wymann MP; Laffargue M. 2008. Genetic and pharmacological targeting of phosphoinositide 3-kinase-gamma reduces atherosclerosis and favors plaque stability by modulating inflammatory processes. Circulation 117(10):1310-7. [PubMed: 18268153]  [MGI Ref ID J:148451]

Franco C; Ahmad PJ; Hou G; Wong E; Bendeck MP. 2010. Increased cell and matrix accumulation during atherogenesis in mice with vessel wall-specific deletion of discoidin domain receptor 1. Circ Res 106(11):1775-83. [PubMed: 20448217]  [MGI Ref ID J:172702]

Franco C; Britto K; Wong E; Hou G; Zhu SN; Chen M; Cybulsky MI; Bendeck MP. 2009. Discoidin domain receptor 1 on bone marrow-derived cells promotes macrophage accumulation during atherogenesis. Circ Res 105(11):1141-8. [PubMed: 19834008]  [MGI Ref ID J:170145]

Franco C; Hou G; Ahmad PJ; Fu EY; Koh L; Vogel WF; Bendeck MP. 2008. Discoidin domain receptor 1 (ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor-deficient mice. Circ Res 102(10):1202-11. [PubMed: 18451340]  [MGI Ref ID J:149015]

Francone OL; Royer L; Boucher G; Haghpassand M; Freeman A; Brees D; Aiello RJ. 2005. Increased cholesterol deposition, expression of scavenger receptors, and response to chemotactic factors in Abca1-deficient macrophages. Arterioscler Thromb Vasc Biol 25(6):1198-205. [PubMed: 15831807]  [MGI Ref ID J:114227]

Freeman L; Amar MJ; Shamburek R; Paigen B; Brewer HB Jr; Santamarina-Fojo S; Gonzalez-Navarro H. 2007. Lipolytic and ligand-binding functions of hepatic lipase protect against atherosclerosis in LDL receptor-deficient mice. J Lipid Res 48(1):104-13. [PubMed: 17071916]  [MGI Ref ID J:117481]

Freigang S; Ampenberger F; Weiss A; Kanneganti TD; Iwakura Y; Hersberger M; Kopf M. 2013. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1alpha and sterile vascular inflammation in atherosclerosis. Nat Immunol 14(10):1045-53. [PubMed: 23995233]  [MGI Ref ID J:208219]

Freigang S; Landais E; Zadorozhny V; Kain L; Yoshida K; Liu Y; Deng S; Palinski W; Savage PB; Bendelac A; Teyton L. 2012. Scavenger receptors target glycolipids for natural killer T cell activation. J Clin Invest 122(11):3943-54. [PubMed: 23064364]  [MGI Ref ID J:193547]

Freigang S; Zadorozhny V; McKinney MK; Krebs P; Herro R; Pawlak J; Kain L; Schrantz N; Masuda K; Liu Y; Savage PB; Bendelac A; Cravatt BF; Teyton L. 2010. Fatty acid amide hydrolase shapes NKT cell responses by influencing the serum transport of lipid antigen in mice. J Clin Invest 120(6):1873-84. [PubMed: 20484813]  [MGI Ref ID J:161640]

Fryer JD; Demattos RB; McCormick LM; O'Dell MA; Spinner ML; Bales KR; Paul SM; Sullivan PM; Parsadanian M; Bu G; Holtzman DM. 2005. The low density lipoprotein receptor regulates the level of central nervous system human and murine apolipoprotein E but does not modify amyloid plaque pathology in PDAPP mice. J Biol Chem 280(27):25754-9. [PubMed: 15888448]  [MGI Ref ID J:100836]

Fukuda D; Aikawa E; Swirski FK; Novobrantseva TI; Kotelianski V; Gorgun CZ; Chudnovskiy A; Yamazaki H; Croce K; Weissleder R; Aster JC; Hotamisligil GS; Yagita H; Aikawa M. 2012. Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci U S A 109(27):E1868-77. [PubMed: 22699504]  [MGI Ref ID J:186429]

Furbee JW Jr; Francone O; Parks JS. 2001. Alteration of plasma HDL cholesteryl ester composition with transgenic expression of a point mutation (E149A) of human LCAT. J Lipid Res 42(10):1626-35. [PubMed: 11590219]  [MGI Ref ID J:124250]

Furbee JW Jr; Francone O; Parks JS. 2002. In vivo contribution of LCAT to apolipoprotein B lipoprotein cholesteryl esters in LDL receptor and apolipoprotein E knockout mice. J Lipid Res 43(3):428-37. [PubMed: 11893779]  [MGI Ref ID J:75567]

Furbee JW Jr; Sawyer JK; Parks JS. 2002. Lecithin:cholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice. J Biol Chem 277(5):3511-9. [PubMed: 11719520]  [MGI Ref ID J:74315]

Gaudreault N; Kumar N; Posada JM; Stephens KB; Reyes de Mochel NS; Eberle D; Olivas VR; Kim RY; Harms MJ; Johnson S; Messina LM; Rapp JH; Raffai RL. 2012. ApoE suppresses atherosclerosis by reducing lipid accumulation in circulating monocytes and the expression of inflammatory molecules on monocytes and vascular endothelium. Arterioscler Thromb Vasc Biol 32(2):264-72. [PubMed: 22053073]  [MGI Ref ID J:195610]

Gendron ME; Theoret JF; Mamarbachi AM; Drouin A; Nguyen A; Bolduc V; Thorin-Trescases N; Merhi Y; Thorin E. 2010. Late chronic catechin antioxidant treatment is deleterious to the endothelial function in aging mice with established atherosclerosis. Am J Physiol Heart Circ Physiol 298(6):H2062-70. [PubMed: 20382853]  [MGI Ref ID J:160434]

George J; Afek A; Shaish A; Levkovitz H; Bloom N; Cyrus T; Zhao L; Funk CD; Sigal E; Harats D. 2001. 12/15-Lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice. Circulation 104(14):1646-50. [PubMed: 11581143]  [MGI Ref ID J:86385]

George J; Shoenfeld Y; Harats D. 1999. The involvement of beta2-glycoprotein I (beta2-GPI) in human and murine atherosclerosis. J Autoimmun 13(1):57-60. [PubMed: 10441168]  [MGI Ref ID J:56653]

German DC; Quintero EM; Liang C; Xie C; Dietschy JM. 2001. Degeneration of neurons and glia in the Niemann-Pick C mouse is unrelated to the low-density lipoprotein receptor. Neuroscience 105(4):999-1005. [PubMed: 11530237]  [MGI Ref ID J:126474]

Gessner DK; Ringseis R; Moller C; Eder K. 2012. Increased plasma thyroid hormone concentrations in LDL receptor deficient mice may be explained by inhibition of aryl hydrocarbon receptor-dependent expression of hepatic UDP-glucuronosyltransferases. Biochim Biophys Acta 1820(4):495-502. [PubMed: 22185956]  [MGI Ref ID J:182449]

Ghazalpour A; Wang X; Lusis AJ; Mehrabian M. 2006. Complex inheritance of the 5-lipoxygenase locus influencing atherosclerosis in mice. Genetics 173(2):943-51. [PubMed: 16624897]  [MGI Ref ID J:109792]

Ghesquiere SA; Gijbels MJ; Anthonsen M; van Gorp PJ; van der Made I; Johansen B; Hofker MH; de Winther MP. 2005. Macrophage-specific overexpression of group IIa sPLA2 increases atherosclerosis and enhances collagen deposition. J Lipid Res 46(2):201-10. [PubMed: 15576846]  [MGI Ref ID J:136941]

Girod WG; Jones SP; Sieber N; Aw TY; Lefer DJ. 1999. Effects of hypercholesterolemia on myocardial ischemia-reperfusion injury in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 19(11):2776-81. [PubMed: 10559025]  [MGI Ref ID J:129258]

Gitlin JM; Homeister JW; Bulgrien J; Counselman J; Curtiss LK; Lowe JB; Boisvert WA. 2009. Disruption of tissue-specific fucosyltransferase VII, an enzyme necessary for selectin ligand synthesis, suppresses atherosclerosis in mice. Am J Pathol 174(1):343-50. [PubMed: 19056851]  [MGI Ref ID J:144237]

Goel R; Schrank BR; Arora S; Boylan B; Fleming B; Miura H; Newman PJ; Molthen RC; Newman DK. 2008. Site-specific effects of PECAM-1 on atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 28(11):1996-2002. [PubMed: 18669884]  [MGI Ref ID J:159801]

Goldberg IJ; Hu Y; Noh HL; Wei J; Huggins LA; Rackmill MG; Hamai H; Reid BN; Blaner WS; Huang LS. 2008. Decreased lipoprotein clearance is responsible for increased cholesterol in LDL receptor knockout mice with streptozotocin-induced diabetes. Diabetes 57(6):1674-82. [PubMed: 18346984]  [MGI Ref ID J:136922]

Goldberg IJ; Huang LS; Huggins LA; Yu S; Nagareddy PR; Scanlan TS; Ehrenkranz JR. 2012. Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway. Endocrinology 153(11):5143-9. [PubMed: 22948212]  [MGI Ref ID J:192913]

Gonon AT; Bulhak A; Broijersen A; Pernow J. 2005. Cardioprotective effect of an endothelin receptor antagonist during ischaemia/reperfusion in the severely atherosclerotic mouse heart. Br J Pharmacol 144(6):860-6. [PubMed: 15685207]  [MGI Ref ID J:110052]

Gonzales JC; Gordts PL; Foley EM; Esko JD. 2013. Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans. J Clin Invest 123(6):2742-51. [PubMed: 23676495]  [MGI Ref ID J:201440]

Goossens P; Gijbels MJ; Zernecke A; Eijgelaar W; Vergouwe MN; van der Made I; Vanderlocht J; Beckers L; Buurman WA; Daemen MJ; Kalinke U; Weber C; Lutgens E; de Winther MP. 2010. Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metab 12(2):142-53. [PubMed: 20674859]  [MGI Ref ID J:163078]

Goossens P; Vergouwe MN; Gijbels MJ; Curfs DM; van Woezik JH; Hoeksema MA; Xanthoulea S; Leenen PJ; Rupec RA; Hofker MH; de Winther MP. 2011. Myeloid IkappaBalpha Deficiency Promotes Atherogenesis by Enhancing Leukocyte Recruitment to the Plaques. PLoS One 6(7):e22327. [PubMed: 21814576]  [MGI Ref ID J:174920]

Gordts PL; Reekmans S; Lauwers A; Van Dongen A; Verbeek L; Roebroek AJ. 2009. Inactivation of the LRP1 intracellular NPxYxxL motif in LDLR-deficient mice enhances postprandial dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol 29(9):1258-64. [PubMed: 19667105]  [MGI Ref ID J:167801]

Gordts SC; Van Craeyveld E; Muthuramu I; Singh N; Jacobs F; De Geest B. 2012. Lipid lowering and HDL raising gene transfer increase endothelial progenitor cells, enhance myocardial vascularity, and improve diastolic function. PLoS One 7(10):e46849. [PubMed: 23056485]  [MGI Ref ID J:191934]

Grainger DJ; Reckless J; McKilligin E. 2004. Apolipoprotein E modulates clearance of apoptotic bodies in vitro and in vivo, resulting in a systemic proinflammatory state in apolipoprotein E-deficient mice. J Immunol 173(10):6366-75. [PubMed: 15528376]  [MGI Ref ID J:94282]

Gu L; Okada Y; Clinton SK; Gerard C; Sukhova GK; Libby P; Rollins BJ. 1998. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2(2):275-81. [PubMed: 9734366]  [MGI Ref ID J:75837]

Guo W; Wong S; Bhasin S. 2013. AAV-mediated administration of myostatin pro-peptide mutant in adult Ldlr null mice reduces diet-induced hepatosteatosis and arteriosclerosis. PLoS One 8(8):e71017. [PubMed: 23936482]  [MGI Ref ID J:205772]

Gupte AA; Minze LJ; Reyes M; Ren Y; Wang X; Brunner G; Ghosn M; Cordero-Reyes AM; Ding K; Pratico D; Morrisett J; Shi ZZ; Hamilton DJ; Lyon CJ; Hsueh WA. 2013. High-fat feeding-induced hyperinsulinemia increases cardiac glucose uptake and mitochondrial function despite peripheral insulin resistance. Endocrinology 154(8):2650-62. [PubMed: 23709089]  [MGI Ref ID J:201180]

Haeusler RA; Pratt-Hyatt M; Welch CL; Klaassen CD; Accili D. 2012. Impaired generation of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metab 15(1):65-74. [PubMed: 22197325]  [MGI Ref ID J:182348]

Hager L; Li L; Pun H; Liu L; Hossain MA; Maguire GF; Naples M; Baker C; Magomedova L; Tam J; Adeli K; Cummins CL; Connelly PW; Ng DS. 2012. Lecithin:cholesterol acyltransferase deficiency protects against cholesterol-induced hepatic endoplasmic reticulum stress in mice. J Biol Chem 287(24):20755-68. [PubMed: 22500017]  [MGI Ref ID J:186520]

Hamers AA; Vos M; Rassam F; Marinkovic G; Kurakula K; van Gorp PJ; de Winther MP; Gijbels MJ; de Waard V; de Vries CJ. 2012. Bone marrow-specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. Circ Res 110(3):428-38. [PubMed: 22194623]  [MGI Ref ID J:192703]

Han CY; Subramanian S; Chan CK; Omer M; Chiba T; Wight TN; Chait A. 2007. Adipocyte-derived serum amyloid A3 and hyaluronan play a role in monocyte recruitment and adhesion. Diabetes 56(9):2260-73. [PubMed: 17563062]  [MGI Ref ID J:126587]

Han L; Tang MX; Ti Y; Wang ZH; Wang J; Ding WY; Wang H; Zhang Y; Zhang W; Zhong M. 2013. Overexpressing STAMP2 improves insulin resistance in diabetic ApoE(-)/(-)/LDLR(-)/(-) mice via macrophage polarization shift in adipose tissues. PLoS One 8(11):e78903. [PubMed: 24236066]  [MGI Ref ID J:209316]

Han S; Liang CP; DeVries-Seimon T; Ranalletta M; Welch CL; Collins-Fletcher K; Accili D; Tabas I; Tall AR. 2006. Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab 3(4):257-66. [PubMed: 16581003]  [MGI Ref ID J:129653]

Han S; Liang CP; Westerterp M; Senokuchi T; Welch CL; Wang Q; Matsumoto M; Accili D; Tall AR. 2009. Hepatic insulin signaling regulates VLDL secretion and atherogenesis in mice. J Clin Invest 119(4):1029-41. [PubMed: 19273907]  [MGI Ref ID J:149755]

Hanna RN; Shaked I; Hubbeling HG; Punt JA; Wu R; Herrley E; Zaugg C; Pei H; Geissmann F; Ley K; Hedrick CC. 2012. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res 110(3):416-27. [PubMed: 22194622]  [MGI Ref ID J:192704]

Harada-Shiba M; Takagi A; Marutsuka K; Moriguchi S; Yagyu H; Ishibashi S; Asada Y; Yokoyama S. 2004. Disruption of autosomal recessive hypercholesterolemia gene shows different phenotype in vitro and in vivo. Circ Res 95(9):945-52. [PubMed: 15472122]  [MGI Ref ID J:102291]

Harats D; Shaish A; George J; Mulkins M; Kurihara H; Levkovitz H; Sigal E. 2000. Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 20(9):2100-5. [PubMed: 10978255]  [MGI Ref ID J:127953]

Hartman HB; Lai K; Evans MJ. 2009. Loss of small heterodimer partner expression in the liver protects against dyslipidemia. J Lipid Res 50(2):193-203. [PubMed: 18820241]  [MGI Ref ID J:149005]

Hartvigsen K; Binder CJ; Hansen LF; Rafia A; Juliano J; Horkko S; Steinberg D; Palinski W; Witztum JL; Li AC. 2007. A diet-induced hypercholesterolemic murine model to study atherogenesis without obesity and metabolic syndrome. Arterioscler Thromb Vasc Biol 27(4):878-85. [PubMed: 17255537]  [MGI Ref ID J:148155]

Hasty AH; Shimano H; Osuga Ji; Namatame I; Takahashi A; Yahagi N; Perrey S; Iizuka Y; Tamura Y; Amemiya-Kudo M; Yoshikawa T; Okazaki H; Ohashi K; Harada K; Matsuzaka T; Sone H; Gotoda T; Nagai R; Ishibashi S; Yamada N. 2001. Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor. J Biol Chem 276(40):37402-8. [PubMed: 11445560]  [MGI Ref ID J:72027]

Hauer AD; Uyttenhove C; de Vos P; Stroobant V; Renauld JC; van Berkel TJ; van Snick J; Kuiper J. 2005. Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis. Circulation 112(7):1054-62. [PubMed: 16103256]  [MGI Ref ID J:117550]

Heikkila HM; Trosien J; Metso J; Jauhiainen M; Pentikainen MO; Kovanen PT; Lindstedt KA. 2010. Mast cells promote atherosclerosis by inducing both an atherogenic lipid profile and vascular inflammation. J Cell Biochem 109(3):615-23. [PubMed: 20024959]  [MGI Ref ID J:161254]

Heinonen SE; Leppanen P; Kholova I; Lumivuori H; Hakkinen SK; Bosch F; Laakso M; Yla-Herttuala S. 2007. Increased atherosclerotic lesion calcification in a novel mouse model combining insulin resistance, hyperglycemia, and hypercholesterolemia. Circ Res 101(10):1058-67. [PubMed: 17872464]  [MGI Ref ID J:141333]

Hemdahl AL; Falk E; Thoren P; Hansson GK. 2004. Thrombin inhibitor reduces myocardial infarction in apoE-/- x LDLR-/- mice. Am J Physiol Heart Circ Physiol 287(2):H872-7. [PubMed: 15031124]  [MGI Ref ID J:95598]

Hendrikx T; Bieghs V; Walenbergh SM; van Gorp PJ; Verheyen F; Jeurissen ML; Steinbusch MM; Vaes N; Binder CJ; Koek GH; Stienstra R; Netea MG; Hofker MH; Shiri-Sverdlov R. 2013. Macrophage specific caspase-1/11 deficiency protects against cholesterol crystallization and hepatic inflammation in hyperlipidemic mice. PLoS One 8(12):e78792. [PubMed: 24312444]  [MGI Ref ID J:209749]

Henninger DD; Gerritsen ME; Granger DN. 1997. Low-density lipoprotein receptor knockout mice exhibit exaggerated microvascular responses to inflammatory stimuli. Circ Res 81(2):274-81. [PubMed: 9242189]  [MGI Ref ID J:42527]

Herijgers N; Van Eck M; Korporaal SJ; Hoogerbrugge PM; Van Berkel TJ. 2000. Relative importance of the LDL receptor and scavenger receptor class B in the beta-VLDL-induced uptake and accumulation of cholesteryl esters by peritoneal macrophages J Lipid Res 41(7):1163-71. [PubMed: 10884299]  [MGI Ref ID J:63449]

Herijgers N; de Winther MP; Van Eck M; Havekes LM; Hofker MH; Hoogerbrugge PM; Van Berkel TJ. 2000. Effect of human scavenger receptor class A overexpression in bone marrow-derived cells on lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knockout mice J Lipid Res 41(9):1402-9. [PubMed: 10974047]  [MGI Ref ID J:64891]

Herz J; Qiu SQ; Oesterle A; DeSilva HV; Shafi S; Havel RJ. 1995. Initial hepatic removal of chylomicron remnants is unaffected but endocytosis is delayed in mice lacking the low density lipoprotein receptor. Proc Natl Acad Sci U S A 92(10):4611-5. [PubMed: 7753850]  [MGI Ref ID J:25195]

Hime NJ; Black AS; Bulgrien JJ; Curtiss LK. 2008. Leukocyte-derived hepatic lipase increases HDL and decreases en face aortic atherosclerosis in LDLr-/- mice expressing CETP. J Lipid Res 49(10):2113-23. [PubMed: 18599739]  [MGI Ref ID J:140426]

Hockings PD; Roberts T; Galloway GJ; Reid DG; Harris DA; Vidgeon-Hart M; Groot PH; Suckling KE; Benson GM. 2002. Repeated three-dimensional magnetic resonance imaging of atherosclerosis development in innominate arteries of low-density lipoprotein receptor-knockout mice. Circulation 106(13):1716-21. [PubMed: 12270868]  [MGI Ref ID J:103222]

Hoekstra M; Stitzinger M; van Wanrooij EJ; Michon IN; Kruijt JK; Kamphorst J; Van Eck M; Vreugdenhil E; Van Berkel TJ; Kuiper J. 2006. Microarray analysis indicates an important role for FABP5 and putative novel FABPs on a Western-type diet. J Lipid Res 47(10):2198-207. [PubMed: 16885566]  [MGI Ref ID J:116502]

Holdt LM; Thiery J; Breslow JL; Teupser D. 2008. Increased ADAM17 mRNA expression and activity is associated with atherosclerosis resistance in LDL-receptor deficient mice. Arterioscler Thromb Vasc Biol 28(6):1097-103. [PubMed: 18356551]  [MGI Ref ID J:149028]

Hu C; Dandapat A; Sun L; Chen J; Marwali MR; Romeo F; Sawamura T; Mehta JL. 2008. LOX-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-density lipoprotein receptor knockout mice fed a high-cholesterol diet. Cardiovasc Res 79(2):287-93. [PubMed: 18453637]  [MGI Ref ID J:161897]

Hu L; Boesten LS; May P; Herz J; Bovenschen N; Huisman MV; Berbee JF; Havekes LM; van Vlijmen BJ; Tamsma JT. 2006. Macrophage low-density lipoprotein receptor-related protein deficiency enhances atherosclerosis in ApoE/LDLR double knockout mice. Arterioscler Thromb Vasc Biol 26(12):2710-5. [PubMed: 17038633]  [MGI Ref ID J:129557]

Hu L; van der Hoogt CC; Espirito Santo SM; Out R; Kypreos KE; van Vlijmen BJ; Van Berkel TJ; Romijn JA; Havekes LM; van Dijk KW; Rensen PC. 2008. The hepatic uptake of VLDL in lrp-ldlr-/-vldlr-/- mice is regulated by LPL activity and involves proteoglycans and SR-BI. J Lipid Res 49(7):1553-61. [PubMed: 18367731]  [MGI Ref ID J:138462]

Huang F; Thompson JC; Wilson PG; Aung HH; Rutledge JC; Tannock LR. 2008. Angiotensin II increases vascular proteoglycan content preceding and contributing to atherosclerosis development. J Lipid Res 49(3):521-30. [PubMed: 18033753]  [MGI Ref ID J:133289]

Huang Y; Liu XQ; Rall SC Jr; Taylor JM; von Eckardstein A; Assmann G; Mahley RW. 1998. Overexpression and accumulation of apolipoprotein E as a cause of hypertriglyceridemia. J Biol Chem 273(41):26388-93. [PubMed: 9756870]  [MGI Ref ID J:115206]

Huang Y; Rall SC Jr; Mahley RW. 1997. Genetic factors precipitating type III hyperlipoproteinemia in hypolipidemic transgenic mice expressing human apolipoprotein E2. Arterioscler Thromb Vasc Biol 17(11):2817-24. [PubMed: 9409260]  [MGI Ref ID J:45728]

Hui Y; Ricciotti E; Crichton I; Yu Z; Wang D; Stubbe J; Wang M; Pure E; FitzGerald GA. 2010. Targeted deletions of cyclooxygenase-2 and atherogenesis in mice. Circulation 121(24):2654-60. [PubMed: 20530000]  [MGI Ref ID J:178670]

Huszar D; Varban ML; Rinninger F; Feeley R; Arai T; Fairchild-Huntress V; Donovan MJ; Tall AR. 2000. Increased LDL cholesterol and atherosclerosis in LDL receptor-deficient mice with attenuated expression of scavenger receptor B1. Arterioscler Thromb Vasc Biol 20(4):1068-73. [PubMed: 10764675]  [MGI Ref ID J:62371]

Igbavboa U; Avdulov NA; Chochina SV; Wood WG. 1997. Transbilayer distribution of cholesterol is modified in brain synaptic plasma membranes of knockout mice deficient in the low-density lipoprotein receptor, apolipoprotein E, or both proteins. J Neurochem 69(4):1661-7. [PubMed: 9326295]  [MGI Ref ID J:43043]

Iqbal J; Rudel LL; Hussain MM. 2008. Microsomal triglyceride transfer protein enhances cellular cholesteryl esterification by relieving product inhibition. J Biol Chem 283(29):19967-80. [PubMed: 18502767]  [MGI Ref ID J:138737]

Ishibashi S; Goldstein JL; Brown MS; Herz J; Burns DK. 1994. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93(5):1885-93. [PubMed: 8182121]  [MGI Ref ID J:77012]

Ishibashi S; Hammer RE; Herz J. 1994. Asialoglycoprotein receptor deficiency in mice lacking the minor receptor subunit. J Biol Chem 269(45):27803-6. [PubMed: 7961705]  [MGI Ref ID J:21380]

Ishibashi S; Herz J; Maeda N; Goldstein JL; Brown MS. 1994. The two-receptor model of lipoprotein clearance: tests of the hypothesis in knockout mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc Natl Acad Sci U S A 91(10):4431-5. [PubMed: 8183926]  [MGI Ref ID J:18138]

Ishibashi S; Perrey S; Chen Z; Osuga Ji; Shimada M; Ohashi K; Harada K; Yazaki Y; Yamada N. 1996. Role of the low density lipoprotein (LDL) receptor pathway in the metabolism of chylomicron remnants. A quantitative study in knockout mice lacking the LDL receptor, apolipoprotein E, or both. J Biol Chem 271(37):22422-7. [PubMed: 8798405]  [MGI Ref ID J:35377]

Ishikawa K; Sugawara D; Wang Xp; Suzuki K; Itabe H; Maruyama Y; Lusis AJ. 2001. Heme oxygenase-1 inhibits atherosclerotic lesion formation in ldl-receptor knockout mice. Circ Res 88(5):506-12. [PubMed: 11249874]  [MGI Ref ID J:115392]

Iwaki T; Donahue DL; Castellino FJ. 2007. High levels of LDL-cholesterol rescue the neonatal mortality associated with afibrinogenemia in mice. J Thromb Haemost 5(3):624-6. [PubMed: 17155952]  [MGI Ref ID J:135942]

Iwaki T; Sandoval-Cooper MJ; Brechmann M; Ploplis VA; Castellino FJ. 2006. A fibrinogen deficiency accelerates the initiation of LDL cholesterol-driven atherosclerosis via thrombin generation and platelet activation in genetically predisposed mice. Blood 107(10):3883-91. [PubMed: 16434491]  [MGI Ref ID J:132734]

Jagavelu K; Tietge UJ; Gaestel M; Drexler H; Schieffer B; Bavendiek U. 2007. Systemic deficiency of the MAP kinase-activated protein kinase 2 reduces atherosclerosis in hypercholesterolemic mice. Circ Res 101(11):1104-12. [PubMed: 17885219]  [MGI Ref ID J:142788]

Jeong Ts; Schissel SL; Tabas I; Pownall HJ; Tall AR; Jiang X. 1998. Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. J Clin Invest 101(4):905-12. [PubMed: 9466986]  [MGI Ref ID J:46009]

Jiang XC; Qin S; Qiao C; Kawano K; Lin M; Skold A; Xiao X; Tall AR. 2001. Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency. Nat Med 7(7):847-52. [PubMed: 11433351]  [MGI Ref ID J:70250]

Jiang XC; Tall AR; Qin S; Lin M; Schneider M; Lalanne F; Deckert V; Desrumaux C; Athias A; Witztum JL; Lagrost L. 2002. Phospholipid transfer protein deficiency protects circulating lipoproteins from oxidation due to the enhanced accumulation of vitamin E. J Biol Chem 277(35):31850-6. [PubMed: 12105225]  [MGI Ref ID J:120468]

Johansson F; Kramer F; Barnhart S; Kanter JE; Vaisar T; Merrill RD; Geng L; Oka K; Chan L; Chait A; Heinecke JW; Bornfeldt KE. 2008. Type 1 diabetes promotes disruption of advanced atherosclerotic lesions in LDL receptor-deficient mice. Proc Natl Acad Sci U S A 105(6):2082-7. [PubMed: 18252823]  [MGI Ref ID J:143961]

Johnson LA; Altenburg MK; Walzem RL; Scanga LT; Maeda N. 2008. Absence of hyperlipidemia in LDL receptor-deficient mice having apolipoprotein B100 without the putative receptor-binding sequences. Arterioscler Thromb Vasc Biol 28(10):1745-52. [PubMed: 18617647]  [MGI Ref ID J:159802]

Johnson LA; Arbones-Mainar JM; Fox RG; Pendse AA; Altenburg MK; Kim HS; Maeda N. 2011. Apolipoprotein E4 exaggerates diabetic dyslipidemia and atherosclerosis in mice lacking the LDL receptor. Diabetes 60(9):2285-94. [PubMed: 21810592]  [MGI Ref ID J:189275]

Johnson LA; Olsen RH; Merkens LS; DeBarber A; Steiner RD; Sullivan PM; Maeda N; Raber J. 2014. Apolipoprotein E-low density lipoprotein receptor interaction affects spatial memory retention and brain ApoE levels in an isoform-dependent manner. Neurobiol Dis 64:150-62. [PubMed: 24412220]  [MGI Ref ID J:211613]

Jones C; Garuti R; Michaely P; Li WP; Maeda N; Cohen JC; Herz J; Hobbs HH. 2007. Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia. J Clin Invest 117(1):165-74. [PubMed: 17200716]  [MGI Ref ID J:117439]

Jones C; Hammer RE; Li WP; Cohen JC; Hobbs HH; Herz J. 2003. Normal sorting but defective endocytosis of the low density lipoprotein receptor in mice with autosomal recessive hypercholesterolemia. J Biol Chem 278(31):29024-30. [PubMed: 12746448]  [MGI Ref ID J:84694]

Jong MC; Dahlmans VE; van Gorp PJ; van Dijk KW; Breuer ML; Hofker MH; Havekes LM. 1996. In the absence of the low density lipoprotein receptor, human apolipoprotein C1 overexpression in transgenic mice inhibits the hepatic uptake of very low density lipoproteins via a receptor-associated protein-sensitive pathway. J Clin Invest 98(10):2259-67. [PubMed: 8941642]  [MGI Ref ID J:65146]

Joseph SB; McKilligin E; Pei L; Watson MA; Collins AR; Laffitte BA; Chen M; Noh G; Goodman J; Hagger GN; Tran J; Tippin TK; Wang X; Lusis AJ; Hsueh WA; Law RE; Collins JL; Willson TM; Tontonoz P. 2002. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A 99(11):7604-9. [PubMed: 12032330]  [MGI Ref ID J:76860]

Joyce CW; Wagner EM; Basso F; Amar MJ; Freeman LA; Shamburek RD; Knapper CL; Syed J; Wu J; Vaisman BL; Fruchart-Najib J; Billings EM; Paigen B; Remaley AT; Santamarina-Fojo S; Brewer HB Jr. 2006. ABCA1 overexpression in the liver of LDLr-KO mice leads to accumulation of pro-atherogenic lipoproteins and enhanced atherosclerosis. J Biol Chem 281(44):33053-65. [PubMed: 16928680]  [MGI Ref ID J:117282]

Kadl A; Meher AK; Sharma PR; Lee MY; Doran AC; Johnstone SR; Elliott MR; Gruber F; Han J; Chen W; Kensler T; Ravichandran KS; Isakson BE; Wamhoff BR; Leitinger N. 2010. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107(6):737-46. [PubMed: 20651288]  [MGI Ref ID J:175024]

Kanter JE; Kramer F; Barnhart S; Averill MM; Vivekanandan-Giri A; Vickery T; Li LO; Becker L; Yuan W; Chait A; Braun KR; Potter-Perigo S; Sanda S; Wight TN; Pennathur S; Serhan CN; Heinecke JW; Coleman RA; Bornfeldt KE. 2012. Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc Natl Acad Sci U S A 109(12):E715-24. [PubMed: 22308341]  [MGI Ref ID J:182631]

Kanter JE; Tang C; Oram JF; Bornfeldt KE. 2012. Acyl-CoA synthetase 1 is required for oleate and linoleate mediated inhibition of cholesterol efflux through ATP-binding cassette transporter A1 in macrophages. Biochim Biophys Acta 1821(3):358-64. [PubMed: 22020260]  [MGI Ref ID J:182368]

Kanters E; Gijbels MJ; van der Made I; Vergouwe MN; Heeringa P; Kraal G; Hofker MH; de Winther MP. 2004. Hematopoietic NF-kappaB1 deficiency results in small atherosclerotic lesions with an inflammatory phenotype. Blood 103(3):934-40. [PubMed: 14512319]  [MGI Ref ID J:87639]

Kanters E; Pasparakis M; Gijbels MJ; Vergouwe MN; Partouns-Hendriks I; Fijneman RJ; Clausen BE; Forster I; Kockx MM; Rajewsky K; Kraal G; Hofker MH; de Winther MP. 2003. Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest 112(8):1176-85. [PubMed: 14561702]  [MGI Ref ID J:86163]

Karagiannides I; Abdou R; Tzortzopoulou A; Voshol PJ; Kypreos KE. 2008. Apolipoprotein E predisposes to obesity and related metabolic dysfunctions in mice. FEBS J 275(19):4796-809. [PubMed: 18754772]  [MGI Ref ID J:142460]

Karasawa T; Takahashi A; Saito R; Sekiya M; Igarashi M; Iwasaki H; Miyahara S; Koyasu S; Nakagawa Y; Ishii K; Matsuzaka T; Kobayashi K; Yahagi N; Takekoshi K; Sone H; Yatoh S; Suzuki H; Yamada N; Shimano H. 2011. Sterol regulatory element-binding protein-1 determines plasma remnant lipoproteins and accelerates atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 31(8):1788-95. [PubMed: 21546605]  [MGI Ref ID J:191862]

Karavia EA; Papachristou DJ; Kotsikogianni I; Giopanou I; Kypreos KE. 2011. Deficiency in apolipoprotein E has a protective effect on diet-induced nonalcoholic fatty liver disease in mice. FEBS J 278(17):3119-29. [PubMed: 21740524]  [MGI Ref ID J:190789]

Kassel KM; Sullivan BP; Cui W; Copple BL; Luyendyk JP. 2012. Therapeutic administration of the direct thrombin inhibitor argatroban reduces hepatic inflammation in mice with established Fatty liver disease. Am J Pathol 181(4):1287-95. [PubMed: 22841818]  [MGI Ref ID J:188704]

Kassim SH; Li H; Vandenberghe LH; Hinderer C; Bell P; Marchadier D; Wilson A; Cromley D; Redon V; Yu H; Wilson JM; Rader DJ. 2010. Gene therapy in a humanized mouse model of familial hypercholesterolemia leads to marked regression of atherosclerosis. PLoS One 5(10):e13424. [PubMed: 20976059]  [MGI Ref ID J:166224]

Katsouri L; Georgopoulos S. 2011. Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer's disease mouse model. PLoS One 6(7):e21880. [PubMed: 21755005]  [MGI Ref ID J:174945]

Kaufmann BA; Carr CL; Belcik JT; Xie A; Yue Q; Chadderdon S; Caplan ES; Khangura J; Bullens S; Bunting S; Lindner JR. 2010. Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease. Arterioscler Thromb Vasc Biol 30(1):54-9. [PubMed: 19834105]  [MGI Ref ID J:171802]

Kawashiri Ma; Zhang Y; Usher D; Reilly M; Pure E; Rader DJ. 2001. Effects of coexpression of the LDL receptor and apoE on cholesterol metabolism and atherosclerosis in LDL receptor-deficient mice. J Lipid Res 42(6):943-50. [PubMed: 11369802]  [MGI Ref ID J:69834]

Kennedy A; Gruen ML; Gutierrez DA; Surmi BK; Orr JS; Webb CD; Hasty AH. 2012. Impact of macrophage inflammatory protein-1alpha deficiency on atherosclerotic lesion formation, hepatic steatosis, and adipose tissue expansion. PLoS One 7(2):e31508. [PubMed: 22359597]  [MGI Ref ID J:185223]

Kennedy DJ; Kuchibhotla S; Westfall KM; Silverstein RL; Morton RE; Febbraio M. 2011. A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovasc Res 89(3):604-13. [PubMed: 21088116]  [MGI Ref ID J:186882]

Kennedy DJ; Kuchibhotla SD; Guy E; Park YM; Nimako G; Vanegas D; Morton RE; Febbraio M. 2009. Dietary cholesterol plays a role in CD36-mediated atherogenesis in LDLR-knockout mice. Arterioscler Thromb Vasc Biol 29(10):1481-7. [PubMed: 19608973]  [MGI Ref ID J:167807]

Keren P; George J; Shaish A; Levkovitz H; Janakovic Z; Afek A; Goldberg I; Kopolovic J; Keren G; Harats D. 2000. Effect of hyperglycemia and hyperlipidemia on atherosclerosis in LDL receptor-deficient mice: establishment of a combined model and association with heat shock protein 65 immunity. Diabetes 49(6):1064-9. [PubMed: 10866061]  [MGI Ref ID J:62295]

Khan OM; Akula MK; Skalen K; Karlsson C; Stahlman M; Young SG; Boren J; Bergo MO. 2013. Targeting GGTase-I activates RHOA, increases macrophage reverse cholesterol transport, and reduces atherosclerosis in mice. Circulation 127(7):782-90. [PubMed: 23334894]  [MGI Ref ID J:210275]

Kim HS; Ullevig SL; Zamora D; Lee CF; Asmis R. 2012. Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment. Proc Natl Acad Sci U S A 109(41):E2803-12. [PubMed: 22991462]  [MGI Ref ID J:190103]

King LM; Francomano CA. 2001. Characterization of a human gene encoding nucleosomal binding protein nsbp1. Genomics 71(2):163-73. [PubMed: 11161810]  [MGI Ref ID J:67578]

King VL; Cassis LA; Daugherty A. 2007. Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. Am J Pathol 171(6):2040-7. [PubMed: 18055554]  [MGI Ref ID J:128948]

King VL; Szilvassy SJ; Daugherty A. 2002. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor-/- mice. Arterioscler Thromb Vasc Biol 22(3):456-61. [PubMed: 11884290]  [MGI Ref ID J:103308]

King VL; Szilvassy SJ; Daugherty A. 2002. Interleukin-4 deficiency promotes gallstone formation. J Lipid Res 43(5):768-71. [PubMed: 11971948]  [MGI Ref ID J:76258]

Kinnunen K; Heinonen SE; Kalesnykas G; Laidinen S; Uusitalo-Jarvinen H; Uusitalo H; Yla-Herttuala S. 2013. LDLR-/-ApoB100/100 mice with insulin-like growth factor II overexpression reveal a novel form of retinopathy with photoreceptor atrophy and altered morphology of the retina. Mol Vis 19:1723-33. [PubMed: 23922490]  [MGI Ref ID J:205300]

Kitamoto S; Sukhova GK; Sun J; Yang M; Libby P; Love V; Duramad P; Sun C; Zhang Y; Yang X; Peters C; Shi GP. 2007. Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation 115(15):2065-75. [PubMed: 17404153]  [MGI Ref ID J:135371]

Kjolby M; Andersen OM; Breiderhoff T; Fjorback AW; Pedersen KM; Madsen P; Jansen P; Heeren J; Willnow TE; Nykjaer A. 2010. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab 12(3):213-23. [PubMed: 20816088]  [MGI Ref ID J:166369]

Klingenberg R; Gerdes N; Badeau RM; Gistera A; Strodthoff D; Ketelhuth DF; Lundberg AM; Rudling M; Nilsson SK; Olivecrona G; Zoller S; Lohmann C; Luscher TF; Jauhiainen M; Sparwasser T; Hansson GK. 2013. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J Clin Invest 123(3):1323-34. [PubMed: 23426179]  [MGI Ref ID J:196393]

Knouff C; Briand O; Lestavel S; Clavey V; Altenburg M; Maeda N. 2004. Defective VLDL metabolism and severe atherosclerosis in mice expressing human apolipoprotein E isoforms but lacking the LDL receptor. Biochim Biophys Acta 1684(1-3):8-17. [PubMed: 15450205]  [MGI Ref ID J:92554]

Ko KW; Paul A; Ma K; Li L; Chan L. 2005. Endothelial lipase modulates HDL but has no effect on atherosclerosis development in apoE-/- and LDLR-/- mice. J Lipid Res 46(12):2586-94. [PubMed: 16199802]  [MGI Ref ID J:106132]

Kobayashi K; Oka K; Forte T; Ishida B; Teng B; Ishimura-Oka K; Nakamuta M; Chan L. 1996. Reversal of hypercholesterolemia in low density lipoprotein receptor knockout mice by adenovirus-mediated gene transfer of the very low density lipoprotein receptor. J Biol Chem 271(12):6852-60. [PubMed: 8636110]  [MGI Ref ID J:32102]

Kovacs A; Tornvall P; Nilsson R; Tegner J; Hamsten A; Bjorkegren J. 2007. Human C-reactive protein slows atherosclerosis development in a mouse model with human-like hypercholesterolemia. Proc Natl Acad Sci U S A 104(34):13768-73. [PubMed: 17702862]  [MGI Ref ID J:124095]

Koya T; Miyazaki T; Watanabe T; Shichiri M; Atsumi T; Kim-Kaneyama JR; Miyazaki A. 2012. Salusin-beta accelerates inflammatory responses in vascular endothelial cells via NF-kappaB signaling in LDL receptor-deficient mice in vivo and HUVECs in vitro. Am J Physiol Heart Circ Physiol 303(1):H96-105. [PubMed: 22561298]  [MGI Ref ID J:189056]

Kozarsky KF; Donahee MH; Glick JM; Krieger M; Rader DJ. 2000. Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol 20(3):721-7. [PubMed: 10712397]  [MGI Ref ID J:61288]

Kraemer FB; Shen WJ; Patel S; Osuga J; Ishibashi S; Azhar S. 2007. The LDL receptor is not necessary for acute adrenal steroidogenesis in mouse adrenocortical cells. Am J Physiol Endocrinol Metab 292(2):E408-12. [PubMed: 16985254]  [MGI Ref ID J:143674]

Krishna SM; Seto SW; Moxon JV; Rush C; Walker PJ; Norman PE; Golledge J. 2012. Fenofibrate increases high-density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model. Am J Pathol 181(2):706-18. [PubMed: 22698985]  [MGI Ref ID J:186431]

Kruit JK; Kremer PH; Dai L; Tang R; Ruddle P; de Haan W; Brunham LR; Verchere CB; Hayden MR. 2010. Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice. Diabetologia 53(6):1110-9. [PubMed: 20229095]  [MGI Ref ID J:159879]

Kubo N; Boisvert WA; Ballantyne CM; Curtiss LK. 2000. Leukocyte CD11b expression is not essential for the development of atherosclerosis in mice J Lipid Res 41(7):1060-6. [PubMed: 10884286]  [MGI Ref ID J:63447]

Kulinski A; Rustaeus S; Vance JE. 2002. Microsomal Triacylglycerol Transfer Protein Is Required for Lumenal Accretion of Triacylglycerol Not Associated with ApoB, as Well as for ApoB Lipidation. J Biol Chem 277(35):31516-25. [PubMed: 12072432]  [MGI Ref ID J:78774]

Kumar AP; Piedrafita FJ; Reynolds WF. 2004. Peroxisome proliferator-activated receptor gamma ligands regulate myeloperoxidase expression in macrophages by an estrogen-dependent mechanism involving the -463GA promoter polymorphism. J Biol Chem 279(9):8300-15. [PubMed: 14668325]  [MGI Ref ID J:130052]

Kunjathoor VV; Chiu DS; O'Brien KD; LeBoeuf RC. 2002. Accumulation of biglycan and perlecan, but not versican, in lesions of murine models of atherosclerosis. Arterioscler Thromb Vasc Biol 22(3):462-8. [PubMed: 11884291]  [MGI Ref ID J:103309]

Kwak BR; Veillard N; Pelli G; Mulhaupt F; James RW; Chanson M; Mach F. 2003. Reduced connexin43 expression inhibits atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice. Circulation 107(7):1033-9. [PubMed: 12600918]  [MGI Ref ID J:103052]

Kypreos KE; Li X; van Dijk KW; Havekes LM; Zannis VI. 2003. Molecular mechanisms of type III hyperlipoproteinemia: The contribution of the carboxy-terminal domain of ApoE can account for the dyslipidemia that is associated with the E2/E2 phenotype. Biochemistry 42(33):9841-53. [PubMed: 12924933]  [MGI Ref ID J:115687]

Kypreos KE; Zannis VI. 2006. LDL receptor deficiency or apoE mutations prevent remnant clearance and induce hypertriglyceridemia in mice. J Lipid Res 47(3):521-9. [PubMed: 16339113]  [MGI Ref ID J:107556]

Lagace TA; Curtis DE; Garuti R; McNutt MC; Park SW; Prather HB; Anderson NN; Ho YK; Hammer RE; Horton JD. 2006. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and inlivers of parabiotic mice. J Clin Invest 116(11):2995-3005. [PubMed: 17080197]  [MGI Ref ID J:114949]

Lai CF; Seshadri V; Huang K; Shao JS; Cai J; Vattikuti R; Schumacher A; Loewy AP; Denhardt DT; Rittling SR; Towler DA. 2006. An osteopontin-NADPH oxidase signaling cascade promotes pro-matrix metalloproteinase 9 activation in aortic mesenchymal cells. Circ Res 98(12):1479-89. [PubMed: 16709900]  [MGI Ref ID J:122625]

Lambert G; Jarnoux AL; Pineau T; Pape O; Chetiveaux M; Laboisse C; Krempf M; Costet P. 2006. Fasting induces hyperlipidemia in mice overexpressing proprotein convertase subtilisin kexin type 9: lack of modulation of very-low-density lipoprotein hepatic output by the low-density lipoprotein receptor. Endocrinology 147(10):4985-95. [PubMed: 16794006]  [MGI Ref ID J:129548]

Lamharzi N; Renard CB; Kramer F; Pennathur S; Heinecke JW; Chait A; Bornfeldt KE. 2004. Hyperlipidemia in concert with hyperglycemia stimulates the proliferation of macrophages in atherosclerotic lesions: potential role of glucose-oxidized LDL. Diabetes 53(12):3217-25. [PubMed: 15561953]  [MGI Ref ID J:94609]

Lammers B; Chandak PG; Aflaki E; Van Puijvelde GH; Radovic B; Hildebrand RB; Meurs I; Out R; Kuiper J; Van Berkel TJ; Kolb D; Haemmerle G; Zechner R; Levak-Frank S; Van Eck M; Kratky D. 2011. Macrophage adipose triglyceride lipase deficiency attenuates atherosclerotic lesion development in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 31(1):67-73. [PubMed: 21030715]  [MGI Ref ID J:184190]

Lammers B; Zhao Y; Foks AC; Hildebrand RB; Kuiper J; Van Berkel TJ; Van Eck M. 2012. Leukocyte ABCA1 remains atheroprotective in splenectomized LDL receptor knockout mice. PLoS One 7(10):e48080. [PubMed: 23133551]  [MGI Ref ID J:192253]

Lammers B; Zhao Y; Hoekstra M; Hildebrand RB; Ye D; Meurs I; Van Berkel TJ; Van Eck M. 2011. Augmented atherogenesis in LDL receptor deficient mice lacking both macrophage ABCA1 and ApoE. PLoS One 6(10):e26095. [PubMed: 22022523]  [MGI Ref ID J:178098]

Lampropoulou A; Zannis VI; Kypreos KE. 2012. Pharmacodynamic and pharmacokinetic analysis of apoE4 [L261A, W264A, F265A, L268A, V269A], a recombinant apolipoprotein E variant with improved biological properties. Biochem Pharmacol 84(11):1451-8. [PubMed: 22985620]  [MGI Ref ID J:193572]

Langheinrich AC; Michniewicz A; Sedding DG; Walker G; Beighley PE; Rau WS; Bohle RM; Ritman EL. 2006. Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E(-/-)/low-density lipoprotein(-/-) double knockout mice. Arterioscler Thromb Vasc Biol 26(2):347-52. [PubMed: 16293797]  [MGI Ref ID J:127960]

Larsson SL; Skogsberg J; Bjorkegren J. 2004. The low density lipoprotein receptor prevents secretion of dense apoB100-containing lipoproteins from the liver. J Biol Chem 279(2):831-6. [PubMed: 14583618]  [MGI Ref ID J:124544]

Laurila A; Cole SP; Merat S; Obonyo M; Palinski W; Fierer J; Witztum JL. 2001. High-fat, high-cholesterol diet increases the incidence of gastritis in LDL receptor-negative mice. Arterioscler Thromb Vasc Biol 21(6):991-6. [PubMed: 11397709]  [MGI Ref ID J:103300]

Lauring B; Taggart AK; Tata JR; Dunbar R; Caro L; Cheng K; Chin J; Colletti SL; Cote J; Khalilieh S; Liu J; Luo WL; Maclean AA; Peterson LB; Polis AB; Sirah W; Wu TJ; Liu X; Jin L; Wu K; Boatman PD; Semple G; Behan DP; Connolly DT; Lai E; Wagner JA; Wright SD; Cuffie C; Mitchel YB; Rader DJ; Paolini JF; Waters MG; Plump A. 2012. Niacin Lipid Efficacy Is Independent of Both the Niacin Receptor GPR109A and Free Fatty Acid Suppression. Sci Transl Med 4(148):148ra115. [PubMed: 22914621]  [MGI Ref ID J:187220]

Lee CH; Chawla A; Urbiztondo N; Liao D; Boisvert WA; Evans RM; Curtiss LK. 2003. Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 302(5644):453-7. [PubMed: 12970571]  [MGI Ref ID J:122915]

Lee EC; Desai U; Gololobov G; Hong S; Feng X; Yu XC; Gay J; Wilganowski N; Gao C; Du LL; Chen J; Hu Y; Zhao S; Kirkpatrick L; Schneider M; Zambrowicz BP; Landes G; Powell DR; Sonnenburg WK. 2009. Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). J Biol Chem 284(20):13735-45. [PubMed: 19318355]  [MGI Ref ID J:149912]

Lee RG; Kelley KL; Sawyer JK; Farese RV Jr; Parks JS; Rudel LL. 2004. Plasma cholesteryl esters provided by lecithin:cholesterol acyltransferase and acyl-coenzyme a:cholesterol acyltransferase 2 have opposite atherosclerotic potential. Circ Res 95(10):998-1004. [PubMed: 15486318]  [MGI Ref ID J:103854]

Lee RG; Shah R; Sawyer JK; Hamilton RL; Parks JS; Rudel LL. 2005. ACAT2 contributes cholesteryl esters to newly secreted VLDL, whereas LCAT adds cholesteryl ester to LDL in mice. J Lipid Res 46(6):1205-12. [PubMed: 15805543]  [MGI Ref ID J:128885]

Lee SJ; Grosskopf I; Choi SY; Cooper AD. 2004. Chylomicron remnant uptake in the livers of mice expressing human apolipoproteins E3, E2 (Arg158->Cys), and E3-Leiden. J Lipid Res 45(12):2199-210. [PubMed: 15466367]  [MGI Ref ID J:94176]

Leppanen P; Koota S; Kholova I; Koponen J; Fieber C; Eriksson U; Alitalo K; Yla-Herttuala S. 2005. Gene transfers of vascular endothelial growth factor-A, vascular endothelial growth factor-B, vascular endothelial growth factor-C, and vascular endothelial growth factor-D have no effects on atherosclerosis in hypercholesterolemic low-density lipoprotein-receptor/apolipoprotein B48-deficient mice. Circulation 112(9):1347-52. [PubMed: 16129816]  [MGI Ref ID J:118230]

Leung VW; Yun S; Botto M; Mason JC; Malik TH; Song W; Paixao-Cavalcante D; Pickering MC; Boyle JJ; Haskard DO. 2009. Decay-accelerating factor suppresses complement C3 activation and retards atherosclerosis in low-density lipoprotein receptor-deficient mice. Am J Pathol 175(4):1757-67. [PubMed: 19729477]  [MGI Ref ID J:153060]

Levin MC; Jirholt P; Wramstedt A; Johansson ME; Lundberg AM; Trajkovska MG; Stahlman M; Fogelstrand P; Brisslert M; Fogelstrand L; Yan ZQ; Hansson GK; Bjorkbacka H; Olofsson SO; Boren J. 2011. Rip2 deficiency leads to increased atherosclerosis despite decreased inflammation. Circ Res 109(11):1210-8. [PubMed: 21959219]  [MGI Ref ID J:196562]

Lewis MJ; Malik TH; Ehrenstein MR; Boyle JJ; Botto M; Haskard DO. 2009. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 120(5):417-26. [PubMed: 19620499]  [MGI Ref ID J:166420]

Li AC; Brown KK; Silvestre MJ; Willson TM; Palinski W; Glass CK. 2000. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 106(4):523-31. [PubMed: 10953027]  [MGI Ref ID J:64040]

Li L; Hossain MA; Sadat S; Hager L; Liu L; Tam L; Schroer S; Huogen L; Fantus IG; Connelly PW; Woo M; Ng DS. 2011. Lecithin Cholesterol Acyltransferase Null Mice Are Protected from Diet-induced Obesity and Insulin Resistance in a Gender-specific Manner through Multiple Pathways. J Biol Chem 286(20):17809-20. [PubMed: 21454561]  [MGI Ref ID J:172680]

Li L; Naples M; Song H; Yuan R; Ye F; Shafi S; Adeli K; Ng DS. 2007. LCAT-null mice develop improved hepatic insulin sensitivity through altered regulation of transcription factors and suppressors of cytokine signaling. Am J Physiol Endocrinol Metab 293(2):E587-94. [PubMed: 17551001]  [MGI Ref ID J:123371]

Li L; Thompson PA; Kitchens RL. 2008. Infection induces a positive acute phase apolipoprotein E response from a negative acute phase gene: role of hepatic LDL receptors. J Lipid Res 49(8):1782-93. [PubMed: 18497424]  [MGI Ref ID J:138430]

Li R; Mittelstein D; Kam W; Pakbin P; Du Y; Tintut Y; Navab M; Sioutas C; Hsiai T. 2013. Atmospheric ultrafine particles promote vascular calcification via the NF-kappaB signaling pathway. Am J Physiol Cell Physiol 304(4):C362-9. [PubMed: 23242187]  [MGI Ref ID J:194848]

Li S; Sun Y; Liang CP; Thorp EB; Han S; Jehle AW; Saraswathi V; Pridgen B; Kanter JE; Li R; Welch CL; Hasty AH; Bornfeldt KE; Breslow JL; Tabas I; Tall AR. 2009. Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet. Circ Res 105(11):1072-82. [PubMed: 19834009]  [MGI Ref ID J:170144]

Li Y; Xu S; Mihaylova MM; Zheng B; Hou X; Jiang B; Park O; Luo Z; Lefai E; Shyy JY; Gao B; Wierzbicki M; Verbeuren TJ; Shaw RJ; Cohen RA; Zang M. 2011. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13(4):376-88. [PubMed: 21459323]  [MGI Ref ID J:172248]

Li Z; Basterr MJ; Hailemariam TK; Hojjati MR; Lu S; Liu J; Liu R; Zhou H; Jiang XC. 2005. The effect of dietary sphingolipids on plasma sphingomyelin metabolism and atherosclerosis. Biochim Biophys Acta 1735(2):130-4. [PubMed: 15967715]  [MGI Ref ID J:124540]

Liang CP; Han S; Li G; Tabas I; Tall AR. 2012. Impaired MEK signaling and SERCA expression promote ER stress and apoptosis in insulin-resistant macrophages and are reversed by exenatide treatment. Diabetes 61(10):2609-20. [PubMed: 22751695]  [MGI Ref ID J:208519]

Liao X; Sluimer JC; Wang Y; Subramanian M; Brown K; Pattison JS; Robbins J; Martinez J; Tabas I. 2012. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 15(4):545-53. [PubMed: 22445600]  [MGI Ref ID J:184210]

Lichtman AH; Clinton SK; Iiyama K; Connelly PW; Libby P; Cybulsky MI. 1999. Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semipurified diets with and without cholate. Arterioscler Thromb Vasc Biol 19(8):1938-44. [PubMed: 10446074]  [MGI Ref ID J:129810]

Lie J; Moerland M; van Gent T; van Haperen R; Scheek L; Sadeghi-Niaraki F; de Crom R; van Tol A. 2006. Sex differences in atherosclerosis in mice with elevated phospholipid transfer protein activity are related to decreased plasma high density lipoproteins and not to increased production of triglycerides. Biochim Biophys Acta 1761(9):1070-7. [PubMed: 16935026]  [MGI Ref ID J:116584]

Lie J; de Crom R; van Gent T; van Haperen R; Scheek L; Sadeghi-Niaraki F; van Tol A. 2004. Elevation of plasma phospholipid transfer protein increases the risk of atherosclerosis despite lower apolipoprotein B-containing lipoproteins. J Lipid Res 45(5):805-11. [PubMed: 14993244]  [MGI Ref ID J:89308]

Lieu HD; Withycombe SK; Walker Q; Rong JX; Walzem RL; Wong JS; Hamilton RL; Fisher EA; Young SG. 2003. Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation 107(9):1315-21. [PubMed: 12628954]  [MGI Ref ID J:91722]

Lightle S; Tosheva R; Lee A; Queen-Baker J; Boyanovsky B; Shedlofsky S; Nikolova-Karakashian M. 2003. Elevation of ceramide in serum lipoproteins during acute phase response in humans and mice: role of serine-palmitoyl transferase. Arch Biochem Biophys 419(2):120-8. [PubMed: 14592455]  [MGI Ref ID J:113578]

Lillis AP; Greenlee MC; Mikhailenko I; Pizzo SV; Tenner AJ; Strickland DK; Bohlson SS. 2008. Murine low-density lipoprotein receptor-related protein 1 (LRP) is required for phagocytosis of targets bearing LRP ligands but is not required for C1q-triggered enhancement of phagocytosis. J Immunol 181(1):364-73. [PubMed: 18566402]  [MGI Ref ID J:137404]

Lim H; Kim YU; Sun H; Lee JH; Reynolds JM; Hanabuchi S; Wu H; Teng BB; Chung Y. 2014. Proatherogenic conditions promote autoimmune T helper 17 cell responses in vivo. Immunity 40(1):153-65. [PubMed: 24412615]  [MGI Ref ID J:209392]

Lim HY; Thiam CH; Yeo KP; Bisoendial R; Hii CS; McGrath KC; Tan KW; Heather A; Alexander JS; Angeli V. 2013. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab 17(5):671-84. [PubMed: 23663736]  [MGI Ref ID J:199273]

Lim RS; Suhalim JL; Miyazaki-Anzai S; Miyazaki M; Levi M; Potma EO; Tromberg BJ. 2011. Identification of cholesterol crystals in plaques of atherosclerotic mice using hyperspectral CARS imaging. J Lipid Res 52(12):2177-86. [PubMed: 21949051]  [MGI Ref ID J:178544]

Lim WS; Timmins JM; Seimon TA; Sadler A; Kolodgie FD; Virmani R; Tabas I. 2008. Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation 117(7):940-51. [PubMed: 18227389]  [MGI Ref ID J:145081]

Lin J; Li H; Yang M; Ren J; Huang Z; Han F; Huang J; Ma J; Zhang D; Zhang Z; Wu J; Huang D; Qiao M; Jin G; Wu Q; Huang Y; Du J; Han J. 2013. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep 3(1):200-10. [PubMed: 23333278]  [MGI Ref ID J:196325]

Lin JZ; Martagon AJ; Hsueh WA; Baxter JD; Gustafsson JA; Webb P; Phillips KJ. 2012. Thyroid hormone receptor agonists reduce serum cholesterol independent of the LDL receptor. Endocrinology 153(12):6136-44. [PubMed: 23087171]  [MGI Ref ID J:192628]

Linton MF; Babaev VR; Gleaves LA; Fazio S. 1999. A direct role for the macrophage low density lipoprotein receptor in atherosclerotic lesion formation. J Biol Chem 274(27):19204-10. [PubMed: 10383427]  [MGI Ref ID J:56080]

Lipinski MJ; Campbell KA; Duong SQ; Welch TJ; Garmey JC; Doran AC; Skaflen MD; Oldham SN; Kelly KA; McNamara CA. 2012. Loss of Id3 increases VCAM-1 expression, macrophage accumulation, and atherogenesis in Ldlr-/- mice. Arterioscler Thromb Vasc Biol 32(12):2855-61. [PubMed: 23042815]  [MGI Ref ID J:208316]

Liu B; Li H; Repa JJ; Turley SD; Dietschy JM. 2008. Genetic variations and treatments that affect the lifespan of the NPC1 mouse. J Lipid Res 49(3):663-9. [PubMed: 18077828]  [MGI Ref ID J:133425]

Liu B; Xie C; Richardson JA; Turley SD; Dietschy JM. 2007. Receptor-mediated and bulk-phase endocytosis cause macrophage and cholesterol accumulation in Niemann-Pick C disease. J Lipid Res 48(8):1710-23. [PubMed: 17476031]  [MGI Ref ID J:123778]

Liu J; Huan C; Chakraborty M; Zhang H; Lu D; Kuo MS; Cao G; Jiang XC. 2009. Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ Res 105(3):295-303. [PubMed: 19590047]  [MGI Ref ID J:164932]

Lloyd DJ; Helmering J; Kaufman SA; Turk J; Silva M; Vasquez S; Weinstein D; Johnston B; Hale C; Veniant MM. 2011. A Volumetric Method for Quantifying Atherosclerosis in Mice by Using MicroCT: Comparison to En Face. PLoS One 6(4):e18800. [PubMed: 21533112]  [MGI Ref ID J:172393]

Lloyd DJ; McCormick J; Helmering J; Kim KW; Wang M; Fordstrom P; Kaufman SA; Lindberg RA; Veniant MM. 2008. Generation and characterization of two novel mouse models exhibiting the phenotypes of the metabolic syndrome: Apob48-/-Lepob/ob mice devoid of ApoE or Ldlr. Am J Physiol Endocrinol Metab 294(3):E496-505. [PubMed: 18160459]  [MGI Ref ID J:133453]

Lo JC; Wang Y; Tumanov AV; Bamji M; Yao Z; Reardon CA; Getz GS; Fu YX. 2007. Lymphotoxin beta receptor-dependent control of lipid homeostasis. Science 316(5822):285-8. [PubMed: 17431181]  [MGI Ref ID J:120962]

Lo Sasso G; Murzilli S; Salvatore L; D'Errico I; Petruzzelli M; Conca P; Jiang ZY; Calabresi L; Parini P; Moschetta A. 2010. Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell Metab 12(2):187-93. [PubMed: 20674863]  [MGI Ref ID J:163075]

Loeffler B; Heeren J; Blaeser M; Radner H; Kayser D; Aydin B; Merkel M. 2007. Lipoprotein lipase-facilitated uptake of LDL is mediated by the LDL receptor. J Lipid Res 48(2):288-98. [PubMed: 17090659]  [MGI Ref ID J:118187]

Loeper S; Asa SL; Ezzat S. 2008. Ikaros modulates cholesterol uptake: a link between tumor suppression and differentiation. Cancer Res 68(10):3715-23. [PubMed: 18483254]  [MGI Ref ID J:135021]

Lowbeer C; Forsberg AM; Tokuno S; Hemdahl AL; Gustafsson SA; Valen G. 2004. Cardiac troponin T content in heart and skeletal muscle and in blood samples from ApoE/LDL receptor double knockout mice. Clin Chim Acta 344(1-2):73-8. [PubMed: 15149873]  [MGI Ref ID J:105262]

Lu H; Boustany-Kari CM; Daugherty A; Cassis LA. 2007. Angiotensin II increases adipose angiotensinogen expression. Am J Physiol Endocrinol Metab 292(5):E1280-7. [PubMed: 17213477]  [MGI Ref ID J:121237]

Lu H; Rateri DL; Feldman DL; Jr RJ; Fukamizu A; Ishida J; Oesterling EG; Cassis LA; Daugherty A. 2008. Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice. J Clin Invest 118(3):984-93. [PubMed: 18274671]  [MGI Ref ID J:135297]

Lu J; Cheng H; Atti E; Shih DM; Demer LL; Tintut Y. 2013. Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice. Biochem Biophys Res Commun 431(1):19-24. [PubMed: 23291186]  [MGI Ref ID J:198076]

Lu X; Xia M; Endresz V; Faludi I; Mundkur L; Gonczol E; Chen D; Kakkar VV. 2012. Immunization with a combination of 2 peptides derived from the C5a receptor significantly reduces early atherosclerotic lesion in Ldlr(tm1Her) Apob(tm2Sgy) J mice. Arterioscler Thromb Vasc Biol 32(10):2358-71. [PubMed: 22837469]  [MGI Ref ID J:207883]

Luchtefeld M; Grothusen C; Gagalick A; Jagavelu K; Schuett H; Tietge UJ; Pabst O; Grote K; Drexler H; Forster R; Schieffer B. 2010. Chemokine receptor 7 knockout attenuates atherosclerotic plaque development. Circulation 122(16):1621-8. [PubMed: 20921438]  [MGI Ref ID J:179485]

Ludewig B; Jaggi M; Dumrese T; Brduscha-Riem K; Odermatt B; Hengartner H; Zinkernagel RM. 2001. Hypercholesterolemia exacerbates virus-induced immunopathologic liver disease via suppression of antiviral cytotoxic T cell responses. J Immunol 166(5):3369-76. [PubMed: 11207293]  [MGI Ref ID J:126478]

Lukasova M; Malaval C; Gille A; Kero J; Offermanns S. 2011. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J Clin Invest 121(3):1163-73. [PubMed: 21317532]  [MGI Ref ID J:172039]

Luo N; Liu J; Chung BH; Yang Q; Klein RL; Garvey WT; Fu Y. 2010. Macrophage adiponectin expression improves insulin sensitivity and protects against inflammation and atherosclerosis. Diabetes 59(4):791-9. [PubMed: 20350970]  [MGI Ref ID J:164323]

Lutgens E; Lievens D; Beckers L; Wijnands E; Soehnlein O; Zernecke A; Seijkens T; Engel D; Cleutjens J; Keller AM; Naik SH; Boon L; Oufella HA; Mallat Z; Ahonen CL; Noelle RJ; de Winther MP; Daemen MJ; Biessen EA; Weber C. 2010. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 207(2):391-404. [PubMed: 20100871]  [MGI Ref ID J:157760]

Ma Y; Wang W; Zhang J; Lu Y; Wu W; Yan H; Wang Y. 2012. Hyperlipidemia and atherosclerotic lesion development in Ldlr-deficient mice on a long-term high-fat diet. PLoS One 7(4):e35835. [PubMed: 22558236]  [MGI Ref ID J:187279]

MacArthur JM; Bishop JR; Stanford KI; Wang L; Bensadoun A; Witztum JL; Esko JD. 2007. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J Clin Invest 117(1):153-64. [PubMed: 17200715]  [MGI Ref ID J:117455]

MacDonald ML; Singaraja RR; Bissada N; Ruddle P; Watts R; Karasinska JM; Gibson WT; Fievet C; Vance JE; Staels B; Hayden MR. 2008. Absence of stearoyl-CoA desaturase-1 ameliorates features of the metabolic syndrome in LDLR-deficient mice. J Lipid Res 49(1):217-29. [PubMed: 17960025]  [MGI Ref ID J:130278]

MacDonald ML; van Eck M; Hildebrand RB; Wong BW; Bissada N; Ruddle P; Kontush A; Hussein H; Pouladi MA; Chapman MJ; Fievet C; van Berkel TJ; Staels B; McManus BM; Hayden MR. 2009. Despite antiatherogenic metabolic characteristics, SCD1-deficient mice have increased inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 29(3):341-7. [PubMed: 19095997]  [MGI Ref ID J:160858]

MacDougall ED; Kramer F; Polinsky P; Barnhart S; Askari B; Johansson F; Varon R; Rosenfeld ME; Oka K; Chan L; Schwartz SM; Bornfeldt KE. 2006. Aggressive very low-density lipoprotein (VLDL) and LDL lowering by gene transfer of the VLDL receptor combined with a low-fat diet regimen induces regression and reduces macrophage content in advanced atherosclerotic lesions in LDL receptor-deficient mice. Am J Pathol 168(6):2064-73. [PubMed: 16723719]  [MGI Ref ID J:109123]

Mach F; Sukhova GK; Michetti M; Libby P; Michetti P. 2002. Influence of Helicobacter pylori infection during atherogenesis in vivo in mice. Circ Res 90(1):E1-4. [PubMed: 11786527]  [MGI Ref ID J:109711]

Machado RM; Stefano JT; Oliveira CP; Mello ES; Ferreira FD; Nunes VS; de Lima VM; Quintao EC; Catanozi S; Nakandakare ER; Lottenberg AM. 2010. Intake of trans fatty acids causes nonalcoholic steatohepatitis and reduces adipose tissue fat content. J Nutr 140(6):1127-32. [PubMed: 20357081]  [MGI Ref ID J:160756]

Madenspacher JH; Draper DW; Smoak KA; Li H; Griffiths GL; Suratt BT; Wilson MD; Rudel LL; Fessler MB. 2010. Dyslipidemia induces opposing effects on intrapulmonary and extrapulmonary host defense through divergent TLR response phenotypes. J Immunol 185(3):1660-9. [PubMed: 20581153]  [MGI Ref ID J:162471]

Maganto-Garcia E; Tarrio ML; Grabie N; Bu DX; Lichtman AH. 2011. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 124(2):185-95. [PubMed: 21690490]  [MGI Ref ID J:186295]

Major AS; Fazio S; Linton MF. 2002. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol 22(11):1892-8. [PubMed: 12426221]  [MGI Ref ID J:103218]

Malik TH; Cortini A; Carassiti D; Boyle JJ; Haskard DO; Botto M. 2010. The alternative pathway is critical for pathogenic complement activation in endotoxin- and diet-induced atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 122(19):1948-56. [PubMed: 20974996]  [MGI Ref ID J:179480]

Mallat Z; Gojova A; Sauzeau V; Brun V; Silvestre JS; Esposito B; Merval R; Groux H; Loirand G; Tedgui A. 2003. Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice. Circ Res 93(9):884-8. [PubMed: 14525807]  [MGI Ref ID J:115653]

Malloy SI; Altenburg MK; Knouff C; Lanningham-Foster L; Parks JS; Maeda N. 2004. Harmful effects of increased LDLR expression in mice with human APOE*4 but not APOE*3. Arterioscler Thromb Vasc Biol 24(1):91-7. [PubMed: 12969990]  [MGI Ref ID J:146721]

Marsh MM; Walker VR; Curtiss LK; Banka CL. 1999. Protection against atherosclerosis by estrogen is independent of plasma cholesterol levels in LDL receptor-deficient mice. J Lipid Res 40(5):893-900. [PubMed: 10224158]  [MGI Ref ID J:54588]

Martens GW; Vallerskog T; Kornfeld H. 2012. Hypercholesterolemic LDL receptor-deficient mice mount a neutrophilic response to tuberculosis despite the timely expression of protective immunity. J Leukoc Biol 91(6):849-57. [PubMed: 22227965]  [MGI Ref ID J:184951]

Martins IJ; Hone E; Chi C; Seydel U; Martins RN; Redgrave TG. 2000. Relative roles of LDLr and LRP in the metabolism of chylomicron remnants in genetically manipulated mice. J Lipid Res 41(2):205-13. [PubMed: 10681404]  [MGI Ref ID J:120545]

Masucci-Magoulas L; Goldberg IJ; Bisgaier CL; Serajuddin H; Francone OL ; Breslow JL ; Tall AR. 1997. A mouse model with features of familial combined hyperlipidemia. Science 275(5298):391-4. [PubMed: 8994037]  [MGI Ref ID J:37861]

Masucci-Magoulas L; Plump A; Jiang XC; Walsh A; Breslow JL; Tall AR. 1996. Profound induction of hepatic cholesteryl ester transfer protein transgene expression in apolipoprotein E and low density lipoprotein receptor gene knockout mice. A novel mechanism signals changes in plasma cholesterol levels. J Clin Invest 97(1):154-61. [PubMed: 8550828]  [MGI Ref ID J:111394]

Matasconi M; Parini P; Angelin B; Rudling M. 2005. Pituitary control of cholesterol metabolism in normal and LDL receptor knock-out mice: effects of hypophysectomy and growth hormone treatment. Biochim Biophys Acta 1736(3):221-7. [PubMed: 16185916]  [MGI Ref ID J:102525]

Matt U; Sharif O; Martins R; Furtner T; Langeberg L; Gawish R; Elbau I; Zivkovic A; Lakovits K; Oskolkova O; Doninger B; Vychytil A; Perkmann T; Schabbauer G; Binder CJ; Bochkov VN; Scott JD; Knapp S. 2013. WAVE1 mediates suppression of phagocytosis by phospholipid-derived DAMPs. J Clin Invest 123(7):3014-24. [PubMed: 23934128]  [MGI Ref ID J:201609]

Matthijsen RA; de Winther MP; Kuipers D; van der Made I; Weber C; Herias MV; Gijbels MJ; Buurman WA. 2009. Macrophage-specific expression of mannose-binding lectin controls atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 119(16):2188-95. [PubMed: 19380618]  [MGI Ref ID J:166493]

McCaffrey TA; Fu C; Du B; Eksinar S; Kent KC; Bush H Jr; Kreiger K; Rosengart T; Cybulsky MI; Silverman ES; Collins T. 2000. High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis [see comments] J Clin Invest 105(5):653-62. [PubMed: 10712437]  [MGI Ref ID J:60968]

McGillicuddy CJ; Carrier MJ; Weinberg PD. 2001. Distribution of lipid deposits around aortic branches of mice lacking LDL receptors and apolipoprotein E. Arterioscler Thromb Vasc Biol 21(7):1220-5. [PubMed: 11451755]  [MGI Ref ID J:103203]

McMillen TS; Heinecke JW; LeBoeuf RC. 2005. Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation 111(21):2798-804. [PubMed: 15911707]  [MGI Ref ID J:112270]

Mehrabian M; Allayee H; Wong J; Shi W; Wang XP; Shaposhnik Z; Funk CD; Lusis AJ. 2002. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res 91(2):120-6. [PubMed: 12142344]  [MGI Ref ID J:109703]

Mehta JL; Sanada N; Hu CP; Chen J; Dandapat A; Sugawara F; Satoh H; Inoue K; Kawase Y; Jishage K; Suzuki H; Takeya M; Schnackenberg L; Beger R; Hermonat PL; Thomas M; Sawamura T. 2007. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res 100(11):1634-42. [PubMed: 17478727]  [MGI Ref ID J:130794]

Meiler S; Baumer Y; Huang Z; Hoffmann FW; Fredericks GJ; Rose AH; Norton RL; Hoffmann PR; Boisvert WA. 2013. Selenoprotein K is required for palmitoylation of CD36 in macrophages: implications in foam cell formation and atherogenesis. J Leukoc Biol 93(5):771-80. [PubMed: 23444136]  [MGI Ref ID J:200795]

Melchior JT; Sawyer JK; Kelley KL; Shah R; Wilson MD; Hantgan RR; Rudel LL. 2013. LDL particle core enrichment in cholesteryl oleate increases proteoglycan binding and promotes atherosclerosis. J Lipid Res 54(9):2495-503. [PubMed: 23804810]  [MGI Ref ID J:200774]

Merat S; Casanada F; Sutphin M; Palinski W; Reaven PD. 1999. Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructose-rich diet. Arterioscler Thromb Vasc Biol 19(5):1223-30. [PubMed: 10323773]  [MGI Ref ID J:103205]

Merat S; Fruebis J; Sutphin M; Silvestre M; Reaven PD. 2000. Effect of aging on aortic expression of the vascular cell adhesion molecule-1 and atherosclerosis in murine models of atherosclerosis. J Gerontol A Biol Sci Med Sci 55(2):B85-94. [PubMed: 10737683]  [MGI Ref ID J:61164]

Merched A; Tollefson K; Chan L. 2010. Beta2 integrins modulate the initiation and progression of atherosclerosis in low-density lipoprotein receptor knockout mice. Cardiovasc Res 85(4):853-63. [PubMed: 19843511]  [MGI Ref ID J:172548]

Merkel M; Velez-Carrasco W; Hudgins LC; Breslow JL. 2001. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice. Proc Natl Acad Sci U S A 98(23):13294-9. [PubMed: 11606787]  [MGI Ref ID J:72580]

Methia N; Andre P; Denis CV; Economopoulos M; Wagner DD. 2001. Localized reduction of atherosclerosis in von Willebrand factor-deficient mice. Blood 98(5):1424-8. [PubMed: 11520791]  [MGI Ref ID J:106677]

Meurs I; Calpe-Berdiel L; Habets KL; Zhao Y; Korporaal SJ; Mommaas AM; Josselin E; Hildebrand RB; Ye D; Out R; Kuiper J; Van Berkel TJ; Chimini G; Van Eck M. 2012. Effects of deletion of macrophage ABCA7 on lipid metabolism and the development of atherosclerosis in the presence and absence of ABCA1. PLoS One 7(3):e30984. [PubMed: 22403608]  [MGI Ref ID J:186854]

Mihara K; Spansier M; Rooseboom M; Smit MJ; Dokter W. 2007. Functional replacement of murine CXCR2 by its human homologue in the development of atherosclerosis in LDLR knockout mice. Biol Pharm Bull 30(7):1231-6. [PubMed: 17603159]  [MGI Ref ID J:124372]

Milanski M; Arruda AP; Coope A; Ignacio-Souza LM; Nunez CE; Roman EA; Romanatto T; Pascoal LB; Caricilli AM; Torsoni MA; Prada PO; Saad MJ; Velloso LA. 2012. Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61(6):1455-62. [PubMed: 22522614]  [MGI Ref ID J:196822]

Millar JS; Maugeais C; Fuki IV; Rader DJ. 2002. Normal production rate of apolipoprotein B in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 22(6):989-94. [PubMed: 12067909]  [MGI Ref ID J:103299]

Miller JD; Weiss RM; Serrano KM; Brooks RM 2nd; Berry CJ; Zimmerman K; Young SG; Heistad DD. 2009. Lowering plasma cholesterol levels halts progression of aortic valve disease in mice. Circulation 119(20):2693-701. [PubMed: 19433756]  [MGI Ref ID J:166428]

Minahk C; Kim KW; Nelson R; Trigatti B; Lehner R; Vance DE. 2008. Conversion of low density lipoprotein-associated phosphatidylcholine to triacylglycerol by primary hepatocytes. J Biol Chem 283(10):6449-58. [PubMed: 18175806]  [MGI Ref ID J:133757]

Missiou A; Kostlin N; Varo N; Rudolf P; Aichele P; Ernst S; Munkel C; Walter C; Stachon P; Sommer B; Pfeifer D; Zirlik K; MacFarlane L; Wolf D; Tsitsikov E; Bode C; Libby P; Zirlik A. 2010. Tumor necrosis factor receptor-associated factor 1 (TRAF1) deficiency attenuates atherosclerosis in mice by impairing monocyte recruitment to the vessel wall. Circulation 121(18):2033-44. [PubMed: 20421522]  [MGI Ref ID J:172624]

Missiou A; Rudolf P; Stachon P; Wolf D; Varo N; Aichele P; Colberg C; Hoppe N; Ernst S; Munkel C; Walter C; Sommer B; Hilgendorf I; Nakano H; Bode C; Zirlik A. 2010. TRAF5 deficiency accelerates atherogenesis in mice by increasing inflammatory cell recruitment and foam cell formation. Circ Res 107(6):757-66. [PubMed: 20651286]  [MGI Ref ID J:175026]

Mitchell PL; Karakach TK; Currie DL; McLeod RS. 2012. t-10, c-12 CLA dietary supplementation inhibits atherosclerotic lesion development despite adverse cardiovascular and hepatic metabolic marker profiles. PLoS One 7(12):e52634. [PubMed: 23285120]  [MGI Ref ID J:195756]

Miyazaki T; Taketomi Y; Takimoto M; Lei XF; Arita S; Kim-Kaneyama JR; Arata S; Ohata H; Ota H; Murakami M; Miyazaki A. 2011. m-Calpain induction in vascular endothelial cells on human and mouse atheromas and its roles in VE-cadherin disorganization and atherosclerosis. Circulation 124(23):2522-32. [PubMed: 22064597]  [MGI Ref ID J:193805]

Moerland M; Samyn H; van Gent T; Jauhiainen M; Metso J; van Haperen R; Grosveld F; van Tol A; de Crom R. 2007. Atherogenic, enlarged, and dysfunctional HDL in human PLTP/apoA-I double transgenic mice. J Lipid Res 48(12):2622-31. [PubMed: 17761633]  [MGI Ref ID J:129970]

Moerland M; Samyn H; van Gent T; van Haperen R; Dallinga-Thie G; Grosveld F; van Tol A; de Crom R. 2008. Acute elevation of plasma PLTP activity strongly increases pre-existing atherosclerosis. Arterioscler Thromb Vasc Biol 28(7):1277-82. [PubMed: 18421000]  [MGI Ref ID J:159813]

Mollmark J; Ravi S; Sun B; Shipman S; Buitendijk M; Simons M; Mulligan-Kehoe MJ. 2011. Antiangiogenic activity of rPAI-1(23) promotes vasa vasorum regression in hypercholesterolemic mice through a plasmin-dependent mechanism. Circ Res 108(12):1419-28. [PubMed: 21546607]  [MGI Ref ID J:185688]

Mollmark JI; Park AJ; Kim J; Wang TZ; Katzenell S; Shipman SL; Zagorchev LG; Simons M; Mulligan-Kehoe MJ. 2012. Fibroblast growth factor-2 is required for vasa vasorum plexus stability in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 32(11):2644-51. [PubMed: 22982464]  [MGI Ref ID J:207880]

Moore RE; Navab M; Millar JS; Zimetti F; Hama S; Rothblat GH; Rader DJ. 2005. Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res 97(8):763-71. [PubMed: 16151025]  [MGI Ref ID J:114636]

Moreira EL; Aguiar AS Jr; de Carvalho CR; Santos DB; de Oliveira J; de Bem AF; Xikota JC; Walz R; Farina M; Prediger RD. 2013. Effects of lifestyle modifications on cognitive impairments in a mouse model of hypercholesterolemia. Neurosci Lett 541:193-8. [PubMed: 23470631]  [MGI Ref ID J:199546]

Moreira EL; de Oliveira J; Dutra MF; Santos DB; Goncalves CA; Goldfeder EM; de Bem AF; Prediger RD; Aschner M; Farina M. 2012. Does methylmercury-induced hypercholesterolemia play a causal role in its neurotoxicity and cardiovascular disease? Toxicol Sci 130(2):373-82. [PubMed: 22903822]  [MGI Ref ID J:192657]

Mori N; Horie Y; Nimura Y; Wolf R; Granger DN. 2000. Hepatic microvascular responses to ischemia-reperfusion in low-density lipoprotein receptor knockout mice. Am J Physiol Gastrointest Liver Physiol 279(6):G1257-64. [PubMed: 11093949]  [MGI Ref ID J:108060]

Mortimer BC; Beveridge DJ; Martins IJ; Redgrave TG. 1995. Intracellular localization and metabolism of chylomicron remnants in the livers of low density lipoprotein receptor-deficient mice and apoE-deficient mice. Evidence for slow metabolism via an alternative apoE-dependent pathway. J Biol Chem 270(48):28767-76. [PubMed: 7499399]  [MGI Ref ID J:29909]

Mulder M; Jansen PJ; Janssen BJ; van de Berg WD; van der Boom H; Havekes LM; de Kloet RE; Ramaekers FC; Blokland A. 2004. Low-density lipoprotein receptor-knockout mice display impaired spatial memory associated with a decreased synaptic density in the hippocampus. Neurobiol Dis 16(1):212-9. [PubMed: 15207278]  [MGI Ref ID J:120389]

Mulder M; Koopmans G; Wassink G; Al Mansouri G; Simard ML; Havekes LM; Prickaerts J; Blokland A. 2007. LDL receptor deficiency results in decreased cell proliferation and presynaptic bouton density in the murine hippocampus. Neurosci Res 59(3):251-6. [PubMed: 17720268]  [MGI Ref ID J:127270]

Mullick AE; Fu W; Graham MJ; Lee RG; Witchell D; Bell TA; Whipple CP; Crooke RM. 2011. Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice. J Lipid Res 52(5):885-96. [PubMed: 21343632]  [MGI Ref ID J:180930]

Mullick AE; Soldau K; Kiosses WB; Bell TA 3rd; Tobias PS; Curtiss LK. 2008. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J Exp Med 205(2):373-83. [PubMed: 18250194]  [MGI Ref ID J:131783]

Mullick AE; Tobias PS; Curtiss LK. 2005. Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 115(11):3149-56. [PubMed: 16211093]  [MGI Ref ID J:102502]

Mulvihill EE; Allister EM; Sutherland BG; Telford DE; Sawyez CG; Edwards JY; Markle JM; Hegele RA; Huff MW. 2009. Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 58(10):2198-210. [PubMed: 19592617]  [MGI Ref ID J:154397]

Mulvihill EE; Assini JM; Lee JK; Allister EM; Sutherland BG; Koppes JB; Sawyez CG; Edwards JY; Telford DE; Charbonneau A; St-Pierre P; Marette A; Huff MW. 2011. Nobiletin Attenuates VLDL Overproduction, Dyslipidemia, and Atherosclerosis in Mice With Diet-Induced Insulin Resistance. Diabetes 60(5):1446-57. [PubMed: 21471511]  [MGI Ref ID J:171813]

Mundkur L; Mukhopadhyay R; Samson S; Varma M; Kale D; Chen D; Shivaprasad S; Sivanandan H; Soman V; Lu X; Kakkar VV. 2013. Mucosal tolerance to a combination of ApoB and HSP60 peptides controls plaque progression and stabilizes vulnerable plaque in Apob(tm2Sgy)Ldlr(tm1Her)/J mice. PLoS One 8(3):e58364. [PubMed: 23505495]  [MGI Ref ID J:199840]

Muratoglu SC; Belgrave S; Lillis AP; Migliorini M; Robinson S; Smith E; Zhang L; Strickland DK. 2011. Macrophage LRP1 suppresses neo-intima formation during vascular remodeling by modulating the TGF-beta signaling pathway. PLoS One 6(12):e28846. [PubMed: 22174911]  [MGI Ref ID J:182253]

Murphy AJ; Akhtari M; Tolani S; Pagler T; Bijl N; Kuo CL; Wang M; Sanson M; Abramowicz S; Welch C; Bochem AE; Kuivenhoven JA; Yvan-Charvet L; Tall AR. 2011. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest 121(10):4138-49. [PubMed: 21968112]  [MGI Ref ID J:178453]

Murphy AJ; Bijl N; Yvan-Charvet L; Welch CB; Bhagwat N; Reheman A; Wang Y; Shaw JA; Levine RL; Ni H; Tall AR; Wang N. 2013. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat Med 19(5):586-94. [PubMed: 23584088]  [MGI Ref ID J:198517]

Nagareddy PR; Murphy AJ; Stirzaker RA; Hu Y; Yu S; Miller RG; Ramkhelawon B; Distel E; Westerterp M; Huang LS; Schmidt AM; Orchard TJ; Fisher EA; Tall AR; Goldberg IJ. 2013. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab 17(5):695-708. [PubMed: 23663738]  [MGI Ref ID J:199272]

Naik SU; Wang X; Da Silva JS; Jaye M; Macphee CH; Reilly MP; Billheimer JT; Rothblat GH; Rader DJ. 2006. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 113(1):90-7. [PubMed: 16365197]  [MGI Ref ID J:121508]

Nakai Y; Iwabuchi K; Fujii S; Ishimori N; Dashtsoodol N; Watano K; Mishima T; Iwabuchi C; Tanaka S; Bezbradica JS; Nakayama T; Taniguchi M; Miyake S; Yamamura T; Kitabatake A; Joyce S; Van Kaer L; Onoe K. 2004. Natural killer T cells accelerate atherogenesis in mice. Blood 104(7):2051-9. [PubMed: 15113755]  [MGI Ref ID J:93754]

Nakamura I; Hasegawa K; Wada Y; Hirase T; Node K; Watanabe Y. 2013. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice. Biochem Biophys Res Commun 433(1):47-51. [PubMed: 23485468]  [MGI Ref ID J:201227]

Nakamura T; Ruiz-Lozano P; Lindner V; Yabe D; Taniwaki M; Furukawa Y; Kobuke K; Tashiro K; Lu Z; Andon NL; Schaub R; Matsumori A; Sasayama S; Chien KR; Honjo T. 1999. DANCE, a novel secreted RGD protein expressed in developing, atherosclerotic, and balloon-injured arteries. J Biol Chem 274(32):22476-83. [PubMed: 10428823]  [MGI Ref ID J:56624]

Nakamuta M; Taniguchi S; Ishida BY; Kobayashi K; Chan L. 1998. Phenotype interaction of apobec-1 and CETP, LDLR, and apoE gene expression in mice: role of apoB mRNA editing in lipoprotein phenotype expression. Arterioscler Thromb Vasc Biol 18(5):747-55. [PubMed: 9598833]  [MGI Ref ID J:48202]

Nakaya H; Summers BD; Nicholson AC; Gotto AM Jr; Hajjar DP; Han J. 2009. Atherosclerosis in LDLR-knockout mice is inhibited, but not reversed, by the PPARgamma ligand pioglitazone. Am J Pathol 174(6):2007-14. [PubMed: 19435790]  [MGI Ref ID J:148764]

Nassir F; Xie Y; Patterson BW; Luo J; Davidson NO. 2004. Hepatic secretion of small lipoprotein particles in apobec-1-/- mice is regulated by the LDL receptor. J Lipid Res 45(9):1649-59. [PubMed: 15145984]  [MGI Ref ID J:121192]

Nathan L; Shi W; Dinh H; Mukherjee TK; Wang X; Lusis AJ; Chaudhuri G. 2001. Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase. Proc Natl Acad Sci U S A 98(6):3589-93. [PubMed: 11248122]  [MGI Ref ID J:80921]

Navab M; Hama-Levy S; Van Lenten BJ; Fonarow GC; Cardinez CJ ; Castellani LW ; Brennan ML ; Lusis AJ ; Fogelman AM ; La Du BN. 1997. Mildly oxidized LDL induces an increased apolipoprotein J/paraoxonase ratio [published erratum appears in J Clin Invest 1997 Jun 15;99(12):3043] J Clin Invest 99(8):2005-19. [PubMed: 9109446]  [MGI Ref ID J:40285]

Nawrocki AR; Hofmann SM; Teupser D; Basford JE; Durand JL; Jelicks LA; Woo CW; Kuriakose G; Factor SM; Tanowitz HB; Hui DY; Tabas I; Scherer PE. 2010. Lack of association between adiponectin levels and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 30(6):1159-65. [PubMed: 20299691]  [MGI Ref ID J:180866]

Netea MG; Demacker PN; Kullberg BJ; Boerman OC; Verschueren I; Stalenhoef AF; van der Meer JW. 1996. Low-density lipoprotein receptor-deficient mice are protected against lethal endotoxemia and severe gram-negative infections. J Clin Invest 97(6):1366-72. [PubMed: 8617867]  [MGI Ref ID J:31997]

Netea MG; Joosten LA; Keuter M; Wagener F; Stalenhoef AF; van der Meer JW; Kullberg BJ. 2009. Circulating lipoproteins are a crucial component of host defense against invasive Salmonella typhimurium infection. PLoS ONE 4(1):e4237. [PubMed: 19156198]  [MGI Ref ID J:144972]

Ng DS; Xie C; Maguire GF; Zhu X; Ugwu F; Lam E; Connelly PW. 2004. Hypertriglyceridemia in lecithin-cholesterol acyltransferase-deficient mice is associated with hepatic overproduction of triglycerides, increased lipogenesis, and improved glucose tolerance. J Biol Chem 279(9):7636-42. [PubMed: 14668345]  [MGI Ref ID J:89015]

Ngai YF; Quong WL; Glier MB; Glavas MM; Babich SL; Innis SM; Kieffer TJ; Gibson WT. 2010. Ldlr-/- mice display decreased susceptibility to Western-type diet-induced obesity due to increased thermogenesis. Endocrinology 151(11):5226-36. [PubMed: 20881250]  [MGI Ref ID J:168347]

Nofer JR; Bot M; Brodde M; Taylor PJ; Salm P; Brinkmann V; van Berkel T; Assmann G; Biessen EA. 2007. FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 115(4):501-8. [PubMed: 17242282]  [MGI Ref ID J:130151]

Nookaew I; Gabrielsson BG; Holmang A; Sandberg AS; Nielsen J. 2010. Identifying molecular effects of diet through systems biology: influence of herring diet on sterol metabolism and protein turnover in mice. PLoS One 5(8):. [PubMed: 20808764]  [MGI Ref ID J:164017]

Nuotio-Antar AM; Hachey DL; Hasty AH. 2007. Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. Am J Physiol Endocrinol Metab 293(6):E1517-28. [PubMed: 17878220]  [MGI Ref ID J:145108]

O'Brien KD; McDonald TO; Kunjathoor V; Eng K; Knopp EA; Lewis K; Lopez R; Kirk EA; Chait A; Wight TN; deBeer FC; LeBoeuf RC. 2005. Serum amyloid A and lipoprotein retention in murine models of atherosclerosis. Arterioscler Thromb Vasc Biol 25(4):785-90. [PubMed: 15692094]  [MGI Ref ID J:110024]

Okamoto R; Gery S; Gombart AF; Wang X; Castellani LW; Akagi T; Chen S; Arditi M; Ho Q; Lusis AJ; Li Q; Koeffler HP. 2014. Deficiency of CCAAT/enhancer binding protein-epsilon reduces atherosclerotic lesions in LDLR-/- mice. PLoS One 9(1):e85341. [PubMed: 24489659]  [MGI Ref ID J:211106]

Okayasu M; Nakayachi M; Hayashida C; Ito J; Kaneda T; Masuhara M; Suda N; Sato T; Hakeda Y. 2012. Low-density lipoprotein receptor deficiency causes impaired osteoclastogenesis and increased bone mass in mice because of defect in osteoclastic cell-cell fusion. J Biol Chem 287(23):19229-41. [PubMed: 22500026]  [MGI Ref ID J:186208]

Okazaki H; Tazoe F; Okazaki S; Isoo N; Tsukamoto K; Sekiya M; Yahagi N; Iizuka Y; Ohashi K; Kitamine T; Tozawa R; Inaba T; Yagyu H; Okazaki M; Shimano H; Shibata N; Arai H; Nagai RZ; Kadowaki T; Osuga J; Ishibashi S. 2006. Increased cholesterol biosynthesis and hypercholesterolemia in mice overexpressing squalene synthase in the liver. J Lipid Res 47(9):1950-8. [PubMed: 16741291]  [MGI Ref ID J:114485]

Oliveira HC; Cosso RG; Alberici LC; Maciel EN; Salerno AG; Dorighello GG; Velho JA; de Faria EC; Vercesi AE. 2005. Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria. FASEB J 19(2):278-80. [PubMed: 15569776]  [MGI Ref ID J:105088]

Orozco LD; Kapturczak MH; Barajas B; Wang X; Weinstein MM; Wong J; Deshane J; Bolisetty S; Shaposhnik Z; Shih DM; Agarwal A; Lusis AJ; Araujo JA. 2007. Heme oxygenase-1 expression in macrophages plays a beneficial role in atherosclerosis. Circ Res 100(12):1703-11. [PubMed: 17495224]  [MGI Ref ID J:137771]

Osono Y; Woollett LA; Herz J; Dietschy JM. 1995. Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse. J Clin Invest 95(3):1124-32. [PubMed: 7883961]  [MGI Ref ID J:23579]

Osuga J; Yonemoto M; Yamada N; Shimano H; Yagyu H; Ohashi K; Harada K; Kamei T; Yazaki Y; Ishibashi S. 1998. Cholesterol lowering in low density lipoprotein receptor knockout mice overexpressing apolipoprotein E. J Clin Invest 102(2):386-94. [PubMed: 9664080]  [MGI Ref ID J:115142]

Ou ZJ; Li L; Liao XL; Wang YM; Hu XX; Zhang QL; Wang ZP; Yu H; Zhang X; Hu P; Xu YQ; Liang QL; Ou JS; Luo G. 2012. Apolipoprotein A-I mimetic peptide inhibits atherosclerosis by altering plasma metabolites in hypercholesterolemia. Am J Physiol Endocrinol Metab 303(6):E683-94. [PubMed: 22535745]  [MGI Ref ID J:189438]

Out R; Hoekstra M; Habets K; Meurs I; de Waard V; Hildebrand RB; Wang Y; Chimini G; Kuiper J; Van Berkel TJ; Van Eck M. 2008. Combined deletion of macrophage ABCA1 and ABCG1 leads to massive lipid accumulation in tissue macrophages and distinct atherosclerosis at relatively low plasma cholesterol levels. Arterioscler Thromb Vasc Biol 28(2):258-64. [PubMed: 18006857]  [MGI Ref ID J:147678]

Out R; Hoekstra M; Hildebrand RB; Kruit JK; Meurs I; Li Z; Kuipers F; Van Berkel TJ; Van Eck M. 2006. Macrophage ABCG1 deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 26(10):2295-300. [PubMed: 16857950]  [MGI Ref ID J:128052]

Overton CD; Yancey PG; Major AS; Linton MF; Fazio S. 2007. Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse. Circ Res 100(5):670-7. [PubMed: 17303763]  [MGI Ref ID J:133698]

Owens AP 3rd; Passam FH; Antoniak S; Marshall SM; McDaniel AL; Rudel L; Williams JC; Hubbard BK; Dutton JA; Wang J; Tobias PS; Curtiss LK; Daugherty A; Kirchhofer D; Luyendyk JP; Moriarty PM; Nagarajan S; Furie BC; Furie B; Johns DG; Temel RE; Mackman N. 2012. Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J Clin Invest 122(2):558-68. [PubMed: 22214850]  [MGI Ref ID J:184381]

Owens AP 3rd; Rateri DL; Howatt DA; Moore KJ; Tobias PS; Curtiss LK; Lu H; Cassis LA; Daugherty A. 2011. MyD88 deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation independent of signaling through Toll-like receptors 2 and 4. Arterioscler Thromb Vasc Biol 31(12):2813-9. [PubMed: 21960563]  [MGI Ref ID J:191452]

Paim BA; Velho JA; Castilho RF; Oliveira HC; Vercesi AE. 2008. Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement. Free Radic Biol Med 44(3):444-51. [PubMed: 17991444]  [MGI Ref ID J:130348]

Pan JH; Sukhova GK; Yang JT; Wang B; Xie T; Fu H; Zhang Y; Satoskar AR; David JR; Metz CN; Bucala R; Fang K; Simon DI; Chapman HA; Libby P; Shi GP. 2004. Macrophage migration inhibitory factor deficiency impairs atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 109(25):3149-53. [PubMed: 15197138]  [MGI Ref ID J:102201]

Parathath S; Grauer L; Huang LS; Sanson M; Distel E; Goldberg IJ; Fisher EA. 2011. Diabetes adversely affects macrophages during atherosclerotic plaque regression in mice. Diabetes 60(6):1759-69. [PubMed: 21562077]  [MGI Ref ID J:177946]

Park SH; Sui Y; Gizard F; Xu J; Rios-Pilier J; Helsley RN; Han SS; Zhou C. 2012. Myeloid-specific IkappaB kinase beta deficiency decreases atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 32(12):2869-76. [PubMed: 23023371]  [MGI Ref ID J:207877]

Parks BW; Gambill GP; Lusis AJ; Kabarowski JH. 2005. Loss of G2A promotes macrophage accumulation in atherosclerotic lesions of low density lipoprotein receptor-deficient mice. J Lipid Res 46(7):1405-15. [PubMed: 15834123]  [MGI Ref ID J:100498]

Parks BW; Lusis AJ; Kabarowski JH. 2006. Loss of the lysophosphatidylcholine effector, G2A, ameliorates aortic atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 26(12):2703-9. [PubMed: 16990555]  [MGI Ref ID J:128044]

Parks BW; Srivastava R; Yu S; Kabarowski JH. 2009. ApoE-dependent modulation of HDL and atherosclerosis by G2A in LDL receptor-deficient mice independent of bone marrow-derived cells. Arterioscler Thromb Vasc Biol 29(4):539-47. [PubMed: 19164809]  [MGI Ref ID J:159778]

Paulson KE; Zhu SN; Chen M; Nurmohamed S; Jongstra-Bilen J; Cybulsky MI. 2010. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res 106(2):383-90. [PubMed: 19893012]  [MGI Ref ID J:170071]

Persson L; Boren J; Nicoletti A; Hansson GK; Pekna M. 2005. Immunoglobulin treatment reduces atherosclerosis in apolipoprotein E-/- low-density lipoprotein receptor-/- mice via the complement system. Clin Exp Immunol 142(3):441-5. [PubMed: 16297155]  [MGI Ref ID J:107602]

Persson L; Boren J; Robertson AK; Wallenius V; Hansson GK; Pekna M. 2004. Lack of complement factor C3, but not factor B, increases hyperlipidemia and atherosclerosis in apolipoprotein E-/- low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 24(6):1062-7. [PubMed: 15059809]  [MGI Ref ID J:102339]

Picataggi A; Lim GF; Kent AP; Millar JS; Rader DJ; Stylianou IM. 2013. A coding variant in SR-BI (I179N) significantly increases atherosclerosis in mice. Mamm Genome :. [PubMed: 23722970]  [MGI Ref ID J:199101]

Pinkaew D; Hutadilok-Towatana N; Teng BB; Mahabusarakam W; Fujise K. 2012. Morelloflavone, a biflavonoid inhibitor of migration-related kinases, ameliorates atherosclerosis in mice. Am J Physiol Heart Circ Physiol 302(2):H451-8. [PubMed: 22058152]  [MGI Ref ID J:181657]

Pinkaew D; Le RJ; Chen Y; Eltorky M; Teng BB; Fujise K. 2013. Fortilin reduces apoptosis in macrophages and promotes atherosclerosis. Am J Physiol Heart Circ Physiol 305(10):H1519-29. [PubMed: 24043250]  [MGI Ref ID J:204609]

Plat J; Beugels I; Gijbels MJ; de Winther MP; Mensink RP. 2006. Plant sterol or stanol esters retard lesion formation in LDL receptor-deficient mice independent of changes in serum plant sterols. J Lipid Res 47(12):2762-71. [PubMed: 16957178]  [MGI Ref ID J:117204]

Plump AS; Masucci-Magoulas L; Bruce C; Bisgaier CL; Breslow JL; Tall AR. 1999. Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler Thromb Vasc Biol 19(4):1105-10. [PubMed: 10195942]  [MGI Ref ID J:55980]

Podrez EA; Byzova TV; Febbraio M; Salomon RG; Ma Y; Valiyaveettil M; Poliakov E; Sun M; Finton PJ; Curtis BR; Chen J; Zhang R; Silverstein RL; Hazen SL. 2007. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 13(9):1086-95. [PubMed: 17721545]  [MGI Ref ID J:125153]

Poduri A; Owens AP 3rd; Howatt DA; Moorleghen JJ; Balakrishnan A; Cassis LA; Daugherty A. 2012. Regional variation in aortic AT1b receptor mRNA abundance is associated with contractility but unrelated to atherosclerosis and aortic aneurysms. PLoS One 7(10):e48462. [PubMed: 23119030]  [MGI Ref ID J:192277]

Pols TW; Nomura M; Harach T; Lo Sasso G; Oosterveer MH; Thomas C; Rizzo G; Gioiello A; Adorini L; Pellicciari R; Auwerx J; Schoonjans K. 2011. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 14(6):747-57. [PubMed: 22152303]  [MGI Ref ID J:179660]

Postea O; Vasina EM; Cauwenberghs S; Projahn D; Liehn EA; Lievens D; Theelen W; Kramp BK; Butoi ED; Soehnlein O; Heemskerk JW; Ludwig A; Weber C; Koenen RR. 2012. Contribution of platelet CX(3)CR1 to platelet-monocyte complex formation and vascular recruitment during hyperlipidemia. Arterioscler Thromb Vasc Biol 32(5):1186-93. [PubMed: 22383701]  [MGI Ref ID J:196930]

Potteaux S; Esposito B; van Oostrom O; Brun V; Ardouin P; Groux H; Tedgui A; Mallat Z. 2004. Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 24(8):1474-8. [PubMed: 15178562]  [MGI Ref ID J:102225]

Powell-Braxton L; Veniant M; Latvala RD; Hirano KI; Won WB; Ross J; Dybdal N; Zlot CH; Young SG; Davidson NO. 1998. A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet [see comments] Nat Med 4(8):934-8. [PubMed: 9701246]  [MGI Ref ID J:49125]

Pratico D; Cyrus T; Li H; FitzGerald GA. 2000. Endogenous biosynthesis of thromboxane and prostacyclin in 2 distinct murine models of atherosclerosis Blood 96(12):3823-6. [PubMed: 11090066]  [MGI Ref ID J:66258]

Pratico D; Rokach J; Tangirala RK. 1999. Brains of aged apolipoprotein E-deficient mice have increased levels of F2-isoprostanes, in vivo markers of lipid peroxidation. J Neurochem 73(2):736-41. [PubMed: 10428071]  [MGI Ref ID J:111985]

Pratico D; Tillmann C; Zhang ZB; Li H; FitzGerald GA. 2001. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc Natl Acad Sci U S A 98(6):3358-63. [PubMed: 11248083]  [MGI Ref ID J:68091]

Preusch MR; Rattazzi M; Albrecht C; Merle U; Tuckermann J; Schutz G; Blessing E; Zoppellaro G; Pauletto P; Krempien R; Rosenfeld ME; Katus HA; Bea F. 2008. Critical role of macrophages in glucocorticoid driven vascular calcification in a mouse-model of atherosclerosis. Arterioscler Thromb Vasc Biol 28(12):2158-64. [PubMed: 18787189]  [MGI Ref ID J:159796]

Qian YW; Schmidt RJ; Zhang Y; Chu S; Lin A; Wang H; Wang X; Beyer TP; Bensch WR; Li W; Ehsani ME; Lu D; Konrad RJ; Eacho PI; Moller DE; Karathanasis SK; Cao G. 2007. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res 48(7):1488-98. [PubMed: 17449864]  [MGI Ref ID J:122491]

Qiang L; Lin HV; Kim-Muller JY; Welch CL; Gu W; Accili D. 2011. Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab 14(6):758-67. [PubMed: 22078933]  [MGI Ref ID J:179674]

Qiang L; Tsuchiya K; Kim-Muller JY; Lin HV; Welch C; Accili D. 2012. Increased atherosclerosis and endothelial dysfunction in mice bearing constitutively deacetylated alleles of Foxo1 gene. J Biol Chem 287(17):13944-51. [PubMed: 22389493]  [MGI Ref ID J:184477]

Qiu H; Gabrielsen A; Agardh HE; Wan M; Wetterholm A; Wong CH; Hedin U; Swedenborg J; Hansson GK; Samuelsson B; Paulsson-Berne G; Haeggstrom JZ. 2006. Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. Proc Natl Acad Sci U S A 103(21):8161-6. [PubMed: 16698924]  [MGI Ref ID J:110208]

Qu A; Shah YM; Manna SK; Gonzalez FJ. 2012. Disruption of endothelial peroxisome proliferator-activated receptor gamma accelerates diet-induced atherogenesis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol 32(1):65-73. [PubMed: 22015658]  [MGI Ref ID J:195979]

Quan G; Xie C; Dietschy JM; Turley SD. 2003. Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Brain Res Dev Brain Res 146(1-2):87-98. [PubMed: 14643015]  [MGI Ref ID J:86935]

Radonjic M; Wielinga PY; Wopereis S; Kelder T; Goelela VS; Verschuren L; Toet K; van Duyvenvoorde W; van der Werff van der Vat B; Stroeve JH; Cnubben N; Kooistra T; van Ommen B; Kleemann R. 2013. Differential effects of drug interventions and dietary lifestyle in developing type 2 diabetes and complications: a systems biology analysis in LDLr-/- mice. PLoS One 8(2):e56122. [PubMed: 23457508]  [MGI Ref ID J:198285]

Raikwar NS; Cho WK; Bowen RF; Deeg MA. 2006. Glycosylphosphatidylinositol-specific phospholipase D influences triglyceride-rich lipoprotein metabolism. Am J Physiol Endocrinol Metab 290(3):E463-70. [PubMed: 16219662]  [MGI Ref ID J:106052]

Ramirez C; Sierra S; Tercero I; Vazquez JA; Pineda A; Manrique T; Burgos JS. 2011. ApoB100/LDLR-/- hypercholesterolaemic mice as a model for mild cognitive impairment and neuronal damage. PLoS One 6(7):e22712. [PubMed: 21829488]  [MGI Ref ID J:175834]

Rashid S; Curtis DE; Garuti R; Anderson NN; Bashmakov Y; Ho YK; Hammer RE; Moon YA; Horton JD. 2005. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci U S A 102(15):5374-9. [PubMed: 15805190]  [MGI Ref ID J:97836]

Rateri DL; Moorleghen JJ; Balakrishnan A; Owens AP 3rd; Howatt DA; Subramanian V; Poduri A; Charnigo R; Cassis LA; Daugherty A. 2011. Endothelial Cell-Specific Deficiency of Ang II Type 1a Receptors Attenuates Ang II-Induced Ascending Aortic Aneurysms in LDL Receptor-/- Mice. Circ Res 108(5):574-81. [PubMed: 21252156]  [MGI Ref ID J:170230]

Rateri DL; Moorleghen JJ; Knight V; Balakrishnan A; Howatt DA; Cassis LA; Daugherty A. 2012. Depletion of endothelial or smooth muscle cell-specific angiotensin II type 1a receptors does not influence aortic aneurysms or atherosclerosis in LDL receptor deficient mice. PLoS One 7(12):e51483. [PubMed: 23236507]  [MGI Ref ID J:195549]

Ratliff EP; Gutierrez A; Davis RA. 2006. Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia. J Lipid Res 47(7):1513-20. [PubMed: 16609145]  [MGI Ref ID J:112052]

Rayner KJ; Suarez Y; Davalos A; Parathath S; Fitzgerald ML; Tamehiro N; Fisher EA; Moore KJ; Fernandez-Hernando C. 2010. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328(5985):1570-3. [PubMed: 20466885]  [MGI Ref ID J:160971]

Recinos A rd; Carr BK; Bartos DB; Boldogh I; Carmical JR; Belalcazar LM; Brasier AR. 2004. Liver gene expression associated with diet and lesion development in atherosclerosis-prone mice: induction of components of alternative complement pathway. Physiol Genomics 19(1):131-42. [PubMed: 15238619]  [MGI Ref ID J:106239]

Reddy ST; Nguyen JT; Grijalva V; Hough G; Hama S; Navab M; Fogelman AM. 2004. Potential role for mitogen-activated protein kinase phosphatase-1 in the development of atherosclerotic lesions in mouse models. Arterioscler Thromb Vasc Biol 24(9):1676-81. [PubMed: 15242861]  [MGI Ref ID J:102220]

Reiterer G; MacDonald R; Browning JD; Morrow J; Matveev SV; Daugherty A; Smart E; Toborek M; Hennig B. 2005. Zinc deficiency increases plasma lipids and atherosclerotic markers in LDL-receptor-deficient mice. J Nutr 135(9):2114-8. [PubMed: 16140885]  [MGI Ref ID J:106652]

Renard CB; Kramer F; Johansson F; Lamharzi N; Tannock LR; von Herrath MG; Chait A; Bornfeldt KE. 2004. Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. J Clin Invest 114(5):659-68. [PubMed: 15343384]  [MGI Ref ID J:92597]

Rensen SS; Bieghs V; Xanthoulea S; Arfianti E; Bakker JA; Shiri-Sverdlov R; Hofker MH; Greve JW; Buurman WA. 2012. Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS One 7(12):e52411. [PubMed: 23285030]  [MGI Ref ID J:195762]

Repa JJ; Li H; Frank-Cannon TC; Valasek MA; Turley SD; Tansey MG; Dietschy JM. 2007. Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci 27(52):14470-80. [PubMed: 18160655]  [MGI Ref ID J:130969]

Repa JJ; Turley SD; Quan G; Dietschy JM. 2005. Delineation of molecular changes in intrahepatic cholesterol metabolism resulting from diminished cholesterol absorption. J Lipid Res 46(4):779-89. [PubMed: 15654122]  [MGI Ref ID J:98574]

Robbins CS; Chudnovskiy A; Rauch PJ; Figueiredo JL; Iwamoto Y; Gorbatov R; Etzrodt M; Weber GF; Ueno T; van Rooijen N; Mulligan-Kehoe MJ; Libby P; Nahrendorf M; Pittet MJ; Weissleder R; Swirski FK. 2012. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 125(2):364-74. [PubMed: 22144566]  [MGI Ref ID J:193795]

Robbins CS; Hilgendorf I; Weber GF; Theurl I; Iwamoto Y; Figueiredo JL; Gorbatov R; Sukhova GK; Gerhardt LM; Smyth D; Zavitz CC; Shikatani EA; Parsons M; van Rooijen N; Lin HY; Husain M; Libby P; Nahrendorf M; Weissleder R; Swirski FK. 2013. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19(9):1166-72. [PubMed: 23933982]  [MGI Ref ID J:201890]

Rogers L; Burchat S; Gage J; Hasu M; Thabet M; Wilcox L; Ramsamy TA; Whitman SC. 2008. Deficiency of invariant V alpha 14 natural killer T cells decreases atherosclerosis in LDL receptor null mice. Cardiovasc Res 78(1):167-74. [PubMed: 18192239]  [MGI Ref ID J:140276]

Rohlmann A; Gotthardt M; Hammer RE; Herz J. 1998. Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J Clin Invest 101(3):689-95. [PubMed: 9449704]  [MGI Ref ID J:67929]

Romeo GR; Moulton KS; Kazlauskas A. 2007. Attenuated expression of profilin-1 confers protection from atherosclerosis in the LDL receptor null mouse. Circ Res 101(4):357-67. [PubMed: 17615372]  [MGI Ref ID J:140294]

Rong S; Cao Q; Liu M; Seo J; Jia L; Boudyguina E; Gebre AK; Colvin PL; Smith TL; Murphy RC; Mishra N; Parks JS. 2012. Macrophage 12/15 lipoxygenase expression increases plasma and hepatic lipid levels and exacerbates atherosclerosis. J Lipid Res 53(4):686-95. [PubMed: 22279185]  [MGI Ref ID J:184947]

Roselaar SE; Kakkanathu PX; Daugherty A. 1996. Lymphocyte populations in atherosclerotic lesions of apoE -/- and LDL receptor -/- mice. Decreasing density with disease progression. Arterioscler Thromb Vasc Biol 16(8):1013-8. [PubMed: 8696940]  [MGI Ref ID J:111962]

Roubtsova A; Munkonda MN; Awan Z; Marcinkiewicz J; Chamberland A; Lazure C; Cianflone K; Seidah NG; Prat A. 2011. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 31(4):785-91. [PubMed: 21273557]  [MGI Ref ID J:184166]

Rousselet E; Marcinkiewicz J; Kriz J; Zhou A; Hatten ME; Prat A; Seidah NG. 2011. PCSK9 reduces the protein levels of the LDL receptor in mouse brain during development and after ischemic stroke. J Lipid Res 52(7):1383-91. [PubMed: 21518694]  [MGI Ref ID J:174826]

Rudling M; Angelin B. 2001. Growth hormone reduces plasma cholesterol in LDL receptor-deficient mice. FASEB J 15(8):1350-6. [PubMed: 11387232]  [MGI Ref ID J:120519]

Rudolf M; Winkler B; Aherrahou Z; Doehring LC; Kaczmarek P; Schmidt-Erfurth U. 2005. Increased expression of vascular endothelial growth factor associated with accumulation of lipids in Bruch's membrane of LDL receptor knockout mice. Br J Ophthalmol 89(12):1627-30. [PubMed: 16299144]  [MGI Ref ID J:116908]

Ruotsalainen AK; Inkala M; Partanen ME; Lappalainen JP; Kansanen E; Makinen PI; Heinonen SE; Laitinen HM; Heikkila J; Vatanen T; Horkko S; Yamamoto M; Yla-Herttuala S; Jauhiainen M; Levonen AL. 2013. The absence of macrophage Nrf2 promotes early atherogenesis. Cardiovasc Res 98(1):107-15. [PubMed: 23341579]  [MGI Ref ID J:210429]

Saito R; Matsuzaka T; Karasawa T; Sekiya M; Okada N; Igarashi M; Matsumori R; Ishii K; Nakagawa Y; Iwasaki H; Kobayashi K; Yatoh S; Takahashi A; Sone H; Suzuki H; Yahagi N; Yamada N; Shimano H. 2011. Macrophage Elovl6 deficiency ameliorates foam cell formation and reduces atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 31(9):1973-9. [PubMed: 21817094]  [MGI Ref ID J:191842]

Sakai K; Tiebel O; Ljungberg MC; Sullivan M; Lee HJ; Terashima T; Li R; Kobayashi K; Lu HC; Chan L; Oka K. 2009. A neuronal VLDLR variant lacking the third complement-type repeat exhibits high capacity binding of apoE containing lipoproteins. Brain Res 1276:11-21. [PubMed: 19393635]  [MGI Ref ID J:157221]

Sakamoto N; Rosenberg AS. 2011. Apolipoprotein B binding domains: evidence that they are cell-penetrating peptides that efficiently deliver antigenic peptide for cross-presentation of cytotoxic T cells. J Immunol 186(8):5004-11. [PubMed: 21402897]  [MGI Ref ID J:172521]

Samyn H; Moerland M; van Gent T; van Haperen R; Metso J; Grosveld F; Jauhiainen M; van Tol A; de Crom R. 2008. Plasma phospholipid transfer activity is essential for increased atherogenesis in PLTP transgenic mice: a mutation-inactivation study. J Lipid Res 49(12):2504-12. [PubMed: 18711210]  [MGI Ref ID J:142969]

Sanan DA; Newland DL; Tao R; Marcovina S; Wang J; Mooser V; Hammer RE; Hobbs HH. 1998. Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(a). Proc Natl Acad Sci U S A 95(8):4544-9. [PubMed: 9539774]  [MGI Ref ID J:47464]

Saraswathi V; Morrow JD; Hasty AH. 2009. Dietary fish oil exerts hypolipidemic effects in lean and insulin sensitizing effects in obese LDLR-/- mice. J Nutr 139(12):2380-6. [PubMed: 19864403]  [MGI Ref ID J:154774]

Schiller NK; Black AS; Bradshaw GP; Bonnet DJ; Curtiss LK. 2004. Participation of macrophages in atherosclerotic lesion morphology in LDLr-/- mice. J Lipid Res 45(8):1398-409. [PubMed: 15175354]  [MGI Ref ID J:91367]

Schiller NK; Boisvert WA; Curtiss LK. 2002. Inflammation in atherosclerosis: lesion formation in LDL receptor-deficient mice with perforin and Lyst(beige) mutations. Arterioscler Thromb Vasc Biol 22(8):1341-6. [PubMed: 12171798]  [MGI Ref ID J:103214]

Schmidt-Erfurth U; Rudolf M; Funk M; Hofmann-Rummelt C; Franz-Haas NS; Aherrahrou Z; Schlotzer-Schrehardt U. 2008. Ultrastructural changes in a murine model of graded Bruch membrane lipoidal degeneration and corresponding VEGF164 detection. Invest Ophthalmol Vis Sci 49(1):390-8. [PubMed: 18172117]  [MGI Ref ID J:132498]

Schneider F; Sukhova GK; Aikawa M; Canner J; Gerdes N; Tang SM; Shi GP; Apte SS; Libby P. 2008. Matrix-metalloproteinase-14 deficiency in bone-marrow-derived cells promotes collagen accumulation in mouse atherosclerotic plaques. Circulation 117(7):931-9. [PubMed: 18250269]  [MGI Ref ID J:145079]

Schneider JG; Finck BN; Ren J; Standley KN; Takagi M; Maclean KH; Bernal-Mizrachi C; Muslin AJ; Kastan MB; Semenkovich CF. 2006. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab 4(5):377-89. [PubMed: 17084711]  [MGI Ref ID J:129761]

Schonbeck U; Sukhova GK; Shimizu K; Mach F; Libby P. 2000. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice [see comments] Proc Natl Acad Sci U S A 97(13):7458-63. [PubMed: 10861012]  [MGI Ref ID J:63076]

Schreyer SA; Vick C; Lystig TC; Mystkowski P; LeBoeuf RC. 2002. LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. Am J Physiol Endocrinol Metab 282(1):E207-14. [PubMed: 11739102]  [MGI Ref ID J:75609]

Sehayek E; Ono JG; Duncan EM; Batta AK; Salen G; Shefer S; Neguyen LB; Yang K; Lipkin M; Breslow JL. 2001. Hyodeoxycholic acid efficiently suppresses atherosclerosis formation and plasma cholesterol levels in mice. J Lipid Res 42(8):1250-6. [PubMed: 11483626]  [MGI Ref ID J:70721]

Seidelmann SB; Kuo C; Pleskac N; Molina J; Sayers S; Li R; Zhou J; Johnson P; Braun K; Chan C; Teupser D; Breslow JL; Wight TN; Tall AR; Welch CL. 2008. Athsq1 is an atherosclerosis modifier locus with dramatic effects on lesion area and prominent accumulation of versican. Arterioscler Thromb Vasc Biol 28(12):2180-6. [PubMed: 18818413]  [MGI Ref ID J:159792]

Seimon TA; Nadolski MJ; Liao X; Magallon J; Nguyen M; Feric NT; Koschinsky ML; Harkewicz R; Witztum JL; Tsimikas S; Golenbock D; Moore KJ; Tabas I. 2010. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab 12(5):467-82. [PubMed: 21035758]  [MGI Ref ID J:167910]

Sekiya M; Osuga J; Nagashima S; Ohshiro T; Igarashi M; Okazaki H; Takahashi M; Tazoe F; Wada T; Ohta K; Takanashi M; Kumagai M; Nishi M; Takase S; Yahagi N; Yagyu H; Ohashi K; Nagai R; Kadowaki T; Furukawa Y; Ishibashi S. 2009. Ablation of neutral cholesterol ester hydrolase 1 accelerates atherosclerosis. Cell Metab 10(3):219-28. [PubMed: 19723498]  [MGI Ref ID J:152385]

Semenkovich CF; Coleman T; Daugherty A. 1998. Effects of heterozygous lipoprotein lipase deficiency on diet-induced atherosclerosis in mice. J Lipid Res 39(6):1141-51. [PubMed: 9643345]  [MGI Ref ID J:48030]

Senokuchi T; Liang CP; Seimon TA; Han S; Matsumoto M; Banks AS; Paik JH; DePinho RA; Accili D; Tabas I; Tall AR. 2008. Forkhead transcription factors (FoxOs) promote apoptosis of insulin-resistant macrophages during cholesterol-induced endoplasmic reticulum stress. Diabetes 57(11):2967-76. [PubMed: 18728232]  [MGI Ref ID J:142468]

Shah Z; Kampfrath T; Deiuliis JA; Zhong J; Pineda C; Ying Z; Xu X; Lu B; Moffatt-Bruce S; Durairaj R; Sun Q; Mihai G; Maiseyeu A; Rajagopalan S. 2011. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 124(21):2338-49. [PubMed: 22007077]  [MGI Ref ID J:189450]

Shao JS; Sierra OL; Cohen R; Mecham RP; Kovacs A; Wang J; Distelhorst K; Behrmann A; Halstead LR; Towler DA. 2011. Vascular calcification and aortic fibrosis: a bifunctional role for osteopontin in diabetic arteriosclerosis. Arterioscler Thromb Vasc Biol 31(8):1821-33. [PubMed: 21597007]  [MGI Ref ID J:191858]

Shaposhnik Z; Wang X; Lusis AJ. 2010. Arterial colony stimulating factor-1 influences atherosclerotic lesions by regulating monocyte migration and apoptosis. J Lipid Res 51(7):1962-70. [PubMed: 20194110]  [MGI Ref ID J:162834]

Shaposhnik Z; Wang X; Weinstein M; Bennett BJ; Lusis AJ. 2007. Granulocyte macrophage colony-stimulating factor regulates dendritic cell content of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 27(3):621-7. [PubMed: 17158354]  [MGI Ref ID J:130538]

Sharabi Y; Grossman E; Sherer Y; Shaish A; Levkovitz H; Bitzur R; Harats D. 2000. The effect of renin-angiotensin axis inhibition on early atherogenesis in LDL-receptor-deficient mice. Pathobiology 68(6):270-4. [PubMed: 11493760]  [MGI Ref ID J:71167]

Sherer Y; Shoenfeld Y; Shaish A; Levkovitz H; Bitzur R; Harats D. 2000. Suppression of atherogenesis in female low-density lipoprotein receptor knockout mice following magnesium fortification of drinking water: the importance of diet. Pathobiology 68(2):93-8. [PubMed: 10878506]  [MGI Ref ID J:63520]

Shi W; Wang X; Wong J; Hedrick CC; Wong H; Castellani LW; Lusis AJ. 2004. Effect of macrophage-derived apolipoprotein E on hyperlipidemia and atherosclerosis of LDLR-deficient mice. Biochem Biophys Res Commun 317(1):223-9. [PubMed: 15047172]  [MGI Ref ID J:88891]

Shih DM; Shaposhnik Z; Meng Y; Rosales M; Wang X; Wu J; Ratiner B; Zadini F; Zadini G; Lusis AJ. 2013. Hyodeoxycholic acid improves HDL function and inhibits atherosclerotic lesion formation in LDLR-knockout mice. FASEB J 27(9):3805-17. [PubMed: 23752203]  [MGI Ref ID J:201179]

Shih DM; Xia YR; Wang XP; Wang SS; Bourquard N; Fogelman AM; Lusis AJ; Reddy ST. 2007. Decreased obesity and atherosclerosis in human paraoxonase 3 transgenic mice. Circ Res 100(8):1200-7. [PubMed: 17379834]  [MGI Ref ID J:135375]

Shimada M; Ishibashi S; Inaba T; Yagyu H; Harada K; Osuga JI; Ohashi K; Yazaki Y; Yamada N. 1996. Suppression of diet-induced atherosclerosis in low density lipoprotein receptor knockout mice overexpressing lipoprotein lipase. Proc Natl Acad Sci U S A 93(14):7242-6. [PubMed: 8692976]  [MGI Ref ID J:34082]

Sigel S; Bunk S; Meergans T; Doninger B; Stich K; Stulnig T; Derfler K; Hoffmann J; Deininger S; von Aulock S; Knapp S. 2012. Apolipoprotein B100 is a suppressor of Staphylococcus aureus-induced innate immune responses in humans and mice. Eur J Immunol 42(11):2983-9. [PubMed: 22806614]  [MGI Ref ID J:188717]

Silvola JM; Saraste A; Forsback S; Laine VJ; Saukko P; Heinonen SE; Yla-Herttuala S; Roivainen A; Knuuti J. 2011. Detection of hypoxia by [18F]EF5 in atherosclerotic plaques in mice. Arterioscler Thromb Vasc Biol 31(5):1011-5. [PubMed: 21372297]  [MGI Ref ID J:191482]

Singh I; Sagare AP; Coma M; Perlmutter D; Gelein R; Bell RD; Deane RJ; Zhong E; Parisi M; Ciszewski J; Kasper RT; Deane R. 2013. Low levels of copper disrupt brain amyloid-beta homeostasis by altering its production and clearance. Proc Natl Acad Sci U S A 110(36):14771-6. [PubMed: 23959870]  [MGI Ref ID J:200976]

Singh U; Zhong S; Xiong M; Li TB; Sniderman A; Teng BB. 2004. Increased plasma non-esterified fatty acids and platelet-activating factor acetylhydrolase are associated with susceptibility to atherosclerosis in mice. Clin Sci (Lond) 106(4):421-32. [PubMed: 14717654]  [MGI Ref ID J:105456]

Sjoland H; Eitzman DT; Gordon D; Westrick R; Nabel EG; Ginsburg D. 2000. Atherosclerosis progression in LDL receptor-deficient and apolipoprotein E-deficient mice is independent of genetic alterations in plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 20(3):846-52. [PubMed: 10712412]  [MGI Ref ID J:61287]

Skogsberg J; Dicker A; Ryden M; Astrom G; Nilsson R; Bhuiyan H; Vitols S; Mairal A; Langin D; Alberts P; Walum E; Tegner J; Hamsten A; Arner P; Bjorkegren J. 2008. ApoB100-LDL acts as a metabolic signal from liver to peripheral fat causing inhibition of lipolysis in adipocytes. PLoS ONE 3(11):e3771. [PubMed: 19020660]  [MGI Ref ID J:143905]

Skogsberg J; Lundstrom J; Kovacs A; Nilsson R; Noori P; Maleki S; Kohler M; Hamsten A; Tegner J; Bjorkegren J. 2008. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes. PLoS Genet 4(3):e1000036. [PubMed: 18369455]  [MGI Ref ID J:136835]

Solca C; Pandit B; Yu H; Tint GS; Patel SB. 2007. Loss of apolipoprotein E exacerbates the neonatal lethality of the Smith-Lemli-Opitz syndrome mouse. Mol Genet Metab 91(1):7-14. [PubMed: 17197219]  [MGI Ref ID J:121454]

Sommerville LJ; Kelemen SE; Autieri MV. 2008. Increased smooth muscle cell activation and neointima formation in response to injury in AIF-1 transgenic mice. Arterioscler Thromb Vasc Biol 28(1):47-53. [PubMed: 17991871]  [MGI Ref ID J:147519]

Song H; Zhu L; Picardo CM; Maguire G; Leung V; Connelly PW; Ng DS. 2006. Coordinated alteration of hepatic gene expression in fatty acid and triglyceride synthesis in LCAT-null mice is associated with altered PUFA metabolism. Am J Physiol Endocrinol Metab 290(1):E17-E25. [PubMed: 16105858]  [MGI Ref ID J:104219]

Song L; Leung C; Schindler C. 2001. Lymphocytes are important in early atherosclerosis. J Clin Invest 108(2):251-9. [PubMed: 11457878]  [MGI Ref ID J:118405]

Sontag TJ; Chellan B; Getz GS; Reardon CA. 2013. Differing rates of cholesterol absorption among inbred mouse strains yield differing levels of HDL-cholesterol. J Lipid Res 54(9):2515-24. [PubMed: 23812556]  [MGI Ref ID J:200771]

Sorci-Thomas MG; Zabalawi M; Bharadwaj MS; Wilhelm AJ; Owen JS; Asztalos BF; Bhat S; Thomas MJ. 2012. Dysfunctional HDL containing L159R ApoA-I leads to exacerbation of atherosclerosis in hyperlipidemic mice. Biochim Biophys Acta 1821(3):502-12. [PubMed: 21944998]  [MGI Ref ID J:182370]

Souza JC; Vanzela EC; Ribeiro RA; Rezende LF; de Oliveira CA; Carneiro EM; Oliveira HC; Boschero AC. 2013. Cholesterol reduction ameliorates glucose-induced calcium handling and insulin secretion in islets from low-density lipoprotein receptor knockout mice. Biochim Biophys Acta 1831(4):769-75. [PubMed: 23298460]  [MGI Ref ID J:199048]

Spady DK; Cuthbert JA; Willard MN; Meidell RS. 1998. Overexpression of cholesterol 7alpha-hydroxylase (CYP7A) in mice lacking the low density lipoprotein (LDL) receptor gene. LDL transport and plasma LDL concentrations are reduced. J Biol Chem 273(1):126-32. [PubMed: 9417056]  [MGI Ref ID J:45043]

Spann NJ; Garmire LX; McDonald JG; Myers DS; Milne SB; Shibata N; Reichart D; Fox JN; Shaked I; Heudobler D; Raetz CR; Wang EW; Kelly SL; Sullards MC; Murphy RC; Merrill AH Jr; Brown HA; Dennis EA; Li AC; Ley K; Tsimikas S; Fahy E; Subramaniam S; Quehenberger O; Russell DW; Glass CK. 2012. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151(1):138-52. [PubMed: 23021221]  [MGI Ref ID J:188262]

Stachon P; Missiou A; Walter C; Varo N; Colberg C; Wolf D; Buchner M; von Zur Muhlen C; Zirlik K; Bode C; Zirlik A. 2010. Tumor necrosis factor receptor associated factor 6 is not required for atherogenesis in mice and does not associate with atherosclerosis in humans. PLoS One 5(7):e11589. [PubMed: 20644648]  [MGI Ref ID J:163110]

Stanford KI; Bishop JR; Foley EM; Gonzales JC; Niesman IR; Witztum JL; Esko JD. 2009. Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J Clin Invest 119(11):3236-45. [PubMed: 19805913]  [MGI Ref ID J:154621]

Stanic AK; Stein CM; Morgan AC; Fazio S; Linton MF; Wakeland EK; Olsen NJ; Major AS. 2006. Immune dysregulation accelerates atherosclerosis and modulates plaque composition in systemic lupus erythematosus. Proc Natl Acad Sci U S A 103(18):7018-23. [PubMed: 16636270]  [MGI Ref ID J:109461]

Staprans I; Pan XM; Rapp JH; Grunfeld C; Feingold KR. 2000. Oxidized cholesterol in the diet accelerates the development of atherosclerosis in LDL receptor- and apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 20(3):708-14. [PubMed: 10712395]  [MGI Ref ID J:103278]

Steffens S; Burger F; Pelli G; Dean Y; Elson G; Kosco-Vilbois M; Chatenoud L; Mach F. 2006. Short-term treatment with anti-CD3 antibody reduces the development and progression of atherosclerosis in mice. Circulation 114(18):1977-84. [PubMed: 17043169]  [MGI Ref ID J:127202]

Stein CS; Martins I; Davidson BL. 2000. Long-term reversal of hypercholesterolemia in low density lipoprotein receptor (LDLR)-deficient mice by adenovirus-mediated LDLR gene transfer combined with CD154 blockade J Gene Med 2(1):41-51. [PubMed: 10765504]  [MGI Ref ID J:62368]

Strack AM; Carballo-Jane E; Wang SP; Xue J; Ping X; McNamara LA; Thankappan A; Price O; Wolff M; Wu TJ; Kawka D; Mariano M; Burton C; Chang CH; Chen J; Menke J; Luell S; Zycband EI; Tong X; Raubertas R; Sparrow CP; Hubbard B; Woods J; O'Neill G; Waters MG; Sitlani A. 2013. Nicotinic acid and DP1 blockade: studies in mouse models of atherosclerosis. J Lipid Res 54(1):177-88. [PubMed: 23103473]  [MGI Ref ID J:192168]

Strom A; Olin AI; Aspberg A; Hultgardh-Nilsson A. 2006. Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration. Cardiovasc Res 69(3):755-63. [PubMed: 16409997]  [MGI Ref ID J:105710]

Subbaiah PV; Jiang XC; Belikova NA; Aizezi B; Huang ZH; Reardon CA. 2012. Regulation of plasma cholesterol esterification by sphingomyelin: Effect of physiological variations of plasma sphingomyelin on lecithin-cholesterol acyltransferase activity. Biochim Biophys Acta 1821(6):908-13. [PubMed: 22370449]  [MGI Ref ID J:185003]

Subramanian M; Thorp E; Hansson GK; Tabas I. 2013. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J Clin Invest 123(1):179-88. [PubMed: 23257360]  [MGI Ref ID J:194509]

Subramanian S; Goodspeed L; Wang S; Kim J; Zeng L; Ioannou GN; Haigh WG; Yeh MM; Kowdley KV; O'Brien KD; Pennathur S; Chait A. 2011. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res 52(9):1626-35. [PubMed: 21690266]  [MGI Ref ID J:175559]

Subramanian S; Han CY; Chiba T; McMillen TS; Wang SA; Haw A rd; Kirk EA; O'Brien KD; Chait A. 2008. Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 28(4):685-91. [PubMed: 18239153]  [MGI Ref ID J:149038]

Subramanian V; Golledge J; Ijaz T; Bruemmer D; Daugherty A. 2010. Pioglitazone-induced reductions in atherosclerosis occur via smooth muscle cell-specific interaction with PPAR{gamma}. Circ Res 107(8):953-8. [PubMed: 20798360]  [MGI Ref ID J:178193]

Subramanian V; Moorleghen JJ; Balakrishnan A; Howatt DA; Chishti AH; Uchida HA. 2013. Calpain-2 compensation promotes angiotensin II-induced ascending and abdominal aortic aneurysms in calpain-1 deficient mice. PLoS One 8(8):e72214. [PubMed: 23977256]  [MGI Ref ID J:206427]

Sugiyama E; Tanaka N; Nakajima T; Kamijo Y; Yokoyama S; Li Y; Gonzalez FJ; Aoyama T. 2006. Haploinsufficiency in the PPARalpha and LDL receptor genes leads to gender- and age-specific obesity and hyperinsulinemia. Biochem Biophys Res Commun 350(2):370-6. [PubMed: 17011521]  [MGI Ref ID J:116049]

Sui Y; Park SH; Xu J; Monette S; Helsley RN; Han SS; Zhou C. 2014. IKKbeta links vascular inflammation to obesity and atherosclerosis. J Exp Med 211(5):869-86. [PubMed: 24799533]  [MGI Ref ID J:211281]

Sukhova GK; Zhang Y; Pan JH; Wada Y; Yamamoto T; Naito M; Kodama T; Tsimikas S; Witztum JL; Lu ML; Sakara Y; Chin MT; Libby P; Shi GP. 2003. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 111(6):897-906. [PubMed: 12639996]  [MGI Ref ID J:82520]

Sun H; Samarghandi A; Zhang N; Yao Z; Xiong M; Teng BB. 2012. Proprotein convertase subtilisin/kexin type 9 interacts with apolipoprotein B and prevents its intracellular degradation, irrespective of the low-density lipoprotein receptor. Arterioscler Thromb Vasc Biol 32(7):1585-95. [PubMed: 22580899]  [MGI Ref ID J:186176]

Sun J; Hartvigsen K; Chou MY; Zhang Y; Sukhova GK; Zhang J; Lopez-Ilasaca M; Diehl CJ; Yakov N; Harats D; George J; Witztum JL; Libby P; Ploegh H; Shi GP. 2010. Deficiency of antigen-presenting cell invariant chain reduces atherosclerosis in mice. Circulation 122(8):808-20. [PubMed: 20697023]  [MGI Ref ID J:178588]

Sun J; Sukhova GK; Wolters PJ; Yang M; Kitamoto S; Libby P; MacFarlane LA; Mallen-St Clair J; Shi GP. 2007. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 13(6):719-24. [PubMed: 17546038]  [MGI Ref ID J:125116]

Sun L; Ishida T; Yasuda T; Kojima Y; Honjo T; Yamamoto Y; Yamamoto H; Ishibashi S; Hirata K; Hayashi Y. 2009. RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor-deficient mice. Cardiovasc Res 82(2):371-81. [PubMed: 19176597]  [MGI Ref ID J:162198]

Surmi BK; Atkinson RD; Gruen ML; Coenen KR; Hasty AH. 2008. The role of macrophage leptin receptor in aortic root lesion formation. Am J Physiol Endocrinol Metab 294(3):E488-95. [PubMed: 18182468]  [MGI Ref ID J:133462]

Tacken PJ; Teusink B; Jong MC; Harats D; Havekes LM; van Dijk KW; Hofker MH. 2000. LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice J Lipid Res 41(12):2055-62. [PubMed: 11108739]  [MGI Ref ID J:66431]

Tadin-Strapps M; Peterson LB; Cumiskey AM; Rosa RL; Mendoza VH; Castro-Perez J; Puig O; Zhang L; Strapps WR; Yendluri S; Andrews L; Pickering V; Rice J; Luo L; Chen Z; Tep S; Ason B; Somers EP; Sachs AB; Bartz SR; Tian J; Chin J; Hubbard BK; Wong KK; Mitnaul LJ. 2011. siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids. J Lipid Res 52(6):1084-97. [PubMed: 21398511]  [MGI Ref ID J:180925]

Takata Y; Liu J; Yin F; Collins AR; Lyon CJ; Lee CH; Atkins AR; Downes M; Barish GD; Evans RM; Hsueh WA; Tangirala RK. 2008. PPARdelta-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis. Proc Natl Acad Sci U S A 105(11):4277-82. [PubMed: 18337495]  [MGI Ref ID J:133474]

Taleb S; Herbin O; Ait-Oufella H; Verreth W; Gourdy P; Barateau V; Merval R; Esposito B; Clement K; Holvoet P; Tedgui A; Mallat Z. 2007. Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis. Arterioscler Thromb Vasc Biol 27(12):2691-8. [PubMed: 17690315]  [MGI Ref ID J:147531]

Taleb S; Romain M; Ramkhelawon B; Uyttenhove C; Pasterkamp G; Herbin O; Esposito B; Perez N; Yasukawa H; Van Snick J; Yoshimura A; Tedgui A; Mallat Z. 2009. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 206(10):2067-77. [PubMed: 19737863]  [MGI Ref ID J:153361]

Taneja D; Thompson J; Wilson P; Brandewie K; Schaefer L; Mitchell B; Tannock LR. 2010. Reversibility of renal injury with cholesterol lowering in hyperlipidemic diabetic mice. J Lipid Res 51(6):1464-70. [PubMed: 20110440]  [MGI Ref ID J:161500]

Tang EH; Shimizu K; Christen T; Rocha VZ; Shvartz E; Tesmenitsky Y; Sukhova G; Shi GP; Libby P. 2011. Lack of EP4 receptors on bone marrow-derived cells enhances inflammation in atherosclerotic lesions. Cardiovasc Res 89(1):234-43. [PubMed: 20736236]  [MGI Ref ID J:167790]

Tang EH; Shvartz E; Shimizu K; Rocha VZ; Zheng C; Fukuda D; Shi GP; Sukhova G; Libby P. 2011. Deletion of EP4 on bone marrow-derived cells enhances inflammation and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol 31(2):261-9. [PubMed: 21088251]  [MGI Ref ID J:184180]

Tang JJ; Li JG; Qi W; Qiu WW; Li PS; Li BL; Song BL. 2011. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab 13(1):44-56. [PubMed: 21195348]  [MGI Ref ID J:169478]

Tang M; Cyrus T; Yao Y; Vocun L; Pratico D. 2005. Involvement of thromboxane receptor in the proatherogenic effect of isoprostane F2alpha-III: evidence from apolipoprotein E- and LDL receptor-deficient mice. Circulation 112(18):2867-74. [PubMed: 16267259]  [MGI Ref ID J:116835]

Tangirala RK; Bischoff ED; Joseph SB; Wagner BL; Walczak R; Laffitte BA; Daige CL; Thomas D; Heyman RA; Mangelsdorf DJ; Wang X; Lusis AJ; Tontonoz P; Schulman IG. 2002. Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci U S A 99(18):11896-901. [PubMed: 12193651]  [MGI Ref ID J:125452]

Tangirala RK; Pratico D; FitzGerald GA; Chun S; Tsukamoto K; Maugeais C; Usher DC; Pure E; Rader DJ. 2001. Reduction of isoprostanes and regression of advanced atherosclerosis by apolipoprotein E. J Biol Chem 276(1):261-6. [PubMed: 11024044]  [MGI Ref ID J:66833]

Tangirala RK; Rubin EM; Palinski W. 1995. Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J Lipid Res 36(11):2320-8. [PubMed: 8656070]  [MGI Ref ID J:29950]

Tanigawa H; Billheimer JT; Tohyama J; Zhang Y; Rothblat G; Rader DJ. 2007. Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation 116(11):1267-73. [PubMed: 17709636]  [MGI Ref ID J:139845]

Tavori H; Fan D; Blakemore JL; Yancey PG; Ding L; Linton MF; Fazio S. 2013. Serum proprotein convertase subtilisin/kexin type 9 and cell surface low-density lipoprotein receptor: evidence for a reciprocal regulation. Circulation 127(24):2403-13. [PubMed: 23690465]  [MGI Ref ID J:211389]

Tennert C; Teupser D; Mueller MA; Wilfert W; Renner-Muller I; Stein O; Stein Y; Sippel AE; Wolf E; Thiery J. 2007. Effect of macrophage ApoE on atherosclerosis in LDL-receptor deficient mice. Biochem Biophys Res Commun 361(3):574-9. [PubMed: 17669363]  [MGI Ref ID J:124271]

Tep S; Mihaila R; Freeman A; Pickering V; Huyhn F; Tadin-Strapps M; Stracks A; Hubbard B; Caldwell J; Flanagan WM; Kuklin NA; Ason B. 2012. Rescue of Mtp siRNA-induced hepatic steatosis by DGAT2 siRNA silencing. J Lipid Res 53(5):859-67. [PubMed: 22355095]  [MGI Ref ID J:184930]

Terasaka N; Wang N; Yvan-Charvet L; Tall AR. 2007. High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc Natl Acad Sci U S A 104(38):15093-8. [PubMed: 17846428]  [MGI Ref ID J:125197]

Terasaka N; Yu S; Yvan-Charvet L; Wang N; Mzhavia N; Langlois R; Pagler T; Li R; Welch CL; Goldberg IJ; Tall AR. 2008. ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. J Clin Invest 118(11):3701-13. [PubMed: 18924609]  [MGI Ref ID J:144580]

Terrand J; Bruban V; Zhou L; Gong W; El Asmar Z; May P; Zurhove K; Haffner P; Philippe C; Woldt E; Matz RL; Gracia C; Metzger D; Auwerx J; Herz J; Boucher P. 2009. LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of Wnt signaling. J Biol Chem 284(1):381-8. [PubMed: 18990694]  [MGI Ref ID J:146007]

Teupser D; Kretzschmar D; Tennert C; Burkhardt R; Wilfert W; Fengler D; Naumann R; Sippel AE; Thiery J. 2008. Effect of macrophage overexpression of murine liver X receptor-alpha (LXR-alpha) on atherosclerosis in LDL-receptor deficient mice. Arterioscler Thromb Vasc Biol 28(11):2009-15. [PubMed: 18787185]  [MGI Ref ID J:159797]

Teupser D; Pavlides S; Tan M; Gutierrez-Ramos JC; Kolbeck R; Breslow JL. 2004. Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc Natl Acad Sci U S A 101(51):17795-800. [PubMed: 15596719]  [MGI Ref ID J:95279]

Teupser D; Tan M; Persky AD; Breslow JL. 2006. Atherosclerosis quantitative trait loci are sex- and lineage-dependent in an intercross of C57BL/6 and FVB/N low-density lipoprotein receptor-/- mice. Proc Natl Acad Sci U S A 103(1):123-8. [PubMed: 16380418]  [MGI Ref ID J:104621]

Teupser D; Weber O; Rao TN; Sass K; Thiery J; Fehling HJ. 2011. No reduction of atherosclerosis in C-reactive protein (CRP)-deficient mice. J Biol Chem 286(8):6272-9. [PubMed: 21149301]  [MGI Ref ID J:170409]

Teusink B; Mensenkamp AR; van der Boom H; Kuipers F; van Dijk KW; Havekes LM. 2001. Stimulation of the in vivo production of very low density lipoproteins by apolipoprotein E is independent of the presence of the low density lipoprotein receptor. J Biol Chem 276(44):40693-7. [PubMed: 11546779]  [MGI Ref ID J:119460]

Thatcher SE; Zhang X; Howatt DA; Lu H; Gurley SB; Daugherty A; Cassis LA. 2011. Angiotensin-converting enzyme 2 deficiency in whole body or bone marrow-derived cells increases atherosclerosis in low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 31(4):758-65. [PubMed: 21252069]  [MGI Ref ID J:184167]

Thirumangalakudi L; Prakasam A; Zhang R; Bimonte-Nelson H; Sambamurti K; Kindy MS; Bhat NR. 2008. High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106(1):475-85. [PubMed: 18410513]  [MGI Ref ID J:137264]

Thompson J; Wilson P; Brandewie K; Taneja D; Schaefer L; Mitchell B; Tannock LR. 2011. Renal accumulation of biglycan and lipid retention accelerates diabetic nephropathy. Am J Pathol 179(3):1179-87. [PubMed: 21723246]  [MGI Ref ID J:176327]

Thorp E; Li G; Seimon TA; Kuriakose G; Ron D; Tabas I. 2009. Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe-/- and Ldlr-/- mice lacking CHOP. Cell Metab 9(5):474-81. [PubMed: 19416717]  [MGI Ref ID J:148485]

Tian J; Pei H; Sanders JM; Angle JF; Sarembock IJ; Matsumoto AH; Helm GA; Shi W. 2006. Hyperlipidemia is a major determinant of neointimal formation in LDL receptor-deficient mice. Biochem Biophys Res Commun 345(3):1004-9. [PubMed: 16712797]  [MGI Ref ID J:109645]

Tiebel O; Oka K; Robinson K; Sullivan M; Martinez J; Nakamuta M; Ishimura-Oka K; Chan L. 1999. Mouse very low-density lipoprotein receptor (VLDLR): gene structure, tissue-specific expression and dietary and developmental regulation. Atherosclerosis 145(2):239-51. [PubMed: 10488949]  [MGI Ref ID J:59491]

Tietge UJ; Pratico D; Ding T; Funk CD; Hildebrand RB; Van Berkel T; Van Eck M. 2005. Macrophage-specific expression of group IIA sPLA2 results in accelerated atherogenesis by increasing oxidative stress. J Lipid Res 46(8):1604-14. [PubMed: 15897607]  [MGI Ref ID J:100744]

Tilley RE; Pedersen B; Pawlinski R; Sato Y; Erlich JH; Shen Y; Day S; Huang Y; Eitzman DT; Boisvert WA; Curtiss LK; Fay WP; Mackman N. 2006. Atherosclerosis in mice is not affected by a reduction in tissue factor expression. Arterioscler Thromb Vasc Biol 26(3):555-62. [PubMed: 16385085]  [MGI Ref ID J:127980]

Tokuno S; Hinokiyama K; Tokuno K; Lowbeer C; Hansson LO; Valen G. 2002. Spontaneous ischemic events in the brain and heart adapt the hearts of severely atherosclerotic mice to ischemia. Arterioscler Thromb Vasc Biol 22(6):995-1001. [PubMed: 12067910]  [MGI Ref ID J:102937]

Towler DA; Bidder M; Latifi T; Coleman T; Semenkovich CF. 1998. Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice. J Biol Chem 273(46):30427-34. [PubMed: 9804809]  [MGI Ref ID J:50962]

Tozawa R; Ishibashi S; Osuga J; Yagyu H; Oka T; Chen Z; Ohashi K; Perrey S; Shionoiri F; Yahagi N; Harada K; Gotoda T; Yazaki Y; Yamada N. 1999. Embryonic lethality and defective neural tube closure in mice lacking squalene synthase. J Biol Chem 274(43):30843-8. [PubMed: 10521476]  [MGI Ref ID J:58231]

Truong TQ; Auger A; Denizeau F; Brissette L. 2000. Analysis of low-density lipoprotein catabolism by primary cultures of hepatic cells from normal and low-density lipoprotein receptor knockout mice. Biochim Biophys Acta 1484(2-3):307-15. [PubMed: 10760479]  [MGI Ref ID J:61821]

Tu P; Bhasin S; Hruz PW; Herbst KL; Castellani LW; Hua N; Hamilton JA; Guo W. 2009. Genetic disruption of myostatin reduces the development of proatherogenic dyslipidemia and atherogenic lesions in Ldlr null mice. Diabetes 58(8):1739-48. [PubMed: 19509018]  [MGI Ref ID J:154414]

Twisk J; Gillian-Daniel DL; Tebon A; Wang L; Barrett PH; Attie AD. 2000. The role of the LDL receptor in apolipoprotein B secretion. J Clin Invest 105(4):521-32. [PubMed: 10683382]  [MGI Ref ID J:60664]

Uchida HA; Poduri A; Subramanian V; Cassis LA; Daugherty A. 2011. Urokinase-type plasminogen activator deficiency in bone marrow-derived cells augments rupture of angiotensin II-induced abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 31(12):2845-52. [PubMed: 21868698]  [MGI Ref ID J:191466]

Umans L; Overbergh L; Serneels L; Tesseur I; Van Leuven F. 1999. Analysis of expression of genes involved in apolipoprotein E-based lipoprotein metabolism in pregnant mice deficient in the receptor-associated protein, the low density lipoprotein receptor, or apolipoprotein E. Biol Reprod 61(5):1216-25. [PubMed: 10529267]  [MGI Ref ID J:107547]

Valenta DT; Bulgrien JJ; Bonnet DJ; Curtiss LK. 2008. Macrophage PLTP is atheroprotective in LDLr-deficient mice with systemic PLTP deficiency. J Lipid Res 49(1):24-32. [PubMed: 17928634]  [MGI Ref ID J:130081]

Van Eck M; Bos IS; Hildebrand RB; Van Rij BT; Van Berkel TJ. 2004. Dual role for scavenger receptor class B, type I on bone marrow-derived cells in atherosclerotic lesion development. Am J Pathol 165(3):785-94. [PubMed: 15331403]  [MGI Ref ID J:92320]

Van Eck M; Ye D; Hildebrand RB; Kar Kruijt J; de Haan W; Hoekstra M; Rensen PC; Ehnholm C; Jauhiainen M; Van Berkel TJ. 2007. Important role for bone marrow-derived cholesteryl ester transfer protein in lipoprotein cholesterol redistribution and atherosclerotic lesion development in LDL receptor knockout mice. Circ Res 100(5):678-85. [PubMed: 17293475]  [MGI Ref ID J:133704]

Van den Bergh A; Vanderper A; Vangheluwe P; Desjardins F; Nevelsteen I; Verreth W; Wuytack F; Holvoet P; Flameng W; Balligand JL; Herijgers P. 2008. Dyslipidaemia in type II diabetic mice does not aggravate contractile impairment but increases ventricular stiffness. Cardiovasc Res 77(2):371-9. [PubMed: 18006491]  [MGI Ref ID J:161915]

VanderLaan PA; Reardon CA; Thisted RA; Getz GS. 2009. VLDL best predicts aortic root atherosclerosis in LDL receptor deficient mice. J Lipid Res 50(3):376-85. [PubMed: 18957695]  [MGI Ref ID J:149089]

Varadhachary AS; Monestier M; Salgame P. 2001. Reciprocal induction of IL-10 and IL-12 from macrophages by low-density lipoprotein and its oxidized forms. Cell Immunol 213(1):45-51. [PubMed: 11747355]  [MGI Ref ID J:115363]

Vasandani C; Kafrouni AI; Caronna A; Bashmakov Y; Gotthardt M; Horton JD; Spady DK. 2002. Upregulation of hepatic LDL transport by n-3 fatty acids in LDL receptor knockout mice. J Lipid Res 43(5):772-84. [PubMed: 11971949]  [MGI Ref ID J:124748]

Veniant MM; Sullivan MA; Kim SK; Ambroziak P; Chu A; Wilson MD; Hellerstein MK; Rudel LL; Walzem RL; Young SG. 2000. Defining the atherogenicity of large and small lipoproteins containing apolipoprotein B100 J Clin Invest 106(12):1501-10. [PubMed: 11120757]  [MGI Ref ID J:66424]

Veniant MM; Zlot CH; Walzem RL; Pierotti V; Driscoll R; Dichek D ; Herz J ; Young SG. 1998. Lipoprotein clearance mechanisms in LDL receptor-deficient Apo-B48-only and Apo-B100-only mice. J Clin Invest 102(8):1559-68. [PubMed: 9788969]  [MGI Ref ID J:51022]

Verschuren L; Kooistra T; Bernhagen J; Voshol PJ; Ouwens DM; van Erk M; de Vries-van der Weij J; Leng L; van Bockel JH; van Dijk KW; Fingerle-Rowson G; Bucala R; Kleemann R. 2009. MIF deficiency reduces chronic inflammation in white adipose tissue and impairs the development of insulin resistance, glucose intolerance, and associated atherosclerotic disease. Circ Res 105(1):99-107. [PubMed: 19478200]  [MGI Ref ID J:164757]

Vikramadithyan RK; Hu Y; Noh HL; Liang CP; Hallam K; Tall AR; Ramasamy R; Goldberg IJ. 2005. Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. J Clin Invest 115(9):2434-43. [PubMed: 16127462]  [MGI Ref ID J:100916]

Vikramadithyan RK; Kako Y; Chen G; Hu Y; Arikawa-Hirasawa E; Yamada Y; Goldberg IJ. 2004. Atherosclerosis in perlecan heterozygous mice. J Lipid Res 45(10):1806-12. [PubMed: 15258195]  [MGI Ref ID J:93619]

Vikstedt R; Ye D; Metso J; Hildebrand RB; Van Berkel TJ; Ehnholm C; Jauhiainen M; Van Eck M. 2007. Macrophage phospholipid transfer protein contributes significantly to total plasma phospholipid transfer activity and its deficiency leads to diminished atherosclerotic lesion development. Arterioscler Thromb Vasc Biol 27(3):578-86. [PubMed: 17170377]  [MGI Ref ID J:148673]

Von Der Thusen JH; Kuiper J; Fekkes ML; De Vos P; Van Berkel TJ; Biessen EA. 2001. Attenuation of atherogenesis by systemic and local adenovirus-mediated gene transfer of interleukin-10 in LDLr-/- mice. FASEB J 15(14):2730-2. [PubMed: 11687507]  [MGI Ref ID J:73161]

Voorend M; van der Ven AJ; Mulder M; Lodder J; Steinbusch HW; Bruggeman CA. 2010. Chlamydia pneumoniae infection enhances microglial activation in atherosclerotic mice. Neurobiol Aging 31(10):1766-73. [PubMed: 19027992]  [MGI Ref ID J:165244]

Wang M; Lee E; Song W; Ricciotti E; Rader DJ; Lawson JA; Pure E; FitzGerald GA. 2008. Microsomal prostaglandin E synthase-1 deletion suppresses oxidative stress and angiotensin II-induced abdominal aortic aneurysm formation. Circulation 117(10):1302-9. [PubMed: 18285567]  [MGI Ref ID J:148450]

Wang M; Zukas AM; Hui Y; Ricciotti E; Pure E; FitzGerald GA. 2006. Deletion of microsomal prostaglandin E synthase-1 augments prostacyclin and retards atherogenesis. Proc Natl Acad Sci U S A 103(39):14507-12. [PubMed: 16973753]  [MGI Ref ID J:114545]

Wang MD; Kiss RS; Franklin V; McBride HM; Whitman SC; Marcel YL. 2007. Different cellular traffic of LDL-cholesterol and acetylated LDL-cholesterol leads to distinct reverse cholesterol transport pathways. J Lipid Res 48(3):633-45. [PubMed: 17148552]  [MGI Ref ID J:120283]

Wang S; Zhang M; Liang B; Xu J; Xie Z; Liu C; Viollet B; Yan D; Zou MH. 2010. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ Res 106(6):1117-28. [PubMed: 20167927]  [MGI Ref ID J:171036]

Wang Z; Nicholls SJ; Rodriguez ER; Kummu O; Horkko S; Barnard J; Reynolds WF; Topol EJ; DiDonato JA; Hazen SL. 2007. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med 13(10):1176-84. [PubMed: 17828273]  [MGI Ref ID J:129923]

Wang ZH; Shang YY; Zhang S; Zhong M; Wang XP; Deng JT; Pan J; Zhang Y; Zhang W. 2012. Silence of TRIB3 suppresses atherosclerosis and stabilizes plaques in diabetic ApoE-/-/LDL receptor-/- mice. Diabetes 61(2):463-73. [PubMed: 22275087]  [MGI Ref ID J:196759]

Webb NR; Bostrom MA; Szilvassy SJ; van der Westhuyzen DR; Daugherty A; de Beer FC. 2003. Macrophage-expressed group IIA secretory phospholipase A2 increases atherosclerotic lesion formation in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 23(2):263-8. [PubMed: 12588769]  [MGI Ref ID J:127990]

Weber C; Meiler S; Doring Y; Koch M; Drechsler M; Megens RT; Rowinska Z; Bidzhekov K; Fecher C; Ribechini E; van Zandvoort MA; Binder CJ; Jelinek I; Hristov M; Boon L; Jung S; Korn T; Lutz MB; Forster I; Zenke M; Hieronymus T; Junt T; Zernecke A. 2011. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J Clin Invest 121(7):2898-910. [PubMed: 21633167]  [MGI Ref ID J:175665]

Weng S; Sprague JE; Oh J; Riek AE; Chin K; Garcia M; Bernal-Mizrachi C. 2013. Vitamin D deficiency induces high blood pressure and accelerates atherosclerosis in mice. PLoS One 8(1):e54625. [PubMed: 23349943]  [MGI Ref ID J:195839]

Weng S; Zemany L; Standley KN; Novack DV; La Regina M; Bernal-Mizrachi C; Coleman T; Semenkovich CF. 2003. Beta3 integrin deficiency promotes atherosclerosis and pulmonary inflammation in high-fat-fed, hyperlipidemic mice. Proc Natl Acad Sci U S A 100(11):6730-5. [PubMed: 12746502]  [MGI Ref ID J:83615]

Westerterp M; Koetsveld J; Yu S; Han S; Li R; Goldberg IJ; Welch CL; Tall AR. 2010. Increased atherosclerosis in mice with vascular ATP-binding cassette transporter G1 deficiency--brief report. Arterioscler Thromb Vasc Biol 30(11):2103-5. [PubMed: 20705913]  [MGI Ref ID J:183210]

Westmuckett AD; Moore KL. 2009. Lack of tyrosylprotein sulfotransferase activity in hematopoietic cells drastically attenuates atherosclerosis in Ldlr-/- mice. Arterioscler Thromb Vasc Biol 29(11):1730-6. [PubMed: 19679829]  [MGI Ref ID J:167800]

Whitman SC; Rateri DL; Szilvassy SJ; Cornicelli JA; Daugherty A. 2002. Macrophage-specific expression of class A scavenger receptors in LDL receptor(-/-) mice decreases atherosclerosis and changes spleen morphology. J Lipid Res 43(8):1201-8. [PubMed: 12177164]  [MGI Ref ID J:78922]

Wilck N; Fechner M; Dreger H; Hewing B; Arias A; Meiners S; Baumann G; Stangl V; Stangl K; Ludwig A. 2012. Attenuation of early atherogenesis in low-density lipoprotein receptor-deficient mice by proteasome inhibition. Arterioscler Thromb Vasc Biol 32(6):1418-26. [PubMed: 22516063]  [MGI Ref ID J:197090]

Wilhelm AJ; Zabalawi M; Grayson JM; Weant AE; Major AS; Owen J; Bharadwaj M; Walzem R; Chan L; Oka K; Thomas MJ; Sorci-Thomas MG. 2009. Apolipoprotein A-I and its role in lymphocyte cholesterol homeostasis and autoimmunity. Arterioscler Thromb Vasc Biol 29(6):843-9. [PubMed: 19286630]  [MGI Ref ID J:162193]

Wilhelm AJ; Zabalawi M; Owen JS; Shah D; Grayson JM; Major AS; Bhat S; Gibbs DP Jr; Thomas MJ; Sorci-Thomas MG. 2010. Apolipoprotein A-I modulates regulatory T cells in autoimmune LDLr-/-, ApoA-I-/- mice. J Biol Chem 285(46):36158-69. [PubMed: 20833724]  [MGI Ref ID J:166862]

Willnow TE; Armstrong SA; Hammer RE; Herz J. 1995. Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo. Proc Natl Acad Sci U S A 92(10):4537-41. [PubMed: 7538675]  [MGI Ref ID J:43736]

Wilund KR; Yu L; Xu F; Hobbs HH; Cohen JC. 2004. High-level expression of ABCG5 and ABCG8 attenuates diet-induced hypercholesterolemia and atherosclerosis in Ldlr-/- mice. J Lipid Res 45(8):1429-36. [PubMed: 15175362]  [MGI Ref ID J:91353]

Witting PK; Pettersson K; Ostlund-Lindqvist AM; Westerlund C; Eriksson AW; Stocker R. 1999. Inhibition by a coantioxidant of aortic lipoprotein lipid peroxidation and atherosclerosis in apolipoprotein E and low density lipoprotein receptor gene double knockout mice. FASEB J 13(6):667-75. [PubMed: 10094927]  [MGI Ref ID J:54037]

Wolfrum C; Poy MN; Stoffel M. 2005. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat Med 11(4):418-22. [PubMed: 15793583]  [MGI Ref ID J:97550]

Wong CW; Burger F; Pelli G; Mach F; Kwak BR. 2003. Dual benefit of reduced Cx43 on atherosclerosis in LDL receptor-deficient mice. Cell Commun Adhes 10(4-6):395-400. [PubMed: 14681047]  [MGI Ref ID J:103076]

Wouters K; van Bilsen M; van Gorp PJ; Bieghs V; Lutjohann D; Kerksiek A; Staels B; Hofker MH; Shiri-Sverdlov R. 2010. Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice. FEBS Lett 584(5):1001-5. [PubMed: 20114046]  [MGI Ref ID J:157585]

Wu D; Yang H; Xiang W; Zhou L; Shi M; Julies G; Laplante JM; Ballard BR; Guo Z. 2005. Heterozygous mutation of ataxia-telangiectasia mutated gene aggravates hypercholesterolemia in apoE-deficient mice. J Lipid Res 46(7):1380-7. [PubMed: 15863839]  [MGI Ref ID J:100500]

Wu JE; Basso F; Shamburek RD; Amar MJ; Vaisman B; Szakacs G; Joyce C; Tansey T; Freeman L; Paigen BJ; Thomas F; Brewer HB Jr; Santamarina-Fojo S. 2004. Hepatic ABCG5 and ABCG8 overexpression increases hepatobiliary sterol transport but does not alter aortic atherosclerosis in transgenic mice. J Biol Chem 279(22):22913-25. [PubMed: 15044450]  [MGI Ref ID J:90718]

Wu L; Vikramadithyan R; Yu S; Pau C; Hu Y; Goldberg IJ; Dansky HM. 2006. Addition of dietary fat to cholesterol in the diets of LDL receptor knockout mice: effects on plasma insulin, lipoproteins, and atherosclerosis. J Lipid Res 47(10):2215-22. [PubMed: 16840797]  [MGI Ref ID J:116491]

Xanthoulea S; Thelen M; Pottgens C; Gijbels MJ; Lutgens E; de Winther MP. 2009. Absence of p55 TNF receptor reduces atherosclerosis, but has no major effect on angiotensin II induced aneurysms in LDL receptor deficient mice. PLoS One 4(7):e6113. [PubMed: 19582157]  [MGI Ref ID J:151487]

Xia M; Chen D; Endresz V; Faludi I; Szabo A; Gonczol E; Kakkar V; Lu X. 2013. Immunization of Chlamydia pneumoniae (Cpn)-infected Apob(tm2Sgy)Ldlr(tm1Her)/J mice with a combined peptide of Cpn significantly reduces atherosclerotic lesion development. PLoS One 8(12):e81056. [PubMed: 24349031]  [MGI Ref ID J:211155]

Xie C; Burns DK; Turley SD; Dietschy JM. 2000. Cholesterol is sequestered in the brains of mice with Niemann-Pick type C disease but turnover is increased. J Neuropathol Exp Neurol 59(12):1106-17. [PubMed: 11138930]  [MGI Ref ID J:104996]

Xie C; Richardson JA; Turley SD; Dietschy JM. 2006. Cholesterol substrate pools and steroid hormone levels are normal in the face of mutational inactivation of NPC1 protein. J Lipid Res 47(5):953-63. [PubMed: 16461760]  [MGI Ref ID J:109000]

Xie C; Turley SD; Dietschy JM. 2000. Centripetal cholesterol flow from the extrahepatic organs through the liver is normal in mice with mutated niemann-pick type C protein (NPC1) J Lipid Res 41(8):1278-89. [PubMed: 10946016]  [MGI Ref ID J:64028]

Xie C; Turley SD; Dietschy JM. 1999. Cholesterol accumulation in tissues of the Niemann-pick type C mouse is determined by the rate of lipoprotein-cholesterol uptake through the coated-pit pathway in each organ. Proc Natl Acad Sci U S A 96(21):11992-7. [PubMed: 10518564]  [MGI Ref ID J:76735]

Xu Y; Arai H; Murayama T; Kita T; Yokode M. 2007. Hypercholesterolemia contributes to the development of atherosclerosis and vascular remodeling by recruiting bone marrow-derived cells in cuff-induced vascular injury. Biochem Biophys Res Commun 363(3):782-7. [PubMed: 17897625]  [MGI Ref ID J:127338]

Yagyu H; Kitamine T; Osuga J; Tozawa R; Chen Z; Kaji Y; Oka T; Perrey S; Tamura Y; Ohashi K; Okazaki H; Yahagi N; Shionoiri F; Iizuka Y; Harada K; Shimano H; Yamashita H; Gotoda T; Yamada N; Ishibashi S. 2000. Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J Biol Chem 275(28):21324-30. [PubMed: 10777503]  [MGI Ref ID J:63468]

Yan D; Jauhiainen M; Hildebrand RB; Willems van Dijk K; Van Berkel TJ; Ehnholm C; Van Eck M; Olkkonen VM. 2007. Expression of human OSBP-related protein 1L in macrophages enhances atherosclerotic lesion development in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 27(7):1618-24. [PubMed: 17478758]  [MGI Ref ID J:134908]

Yan D; Navab M; Bruce C; Fogelman AM; Jiang XC. 2004. PLTP deficiency improves the anti-inflammatory properties of HDL and reduces the ability of LDL to induce monocyte chemotactic activity. J Lipid Res 45(10):1852-8. [PubMed: 15258196]  [MGI Ref ID J:93620]

Yancey PG; Ding Y; Fan D; Blakemore JL; Zhang Y; Ding L; Zhang J; Linton MF; Fazio S. 2011. Low-density lipoprotein receptor-related protein 1 prevents early atherosclerosis by limiting lesional apoptosis and inflammatory Ly-6Chigh monocytosis: evidence that the effects are not apolipoprotein E dependent. Circulation 124(4):454-64. [PubMed: 21730304]  [MGI Ref ID J:186294]

Yang X; Peterson L; Thieringer R; Deignan JL; Wang X; Zhu J; Wang S; Zhong H; Stepaniants S; Beaulaurier J; Wang IM; Rosa R; Cumiskey AM; Luo JM; Luo Q; Shah K; Xiao J; Nickle D; Plump A; Schadt EE; Lusis AJ; Lum PY. 2010. Identification and validation of genes affecting aortic lesions in mice. J Clin Invest 120(7):2414-22. [PubMed: 20577049]  [MGI Ref ID J:163781]

Ye D; Meurs I; Ohigashi M; Calpe-Berdiel L; Habets KL; Zhao Y; Kubo Y; Yamaguchi A; Van Berkel TJ; Nishi T; Van Eck M. 2010. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice. Biochem Biophys Res Commun 395(3):387-94. [PubMed: 20382126]  [MGI Ref ID J:160341]

Ye D; Zhao Y; Hildebrand RB; Singaraja RR; Hayden MR; Van Berkel TJ; Van Eck M. 2011. The dynamics of macrophage infiltration into the arterial wall during atherosclerotic lesion development in low-density lipoprotein receptor knockout mice. Am J Pathol 178(1):413-22. [PubMed: 21224078]  [MGI Ref ID J:168077]

Yen FT; Roitel O; Bonnard L; Notet V; Pratte D; Stenger C; Magueur E; Bihain BE. 2008. Lipolysis stimulated lipoprotein receptor: a novel molecular link between hyperlipidemia, weight gain, and atherosclerosis in mice. J Biol Chem 283(37):25650-9. [PubMed: 18644789]  [MGI Ref ID J:142162]

Yokoyama M; Seo T; Park T; Yagyu H; Hu Y; Son NH; Augustus AS; Vikramadithyan RK; Ramakrishnan R; Pulawa LK; Eckel RH; Goldberg IJ. 2007. Effects of lipoprotein lipase and statins on cholesterol uptake into heart and skeletal muscle. J Lipid Res 48(3):646-55. [PubMed: 17189607]  [MGI Ref ID J:120271]

Yoon J; Subramanian S; Ding Y; Wang S; Goodspeed L; Sullivan B; Kim J; O'Brien KD; Chait A. 2011. Chronic insulin therapy reduces adipose tissue macrophage content in LDL-receptor-deficient mice. Diabetologia :. [PubMed: 21327868]  [MGI Ref ID J:169596]

Yoshimatsu M; Terasaki Y; Sakashita N; Kiyota E; Sato H; van der Laan LJ; Takeya M. 2004. Induction of macrophage scavenger receptor MARCO in nonalcoholic steatohepatitis indicates possible involvement of endotoxin in its pathogenic process. Int J Exp Pathol 85(6):335-43. [PubMed: 15566430]  [MGI Ref ID J:104609]

Yu F; Du F; Wang Y; Huang S; Miao R; Major AS; Murphy EA; Fu M; Fan D. 2013. Bone marrow deficiency of MCPIP1 results in severe multi-organ inflammation but diminishes atherogenesis in hyperlipidemic mice. PLoS One 8(11):e80089. [PubMed: 24223214]  [MGI Ref ID J:209217]

Yu KC; Chen W; Cooper AD. 2001. LDL receptor-related protein mediates cell-surface clustering and hepatic sequestration of chylomicron remnants in LDLR-deficient mice. J Clin Invest 107(11):1387-94. [PubMed: 11390420]  [MGI Ref ID J:69912]

Yu KC; Jiang Y; Chen W; Cooper AD. 2000. Rapid initial removal of chylomicron remnants by the mouse liver does not require hepatically localized apolipoprotein E J Lipid Res 41(11):1715-27. [PubMed: 11060341]  [MGI Ref ID J:65695]

Yu Y; Lucitt MB; Stubbe J; Cheng Y; Friis UG; Hansen PB; Jensen BL; Smyth EM; FitzGerald GA. 2009. Prostaglandin F2alpha elevates blood pressure and promotes atherosclerosis. Proc Natl Acad Sci U S A 106(19):7985-90. [PubMed: 19416858]  [MGI Ref ID J:148401]

Yvan-Charvet L; Pagler T; Gautier EL; Avagyan S; Siry RL; Han S; Welch CL; Wang N; Randolph GJ; Snoeck HW; Tall AR. 2010. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328(5986):1689-93. [PubMed: 20488992]  [MGI Ref ID J:161310]

Yvan-Charvet L; Ranalletta M; Wang N; Han S; Terasaka N; Li R; Welch C; Tall AR. 2007. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 117(12):3900-8. [PubMed: 17992262]  [MGI Ref ID J:130777]

Zabalawi M; Bharadwaj M; Horton H; Cline M; Willingham M; Thomas MJ; Sorci-Thomas MG. 2007. Inflammation and skin cholesterol in LDLr-/-, apoA-I-/- mice: link between cholesterol homeostasis and self-tolerance? J Lipid Res 48(1):52-65. [PubMed: 17071966]  [MGI Ref ID J:117480]

Zabalawi M; Bhat S; Loughlin T; Thomas MJ; Alexander E; Cline M; Bullock B; Willingham M; Sorci-Thomas MG. 2003. Induction of fatal inflammation in LDL receptor and ApoA-I double-knockout mice fed dietary fat and cholesterol. Am J Pathol 163(3):1201-13. [PubMed: 12937162]  [MGI Ref ID J:85174]

Zaid A; Roubtsova A; Essalmani R; Marcinkiewicz J; Chamberland A; Hamelin J; Tremblay M; Jacques H; Jin W; Davignon J; Seidah NG; Prat A. 2008. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 48(2):646-54. [PubMed: 18666258]  [MGI Ref ID J:169834]

Zernecke A; Bot I; Djalali-Talab Y; Shagdarsuren E; Bidzhekov K; Meiler S; Krohn R; Schober A; Sperandio M; Soehnlein O; Bornemann J; Tacke F; Biessen EA; Weber C. 2008. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res 102(2):209-17. [PubMed: 17991882]  [MGI Ref ID J:145593]

Zhang C; An J; Strickland DK; Yepes M. 2009. The low-density lipoprotein receptor-related protein 1 mediates tissue-type plasminogen activator-induced microglial activation in the ischemic brain. Am J Pathol 174(2):586-94. [PubMed: 19147818]  [MGI Ref ID J:144185]

Zhang WJ; Bird KE; McMillen TS; LeBoeuf RC; Hagen TM; Frei B. 2008. Dietary alpha-lipoic acid supplementation inhibits atherosclerotic lesion development in apolipoprotein E-deficient and apolipoprotein E/low-density lipoprotein receptor-deficient mice. Circulation 117(3):421-8. [PubMed: 18158360]  [MGI Ref ID J:145089]

Zhang Y; Breevoort SR; Angdisen J; Fu M; Schmidt DR; Holmstrom SR; Kliewer SA; Mangelsdorf DJ; Schulman IG. 2012. Liver LXRalpha expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest 122(5):1688-99. [PubMed: 22484817]  [MGI Ref ID J:184536]

Zhang Y; Wang X; Vales C; Lee FY; Lee H; Lusis AJ; Edwards PA. 2006. FXR deficiency causes reduced atherosclerosis in Ldlr-/- mice. Arterioscler Thromb Vasc Biol 26(10):2316-21. [PubMed: 16825595]  [MGI Ref ID J:128055]

Zhao B; Song J; Chow WN; St Clair RW; Rudel LL; Ghosh S. 2007. Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J Clin Invest 117(10):2983-92. [PubMed: 17885686]  [MGI Ref ID J:127535]

Zhao L; Cuff CA; Moss E; Wille U; Cyrus T; Klein EA; Pratico D; Rader DJ; Hunter CA; Pure E; Funk CD. 2002. Selective interleukin-12 synthesis defect in 12/15-lipoxygenase-deficient macrophages associated with reduced atherosclerosis in a mouse model of familial hypercholesterolemia. J Biol Chem 277(38):35350-6. [PubMed: 12122008]  [MGI Ref ID J:79120]

Zhao Y; Pennings M; Hildebrand RB; Ye D; Calpe-Berdiel L; Out R; Kjerrulf M; Hurt-Camejo E; Groen AK; Hoekstra M; Jessup W; Chimini G; Van Berkel TJ; Van Eck M. 2010. Enhanced foam cell formation, atherosclerotic lesion development, and inflammation by combined deletion of ABCA1 and SR-BI in Bone marrow-derived cells in LDL receptor knockout mice on western-type diet. Circ Res 107(12):e20-31. [PubMed: 21071707]  [MGI Ref ID J:178508]

Zhao Y; Su B; Jacobs RL; Kennedy B; Francis GA; Waddington E; Brosnan JT; Vance JE; Vance DE. 2009. Lack of phosphatidylethanolamine N-methyltransferase alters plasma VLDL phospholipids and attenuates atherosclerosis in mice. Arterioscler Thromb Vasc Biol 29(9):1349-55. [PubMed: 19520976]  [MGI Ref ID J:167813]

Zhao Y; Ye D; Wang J; Calpe-Berdiel L; Azzis SB; Van Berkel TJ; Van Eck M. 2011. Stage-specific remodeling of atherosclerotic lesions upon cholesterol lowering in LDL receptor knockout mice. Am J Pathol 179(3):1522-32. [PubMed: 21741939]  [MGI Ref ID J:179953]

Zhou C; Pridgen B; King N; Xu J; Breslow JL. 2011. Hyperglycemic Ins2AkitaLdlr-/- mice show severely elevated lipid levels and increased atherosclerosis: a model of type 1 diabetic macrovascular disease. J Lipid Res 52(8):1483-93. [PubMed: 21606463]  [MGI Ref ID J:174983]

Zhou L; Choi HY; Li WP; Xu F; Herz J. 2009. LRP1 controls cPLA2 phosphorylation, ABCA1 expression and cellular cholesterol export. PLoS One 4(8):e6853. [PubMed: 19718435]  [MGI Ref ID J:152391]

Zhou L; Takayama Y; Boucher P; Tallquist MD; Herz J. 2009. LRP1 regulates architecture of the vascular wall by controlling PDGFRbeta-dependent phosphatidylinositol 3-kinase activation. PLoS One 4(9):e6922. [PubMed: 19742316]  [MGI Ref ID J:153626]

Zhou L; Yang H; Lin X; Okoro EU; Guo Z. 2012. Cholecystokinin elevates mouse plasma lipids. PLoS One 7(12):e51011. [PubMed: 23300532]  [MGI Ref ID J:195734]

Zhou Q; Mei Y; Shoji T; Han X; Kaminski K; Oh GT; Ongusaha PP; Zhang K; Schmitt H; Moser M; Bode C; Liao JK. 2012. Rho-associated coiled-coil-containing kinase 2 deficiency in bone marrow-derived cells leads to increased cholesterol efflux and decreased atherosclerosis. Circulation 126(18):2236-47. [PubMed: 23011471]  [MGI Ref ID J:210071]

Zhou X; He W; Huang Z; Gotto AM Jr; Hajjar DP; Han J. 2008. Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism. J Biol Chem 283(4):2129-38. [PubMed: 18029360]  [MGI Ref ID J:130725]

Zhu L; Stalker TJ; Fong KP; Jiang H; Tran A; Crichton I; Lee EK; Neeves KB; Maloney SF; Kikutani H; Kumanogoh A; Pure E; Diamond SL; Brass LF. 2009. Disruption of SEMA4D ameliorates platelet hypersensitivity in dyslipidemia and confers protection against the development of atherosclerosis. Arterioscler Thromb Vasc Biol 29(7):1039-45. [PubMed: 19390055]  [MGI Ref ID J:167817]

Zhu SN; Chen M; Jongstra-Bilen J; Cybulsky MI. 2009. GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions. J Exp Med 206(10):2141-9. [PubMed: 19752185]  [MGI Ref ID J:153507]

Zirlik A; Maier C; Gerdes N; MacFarlane L; Soosairajah J; Bavendiek U; Ahrens I; Ernst S; Bassler N; Missiou A; Patko Z; Aikawa M; Schonbeck U; Bode C; Libby P; Peter K. 2007. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation 115(12):1571-80. [PubMed: 17372166]  [MGI Ref ID J:133045]

Zotes TM; Arias CF; Fuster JJ; Spada R; Perez-Yague S; Hirsch E; Wymann M; Carrera AC; Andres V; Barber DF. 2013. PI3K p110gamma deletion attenuates murine atherosclerosis by reducing macrophage proliferation but not polarization or apoptosis in lesions. PLoS One 8(8):e72674. [PubMed: 23991137]  [MGI Ref ID J:204917]

de Claro RA; Zhu X; Tang J; Morgan-Stevenson V; Schwartz BR; Iwata A; Liles WC; Raines EW; Harlan JM. 2011. Hematopoietic Fas Deficiency Does Not Affect Experimental Atherosclerotic Lesion Formation despite Inducing a Proatherogenic State. Am J Pathol 178(6):2931-7. [PubMed: 21550016]  [MGI Ref ID J:173162]

de Haan W; Out R; Berbee JF; van der Hoogt CC; van Dijk KW; van Berkel TJ; Romijn JA; Jukema JW; Havekes LM; Rensen PC. 2008. Apolipoprotein CI inhibits scavenger receptor BI and increases plasma HDL levels in vivo. Biochem Biophys Res Commun 377(4):1294-8. [PubMed: 18992221]  [MGI Ref ID J:143183]

de Nooijer R; Bot I; von der Thusen JH; Leeuwenburgh MA; Overkleeft HS; Kraaijeveld AO; Dorland R; van Santbrink PJ; van Heiningen SH; Westra MM; Kovanen PT; Jukema JW; van der Wall EE; van Berkel TJ; Shi GP; Biessen EA. 2009. Leukocyte cathepsin S is a potent regulator of both cell and matrix turnover in advanced atherosclerosis. Arterioscler Thromb Vasc Biol 29(2):188-94. [PubMed: 19095996]  [MGI Ref ID J:163799]

de Oliveira J; Hort MA; Moreira EL; Glaser V; Ribeiro-do-Valle RM; Prediger RD; Farina M; Latini A; de Bem AF. 2011. Positive correlation between elevated plasma cholesterol levels and cognitive impairments in LDL receptor knockout mice: relevance of cortico-cerebral mitochondrial dysfunction and oxidative stress. Neuroscience 197:99-106. [PubMed: 21945034]  [MGI Ref ID J:184047]

de Souza JC; de Oliveira CA; Carneiro EM; Boschero AC; de Oliveira HC. 2010. Cholesterol toxicity in pancreatic islets from LDL receptor-deficient mice. Diabetologia 53(11):2461-2; author reply 2463-4. [PubMed: 20694455]  [MGI Ref ID J:166652]

van Dijk KW; van Vlijmen BJ; de Winther MP; van 't Hof B; van der Zee A; van der Boom H; Havekes LM; Hofker MH. 1999. Hyperlipidemia of ApoE2(Arg(158)-Cys) and ApoE3-Leiden transgenic mice is modulated predominantly by LDL receptor expression. Arterioscler Thromb Vasc Biol 19(12):2945-51. [PubMed: 10591674]  [MGI Ref ID J:59826]

van Eck M; Bos IS; Kaminski WE; Orso E; Rothe G; Twisk J; Bottcher A; Van Amersfoort ES; Christiansen-Weber TA; Fung-Leung WP; Van Berkel TJ; Schmitz G. 2002. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc Natl Acad Sci U S A 99(9):6298-303. [PubMed: 11972062]  [MGI Ref ID J:76337]

van Es T; van Puijvelde GH; Ramos OH; Segers FM; Joosten LA; van den Berg WB; Michon IM; de Vos P; van Berkel TJ; Kuiper J. 2009. Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochem Biophys Res Commun 388(2):261-5. [PubMed: 19660432]  [MGI Ref ID J:152718]

van Gils JM; Derby MC; Fernandes LR; Ramkhelawon B; Ray TD; Rayner KJ; Parathath S; Distel E; Feig JL; Alvarez-Leite JI; Rayner AJ; McDonald TO; O'Brien KD; Stuart LM; Fisher EA; Lacy-Hulbert A; Moore KJ. 2012. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat Immunol 13(2):136-43. [PubMed: 22231519]  [MGI Ref ID J:181210]

van Leeuwen M; Kemna MJ; de Winther MP; Boon L; Duijvestijn AM; Henatsch D; Bos NA; Gijbels MJ; Tervaert JW. 2013. Passive immunization with hypochlorite-oxLDL specific antibodies reduces plaque volume in LDL receptor-deficient mice. PLoS One 8(7):e68039. [PubMed: 23874490]  [MGI Ref ID J:204410]

van Puijvelde GH; Hauer AD; de Vos P; van den Heuvel R; van Herwijnen MJ; van der Zee R; van Eden W; van Berkel TJ; Kuiper J. 2006. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 114(18):1968-76. [PubMed: 17060383]  [MGI Ref ID J:127201]

van Vlijmen BJ; Rohlmann A; Page ST; Bensadoun A; Bos IS; van Berkel TJ; Havekes LM; Herz J. 1999. An extrahepatic receptor-associated protein-sensitive mechanism is involved in the metabolism of triglyceride-rich lipoproteins. J Biol Chem 274(49):35219-26. [PubMed: 10575007]  [MGI Ref ID J:58704]

van Vlijmen BJ; van Dijk KW; van't Hof HB; van Gorp PJ; van der Zee A; van der Boom H; Breuer ML; Hofker MH; Havekes LM. 1996. In the absence of endogenous mouse apolipoprotein E, apolipoprotein E*2(Arg-158 --> Cys) transgenic mice develop more severe hyperlipoproteinemia than apolipoprotein E*3-Leiden transgenic mice. J Biol Chem 271(48):30595-602. [PubMed: 8940032]  [MGI Ref ID J:37473]

van der Hoogt CC; Berbee JF; Espirito Santo SM; Gerritsen G; Krom YD; van der Zee A; Havekes LM; van Dijk KW; Rensen PC. 2006. Apolipoprotein CI causes hypertriglyceridemia independent of the very-low-density lipoprotein receptor and apolipoprotein CIII in mice. Biochim Biophys Acta 1761(2):213-20. [PubMed: 16478678]  [MGI Ref ID J:110564]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2525.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3283.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Control Information

  Control
   000648 AKR/J
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.6)