Strain Name:

B6.129X1-Mapttm1Hnd/J

Stock Number:

007251

Order this mouse

Availability:

Repository- Live

Use Restrictions Apply, see Terms of Use
Hippocampal neurons (primary culture) from embryos that are homozygous for the microtubule-associated protein tau (Mapt) knock-out mutation, TAU-/-, have delayed axonal extension and shorter total dendritic length and abnormal mitochondrial placement and movement. This mutant mouse strain may be useful in studies of neuronal development, axonogenesis, and organelle movement.

Description

Strain Information

Former Names B6.129-Mapttm1Hnd/J    (Changed: 25-JUL-13 )
Type Congenic; Mutant Strain; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemHomozygote x Homozygote         (Female x Male)   13-AUG-08
Specieslaboratory mouse
GenerationN9+N2F6 (10-DEC-13)
Generation Definitions
 
Donating Investigator Michael Vitek,   Duke University Medical Center

Description
Mice that are homozygous for the targeted mutation are viable, fertile, normal in size and do not display any gross physical or behavioral abnormalities. No gene product (mRNA or protein) is detected by RT-PCR analysis of total brain RNA, Western blot analysis of total brain homogenates or immunostraining of coronal brain sections. Hippocampal neurons from homozygous embryos, in primary culture, have delayed axonal extension and shorter total dendritic length when compared to wildtype controls. Mitochondria in the primary culture cells cluster at the distal end of axons. The frequency and velocity of mitochondrial anterograde movements is increased.

This mutant mouse strain may be useful in studies of neuronal development, axonogenesis, and organelle movement.

Development
A targeting vector containing neomycin resistance and herpes simplex virus thymidine kinase genes was used to disrupt exon 1. The construct was electroporated into 129X1/SvJ derived embryonic stem (ES) cells from Genome Systems. Correctly targeted ES cells were injected into recipient blastocysts. The resulting chimeric animals were crossed to C57BL/6 mice, and then backcrossed to C57BL/6 for at least 8 generations.

Control Information

  Control
   000664 C57BL/6J
 
  Considerations for Choosing Controls

Related Strains

Alzheimer's Disease Models
005987   129-Achetm1Loc/J
006409   129S1.129(Cg)-Tg(APPSw)40Btla/Mmjax
008077   129S1/Sv-Bchetm1Loc/J
016198   129S6.Cg-Tg(Camk2a-tTA)1Mmay/JlwsJ
014556   129S6/SvEv-Apoetm4Mae/J
006555   A.129(B6)-Tg(APPSw)40Btla/Mmjax
005708   B6.129-Apbb1tm1Quhu/J
004714   B6.129-Bace1tm1Pcw/J
004098   B6.129-Klc1tm1Gsn/J
004193   B6.129-Psen1tm1Mpm/J
003615   B6.129-Psen1tm1Shn/J
005300   B6.129-Tg(APPSw)40Btla/Mmjax
005617   B6.129P-Psen2tm1Bdes/J
002609   B6.129P2-Nos2tm1Lau/J
007685   B6.129P2-Psen1tm1Vln/J
007999   B6.129P2-Sorl1Gt(Ex255)Byg/J
008087   B6.129S1-Bchetm1Loc/J
002509   B6.129S2-Plautm1Mlg/J
005301   B6.129S2-Tg(APP)8.9Btla/J
004163   B6.129S4-Cdk5r1tm1Lht/J
010959   B6.129S4-Grk5tm1Rjl/J
010960   B6.129S4-Grk5tm2Rjl/J
002213   B6.129S4-Ngfrtm1Jae/J
006406   B6.129S4-Tg(APPSwLon)96Btla/Mmjax
006469   B6.129S4-Tg(PSEN1H163R)G9Btla/J
012564   B6.129S5-Dhcr24tm1Lex/SbpaJ
004142   B6.129S7-Aplp2tm1Dbo/J
004133   B6.129S7-Apptm1Dbo/J
013040   B6.Cg-Apoetm1Unc Ins2Akita/J
005642   B6.Cg-Clutm1Jakh/J
005491   B6.Cg-Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
009126   B6.Cg-Nos2tm1Lau Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
005866   B6.Cg-Tg(APP695)3Dbo Tg(PSEN1dE9)S9Dbo/Mmjax
008730   B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
005864   B6.Cg-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax
007575   B6.Cg-Tg(CAG-Ngb,-EGFP)1Dgrn/J
016197   B6.Cg-Tg(CAG-OTC/CAT)4033Prab/J
005855   B6.Cg-Tg(Camk2a-Prkaca)426Tabe/J
007004   B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ
004996   B6.Cg-Tg(DBH-Gal)1923Stei/J
007673   B6.Cg-Tg(Gad1-EGFP)3Gfng/J
004662   B6.Cg-Tg(PDGFB-APP)5Lms/J
006293   B6.Cg-Tg(PDGFB-APPSwInd)20Lms/2Mmjax
006006   B6.Cg-Tg(Prnp-APP)A-2Dbo/J
008596   B6.Cg-Tg(Prnp-Abca1)EHol/J
006005   B6.Cg-Tg(Prnp-App/APPswe)E1-2Dbo/Mmjax
007180   B6.Cg-Tg(Prnp-ITM2B/APP695*40)1Emcg/J
007182   B6.Cg-Tg(Prnp-ITM2B/APP695*42)A12Emcg/J
005999   B6.Cg-Tg(SBE/TK-luc)7Twc/J
012597   B6.Cg-Tg(Thy1-COL25A1)861Yfu/J
007051   B6.Cg-Tg(tetO-APPSwInd)102Dbo/Mmjax
007052   B6.Cg-Tg(tetO-APPSwInd)107Dbo/Mmjax
007049   B6.Cg-Tg(tetO-APPSwInd)885Dbo/Mmjax
009337   B6.FVB-Tg(Prnp-RTN3)2Yanr/J
006394   B6;129-Apba2tm1Sud Apba3tm1Sud Apba1tm1Sud/J
008364   B6;129-Chattm1(cre/ERT)Nat/J
008476   B6;129-Ncstntm1Sud/J
004807   B6;129-Psen1tm1Mpm Tg(APPSwe,tauP301L)1Lfa/Mmjax
007605   B6;129P-Psen1tm1Vln/J
005618   B6;129P2-Bace2tm1Bdes/J
008333   B6;129P2-Dldtm1Ptl/J
002596   B6;129P2-Nos2tm1Lau/J
003822   B6;129S-Psen1tm1Shn/J
012639   B6;129S4-Mapttm3(HDAC2)Jae/J
012869   B6;129S6-Apbb2tm1Her/J
006410   B6;129S6-Chattm2(cre)Lowl/J
005993   B6;129S6-Pcsk9tm1Jdh/J
008636   B6;C-Tg(Prnp-APP695*/EYFP)49Gsn/J
007002   B6;C3-Tg(Prnp-ITM2B/APP695*42)A12Emcg/Mmjax
008169   B6;C3-Tg(Prnp-MAPT*P301S)PS19Vle/J
000231   B6;C3Fe a/a-Csf1op/J
008850   B6;SJL-Tg(Mt1-LDLR)93-4Reh/AgnJ
003378   B6C3-Tg(APP695)3Dbo Tg(PSEN1)5Dbo/J
004462   B6C3-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax
003741   B6D2-Tg(Prnp-MAPT)43Vle/J
016556   B6N.129-Ptpn5tm1Pjlo/J
018957   B6N.129S6(B6)-Chattm2(cre)Lowl/J
024841   B6N.Cg-Tg(Prnp-MAPT*P301S)PS19Vle/J
006554   B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
012621   C.129S(B6)-Chrna3tm1.1Hwrt/J
002328   C.129S2-Plautm1Mlg/J
003375   C3B6-Tg(APP695)3Dbo/Mmjax
005087   C57BL/6-Tg(Camk2a-IDE)1Selk/J
005086   C57BL/6-Tg(Camk2a-MME)3Selk/J
008833   C57BL/6-Tg(Camk2a-UBB)3413-1Fwvl/J
007027   C57BL/6-Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
010800   C57BL/6-Tg(Thy1-PTGS2)300Kand/J
010703   C57BL/6-Tg(Thy1-PTGS2)303Kand/J
005706   C57BL/6-Tg(tetO-CDK5R1/GFP)337Lht/J
006618   C57BL/6-Tg(tetO-COX8A/EYFP)1Ksn/J
007677   CB6-Tg(Gad1-EGFP)G42Zjh/J
007072   CByJ.129P2(B6)-Nos2tm1Lau/J
006472   D2.129(B6)-Tg(APPSw)40Btla/Mmjax
007067   D2.129P2(B6)-Apoetm1Unc/J
013719   D2.Cg-Apoetm1Unc Ins2Akita/J
003718   FVB-Tg(GadGFP)45704Swn/J
013732   FVB-Tg(NPEPPS)1Skar/J
013156   FVB-Tg(tetO-CDK5R1*)1Vln/J
015815   FVB-Tg(tetO-MAPT*P301L)#Kha/JlwsJ
002329   FVB.129S2-Plautm1Mlg/J
003753   FVB/N-Tg(Eno2CDK5R1)1Jdm/J
006143   FVB/N-Tg(Thy1-cre)1Vln/J
008051   NOD.129P2(B6)-Ctsbtm1Jde/RclJ
008390   STOCK Apptm1Sud/J
012640   STOCK Hdac2tm1.2Rdp/J
004808   STOCK Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
004779   STOCK Mapttm1(EGFP)Klt/J
014092   STOCK Tg(ACTB-tTA2,-MAPT/lacZ)1Luo/J
014544   STOCK Tg(tetO-ABL1*P242E*P249E)CPdav/J
View Alzheimer's Disease Models     (109 strains)

View Strains carrying   Mapttm1Hnd     (6 strains)

View Strains carrying other alleles of Mapt     (6 strains)

Additional Web Information

Visit the Alzheimer's Disease Mouse Model Resource site for helpful information on Alzheimer's Disease and research resources.

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Frontotemporal Dementia; FTD   (MAPT)
Parkinson Disease, Late-Onset; PD   (MAPT)
Parkinson-Dementia Syndrome   (MAPT)
Pick Disease of Brain   (MAPT)
Supranuclear Palsy, Progressive, 1; PSNP1   (MAPT)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Mapttm1Hnd/Mapt+

        involves: 129X1/SvJ * C57BL/6
  • behavior/neurological phenotype
  • decreased susceptibility to pharmacologically induced seizures
    • severity is reduced and seizure onset is delayed after pentylenetetrazole treatment compared to wild-type mice   (MGI Ref ID J:121330)
    • mice are resistant to kainate-induced seizures over a larger range of doses than wild-type mice   (MGI Ref ID J:121330)
  • nervous system phenotype
  • decreased susceptibility to pharmacologically induced seizures
    • severity is reduced and seizure onset is delayed after pentylenetetrazole treatment compared to wild-type mice   (MGI Ref ID J:121330)
    • mice are resistant to kainate-induced seizures over a larger range of doses than wild-type mice   (MGI Ref ID J:121330)

The following phenotype information may relate to a genetic background differing from this JAX® Mice strain.

Mapttm1Hnd/Mapttm1Hnd

        involves: 129X1/SvJ * C57BL/6
  • nervous system phenotype
  • abnormal axon extension
    • neuronal cultures from E16 mice show less axonal extension than wild-type neurons; mutant neurons lag behind wild-type in development over initial 2 days in culture, then catch up, but total sum of minor processes/axonal lengths is less than wild-type   (MGI Ref ID J:78649)
  • abnormal dendrite morphology
    • between 4 and 7 days in culture, total dendritic length of mutant neurons is less than in wild-type; after 7 days in culture, neurons still lag behind wild-type showing more developmental delay   (MGI Ref ID J:78649)
  • decreased susceptibility to pharmacologically induced seizures
    • severity is reduced and seizure onset is delayed after pentylenetetrazole treatment compared to wild-type mice   (MGI Ref ID J:121330)
    • mice are resistant to kainate-induced seizures over a larger range of doses than wild-type mice   (MGI Ref ID J:121330)
  • behavior/neurological phenotype
  • decreased susceptibility to pharmacologically induced seizures
    • severity is reduced and seizure onset is delayed after pentylenetetrazole treatment compared to wild-type mice   (MGI Ref ID J:121330)
    • mice are resistant to kainate-induced seizures over a larger range of doses than wild-type mice   (MGI Ref ID J:121330)
  • cellular phenotype
  • abnormal axon extension
    • neuronal cultures from E16 mice show less axonal extension than wild-type neurons; mutant neurons lag behind wild-type in development over initial 2 days in culture, then catch up, but total sum of minor processes/axonal lengths is less than wild-type   (MGI Ref ID J:78649)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Neurobiology Research
Alzheimer's Disease
Parkinson's Disease

Research Tools
Neurobiology Research

Mapttm1Hnd related

Neurobiology Research
Alzheimer's Disease
      Tau (Mapt) mutants

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Mapttm1Hnd
Allele Name targeted mutation 1, Hana N Dawson
Allele Type Targeted (knock-out)
Common Name(s) TAU-;
Mutation Made By Michael Vitek,   Duke University Medical Center
Strain of Origin129X1/SvJ
Gene Symbol and Name Mapt, microtubule-associated protein tau
Chromosome 11
Gene Common Name(s) AI413597; AW045860; DDPAC; FTDP-17; MAPTL; MSTD; MTBT1; MTBT2; Mtapt; PPND; RNPTAU; TAU; Tau; expressed sequence AI413597; expressed sequence AW045860; pTau;
Molecular Note Exon 1, encoding the translational start site, was replaced by a neomycin selection cassette via homologous recombination. RT-PCR analysis of total brain RNA obtained from homozygous mutant mice showed a lack of transcript produced by the targeted locus.The absence of encoded protein was verified by Western blot analysis of brain homogenates as well as by immunocytochemical analysis of coronal sections. [MGI Ref ID J:78649]

Genotyping

Genotyping Information

Genotyping Protocols

Mapttm1Hnd, Melt Curve Analysis
Mapttm1Hnd, Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Dawson HN; Ferreira A; Eyster MV; Ghoshal N; Binder LI; Vitek MP. 2001. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114(Pt 6):1179-87. [PubMed: 11228161]  [MGI Ref ID J:78649]

Jimenez-Mateos EM; Gonzalez-Billault C; Dawson HN; Vitek MP; Avila J. 2006. Role of MAP1B in axonal retrograde transport of mitochondria. Biochem J 397(1):53-9. [PubMed: 16536727]  [MGI Ref ID J:116415]

Additional References

Mapttm1Hnd related

Andrews-Zwilling Y; Bien-Ly N; Xu Q; Li G; Bernardo A; Yoon SY; Zwilling D; Yan TX; Chen L; Huang Y. 2010. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neurosci 30(41):13707-17. [PubMed: 20943911]  [MGI Ref ID J:165492]

Baglietto-Vargas D; Kitazawa M; Le EJ; Estrada-Hernandez T; Rodriguez-Ortiz CJ; Medeiros R; Green KN; LaFerla FM. 2014. Endogenous murine tau promotes neurofibrillary tangles in 3xTg-AD mice without affecting cognition. Neurobiol Dis 62:407-15. [PubMed: 24176788]  [MGI Ref ID J:207203]

Barreda EG; Avila J. 2011. Tau regulates the subcellular localization of calmodulin. Biochem Biophys Res Commun 408(3):500-4. [PubMed: 21531208]  [MGI Ref ID J:172402]

Dawson HN; Cantillana V; Jansen M; Wang H; Vitek MP; Wilcock DM; Lynch JR; Laskowitz DT. 2010. Loss of tau elicits axonal degeneration in a mouse model of Alzheimer's disease. Neuroscience 169(1):516-31. [PubMed: 20434528]  [MGI Ref ID J:165237]

Fuster-Matanzo A; de Barreda EG; Dawson HN; Vitek MP; Avila J; Hernandez F. 2009. Function of tau protein in adult newborn neurons. FEBS Lett 583(18):3063-8. [PubMed: 19695252]  [MGI Ref ID J:153129]

Gomez de Barreda E; Perez M; Gomez Ramos P; de Cristobal J; Martin-Maestro P; Moran A; Dawson HN; Vitek MP; Lucas JJ; Hernandez F; Avila J. 2010. Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiol Dis 37(3):622-9. [PubMed: 20004245]  [MGI Ref ID J:158536]

Higuchi M; Ishihara T; Zhang B; Hong M; Andreadis A; Trojanowski J; Lee VM. 2002. Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron 35(3):433-46. [PubMed: 12165467]  [MGI Ref ID J:78400]

Holth JK; Bomben VC; Reed JG; Inoue T; Younkin L; Younkin SG; Pautler RG; Botas J; Noebels JL. 2013. Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. J Neurosci 33(4):1651-9. [PubMed: 23345237]  [MGI Ref ID J:193896]

Jin YN; Chen PC; Watson JA; Walters BJ; Phillips SE; Green K; Schmidt R; Wilson JA; Johnson GV; Roberson ED; Dobrunz LE; Wilson SM. 2012. Usp14 deficiency increases tau phosphorylation without altering tau degradation or causing tau-dependent deficits. PLoS One 7(10):e47884. [PubMed: 23144711]  [MGI Ref ID J:192359]

Lei P; Ayton S; Finkelstein DI; Spoerri L; Ciccotosto GD; Wright DK; Wong BX; Adlard PA; Cherny RA; Lam LQ; Roberts BR; Volitakis I; Egan GF; McLean CA; Cappai R; Duce JA; Bush AI. 2012. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18(2):291-5. [PubMed: 22286308]  [MGI Ref ID J:180272]

Luo Y; Nie YJ; Shi HR; Ni ZF; Wang Q; Wang JZ; Liu GP. 2013. PTPA activates protein phosphatase-2A through reducing its phosphorylation at tyrosine-307 with upregulation of protein tyrosine phosphatase 1B. Biochim Biophys Acta 1833(5):1235-43. [PubMed: 23428800]  [MGI Ref ID J:199030]

Meilandt WJ; Yu GQ; Chin J; Roberson ED; Palop JJ; Wu T; Scearce-Levie K; Mucke L. 2008. Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer's disease. J Neurosci 28(19):5007-17. [PubMed: 18463254]  [MGI Ref ID J:135174]

Morris M; Hamto P; Adame A; Devidze N; Masliah E; Mucke L. 2013. Age-appropriate cognition and subtle dopamine-independent motor deficits in aged tau knockout mice. Neurobiol Aging 34(6):1523-9. [PubMed: 23332171]  [MGI Ref ID J:203367]

Morris M; Koyama A; Masliah E; Mucke L. 2011. Tau reduction does not prevent motor deficits in two mouse models of Parkinson's disease. PLoS One 6(12):e29257. [PubMed: 22206005]  [MGI Ref ID J:182343]

Nakamura K; Greenwood A; Binder L; Bigio EH; Denial S; Nicholson L; Zhou XZ; Lu KP. 2012. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer's disease. Cell 149(1):232-44. [PubMed: 22464332]  [MGI Ref ID J:186082]

Palop JJ; Chin J; Roberson ED; Wang J; Thwin MT; Bien-Ly N; Yoo J; Ho KO; Yu GQ; Kreitzer A; Finkbeiner S; Noebels JL; Mucke L. 2007. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 55(5):697-711. [PubMed: 17785178]  [MGI Ref ID J:126808]

Rapoport M; Dawson HN; Binder LI; Vitek MP; Ferreira A. 2002. Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci U S A 99(9):6364-9. [PubMed: 11959919]  [MGI Ref ID J:125456]

Reyes JF; Fu Y; Vana L; Kanaan NM; Binder LI. 2011. Tyrosine Nitration within the Proline-Rich Region of Tau in Alzheimer's Disease. Am J Pathol 178(5):2275-85. [PubMed: 21514440]  [MGI Ref ID J:171582]

Roberson ED; Halabisky B; Yoo JW; Yao J; Chin J; Yan F; Wu T; Hamto P; Devidze N; Yu GQ; Palop JJ; Noebels JL; Mucke L. 2011. Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci 31(2):700-11. [PubMed: 21228179]  [MGI Ref ID J:168226]

Roberson ED; Scearce-Levie K; Palop JJ; Yan F; Cheng IH; Wu T; Gerstein H; Yu GQ; Mucke L. 2007. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 316(5825):750-4. [PubMed: 17478722]  [MGI Ref ID J:121330]

Seward ME; Swanson E; Norambuena A; Reimann A; Cochran JN; Li R; Roberson ED; Bloom GS. 2013. Amyloid-beta signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer's disease. J Cell Sci 126(Pt 5):1278-86. [PubMed: 23345405]  [MGI Ref ID J:200462]

Vossel KA; Zhang K; Brodbeck J; Daub AC; Sharma P; Finkbeiner S; Cui B; Mucke L. 2010. Tau reduction prevents Abeta-induced defects in axonal transport. Science 330(6001):198. [PubMed: 20829454]  [MGI Ref ID J:164887]

Yamada K; Cirrito JR; Stewart FR; Jiang H; Finn MB; Holmes BB; Binder LI; Mandelkow EM; Diamond MI; Lee VM; Holtzman DM. 2011. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 31(37):13110-7. [PubMed: 21917794]  [MGI Ref ID J:191549]

Zempel H; Luedtke J; Kumar Y; Biernat J; Dawson H; Mandelkow E; Mandelkow EM. 2013. Amyloid-beta oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 32(22):2920-37. [PubMed: 24065130]  [MGI Ref ID J:202831]

de Barreda EG; Dawson HN; Vitek MP; Avila J. 2010. Tau deficiency leads to the upregulation of BAF-57, a protein involved in neuron-specific gene repression. FEBS Lett 584(11):2265-70. [PubMed: 20338169]  [MGI Ref ID J:160378]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX10

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, these mice are bred as homozygotes.
Mating SystemHomozygote x Homozygote         (Female x Male)   13-AUG-08
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $195.00Female or MaleHomozygous for Mapttm1Hnd  
Price per Pair (US dollars $)Pair Genotype
$390.00Homozygous for Mapttm1Hnd x Homozygous for Mapttm1Hnd  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1500 unique mouse models across a vast array of research areas. Breeding colonies provide mice for both large and small orders and fluctuate in size depending on current demand for each strain. If a Repository strain is not immediately available, then within 2 to 3 business days, you will receive an estimated availability timeframe for your inquiry or order along with various delivery options. Repository strains typically are delivered at 4 to 8 weeks of age and will not exceed 12 weeks of age on the day of shipping. We will note and try to accommodate requests for specific ages of Repository strains but cannot guarantee provision of these strains at specific ages. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, please let us know.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $253.50Female or MaleHomozygous for Mapttm1Hnd  
Price per Pair (US dollars $)Pair Genotype
$507.00Homozygous for Mapttm1Hnd x Homozygous for Mapttm1Hnd  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1500 unique mouse models across a vast array of research areas. Breeding colonies provide mice for both large and small orders and fluctuate in size depending on current demand for each strain. If a Repository strain is not immediately available, then within 2 to 3 business days, you will receive an estimated availability timeframe for your inquiry or order along with various delivery options. Repository strains typically are delivered at 4 to 8 weeks of age and will not exceed 12 weeks of age on the day of shipping. We will note and try to accommodate requests for specific ages of Repository strains but cannot guarantee provision of these strains at specific ages. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, please let us know.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1500 unique mouse models across a vast array of research areas. Breeding colonies provide mice for both large and small orders and fluctuate in size depending on current demand for each strain. If a Repository strain is not immediately available, then within 2 to 3 business days, you will receive an estimated availability timeframe for your inquiry or order along with various delivery options. Repository strains typically are delivered at 4 to 8 weeks of age and will not exceed 12 weeks of age on the day of shipping. We will note and try to accommodate requests for specific ages of Repository strains but cannot guarantee provision of these strains at specific ages. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, please let us know.

Control Information

  Control
   000664 C57BL/6J
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.5)