Strain Name:

STOCK Gt(ROSA)26Sortm1(Notch1)Dam/J

Stock Number:


Order this mouse


Repository- Live

Use Restrictions Apply, see Terms of Use
When used in conjunction with a Cre recombinase-expressing strain, these RosaN1-IC (or RosaNotch) mutant mice may be useful in generating conditional mutations for studying the effects of Notch pathway activation.


Strain Information

Type Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Mating SystemHomozygote x Homozygote         (Female x Male)   12-NOV-08
Specieslaboratory mouse
GenerationF?+N1F1 (06-MAY-15)
Generation Definitions
Donating Investigator Douglas A Melton,   Harvard University

These mice contain a sequence encoding an intracellular portion of the mouse Notch1 gene (amino acids 1749-2293), but lacking the c-terminal PEST domain, and Green Fluorescent Protein, GFP, inserted into the GT(ROSA)26Sor locus. Expression of the Notch1 fragment and GFP is blocked by a loxP-flanked STOP fragment placed between the coding sequence and the GT(ROSA)26Sor promoter. The GFP expression is localized to the nucleus by an IRES sequence. The truncated cytoplasmic fragment encoded by the Notch1 sequence causes constitutive signaling activity. When used in conjunction with a Cre recombinase-expressing strain, this strain is useful in generating tissue-specific mutants for studying the effects of Notch pathway activation. Homozygous mutant mice are viable, fertile, normal in size and do not display any gross physical or behavioral abnormalities.

For example, when crossed to a strain expressing a tamoxifen inducible Cre recombinase in all cells that express Shh (see Stock No. 005623), this mutant mouse strain may be useful in studies of Notch signaling.

When crossed to a strain expressing a tamoxifen inducible Cre recombinase in all cells that express Neurog3 such as spermatogonia and pancreatic islets cells (see Stock No. 008119), this mutant mouse strain may be useful in studies of Notch signaling.

When bred to a strain expression interferon inducible Cre recombinase in liver and lymphocytes (see Stock No. 003556 for example), this mutant mouse strain may be useful in studies of Notch signaling in lymphocyte development.

A targeting vector containing a loxP- flanked neo-STOP cassette, mouse Notch1 sequence encoding amino acids 1749-2293 and GFP was inserted into the GT(ROSA)26Sor locus. The construct was introduced into 129S4/SvJaeSor-derived AK7 embryonic stem (ES) cells. Correctly targeted ES cells were injected into receipient blastocysts. Resulting chimeric male animals were crossed to C57BL/6 females. The mice were then crossed to C57BL/6J for an unknown number of generations and maintained on the outbred ICR background.

Control Information

   None Available
  Considerations for Choosing Controls

Related Strains

Strains carrying other alleles of Gt(ROSA)26Sor
002292   129-Gt(ROSA)26Sor/J
006053   129-Gt(ROSA)26Sortm1(CAG-EGFP)Luo/J
006067   129-Gt(ROSA)26Sortm2(CAG-Dsred2/EGFP)Luo/J
006041   129-Gt(ROSA)26Sortm3(CAG-EGFP/Dsred2)Luo/J
013205   129S-Gt(ROSA)26Sortm1(NOTCH3)Sat/Mmjax
003310   129S-Gt(ROSA)26Sortm1Sor/J
013207   129S-Gt(ROSA)26Sortm2(NOTCH3*C455R)Sat/Mmjax
009043   129S-Gt(ROSA)26Sortm3(CAG-luc)Tyj/J
007844   129S4/SvJae-Gt(ROSA)26Sortm2(FLP*)Sor/J
003946   129S4/SvJaeSor-Gt(ROSA)26Sortm1(FLP1)Dym/J
007689   129S4/SvJaeSor-Gt(ROSA)26Sortm4(attB/attP)Sor/J
017626   B6(Cg)-Gt(ROSA)26Sortm1(CAG-GFP/Eif2c2)Zjh/J
026283   B6(Cg)-Gt(ROSA)26Sortm1(CAG-Trp53*,-EGFP)Medz/J
010633   B6(Cg)-Gt(ROSA)26Sortm1(CAG-taulacZ)Bene/J
024540   B6(Cg)-Gt(ROSA)26Sortm1(Sstr3/GFP)Bky/J
008242   B6(Cg)-Gt(ROSA)26Sortm4(Ikbkb)Rsky/J
007676   B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J
006071   B6.129-Gt(ROSA)26Sortm1(CAG-EGFP)Luo/J
007708   B6.129-Gt(ROSA)26Sortm1(HD*103Q)Xwy/J
024512   B6.129-Gt(ROSA)26Sortm1(TMPRSS2/ERG)Key/J
008463   B6.129-Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J
008606   B6.129-Gt(ROSA)26Sortm1Joe/J
006080   B6.129-Gt(ROSA)26Sortm2(CAG-Dsred2/EGFP)Luo/J
006075   B6.129-Gt(ROSA)26Sortm3(CAG-EGFP/Dsred2)Luo/J
011008   B6.129P2(Cg)-Gt(ROSA)26Sortm1(tTA)Roos/J
017492   B6.129P2-Gt(ROSA)26Sortm1(CAG-Brainbow2.1)Cle/J
009669   B6.129P2-Gt(ROSA)26Sortm1(DTA)Lky/J
008513   B6.129P2-Gt(ROSA)26Sortm1(Trpv1,ECFP)Mde/J
013586   B6.129P2-Gt(ROSA)26Sortm1Nik/J
013587   B6.129P2-Gt(ROSA)26Sortm3Nik/J
022367   B6.129S4-Gt(ROSA)26Sortm1(CAG-EGFP/Rpl10a,-birA)Wtp/J
009086   B6.129S4-Gt(ROSA)26Sortm1(FLP1)Dym/RainJ
003474   B6.129S4-Gt(ROSA)26Sortm1Sor/J
012930   B6.129S4-Gt(ROSA)26Sortm2(FLP*)Sor/J
009044   B6.129S4-Gt(ROSA)26Sortm3(CAG-luc)Tyj/J
007743   B6.129S4-Gt(ROSA)26Sortm3(phiC31*)Sor/J
009673   B6.129S6(C)-Gt(ROSA)26Sortm3(HIF1A*)Kael/J
022626   B6.129S6(SJL)-Gt(ROSA)26Sortm2.1(mix1b-mCherry)Mgn/Mmjax
002192   B6.129S7-Gt(ROSA)26Sor/J
006148   B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J
026294   B6.Cg(129S)-Gt(ROSA)26Sortm2.2Ksvo/J
021071   B6.Cg-Gt(ROSA)26Sortm1(CAG-PA-GFP)Rmpl/J
014588   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm6(tetO-MSI2)Jae/J
017983   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm9(tetO-Dnmt3b_i1)Jae/J
014602   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm1(tetO-mCherry)Eggn/J
023749   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae Tg(tetO-Pou5f1,-Sox2,-Klf4,-Myc)1Srn/J
006965   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae/J
005670   B6.Cg-Gt(ROSA)26Sortm1(rtTA,EGFP)Nagy/J
026930   B6.Cg-Gt(ROSA)26Sortm1.1(CAG-tdTomato,-EGFP)Pjen/J
026931   B6.Cg-Gt(ROSA)26Sortm1.2(CAG-tdTomato,-EGFP)Pjen/J
026932   B6.Cg-Gt(ROSA)26Sortm1.3(CAG-tdTomato,-EGFP)Pjen/J
007914   B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J
007920   B6.Cg-Gt(ROSA)26Sortm2(CAG-EYFP)Hze/J
012567   B6.Cg-Gt(ROSA)26Sortm27.1(CAG-COP4*H134R/tdTomato)Hze/J
007903   B6.Cg-Gt(ROSA)26Sortm3(CAG-EYFP)Hze/J
024109   B6.Cg-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J
014648   B6.Cg-Gt(ROSA)26Sortm37(H1/tetO-RNAi:Taz)Arte/ZkhuJ
021188   B6.Cg-Gt(ROSA)26Sortm40.1(CAG-aop3/EGFP)Hze/J
007906   B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J
025106   B6.Cg-Gt(ROSA)26Sortm75.1(CAG-tdTomato*)Hze/J
025109   B6.Cg-Gt(ROSA)26Sortm80.1(CAG-COP4*L132C/EYFP)Hze/J
007909   B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J
007897   B6.Cg-Tg(Gt(ROSA)26Sor-EGFP)I1Able/J
024179   B6;129-Gt(ROSA)26Sortm1(Actb-T,-GFP)Dalco/J
017455   B6;129-Gt(ROSA)26Sortm1(CAG-COP4*E123T*H134R,-tdTomato)Gfng/J
024857   B6;129-Gt(ROSA)26Sortm1(CAG-cas9*,-EGFP)Fezh/J
010527   B6;129-Gt(ROSA)26Sortm1(DTA)Mrc/J
016262   B6;129-Gt(ROSA)26Sortm1(Foxo1/GFP)Jke/J
017962   B6;129-Gt(ROSA)26Sortm1(RAC1*)Jkis/J
008883   B6;129-Gt(ROSA)26Sortm1(SNCA*A53T)Djmo/TmdJ
004847   B6;129-Gt(ROSA)26Sortm1(cre/ERT)Nat/J
021025   B6;129-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm1(tetO-cre)Haho/J
006911   B6;129-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm2(tetO-Pou5f1)Jae/J
008516   B6;129-Gt(ROSA)26Sortm1Joe/J
003504   B6;129-Gt(ROSA)26Sortm1Sho/J
021847   B6;129-Gt(ROSA)26Sortm1Ytchn/J
008889   B6;129-Gt(ROSA)26Sortm2(SNCA*119)Djmo/TmdJ
009253   B6;129-Gt(ROSA)26Sortm2Nat/J
004077   B6;129-Gt(ROSA)26Sortm2Sho/J
008886   B6;129-Gt(ROSA)26Sortm3(SNCA*E46K)Djmo/TmdJ
010557   B6;129-Gt(ROSA)26Sortm3(rtTA,tetO-cre/ERT)Nat/J
021429   B6;129-Gt(ROSA)26Sortm4(CAG-GFP*)Nat/J
021039   B6;129-Gt(ROSA)26Sortm5(CAG-Sun1/sfGFP)Nat/J
023843   B6;129-Gt(ROSA)26Sortm6(Fzd6)Nat/J
010523   B6;129P2-Gt(ROSA)26Sortm1(CAG-ALPP)Fawa/J
024708   B6;129P2-Gt(ROSA)26Sortm1(CAG-RABVgp4,-TVA)Arenk/J
002073   B6;129S-Gt(ROSA)26Sor/J
018385   B6;129S-Gt(ROSA)26Sortm1(CAG-COX8A/Dendra2)Dcc/J
022516   B6;129S-Gt(ROSA)26Sortm1(Cdkn1c)Jfpa/J
013206   B6;129S-Gt(ROSA)26Sortm1(NOTCH3*R1031C)Sat/Mmjax
018397   B6;129S-Gt(ROSA)26Sortm1.1(CAG-COX8A/Dendra2)Dcc/J
023139   B6;129S-Gt(ROSA)26Sortm1.1Ksvo/J
024846   B6;129S-Gt(ROSA)26Sortm2.1Ksvo/J
012569   B6;129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J
012570   B6;129S-Gt(ROSA)26Sortm34.1(CAG-Syp/tdTomato)Hze/J
012735   B6;129S-Gt(ROSA)26Sortm35.1(CAG-aop3/GFP)Hze/J
014538   B6;129S-Gt(ROSA)26Sortm38(CAG-GCaMP3)Hze/J
014539   B6;129S-Gt(ROSA)26Sortm39(CAG-hop/EYFP)Hze/J
021875   B6;129S-Gt(ROSA)26Sortm65.1(CAG-tdTomato)Hze/J
021876   B6;129S-Gt(ROSA)26Sortm66.1(CAG-tdTomato)Hze/J
024105   B6;129S-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze/J
016836   B6;129S4-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm7(tetO-HIST1H2BJ/GFP)Jae/J
003309   B6;129S4-Gt(ROSA)26Sortm1Sor/J
004598   B6;129S4-Gt(ROSA)26Sortm2Dym/J
007670   B6;129S4-Gt(ROSA)26Sortm3(phiC31*)Sor/J
024750   B6;129S4-Gt(ROSA)26Sortm9(EGFP/Rpl10a)Amc/J
023035   B6;129S6-Gt(ROSA)26Sortm1(CAG-tdTomato*,-EGFP*)Ees/J
016999   B6;129S6-Gt(ROSA)26Sortm1(rtTA2S*M2)Whsu/J
007908   B6;129S6-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J
007905   B6;129S6-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J
024106   B6;129S6-Gt(ROSA)26Sortm96(CAG-GCaMP6s)Hze/J
026175   B6J.129(B6N)-Gt(ROSA)26Sortm1(CAG-cas9*,-EGFP)Fezh/J
026179   B6J.129(Cg)-Gt(ROSA)26Sortm1.1(CAG-cas9,-EGFP)Fezh/J
026219   B6N.129-Gt(ROSA)26Sortm1(CAG-CHRM4*,-mCitrine)Ute/J
019101   B6N.129S4(B6)-Gt(ROSA)26Sortm1Sor/CjDswJ
016226   B6N.129S4-Gt(ROSA)26Sortm1(FLP1)Dym/J
019013   B6N.129S6(Cg)-Gt(ROSA)26Sortm2(EGFP/cre)Alj/J
019016   B6N.129S6(Cg)-Gt(ROSA)26Sortm3(CAG-FLPo/ERT2)Alj/J
023537   B6N.129S6-Gt(ROSA)26Sortm1(CAG-tdTomato*,-EGFP*)Ees/J
026220   B6N;129-Gt(ROSA)26Sortm2(CAG-CHRM3*,-mCitrine)Ute/J
026261   B6N;129-Gt(ROSA)26Sortm3(CAG-Chrm3*,-mCitrine)Ute/J
025701   B6N;129S1-Gt(ROSA)26Sortm1(Grem1)Svok/J
019120   BALB/c-Gt(ROSA)26Sortm10(Lmp1)Rsky/J
009670   C.129P2(B6)-Gt(ROSA)26Sortm1(DTA)Lky/J
008603   C.129P2(B6)-Gt(ROSA)26Sortm1(tTA)Roos/J
002955   C.129S7-Gt(ROSA)26Sor/J
025322   C57BL/6-Gt(ROSA)26Sortm1(CAG-MFN2*T105M)Dple/J
007900   C57BL/6-Gt(ROSA)26Sortm1(HBEGF)Awai/J
008517   C57BL/6-Gt(ROSA)26Sortm3(CAG-MIR17-92,-EGFP)Rsky/J
012637   C57BL/6-Gt(ROSA)26Sortm5(Map3k14)Rsky/J
012638   C57BL/6-Gt(ROSA)26Sortm6(Map3k14*)Rsky/J
012343   C57BL/6-Gt(ROSA)26Sortm7(Pik3ca*,EGFP)Rsky/J
012352   C57BL/6-Gt(ROSA)26Sortm8(Map2k1*,EGFP)Rsky/J
012361   C57BL/6-Gt(ROSA)26Sortm9(Rac1*,EGFP)Rsky/J
020458   C57BL/6N-Gt(ROSA)26Sortm13(CAG-MYC,-CD2*)Rsky/J
005420   C;129S7 Gt(ROSA)26Sor-Bmp5cfe-se7J/GrsrJ
008040   CBy.B6-Gt(ROSA)26Sortm1(HBEGF)Awai/J
007898   CBy.Cg-Tg(Gt(ROSA)26Sor-EGFP)I1Able/J
026862   D2.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/SjJ
026863   D2.129S4(B6)-Gt(ROSA)26Sortm1Sor/SjJ
009427   FVB.129S4(B6)-Gt(ROSA)26Sortm1Sor/J
005125   FVB.129S6(B6)-Gt(ROSA)26Sortm1(Luc)Kael/J
016977   FVB.129S6-Gt(ROSA)26Sortm1(Pik3ca*H1047R)Egan/J
006206   FVB.129S6-Gt(ROSA)26Sortm2(HIF1A/luc)Kael/J
012429   FVB.Cg-Gt(ROSA)26Sortm1(CAG-lacZ,-EGFP)Glh/J
010920   FVB;129P2-Gt(ROSA)26Sortm1.1(birA)Mejr/J
016603   NOD.B6-Gt(ROSA)26Sortm1(HBEGF)Awai/DvsJ
013731   STOCK Gt(ROSA)26Sortm1(CAG-Brainbow2.1)Cle/J
010675   STOCK Gt(ROSA)26Sortm1(CAG-EGFP)Fsh/Mmjax
006331   STOCK Gt(ROSA)26Sortm1(DTA)Jpmb/J
022793   STOCK Gt(ROSA)26Sortm1(LRRK2*R1441C)Djmo/J
023451   STOCK Gt(ROSA)26Sortm1(Luc)Kael Tg(UBC-CCR5,-CD4)19Mnz/J
005130   STOCK Gt(ROSA)26Sortm1(Smo/EYFP)Amc/J
018121   STOCK Gt(ROSA)26Sortm1(birA)Mejr Gata4tm3.1Wtp/J
011004   STOCK Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm3(tetO-Pou5f1,-Sox2,-Klf4,-Myc)Jae/J
011011   STOCK Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm4(tetO-Pou5f1,-Sox2,-Klf4,-Myc)Jae/J
011013   STOCK Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm5(tetO-Pou5f1,-Klf4,-Myc)Jae/J
005572   STOCK Gt(ROSA)26Sortm1(rtTA,EGFP)Nagy/J
008600   STOCK Gt(ROSA)26Sortm1(tTA)Roos/J
010701   STOCK Gt(ROSA)26Sortm1.1(CAG-EGFP)Fsh/Mmjax
022386   STOCK Gt(ROSA)26Sortm1.1(CAG-EGFP/Rpl10a,-birA)Wtp/J
024858   STOCK Gt(ROSA)26Sortm1.1(CAG-cas9,-EGFP)Fezh/J
025983   STOCK Gt(ROSA)26Sortm1.1(birA)Mejr Mef2ctm1.1Wtp/Mmjax
025977   STOCK Gt(ROSA)26Sortm1.1(birA)Mejr Zfpm2tm1.1Wtp /Mmjax
017596   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#aAhmb/J
017597   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#bAhmb/J
025671   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(tetO-Fgf10)1Jaw/SpdlJ
024746   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Hprttm1(tetO-Dkk1)Spdl Tg(TCF/Lef1-lacZ)34Efu/J
010812   STOCK Gt(ROSA)26Sortm1.2(CAG-EGFP)Fsh/Mmjax
017922   STOCK Gt(ROSA)26Sortm10(ACTB-tdTomato)Luo/J
023898   STOCK Gt(ROSA)26Sortm11.1(Setd5-GFP)Mgn/Mmjax
026570   STOCK Gt(ROSA)26Sortm1Embph/J
018903   STOCK Gt(ROSA)26Sortm2(EGFP/cre)Alj/J
018906   STOCK Gt(ROSA)26Sortm3(CAG-FLPo/ERT2)Alj/J
013124   STOCK Gt(ROSA)26Sortm3(Gli3)Amc/J
007576   STOCK Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J
009674   STOCK Gt(ROSA)26Sortm4(HIF2A*)Kael/J
024107   STOCK Gt(ROSA)26Sortm5(ACTB-tTA)Luo Igs7tm93.1(tetO-GCaMP6f)Hze/HzeJ
012266   STOCK Gt(ROSA)26Sortm5(ACTB-tTA)Luo/J
017912   STOCK Gt(ROSA)26Sortm6(ACTB-EGFP*,-tdTomato)Luo/J
013123   STOCK Gt(ROSA)26Sortm6(Gli1)Amc/J
017921   STOCK Gt(ROSA)26Sortm7(ACTB-EGFP*)Luo/J
017909   STOCK Gt(ROSA)26Sortm8(ACTB-EGFP*,-tTA2)Luo/J
025982   STOCK Rbpjtm1.1Wtp Gt(ROSA)26Sortm1.1birA)Mejr/Mmjax
007577   STOCK Tg(Gt(ROSA)26Sor-BCHE*G117H)837Loc/J
007896   STOCK Tg(Gt(ROSA)26Sor-EGFP)I1Able/J
View Strains carrying other alleles of Gt(ROSA)26Sor     (186 strains)

View Strains carrying other alleles of Notch1     (8 strains)

Additional Web Information

Information about the Rosa26 locus on the Soriano lab web page

Introduction to Cre-lox technology


Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on transgenic expression of an ortholog of a human gene that is associated with this disease. Phenotypic similarity to the human disease has not been tested.
Adams-Oliver Syndrome 5; AOS5   (NOTCH1)
Aortic Valve Disease 1; AOVD1   (NOTCH1)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.


        involves: 129S4/SvJae * C57BL/6
  • normal phenotype
  • no abnormal phenotype detected
    • mice are healthy and fertile   (MGI Ref ID J:86975)

The following phenotype relates to a compound genotype created using this strain.
Contact JAX® Services for customized breeding options.

Gt(ROSA)26Sortm1(Notch1)Dam/Gt(ROSA)26Sor+ Tg(Mx1-cre)1Cgn/0

        involves: 129S4/SvJaeSor * C57BL/6 * CBA   (conditional)
  • mortality/aging
  • premature death
    • mutant bone marrow transplanted chimeras survive to 26 days after pI-pC treatment   (MGI Ref ID J:167000)
  • tumorigenesis
  • increased leukemia incidence
    • three weeks after pI-pC injection, the bone marrow is almost exclusively composed of CD45.2+eGFP+ DP leukemic cells in the mutant bone marrow transplanted chimeras   (MGI Ref ID J:167000)
    • infiltration of the spleens by leukemic DP cells   (MGI Ref ID J:167000)
  • hematopoietic system phenotype
  • decreased B cell number
    • decreased B220+ B cell numbers in mutant bone marrow transplanted chimeras   (MGI Ref ID J:167000)
  • enlarged spleen
    • severe splenomegaly in mutant bone marrow transplanted chimeras   (MGI Ref ID J:167000)
  • increased leukocyte cell number
    • increased WBC counts in mutant bone marrow transplanted chimeras   (MGI Ref ID J:167000)
  • immune system phenotype
  • decreased B cell number
    • decreased B220+ B cell numbers in mutant bone marrow transplanted chimeras   (MGI Ref ID J:167000)
  • enlarged spleen
    • severe splenomegaly in mutant bone marrow transplanted chimeras   (MGI Ref ID J:167000)
  • increased leukocyte cell number
    • increased WBC counts in mutant bone marrow transplanted chimeras   (MGI Ref ID J:167000)

Gt(ROSA)26Sortm1(Notch1)Dam/Gt(ROSA)26Sor+ Tg(Neurog3-cre/Esr1*)1Dam/0

        involves: 129S4/SvJae * C57BL/6 * CBA   (conditional)
  • mortality/aging
  • complete embryonic lethality during organogenesis
    • unable to recover any viable embryos after E13.5   (MGI Ref ID J:86975)
  • endocrine/exocrine gland phenotype
  • absent pancreatic alpha cells
    • pancreas shows absence of glucagon+ alpha cells at E13.5   (MGI Ref ID J:86975)

Gt(ROSA)26Sortm1(Notch1)Dam/Gt(ROSA)26Sor+ Shhtm2(cre/ERT2)Cjt/Shh+

        involves: 129S4/SvJaeSor * 129S6/SvEvTac   (conditional)
  • vision/eye phenotype
  • *normal* vision/eye phenotype
    • retina size is normal   (MGI Ref ID J:118372)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cell Biology Research
Signal Transduction

Research Tools
Cre-lox System
      loxP-flanked Sequences
Developmental Biology Research
      Cre-lox System
Genetics Research
      Tissue/Cell Markers
      Tissue/Cell Markers: Cre-lox System

Genes & Alleles

Gene & Allele Information provided by MGI

Allele Symbol Gt(ROSA)26Sortm1(Notch1)Dam
Allele Name targeted mutation 1, Douglas A Melton
Allele Type Targeted (Conditional ready (e.g. floxed), Inserted expressed sequence, Reporter)
Common Name(s) Lox-stop-Lox-RosaNICD-ires-GFP; R-NICD; R26-NICD; R26NotchIC; R26fN1-ICD; R26N1ICD; ROSA-NICD; Rosa-NotchIC-IRES-GFP; Rosa26-StopFloxed-NICD; Rosa26NIC; Rosa26NotchIC-IRES-GFP; RosaN1-IC; RosaNICD; RosaNotch; RosaICNLSL;
Mutation Made By Douglas Melton,   Harvard University
Strain of Origin129S4/SvJaeSor
ES Cell Line NameAK7
ES Cell Line Strain129S4/SvJaeSor
Expressed Gene Notch1, notch 1, mouse, laboratory
Molecular Note A targeting vector containing a floxed neo cassette followed by a mouse Notch1 sequence fragment and GFP was inserted at the endogenous locus. Excision of the floxed neo cassette leads to the expression of the Notch1 sequence encoding an intracellular portion of NOTCH1 (amino acids 1749-2293), but lacking the c-terminal PEST domain. IRES preceded the sequence encoding the nuclear-localized enhanced GFP. [MGI Ref ID J:86975]
Gene Symbol and Name Gt(ROSA)26Sor, gene trap ROSA 26, Philippe Soriano
Chromosome 6
Gene Common Name(s) AV258896; Gtrgeo26; Gtrosa26; R26; ROSA26; SETD5-AS1; beta geo; expressed sequence AV258896; gene trap ROSA 26; gene trap ROSA b-geo 26;


Genotyping Information

Genotyping Protocols

Gt(rosa)26sorTm1Sor, Probe

Helpful Links

Genotyping resources and troubleshooting


References provided by MGI

Selected Reference(s)

Murtaugh LC; Stanger BZ; Kwan KM; Melton DA. 2003. Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci U S A 100(25):14920-5. [PubMed: 14657333]  [MGI Ref ID J:86975]

Additional References

Gt(ROSA)26Sortm1(Notch1)Dam related

Aujla PK; Naratadam GT; Xu L; Raetzman LT. 2013. Notch/Rbpjkappa signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons. Development 140(17):3511-21. [PubMed: 23884446]  [MGI Ref ID J:199290]

Basch ML; Ohyama T; Segil N; Groves AK. 2011. Canonical Notch Signaling Is Not Necessary for Prosensory Induction in the Mouse Cochlea: Insights from a Conditional Mutant of RBPj{kappa}. J Neurosci 31(22):8046-58. [PubMed: 21632926]  [MGI Ref ID J:173382]

Benner EJ; Luciano D; Jo R; Abdi K; Paez-Gonzalez P; Sheng H; Warner DS; Liu C; Eroglu C; Kuo CT. 2013. Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature 497(7449):369-73. [PubMed: 23615612]  [MGI Ref ID J:198689]

Bjerknes M; Khandanpour C; Moroy T; Fujiyama T; Hoshino M; Klisch TJ; Ding Q; Gan L; Wang J; Martin MG; Cheng H. 2012. Origin of the brush cell lineage in the mouse intestinal epithelium. Dev Biol 362(2):194-218. [PubMed: 22185794]  [MGI Ref ID J:180770]

Blanpain C; Lowry WE; Pasolli HA; Fuchs E. 2006. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 20(21):3022-35. [PubMed: 17079689]  [MGI Ref ID J:114702]

Boyle SC; Kim M; Valerius MT; McMahon AP; Kopan R. 2011. Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development 138(19):4245-54. [PubMed: 21852398]  [MGI Ref ID J:176046]

Canalis E; Adams DJ; Boskey A; Parker K; Kranz L; Zanotti S. 2013. Notch signaling in osteocytes differentially regulates cancellous and cortical bone remodeling. J Biol Chem 288(35):25614-25. [PubMed: 23884415]  [MGI Ref ID J:203542]

Canalis E; Parker K; Feng JQ; Zanotti S. 2013. Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology 154(2):623-34. [PubMed: 23275471]  [MGI Ref ID J:194661]

Canalis E; Zanotti S; Smerdel-Ramoya A. 2014. Connective tissue growth factor is a target of notch signaling in cells of the osteoblastic lineage. Bone 64:273-80. [PubMed: 24792956]  [MGI Ref ID J:214663]

Cappellari O; Benedetti S; Innocenzi A; Tedesco FS; Moreno-Fortuny A; Ugarte G; Lampugnani MG; Messina G; Cossu G. 2013. Dll4 and PDGF-BB convert committed skeletal myoblasts to pericytes without erasing their myogenic memory. Dev Cell 24(6):586-99. [PubMed: 23477786]  [MGI Ref ID J:196361]

Cheng HT; Kim M; Valerius MT; Surendran K; Schuster-Gossler K; Gossler A; McMahon AP; Kopan R. 2007. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development 134(4):801-11. [PubMed: 17229764]  [MGI Ref ID J:119907]

Cherrier M; Sawa S; Eberl G. 2012. Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J Exp Med 209(4):729-40. [PubMed: 22430492]  [MGI Ref ID J:183874]

Chiang MY; Shestova O; Xu L; Aster JC; Pear WS. 2013. Divergent effects of supraphysiologic Notch signals on leukemia stem cells and hematopoietic stem cells. Blood 121(6):905-17. [PubMed: 23115273]  [MGI Ref ID J:194558]

Copeland JN; Feng Y; Neradugomma NK; Fields PE; Vivian JL. 2011. Notch signaling regulates remodeling and vessel diameter in the extraembryonic yolk sac. BMC Dev Biol 11:12. [PubMed: 21352545]  [MGI Ref ID J:169692]

Corada M; Orsenigo F; Morini MF; Pitulescu ME; Bhat G; Nyqvist D; Breviario F; Conti V; Briot A; Iruela-Arispe ML; Adams RH; Dejana E. 2013. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat Commun 4:2609. [PubMed: 24153254]  [MGI Ref ID J:206194]

De La O JP; Emerson LL; Goodman JL; Froebe SC; Illum BE; Curtis AB; Murtaugh LC. 2008. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci U S A 105(48):18907-12. [PubMed: 19028876]  [MGI Ref ID J:142188]

Dong Y; Jesse AM; Kohn A; Gunnell LM; Honjo T; Zuscik MJ; O'Keefe RJ; Hilton MJ. 2010. RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development 137(9):1461-71. [PubMed: 20335360]  [MGI Ref ID J:159860]

Ehling M; Adams S; Benedito R; Adams RH. 2013. Notch controls retinal blood vessel maturation and quiescence. Development 140(14):3051-61. [PubMed: 23785053]  [MGI Ref ID J:198633]

El Khatib M; Bozko P; Palagani V; Malek NP; Wilkens L; Plentz RR. 2013. Activation of Notch signaling is required for cholangiocarcinoma progression and is enhanced by inactivation of p53 in vivo. PLoS One 8(10):e77433. [PubMed: 24204826]  [MGI Ref ID J:209175]

Feller J; Schneider A; Schuster-Gossler K; Gossler A. 2008. Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation. Genes Dev 22(16):2166-71. [PubMed: 18708576]  [MGI Ref ID J:138982]

Fre S; Huyghe M; Mourikis P; Robine S; Louvard D; Artavanis-Tsakonas S. 2005. Notch signals control the fate of immature progenitor cells in the intestine. Nature 435(7044):964-8. [PubMed: 15959516]  [MGI Ref ID J:99364]

Fre S; Pallavi SK; Huyghe M; Lae M; Janssen KP; Robine S; Artavanis-Tsakonas S; Louvard D. 2009. Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci U S A 106(15):6309-14. [PubMed: 19251639]  [MGI Ref ID J:147579]

Fujimura S; Jiang Q; Kobayashi C; Nishinakamura R. 2010. Notch2 activation in the embryonic kidney depletes nephron progenitors. J Am Soc Nephrol 21(5):803-10. [PubMed: 20299358]  [MGI Ref ID J:185844]

Garcia TX; Defalco T; Capel B; Hofmann MC. 2013. Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence. Dev Biol 377(1):188-201. [PubMed: 23391689]  [MGI Ref ID J:196307]

Garcia TX; Farmaha JK; Kow S; Hofmann MC. 2014. RBPJ in mouse Sertoli cells is required for proper regulation of the testis stem cell niche. Development 141(23):4468-78. [PubMed: 25406395]  [MGI Ref ID J:217593]

Goldberg LB; Aujla PK; Raetzman LT. 2011. Persistent expression of activated Notch inhibits corticotrope and melanotrope differentiation and results in dysfunction of the HPA axis. Dev Biol 358(1):23-32. [PubMed: 21781958]  [MGI Ref ID J:176609]

Greenwood AL; Li S; Jones K; Melton DA. 2007. Notch signaling reveals developmental plasticity of Pax4(+) pancreatic endocrine progenitors and shunts them to a duct fate. Mech Dev 124(2):97-107. [PubMed: 17196797]  [MGI Ref ID J:119944]

Grieskamp T; Rudat C; Ludtke TH; Norden J; Kispert A. 2011. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res 108(7):813-23. [PubMed: 21252157]  [MGI Ref ID J:183603]

Guha A; Vasconcelos M; Cai Y; Yoneda M; Hinds A; Qian J; Li G; Dickel L; Johnson JE; Kimura S; Guo J; McMahon J; McMahon AP; Cardoso WV. 2012. Neuroepithelial body microenvironment is a niche for a distinct subset of Clara-like precursors in the developing airways. Proc Natl Acad Sci U S A 109(31):12592-7. [PubMed: 22797898]  [MGI Ref ID J:188519]

Guseh JS; Bores SA; Stanger BZ; Zhou Q; Anderson WJ; Melton DA; Rajagopal J. 2009. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development 136(10):1751-9. [PubMed: 19369400]  [MGI Ref ID J:148016]

Hartman BH; Reh TA; Bermingham-McDonogh O. 2010. Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proc Natl Acad Sci U S A 107(36):15792-7. [PubMed: 20798046]  [MGI Ref ID J:164376]

Huang Z; Rivas B; Agoulnik AI. 2013. NOTCH1 gain of function in germ cells causes failure of spermatogenesis in male mice. PLoS One 8(7):e71213. [PubMed: 23936265]  [MGI Ref ID J:204938]

Imayoshi I; Isomura A; Harima Y; Kawaguchi K; Kori H; Miyachi H; Fujiwara T; Ishidate F; Kageyama R. 2013. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342(6163):1203-8. [PubMed: 24179156]  [MGI Ref ID J:203419]

Iulianella A; Sharma M; Vanden Heuvel GB; Trainor PA. 2009. Cux2 functions downstream of Notch signaling to regulate dorsal interneuron formation in the spinal cord. Development 136(14):2329-34. [PubMed: 19542352]  [MGI Ref ID J:150348]

Izumi N; Helker C; Ehling M; Behrens A; Herzog W; Adams RH. 2012. Fbxw7 controls angiogenesis by regulating endothelial Notch activity. PLoS One 7(7):e41116. [PubMed: 22848434]  [MGI Ref ID J:189707]

Jadhav AP; Cho SH; Cepko CL. 2006. Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci U S A 103(50):18998-9003. [PubMed: 17148603]  [MGI Ref ID J:118372]

Jayasena CS; Ohyama T; Segil N; Groves AK. 2008. Notch signaling augments the canonical Wnt pathway to specify the size of the otic placode. Development 135(13):2251-61. [PubMed: 18495817]  [MGI Ref ID J:137096]

Jeong HW; Jeon US; Koo BK; Kim WY; Im SK; Shin J; Cho Y; Kim J; Kong YY. 2009. Inactivation of Notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice. J Clin Invest 119(11):3290-300. [PubMed: 19855135]  [MGI Ref ID J:154589]

Jiang C; Wen Y; Kuroda K; Hannon K; Rudnicki MA; Kuang S. 2014. Notch signaling deficiency underlies age-dependent depletion of satellite cells in muscular dystrophy. Dis Model Mech 7(8):997-1004. [PubMed: 24906372]  [MGI Ref ID J:214742]

Jo HS; Kang KH; Joe CO; Kim JW. 2012. Pten coordinates retinal neurogenesis by regulating Notch signalling. EMBO J 31(4):817-28. [PubMed: 22258620]  [MGI Ref ID J:181926]

Kang JA; Kim WS; Park SG. 2014. Notch1 is an important mediator for enhancing of B-cell activation and antibody secretion by Notch ligand. Immunology 143(4):550-9. [PubMed: 24913005]  [MGI Ref ID J:219445]

Khandanpour C; Phelan JD; Vassen L; Schutte J; Chen R; Horman SR; Gaudreau MC; Krongold J; Zhu J; Paul WE; Duhrsen U; Gottgens B; Grimes HL; Moroy T. 2013. Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell 23(2):200-14. [PubMed: 23410974]  [MGI Ref ID J:194309]

Kim TH; Kim BM; Mao J; Rowan S; Shivdasani RA. 2011. Endodermal Hedgehog signals modulate Notch pathway activity in the developing digestive tract mesenchyme. Development 138(15):3225-33. [PubMed: 21750033]  [MGI Ref ID J:180905]

Kim TH; Shivdasani RA. 2011. Notch signaling in stomach epithelial stem cell homeostasis. J Exp Med 208(4):677-88. [PubMed: 21402740]  [MGI Ref ID J:176833]

Kim YW; Koo BK; Jeong HW; Yoon MJ; Song R; Shin J; Jeong DC; Kim SH; Kong YY. 2008. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood 112(12):4628-38. [PubMed: 18818392]  [MGI Ref ID J:143346]

Kohn A; Dong Y; Mirando AJ; Jesse AM; Honjo T; Zuscik MJ; O'Keefe RJ; Hilton MJ. 2012. Cartilage-specific RBPjkappa-dependent and -independent Notch signals regulate cartilage and bone development. Development 139(6):1198-212. [PubMed: 22354840]  [MGI Ref ID J:182744]

Kong JH; Yang L; Dessaud E; Chuang K; Moore DM; Rohatgi R; Briscoe J; Novitch BG. 2015. Notch activity modulates the responsiveness of neural progenitors to sonic hedgehog signaling. Dev Cell 33(4):373-87. [PubMed: 25936505]  [MGI Ref ID J:221657]

Kopinke D; Brailsford M; Shea JE; Leavitt R; Scaife CL; Murtaugh LC. 2011. Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas. Development 138(3):431-41. [PubMed: 21205788]  [MGI Ref ID J:169830]

Kwon C; Cheng P; King IN; Andersen P; Shenje L; Nigam V; Srivastava D. 2011. Notch post-translationally regulates beta-catenin protein in stem and progenitor cells. Nat Cell Biol 13(10):1244-51. [PubMed: 21841793]  [MGI Ref ID J:176965]

Le TT; Conley KW; Mead TJ; Rowan S; Yutzey KE; Brown NL. 2012. Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens development. Dev Dyn 241(3):493-504. [PubMed: 22275127]  [MGI Ref ID J:181272]

Lee H; Song MR. 2013. The structural role of radial glial endfeet in confining spinal motor neuron somata is controlled by the Reelin and Notch pathways. Exp Neurol 249:83-94. [PubMed: 23988635]  [MGI Ref ID J:203926]

Li HJ; Kapoor A; Giel-Moloney M; Rindi G; Leiter AB. 2012. Notch signaling differentially regulates the cell fate of early endocrine precursor cells and their maturing descendants in the mouse pancreas and intestine. Dev Biol 371(2):156-69. [PubMed: 22964416]  [MGI Ref ID J:190530]

Li Y; Hibbs MA; Gard AL; Shylo NA; Yun K. 2012. Genome-wide analysis of N1ICD/RBPJ targets in vivo reveals direct transcriptional regulation of Wnt, SHH, and hippo pathway effectors by Notch1. Stem Cells 30(4):741-52. [PubMed: 22232070]  [MGI Ref ID J:190509]

Liu Z; Obenauf AC; Speicher MR; Kopan R. 2009. Rapid identification of homologous recombinants and determination of gene copy number with reference/query pyrosequencing (RQPS). Genome Res 19(11):2081-9. [PubMed: 19797679]  [MGI Ref ID J:172930]

Lu H; Lu Q; Zheng Y; Li Q. 2012. Notch signaling promotes the corneal epithelium wound healing. Mol Vis 18:403-11. [PubMed: 22355251]  [MGI Ref ID J:191494]

Luna-Zurita L; Prados B; Grego-Bessa J; Luxan G; del Monte G; Benguria A; Adams RH; Perez-Pomares JM; de la Pompa JL. 2010. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest 120(10):3493-507. [PubMed: 20890042]  [MGI Ref ID J:165329]

Maddaluno L; Rudini N; Cuttano R; Bravi L; Giampietro C; Corada M; Ferrarini L; Orsenigo F; Papa E; Boulday G; Tournier-Lasserve E; Chapon F; Richichi C; Retta SF; Lampugnani MG; Dejana E. 2013. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498(7455):492-6. [PubMed: 23748444]  [MGI Ref ID J:204568]

Magenheim J; Klein AM; Stanger BZ; Ashery-Padan R; Sosa-Pineda B; Gu G; Dor Y. 2011. Ngn3(+) endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium. Dev Biol 359(1):26-36. [PubMed: 21888903]  [MGI Ref ID J:178171]

Magnusson JP; Goritz C; Tatarishvili J; Dias DO; Smith EM; Lindvall O; Kokaia Z; Frisen J. 2014. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 346(6206):237-41. [PubMed: 25301628]  [MGI Ref ID J:217437]

Manosalva I; Gonzalez A; Kageyama R. 2013. Hes1 in the somatic cells of the murine ovary is necessary for oocyte survival and maturation. Dev Biol 375(2):140-51. [PubMed: 23274689]  [MGI Ref ID J:194288]

Maurer KA; Riesenberg AN; Brown NL. 2014. Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina. Development 141(16):3243-54. [PubMed: 25100656]  [MGI Ref ID J:214082]

Mead TJ; Yutzey KE. 2009. Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci U S A 106(34):14420-5. [PubMed: 19590010]  [MGI Ref ID J:151888]

Mead TJ; Yutzey KE. 2012. Notch pathway regulation of neural crest cell development in vivo. Dev Dyn 241(2):376-89. [PubMed: 22275227]  [MGI Ref ID J:179882]

Morimoto M; Nishinakamura R; Saga Y; Kopan R. 2012. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 139(23):4365-73. [PubMed: 23132245]  [MGI Ref ID J:190886]

Mourikis P; Gopalakrishnan S; Sambasivan R; Tajbakhsh S. 2012. Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development 139(24):4536-48. [PubMed: 23136394]  [MGI Ref ID J:189959]

Nelson BR; Ueki Y; Reardon S; Karl MO; Georgi S; Hartman BH; Lamba DA; Reh TA. 2011. Genome-wide analysis of Muller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate. PLoS One 6(8):e22817. [PubMed: 21829655]  [MGI Ref ID J:177592]

Pan W; Jin Y; Chen J; Rottier RJ; Steel KP; Kiernan AE. 2013. Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J Neurosci 33(41):16146-57. [PubMed: 24107947]  [MGI Ref ID J:202668]

Pan W; Jin Y; Stanger B; Kiernan AE. 2010. Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc Natl Acad Sci U S A 107(36):15798-803. [PubMed: 20733081]  [MGI Ref ID J:164383]

Phelan JD; Saba I; Zeng H; Kosan C; Messer MS; Olsson HA; Fraszczak J; Hildeman DA; Aronow BJ; Moroy T; Grimes HL. 2013. Growth factor independent-1 maintains Notch1-dependent transcriptional programming of lymphoid precursors. PLoS Genet 9(9):e1003713. [PubMed: 24068942]  [MGI Ref ID J:202468]

Ramasamy SK; Kusumbe AP; Wang L; Adams RH. 2014. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376-80. [PubMed: 24647000]  [MGI Ref ID J:208886]

Rentschler S; Harris BS; Kuznekoff L; Jain R; Manderfield L; Lu MM; Morley GE; Patel VV; Epstein JA. 2011. Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J Clin Invest 121(2):525-33. [PubMed: 21266778]  [MGI Ref ID J:171825]

Rentschler S; Yen AH; Lu J; Petrenko NB; Lu MM; Manderfield LJ; Patel VV; Fishman GI; Epstein JA. 2012. Myocardial Notch signaling reprograms cardiomyocytes to a conduction-like phenotype. Circulation 126(9):1058-66. [PubMed: 22837163]  [MGI Ref ID J:202197]

Rock JR; Gao X; Xue Y; Randell SH; Kong YY; Hogan BL. 2011. Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell 8(6):639-48. [PubMed: 21624809]  [MGI Ref ID J:174231]

Rowan S; Conley KW; Le TT; Donner AL; Maas RL; Brown NL. 2008. Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol 321(1):111-22. [PubMed: 18588871]  [MGI Ref ID J:138714]

Schaffer AE; Freude KK; Nelson SB; Sander M. 2010. Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev Cell 18(6):1022-9. [PubMed: 20627083]  [MGI Ref ID J:163847]

Sekiya S; Suzuki A. 2014. Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver. Am J Pathol 184(5):1468-78. [PubMed: 24594350]  [MGI Ref ID J:208140]

Sekiya S; Suzuki A. 2012. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J Clin Invest 122(11):3914-8. [PubMed: 23023701]  [MGI Ref ID J:192740]

Shih HP; Kopp JL; Sandhu M; Dubois CL; Seymour PA; Grapin-Botton A; Sander M. 2012. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 139(14):2488-99. [PubMed: 22675211]  [MGI Ref ID J:185601]

Sorensen I; Adams RH; Gossler A. 2009. DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113(22):5680-8. [PubMed: 19144989]  [MGI Ref ID J:148902]

Sorensen-Zender I; Rong S; Susnik N; Zender S; Pennekamp P; Melk A; Haller H; Schmitt R. 2014. Renal tubular Notch signaling triggers a prosenescent state after acute kidney injury. Am J Physiol Renal Physiol 306(8):F907-15. [PubMed: 24573392]  [MGI Ref ID J:208410]

Sparks EE; Perrien DS; Huppert KA; Peterson TE; Huppert SS. 2011. Defects in hepatic Notch signaling result in disruption of the communicating intrahepatic bile duct network in mice. Dis Model Mech 4(3):359-67. [PubMed: 21282722]  [MGI Ref ID J:171764]

Stanger BZ; Datar R; Murtaugh LC; Melton DA. 2005. Direct regulation of intestinal fate by Notch. Proc Natl Acad Sci U S A 102(35):12443-8. [PubMed: 16107537]  [MGI Ref ID J:101154]

Suliman S; Tan J; Xu K; Kousis PC; Kowalski PE; Chang G; Egan SE; Guidos C. 2011. Notch3 is dispensable for thymocyte beta-selection and Notch1-induced T cell leukemogenesis. PLoS One 6(9):e24937. [PubMed: 21931869]  [MGI Ref ID J:177688]

Tang H; Brennan J; Karl J; Hamada Y; Raetzman L; Capel B. 2008. Notch signaling maintains Leydig progenitor cells in the mouse testis. Development 135(22):3745-53. [PubMed: 18927153]  [MGI Ref ID J:143587]

Vandussen KL; Carulli AJ; Keeley TM; Patel SR; Puthoff BJ; Magness ST; Tran IT; Maillard I; Siebel C; Kolterud A; Grosse AS; Gumucio DL; Ernst SA; Tsai YH; Dempsey PJ; Samuelson LC. 2012. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139(3):488-97. [PubMed: 22190634]  [MGI Ref ID J:179656]

Villanueva A; Alsinet C; Yanger K; Hoshida Y; Zong Y; Toffanin S; Rodriguez-Carunchio L; Sole M; Thung S; Stanger BZ; Llovet JM. 2012. Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology 143(6):1660-1669.e7. [PubMed: 22974708]  [MGI Ref ID J:207644]

Wakabayashi N; Shin S; Slocum SL; Agoston ES; Wakabayashi J; Kwak MK; Misra V; Biswal S; Yamamoto M; Kensler TW. 2010. Regulation of notch1 signaling by nrf2: implications for tissue regeneration. Sci Signal 3(130):ra52. [PubMed: 20628156]  [MGI Ref ID J:185406]

Wen Y; Bi P; Liu W; Asakura A; Keller C; Kuang S. 2012. Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol 32(12):2300-11. [PubMed: 22493066]  [MGI Ref ID J:185821]

Wendorff AA; Koch U; Wunderlich FT; Wirth S; Dubey C; Bruning JC; MacDonald HR; Radtke F. 2010. Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity 33(5):671-84. [PubMed: 21093323]  [MGI Ref ID J:167000]

Wu X; Xu K; Zhang L; Deng Y; Lee P; Shapiro E; Monaco M; Makarenkova HP; Li J; Lepor H; Grishina I. 2011. Differentiation of the ductal epithelium and smooth muscle in the prostate gland are regulated by the Notch/PTEN-dependent mechanism. Dev Biol 356(2):337-49. [PubMed: 21624358]  [MGI Ref ID J:175387]

Xu H; Zhu J; Smith S; Foldi J; Zhao B; Chung AY; Outtz H; Kitajewski J; Shi C; Weber S; Saftig P; Li Y; Ozato K; Blobel CP; Ivashkiv LB; Hu X. 2012. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol 13(7):642-50. [PubMed: 22610140]  [MGI Ref ID J:187656]

Xu X; Huang L; Futtner C; Schwab B; Rampersad RR; Lu Y; Sporn TA; Hogan BL; Onaitis MW. 2014. The cell of origin and subtype of K-Ras-induced lung tumors are modified by Notch and Sox2. Genes Dev 28(17):1929-39. [PubMed: 25184679]  [MGI Ref ID J:213774]

Yanger K; Zong Y; Maggs LR; Shapira SN; Maddipati R; Aiello NM; Thung SN; Wells RG; Greenbaum LE; Stanger BZ. 2013. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 27(7):719-24. [PubMed: 23520387]  [MGI Ref ID J:195278]

Yoon KJ; Koo BK; Im SK; Jeong HW; Ghim J; Kwon MC; Moon JS; Miyata T; Kong YY. 2008. Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron 58(4):519-31. [PubMed: 18498734]  [MGI Ref ID J:145294]

Zanotti S; Canalis E. 2013. Notch suppresses nuclear factor of activated T cells (NFAT) transactivation and Nfatc1 expression in chondrocytes. Endocrinology 154(2):762-72. [PubMed: 23264614]  [MGI Ref ID J:194597]

Zanotti S; Smerdel-Ramoya A; Stadmeyer L; Durant D; Radtke F; Canalis E. 2008. Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 149(8):3890-9. [PubMed: 18420737]  [MGI Ref ID J:138080]

Zender S; Nickeleit I; Wuestefeld T; Sorensen I; Dauch D; Bozko P; El-Khatib M; Geffers R; Bektas H; Manns MP; Gossler A; Wilkens L; Plentz R; Zender L; Malek NP. 2013. A critical role for notch signaling in the formation of cholangiocellular carcinomas. Cancer Cell 23(6):784-95. [PubMed: 23727022]  [MGI Ref ID J:199099]

Zhao B; Grimes SN; Li S; Hu X; Ivashkiv LB. 2012. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med 209(2):319-34. [PubMed: 22249448]  [MGI Ref ID J:181699]

Zong Y; Panikkar A; Xu J; Antoniou A; Raynaud P; Lemaigre F; Stanger BZ. 2009. Notch signaling controls liver development by regulating biliary differentiation. Development 136(10):1727-39. [PubMed: 19369401]  [MGI Ref ID J:148015]

del Monte G; Casanova JC; Guadix JA; MacGrogan D; Burch JB; Perez-Pomares JM; de la Pompa JL. 2011. Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res 108(7):824-36. [PubMed: 21311046]  [MGI Ref ID J:178290]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX10

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, these mice can be bred as homozygotes.
Mating SystemHomozygote x Homozygote         (Female x Male)   12-NOV-08
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls

Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $246.90Female or MaleHomozygous for Gt(ROSA)26Sortm1(Notch1)Dam  
Price per Pair (US dollars $)Pair Genotype
$493.80Homozygous for Gt(ROSA)26Sortm1(Notch1)Dam x Homozygous for Gt(ROSA)26Sortm1(Notch1)Dam  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $321.00Female or MaleHomozygous for Gt(ROSA)26Sortm1(Notch1)Dam  
Price per Pair (US dollars $)Pair Genotype
$642.00Homozygous for Gt(ROSA)26Sortm1(Notch1)Dam x Homozygous for Gt(ROSA)26Sortm1(Notch1)Dam  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

   None Available
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

See Terms of Use tab for General Terms and Conditions

The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use

General Terms and Conditions

For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration


JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty


In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.