Strain Name:

(C57BL/6-Tg(TRAMP)8247Ng/J x FVB/NJ)F1/J

Stock Number:

008215

Order this mouse

Availability:

Repository- Live

Use Restrictions Apply, see Terms of Use
These mice express the TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) transgene and develop progressive forms of prostate cancer with distant site metastasis. An earlier onset of the phenotype is observed in these F1 background mice when compared to mice carrying the transgene on the C57BL/6 background.

Description

Strain Information

Type Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Type *F1 Hybrid;
Additional information on Hybrid Strains.
Visit our online Nomenclature tutorial.
Mating SystemHemizygote x Inbred         (Female x Male)   04-APR-08
Specieslaboratory mouse
GenerationF1 (26-JAN-09)
Generation Definitions
 
Donating Investigator IMR Colony,   The Jackson Laboratory

Description
Mice carrying the TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) transgene develop progressive forms of prostate cancer with distant site metastasis, primarily to the lymph nodes and lungs. These transgenic mice express the simian virus 40 (SV40) large tumor T antigen (Tag) under the control of the rat probasin promoter. Expression of the transgene is specific to the prostate epithelium. Transgenic mice exhibit various forms of disease from mild intraepithelial hyperplasia to large multinodular malignant neoplasia. The median survival time for these F1 transgenic mice is 19 weeks, very few mice survive past 33 weeks of age, which is significantly shorter than the lifespan of transgenic mice on the C57BL/6 background. Comparative histological analysis of tumors from these F1 transgenic mice and from transgenic mice on the C57BL/6 background reveals that the tumors found in these F1 mutants arise from the dorsolateral and ventral lobes of the prostate and are more spherical, highly vascularized masses. The tumors found in the C57BL/6 background transgenic mice arise from the prostate lateral lobes and often invade the surrounding tissues (urethra and seminal vesicles).

Development
The TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) transgenic construct, containing the simian virus 40 (SV40) large tumor T antigen (Tag) under the control of the rat probasin promoter, was injected into fertilized C57BL/6 mouse eggs. Founder line 8247 was established. To generate this F1 strain, TRAMP transgenic females (Stock No. 003135) are mated with FVB/NJ males (Stock No. 001800).

Control Information

  Control
   Noncarrier
   See control note: The genetic background control is (C57BL/6J x FVB/NJ)F1 hybrid mice (Stock No. 019019). This F1 is created by breeding C57BL/6J females (Stock No. 000664) with FVB/NJ males (Stock No. 001800).
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Tg(TRAMP)8247Ng allele
003135   C57BL/6-Tg(TRAMP)8247Ng/J
View Strains carrying   Tg(TRAMP)8247Ng     (1 strain)

View Strains carrying other alleles of TAg     (15 strains)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Characteristics of this human disease are associated with transgenes and other mutation types in the mouse.
Prostate Cancer
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information may relate to a genetic background differing from this JAX® Mice strain.

Tg(TRAMP)8247Ng/0

        involves: 129S1/Sv * C57BL/6
  • tumorigenesis
  • increased prostate gland tumor incidence   (MGI Ref ID J:108849)

Tg(TRAMP)8247Ng/0

        involves: C57BL/6
  • tumorigenesis
  • increased prostate gland adenocarcinoma incidence
    • males display focal and invasive adenocarcinoma of the prostate by 20 weeks   (MGI Ref ID J:65303)
  • reproductive system phenotype
  • prostate gland hyperplasia
    • intraepithelial hyperplasia can be detected in males by 10 weeks of age and by 22 weeks of age, almost all prostatic glands are hyperplastic   (MGI Ref ID J:65303)
  • endocrine/exocrine gland phenotype
  • prostate gland hyperplasia
    • intraepithelial hyperplasia can be detected in males by 10 weeks of age and by 22 weeks of age, almost all prostatic glands are hyperplastic   (MGI Ref ID J:65303)

Tg(TRAMP)8247Ng/0

        involves: C3H * C57BL/6
  • endocrine/exocrine gland phenotype
  • increased prostate gland weight
    • prostates weigh an average of >6g, while in transgenic mice expressing the Tg(ACTB-SAC/EGFP)35Rang transgene, most (78.5%) prostate glands weigh <2g and remaining 21.5% weigh between 2 and 3 grams   (MGI Ref ID J:125633)
  • reproductive system phenotype
  • increased prostate gland weight
    • prostates weigh an average of >6g, while in transgenic mice expressing the Tg(ACTB-SAC/EGFP)35Rang transgene, most (78.5%) prostate glands weigh <2g and remaining 21.5% weigh between 2 and 3 grams   (MGI Ref ID J:125633)
  • tumorigenesis
  • increased prostate gland tumor incidence
    • majority (62.5-83.3%) of mice develop high-grade prostatic intraepithelial neoplasia by 3 months of age and 12-16% of animals show adenocarcinoma of the prostate; by 6 months, all mice develop adenocarcinoma of the prostate   (MGI Ref ID J:125633)
    • increased prostate gland adenocarcinoma incidence   (MGI Ref ID J:125633)
    • increased prostate intraepithelial neoplasia incidence   (MGI Ref ID J:125633)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Apoptosis Research
Extracellular Modulators

Cancer Research
Increased Tumor Incidence
      Prostate Tumors
Other
      tumor metastasis

Reproductive Biology Research
Prostate Tumors

Research Tools
Cancer Research
      tumor immunology

TAg related

Apoptosis Research
Extracellular Modulators

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tg(TRAMP)8247Ng
Allele Name transgene insertion 8247, Norman M Greenberg
Allele Type Transgenic (random, expressed)
Common Name(s) PB-Tag; TRAMP; probasin/Tag;
Mutation Made ByDr. Norman Greenberg,   Pfizer Global Research and Development
Strain of OriginC57BL/6
Expressed Gene TAg, SV40 large T-antigen, SV40
Simian virus 40 T antigen (SV40Tag) is a multifunctional regulatory protein that stimulates gene transcription and forms complexes with cell cycle-regulatory proteins such as Trp53 and Rb1 that are implicated in human breast cancer.
Promoter Pb, probasin, rat
General Note TRAMP stands for TRansgenic Adenocarcinoma Mouse Prostate. Lines 5666 and 8079 were also produced.

Transgenic mice on a C57BL6 background develop progressive forms of prostate cancer with distant site metastasis. Forms ofdisease range from mild intraepithelial hyperplasia to large multinodular malignant neoplasia. Tumors are detected in the prostate as early as 10 weeks of age. The tumors have elevated levels of nuclear TRP53 and decreased androgen receptor expression.

Molecular Note Expression of the SV40 early region tumor antigen was driven in mouse prostrate epithelium via a rat probasin promoter region fragment (-426/+28 bp). [MGI Ref ID J:65303] [MGI Ref ID J:73560]
 
 

Genotyping

Genotyping Information

Genotyping Protocols

Generic SV40, Fast MCA
Tg(MAR), Fast MCA
Tg(TRAMP)8247Ng, Fast MCA
Tg(Tramp1), Standard PCR
Tg(Tramp2), Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Greenberg NM; DeMayo F; Finegold MJ; Medina D; Tilley WD; Aspinall JO; Cunha GR; Donjacour AA; Matusik RJ; Rosen JM. 1995. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A 92(8):3439-43. [PubMed: 7724580]  [MGI Ref ID J:65303]

Additional References

Tg(TRAMP)8247Ng related

Abdulkadir SA; Qu Z; Garabedian E; Song SK; Peters TJ; Svaren J; Carbone JM; Naughton CK; Catalona WJ; Ackerman JJ; Gordon JI; Humphrey PA; Milbrandt J. 2001. Impaired prostate tumorigenesis in Egr1-deficient mice. Nat Med 7(1):101-7. [PubMed: 11135623]  [MGI Ref ID J:67125]

Adhami VM; Siddiqui IA; Ahmad N; Gupta S; Mukhtar H. 2004. Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res 64(23):8715-22. [PubMed: 15574782]  [MGI Ref ID J:94677]

Adhami VM; Siddiqui IA; Syed DN; Lall RK; Mukhtar H. 2012. Oral infusion of pomegranate fruit extract inhibits prostate carcinogenesis in the TRAMP model. Carcinogenesis 33(3):644-51. [PubMed: 22198212]  [MGI Ref ID J:181504]

Albers MJ; Bok R; Chen AP; Cunningham CH; Zierhut ML; Zhang VY; Kohler SJ; Tropp J; Hurd RE; Yen YF; Nelson SJ; Vigneron DB; Kurhanewicz J. 2008. Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68(20):8607-15. [PubMed: 18922937]  [MGI Ref ID J:140550]

Albertelli MA; O'Mahony OA; Brogley M; Tosoian J; Steinkamp M; Daignault S; Wojno K; Robins DM. 2008. Glutamine tract length of human androgen receptors affects hormone-dependent and -independent prostate cancer in mice. Hum Mol Genet 17(1):98-110. [PubMed: 17906287]  [MGI Ref ID J:132039]

Albertelli MA; Scheller A; Brogley M; Robins DM. 2006. Replacing the mouse androgen receptor with human alleles demonstrates glutamine tract length-dependent effects on physiology and tumorigenesis in mice. Mol Endocrinol 20(6):1248-60. [PubMed: 16601069]  [MGI Ref ID J:108849]

Ammirante M; Luo JL; Grivennikov S; Nedospasov S; Karin M. 2010. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464(7286):302-5. [PubMed: 20220849]  [MGI Ref ID J:157973]

Anzo M; Cobb LJ; Hwang DL; Mehta H; Said JW; Yakar S; LeRoith D; Cohen P. 2008. Targeted deletion of hepatic Igf1 in TRAMP mice leads to dramatic alterations in the circulating insulin-like growth factor axis but does not reduce tumor progression. Cancer Res 68(9):3342-9. [PubMed: 18451161]  [MGI Ref ID J:134610]

Azzali G. 2007. Tumor cell transendothelial passage in the absorbing lymphatic vessel of transgenic adenocarcinoma mouse prostate. Am J Pathol 170(1):334-46. [PubMed: 17200205]  [MGI Ref ID J:117198]

Bao Y; Peng W; Verbitsky A; Chen J; Wu L; Rauen KA; Sawicki JA. 2005. Human coxsackie adenovirus receptor (CAR) expression in transgenic mouse prostate tumors enhances adenoviral delivery of genes. Prostate 64(4):401-7. [PubMed: 15761871]  [MGI Ref ID J:100079]

Barthel SR; Hays DL; Yazawa EM; Opperman M; Walley KC; Nimrichter L; Burdick MM; Gillard BM; Moser MT; Pantel K; Foster BA; Pienta KJ; Dimitroff CJ. 2013. Definition of molecular determinants of prostate cancer cell bone extravasation. Cancer Res 73(2):942-52. [PubMed: 23149920]  [MGI Ref ID J:194105]

Barve A; Khor TO; Nair S; Reuhl K; Suh N; Reddy B; Newmark H; Kong AN. 2009. Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int J Cancer 124(7):1693-9. [PubMed: 19115203]  [MGI Ref ID J:147509]

Basu HS; Thompson TA; Church DR; Clower CC; Mehraein-Ghomi F; Amlong CA; Martin CT; Woster PM; Lindstrom MJ; Wilding G. 2009. A small molecule polyamine oxidase inhibitor blocks androgen-induced oxidative stress and delays prostate cancer progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res 69(19):7689-95. [PubMed: 19773450]  [MGI Ref ID J:153608]

Bellone M; Ceccon M; Grioni M; Jachetti E; Calcinotto A; Napolitano A; Freschi M; Casorati G; Dellabona P. 2010. iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS One 5(1):e8646. [PubMed: 20072624]  [MGI Ref ID J:157237]

Bendle GM; Linnemann C; Bies L; Song JY; Schumacher TN. 2013. Blockade of TGF-beta signaling greatly enhances the efficacy of TCR gene therapy of cancer. J Immunol 191(6):3232-9. [PubMed: 23940272]  [MGI Ref ID J:205767]

Bettuzzi S; Davalli P; Davoli S; Chayka O; Rizzi F; Belloni L; Pellacani D; Fregni G; Astancolle S; Fassan M; Corti A; Baffa R; Sala A. 2009. Genetic inactivation of ApoJ/clusterin: effects on prostate tumourigenesis and metastatic spread. Oncogene 28(49):4344-52. [PubMed: 19784068]  [MGI Ref ID J:157040]

Bok RA; Hansell EJ; Nguyen TP; Greenberg NM; McKerrow JH; Shuman MA. 2003. Patterns of protease production during prostate cancer progression: proteomic evidence for cascades in a transgenic model. Prostate Cancer Prostatic Dis 6(4):272-80. [PubMed: 14663466]  [MGI Ref ID J:100578]

Bono AV; Montironi R; Pannellini T; Sasso F; Mirone V; Musiani P; Iezzi M. 2008. Effects of castration on the development of prostate adenocarcinoma from its precursor HGPIN and on the occurrence of androgen-independent, poorly differentiated carcinoma in TRAMP mice. Prostate Cancer Prostatic Dis 11(4):377-83. [PubMed: 18379588]  [MGI Ref ID J:155788]

Bradley SV; Oravecz-Wilson KI; Bougeard G; Mizukami I; Li L; Munaco AJ; Sreekumar A; Corradetti MN; Chinnaiyan AM; Sanda MG; Ross TS. 2005. Serum antibodies to huntingtin interacting protein-1: a new blood test for prostate cancer. Cancer Res 65(10):4126-33. [PubMed: 15899803]  [MGI Ref ID J:98551]

Bruckheimer EM; Brisbay S; Johnson DJ; Gingrich JR; Greenberg N; McDonnell TJ. 2000. Bcl-2 accelerates multistep prostate carcinogenesis in vivo Oncogene 19(46):5251-8. [PubMed: 11077442]  [MGI Ref ID J:65876]

Calcinotto A; Grioni M; Jachetti E; Curnis F; Mondino A; Parmiani G; Corti A; Bellone M. 2012. Targeting TNF-alpha to Neoangiogenic Vessels Enhances Lymphocyte Infiltration in Tumors and Increases the Therapeutic Potential of Immunotherapy. J Immunol 188(6):2687-94. [PubMed: 22323546]  [MGI Ref ID J:181852]

Caporali A; Davalli P; Astancolle S; D'Arca D; Brausi M; Bettuzzi S; Corti A. 2004. The chemopreventive action of catechins in the TRAMP mouse model of prostate carcinogenesis is accompanied by clusterin over-expression. Carcinogenesis 25(11):2217-24. [PubMed: 15358631]  [MGI Ref ID J:93777]

Chae YC; Caino MC; Lisanti S; Ghosh JC; Dohi T; Danial NN; Villanueva J; Ferrero S; Vaira V; Santambrogio L; Bosari S; Languino LR; Herlyn M; Altieri DC. 2012. Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell 22(3):331-44. [PubMed: 22975376]  [MGI Ref ID J:192906]

Chiaverotti T; Couto SS; Donjacour A; Mao JH; Nagase H; Cardiff RD; Cunha GR; Balmain A. 2008. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol 172(1):236-46. [PubMed: 18156212]  [MGI Ref ID J:130924]

Chin AI; Miyahira AK; Covarrubias A; Teague J; Guo B; Dempsey PW; Cheng G. 2010. Toll-like receptor 3-mediated suppression of TRAMP prostate cancer shows the critical role of type I interferons in tumor immune surveillance. Cancer Res 70(7):2595-603. [PubMed: 20233880]  [MGI Ref ID J:158910]

Chou CK; Schietinger A; Liggitt HD; Tan X; Funk S; Freeman GJ; Ratliff TL; Greenberg NM; Greenberg PD. 2012. Cell-intrinsic abrogation of TGF-beta signaling delays but does not prevent dysfunction of self/tumor-specific CD8 T cells in a murine model of autochthonous prostate cancer. J Immunol 189(8):3936-46. [PubMed: 22984076]  [MGI Ref ID J:190653]

Chung AC; Zhou S; Liao L; Tien JC; Greenberg NM; Xu J. 2007. Genetic ablation of the amplified-in-breast cancer 1 inhibits spontaneous prostate cancer progression in mice. Cancer Res 67(12):5965-75. [PubMed: 17575167]  [MGI Ref ID J:122392]

Copeland BT; Bowman MJ; Ashman LK. 2013. Genetic ablation of the tetraspanin CD151 reduces spontaneous metastatic spread of prostate cancer in the TRAMP model. Mol Cancer Res 11(1):95-105. [PubMed: 23131993]  [MGI Ref ID J:205380]

Copeland BT; Bowman MJ; Boucheix C; Ashman LK. 2013. Knockout of the tetraspanin Cd9 in the TRAMP model of de novo prostate cancer increases spontaneous metastases in an organ-specific manner. Int J Cancer 133(8):1803-12. [PubMed: 23575960]  [MGI Ref ID J:199938]

Cowell JK; Head K; Kunapuli P; Vaughan M; Karasik E; Foster B. 2010. Inactivation of LGI1 expression accompanies early stage hyperplasia of prostate epithelium in the TRAMP murine model of prostate cancer. Exp Mol Pathol 88(1):77-81. [PubMed: 19778537]  [MGI Ref ID J:163951]

Deeb D; Gao X; Liu Y; Jiang D; Divine GW; Arbab AS; Dulchavsky SA; Gautam SC. 2011. Synthetic triterpenoid CDDO prevents the progression and metastasis of prostate cancer in TRAMP mice by inhibiting survival signaling. Carcinogenesis 32(5):757-64. [PubMed: 21325633]  [MGI Ref ID J:171462]

Deeb KK; Michalowska AM; Yoon CY; Krummey SM; Hoenerhoff MJ; Kavanaugh C; Li MC; Demayo FJ; Linnoila I; Deng CX; Lee EY; Medina D; Shih JH; Green JE. 2007. Identification of an Integrated SV40 T/t-Antigen Cancer Signature in Aggressive Human Breast, Prostate, and Lung Carcinomas with Poor Prognosis. Cancer Res 67(17):8065-8080. [PubMed: 17804718]  [MGI Ref ID J:124885]

Degl'Innocenti E; Grioni M; Capuano G; Jachetti E; Freschi M; Bertilaccio MT; Hess-Michelini R; Doglioni C; Bellone M. 2008. Peripheral T-cell tolerance associated with prostate cancer is independent from CD4+CD25+ regulatory T cells. Cancer Res 68(1):292-300. [PubMed: 18172322]  [MGI Ref ID J:131032]

Degl'innocenti E; Grioni M; Boni A; Camporeale A; Bertilaccio MT; Freschi M; Monno A; Arcelloni C; Greenberg NM; Bellone M. 2004. Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur J Immunol 35(1):66-75. [PubMed: 15597325]  [MGI Ref ID J:95463]

Diener KR; Woods AE; Manavis J; Brown MP; Hayball JD. 2009. Transforming growth factor-beta-mediated signaling in T lymphocytes impacts on prostate-specific immunity and early prostate tumor progression. Lab Invest 89(2):142-51. [PubMed: 19079323]  [MGI Ref ID J:144222]

Donkor MK; Sarkar A; Savage PA; Franklin RA; Johnson LK; Jungbluth AA; Allison JP; Li MO. 2011. T Cell Surveillance of Oncogene-Induced Prostate Cancer Is Impeded by T Cell-Derived TGF-beta1 Cytokine. Immunity 35(1):123-34. [PubMed: 21757379]  [MGI Ref ID J:174515]

Drake CG; Doody AD; Mihalyo MA; Huang CT; Kelleher E; Ravi S; Hipkiss EL; Flies DB; Kennedy EP; Long M; McGary PW; Coryell L; Nelson WG; Pardoll DM; Adler AJ. 2005. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell 7(3):239-49. [PubMed: 15766662]  [MGI Ref ID J:96922]

Dubey P; Wu H; Reiter RE; Witte ON. 2001. Alternative pathways to prostate carcinoma activate prostate stem cell antigen expression. Cancer Res 61(8):3256-61. [PubMed: 11309275]  [MGI Ref ID J:69227]

Dudley AC; Khan ZA; Shih SC; Kang SY; Zwaans BM; Bischoff J; Klagsbrun M. 2008. Calcification of multipotent prostate tumor endothelium. Cancer Cell 14(3):201-11. [PubMed: 18772110]  [MGI Ref ID J:141163]

Dudley AC; Udagawa T; Melero-Martin JM; Shih SC; Curatolo A; Moses MA; Klagsbrun M. 2010. Bone marrow is a reservoir for proangiogenic myelomonocytic cells but not endothelial cells in spontaneous tumors. Blood 116(17):3367-71. [PubMed: 20453162]  [MGI Ref ID J:165908]

El Touny LH; Banerjee PP. 2009. Identification of a biphasic role for genistein in the regulation of prostate cancer growth and metastasis. Cancer Res 69(8):3695-703. [PubMed: 19351854]  [MGI Ref ID J:147723]

Ende N; Chen R; Reddi AS. 2006. Administration of human umbilical cord blood cells delays the onset of prostate cancer and increases the lifespan of the TRAMP mouse. Cancer Lett 231(1):123-8. [PubMed: 16356837]  [MGI Ref ID J:104030]

Eng MH; Charles LG; Ross BD; Chrisp CE; Pienta KJ; Greenberg NM; Hsu CX; Sanda MG. 1999. Early castration reduces prostatic carcinogenesis in transgenic mice Urology 54(6):1112-9. [PubMed: 10604719]  [MGI Ref ID J:59577]

Fendt SM; Bell EL; Keibler MA; Davidson SM; Wirth GJ; Fiske B; Mayers JR; Schwab M; Bellinger G; Csibi A; Patnaik A; Blouin MJ; Cantley LC; Guarente L; Blenis J; Pollak MN; Olumi AF; Vander Heiden MG; Stephanopoulos G. 2013. Metformin Decreases Glucose Oxidation and Increases the Dependency of Prostate Cancer Cells on Reductive Glutamine Metabolism. Cancer Res 73(14):4429-4438. [PubMed: 23687346]  [MGI Ref ID J:199118]

Feng S; Agoulnik IU; Bogatcheva NV; Kamat AA; Kwabi-Addo B; Li R; Ayala G; Ittmann MM; Agoulnik AI. 2007. Relaxin promotes prostate cancer progression. Clin Cancer Res 13(6):1695-702. [PubMed: 17363522]  [MGI Ref ID J:122670]

Finegan KG; Tournier C. 2010. The mitogen-activated protein kinase kinase 4 has a pro-oncogenic role in skin cancer. Cancer Res 70(14):5797-806. [PubMed: 20610622]  [MGI Ref ID J:162248]

Foster BA; Gingrich JR; Kwon ED; Madias C; Greenberg NM. 1997. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 57(16):3325-30. [PubMed: 9269988]  [MGI Ref ID J:42333]

Foster BA; Kaplan PJ; Greenberg NM. 1999. Characterization of the FGF axis and identification of a novel FGFR1iiic isoform during prostate cancer progression in the TRAMP model. Prostate Cancer Prostatic Dis 2(2):76-82. [PubMed: 12496842]  [MGI Ref ID J:84412]

Fricke ST; Rodriguez O; Vanmeter J; Dettin LE; Casimiro M; Chien CD; Newell T; Johnson K; Ileva L; Ojeifo J; Johnson MD; Albanese C. 2006. In vivo magnetic resonance volumetric and spectroscopic analysis of mouse prostate cancer models. Prostate 66(7):708-17. [PubMed: 16425198]  [MGI Ref ID J:110412]

Fritz WA; Lin TM; Cardiff RD; Peterson RE. 2007. The aryl hydrocarbon receptor inhibits prostate carcinogenesis in TRAMP mice. Carcinogenesis 28(2):497-505. [PubMed: 17052998]  [MGI Ref ID J:118152]

Fritz WA; Lin TM; Peterson RE. 2008. The aryl hydrocarbon receptor (AhR) inhibits vanadate-induced vascular endothelial growth factor (VEGF) production in TRAMP prostates. Carcinogenesis 29(5):1077-82. [PubMed: 18359762]  [MGI Ref ID J:138497]

Galea I; Stasakova J; Dunscombe MS; Ottensmeier CH; Elliott T; Thirdborough SM. 2012. CD8(+) T-cell cross-competition is governed by peptide-MHC class I stability. Eur J Immunol 42(1):256-63. [PubMed: 22002320]  [MGI Ref ID J:179828]

Garcia GE; Wisniewski HG; Lucia MS; Arevalo N; Slaga TJ; Kraft SL; Strange R; Kumar AP. 2006. 2-Methoxyestradiol inhibits prostate tumor development in transgenic adenocarcinoma of mouse prostate: role of tumor necrosis factor-alpha-stimulated gene 6. Clin Cancer Res 12(3 Pt 1):980-8. [PubMed: 16467113]  [MGI Ref ID J:107341]

Gingrich JR; Barrios RJ; Foster BA; Greenberg NM. 1999. Pathologic progression of autochthonous prostate cancer in the TRAMP model. Prostate Cancer Prostatic Dis 2(2):70-75. [PubMed: 12496841]  [MGI Ref ID J:66957]

Gingrich JR; Barrios RJ; Kattan MW; Nahm HS; Finegold MJ; Greenberg NM. 1997. Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res 57(21):4687-91. [PubMed: 9354422]  [MGI Ref ID J:65305]

Gingrich JR; Barrios RJ; Morton RA; Boyce BF; DeMayo FJ; Finegold MJ; Angelopoulou R; Rosen JM; Greenberg NM. 1996. Metastatic prostate cancer in a transgenic mouse. Cancer Res 56(18):4096-102. [PubMed: 8797572]  [MGI Ref ID J:65304]

Glinsky GV; Berezovska O; Glinskii AB. 2005. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115(6):1503-21. [PubMed: 15931389]  [MGI Ref ID J:99201]

Goel HL; Breen M; Zhang J; Das I; Aznavoorian-Cheshire S; Greenberg NM; Elgavish A; Languino LR. 2005. beta1A integrin expression is required for type 1 insulin-like growth factor receptor mitogenic and transforming activities and localization to focal contacts. Cancer Res 65(15):6692-700. [PubMed: 16061650]  [MGI Ref ID J:100772]

Graves CW; Philips ST; Bradley SV; Oravecz-Wilson KI; Li L; Gauvin A; Ross TS. 2008. Use of a cryptic splice site for the expression of huntingtin interacting protein 1 in select normal and neoplastic tissues. Cancer Res 68(4):1064-73. [PubMed: 18281481]  [MGI Ref ID J:131697]

Greenberg NM. 2000. Androgens and growth factors in prostate cancer: a transgenic perspective. Prostate Cancer Prostatic Dis 3(4):224-228. [PubMed: 12497068]  [MGI Ref ID J:81103]

Grossmann ME; Davila T; Celis T. 2001. Avoiding tolerance against prostatic antigens with subdominant peptide epitopes. J Immunother 24(3):237-41. [PubMed: 11394501]  [MGI Ref ID J:69753]

Grosso JF; Kelleher CC; Harris TJ; Maris CH; Hipkiss EL; De Marzo A; Anders R; Netto G; Getnet D; Bruno TC; Goldberg MV; Pardoll DM; Drake CG. 2007. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 117(11):3383-92. [PubMed: 17932562]  [MGI Ref ID J:127434]

Guerra N; Tan YX; Joncker NT; Choy A; Gallardo F; Xiong N; Knoblaugh S; Cado D; Greenberg NR; Raulet DH. 2008. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28(4):571-80. [PubMed: 18394936]  [MGI Ref ID J:134509]

Gupta A; Yu X; Case T; Paul M; Shen MM; Kaestner KH; Matusik RJ. 2013. Mash1 expression is induced in neuroendocrine prostate cancer upon the loss of Foxa2. Prostate 73(6):582-9. [PubMed: 23060003]  [MGI Ref ID J:195899]

Gupta S; Adhami VM; Subbarayan M; MacLennan GT; Lewin JS; Hafeli UO; Fu P; Mukhtar H. 2004. Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model. Cancer Res 64(9):3334-43. [PubMed: 15126378]  [MGI Ref ID J:89552]

Gupta S; Ahmad N; Marengo SR; MacLennan GT; Greenberg NM; Mukhtar H. 2000. Chemoprevention of prostate carcinogenesis by alpha-difluoromethylornithine in TRAMP mice. Cancer Res 60(18):5125-33. [PubMed: 11016639]  [MGI Ref ID J:64783]

Gupta S; Hastak K; Ahmad N; Lewin JS; Mukhtar H. 2001. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci U S A 98(18):10350-5. [PubMed: 11504910]  [MGI Ref ID J:70896]

Hafeez BB; Zhong W; Mustafa A; Fischer JW; Witkowsky O; Verma AK. 2012. Plumbagin inhibits prostate cancer development in TRAMP mice via targeting PKCepsilon, Stat3 and neuroendocrine markers. Carcinogenesis 33(12):2586-92. [PubMed: 22976928]  [MGI Ref ID J:193297]

Hafeez BB; Zhong W; Weichert J; Dreckschmidt NE; Jamal MS; Verma AK. 2011. Genetic Ablation of PKC Epsilon Inhibits Prostate Cancer Development and Metastasis in Transgenic Mouse Model of Prostate Adenocarcinoma. Cancer Res 71(6):2318-27. [PubMed: 21406403]  [MGI Ref ID J:169919]

Han G; Foster BA; Mistry S; Buchanan G; Harris JM; Tilley WD; Greenberg NM. 2001. Hormone status selects for spontaneous somatic androgen receptor variants that demonstrate specific ligand and cofactor dependent activities in autochthonous prostate cancer. J Biol Chem 276(14):11204-13. [PubMed: 11063747]  [MGI Ref ID J:69752]

He Y; Zha J; Wang Y; Liu W; Yang X; Yu P. 2013. Tissue damage-associated "danger signals" influence T-cell responses that promote the progression of preneoplasia to cancer. Cancer Res 73(2):629-39. [PubMed: 23108142]  [MGI Ref ID J:194127]

Hernandez I; Maddison LA; Wei Y; DeMayo F; Petras T; Li B; Gingrich JR; Rosen JM; Greenberg NM. 2003. Prostate-specific expression of p53(R172L) differentially regulates p21, Bax, and mdm2 to inhibit prostate cancer progression and prolong survival. Mol Cancer Res 1(14):1036-47. [PubMed: 14707287]  [MGI Ref ID J:87255]

Hess Michelini R; Freschi M; Manzo T; Jachetti E; Degl'Innocenti E; Grioni M; Basso V; Bonini C; Simpson E; Mondino A; Bellone M. 2010. Concomitant tumor and minor histocompatibility antigen-specific immunity initiate rejection and maintain remission from established spontaneous solid tumors. Cancer Res 70(9):3505-14. [PubMed: 20388780]  [MGI Ref ID J:159369]

Hill RE; De Avila DM; Bertrand KP; Greenberg NM; Reeves JJ. 2003. Immunization against luteinizing hormone-releasing hormone fusion proteins does not decrease prostate cancer in the transgenic adenocarcinoma mouse prostate model. Exp Biol Med (Maywood) 228(7):818-22. [PubMed: 12876301]  [MGI Ref ID J:85008]

Hooker AM; Morley AA; Tilley WD; Sykes PJ. 2004. Cancer-associated genes can affect somatic intrachromosomal recombination early in carcinogenesis. Mutat Res 550(1-2):1-10. [PubMed: 15135636]  [MGI Ref ID J:90162]

Hsu CX; Ross BD; Chrisp CE; Derrow SZ; Charles LG; Pienta KJ; Greenberg NM; Zeng Z; Sanda MG. 1998. Longitudinal cohort analysis of lethal prostate cancer progression in transgenic mice. J Urol 160(4):1500-5. [PubMed: 9751403]  [MGI Ref ID J:50294]

Hu L; Ibrahim S; Liu C; Skaar J; Pagano M; Karpatkin S. 2009. Thrombin induces tumor cell cycle activation and spontaneous growth by down-regulation of p27Kip1, in association with the up-regulation of Skp2 and MiR-222. Cancer Res 69(8):3374-81. [PubMed: 19351827]  [MGI Ref ID J:147729]

Huang Y; Khor TO; Shu L; Saw CL; Wu TY; Suh N; Yang CS; Kong AN. 2012. A gamma-Tocopherol-Rich Mixture of Tocopherols Maintains Nrf2 Expression in Prostate Tumors of TRAMP Mice via Epigenetic Inhibition of CpG Methylation. J Nutr 142(5):818-23. [PubMed: 22457388]  [MGI Ref ID J:183535]

Huffman DM; Grizzle WE; Bamman MM; Kim JS; Eltoum IA; Elgavish A; Nagy TR. 2007. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67(14):6612-8. [PubMed: 17638871]  [MGI Ref ID J:123143]

Huffman DM; Johnson MS; Watts A; Elgavish A; Eltoum IA; Nagy TR. 2007. Cancer progression in the transgenic adenocarcinoma of mouse prostate mouse is related to energy balance, body mass, and body composition, but not food intake. Cancer Res 67(1):417-24. [PubMed: 17185379]  [MGI Ref ID J:117224]

Hurwitz AA; Foster BA; Kwon ED; Truong T; Choi EM; Greenberg NM; Burg MB; Allison JP. 2000. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 60(9):2444-8. [PubMed: 10811122]  [MGI Ref ID J:62479]

Husaini Y; Qiu MR; Lockwood GP; Luo XW; Shang P; Kuffner T; Tsai VW; Jiang L; Russell PJ; Brown DA; Breit SN. 2012. Macrophage inhibitory cytokine-1 (MIC-1/GDF15) slows cancer development but increases metastases in TRAMP prostate cancer prone mice. PLoS One 7(8):e43833. [PubMed: 22952779]  [MGI Ref ID J:191658]

Huss WJ; Barrios RJ; Foster BA; Greenberg NM. 2003. Differential expression of specific FGF ligand and receptor isoforms during angiogenesis associated with prostate cancer progression. Prostate 54(1):8-16. [PubMed: 12481250]  [MGI Ref ID J:81095]

Huss WJ; Barrios RJ; Greenberg NM. 2003. SU5416 Selectively Impairs Angiogenesis to Induce Prostate Cancer-specific Apoptosis. Mol Cancer Ther 2(7):611-6. [PubMed: 12883033]  [MGI Ref ID J:85002]

Huss WJ; Gray DR; Greenberg NM; Mohler JL; Smith GJ. 2005. Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate stem cells. Cancer Res 65(15):6640-50. [PubMed: 16061644]  [MGI Ref ID J:100779]

Huss WJ; Gray DR; Tavakoli K; Marmillion ME; Durham LE; Johnson MA; Greenberg NM; Smith GJ. 2007. Origin of androgen-insensitive poorly differentiated tumors in the transgenic adenocarcinoma of mouse prostate model. Neoplasia 9(11):938-50. [PubMed: 18030362]  [MGI Ref ID J:131744]

Huss WJ; Hanrahan CF; Barrios RJ; Simons JW; Greenberg NM. 2001. Angiogenesis and prostate cancer: identification of a molecular progression switch. Cancer Res 61(6):2736-43. [PubMed: 11289156]  [MGI Ref ID J:68468]

Hwang C; Oetjen KA; Kosoff D; Wojno KJ; Albertelli MA; Dunn RL; Robins DM; Cooney KA; Duckett CS. 2008. X-linked inhibitor of apoptosis deficiency in the TRAMP mouse prostate cancer model. Cell Death Differ 15(5):831-40. [PubMed: 18259199]  [MGI Ref ID J:150992]

Iordanescu I; Becker C; Zetter B; Dunning P; Taylor GA. 2002. Tumor vascularity: evaluation in a murine model with contrast-enhanced color Doppler US effect of angiogenesis inhibitors. Radiology 222(2):460-7. [PubMed: 11818614]  [MGI Ref ID J:74408]

Ishii K; Shappell SB; Matusik RJ; Hayward SW. 2005. Use of tissue recombination to predict phenotypes of transgenic mouse models of prostate carcinoma. Lab Invest 85(9):1086-103. [PubMed: 15980886]  [MGI Ref ID J:100901]

Johnson MA; Hernandez I; Wei Y; Greenberg N. 2000. Isolation and characterization of mouse probasin: An androgen-regulated protein specifically expressed in the differentiated prostate Prostate 43(4):255-62. [PubMed: 10861744]  [MGI Ref ID J:62973]

Josson S; Matsuoka Y; Gururajan M; Nomura T; Huang WC; Yang X; Lin JT; Bridgman R; Chu CY; Johnstone PA; Zayzafoon M; Hu P; Zhau H; Berel D; Rogatko A; Chung LW. 2013. Inhibition of beta2-microglobulin/hemochromatosis enhances radiation sensitivity by induction of iron overload in prostate cancer cells. PLoS One 8(7):e68366. [PubMed: 23874600]  [MGI Ref ID J:204407]

Kalin TV; Wang IC; Ackerson TJ; Major ML; Detrisac CJ; Kalinichenko VV; Lyubimov A; Costa RH. 2006. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res 66(3):1712-20. [PubMed: 16452231]  [MGI Ref ID J:106668]

Kallberg E; Vogl T; Liberg D; Olsson A; Bjork P; Wikstrom P; Bergh A; Roth J; Ivars F; Leanderson T. 2012. S100A9 interaction with TLR4 promotes tumor growth. PLoS One 7(3):e34207. [PubMed: 22470535]  [MGI Ref ID J:187129]

Kaplan PJ; Mohan S; Cohen P; Foster BA; Greenberg NM. 1999. The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Cancer Res 59(9):2203-9. [PubMed: 10232609]  [MGI Ref ID J:54539]

Kaplan-Lefko PJ; Chen TM; Ittmann MM; Barrios RJ; Ayala GE; Huss WJ; Maddison LA; Foster BA; Greenberg NM. 2003. Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate 55(3):219-37. [PubMed: 12692788]  [MGI Ref ID J:83083]

Kaplan-Lefko PJ; Sutherland BW; Evangelou AI; Hadsell DL; Barrios RJ; Foster BA; Demayo F; Greenberg NM. 2008. Enforced epithelial expression of IGF-1 causes hyperplastic prostate growth while negative selection is requisite for spontaneous metastogenesis. Oncogene 27(20):2868-76. [PubMed: 18026134]  [MGI Ref ID J:144539]

Kaulfuss S; von Hardenberg S; Schweyer S; Herr AM; Laccone F; Wolf S; Burfeind P. 2009. Leupaxin acts as a mediator in prostate carcinoma progression through deregulation of p120catenin expression. Oncogene 28(45):3971-82. [PubMed: 19701244]  [MGI Ref ID J:157043]

Kee K; Foster BA; Merali S; Kramer DL; Hensen ML; Diegelman P; Kisiel N; Vujcic S; Mazurchuk RV; Porter CW. 2004. Activated polyamine catabolism depletes acetyl-CoA pools and suppresses prostate tumor growth in TRAMP mice. J Biol Chem 279(38):40076-83. [PubMed: 15252047]  [MGI Ref ID J:93350]

Kelavkar UP; Glasgow W; Olson SJ; Foster BA; Shappell SB. 2004. Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Neoplasia 6(6):821-30. [PubMed: 15720809]  [MGI Ref ID J:97875]

Kinney SR; Moser MT; Pascual M; Greally JM; Foster BA; Karpf AR. 2010. Opposing roles of Dnmt1 in early- and late-stage murine prostate cancer. Mol Cell Biol 30(17):4159-74. [PubMed: 20584988]  [MGI Ref ID J:163289]

Klein RD. 2005. The use of genetically engineered mouse models of prostate cancer for nutrition and cancer chemoprevention research. Mutat Res 576(1-2):111-9. [PubMed: 15885713]  [MGI Ref ID J:100619]

Klezovitch O; Risk M; Coleman I; Lucas JM; Null M; True LD; Nelson PS; Vasioukhin V. 2008. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci U S A 105(6):2105-10. [PubMed: 18245377]  [MGI Ref ID J:131932]

Kwabi-Addo B; Giri D; Schmidt K; Podsypanina K; Parsons R; Greenberg N; Ittmann M. 2001. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci U S A 98(20):11563-8. [PubMed: 11553783]  [MGI Ref ID J:71740]

Kwon ED; Foster BA; Hurwitz AA; Madias C; Allison JP; Greenberg NM; Burg MB. 1999. Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy Proc Natl Acad Sci U S A 96(26):15074-9. [PubMed: 10611340]  [MGI Ref ID J:59573]

Lai KP; Huang CK; Chang YJ; Chung CY; Yamashita S; Li L; Lee SO; Yeh S; Chang C. 2013. New Therapeutic Approach to Suppress Castration-Resistant Prostate Cancer Using ASC-J9 via Targeting Androgen Receptor in Selective Prostate Cells. Am J Pathol 182(2):460-73. [PubMed: 23219429]  [MGI Ref ID J:193094]

Le Dur A; Beringue V; Andreoletti O; Reine F; Lai TL; Baron T; Bratberg B; Vilotte JL; Sarradin P; Benestad SL; Laude H. 2005. A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes. Proc Natl Acad Sci U S A 102(44):16031-6. [PubMed: 16239348]  [MGI Ref ID J:102929]

Leav I; Plescia J; Goel HL; Li J; Jiang Z; Cohen RJ; Languino LR; Altieri DC. 2010. Cytoprotective mitochondrial chaperone TRAP-1 as a novel molecular target in localized and metastatic prostate cancer. Am J Pathol 176(1):393-401. [PubMed: 19948822]  [MGI Ref ID J:156382]

Leman ES; Arlotti JA; Dhir R; Greenberg N; Getzenberg RH. 2002. Characterization of the nuclear matrix proteins in a transgenic mouse model for prostate cancer. J Cell Biochem 86(2):203-12. [PubMed: 12111990]  [MGI Ref ID J:77969]

Li H; Gerald WL; Benezra R. 2004. Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade. Cancer Res 64(17):6137-43. [PubMed: 15342397]  [MGI Ref ID J:92409]

Lin X; Gingrich JR; Bao W; Li J; Haroon ZA; Demark-Wahnefried W. 2002. Effect of flaxseed supplementation on prostatic carcinoma in transgenic mice. Urology 60(5):919-24. [PubMed: 12429338]  [MGI Ref ID J:80307]

Liu G; Lu S; Wang X; Page ST; Higano CS; Plymate SR; Greenberg NM; Sun S; Li Z; Wu JD. 2013. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. J Clin Invest 123(10):4410-22. [PubMed: 24018560]  [MGI Ref ID J:203915]

Llaverias G; Danilo C; Wang Y; Witkiewicz AK; Daumer K; Lisanti MP; Frank PG. 2010. A Western-type diet accelerates tumor progression in an autochthonous mouse model of prostate cancer. Am J Pathol 177(6):3180-91. [PubMed: 21088217]  [MGI Ref ID J:167620]

Luo JL; Tan W; Ricono JM; Korchynskyi O; Zhang M; Gonias SL; Cheresh DA; Karin M. 2007. Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446(7136):690-4. [PubMed: 17377533]  [MGI Ref ID J:121432]

Mack JT; Helke KL; Normand G; Green C; Townsend DM; Tew KD. 2011. ABCA2 transporter deficiency reduces incidence of TRAMP prostate tumor metastasis and cellular chemotactic migration. Cancer Lett 300(2):154-61. [PubMed: 21041019]  [MGI Ref ID J:166713]

Majeed N; Blouin MJ; Kaplan-Lefko PJ; Barry-Shaw J; Greenberg NM; Gaudreau P; Bismar TA; Pollak M. 2005. A germ line mutation that delays prostate cancer progression and prolongs survival in a murine prostate cancer model. Oncogene 24(29):4736-40. [PubMed: 15870705]  [MGI Ref ID J:99544]

Martiniello-Wilks R; Dane A; Mortensen E; Jeyakumar G; Wang XY; Russell PJ. 2003. Application of the transgenic adenocarcinoma mouse prostate (TRAMP) model for pre-clinical therapeutic studies. Anticancer Res 23(3B):2633-42. [PubMed: 12894551]  [MGI Ref ID J:84993]

McCabe MT; Low JA; Daignault S; Imperiale MJ; Wojno KJ; Day ML. 2006. Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res 66(1):385-92. [PubMed: 16397253]  [MGI Ref ID J:105165]

McMullin RP; Mutton LN; Bieberich CJ. 2009. Hoxb13 regulatory elements mediate transgene expression during prostate organogenesis and carcinogenesis. Dev Dyn 238(3):664-72. [PubMed: 19191217]  [MGI Ref ID J:146505]

Mennuni C; Ugel S; Mori F; Cipriani B; Iezzi M; Pannellini T; Lazzaro D; Ciliberto G; La Monica N; Zanovello P; Bronte V; Scarselli E. 2008. Preventive vaccination with telomerase controls tumor growth in genetically engineered and carcinogen-induced mouse models of cancer. Cancer Res 68(23):9865-74. [PubMed: 19047167]  [MGI Ref ID J:142091]

Mentor-Marcel R; Lamartiniere CA; Eltoum IA; Greenberg NM; Elgavish A. 2005. Dietary Genistein Improves Survival and Reduces Expression of Osteopontin in the Prostate of Transgenic Mice with Prostatic Adenocarcinoma (TRAMP). J Nutr 135(5):989-95. [PubMed: 15867270]  [MGI Ref ID J:98642]

Mentor-Marcel R; Lamartiniere CA; Eltoum IE; Greenberg NM; Elgavish A. 2001. Genistein in the diet reduces the incidence of poorly differentiated prostatic adenocarcinoma in transgenic mice (TRAMP). Cancer Res 61(18):6777-82. [PubMed: 11559550]  [MGI Ref ID J:71655]

Moghaddami M; Swart B; Reynolds P; Diener K; Brown MP. 2002. Flt3 ligand expands dendritic cell numbers in normal and malignant murine prostate. Immunol Cell Biol 80(4):370-81. [PubMed: 12121227]  [MGI Ref ID J:77987]

Moore ML; Teitell MA; Kim Y; Watabe T; Reiter RE; Witte ON; Dubey P. 2008. Deletion of PSCA increases metastasis of TRAMP-induced prostate tumors without altering primary tumor formation. Prostate 68(2):139-51. [PubMed: 18044730]  [MGI Ref ID J:133908]

Moran-Jones K; Ledger A; Naylor MJ. 2012. beta1 integrin deletion enhances progression of prostate cancer in the TRAMP mouse model. Sci Rep 2:526. [PubMed: 22829980]  [MGI Ref ID J:206115]

Morey Kinney SR; Smiraglia DJ; James SR; Moser MT; Foster BA; Karpf AR. 2008. Stage-specific alterations of DNA methyltransferase expression, DNA hypermethylation, and DNA hypomethylation during prostate cancer progression in the transgenic adenocarcinoma of mouse prostate model. Mol Cancer Res 6(8):1365-74. [PubMed: 18667590]  [MGI Ref ID J:141970]

Morey SR; Smiraglia DJ; James SR; Yu J; Moser MT; Foster BA; Karpf AR. 2006. DNA methylation pathway alterations in an autochthonous murine model of prostate cancer. Cancer Res 66(24):11659-67. [PubMed: 17178860]  [MGI Ref ID J:116759]

Naff KA; Van Pelt C; Craig S; Gray K. 2005. Perianal mass in a female transgenic mouse. Lab Anim (NY) 34(4):31, 32-3. [PubMed: 15806087]  [MGI Ref ID J:101145]

Nanda NK; Birch L; Greenberg NM; Prins GS. 2006. MHC class I and class II molecules are expressed in both human and mouse prostate tumor microenvironment. Prostate 66(12):1275-84. [PubMed: 16741922]  [MGI Ref ID J:115823]

Narayanan BA; Narayanan NK; Pittman B; Reddy BS. 2004. Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Clin Cancer Res 10(22):7727-37. [PubMed: 15570007]  [MGI Ref ID J:95483]

Narayanan BA; Narayanan NK; Pttman B; Reddy BS. 2006. Adenocarcina of the mouse prostate growth inhibition by celecoxib: downregulation of transcription factors involved in COX-2 inhibition. Prostate 66(3):257-65. [PubMed: 16175586]  [MGI Ref ID J:107090]

Nikitina EY; Desai SA; Zhao X; Song W; Luo AZ; Gangula RD; Slawin KM; Spencer DM. 2005. Versatile prostate cancer treatment with inducible caspase and interleukin-12. Cancer Res 65(10):4309-19. [PubMed: 15899823]  [MGI Ref ID J:98548]

Niu Y; Altuwaijri S; Lai KP; Wu CT; Ricke WA; Messing EM; Yao J; Yeh S; Chang C. 2008. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci U S A 105(34):12182-7. [PubMed: 18723679]  [MGI Ref ID J:142268]

Nowak M; Arredouani MS; Tun-Kyi A; Schmidt-Wolf I; Sanda MG; Balk SP; Exley MA. 2010. Defective NKT cell activation by CD1d+ TRAMP prostate tumor cells is corrected by interleukin-12 with alpha-galactosylceramide. PLoS One 5(6):e11311. [PubMed: 20593019]  [MGI Ref ID J:162009]

Ono M; Inkson CA; Sonn R; Kilts TM; de Castro LF; Maeda A; Fisher LW; Robey PG; Berendsen AD; Li L; McCartney-Francis N; Brown AC; Crawford NP; Molinolo A; Jain A; Fedarko NS; Young MF. 2013. WISP1/CCN4: a potential target for inhibiting prostate cancer growth and spread to bone. PLoS One 8(8):e71709. [PubMed: 23977121]  [MGI Ref ID J:206344]

Oo Khor T; Yu S; Barve A; Hao X; Hong JL; Lin W; Foster B; Huang MT; Newmark HL; Kong AN. 2009. Dietary feeding of dibenzoylmethane inhibits prostate cancer in transgenic adenocarcinoma of the mouse prostate model. Cancer Res 69(17):7096-102. [PubMed: 19706764]  [MGI Ref ID J:152144]

Ozawa MG; Yao VJ; Chanthery YH; Troncoso P; Uemura A; Varner AS; Kasman IM; Pasqualini R; Arap W; McDonald DM. 2005. Angiogenesis with pericyte abnormalities in a transgenic model of prostate carcinoma. Cancer 104(10):2104-15. [PubMed: 16208706]  [MGI Ref ID J:103697]

Pasula S; Cai X; Dong Y; Messa M; McManus J; Chang B; Liu X; Zhu H; Mansat RS; Yoon SJ; Hahn S; Keeling J; Saunders D; Ko G; Knight J; Newton G; Luscinskas F; Sun X; Towner R; Lupu F; Xia L; Cremona O; De Camilli P; Min W; Chen H. 2012. Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. J Clin Invest 122(12):4424-38. [PubMed: 23187125]  [MGI Ref ID J:193966]

Patel SJ; Molinolo AA; Gutkind S; Crawford NP. 2013. Germline genetic variation modulates tumor progression and metastasis in a mouse model of neuroendocrine prostate carcinoma. PLoS One 8(4):e61848. [PubMed: 23620793]  [MGI Ref ID J:200102]

Peng SL; Townsend MJ; Hecht JL; White IA; Glimcher LH. 2004. T-bet regulates metastasis rate in a murine model of primary prostate cancer. Cancer Res 64(2):452-5. [PubMed: 14744755]  [MGI Ref ID J:88093]

Persano L; Moserle L; Esposito G; Bronte V; Barbieri V; Iafrate M; Gardiman MP; Larghero P; Pfeffer U; Naschberger E; Sturzl M; Indraccolo S; Amadori A. 2009. Interferon-alpha counteracts the angiogenic switch and reduces tumor cell proliferation in a spontaneous model of prostatic cancer. Carcinogenesis 30(5):851-60. [PubMed: 19237608]  [MGI Ref ID J:149061]

Phelps CJ. 1994. Pituitary hormones as neurotrophic signals: anomalous hypophysiotrophic neuron differentiation in hypopituitary dwarf mice. Proc Soc Exp Biol Med 206(1):6-23. [PubMed: 7910409]  [MGI Ref ID J:18152]

Pittoni P; Tripodo C; Piconese S; Mauri G; Parenza M; Rigoni A; Sangaletti S; Colombo MP. 2011. Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71(18):5987-97. [PubMed: 21896641]  [MGI Ref ID J:176436]

Polnaszek N; Kwabi-Addo B; Peterson LE; Ozen M; Greenberg NM; Ortega S; Basilico C; Ittmann M. 2003. Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Res 63(18):5754-60. [PubMed: 14522896]  [MGI Ref ID J:86075]

Pu H; Collazo J; Jones E; Gayheart D; Sakamoto S; Vogt A; Mitchell B; Kyprianou N. 2009. Dysfunctional transforming growth factor-beta receptor II accelerates prostate tumorigenesis in the TRAMP mouse model. Cancer Res 69(18):7366-74. [PubMed: 19738062]  [MGI Ref ID J:152684]

Pu YS; Luo W; Lu HH; Greenberg NM; Lin SH; Gingrich JR. 1999. Differential expression of C-CAM cell adhesion molecule in prostate carcinogenesis in a transgenic mouse model [published erratum appears in J Urol 2000 Jan;163(1):253] J Urol 162(3 Pt 1):892-6. [PubMed: 10458403]  [MGI Ref ID J:57429]

Qi J; Nakayama K; Cardiff RD; Borowsky AD; Kaul K; Williams R; Krajewski S; Mercola D; Carpenter PM; Bowtell D; Ronai ZA. 2010. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18(1):23-38. [PubMed: 20609350]  [MGI Ref ID J:161781]

Qi J; Tripathi M; Mishra R; Sahgal N; Fazil L; Ettinger S; Placzek WJ; Claps G; Chung LW; Bowtell D; Gleave M; Bhowmick N; Ronai ZA. 2013. The E3 ubiquitin ligase Siah2 contributes to castration-resistant prostate cancer by regulation of androgen receptor transcriptional activity. Cancer Cell 23(3):332-46. [PubMed: 23518348]  [MGI Ref ID J:197047]

Raghow S; Hooshdaran MZ; Katiyar S; Steiner MS. 2002. Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Res 62(5):1370-6. [PubMed: 11888907]  [MGI Ref ID J:75227]

Raghow S; Kuliyev E; Steakley M; Greenberg N; Steiner MS. 2000. Efficacious chemoprevention of primary prostate cancer by flutamide in an autochthonous transgenic model. Cancer Res 60(15):4093-7. [PubMed: 10945615]  [MGI Ref ID J:64630]

Raina K; Rajamanickam S; Singh RP; Deep G; Chittezhath M; Agarwal R. 2008. Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Res 68(16):6822-30. [PubMed: 18701508]  [MGI Ref ID J:139140]

Raina K; Serkova NJ; Agarwal R. 2009. Silibinin feeding alters the metabolic profile in TRAMP prostatic tumors: 1H-NMRS-based metabolomics study. Cancer Res 69(9):3731-5. [PubMed: 19366793]  [MGI Ref ID J:148276]

Rao DS; Hyun TS; Kumar PD; Mizukami IF; Rubin MA; Lucas PC; Sanda MG; Ross TS. 2002. Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival. J Clin Invest 110(3):351-60. [PubMed: 12163454]  [MGI Ref ID J:78515]

Redente EF; Dwyer-Nield LD; Merrick DT; Raina K; Agarwal R; Pao W; Rice PL; Shroyer KR; Malkinson AM. 2010. Tumor progression stage and anatomical site regulate tumor-associated macrophage and bone marrow-derived monocyte polarization. Am J Pathol 176(6):2972-85. [PubMed: 20431028]  [MGI Ref ID J:161329]

Ricupito A; Grioni M; Calcinotto A; Hess Michelini R; Longhi R; Mondino A; Bellone M. 2013. Booster Vaccinations against Cancer Are Critical in Prophylactic but Detrimental in Therapeutic Settings. Cancer Res 73(12):3545-54. [PubMed: 23539449]  [MGI Ref ID J:198362]

Riddell JR; Bshara W; Moser MT; Spernyak JA; Foster BA; Gollnick SO. 2011. Peroxiredoxin 1 Controls Prostate Cancer Growth through Toll-Like Receptor 4-Dependent Regulation of Tumor Vasculature. Cancer Res 71(5):1637-46. [PubMed: 21343392]  [MGI Ref ID J:169529]

Robins DM; Albertelli MA; O'Mahony OA. 2008. Androgen receptor variants and prostate cancer in humanized AR mice. J Steroid Biochem Mol Biol 108(3-5):230-6. [PubMed: 17936615]  [MGI Ref ID J:131199]

Romero D; O'Neill C; Terzic A; Contois L; Young K; Conley BA; Bergan RC; Brooks PC; Vary CP. 2011. Endoglin regulates cancer-stromal cell interactions in prostate tumors. Cancer Res 71(10):3482-93. [PubMed: 21444673]  [MGI Ref ID J:171985]

Saez E; Olson P; Evans RM. 2003. Genetic deficiency in Pparg does not alter development of experimental prostate cancer. Nat Med 9(10):1265-1266. [PubMed: 12960963]  [MGI Ref ID J:86096]

Said N; Frierson HF Jr; Chernauskas D; Conaway M; Motamed K; Theodorescu D. 2009. The role of SPARC in the TRAMP model of prostate carcinogenesis and progression. Oncogene 28(39):3487-98. [PubMed: 19597474]  [MGI Ref ID J:153913]

Sakamoto S; McCann RO; Dhir R; Kyprianou N. 2010. Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Res 70(5):1885-95. [PubMed: 20160039]  [MGI Ref ID J:158001]

Saleem M; Adhami VM; Ahmad N; Gupta S; Mukhtar H. 2005. Prognostic Significance of Metastasis-Associated Protein S100A4 (Mts1) in Prostate Cancer Progression and Chemoprevention Regimens in an Autochthonous Mouse Model. Clin Cancer Res 11(1):147-53. [PubMed: 15671539]  [MGI Ref ID J:96273]

Savage PA; Vosseller K; Kang C; Larimore K; Riedel E; Wojnoonski K; Jungbluth AA; Allison JP. 2008. Recognition of a ubiquitous self antigen by prostate cancer-infiltrating CD8+ T lymphocytes. Science 319(5860):215-20. [PubMed: 18187659]  [MGI Ref ID J:131347]

Schatten H; Wiedemeier AM; Taylor M; Lubahn DB; Greenberg NM; Besch-Williford C; Rosenfeld CS; Day JK; Ripple M. 2000. Centrosome-centriole abnormalities are markers for abnormal cell divisions and cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) model. Biol Cell 92(5):331-40. [PubMed: 11071042]  [MGI Ref ID J:65344]

Schmittgen TD; Zakrajsek BA; Hill RE; Liu Q; Reeves JJ; Axford PD; Singer MJ; Reed MW. 2003. Expression pattern of mouse homolog of prostate-specific membrane antigen (FOLH1) in the transgenic adenocarcinoma of the mouse prostate model. Prostate 55(4):308-16. [PubMed: 12712410]  [MGI Ref ID J:83064]

Selth LA; Townley S; Gillis JL; Ochnik AM; Murti K; Macfarlane RJ; Chi KN; Marshall VR; Tilley WD; Butler LM. 2012. Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer 131(3):652-61. [PubMed: 22052531]  [MGI Ref ID J:186120]

Shanmugam MK; Manu KA; Ong TH; Ramachandran L; Surana R; Bist P; Lim LH; Prem Kumar A; Hui KM; Sethi G. 2011. Inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of mouse prostate model. Int J Cancer 129(7):1552-63. [PubMed: 21480220]  [MGI Ref ID J:174712]

Shen H; Schuster R; Lu B; Waltz SE; Lentsch AB. 2006. Critical and opposing roles of the chemokine receptors CXCR2 and CXCR3 in prostate tumor growth. Prostate 66(16):1721-8. [PubMed: 16941672]  [MGI Ref ID J:115957]

Shen H; Schuster R; Stringer KF; Waltz SE; Lentsch AB. 2006. The Duffy antigen/receptor for chemokines (DARC) regulates prostate tumor growth. FASEB J 20(1):59-64. [PubMed: 16394268]  [MGI Ref ID J:104574]

Shepard CR; Kassis J; Whaley DL; Kim HG; Wells A. 2007. PLC gamma contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene 26(21):3020-6. [PubMed: 17130835]  [MGI Ref ID J:122884]

Shih SC; Robinson GS; Perruzzi CA; Calvo A; Desai K; Green JE; Ali IU; Smith LE; Senger DR. 2002. Molecular profiling of angiogenesis markers. Am J Pathol 161(1):35-41. [PubMed: 12107087]  [MGI Ref ID J:77978]

Shimada K; Anai S; Fujii T; Tanaka N; Fujimoto K; Konishi N. 2013. Syndecan-1 (CD138) contributes to prostate cancer progression by stabilizing tumour-initiating cells. J Pathol 231(4):495-504. [PubMed: 24549646]  [MGI Ref ID J:206809]

Shukla S; Bhaskaran N; Babcook MA; Fu P; Maclennan GT; Gupta S. 2014. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis 35(2):452-60. [PubMed: 24067903]  [MGI Ref ID J:205414]

Shukla S; MacLennan GT; Flask CA; Fu P; Mishra A; Resnick MI; Gupta S. 2007. Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Cancer Res 67(14):6925-35. [PubMed: 17638904]  [MGI Ref ID J:123137]

Siddique HR; Adhami VM; Parray A; Johnson JJ; Siddiqui IA; Shekhani MT; Murtaza I; Ambartsumian N; Konety BR; Mukhtar H; Saleem M. 2013. The S100A4 Oncoprotein Promotes Prostate Tumorigenesis in a Transgenic Mouse Model: Regulating NFkappaB through the RAGE Receptor. Genes Cancer 4(5-6):224-34. [PubMed: 24069509]  [MGI Ref ID J:202464]

Siddiqui IA; Shukla Y; Adhami VM; Sarfaraz S; Asim M; Hafeez BB; Mukhtar H. 2008. Suppression of NFkappaB and its Regulated Gene Products by Oral Administration of Green Tea Polyphenols in an Autochthonous Mouse Prostate Cancer Model. Pharm Res 25(9):2135-42. [PubMed: 18317887]  [MGI Ref ID J:138094]

Singh SV ; Warin R ; Xiao D ; Powolny AA ; Stan SD ; Arlotti JA ; Zeng Y ; Hahm ER ; Marynowski SW ; Bommareddy A ; Desai D ; Amin S ; Parise RA ; Beumer JH ; Chambers WH. 2009. Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Res 69(5):2117-25. [PubMed: 19223537]  [MGI Ref ID J:146610]

Slusarz A; Jackson GA; Day JK; Shenouda NS; Bogener JL; Browning JD; Fritsche KL; MacDonald RS; Besch-Williford CL; Lubahn DB. 2012. Aggressive prostate cancer is prevented in ERalphaKO mice and stimulated in ERbetaKO TRAMP mice. Endocrinology 153(9):4160-70. [PubMed: 22753646]  [MGI Ref ID J:189182]

Slusarz A; Shenouda NS; Sakla MS; Drenkhahn SK; Narula AS; MacDonald RS; Besch-Williford CL; Lubahn DB. 2010. Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Res 70(8):3382-90. [PubMed: 20395211]  [MGI Ref ID J:158939]

Stagg J; Beavis PA; Divisekera U; Liu MC; Moller A; Darcy PK; Smyth MJ. 2012. CD73-deficient mice are resistant to carcinogenesis. Cancer Res 72(9):2190-6. [PubMed: 22396496]  [MGI Ref ID J:185750]

Sutherland BW; Knoblaugh SE; Kaplan-Lefko PJ; Wang F; Holzenberger M; Greenberg NM. 2008. Conditional deletion of insulin-like growth factor-I receptor in prostate epithelium. Cancer Res 68(9):3495-504. [PubMed: 18451178]  [MGI Ref ID J:134608]

Suttie A; Nyska A; Haseman JK; Moser GJ; Hackett TR; Goldsworthy TL. 2003. A grading scheme for the assessment of proliferative lesions of the mouse prostate in the TRAMP model. Toxicol Pathol 31(1):31-8. [PubMed: 12597447]  [MGI Ref ID J:81938]

Suttie AW; Dinse GE; Nyska A; Moser GJ; Goldsworthy TL; Maronpot RR. 2005. An investigation of the effects of late-onset dietary restriction on prostate cancer development in the TRAMP mouse. Toxicol Pathol 33(3):386-97. [PubMed: 15805078]  [MGI Ref ID J:97938]

Takahashi S; Watanabe T; Okada M; Inoue K; Ueda T; Takada I; Watabe T; Yamamoto Y; Fukuda T; Nakamura T; Akimoto C; Fujimura T; Hoshino M; Imai Y; Metzger D; Miyazono K; Minami Y; Chambon P; Kitamura T; Matsumoto T; Kato S. 2011. Noncanonical Wnt signaling mediates androgen-dependent tumor growth in a mouse model of prostate cancer. Proc Natl Acad Sci U S A 108(12):4938-43. [PubMed: 21383160]  [MGI Ref ID J:170092]

Tam NN; Nyska A; Maronpot RR; Kissling G; Lomnitski L; Suttie A; Bakshi S; Bergman M; Grossman S; Ho SM. 2006. Differential attenuation of oxidative/nitrosative injuries in early prostatic neoplastic lesions in TRAMP mice by dietary antioxidants. Prostate 66(1):57-69. [PubMed: 16114064]  [MGI Ref ID J:107353]

Tani Y; Suttie A; Flake GP; Nyska A; Maronpot RR. 2005. Epithelial-stromal tumor of the seminal vesicles in the transgenic adenocarcinoma mouse prostate model. Vet Pathol 42(3):306-14. [PubMed: 15872376]  [MGI Ref ID J:101136]

Tepaamorndech S; Huang L; Kirschke CP. 2011. A null-mutation in the Znt7 gene accelerates prostate tumor formation in a transgenic adenocarcinoma mouse prostate model. Cancer Lett 308(1):33-42. [PubMed: 21621325]  [MGI Ref ID J:172728]

Thobe MN; Gray JK; Gurusamy D; Paluch AM; Wagh PK; Pathrose P; Lentsch AB; Waltz SE. 2011. The Ron receptor promotes prostate tumor growth in the TRAMP mouse model. Oncogene 30(50):4990-8. [PubMed: 21625214]  [MGI Ref ID J:178572]

Tien JC; Zhou S; Xu J. 2009. The role of SRC-1 in murine prostate cancinogenesis is nonessential due to a possible compensation of SRC-3/AIB1 overexpression. Int J Biol Sci 5(3):256-64. [PubMed: 19305643]  [MGI Ref ID J:161100]

Touma SE; Perner S; Rubin MA; Nanus DM; Gudas LJ. 2009. Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochem Pharmacol 78(9):1127-38. [PubMed: 19549509]  [MGI Ref ID J:154337]

Vyas AR; Hahm ER; Arlotti JA; Watkins S; Stolz DB; Desai D; Amin S; Singh SV. 2013. Chemoprevention of prostate cancer by d,l-sulforaphane is augmented by pharmacological inhibition of autophagy. Cancer Res 73(19):5985-95. [PubMed: 23921360]  [MGI Ref ID J:202523]

Wada S; Yoshimura K; Hipkiss EL; Harris TJ; Yen HR; Goldberg MV; Grosso JF; Getnet D; Demarzo AM; Netto GJ; Anders R; Pardoll DM; Drake CG. 2009. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res 69(10):4309-18. [PubMed: 19435909]  [MGI Ref ID J:148472]

Wadsworth TL; Worstell TR; Greenberg NM; Roselli CE. 2007. Effects of dietary saw palmetto on the prostate of transgenic adenocarcinoma of the mouse prostate model (TRAMP). Prostate 67(6):661-73. [PubMed: 17342743]  [MGI Ref ID J:122650]

Wang X; Colby JK; Yang P; Fischer SM; Newman RA; Klein RD. 2008. The resistance to the tumor suppressive effects of COX inhibitors and COX-2 gene disruption in TRAMP mice is associated with the loss of COX expression in prostate tissue. Carcinogenesis 29(1):120-8. [PubMed: 17942462]  [MGI Ref ID J:131198]

Watabe T; Lin M; Ide H; Donjacour AA; Cunha GR; Witte ON; Reiter RE. 2002. Growth, regeneration, and tumorigenesis of the prostate activates the PSCA promoter. Proc Natl Acad Sci U S A 99(1):401-6. [PubMed: 11752398]  [MGI Ref ID J:73560]

Watkins SK; Zhu Z; Riboldi E; Shafer-Weaver KA; Stagliano KE; Sklavos MM; Ambs S; Yagita H; Hurwitz AA. 2011. FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J Clin Invest 121(4):1361-72. [PubMed: 21436588]  [MGI Ref ID J:171994]

Wechter WJ; Leipold DD; Murray ED Jr; Quiggle D; McCracken JD; Barrios RS; Greenberg NM. 2000. E-7869 (R-flurbiprofen) inhibits progression of prostate cancer in the TRAMP mouse Cancer Res 60(8):2203-8. [PubMed: 10786685]  [MGI Ref ID J:61729]

Wikstrom P; Bylund A; Zhang JX; Hallmans G; Stattin P; Bergh A. 2005. Rye bran diet increases epithelial cell apoptosis and decreases epithelial cell volume in TRAMP (transgenic adenocarcinoma of the mouse prostate) tumors. Nutr Cancer 53(1):111-6. [PubMed: 16351513]  [MGI Ref ID J:106944]

Williams TM; Hassan GS; Li J; Cohen AW; Medina F; Frank PG; Pestell RG; Di Vizio D; Loda M; Lisanti MP. 2005. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. J Biol Chem 280(26):25134-45. [PubMed: 15802273]  [MGI Ref ID J:133066]

Wong CS; Moller A. 2013. Siah: a promising anticancer target. Cancer Res 73(8):2400-6. [PubMed: 23455005]  [MGI Ref ID J:197053]

Wong SY; Crowley D; Bronson RT; Hynes RO. 2008. Analyses of the role of endogenous SPARC in mouse models of prostate and breast cancer. Clin Exp Metastasis 25(2):109-18. [PubMed: 18058030]  [MGI Ref ID J:133592]

Wood RW; Baggs RB; Schwarz EM; Messing EM. 2006. Initial observations of reduced uroflow in transgenic adenocarcinoma of murine prostate. Urology 67(6):1324-8. [PubMed: 16765198]  [MGI Ref ID J:115829]

Wu GJ; Fu P; Chiang CF; Huss WJ; Greenberg NM; Wu MW. 2005. Increased expression of MUC18 correlates with the metastatic progression of mouse prostate adenocarcinoma in the TRAMP model. J Urol 173(5):1778-83. [PubMed: 15821586]  [MGI Ref ID J:98661]

Xuan JW; Bygrave M; Jiang H; Valiyeva F; Dunmore-Buyze J; Holdsworth DW; Izawa JI; Bauman G; Moussa M; Winter SF; Greenberg NM; Chin JL; Drangova M; Fenster A; Lacefield JC. 2007. Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer using three-dimensional power Doppler ultrasound. Cancer Res 67(6):2830-9. [PubMed: 17363606]  [MGI Ref ID J:120312]

Yang F; Zhang Y; Ressler SJ; Ittmann MM; Ayala GE; Dang TD; Wang F; Rowley DR. 2013. FGFR1 Is Essential for Prostate Cancer Progression and Metastasis. Cancer Res 73(12):3716-24. [PubMed: 23576558]  [MGI Ref ID J:198345]

Yoshioka T; Otero J; Chen Y; Kim YM; Koutcher JA; Satagopan J; Reuter V; Carver B; de Stanchina E; Enomoto K; Greenberg NM; Scardino PT; Scher HI; Sawyers CL; Giancotti FG. 2013. beta4 Integrin signaling induces expansion of prostate tumor progenitors. J Clin Invest :. [PubMed: 23348745]  [MGI Ref ID J:194482]

Yu S; Khor TO; Cheung KL; Li W; Wu TY; Huang Y; Foster BA; Kan YW; Kong AN. 2010. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One 5(1):e8579. [PubMed: 20062804]  [MGI Ref ID J:157242]

Zhao Y; Burikhanov R; Qiu S; Lele SM; Jennings CD; Bondada S; Spear B; Rangnekar VM. 2007. Cancer resistance in transgenic mice expressing the SAC module of Par-4. Cancer Res 67(19):9276-85. [PubMed: 17909035]  [MGI Ref ID J:125633]

Zheng X; Gao JX; Zhang H; Geiger TL; Liu Y; Zheng P. 2002. Clonal deletion of simian virus 40 large T antigen-specific T cells in the transgenic adenocarcinoma of mouse prostate mice: an important role for clonal deletion in shaping the repertoire of T cells specific for antigens overexpressed in solid tumors. J Immunol 169(9):4761-9. [PubMed: 12391185]  [MGI Ref ID J:132836]

Zhou P; Fang X; McNally BA; Yu P; Zhu M; Fu YX; Wang L; Liu Y; Zheng P. 2009. Targeting lymphotoxin-mediated negative selection to prevent prostate cancer in mice with genetic predisposition. Proc Natl Acad Sci U S A 106(40):17134-9. [PubMed: 19805094]  [MGI Ref ID J:153696]

Zorn CS; Wojno KJ; McCabe MT; Kuefer R; Gschwend JE; Day ML. 2007. 5-aza-2'-deoxycytidine delays androgen-independent disease and improves survival in the transgenic adenocarcinoma of the mouse prostate mouse model of prostate cancer. Clin Cancer Res 13(7):2136-43. [PubMed: 17404097]  [MGI Ref ID J:123845]

de Witte MA; Bendle GM; van den Boom MD; Coccoris M; Schell TD; Tevethia SS; van Tinteren H; Mesman EM; Song JY; Schumacher TN. 2008. TCR gene therapy of spontaneous prostate carcinoma requires in vivo T cell activation. J Immunol 181(4):2563-71. [PubMed: 18684947]  [MGI Ref ID J:140182]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX11

Colony Maintenance

Breeding & HusbandryTo generate this F1 strain, TRAMP transgenic females (Stock No. 003135) are mated with FVB/NJ males (Stock No. 001800).
Mating SystemHemizygote x Inbred         (Female x Male)   04-APR-08
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $232.00Female or MaleHemizygous for Tg(TRAMP)8247Ng  
Price per Pair (US dollars $)Pair Genotype
$251.75C57BL/6-Tg(TRAMP)8247Ng/J (003135) x FVB/NJ (001800)  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1500 unique mouse models across a vast array of research areas. Breeding colonies provide mice for both large and small orders and fluctuate in size depending on current demand for each strain. If a Repository strain is not immediately available, then within 2 to 3 business days, you will receive an estimated availability timeframe for your inquiry or order along with various delivery options. Repository strains typically are delivered at 4 to 8 weeks of age and will not exceed 12 weeks of age on the day of shipping. We will note and try to accommodate requests for specific ages of Repository strains but cannot guarantee provision of these strains at specific ages. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, please let us know.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $301.60Female or MaleHemizygous for Tg(TRAMP)8247Ng  
Price per Pair (US dollars $)Pair Genotype
$327.30C57BL/6-Tg(TRAMP)8247Ng/J (003135) x FVB/NJ (001800)  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1500 unique mouse models across a vast array of research areas. Breeding colonies provide mice for both large and small orders and fluctuate in size depending on current demand for each strain. If a Repository strain is not immediately available, then within 2 to 3 business days, you will receive an estimated availability timeframe for your inquiry or order along with various delivery options. Repository strains typically are delivered at 4 to 8 weeks of age and will not exceed 12 weeks of age on the day of shipping. We will note and try to accommodate requests for specific ages of Repository strains but cannot guarantee provision of these strains at specific ages. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, please let us know.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1500 unique mouse models across a vast array of research areas. Breeding colonies provide mice for both large and small orders and fluctuate in size depending on current demand for each strain. If a Repository strain is not immediately available, then within 2 to 3 business days, you will receive an estimated availability timeframe for your inquiry or order along with various delivery options. Repository strains typically are delivered at 4 to 8 weeks of age and will not exceed 12 weeks of age on the day of shipping. We will note and try to accommodate requests for specific ages of Repository strains but cannot guarantee provision of these strains at specific ages. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, please let us know.

Control Information

  Control
   Noncarrier
   See control note: The genetic background control is (C57BL/6J x FVB/NJ)F1 hybrid mice (Stock No. 019019). This F1 is created by breeding C57BL/6J females (Stock No. 000664) with FVB/NJ males (Stock No. 001800).
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Notice to customers in Canada.
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.5)