Strain Name:

B6.129P(Cg)-Ptprca Cx3cr1tm1Litt/LittJ

Stock Number:

008451

Order this mouse

Availability:

Repository- Live

Use Restrictions Apply, see Terms of Use
These CX3CR1-GFP mice express EGFP under control of the endogenous Cx3cr1 locus and also harbor the CD45.1 (Ly5.1 or Ptprca) allele, which is atypical for the C57BL/6 congenic background and may be useful in studies of leukocyte migration and trafficking, as well as for transplantation studies with C57BL/6 (CD45.2: Ptprcb) mice.

Description

Strain Information

Type Congenic; Mutant Strain; Spontaneous Mutation; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemHomozygote x Homozygote         (Female x Male)   18-JUL-08
Specieslaboratory mouse
GenerationN10+N1F20 (03-JUL-13)
Generation Definitions
 
Donating InvestigatorDr. Dan R. Littman,   New York University Medical Center

Description
Mice that are homozygous for the CX3CR1-GFP targeted mutation are viable, fertile, normal in size and do not display any gross physical or behavioral abnormalities. RT-PCR analysis of lymphoid tissue from homozygotes detects mutant gene product (mRNA) and no wild type gene product (mRNA). Flow cytometric analysis of peripheral blood cells identified a subset of green fluorescent cells not observed in wild type mice. Enhanced Green Fluorescent Protein (EGFP), but not the endogenous gene, is expressed in monocytes, dendritic cells, NK cells, and brain microglia, mimicking endogenous gene expression. The same subset of peripheral blood cells isolated from heterozygote mice express detectable levels of EGFP. Immunohistochemical analysis of spleen and peripheral nerve tissue from homozygotes does not detect EGFP. These mice also express the CD45.1 (Ly5.1 or Ptprca) allele, which is atypical for the C57BL/6 congenic background, and this marker may be used to track donor cell populations in transplantation studies with C57BL/6 (CD45.2, Ly5.2 or Ptprcb) mice. These CX3CR1-GFP mice may be useful in studies of leukocyte migration and trafficking, as well as for transplantation studies.

Of note, CX3CR1-GFP mice are also available with the Ptprcb allele normally found in the C57BL/6 genetic background (see Stock No. 005582).

Development
To generate the Cx3cr1 mutant allele, a targeting vector containing an Enhanced Green Fluorescent Protein (EGFP, Clontech) cDNA sequence, loxP-flanked neomycin resistance gene, herpes simplex virus thymidine kinase gene, and SV40 polyadenylation site sequence was used to disrupt the first 390 bp of exon 2. The construct was electroporated into 129P2/OlaHsd derived E14.1 embryonic stem (ES) cells which were transiently transfected with a Cre recombinase vector to remove the selection cassette. ES cells that had successfully undergone Cre-mediated recombination (removing the loxP-flanked neo cassette and leaving a single loxP site downstream of EGFP) were injected into recipient blastocysts. The resulting chimeric animals were backcrossed to C57BL/6 for ten generations before being made homozygous. During the backcross, mice were likely bred to a B6.CD45.1 congenic strain and thus also harbor the CD45.1 (Ly5.1 or Ptprca) allele rather than the CD45.2 (Ly5.2 or Ptprcb) allele normally present in C57BL/6 mice. Upon arrival at The Jackson Laboratory Repository, mice were bred with C57BL/6J inbred mice to establish the colony.

A 32 SNP (single nucleotide polymorphism) panel analysis, with 27 markers covering all 19 chromosomes and the X chromosome, as well as 5 markers that distinguish between the C57BL/6J and C57BL/6N substrains, was performed on the rederived living colony at The Jackson Laboratory Repository. While the 27 markers throughout the genome suggested a C57BL/6 genetic background, 2 of the 5 markers that determine C57BL/6J from C57BL/6N were found to be segregating (one on chromosome 11 and one on chromosome 13). Breeding mutant mice together at The Jackson Laboratory Repository for several generations may have fixed these 2 markers as C57BL/6N allele-type.

Control Information

  Control
   000664 C57BL/6J
 
  Considerations for Choosing Controls

Related Strains

Fluorescent Protein Strains
006053   129-Gt(ROSA)26Sortm1(CAG-EGFP)Luo/J
006067   129-Gt(ROSA)26Sortm2(CAG-Dsred2/EGFP)Luo/J
006041   129-Gt(ROSA)26Sortm3(CAG-EGFP/Dsred2)Luo/J
005483   129-Tg(CAG-EYFP)7AC5Nagy/J
003960   129S6-Tg(Prnp-GFP/cre)1Blw/J
006102   B10.Cg-H2k Tg(Il2/NFAT-luc)83Rinc/J
006100   B10.Cg-H2k Tg(NFkB/Fos-luc)26Rinc/J
012687   B6(129S4)-Tg(SYN1-icre/mRFP1)9934Rdav/J
008242   B6(Cg)-Gt(ROSA)26Sortm4(Ikbkb)Rsky/J
007676   B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J
004178   B6.129(Cg)-Tg(CAG-Bgeo/GFP)21Lbe/J
010635   B6.129(FVB)-Alcamtm1Jawe/J
004218   B6.129(ICR)-Tg(CAG-ECFP)CK6Nagy/J
016162   B6.129-Gfi1tm2Tmo/J
016161   B6.129-Gfi1btm1Tmo/J
006071   B6.129-Gt(ROSA)26Sortm1(CAG-EGFP)Luo/J
008606   B6.129-Gt(ROSA)26Sortm1Joe/J
006080   B6.129-Gt(ROSA)26Sortm2(CAG-Dsred2/EGFP)Luo/J
006075   B6.129-Gt(ROSA)26Sortm3(CAG-EGFP/Dsred2)Luo/J
011036   B6.129-Hoxa11tm1Dmwe/J
010818   B6.129-Ifnb1tm1Lky/J
006412   B6.129-Il12btm1Lky/J
005582   B6.129P-Cx3cr1tm1Litt/J
008710   B6.129P2(129S4)-Hprttm10(Ple162-EGFP/cre)Ems/Mmjax
008877   B6.129P2(129S4)-Hprttm12(Ple177-EGFP/cre)Ems/Mmjax
009114   B6.129P2(129S4)-Hprttm14(Ple103-EGFP/cre)Ems/Mmjax
009116   B6.129P2(129S4)-Hprttm16(Ple167-EGFP/cre)Ems/Mmjax
008709   B6.129P2(129S4)-Hprttm9(Ple178-EGFP/cre)Ems/Mmjax
016933   B6.129P2(Cg)-Cdh1tm1Cle/J
009113   B6.129P2(Cg)-Hprttm13(Ple54-EGFP)Ems/Mmjax
009115   B6.129P2(Cg)-Hprttm15(Ple111-EGFP)Ems/Mmjax
009118   B6.129P2(Cg)-Hprttm18(Ple90-EGFP)Ems/Mmjax
009353   B6.129P2(Cg)-Hprttm20(Ple53-EGFP)Ems/Mmjax
009596   B6.129P2(Cg)-Hprttm33(Ple183-EGFP)Ems/Mmjax
010770   B6.129P2(Cg)-Hprttm34(Ple186-EGFP)Ems/Mmjax
008706   B6.129P2(Cg)-Hprttm4(Ple88-EGFP)Ems/Mmjax
010789   B6.129P2(Cg)-Hprttm54(Ple233-EGFP)Ems/Mmjax
008707   B6.129P2(Cg)-Hprttm7(Ple185-EGFP)Ems/Mmjax
008708   B6.129P2(Cg)-Hprttm8(Ple151-EGFP)Ems/Mmjax
007572   B6.129P2(Cg)-Rorctm2Litt/J
005693   B6.129P2-Cxcr6tm1Litt/J
017492   B6.129P2-Gt(ROSA)26Sortm1(CAG-Brainbow2.1)Cle/J
008513   B6.129P2-Gt(ROSA)26Sortm1(Trpv1,ECFP)Mde/J
013586   B6.129P2-Gt(ROSA)26Sortm1Nik/J
013587   B6.129P2-Gt(ROSA)26Sortm3Nik/J
008875   B6.129P2-Lgr5tm1(cre/ERT2)Cle/J
016934   B6.129P2-Lgr6tm2.1(cre/ERT2)Cle/J
016224   B6.129S(Cg)-Id2tm2.1Blh/ZhuJ
013593   B6.129S-Atoh1tm4.1Hzo/J
009380   B6.129S1-Irf4tm1Rdf/J
017581   B6.129S4-Ifngtm3.1Lky/J
007669   B6.129S4-Pdgfratm11(EGFP)Sor/J
008379   B6.129S6-Il10tm1Flv/J
006852   B6.129S6-Per2tm1Jt/J
012904   B6.129S6-S100a4tm1Egn/YunkJ
015813   B6.129S7-Kittm1Rosay/J
008466   B6.129X1(Cg)-Shhtm6Amc/J
008577   B6.129X1-Gpr65tm1Witt/J
006148   B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J
009081   B6.129X1-Id1tm1Xhsu/J
016187   B6.BTBR-Tg(Per1-luc,Per1)1Jt/J
003479   B6.C3-Tg(Fos-luc)1Rnd/J
023531   B6.Cg-Calb1tm1.1(folA/EGFP/cre)Hze/J
006772   B6.Cg-Foxp3tm2Tch/J
014602   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm1(tetO-mCherry)Eggn/J
005670   B6.Cg-Gt(ROSA)26Sortm1(rtTA,EGFP)Nagy/J
007914   B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J
007920   B6.Cg-Gt(ROSA)26Sortm2(CAG-EYFP)Hze/J
012567   B6.Cg-Gt(ROSA)26Sortm27.1(CAG-COP4*H134R/tdTomato)Hze/J
007903   B6.Cg-Gt(ROSA)26Sortm3(CAG-EYFP)Hze/J
024109   B6.Cg-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J
021188   B6.Cg-Gt(ROSA)26Sortm40.1(CAG-aop3/EGFP)Hze/J
007906   B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J
025106   B6.Cg-Gt(ROSA)26Sortm75.1(CAG-tdTomato*)Hze/J
025109   B6.Cg-Gt(ROSA)26Sortm80.1(CAG-COP4*L132C/EYFP)Hze/J
007909   B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J
022731   B6.Cg-Igs7tm62.1(tetO-tdTomato)Hze/J
023528   B6.Cg-Igs7tm78.1(tetO-VSFPB1.2)Hze/J
024104   B6.Cg-Igs7tm94.1(tetO-GCaMP6s)Hze/J
005491   B6.Cg-Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
022486   B6.Cg-Ptprca Tg(UBC-PA-GFP)1Mnz/J
013115   B6.Cg-Rag1tm1Mom Tg(UBC-GFP)30Scha/J
005622   B6.Cg-Shhtm1(EGFP/cre)Cjt/J
021879   B6.Cg-Snap25tm1.1Hze/J
007484   B6.Cg-Tyrc-2J Tg(Tyr)3412ARpw Tg(Sry-EGFP)92Ei/EiJ
017863   B6.Cg-Tg(Adora2a-Chrm3*,-mCherry)AD6Blr/J
006051   B6.Cg-Tg(CAG-DsRed*MST)1Nagy/J
008705   B6.Cg-Tg(CAG-DsRed,-EGFP)5Gae/J
007575   B6.Cg-Tg(CAG-Ngb,-EGFP)1Dgrn/J
008111   B6.Cg-Tg(CAG-Ub*G76V/GFP)1Dant/J
008112   B6.Cg-Tg(CAG-Ub*G76V/GFP)2Dant/J
005884   B6.Cg-Tg(CAG-mRFP1)1F1Hadj/J
014545   B6.Cg-Tg(Chat-COP4*H134R/EYFP,Slc18a3)5Gfng/J
014546   B6.Cg-Tg(Chat-COP4*H134R/EYFP,Slc18a3)6Gfng/J
013134   B6.Cg-Tg(Col1a1*2.3-GFP)1Rowe/J
016204   B6.Cg-Tg(Drd1a-tdTomato)6Calak/J
018306   B6.Cg-Tg(Fos-tTA,Fos-EGFP*)1Mmay/J
014135   B6.Cg-Tg(Fos/EGFP)1-3Brth/J
007673   B6.Cg-Tg(Gad1-EGFP)3Gfng/J
010835   B6.Cg-Tg(Gfap-EGFP)3739Sart/J
007897   B6.Cg-Tg(Gt(ROSA)26Sor-EGFP)I1Able/J
006069   B6.Cg-Tg(HIST1H2BB/EGFP)1Pa/J
005029   B6.Cg-Tg(Hlxb9-GFP)1Tmj/J
006098   B6.Cg-Tg(Il2/NFAT-luc)83Rinc/J
006864   B6.Cg-Tg(Ins1-EGFP)1Hara/J
008829   B6.Cg-Tg(Itgax-Venus)1Mnz/J
005244   B6.Cg-Tg(Krt1-15-EGFP)2Cot/J
012643   B6.Cg-Tg(Ly6a-EGFP)G5Dzk/J
008323   B6.Cg-Tg(Mc4r-MAPT/Sapphire)21Rck/J
007742   B6.Cg-Tg(Myh11-cre,-EGFP)2Mik/J
008299   B6.Cg-Tg(NEFL-EYFP/Nefh)40Gsn/J
008321   B6.Cg-Tg(Npy-MAPT/Sapphire)1Rck/J
021232   B6.Cg-Tg(Nrl-EGFP)1Asw/J
006851   B6.Cg-Tg(Per1-luc)025Jt/J
016166   B6.Cg-Tg(Per1-luc)141Jt/J
008324   B6.Cg-Tg(Pmch-MAPT/CFP)1Rck/J
008322   B6.Cg-Tg(Pomc-MAPT/Topaz)1Rck/J
007902   B6.Cg-Tg(RP23-268L19-EGFP)2Mik/J
007894   B6.Cg-Tg(Rgs4-EGFP)4Lvt/J
012893   B6.Cg-Tg(S100a4-EGFP)M1Egn/YunkJ
005999   B6.Cg-Tg(SBE/TK-luc)7Twc/J
014548   B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)8Gfng/J
006361   B6.Cg-Tg(Sp7-tTA,tetO-EGFP/cre)1Amc/J
006101   B6.Cg-Tg(TRE/Prl-luc)31FlvRinc/J
007901   B6.Cg-Tg(Thy1-Brainbow1.0)HLich/J
007911   B6.Cg-Tg(Thy1-Brainbow1.1)MLich/J
007921   B6.Cg-Tg(Thy1-Brainbow2.1)RLich/J
003710   B6.Cg-Tg(Thy1-CFP)23Jrs/J
014131   B6.Cg-Tg(Thy1-CFP)IJrs/GfngJ
007940   B6.Cg-Tg(Thy1-CFP/COX8A)C1Lich/J
007967   B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich/J
007612   B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J
007615   B6.Cg-Tg(Thy1-COP4/EYFP)9Gfng/J
013161   B6.Cg-Tg(Thy1-Clomeleon)1Gjau/J
007919   B6.Cg-Tg(Thy1-EGFP)OJrs/GfngJ
005630   B6.Cg-Tg(Thy1-EYFP)15Jrs/J
003709   B6.Cg-Tg(Thy1-YFP)16Jrs/J
003782   B6.Cg-Tg(Thy1-YFP)HJrs/J
005627   B6.Cg-Tg(Thy1-YFP/Syp)10Jrs/J
007606   B6.Cg-Tg(Thy1-cre/ERT2,-EYFP)AGfng/J
015805   B6.Cg-Tg(UBC-GFP,-TVA)1Clc/J
015806   B6.Cg-Tg(UBC-GFP,-TVA)2Clc/J
015807   B6.Cg-Tg(UBC-GFP,-TVA)3Clc/J
008226   B6.FVB-Tg(CAG-EGFP,-ALPP)2.6Ggc/J
006000   B6.FVB-Tg(ITGAM-DTR/EGFP)34Lan/J
004509   B6.FVB-Tg(Itgax-DTR/EGFP)57Lan/J
006417   B6.FVB-Tg(Npy-hrGFP)1Lowl/J
005738   B6.FVB-Tg(tetO-EGFP,-Tgfbr2)8Mcle/J
008126   B6.NOD-Tg(Cd4-EGFP)1Lt/J
008516   B6;129-Gt(ROSA)26Sortm1Joe/J
004077   B6;129-Gt(ROSA)26Sortm2Sho/J
018438   B6;129-Pax2tm1.1Gdr/J
018437   B6;129-Pax2tm1Gdr/J
009600   B6;129-Six2tm3(EGFP/cre/ERT2)Amc/J
008678   B6;129-Ubbtm1Rrk/J
010988   B6;129P-Cyp11a1tm1(GFP/cre)Pzg/J
010985   B6;129P-Klf3tm1(cre/ERT2)Pzg/J
010984   B6;129P-Upk1btm1Pzg/J
008769   B6;129P2-Gpr15tm1.1Litt/J
013139   B6;129P2-Ifitm3tm1(RFP)Pzg/J
012601   B6;129P2-Lyve1tm1.1(EGFP/cre)Cys/J
006676   B6;129P2-Olfr151tm26Mom/MomJ
006667   B6;129P2-Omptm3Mom/MomJ
008774   B6;129P2-Runx3tm1Litt/J
008776   B6;129P2-Zbtb7btm2Litt/J
012569   B6;129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J
012570   B6;129S-Gt(ROSA)26Sortm34.1(CAG-Syp/tdTomato)Hze/J
012735   B6;129S-Gt(ROSA)26Sortm35.1(CAG-aop3/GFP)Hze/J
014538   B6;129S-Gt(ROSA)26Sortm38(CAG-GCaMP3)Hze/J
014539   B6;129S-Gt(ROSA)26Sortm39(CAG-hop/EYFP)Hze/J
021875   B6;129S-Gt(ROSA)26Sortm65.1(CAG-tdTomato)Hze/J
021876   B6;129S-Gt(ROSA)26Sortm66.1(CAG-tdTomato)Hze/J
024105   B6;129S-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze/J
010983   B6;129S-Id3tm1Pzg/J
023529   B6;129S-Igs7tm79.1(tetO-hop/EGFP)Hze/J
023532   B6;129S-Igs7tm82.1(tetO-EGFP)Hze/J
024100   B6;129S-Igs7tm90.1(tetO-COP4*/EGFP)Hze/J
010986   B6;129S-Osr2tm1Pzg/J
010987   B6;129S-Sox18tm1(GFP/cre/ERT2)Pzg/J
004858   B6;129S1-Tshrtm1Rmar/J
007843   B6;129S4-Efnb2tm2Sor/J
016836   B6;129S4-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm7(tetO-HIST1H2BJ/GFP)Jae/J
011060   B6;129S4-Nanogtm1Jae/J
008214   B6;129S4-Pou5f1tm2Jae/J
008078   B6;129S4-Tcf3tm5Zhu/J
023035   B6;129S6-Gt(ROSA)26Sortm1(CAG-tdTomato*,-EGFP*)Ees/J
007908   B6;129S6-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J
007905   B6;129S6-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J
024106   B6;129S6-Gt(ROSA)26Sortm96(CAG-GCaMP6s)Hze/J
024103   B6;129S6-Igs7tm93.1(tetO-GCaMP6f)Hze/J
014638   B6;129X1-Cldn6tm1(cre/ERT2)Dam/J
008636   B6;C-Tg(Prnp-APP695*/EYFP)49Gsn/J
008605   B6;C3-Tg(CAG-DsRed,-EGFP)5Gae/J
008080   B6;C3-Tg(CAG-SAC/EGFP)35Rang/J
010827   B6;C3-Tg(FOXJ1-EGFP)85Leo/J
010930   B6;CB-Tg(Pbsn-Hpn,-GFP)DVv/J
004966   B6;CBA-Tg(Acrv1-EGFP)2727Redd/J
004654   B6;CBA-Tg(Pou5f1-EGFP)2Mnn/J
007910   B6;CBA-Tg(Thy1-Brainbow1.0)LLich/J
011070   B6;CBA-Tg(Thy1-EGFP)SJrs/NdivJ
014130   B6;CBA-Tg(Thy1-YFP)GJrs/GfngJ
014651   B6;CBA-Tg(Thy1-spH)21Vnmu/J
015814   B6;CBA-Tg(Thy1-spH)64Vnmu/FrkJ
013137   B6;D2-Tg(Akr1b7-RFP)9Amc/J
021577   B6;D2-Tg(Myh6*-mCherry)2Mik/J
005621   B6;D2-Tg(S100B-EGFP)1Wjt/J
005620   B6;D2-Tg(S100B-EYFP)1Wjt/J
015853   B6;DBA-Tg(Cited1-TagRFP)26Amc/J
008344   B6;DBA-Tg(Fos-tTA,Fos-EGFP*)1Mmay Tg(tetO-lacZ,tTA*)1Mmay/J
014160   B6;DBA-Tg(S100b-EGFP/cre/ERT2)22Amc/J
014159   B6;DBA-Tg(Tmem100-EGFP/cre/ERT2)30Amc/J
015855   B6;DBA-Tg(Upk3a-GFP/cre/ERT2)26Amc/J
009159   B6;FVB-Tg(Cnp-EGFP/Rpl10a)JD368Htz/J
004690   B6;FVB-Tg(Pcp2-EGFP)2Yuza/J
006147   B6;FVB-Tg(Sfpi1,-EGFP)7Dgt/J
006043   B6;SJL-Tg(Oxt/EGFP)AI03Wsy/J
012355   B6;SJL-Tg(Pvalb-COP4*H134R/EYFP)15Gfng/J
012341   B6;SJL-Tg(Thy1-COP3/EYFP)1Gfng/J
012344   B6;SJL-Tg(Thy1-COP3/EYFP)4Gfng/J
012348   B6;SJL-Tg(Thy1-COP3/EYFP)8Gfng/J
012350   B6;SJL-Tg(Thy1-COP4*H134R/EYFP)20Gfng/J
008004   B6;SJL-Tg(Thy1-ECFP/VAMP2)1Sud/J
007610   B6;SJL-Tg(Thy1-cre/ERT2,-EYFP)VGfng/J
012332   B6;SJL-Tg(Thy1-hop/EYFP)2Gfng/J
012334   B6;SJL-Tg(Thy1-hop/EYFP)4Gfng/J
014555   B6;SJL-Tg(Tph2-COP4*H134R/EYFP)5Gfng/J
019013   B6N.129S6(Cg)-Gt(ROSA)26Sortm2(EGFP/cre)Alj/J
023537   B6N.129S6-Gt(ROSA)26Sortm1(CAG-tdTomato*,-EGFP*)Ees/J
018974   B6N.B6-Tg(Nr4a1-EGFP/cre)820Khog/J
018913   B6N.Cg-Tg(tetO-GFP,-lacZ)G3Rsp/J
016532   B6N.FVB(Cg)-Tg(CAG-rtTA3)4288Slowe/J
025401   B6SJL-Tg(Thy1-COX8A/Dendra)57Gmnf/J
007880   B6SJL-Tg(Thy1-Stx1a/EYFP)1Sud/J
007856   B6SJL-Tg(Thy1-Syt1/ECFP)1Sud/J
004190   C.129-Il4tm1Lky/J
005700   C.129P2-Cxcr6tm1Litt/J
017580   C.129S4(B6)-Ifngtm3.1Lky/J
015864   C.129S4(B6)-Il12btm1Lky/J
017353   C.129S4(B6)-Il13tm1(YFP/cre)Lky/J
006769   C.Cg-Foxp3tm2Tch/J
010545   C.FVB-Tg(CAG-luc,-GFP)L2G85Chco/FathJ
004512   C.FVB-Tg(Itgax-DTR/EGFP)57Lan/J
008591   C57BL/6-Ackr3tm1Litt/J
008374   C57BL/6-Foxp3tm1Flv/J
008517   C57BL/6-Gt(ROSA)26Sortm3(CAG-MIR17-92,-EGFP)Rsky/J
012343   C57BL/6-Gt(ROSA)26Sortm7(Pik3ca*,EGFP)Rsky/J
012352   C57BL/6-Gt(ROSA)26Sortm8(Map2k1*,EGFP)Rsky/J
012361   C57BL/6-Gt(ROSA)26Sortm9(Rac1*,EGFP)Rsky/J
010724   C57BL/6-Trim21tm1Hm/J
006567   C57BL/6-Tg(CAG-EGFP)131Osb/LeySopJ
003291   C57BL/6-Tg(CAG-EGFP)1Osb/J
005070   C57BL/6-Tg(Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6)2Bck/J
012943   C57BL/6-Tg(Ins2-luc/EGFP/TK)300Kauf/J
016617   C57BL/6-Tg(Nr4a1-EGFP/cre)820Khog/J
012890   C57BL/6-Tg(Scgb1a1-Il17f,GFP)1Cdon/J
004353   C57BL/6-Tg(UBC-GFP)30Scha/J
005706   C57BL/6-Tg(tetO-CDK5R1/GFP)337Lht/J
006618   C57BL/6-Tg(tetO-COX8A/EYFP)1Ksn/J
006362   C57BL/6J-Tg(CMV-Cox8a/EYFP)17J/J
009655   C57BL/6J-Tg(Dcx-DsRed)14Qlu/J
007857   C57BL/6J-Tg(Eno2-YFP/Cox8a)YRwb/J
007860   C57BL/6J-Tg(Eno2-YFP/Cox8a)ZRwb/J
007567   C57BL/6J-Tg(Itgax-cre,-EGFP)4097Ach/J
009593   C57BL/6J-Tg(Pomc-EGFP)1Low/J
003927   C57BL/6J-Tg(Sry-EGFP)92Ei/EiJ
008234   CB6-Tg(CAG-EGFP/CETN2)3-4Jgg/J
007677   CB6-Tg(Gad1-EGFP)G42Zjh/J
007898   CBy.Cg-Tg(Gt(ROSA)26Sor-EGFP)I1Able/J
007075   CByJ.B6-Tg(CAG-EGFP)1Osb/J
007076   CByJ.B6-Tg(UBC-GFP)30Scha/J
010548   D1.FVB(Cg)-Tg(CAG-luc,-GFP)L2G85Chco/FathJ
008450   FVB-Tg(CAG-luc,-GFP)L2G85Chco/J
003718   FVB-Tg(GadGFP)45704Swn/J
010947   FVB-Tg(Gstm5-EGFP)1Ilis/J
005515   FVB-Tg(ITGAM-DTR/EGFP)34Lan/J
010588   FVB-Tg(Myh6/NFAT-luc)1Jmol/J
006421   FVB-Tg(Pomc1-hrGFP)1Lowl/J
005688   FVB-Tg(Rag2-EGFP)1Mnz/J
005125   FVB.129S6(B6)-Gt(ROSA)26Sortm1(Luc)Kael/J
006206   FVB.129S6-Gt(ROSA)26Sortm2(HIF1A/luc)Kael/J
012429   FVB.Cg-Gt(ROSA)26Sortm1(CAG-lacZ,-EGFP)Glh/J
003516   FVB.Cg-Tg(CAG-EGFP)B5Nagy/J
016573   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(S100B-EGFP)1Wjt Tg(SMN2*delta7)4299Ahmb/J
007483   FVB.Cg-Tg(Tyr)3412ARpw Tg(Sry-EGFP)92Ei/EiJ
008200   FVB/N-Tg(CAG-EGFP,-ALPP)2.6Ggc/J
009354   FVB/N-Tg(Dazl-EGFP)10Rarp/J
003257   FVB/N-Tg(GFAPGFP)14Mes/J
007800   FVB/N-Tg(Ins1-luc)VUPwrs/J
012370   FVB/NJ-Tg(Hspa1a-luc,-EGFP)2Chco/J
009618   NOD.129(B6)-Il12btm1Lky/JbsJ
013116   NOD.B6-Tg(Ins2-luc/EGFP/TK)300Kauf/J
013233   NOD.B6-Tg(Itgax-cre,-EGFP)4097Ach/J
006698   NOD.Cg-Il4tm1Lky/JbsJ
008173   NOD.Cg-Tg(Ins1-EGFP)1Hara/QtngJ
009422   NOD.Cg-Tg(Itgax-Venus)1Mnz/QtngJ
005076   NOD.Cg-Tg(tetO-EGFP/FADD)1Doi/DoiJ
010542   NOD.FVB-Tg(CAG-luc,-GFP)L2G85Chco/FathJ
008547   NOD.FVB-Tg(ITGAM-DTR/EGFP)34Lan/JdkJ
008549   NOD.FVB-Tg(Itgax-DTR/EGFP)57Lan/JdkJ
005082   NOD/ShiLt-Tg(ACTB-Ica1/EGFP)18Mdos/MdosJ
005328   NOD/ShiLt-Tg(Cd4-DsRed)4Lt/J
005334   NOD/ShiLt-Tg(Cd4-EGFP)1Lt/J
008694   NOD/ShiLt-Tg(Foxp3-EGFP/cre)1cJbs/J
005282   NOD/ShiLtJ-Tg(Ins1-EGFP/GH1)14Hara/HaraJ
012881   STOCK Ascl1tm1Reed/J
008666   STOCK Fmn1tm1Made/J
013731   STOCK Gt(ROSA)26Sortm1(CAG-Brainbow2.1)Cle/J
006331   STOCK Gt(ROSA)26Sortm1(DTA)Jpmb/J
005130   STOCK Gt(ROSA)26Sortm1(Smo/EYFP)Amc/J
005572   STOCK Gt(ROSA)26Sortm1(rtTA,EGFP)Nagy/J
017922   STOCK Gt(ROSA)26Sortm10(ACTB-tdTomato)Luo/J
018903   STOCK Gt(ROSA)26Sortm2(EGFP/cre)Alj/J
007576   STOCK Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J
024107   STOCK Gt(ROSA)26Sortm5(ACTB-tTA)Luo Igs7tm93.1(tetO-GCaMP6f)Hze/HzeJ
017912   STOCK Gt(ROSA)26Sortm6(ACTB-EGFP*,-tdTomato)Luo/J
017921   STOCK Gt(ROSA)26Sortm7(ACTB-EGFP*)Luo/J
017909   STOCK Gt(ROSA)26Sortm8(ACTB-EGFP*,-tTA2)Luo/J
008876   STOCK Hprttm11(Ple176-EGFP/cre)Ems/Mmjax
009349   STOCK Hprttm31(Ple67-EGFP)Ems/Mmjax
009594   STOCK Hprttm32(Ple112-EGFP)Ems/Mmjax
022976   STOCK Igs2tm1(ACTB-EGFP,-tdTomato)Zng/J
022977   STOCK Igs2tm2(ACTB-tdTomato,-EGFP)Zng/J
024108   STOCK Igs7tm93.1(tetO-GCaMP6f)Hze Tg(Camk2a-tTA)1Mmay/J
013749   STOCK Iis2tm1(ACTB-EGFP,-tdTomato)Luo/J
013751   STOCK Iis2tm2(ACTB-tdTomato,-EGFP)Luo/J
017932   STOCK Iis3tm1.1(ACTB-EGFP*)Luo/J
017923   STOCK Iis3tm2.1(ACTB-EGFP*,-tdTomato)Luo/J
021458   STOCK Iis5tm1(ACTB-tdTomato,-EGFP)Luo/J
021457   STOCK Iis5tm2.1(ACTB-EGFP,-tdTomato)Luo/J
021461   STOCK Iis6tm1.1(ACTB-tdTomato,-EFGP)Luo/J
021460   STOCK Iis6tm2.1(ACTB-EFGP,-tdTomato)Luo/J
004808   STOCK Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
004779   STOCK Mapttm1(EGFP)Klt/J
005692   STOCK Nphs1tm1Rkl/J
006741   STOCK Olfr160tm1(Olfr151)Mom Tg(Olfr151,taulacZ)BMom/MomJ
006678   STOCK Olfr160tm6Mom/MomJ
006669   STOCK Olfr17tm7Mom/MomJ
009061   STOCK Osr1tm1(EGFP/cre/ERT2)Amc/J
007879   STOCK Stx1atm2Sud/J
014581   STOCK Trpm8tm1Apat/J
010911   STOCK Wt1tm1(EGFP/cre)Wtp/J
005438   STOCK Tg(CAG-Bgeo,-DsRed*MST)1Nagy/J
006850   STOCK Tg(CAG-Bgeo,-NOTCH1,-EGFP)1Lbe/J
006876   STOCK Tg(CAG-Bgeo,-TEL/AML1,-EGFP)A6Lbe/J
003920   STOCK Tg(CAG-Bgeo/GFP)21Lbe/J
005441   STOCK Tg(CAG-DsRed*MST)1Nagy/J
003773   STOCK Tg(CAG-ECFP)CK6Nagy/J
003115   STOCK Tg(CAG-EGFP)B5Nagy/J
003116   STOCK Tg(CAG-EGFP)D4Nagy/J
011106   STOCK Tg(CAG-GFP*)1Hadj/J
013754   STOCK Tg(CAG-KikGR)75Hadj/J
011107   STOCK Tg(CAG-Venus)1Hadj/J
005645   STOCK Tg(CAG-mRFP1)1F1Hadj/J
005105   STOCK Tg(Chx10-EGFP/cre,-ALPP)2Clc/J
018322   STOCK Tg(Cp-EGFP)25Gaia/ReyaJ
008241   STOCK Tg(Cspg4-DsRed.T1)1Akik/J
006334   STOCK Tg(Gad1-EGFP)94Agmo/J
006340   STOCK Tg(Gad1-EGFP)98Agmo/J
007896   STOCK Tg(Gt(ROSA)26Sor-EGFP)I1Able/J
016252   STOCK Tg(Hoxb7-Venus*)17Cos/J
006784   STOCK Tg(Ins1-Cerulean)24Hara/J
006866   STOCK Tg(Ins1-DsRed*T4)32Hara/J
016921   STOCK Tg(Myh2-DsRed2)1Jrs/J
012477   STOCK Tg(Myh6*/tetO-GCaMP2)1Mik/J
016922   STOCK Tg(Myh7-CFP)1Jrs/J
008579   STOCK Tg(PSCA-EGFP)1Witt/J
012452   STOCK Tg(Rr5-GFP/cre)1Sapc/J
006570   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(Hlxb9-GFP)1Tmj/J
009606   STOCK Tg(Six2-EGFP/cre)1Amc/J
003658   STOCK Tg(TIE2GFP)287Sato/J
013162   STOCK Tg(Thy1-Clomeleon)12Gjau/J
013163   STOCK Tg(Thy1-Clomeleon)13Gjau/J
007788   STOCK Tg(Thy1-EGFP)MJrs/J
012708   STOCK Tg(Thy1-cre/ERT2,-EYFP)HGfng/PyngJ
011108   STOCK Tg(Ttr-RFP)1Hadj/J
016981   STOCK Tg(Uchl1-HIST2H2BE/mCherry/EGFP*)FSout/J
006129   STOCK Tg(Zp3-EGFP)1Dean/J
003274   STOCK Tg(tetNZL)2Bjd/J
005104   STOCK Tg(tetO-HIST1H2BJ/GFP)47Efu/J
005699   STOCK Tg(tetO-Ipf1,EGFP)956.6Macd/J
017918   STOCK Tg(tetO-MAML1*/EGFP)2Akar/J
012345   STOCK Tg(tetO-tdTomato,-Syp/EGFP*)1.1Luo/J
View Fluorescent Protein Strains     (382 strains)

Strains carrying   Cx3cr1tm1Litt allele
005582   B6.129P-Cx3cr1tm1Litt/J
View Strains carrying   Cx3cr1tm1Litt     (1 strain)

View Strains carrying   Ptprca     (9 strains)

View Strains carrying other alleles of Cx3cr1     (4 strains)

Strains carrying other alleles of GFP
006053   129-Gt(ROSA)26Sortm1(CAG-EGFP)Luo/J
006067   129-Gt(ROSA)26Sortm2(CAG-Dsred2/EGFP)Luo/J
006041   129-Gt(ROSA)26Sortm3(CAG-EGFP/Dsred2)Luo/J
016925   129;B6-Del(10Grin3b-Tmem259)1Zang Tg(Prnp-C19ORF6,-GFP)6Zhang/J
016251   129S.Cg-Tg(Hoxb7-EGFP)33Cos/J
003960   129S6-Tg(Prnp-GFP/cre)1Blw/J
017458   B6(C)-Tg(UAS-EGFP,-SOD1*G37R)135Gsn/J
017460   B6(C)-Tg(UAS-EGFP,-SOD1*G37R)677Gsn/J
008242   B6(Cg)-Gt(ROSA)26Sortm4(Ikbkb)Rsky/J
021011   B6(D2)-Tg(CAG-Brainbow1.0)2Eggn/J
021012   B6(D2)-Tg(CAG-Brainbow1.0)3Eggn/J
021469   B6(D2)-Tg(CAG-GFP,-Uprt)985Cdoe/J
016958   B6.129(Cg)-Foxp3tm3(DTR/GFP)Ayr/J
007676   B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J
004178   B6.129(Cg)-Tg(CAG-Bgeo/GFP)21Lbe/J
018979   B6.129(Cg)-Tg(CAG-EGFP)D4Nagy/KnwJ
010635   B6.129(FVB)-Alcamtm1Jawe/J
006071   B6.129-Gt(ROSA)26Sortm1(CAG-EGFP)Luo/J
008606   B6.129-Gt(ROSA)26Sortm1Joe/J
006080   B6.129-Gt(ROSA)26Sortm2(CAG-Dsred2/EGFP)Luo/J
006075   B6.129-Gt(ROSA)26Sortm3(CAG-EGFP/Dsred2)Luo/J
011036   B6.129-Hoxa11tm1Dmwe/J
025880   B6.129-Tg(EEF1A1-SHC1*)1Ravi/J
008710   B6.129P2(129S4)-Hprttm10(Ple162-EGFP/cre)Ems/Mmjax
008877   B6.129P2(129S4)-Hprttm12(Ple177-EGFP/cre)Ems/Mmjax
009114   B6.129P2(129S4)-Hprttm14(Ple103-EGFP/cre)Ems/Mmjax
008709   B6.129P2(129S4)-Hprttm9(Ple178-EGFP/cre)Ems/Mmjax
009113   B6.129P2(Cg)-Hprttm13(Ple54-EGFP)Ems/Mmjax
009115   B6.129P2(Cg)-Hprttm15(Ple111-EGFP)Ems/Mmjax
009118   B6.129P2(Cg)-Hprttm18(Ple90-EGFP)Ems/Mmjax
009353   B6.129P2(Cg)-Hprttm20(Ple53-EGFP)Ems/Mmjax
009596   B6.129P2(Cg)-Hprttm33(Ple183-EGFP)Ems/Mmjax
010770   B6.129P2(Cg)-Hprttm34(Ple186-EGFP)Ems/Mmjax
008706   B6.129P2(Cg)-Hprttm4(Ple88-EGFP)Ems/Mmjax
010789   B6.129P2(Cg)-Hprttm54(Ple233-EGFP)Ems/Mmjax
008707   B6.129P2(Cg)-Hprttm7(Ple185-EGFP)Ems/Mmjax
008708   B6.129P2(Cg)-Hprttm8(Ple151-EGFP)Ems/Mmjax
007766   B6.129P2(Cg)-Olfr160tm6Mom/MomJ
007572   B6.129P2(Cg)-Rorctm2Litt/J
005693   B6.129P2-Cxcr6tm1Litt/J
008875   B6.129P2-Lgr5tm1(cre/ERT2)Cle/J
016934   B6.129P2-Lgr6tm2.1(cre/ERT2)Cle/J
021794   B6.129S1(Cg)-Ascl3tm1.1(EGFP/cre)Ovi/J
009380   B6.129S1-Irf4tm1Rdf/J
021930   B6.129S1-Tg(CAG-EGFP)S1C2Tpo/KnwPeaJ
022510   B6.129S4-Gpr88tm1.1(cre/GFP)Rpa/J
007669   B6.129S4-Pdgfratm11(EGFP)Sor/J
013061   B6.129S6-Ccr6tm1(EGFP)Irw/J
008379   B6.129S6-Il10tm1Flv/J
012644   B6.129S7-Pcdhgtm2Xzw/J
008466   B6.129X1(Cg)-Shhtm6Amc/J
009081   B6.129X1-Id1tm1Xhsu/J
006772   B6.Cg-Foxp3tm2Tch/J
005670   B6.Cg-Gt(ROSA)26Sortm1(rtTA,EGFP)Nagy/J
007906   B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J
005491   B6.Cg-Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
022486   B6.Cg-Ptprca Tg(UBC-PA-GFP)1Mnz/J
025855   B6.Cg-Ptprca Lag3tm1Doi Tg(CAG-luc,-GFP)L2G85Chco Thy1a/J
013115   B6.Cg-Rag1tm1Mom Tg(UBC-GFP)30Scha/J
005622   B6.Cg-Shhtm1(EGFP/cre)Cjt/J
007484   B6.Cg-Tyrc-2J Tg(Tyr)3412ARpw Tg(Sry-EGFP)92Ei/EiJ
008705   B6.Cg-Tg(CAG-DsRed,-EGFP)5Gae/J
007575   B6.Cg-Tg(CAG-Ngb,-EGFP)1Dgrn/J
008111   B6.Cg-Tg(CAG-Ub*G76V/GFP)1Dant/J
008112   B6.Cg-Tg(CAG-Ub*G76V/GFP)2Dant/J
022148   B6.Cg-Tg(CSNK1D*,-EGFP)827Yfu/J
022149   B6.Cg-Tg(CSNK1D,-EGFP)432Yfu/J
023404   B6.Cg-Tg(CSNK1D,-EGFP)433Yfu/J
022787   B6.Cg-Tg(Chst4-EGFP)23Nrud/J
013134   B6.Cg-Tg(Col1a1*2.3-GFP)1Rowe/J
017466   B6.Cg-Tg(Col1a1*3.6-Topaz)2Rowe/J
018306   B6.Cg-Tg(Fos-tTA,Fos-EGFP*)1Mmay/J
014135   B6.Cg-Tg(Fos/EGFP)1-3Brth/J
007673   B6.Cg-Tg(Gad1-EGFP)3Gfng/J
010835   B6.Cg-Tg(Gfap-EGFP)3739Sart/J
007897   B6.Cg-Tg(Gt(ROSA)26Sor-EGFP)I1Able/J
006069   B6.Cg-Tg(HIST1H2BB/EGFP)1Pa/J
005029   B6.Cg-Tg(Hlxb9-GFP)1Tmj/J
024808   B6.Cg-Tg(Inpp5d-EGFP)DLrr/CprJ
006864   B6.Cg-Tg(Ins1-EGFP)1Hara/J
005244   B6.Cg-Tg(Krt1-15-EGFP)2Cot/J
012643   B6.Cg-Tg(Ly6a-EGFP)G5Dzk/J
008323   B6.Cg-Tg(Mc4r-MAPT/Sapphire)21Rck/J
007742   B6.Cg-Tg(Myh11-cre,-EGFP)2Mik/J
008321   B6.Cg-Tg(Npy-MAPT/Sapphire)1Rck/J
021232   B6.Cg-Tg(Nrl-EGFP)1Asw/J
008324   B6.Cg-Tg(Pmch-MAPT/CFP)1Rck/J
008322   B6.Cg-Tg(Pomc-MAPT/Topaz)1Rck/J
007902   B6.Cg-Tg(RP23-268L19-EGFP)2Mik/J
022086   B6.Cg-Tg(RP24-131B16/EGFP)13Ghan/J
019494   B6.Cg-Tg(RP24-131B16/EGFP)37Ghan/J
007894   B6.Cg-Tg(Rgs4-EGFP)4Lvt/J
021614   B6.Cg-Tg(S100A8-cre,-EGFP)1Ilw/J
012893   B6.Cg-Tg(S100a4-EGFP)M1Egn/YunkJ
006361   B6.Cg-Tg(Sp7-tTA,tetO-EGFP/cre)1Amc/J
016998   B6.Cg-Tg(TetO-Axin1,EGFP)TA6Cos/J
007921   B6.Cg-Tg(Thy1-Brainbow2.1)RLich/J
007919   B6.Cg-Tg(Thy1-EGFP)OJrs/GfngJ
021069   B6.Cg-Tg(Thy1-PA-GFP)5Rmpl/J
021070   B6.Cg-Tg(Thy1-PA-GFP)6Rmpl/J
015805   B6.Cg-Tg(UBC-GFP,-TVA)1Clc/J
015806   B6.Cg-Tg(UBC-GFP,-TVA)2Clc/J
015807   B6.Cg-Tg(UBC-GFP,-TVA)3Clc/J
024688   B6.FVB(129S)-Tg(Pax6-GFP/cre)1Rilm/J
025854   B6.FVB-Ptprca Tg(CAG-luc,-GFP)L2G85Chco Thy1a/J
008226   B6.FVB-Tg(CAG-EGFP,-ALPP)2.6Ggc/J
018056   B6.FVB-Tg(CAG-boNT/B,-EGFP)U75-56Fwp/J
018055   B6.FVB-Tg(H2-K-S100a9,GFP)1Gabr/J
006000   B6.FVB-Tg(ITGAM-DTR/EGFP)34Lan/J
004509   B6.FVB-Tg(Itgax-DTR/EGFP)57Lan/J
006417   B6.FVB-Tg(Npy-hrGFP)1Lowl/J
024033   B6.FVB-Tg(Shank3-EGFP)1Hzo/J
005738   B6.FVB-Tg(tetO-EGFP,-Tgfbr2)8Mcle/J
008126   B6.NOD-Tg(Cd4-EGFP)1Lt/J
023161   B6129S-Tg(Foxp3-EGFP/cre)1aJbs/J
024179   B6;129-Gt(ROSA)26Sortm1(Actb-T,-GFP)Dalco/J
008516   B6;129-Gt(ROSA)26Sortm1Joe/J
004077   B6;129-Gt(ROSA)26Sortm2Sho/J
009600   B6;129-Six2tm3(EGFP/cre/ERT2)Amc/J
008678   B6;129-Ubbtm1Rrk/J
010988   B6;129P-Cyp11a1tm1(GFP/cre)Pzg/J
010985   B6;129P-Klf3tm1(cre/ERT2)Pzg/J
015854   B6;129P2-Foxl2tm1(GFP/cre/ERT2)Pzg/J
008769   B6;129P2-Gpr15tm1.1Litt/J
012601   B6;129P2-Lyve1tm1.1(EGFP/cre)Cys/J
021162   B6;129P2-Mapttm2Arbr/J
006717   B6;129P2-Olfr124tm1Mom/MomJ
006665   B6;129P2-Olfr151tm13(rI7)Mom/MomJ
006666   B6;129P2-Olfr151tm24(Olfr2)Mom/MomJ
006676   B6;129P2-Olfr151tm26Mom/MomJ
006734   B6;129P2-Olfr151tm35(Adrb2)Mom/MomJ
006714   B6;129P2-Olfr160tm11(Olfr545)Mom/MomJ
006649   B6;129P2-Olfr17tm5(Olfr6)Mom/MomJ
006712   B6;129P2-Olfr545tm1Mom/MomJ
006715   B6;129P2-Olfr545tm3(Olfr160)Mom/MomJ
004946   B6;129P2-Omptm2(spH)Mom/J
006667   B6;129P2-Omptm3Mom/MomJ
006728   B6;129P2-Vmn2r26tm2Mom/MomJ
012735   B6;129S-Gt(ROSA)26Sortm35.1(CAG-aop3/GFP)Hze/J
010987   B6;129S-Sox18tm1(GFP/cre/ERT2)Pzg/J
017592   B6;129S-Sox2tm2Hoch/J
004858   B6;129S1-Tshrtm1Rmar/J
007843   B6;129S4-Efnb2tm2Sor/J
012463   B6;129S4-Foxd1tm1(GFP/cre)Amc/J
012464   B6;129S4-Foxd1tm2(GFP/cre/ERT2)Amc/J
016836   B6;129S4-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm7(tetO-HIST1H2BJ/GFP)Jae/J
008214   B6;129S4-Pou5f1tm2Jae/J
008078   B6;129S4-Tcf3tm5Zhu/J
017495   B6;129S7-Crim1tm1(GFP/cre/ERT2)Pzg/J
012436   B6;129S7-Tg(CAG-lacZ,-BMPR1A*,-EGFP)1Mis/Mmjax
008605   B6;C3-Tg(CAG-DsRed,-EGFP)5Gae/J
008080   B6;C3-Tg(CAG-SAC/EGFP)35Rang/J
010827   B6;C3-Tg(FOXJ1-EGFP)85Leo/J
010930   B6;CB-Tg(Pbsn-Hpn,-GFP)DVv/J
010704   B6;CBA-Tg(ATP6V1B1-EGFP)1Rnel/Mmjax
004966   B6;CBA-Tg(Acrv1-EGFP)2727Redd/J
025820   B6;CBA-Tg(CRH-MAPT/Topaz)1Rck/J
021588   B6;CBA-Tg(Gast-EGFP)1Tcw/J
007986   B6;CBA-Tg(H*/Olfr16-GFP)11Mom/MomJ
007987   B6;CBA-Tg(H*/Olfr16-GFP)25Mom/MomJ
007979   B6;CBA-Tg(H/Olfr16-GFP)3Mom/MomJ
007980   B6;CBA-Tg(H/Olfr16-GFP)4Mom/MomJ
007981   B6;CBA-Tg(H/Olfr16-GFP)6Mom/MomJ
007984   B6;CBA-Tg(H/Olfr16-taumCherry,-tauGFP)11Mom/MomJ
007985   B6;CBA-Tg(H/Olfr16-taumCherry,-tauGFP)13Mom/MomJ
007982   B6;CBA-Tg(H/Olfr16-taumRFP,-tauGFP)8Mom/MomJ
007983   B6;CBA-Tg(H/Olfr16-taumRFP,-tauGFP)9Mom/MomJ
007978   B6;CBA-Tg(Hf/Olfr16-GFP)47Mom/MomJ
007977   B6;CBA-Tg(Hf/Olfr16-GFP)7Mom/MomJ
004654   B6;CBA-Tg(Pou5f1-EGFP)2Mnn/J
011070   B6;CBA-Tg(Thy1-EGFP)SJrs/NdivJ
014651   B6;CBA-Tg(Thy1-spH)21Vnmu/J
015814   B6;CBA-Tg(Thy1-spH)64Vnmu/FrkJ
017494   B6;D-Tg(Tshz3-GFP/cre)43Amc/J
025122   B6;D2-Tg(RP24-330G11-EGFP)1Mik/J
005621   B6;D2-Tg(S100B-EGFP)1Wjt/J
008344   B6;DBA-Tg(Fos-tTA,Fos-EGFP*)1Mmay Tg(tetO-lacZ,tTA*)1Mmay/J
014160   B6;DBA-Tg(S100b-EGFP/cre/ERT2)22Amc/J
014159   B6;DBA-Tg(Tmem100-EGFP/cre/ERT2)30Amc/J
015855   B6;DBA-Tg(Upk3a-GFP/cre/ERT2)26Amc/J
009159   B6;FVB-Tg(Cnp-EGFP/Rpl10a)JD368Htz/J
021187   B6;FVB-Tg(Pbsn-rtTA*M2)42Xy/J
004690   B6;FVB-Tg(Pcp2-EGFP)2Yuza/J
006147   B6;FVB-Tg(Sfpi1,-EGFP)7Dgt/J
019381   B6;FVB-Tg(Zfp423-EGFP)7Brsp/J
021022   B6;SJL-Tg(AMELX-EGFP/RHOA*T19N)13Gibs/Mmjax
006043   B6;SJL-Tg(Oxt/EGFP)AI03Wsy/J
021078   B6N.129S1-Mrgprb4tm4.1(flpo)And/J
019013   B6N.129S6(Cg)-Gt(ROSA)26Sortm2(EGFP/cre)Alj/J
018974   B6N.B6-Tg(Nr4a1-EGFP/cre)820Khog/J
018549   B6N.Cg-Tg(Csf1r-EGFP)1Hume/J
020650   B6N.Cg-Tg(Trpm8-EGFP)1Dmck/J
018913   B6N.Cg-Tg(tetO-GFP,-lacZ)G3Rsp/J
007732   B6SJL-Tg(Dazl-hrGFP)4Gar/J
004190   C.129-Il4tm1Lky/J
005700   C.129P2-Cxcr6tm1Litt/J
011010   C.B6-Tg(Foxp3-DTR/EGFP)23.2Spar/Mmjax
006769   C.Cg-Foxp3tm2Tch/J
010545   C.FVB-Tg(CAG-luc,-GFP)L2G85Chco/FathJ
004512   C.FVB-Tg(Itgax-DTR/EGFP)57Lan/J
008591   C57BL/6-Ackr3tm1Litt/J
023520   C57BL/6-Bcrtm1(BCR/ABL)Tsr/J
012343   C57BL/6-Gt(ROSA)26Sortm7(Pik3ca*,EGFP)Rsky/J
012361   C57BL/6-Gt(ROSA)26Sortm9(Rac1*,EGFP)Rsky/J
010724   C57BL/6-Trim21tm1Hm/J
017469   C57BL/6-Tg(BGLAP-Topaz)1Rowe/J
006567   C57BL/6-Tg(CAG-EGFP)131Osb/LeySopJ
003291   C57BL/6-Tg(CAG-EGFP)1Osb/J
005070   C57BL/6-Tg(Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6)2Bck/J
017467   C57BL/6-Tg(Dmp1-Topaz)1Ikal/J
011003   C57BL/6-Tg(Foxp3-DTR/EGFP)23.2Spar/Mmjax
023800   C57BL/6-Tg(Foxp3-GFP)90Pkraj/J
012943   C57BL/6-Tg(Ins2-luc/EGFP/TK)300Kauf/J
016617   C57BL/6-Tg(Nr4a1-EGFP/cre)820Khog/J
012890   C57BL/6-Tg(Scgb1a1-Il17f,GFP)1Cdon/J
007265   C57BL/6-Tg(Sry-EGFP)92Ei Chr YAKR/J/EiJ
007264   C57BL/6-Tg(Sry-EGFP)92Ei Tg(Sry)4Ei Chr YPOS/EiJ
004353   C57BL/6-Tg(UBC-GFP)30Scha/J
022476   C57BL/6-Tg(Uchl1-EGFP)G1Phoz/J
005706   C57BL/6-Tg(tetO-CDK5R1/GFP)337Lht/J
007567   C57BL/6J-Tg(Itgax-cre,-EGFP)4097Ach/J
018895   C57BL/6J-Tg(Krt6,-cre,-Cerulean)1Grsr/Grsr
018896   C57BL/6J-Tg(Krt6,-cre,-Cerulean)2Grsr/Grsr
018898   C57BL/6J-Tg(Krt6,-cre,-Cerulean)4Grsr/Grsr
018899   C57BL/6J-Tg(Krt6,-cre,-Cerulean)5Grsr/Grsr
009593   C57BL/6J-Tg(Pomc-EGFP)1Low/J
003927   C57BL/6J-Tg(Sry-EGFP)92Ei/EiJ
019363   C57BL/6J-Tg(Trp63,-cre,-Cerulean)10Grsr/Grsr
018792   C57BL/6J-Tg(Trp63,-cre,-Cerulean)4Grsr/GrsrJ
024898   C57BL/6J-Tg(tetO-EGFP/Rpl10a)5aReij/J
018151   C57BL/6N-Krt17tm1(cre,Cerulean)Murr/GrsrJ
024753   C57BL/6N-Tg(Ddx25*-EGFP)1Mld/J
024752   C57BL/6N-Tg(Ddx25-EGFP)1Mld/J
008234   CB6-Tg(CAG-EGFP/CETN2)3-4Jgg/J
007677   CB6-Tg(Gad1-EGFP)G42Zjh/J
007898   CBy.Cg-Tg(Gt(ROSA)26Sor-EGFP)I1Able/J
007075   CByJ.B6-Tg(CAG-EGFP)1Osb/J
007076   CByJ.B6-Tg(UBC-GFP)30Scha/J
010548   D1.FVB(Cg)-Tg(CAG-luc,-GFP)L2G85Chco/FathJ
008450   FVB-Tg(CAG-luc,-GFP)L2G85Chco/J
003718   FVB-Tg(GadGFP)45704Swn/J
010947   FVB-Tg(Gstm5-EGFP)1Ilis/J
005515   FVB-Tg(ITGAM-DTR/EGFP)34Lan/J
017484   FVB-Tg(JPH3-GFP,-JPH3*)GXwy/J
006421   FVB-Tg(Pomc1-hrGFP)1Lowl/J
005688   FVB-Tg(Rag2-EGFP)1Mnz/J
024636   FVB.B6-Tg(CAG-cat,-EGFP)1Rbns/KrnzJ
012429   FVB.Cg-Gt(ROSA)26Sortm1(CAG-lacZ,-EGFP)Glh/J
003516   FVB.Cg-Tg(CAG-EGFP)B5Nagy/J
022735   FVB.Cg-Tg(Cspg4-EGFP*)HDbe/J
016573   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(S100B-EGFP)1Wjt Tg(SMN2*delta7)4299Ahmb/J
007483   FVB.Cg-Tg(Tyr)3412ARpw Tg(Sry-EGFP)92Ei/EiJ
008200   FVB/N-Tg(CAG-EGFP,-ALPP)2.6Ggc/J
018393   FVB/N-Tg(CAG-EGFP,TGFB1*)C8Kul/J
009354   FVB/N-Tg(Dazl-EGFP)10Rarp/J
025062   FVB/N-Tg(Figla-EGFP,-icre)ZP3Dean/Mmjax
018548   FVB/N-Tg(GFAP-Cadm1/EGFP)42Oje/J
003257   FVB/N-Tg(GFAPGFP)14Mes/J
025097   NOD.129X1(Cg)-Foxp3tm2Tch/DvsJ
013116   NOD.B6-Tg(Ins2-luc/EGFP/TK)300Kauf/J
013233   NOD.B6-Tg(Itgax-cre,-EGFP)4097Ach/J
006698   NOD.Cg-Il4tm1Lky/JbsJ
021937   NOD.Cg-Prkdcscid Il2rgtm1Wjl Tg(CAG-EGFP)1Osb/SzJ
017619   NOD.Cg-Prkdcscid Tg(CAG-EGFP)1Osb/KupwJ
008173   NOD.Cg-Tg(Ins1-EGFP)1Hara/QtngJ
005076   NOD.Cg-Tg(tetO-EGFP/FADD)1Doi/DoiJ
010542   NOD.FVB-Tg(CAG-luc,-GFP)L2G85Chco/FathJ
008547   NOD.FVB-Tg(ITGAM-DTR/EGFP)34Lan/JdkJ
008549   NOD.FVB-Tg(Itgax-DTR/EGFP)57Lan/JdkJ
005082   NOD/ShiLt-Tg(ACTB-Ica1/EGFP)18Mdos/MdosJ
005334   NOD/ShiLt-Tg(Cd4-EGFP)1Lt/J
008694   NOD/ShiLt-Tg(Foxp3-EGFP/cre)1cJbs/J
005282   NOD/ShiLtJ-Tg(Ins1-EGFP/GH1)14Hara/HaraJ
012881   STOCK Ascl1tm1Reed/J
008666   STOCK Fmn1tm1Made/J
016961   STOCK Foxp3tm9(EGFP/cre/ERT2)Ayr/J
006331   STOCK Gt(ROSA)26Sortm1(DTA)Jpmb/J
005572   STOCK Gt(ROSA)26Sortm1(rtTA,EGFP)Nagy/J
017596   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#aAhmb/J
017597   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#bAhmb/J
025671   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(tetO-Fgf10)1Jaw/SpdlJ
024746   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Hprttm1(tetO-Dkk1)Spdl Tg(TCF/Lef1-lacZ)34Efu/J
018903   STOCK Gt(ROSA)26Sortm2(EGFP/cre)Alj/J
007576   STOCK Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J
008876   STOCK Hprttm11(Ple176-EGFP/cre)Ems/Mmjax
009349   STOCK Hprttm31(Ple67-EGFP)Ems/Mmjax
009594   STOCK Hprttm32(Ple112-EGFP)Ems/Mmjax
017530   STOCK Igs2tm2(ACTB-tdTomato,-EGFP)Luo Trp53tm1Tyj Nf1tm1Par/J
013749   STOCK Iis2tm1(ACTB-EGFP,-tdTomato)Luo/J
013751   STOCK Iis2tm2(ACTB-tdTomato,-EGFP)Luo/J
017932   STOCK Iis3tm1.1(ACTB-EGFP*)Luo/J
017923   STOCK Iis3tm2.1(ACTB-EGFP*,-tdTomato)Luo/J
017701   STOCK Kiss1tm1.1(cre/EGFP)Stei/J
004808   STOCK Mapttm1(EGFP)Klt Tg(MAPT)8cPdav/J
004779   STOCK Mapttm1(EGFP)Klt/J
005692   STOCK Nphs1tm1Rkl/J
006702   STOCK Ntstm1Mom/MomJ
006622   STOCK Olfr151tm10Mom/MomJ
006646   STOCK Olfr151tm11(Olfr160)Mom/MomJ
006692   STOCK Olfr151tm16(Olfr160/Olfr161)Mom/MomJ
006627   STOCK Olfr151tm4Mom/MomJ
006626   STOCK Olfr151tm6Mom/MomJ
006625   STOCK Olfr151tm7Mom/MomJ
006624   STOCK Olfr151tm8Mom/MomJ
006623   STOCK Olfr151tm9Mom/MomJ
006740   STOCK Olfr160tm1(Olfr151)Mom Tg(Olfr151,taulacZ)AMom/MomJ
006741   STOCK Olfr160tm1(Olfr151)Mom Tg(Olfr151,taulacZ)BMom/MomJ
006647   STOCK Olfr160tm1(Olfr151)Mom/MomJ
006636   STOCK Olfr160tm5(Cnga2)Mom/MomJ
006678   STOCK Olfr160tm6Mom/MomJ
006650   STOCK Olfr17tm6(Olfr713)Mom/MomJ
006669   STOCK Olfr17tm7Mom/MomJ
009061   STOCK Osr1tm1(EGFP/cre/ERT2)Amc/J
022757   STOCK Prg4tm1(GFP/cre/ERT2)Abl/J
006770   STOCK Rag1tm1Mom Tg(TIE2GFP)287Sato/J
006633   STOCK Vmn1r49tm3Mom/MomJ
010911   STOCK Wt1tm1(EGFP/cre)Wtp/J
017472   STOCK Tg(Acp5-CFP,Ibsp-YFP,Dmp1-RFP)1Pmay/J
006850   STOCK Tg(CAG-Bgeo,-NOTCH1,-EGFP)1Lbe/J
006876   STOCK Tg(CAG-Bgeo,-TEL/AML1,-EGFP)A6Lbe/J
003920   STOCK Tg(CAG-Bgeo/GFP)21Lbe/J
003115   STOCK Tg(CAG-EGFP)B5Nagy/J
003116   STOCK Tg(CAG-EGFP)D4Nagy/J
017919   STOCK Tg(CAG-EGFP,-dsRed2/RNAi:Tardbp)6Zxu/J
011106   STOCK Tg(CAG-GFP*)1Hadj/J
013753   STOCK Tg(CAG-KikGR)33Hadj/J
013754   STOCK Tg(CAG-KikGR)75Hadj/J
019082   STOCK Tg(CMV-GFP,-BBS4)4T25Vcs/J
005105   STOCK Tg(Chx10-EGFP/cre,-ALPP)2Clc/J
026105   STOCK Tg(Cnp-EGFP*)1Qrlu/J
017468   STOCK Tg(Col1a1*3.6-Cyan)2Rowe/J
018322   STOCK Tg(Cp-EGFP)25Gaia/ReyaJ
006334   STOCK Tg(Gad1-EGFP)94Agmo/J
006340   STOCK Tg(Gad1-EGFP)98Agmo/J
007896   STOCK Tg(Gt(ROSA)26Sor-EGFP)I1Able/J
017952   STOCK Tg(Isl1-EGFP*)1Slp/J
023965   STOCK Tg(Krt17-EGFP)#Cou/J
012477   STOCK Tg(Myh6*/tetO-GCaMP2)1Mik/J
008579   STOCK Tg(PSCA-EGFP)1Witt/J
024578   STOCK Tg(Pax6-GFP/cre)1Rilm/J
023345   STOCK Tg(Pgk1-Ccnb1/EGFP)1Aklo/J
012276   STOCK Tg(Piwil2/EGFP)1Ghan/J
012277   STOCK Tg(Piwil4/EGFP)1Ghan/J
012452   STOCK Tg(Rr5-GFP/cre)1Sapc/J
006570   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(Hlxb9-GFP)1Tmj/J
009606   STOCK Tg(Six2-EGFP/cre)1Amc/J
018148   STOCK Tg(Slc17a8-EGFP)1Edw/SealJ
013752   STOCK Tg(TCF/Lef1-HIST1H2BB/EGFP)61Hadj/J
003658   STOCK Tg(TIE2GFP)287Sato/J
021226   STOCK Tg(Thy1-Brainbow3.1)18Jrs/J
021225   STOCK Tg(Thy1-Brainbow3.1)3Jrs/J
021227   STOCK Tg(Thy1-Brainbow3.2)7Jrs/J
007788   STOCK Tg(Thy1-EGFP)MJrs/J
016981   STOCK Tg(Uchl1-HIST2H2BE/mCherry/EGFP*)FSout/J
025193   STOCK Tg(Vmn1r232-Mapt/EGFP)1Dlc/J
018281   STOCK Tg(Wnt7a-EGFP/cre)#Bhr/Mmjax
006129   STOCK Tg(Zp3-EGFP)1Dean/J
023724   STOCK Tg(mI56i-cre,EGFP)1Kc/J
017755   STOCK Tg(tetO-GCAMP2)12iRyu/J
005104   STOCK Tg(tetO-HIST1H2BJ/GFP)47Efu/J
005699   STOCK Tg(tetO-Ipf1,EGFP)956.6Macd/J
017918   STOCK Tg(tetO-MAML1*/EGFP)2Akar/J
017906   STOCK Tg(tetO-hop/EGFP,-COP4/mCherry)6Kftnk/J
012345   STOCK Tg(tetO-tdTomato,-Syp/EGFP*)1.1Luo/J
View Strains carrying other alleles of GFP     (364 strains)

View Strains carrying other alleles of Ptprc     (10 strains)

Additional Web Information

Fluorescent Proteins/lacZ Systems

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Cx3cr1tm1Litt/Cx3cr1+

        B6.129P2-Cx3cr1tm1Litt
  • nervous system phenotype
  • microgliosis
    • moderate following LPS exposure   (MGI Ref ID J:110266)
  • immune system phenotype
  • increased susceptibility to experimental autoimmune encephalomyelitis
    • following induction of experimental autoimmune encephalomyelitis (EAE), mice exhibit intermediate EAE severity (including transient flaccid paresis) compared with homozygous and wild-type mice   (MGI Ref ID J:129712)
    • mice treated with anti-NK1.1 antibodies exhibit the same severity of EAE as in homozygous mice following induction of experimental autoimmune encephalomyelitis   (MGI Ref ID J:129712)
  • microgliosis
    • moderate following LPS exposure   (MGI Ref ID J:110266)
  • behavior/neurological phenotype
  • paresis
    • following induction of experimental autoimmune encephalomyelitis, mice exhibit transient flaccid paresis   (MGI Ref ID J:129712)
  • hematopoietic system phenotype
  • microgliosis
    • moderate following LPS exposure   (MGI Ref ID J:110266)

Cx3cr1tm1Litt/Cx3cr1tm1Litt

        B6.129P2-Cx3cr1tm1Litt
  • mortality/aging
  • increased sensitivity to induced morbidity/mortality
    • following induction of experimental autoimmune encephalomyelitis   (MGI Ref ID J:129712)
  • nervous system phenotype
  • abnormal microglial cell physiology
    • migration of microglial cells in LPS-treated mice is impaired unlike in similarly treated heterozygous mice   (MGI Ref ID J:110266)
    • however, adoptive transfer into Il1r null mice restores microglial cell migration   (MGI Ref ID J:110266)
  • brain inflammation
    • following induction of experimental autoimmune encephalomyelitis   (MGI Ref ID J:129712)
  • brainstem hemorrhage
    • following induction of experimental autoimmune encephalomyelitis   (MGI Ref ID J:129712)
  • demyelination
    • following induction of experimental autoimmune encephalomyelitis, mice exhibit more severe demyelination compared with similarly treated wild-type mice   (MGI Ref ID J:129712)
  • increased neuron apoptosis
    • following LPS exposure, neuron apoptosis is increased unlike in heterozygous mice   (MGI Ref ID J:110266)
    • LPS-induced neurotoxicity is cell-autonomous   (MGI Ref ID J:110266)
    • however, mice subjected to adoptive transfer experiments and treated with an IL1 receptor antagonist exhibit reduced neuron apoptosis   (MGI Ref ID J:110266)
    • however, adoptive transfer into Il1r null mice abolishes neuron apoptosis   (MGI Ref ID J:110266)
    • increased susceptibility to dopaminergic neuron neurotoxicity
      • mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exhibit more severe neurotoxicity than similarly treated wild-type mice   (MGI Ref ID J:110266)
  • microgliosis
    • intense and widespread following LPS exposure   (MGI Ref ID J:110266)
  • immune system phenotype
  • *normal* immune system phenotype
    • mice exhibit normal response to murine cytomegalovirus infection   (MGI Ref ID J:129712)
    • abnormal leukocyte physiology
      • following arterial injury, monocyte recruitment is impaired compared to in similarly treated wild-type mice   (MGI Ref ID J:124722)
      • abnormal NK cell physiology
        • following induction of experimental autoimmune encephalomyelitis, recruitment of NK cells is impaired compared to in similarly treated wild-type mice   (MGI Ref ID J:129712)
      • abnormal microglial cell physiology
        • migration of microglial cells in LPS-treated mice is impaired unlike in similarly treated heterozygous mice   (MGI Ref ID J:110266)
        • however, adoptive transfer into Il1r null mice restores microglial cell migration   (MGI Ref ID J:110266)
    • brain inflammation
      • following induction of experimental autoimmune encephalomyelitis   (MGI Ref ID J:129712)
    • decreased NK cell number
      • in the central nervous system following induction of experimental autoimmune encephalomyelitis   (MGI Ref ID J:129712)
    • increased susceptibility to experimental autoimmune encephalomyelitis
      • following induction of experimental autoimmune encephalomyelitis, mice exhibit earlier onset, higher mortality, and more severe EAE symptoms (nonremitting spastic paralysis, increased hemorrhagic inflammation, and extensive demyelination) compared with similarly treated wild-type mice   (MGI Ref ID J:129712)
      • following induction of experimental autoimmune encephalomyelitis, recruitment of NK cells is impaired compared to in similarly treated wild-type mice   (MGI Ref ID J:129712)
      • however, priming of encephalitogenic T cells and NKT cell numbers are normal   (MGI Ref ID J:129712)
    • microgliosis
      • intense and widespread following LPS exposure   (MGI Ref ID J:110266)
  • cardiovascular system phenotype
  • abnormal vascular smooth muscle physiology
    • following arterial injury, vascular smooth muscle cell proliferation is decreased compared to in similarly treated wild-type mice   (MGI Ref ID J:124722)
    • in vitro, vascular smooth muscle cells fail to proliferate in response to CXCL1 unlike similarly treated wild-type cells   (MGI Ref ID J:124722)
  • abnormal vascular wound healing
    • following arterial injury, mice exhibit decreased intimal hyperplasia, impaired monocyte recruitment into the vascular wall, and decreased vascular smooth muscle cell proliferation compared to in similarly treated wild-type mice   (MGI Ref ID J:124722)
    • however, mice exhibit normal luminal and medial areas and platelet function   (MGI Ref ID J:124722)
  • brainstem hemorrhage
    • following induction of experimental autoimmune encephalomyelitis   (MGI Ref ID J:129712)
  • homeostasis/metabolism phenotype
  • abnormal vascular wound healing
    • following arterial injury, mice exhibit decreased intimal hyperplasia, impaired monocyte recruitment into the vascular wall, and decreased vascular smooth muscle cell proliferation compared to in similarly treated wild-type mice   (MGI Ref ID J:124722)
    • however, mice exhibit normal luminal and medial areas and platelet function   (MGI Ref ID J:124722)
  • increased susceptibility to dopaminergic neuron neurotoxicity
    • mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exhibit more severe neurotoxicity than similarly treated wild-type mice   (MGI Ref ID J:110266)
  • behavior/neurological phenotype
  • paralysis
    • following induction of experimental autoimmune encephalomyelitis, mice exhibit nonremitting spastic paralysis   (MGI Ref ID J:129712)
  • hematopoietic system phenotype
  • abnormal leukocyte physiology
    • following arterial injury, monocyte recruitment is impaired compared to in similarly treated wild-type mice   (MGI Ref ID J:124722)
    • abnormal NK cell physiology
      • following induction of experimental autoimmune encephalomyelitis, recruitment of NK cells is impaired compared to in similarly treated wild-type mice   (MGI Ref ID J:129712)
    • abnormal microglial cell physiology
      • migration of microglial cells in LPS-treated mice is impaired unlike in similarly treated heterozygous mice   (MGI Ref ID J:110266)
      • however, adoptive transfer into Il1r null mice restores microglial cell migration   (MGI Ref ID J:110266)
  • decreased NK cell number
    • in the central nervous system following induction of experimental autoimmune encephalomyelitis   (MGI Ref ID J:129712)
  • microgliosis
    • intense and widespread following LPS exposure   (MGI Ref ID J:110266)
  • muscle phenotype
  • abnormal vascular smooth muscle physiology
    • following arterial injury, vascular smooth muscle cell proliferation is decreased compared to in similarly treated wild-type mice   (MGI Ref ID J:124722)
    • in vitro, vascular smooth muscle cells fail to proliferate in response to CXCL1 unlike similarly treated wild-type cells   (MGI Ref ID J:124722)
  • cellular phenotype
  • increased neuron apoptosis
    • following LPS exposure, neuron apoptosis is increased unlike in heterozygous mice   (MGI Ref ID J:110266)
    • LPS-induced neurotoxicity is cell-autonomous   (MGI Ref ID J:110266)
    • however, mice subjected to adoptive transfer experiments and treated with an IL1 receptor antagonist exhibit reduced neuron apoptosis   (MGI Ref ID J:110266)
    • however, adoptive transfer into Il1r null mice abolishes neuron apoptosis   (MGI Ref ID J:110266)
    • increased susceptibility to dopaminergic neuron neurotoxicity
      • mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exhibit more severe neurotoxicity than similarly treated wild-type mice   (MGI Ref ID J:110266)

Cx3cr1tm1Litt/Cx3cr1tm1Litt

        B6.129P-Cx3cr1tm1Litt/J
  • homeostasis/metabolism phenotype
  • *normal* homeostasis/metabolism phenotype
    • mice exhibit normal response (dopamine nerve loss, increased body temperature, and microgliosis) to methamphetamine treatment   (MGI Ref ID J:139390)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Cx3cr1tm1Litt/Cx3cr1tm1Litt

        involves: 129P2/OlaHsd * C57BL/6
  • immune system phenotype
  • *normal* immune system phenotype
    • normal dendritic cell migration and IL-12 production in response to a microbial antigen (STAg)   (MGI Ref ID J:84544)
    • normal Langerhans cell migration and APC function in response to contact sensitizer (oxazolone)   (MGI Ref ID J:84544)
    • abnormal leukocyte physiology
      • following kidney ischemia and reperfusion, mice exhibit reduced monocyte egress from the blood into the inflamed kidney compared with similarly treated wild-type mice   (MGI Ref ID J:162714)
      • impaired macrophage chemotaxis
        • following kidney ischemia and reperfusion   (MGI Ref ID J:162714)
    • decreased monocyte cell number
      • mice exhibit a reduction in the number of total monocytes compared with wild-type mice   (MGI Ref ID J:145036)
      • Gr1low monocytes are reduced 3-fold compared to in wild-type mice   (MGI Ref ID J:145036)
      • however, expression of Tg(S100A8-BCL2)1Lgs restores monocyte numbers   (MGI Ref ID J:145036)
  • homeostasis/metabolism phenotype
  • decreased susceptibility to kidney reperfusion injury
    • following kidney ischemia and reperfusion, mice exhibit decreased kidney injury, tubular cell necrosis, and macrophage recruitment compared with similarly treated heterozygous mice   (MGI Ref ID J:162714)
  • vision/eye phenotype
  • abnormal retina morphology
    • subretinal microglial cells accumulate with age in the retina unlike in wild-type mice   (MGI Ref ID J:127548)
    • following laser injury, more subretinal microglial cells accumulate adjacent to the choroid scar than in heterozygous mice at 7 and 14 days post injury   (MGI Ref ID J:127548)
  • choroidal neovascularization
    • following laser injury, more subretinal microglial cells accumulate adjacent to the choroid scar than in similarly treated wild-type mice and choroid neovascularization is twice as much as in similarly treated wild-type mice   (MGI Ref ID J:127548)
  • renal/urinary system phenotype
  • decreased susceptibility to kidney reperfusion injury
    • following kidney ischemia and reperfusion, mice exhibit decreased kidney injury, tubular cell necrosis, and macrophage recruitment compared with similarly treated heterozygous mice   (MGI Ref ID J:162714)
  • nervous system phenotype
  • *normal* nervous system phenotype
    • normal neuronal-glial cross talk indicated by microglial response to peripheral nerve injury, 129P2/OlaHsd and C57BL/6 mixed genetic background   (MGI Ref ID J:84544)
  • cardiovascular system phenotype
  • choroidal neovascularization
    • following laser injury, more subretinal microglial cells accumulate adjacent to the choroid scar than in similarly treated wild-type mice and choroid neovascularization is twice as much as in similarly treated wild-type mice   (MGI Ref ID J:127548)
  • hematopoietic system phenotype
  • abnormal leukocyte physiology
    • following kidney ischemia and reperfusion, mice exhibit reduced monocyte egress from the blood into the inflamed kidney compared with similarly treated wild-type mice   (MGI Ref ID J:162714)
    • impaired macrophage chemotaxis
      • following kidney ischemia and reperfusion   (MGI Ref ID J:162714)
  • decreased monocyte cell number
    • mice exhibit a reduction in the number of total monocytes compared with wild-type mice   (MGI Ref ID J:145036)
    • Gr1low monocytes are reduced 3-fold compared to in wild-type mice   (MGI Ref ID J:145036)
    • however, expression of Tg(S100A8-BCL2)1Lgs restores monocyte numbers   (MGI Ref ID J:145036)
  • cellular phenotype
  • impaired macrophage chemotaxis
    • following kidney ischemia and reperfusion   (MGI Ref ID J:162714)

Cx3cr1tm1Litt/Cx3cr1tm1Litt

        C.129P2-Cx3cr1tm1Litt
  • immune system phenotype
  • *normal* immune system phenotype
    • normal monocyte extravasation and subsequent differentiation into macrophages in response to intraperitoneal injection of thioglycolate, a model of acute peritonitis   (MGI Ref ID J:84544)

Cx3cr1tm1Litt/Cx3cr1tm1Litt

        involves: 129P2/OlaHsd
  • mortality/aging
  • increased susceptibility to bacterial infection induced morbidity/mortality
    • S. typhimurium-infected mice exhibit a higher organ bacterial load and die within 6 days of infection unlike similarly treated heterozygous and wild-type mice   (MGI Ref ID J:95694)
  • immune system phenotype
  • abnormal dendritic cell physiology
    • laminar propria dendritic cells exhibit impaired capacity to traverse the epithelial cell monolayer unlike in heterozygous mice   (MGI Ref ID J:95694)
    • laminar propria dendritic cells fail to properly sample E. coli unlike in heterozygous mice   (MGI Ref ID J:95694)
    • ileal villi lack intraepithelial dendritic cell extensions unlike in heterozygous mice   (MGI Ref ID J:95694)
    • S. typhimurium-infected mice exhibit laminar propria dendritic cells that only form globular structures that fail to cross the epithelium unlike in similarly treated heterozygous mice   (MGI Ref ID J:95694)
    • however, sampling of E. coli into the Peyer Patches is normal   (MGI Ref ID J:95694)
  • increased dendritic cell number
    • antibiotic-treated mice exhibit increased numbers of all subsets of dendritic cells in the mesenteric lymph nodes as compared to untreated controls   (MGI Ref ID J:210086)
    • mice treated with antibiotic and infected with non-invasive Salmonella exhibit increased numbers of only CX3CR1 cells in the mesenteric lymph nodes and afferent lymph nodes as compared to uninfected controls   (MGI Ref ID J:210086)
  • increased susceptibility to bacterial infection induced morbidity/mortality
    • S. typhimurium-infected mice exhibit a higher organ bacterial load and die within 6 days of infection unlike similarly treated heterozygous and wild-type mice   (MGI Ref ID J:95694)
  • digestive/alimentary phenotype
  • abnormal small intestinal villus morphology
    • ileal villi lack intraepithelial dendritic cell extensions unlike in heterozygous mice   (MGI Ref ID J:95694)
  • hematopoietic system phenotype
  • increased dendritic cell number
    • antibiotic-treated mice exhibit increased numbers of all subsets of dendritic cells in the mesenteric lymph nodes as compared to untreated controls   (MGI Ref ID J:210086)
    • mice treated with antibiotic and infected with non-invasive Salmonella exhibit increased numbers of only CX3CR1 cells in the mesenteric lymph nodes and afferent lymph nodes as compared to uninfected controls   (MGI Ref ID J:210086)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cancer Research
Growth Factors/Receptors/Cytokines
Toxicology
      xenograft/transplant host

Immunology, Inflammation and Autoimmunity Research
Growth Factors/Receptors/Cytokines
Immunodeficiency
      NK Cell Deficiency

Research Tools
Cancer Research
      B, T, and NK cell deficiency, xenograft/transplant host
      xenograft/transplant host
Cell Biology Research
Developmental Biology Research
      transplantation marker for embryonic and adult tissue
Fluorescent Proteins
Genetics Research
      Tissue/Cell Markers
      Tissue/Cell Markers: cell marker for bone marrow transplantation
      Tissue/Cell Markers: glial cells
      Tissue/Cell Markers: multiple
      Tissue/Cell Markers: neurons
      Tissue/Cell Markers: transplantation marker for embryonic and adult tissue
Immunology, Inflammation and Autoimmunity Research
      NK Cell Deficiency
Neurobiology Research
      cell marker
Toxicology Research
      xenograft/transplant host

GFP related

Research Tools
Fluorescent Proteins

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Cx3cr1tm1Litt
Allele Name targeted mutation 1, Dan R Littman
Allele Type Targeted (Null/Knockout, Reporter)
Common Name(s) CX3CR-GFP; CX3CR1-EGFP; CX3CR1-GFP; CX3CR1-; CX3CR1EGFP; CX3CR1GFP;
Mutation Made By Steffen Jung,   Weizmann Institute of Science
Strain of Origin129P2/OlaHsd
ES Cell Line NameE14.1
ES Cell Line Strain129P2/OlaHsd
Site of ExpressionGFP labels T and B cells in the lymphoid organs such as spleen, small intestine, and large intestine.
Expressed Gene GFP, Green Fluorescent Protein, jellyfish
Green Fluorescent Protein (GFP), derived from the jellyfish Aequorea victoria, is a versatile reporter molecule which has found use in many biological applications. In some constructs the original molecule has been modified in order to enhance its fluorescence intensity (EGFP, enhanced GFP). When utilized in a transgenic construct, tissue expressing sufficient amounts of GFP will fluoresce when exposed to a 488 nm light source.
General Note Phenotypic Similarity to Human Syndrome: Macular Degeneration, Geographic Atrophy, Dry Type (J:200877)
Molecular Note The endogenous locus was disrupted by the insertion of sequence encoding green fluourescent protein (GFP), replacing the first 390 bp of the coding exon (exon 2). The deleted region encoded an amino-terminal portion of the protein that is crucial for interaction with endogenous ligand, Cx3cl1. A floxed neo gene included in the targeting vector for selection was excised prior to germline transmission, leaving a single loxP site downstream of the GFP sequence. RT-PCR and flow cytometry indicated an absenceof endogenous protein and the presence GFP expression in homozygous mutant mice. [MGI Ref ID J:84544]
 
Gene Symbol and Name Cx3cr1, chemokine (C-X3-C motif) receptor 1
Chromosome 9
Gene Common Name(s) CCRL1; CMKBRL1; CMKDR1; GPR13; GPRV28; Rbs11; V28;
 
Allele Symbol Ptprca
Allele Name a variant
Allele Type Not Applicable
Common Name(s) CD45.1; Ly5a; PtprcSJL;
Site of ExpressionWidely expressed on all adaptive and innate immune cells.
Gene Symbol and Name Ptprc, protein tyrosine phosphatase, receptor type, C
Chromosome 1
Gene Common Name(s) B220; CD45; CD45 antigen; CD45R; Cd45; GP180; L-CA; LCA; LY5; Ly-5; Lyt-4; RT7; T-lymphocyte antigen 4; T200; lymphocyte antigen 5;
Molecular Note Ptprca is found in strains SJL/J, STS/A, and DA. Ptprcb is found in strains C57BL/6, C3H/An, DBA/2, AKR, and many others (J:13367, J:12054, J:12077, J:8603). Twelve nucleotide differences between the a and b alleles have been identified. These base substitutions correspond to five amino-acid changes within the extracellular domain of the encoded protein. These amino-acid differences are clustered in a region that also contains the greatest divergence between mouse and rat sequences (J:22485).

Note that the allele designations originally described were reversed in 1987 (J:8603); all publications prior to 1987 show SJL/J, STS/A, and DA as having the b allele and the C57BL/6J group as having the a allele (J:22341). [MGI Ref ID J:12548] [MGI Ref ID J:22485] [MGI Ref ID J:8080]

Genotyping

Genotyping Information

Genotyping Protocols

Crb1rd8End Point, End Point Analysis
Cx3cr1tm1Littalternate1, Standard PCR
Cx3cr1tm1Littalternate1, Separated PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Jung S; Aliberti J; Graemmel P; Sunshine MJ; Kreutzberg GW; Sher A; Littman DR. 2000. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106-14. [PubMed: 10805752]  [MGI Ref ID J:84544]

Additional References

Cx3cr1tm1Litt related

A-Gonzalez N; Guillen JA; Gallardo G; Diaz M; de la Rosa JV; Hernandez IH; Casanova-Acebes M; Lopez F; Tabraue C; Beceiro S; Hong C; Lara PC; Andujar M; Arai S; Miyazaki T; Li S; Corbi AL; Tontonoz P; Hidalgo A; Castrillo A. 2013. The nuclear receptor LXRalpha controls the functional specialization of splenic macrophages. Nat Immunol 14(8):831-9. [PubMed: 23770640]  [MGI Ref ID J:204819]

An G; Wang H; Tang R; Yago T; McDaniel JM; McGee S; Huo Y; Xia L. 2008. P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation 117(25):3227-37. [PubMed: 18519846]  [MGI Ref ID J:155081]

Arnold L; Henry A; Poron F; Baba-Amer Y; van Rooijen N; Plonquet A; Gherardi RK; Chazaud B. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057-69. [PubMed: 17485518]  [MGI Ref ID J:125715]

Auffray C; Fogg DK; Narni-Mancinelli E; Senechal B; Trouillet C; Saederup N; Leemput J; Bigot K; Campisi L; Abitbol M; Molina T; Charo I; Hume DA; Cumano A; Lauvau G; Geissmann F. 2009. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 206(3):595-606. [PubMed: 19273628]  [MGI Ref ID J:146747]

Avraham-Davidi I; Yona S; Grunewald M; Landsman L; Cochain C; Silvestre JS; Mizrahi H; Faroja M; Strauss-Ayali D; Mack M; Jung S; Keshet E. 2013. On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J Exp Med 210(12):2611-25. [PubMed: 24166715]  [MGI Ref ID J:207718]

Bar-On L; Birnberg T; Lewis KL; Edelson BT; Bruder D; Hildner K; Buer J; Murphy KM; Reizis B; Jung S. 2010. CX3CR1+ CD8alpha+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 107(33):14745-50. [PubMed: 20679228]  [MGI Ref ID J:163703]

Berta T; Park CK; Xu ZZ; Xie RG; Liu T; Lu N; Liu YC; Ji RR. 2014. Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-alpha secretion. J Clin Invest 124(3):1173-86. [PubMed: 24531553]  [MGI Ref ID J:209726]

Bertrand JY; Jalil A; Klaine M; Jung S; Cumano A; Godin I. 2005. Three pathways to mature macrophages in the early mouse yolk sac. Blood 106(9):3004-11. [PubMed: 16020514]  [MGI Ref ID J:123941]

Bhaskar K; Konerth M; Kokiko-Cochran ON; Cardona A; Ransohoff RM; Lamb BT. 2010. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68(1):19-31. [PubMed: 20920788]  [MGI Ref ID J:167757]

Blomster LV; Vukovic J; Hendrickx DA; Jung S; Harvey AR; Filgueira L; Ruitenberg MJ. 2011. CX(3)CR1 deficiency exacerbates neuronal loss and impairs early regenerative responses in the target-ablated olfactory epithelium. Mol Cell Neurosci 48(3):236-45. [PubMed: 21871566]  [MGI Ref ID J:189381]

Bogunovic M; Ginhoux F; Helft J; Shang L; Hashimoto D; Greter M; Liu K; Jakubzick C; Ingersoll MA; Leboeuf M; Stanley ER; Nussenzweig M; Lira SA; Randolph GJ; Merad M. 2009. Origin of the lamina propria dendritic cell network. Immunity 31(3):513-25. [PubMed: 19733489]  [MGI Ref ID J:152688]

Bosco A; Crish SD; Steele MR; Romero CO; Inman DM; Horner PJ; Calkins DJ; Vetter ML. 2012. Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 7(8):e43602. [PubMed: 22952717]  [MGI Ref ID J:191663]

Bradfield PF; Scheiermann C; Nourshargh S; Ody C; Luscinskas FW; Rainger GE; Nash GB; Miljkovic-Licina M; Aurrand-Lions M; Imhof BA. 2007. JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood 110(7):2545-55. [PubMed: 17625065]  [MGI Ref ID J:147010]

Butovsky O; Siddiqui S; Gabriely G; Lanser AJ; Dake B; Murugaiyan G; Doykan CE; Wu PM; Gali RR; Iyer LK; Lawson R; Berry J; Krichevsky AM; Cudkowicz ME; Weiner HL. 2012. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122(9):3063-87. [PubMed: 22863620]  [MGI Ref ID J:191300]

Cabanski M; Wilhelm J; Zaslona Z; Steinmuller M; Fink L; Seeger W; Lohmeyer J. 2009. Genome-wide transcriptional profiling of mononuclear phagocytes recruited to mouse lungs in response to alveolar challenge with the TLR2 agonist Pam3CSK4. Am J Physiol Lung Cell Mol Physiol 297(4):L608-18. [PubMed: 19617307]  [MGI Ref ID J:154138]

Cain DW; O'Koren EG; Kan MJ; Womble M; Sempowski GD; Hopper K; Gunn MD; Kelsoe G. 2013. Identification of a tissue-specific, C/EBPbeta-dependent pathway of differentiation for murine peritoneal macrophages. J Immunol 191(9):4665-75. [PubMed: 24078688]  [MGI Ref ID J:206241]

Cardona AE; Pioro EP; Sasse ME; Kostenko V; Cardona SM; Dijkstra IM; Huang D; Kidd G; Dombrowski S; Dutta R; Lee JC; Cook DN; Jung S; Lira SA; Littman DR; Ransohoff RM. 2006. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917-24. [PubMed: 16732273]  [MGI Ref ID J:110266]

Cardona AE; Sasse ME; Liu L; Cardona SM; Mizutani M; Savarin C; Hu T; Ransohoff RM. 2008. Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. Blood 112(2):256-63. [PubMed: 18347198]  [MGI Ref ID J:138467]

Carlin LM; Stamatiades EG; Auffray C; Hanna RN; Glover L; Vizcay-Barrena G; Hedrick CC; Cook HT; Diebold S; Geissmann F. 2013. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 153(2):362-75. [PubMed: 23582326]  [MGI Ref ID J:197367]

Carreras E; Turner S; Paharkova-Vatchkova V; Mao A; Dascher C; Kovats S. 2008. Estradiol acts directly on bone marrow myeloid progenitors to differentially regulate GM-CSF or Flt3 ligand-mediated dendritic cell differentiation. J Immunol 180(2):727-38. [PubMed: 18178810]  [MGI Ref ID J:130951]

Chang SY; Song JH; Guleng B; Cotoner CA; Arihiro S; Zhao Y; Chiang HS; O'Keeffe M; Liao G; Karp CL; Kweon MN; Sharpe AH; Bhan A; Terhorst C; Reinecker HC. 2013. Circulatory antigen processing by mucosal dendritic cells controls CD8(+) T cell activation. Immunity 38(1):153-65. [PubMed: 23246312]  [MGI Ref ID J:192535]

Chen M; Hombrebueno JR; Luo C; Penalva R; Zhao J; Colhoun L; Pandi SP; Forrester JV; Xu H. 2013. Age- and light-dependent development of localised retinal atrophy in CCL2(-/-)CX3CR1(GFP/GFP) mice. PLoS One 8(4):e61381. [PubMed: 23637822]  [MGI Ref ID J:200877]

Chen M; Luo C; Penalva R; Xu H. 2013. Paraquat-induced retinal degeneration is exaggerated in CX3CR1-deficient mice and is associated with increased retinal inflammation. Invest Ophthalmol Vis Sci 54(1):682-90. [PubMed: 23299473]  [MGI Ref ID J:214566]

Chen M; Zhao J; Luo C; Pandi SP; Penalva RG; Fitzgerald DC; Xu H. 2012. Para-inflammation-mediated retinal recruitment of bone marrow-derived myeloid cells following whole-body irradiation is CCL2 dependent. Glia 60(5):833-42. [PubMed: 22362506]  [MGI Ref ID J:181628]

Cheret C; Gervais A; Lelli A; Colin C; Amar L; Ravassard P; Mallet J; Cumano A; Krause KH; Mallat M. 2008. Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci 28(46):12039-51. [PubMed: 19005069]  [MGI Ref ID J:142401]

Chinnery HR; Humphries T; Clare A; Dixon AE; Howes K; Moran CB; Scott D; Zakrzewski M; Pearlman E; McMenamin PG. 2008. Turnover of bone marrow-derived cells in the irradiated mouse cornea. Immunology 125(4):541-8. [PubMed: 18540963]  [MGI Ref ID J:144440]

Chinnery HR; McLenachan S; Humphries T; Kezic JM; Chen X; Ruitenberg MJ; McMenamin PG. 2012. Accumulation of murine subretinal macrophages: effects of age, pigmentation and CX3CR1. Neurobiol Aging 33(8):1769-76. [PubMed: 21570740]  [MGI Ref ID J:188207]

Chinnery HR; Ruitenberg MJ; Plant GW; Pearlman E; Jung S; McMenamin PG. 2007. The chemokine receptor CX3CR1 mediates homing of MHC class II-positive cells to the normal mouse corneal epithelium. Invest Ophthalmol Vis Sci 48(4):1568-74. [PubMed: 17389486]  [MGI Ref ID J:123257]

Choi JH; Cheong C; Dandamudi DB; Park CG; Rodriguez A; Mehandru S; Velinzon K; Jung IH; Yoo JY; Oh GT; Steinman RM. 2011. Flt3 Signaling-Dependent Dendritic Cells Protect against Atherosclerosis. Immunity 35(5):819-31. [PubMed: 22078798]  [MGI Ref ID J:178831]

Chorro L; Sarde A; Li M; Woollard KJ; Chambon P; Malissen B; Kissenpfennig A; Barbaroux JB; Groves R; Geissmann F. 2009. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med 206(13):3089-100. [PubMed: 19995948]  [MGI Ref ID J:155680]

Chow A; Lucas D; Hidalgo A; Mendez-Ferrer S; Hashimoto D; Scheiermann C; Battista M; Leboeuf M; Prophete C; van Rooijen N; Tanaka M; Merad M; Frenette PS. 2011. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261-71. [PubMed: 21282381]  [MGI Ref ID J:176846]

Cipriani R; Villa P; Chece G; Lauro C; Paladini A; Micotti E; Perego C; De Simoni MG; Fredholm BB; Eusebi F; Limatola C. 2011. CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci 31(45):16327-35. [PubMed: 22072684]  [MGI Ref ID J:191537]

Cochain C; Rodero MP; Vilar J; Recalde A; Richart AL; Loinard C; Zouggari Y; Guerin C; Duriez M; Combadiere B; Poupel L; Levy BI; Mallat Z; Combadiere C; Silvestre JS. 2010. Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization. Cardiovasc Res 88(1):186-95. [PubMed: 20501509]  [MGI Ref ID J:182115]

Combadiere C; Feumi C; Raoul W; Keller N; Rodero M; Pezard A; Lavalette S; Houssier M; Jonet L; Picard E; Debre P; Sirinyan M; Deterre P; Ferroukhi T; Cohen SY; Chauvaud D; Jeanny JC; Chemtob S; Behar-Cohen F; Sennlaub F. 2007. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117(10):2920-8. [PubMed: 17909628]  [MGI Ref ID J:127548]

Corcione A; Ferretti E; Bertolotto M; Fais F; Raffaghello L; Gregorio A; Tenca C; Ottonello L; Gambini C; Furtado G; Lira S; Pistoia V. 2009. CX3CR1 is expressed by human B lymphocytes and meditates CX3CL1 driven chemotaxis of tonsil centrocytes. PLoS One 4(12):e8485. [PubMed: 20041188]  [MGI Ref ID J:155943]

Da Silva N; Cortez-Retamozo V; Reinecker HC; Wildgruber M; Hill E; Brown D; Swirski FK; Pittet MJ; Breton S. 2011. A dense network of dendritic cells populates the murine epididymis. Reproduction 141(5):653-63. [PubMed: 21310816]  [MGI Ref ID J:180932]

Dagkalis A; Wallace C; Hing B; Liversidge J; Crane IJ. 2009. CX3CR1-deficiency is associated with increased severity of disease in experimental autoimmune uveitis. Immunology 128(1):25-33. [PubMed: 19689733]  [MGI Ref ID J:162296]

Darbousset R; Thomas GM; Mezouar S; Frere C; Bonier R; Mackman N; Renne T; Dignat-George F; Dubois C; Panicot-Dubois L. 2012. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood 120(10):2133-43. [PubMed: 22837532]  [MGI Ref ID J:191325]

Davalos D; Grutzendler J; Yang G; Kim JV; Zuo Y; Jung S; Littman DR; Dustin ML; Gan WB. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752-8. [PubMed: 15895084]  [MGI Ref ID J:156913]

David M; Machuca-Gayet I; Kikuta J; Ottewell P; Mima F; Leblanc R; Bonnelye E; Ribeiro J; Holen I; Vales RL; Jurdic P; Chun J; Clezardin P; Ishii M; Peyruchaud O. 2014. Lysophosphatidic acid receptor type 1 (LPA1) plays a functional role in osteoclast differentiation and bone resorption activity. J Biol Chem 289(10):6551-64. [PubMed: 24429286]  [MGI Ref ID J:210684]

DeFalco T; Bhattacharya I; Williams AV; Sams DM; Capel B. 2014. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc Natl Acad Sci U S A 111(23):E2384-93. [PubMed: 24912173]  [MGI Ref ID J:211622]

Debien E; Mayol K; Biajoux V; Daussy C; De Aguero MG; Taillardet M; Dagany N; Brinza L; Henry T; Dubois B; Kaiserlian D; Marvel J; Balabanian K; Walzer T. 2013. S1PR5 is pivotal for the homeostasis of patrolling monocytes. Eur J Immunol 43(6):1667-75. [PubMed: 23519784]  [MGI Ref ID J:198231]

Devi S; Li A; Westhorpe CL; Lo CY; Abeynaike LD; Snelgrove SL; Hall P; Ooi JD; Sobey CG; Kitching AR; Hickey MJ. 2013. Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat Med 19(1):107-12. [PubMed: 23242472]  [MGI Ref ID J:194847]

Devi S; Wang Y; Chew WK; Lima R; A-Gonzalez N; Mattar CN; Chong SZ; Schlitzer A; Bakocevic N; Chew S; Keeble JL; Goh CC; Li JL; Evrard M; Malleret B; Larbi A; Renia L; Haniffa M; Tan SM; Chan JK; Balabanian K; Nagasawa T; Bachelerie F; Hidalgo A; GinhouxF; Kubes P; Ng LG. 2013. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J Exp Med 210(11):2321-36. [PubMed: 24081949]  [MGI Ref ID J:204051]

Dibaj P; Zschuntzsch J; Steffens H; Scheffel J; Goricke B; Weishaupt JH; Le Meur K; Kirchhoff F; Hanisch UK; Schomburg ED; Neusch C. 2012. Influence of methylene blue on microglia-induced inflammation and motor neuron degeneration in the SOD1(G93A) model for ALS. PLoS One 7(8):e43963. [PubMed: 22952827]  [MGI Ref ID J:191656]

Diehl GE; Longman RS; Zhang JX; Breart B; Galan C; Cuesta A; Schwab SR; Littman DR. 2013. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 494(7435):116-20. [PubMed: 23334413]  [MGI Ref ID J:210086]

Dissing-Olesen L; LeDue JM; Rungta RL; Hefendehl JK; Choi HB; MacVicar BA. 2014. Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J Neurosci 34(32):10511-27. [PubMed: 25100586]  [MGI Ref ID J:215582]

Donnelly DJ; Longbrake EE; Shawler TM; Kigerl KA; Lai W; Tovar CA; Ransohoff RM; Popovich PG. 2011. Deficient CX3CR1 Signaling Promotes Recovery after Mouse Spinal Cord Injury by Limiting the Recruitment and Activation of Ly6Clo/iNOS+ Macrophages. J Neurosci 31(27):9910-22. [PubMed: 21734283]  [MGI Ref ID J:174560]

Epelman S; Lavine KJ; Beaudin AE; Sojka DK; Carrero JA; Calderon B; Brija T; Gautier EL; Ivanov S; Satpathy AT; Schilling JD; Schwendener R; Sergin I; Razani B; Forsberg EC; Yokoyama WM; Unanue ER; Colonna M; Randolph GJ; Mann DL. 2014. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40(1):91-104. [PubMed: 24439267]  [MGI Ref ID J:209372]

Eyo UB; Peng J; Swiatkowski P; Mukherjee A; Bispo A; Wu LJ. 2014. Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J Neurosci 34(32):10528-40. [PubMed: 25100587]  [MGI Ref ID J:215581]

Fainaru O; Woolf E; Lotem J; Yarmus M; Brenner O; Goldenberg D; Negreanu V; Bernstein Y; Levanon D; Jung S; Groner Y. 2004. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. EMBO J 23(4):969-79. [PubMed: 14765120]  [MGI Ref ID J:88424]

Farache J; Koren I; Milo I; Gurevich I; Kim KW; Zigmond E; Furtado GC; Lira SA; Shakhar G. 2013. Luminal Bacteria Recruit CD103(+) Dendritic Cells into the Intestinal Epithelium to Sample Bacterial Antigens for Presentation. Immunity 38(3):581-95. [PubMed: 23395676]  [MGI Ref ID J:194474]

Ferjancic S; Gil-Bernabe AM; Hill SA; Allen PD; Richardson P; Sparey T; Savory E; McGuffog J; Muschel RJ. 2013. VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood 121(16):3289-97. [PubMed: 23407548]  [MGI Ref ID J:196458]

Fuhrmann M; Bittner T; Jung CK; Burgold S; Page RM; Mitteregger G; Haass C; LaFerla FM; Kretzschmar H; Herms J. 2010. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nat Neurosci 13(4):411-3. [PubMed: 20305648]  [MGI Ref ID J:159680]

Fumagalli S; Perego C; Ortolano F; De Simoni MG. 2013. CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia 61(6):827-42. [PubMed: 23440897]  [MGI Ref ID J:194962]

Gan Y; Liu Q; Wu W; Yin JX; Bai XF; Shen R; Wang Y; Chen J; La Cava A; Poursine-Laurent J; Yokoyama W; Shi FD. 2014. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci U S A 111(7):2704-9. [PubMed: 24550298]  [MGI Ref ID J:206801]

Gao Y; Ottaway N; Schriever SC; Legutko B; Garcia-Caceres C; de la Fuente E; Mergen C; Bour S; Thaler JP; Seeley RJ; Filosa J; Stern JE; Perez-Tilve D; Schwartz MW; Tschop MH; Yi CX. 2014. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62(1):17-25. [PubMed: 24166765]  [MGI Ref ID J:203061]

Garcia JA; Pino PA; Mizutani M; Cardona SM; Charo IF; Ransohoff RM; Forsthuber TG; Cardona AE. 2013. Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. J Immunol 191(3):1063-72. [PubMed: 23817416]  [MGI Ref ID J:205717]

Garraud K; Cleret A; Mathieu J; Fiole D; Gauthier Y; Quesnel-Hellmann A; Tournier JN. 2012. Differential role of the interleukin-17 axis and neutrophils in resolution of inhalational anthrax. Infect Immun 80(1):131-42. [PubMed: 22025514]  [MGI Ref ID J:178960]

Geissmann F; Jung S; Littman DR. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71-82. [PubMed: 12871640]  [MGI Ref ID J:90912]

Ghosh HS; Ceribelli M; Matos I; Lazarovici A; Bussemaker HJ; Lasorella A; Hiebert SW; Liu K; Staudt LM; Reizis B. 2014. ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2. J Exp Med 211(8):1623-35. [PubMed: 24980046]  [MGI Ref ID J:214727]

Gil-Bernabe AM; Ferjancic S; Tlalka M; Zhao L; Allen PD; Im JH; Watson K; Hill SA; Amirkhosravi A; Francis JL; Pollard JW; Ruf W; Muschel RJ. 2012. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119(13):3164-75. [PubMed: 22327225]  [MGI Ref ID J:182514]

Ginhoux F; Liu K; Helft J; Bogunovic M; Greter M; Hashimoto D; Price J; Yin N; Bromberg J; Lira SA; Stanley ER; Nussenzweig M; Merad M. 2009. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med 206(13):3115-30. [PubMed: 20008528]  [MGI Ref ID J:155668]

Grainger JR; Wohlfert EA; Fuss IJ; Bouladoux N; Askenase MH; Legrand F; Koo LY; Brenchley JM; Fraser ID; Belkaid Y. 2013. Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nat Med 19(6):713-21. [PubMed: 23708291]  [MGI Ref ID J:198666]

Gregory AD; Capoccia BJ; Woloszynek JR; Link DC. 2010. Systemic levels of G-CSF and interleukin-6 determine the angiogenic potential of bone marrow resident monocytes. J Leukoc Biol 88(1):123-31. [PubMed: 20354107]  [MGI Ref ID J:162446]

Grutzendler J; Murikinati S; Hiner B; Ji L; Lam CK; Yoo T; Gupta S; Hafler BP; Adelman RA; Yuan P; Rodriguez G. 2014. Angiophagy prevents early embolus washout but recanalizes microvessels through embolus extravasation. Sci Transl Med 6(226):226ra31. [PubMed: 24598589]  [MGI Ref ID J:213666]

Gundra UM; Girgis NM; Ruckerl D; Jenkins S; Ward LN; Kurtz ZD; Wiens KE; Tang MS; Basu-Roy U; Mansukhani A; Allen JE; Loke P. 2014. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood 123(20):e110-22. [PubMed: 24695852]  [MGI Ref ID J:212404]

Hadis U; Wahl B; Schulz O; Hardtke-Wolenski M; Schippers A; Wagner N; Muller W; Sparwasser T; Forster R; Pabst O. 2011. Intestinal Tolerance Requires Gut Homing and Expansion of FoxP3(+) Regulatory T Cells in the Lamina Propria. Immunity 34(2):237-46. [PubMed: 21333554]  [MGI Ref ID J:168976]

Hammond MD; Taylor RA; Mullen MT; Ai Y; Aguila HL; Mack M; Kasner SE; McCullough LD; Sansing LH. 2014. CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci 34(11):3901-9. [PubMed: 24623768]  [MGI Ref ID J:209603]

Hapfelmeier S; Muller AJ; Stecher B; Kaiser P; Barthel M; Endt K; Eberhard M; Robbiani R; Jacobi CA; Heikenwalder M; Kirschning C; Jung S; Stallmach T; Kremer M; Hardt WD. 2008. Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent step in DeltainvG S. Typhimurium colitis. J Exp Med 205(2):437-50. [PubMed: 18268033]  [MGI Ref ID J:132107]

Haynes SE; Hollopeter G; Yang G; Kurpius D; Dailey ME; Gan WB; Julius D. 2006. The P2Y(12) receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512-9. [PubMed: 17115040]  [MGI Ref ID J:116110]

Hoeffel G; Wang Y; Greter M; See P; Teo P; Malleret B; Leboeuf M; Low D; Oller G; Almeida F; Choy SH; Grisotto M; Renia L; Conway SJ; Stanley ER; Chan JK; Ng LG; Samokhvalov IM; Merad M; Ginhoux F. 2012. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209(6):1167-81. [PubMed: 22565823]  [MGI Ref ID J:189052]

Hohl TM; Rivera A; Lipuma L; Gallegos A; Shi C; Mack M; Pamer EG. 2009. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6(5):470-81. [PubMed: 19917501]  [MGI Ref ID J:214063]

Holt MP; Cheng L; Ju C. 2008. Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J Leukoc Biol 84(6):1410-21. [PubMed: 18713872]  [MGI Ref ID J:142295]

Hoshiko M; Arnoux I; Avignone E; Yamamoto N; Audinat E. 2012. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J Neurosci 32(43):15106-11. [PubMed: 23100431]  [MGI Ref ID J:192174]

Hoshino A; Ueha S; Hanada S; Imai T; Ito M; Yamamoto K; Matsushima K; Yamaguchi A; Iimura T. 2013. Roles of chemokine receptor CX3CR1 in maintaining murine bone homeostasis through the regulation of both osteoblasts and osteoclasts. J Cell Sci 126(Pt 4):1032-45. [PubMed: 23264747]  [MGI Ref ID J:200221]

Huang D; Shi FD; Jung S; Pien GC; Wang J; Salazar-Mather TP; He TT; Weaver JT; Ljunggren HG; Biron CA; Littman DR; Ransohoff RM. 2006. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J 20(7):896-905. [PubMed: 16675847]  [MGI Ref ID J:129712]

Huang D; Wujek J; Kidd G; He TT; Cardona A; Sasse ME; Stein EJ; Kish J; Tani M; Charo IF; Proudfoot AE; Rollins BJ; Handel T; Ransohoff RM. 2005. Chronic expression of monocyte chemoattractant protein-1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB J 19(7):761-72. [PubMed: 15857890]  [MGI Ref ID J:134548]

Hyun YM; Sumagin R; Sarangi PP; Lomakina E; Overstreet MG; Baker CM; Fowell DJ; Waugh RE; Sarelius IH; Kim M. 2012. Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels. J Exp Med :. [PubMed: 22711877]  [MGI Ref ID J:184820]

Iqbal AJ; McNeill E; Kapellos TS; Regan-Komito D; Norman S; Burd S; Smart N; Machemer DE; Stylianou E; McShane H; Channon KM; Chawla A; Greaves DR. 2014. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood 124(15):e33-44. [PubMed: 25030063]  [MGI Ref ID J:215825]

Ishifune C; Maruyama S; Sasaki Y; Yagita H; Hozumi K; Tomita T; Kishihara K; Yasutomo K. 2014. Differentiation of CD11c+CX3CR1+ cells in the small intestine requires Notch signaling. Proc Natl Acad Sci U S A 111(16):5986-91. [PubMed: 24711412]  [MGI Ref ID J:208857]

Ishii M; Egen JG; Klauschen F; Meier-Schellersheim M; Saeki Y; Vacher J; Proia RL; Germain RN. 2009. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458(7237):524-8. [PubMed: 19204730]  [MGI Ref ID J:147106]

Ishii M; Kikuta J; Shimazu Y; Meier-Schellersheim M; Germain RN. 2010. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med 207(13):2793-8. [PubMed: 21135136]  [MGI Ref ID J:176951]

Izhak L; Wildbaum G; Jung S; Stein A; Shaked Y; Karin N. 2012. Dissecting the autocrine and paracrine roles of the CCR2-CCL2 axis in tumor survival and angiogenesis. PLoS One 7(1):e28305. [PubMed: 22279523]  [MGI Ref ID J:184239]

Jacquelin S; Licata F; Dorgham K; Hermand P; Poupel L; Guyon E; Deterre P; Hume DA; Combadiere C; Boissonnas A. 2013. CX3CR1 reduces Ly6Chigh-monocyte motility within and release from the bone marrow after chemotherapy in mice. Blood 122(5):674-83. [PubMed: 23775714]  [MGI Ref ID J:202291]

Jakubzick C; Gautier EL; Gibbings SL; Sojka DK; Schlitzer A; Johnson TE; Ivanov S; Duan Q; Bala S; Condon T; van Rooijen N; Grainger JR; Belkaid Y; Ma'ayan A; Riches DW; Yokoyama WM; Ginhoux F; Henson PM; Randolph GJ. 2013. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39(3):599-610. [PubMed: 24012416]  [MGI Ref ID J:208214]

Jaworski T; Lechat B; Demedts D; Gielis L; Devijver H; Borghgraef P; Duimel H; Verheyen F; Kugler S; Van Leuven F. 2011. Dendritic degeneration, neurovascular defects, and inflammation precede neuronal loss in a mouse model for tau-mediated neurodegeneration. Am J Pathol 179(4):2001-15. [PubMed: 21839061]  [MGI Ref ID J:176300]

Joly S; Francke M; Ulbricht E; Beck S; Seeliger M; Hirrlinger P; Hirrlinger J; Lang KS; Zinkernagel M; Odermatt B; Samardzija M; Reichenbach A; Grimm C; Reme CE. 2009. Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol 174(6):2310-23. [PubMed: 19435787]  [MGI Ref ID J:148765]

Kaiser P; Regoes RR; Dolowschiak T; Wotzka SY; Lengefeld J; Slack E; Grant AJ; Ackermann M; Hardt WD. 2014. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment. PLoS Biol 12(2):e1001793. [PubMed: 24558351]  [MGI Ref ID J:208411]

Kang SJ; Liang HE; Reizis B; Locksley RM. 2008. Regulation of hierarchical clustering and activation of innate immune cells by dendritic cells. Immunity 29(5):819-33. [PubMed: 19006696]  [MGI Ref ID J:142395]

Kawakami T; Lichtnekert J; Thompson LJ; Karna P; Bouabe H; Hohl TM; Heinecke JW; Ziegler SF; Nelson PJ; Duffield JS. 2013. Resident renal mononuclear phagocytes comprise five discrete populations with distinct phenotypes and functions. J Immunol 191(6):3358-72. [PubMed: 23956422]  [MGI Ref ID J:205879]

Kayama H; Ueda Y; Sawa Y; Jeon SG; Ma JS; Okumura R; Kubo A; Ishii M; Okazaki T; Murakami M; Yamamoto M; Yagita H; Takeda K. 2012. Intestinal CX3C chemokine receptor 1high (CX3CR1high) myeloid cells prevent T-cell-dependent colitis. Proc Natl Acad Sci U S A 109(13):5010-5. [PubMed: 22403066]  [MGI Ref ID J:182225]

Kezic J; McMenamin PG. 2008. Differential turnover rates of monocyte-derived cells in varied ocular tissue microenvironments. J Leukoc Biol 84(3):721-9. [PubMed: 18577714]  [MGI Ref ID J:138301]

Kezic J; McMenamin PG. 2010. The monocyte chemokine receptor CX3CR1 does not play a significant role in the pathogenesis of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 51(10):5121-7. [PubMed: 20463325]  [MGI Ref ID J:171405]

Kezic J; Xu H; Chinnery HR; Murphy CC; McMenamin PG. 2008. Retinal microglia and uveal tract dendritic cells and macrophages are not CX3CR1 dependent in their recruitment and distribution in the young mouse eye. Invest Ophthalmol Vis Sci 49(4):1599-608. [PubMed: 18385080]  [MGI Ref ID J:136154]

Kezic JM; McMenamin PG. 2013. The effects of CX3CR1 deficiency and irradiation on the homing of monocyte-derived cell populations in the mouse eye. PLoS One 8(7):e68570. [PubMed: 23844223]  [MGI Ref ID J:204298]

Kierdorf K; Erny D; Goldmann T; Sander V; Schulz C; Perdiguero EG; Wieghofer P; Heinrich A; Riemke P; Holscher C; Muller DN; Luckow B; Brocker T; Debowski K; Fritz G; Opdenakker G; Diefenbach A; Biber K; Heikenwalder M; Geissmann F; Rosenbauer F; Prinz M. 2013. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273-80. [PubMed: 23334579]  [MGI Ref ID J:197476]

Kikuta J; Kawamura S; Okiji F; Shirazaki M; Sakai S; Saito H; Ishii M. 2013. Sphingosine-1-phosphate-mediated osteoclast precursor monocyte migration is a critical point of control in antibone-resorptive action of active vitamin D. Proc Natl Acad Sci U S A 110(17):7009-13. [PubMed: 23569273]  [MGI Ref ID J:196150]

Kim D; You B; Jo EK; Han SK; Simon MI; Lee SJ. 2010. NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A 107(33):14851-6. [PubMed: 20679217]  [MGI Ref ID J:163708]

Kim JV; Dustin ML. 2006. Innate response to focal necrotic injury inside the blood-brain barrier. J Immunol 177(8):5269-77. [PubMed: 17015712]  [MGI Ref ID J:139445]

Kim KW; Vallon-Eberhard A; Zigmond E; Farache J; Shezen E; Shakhar G; Ludwig A; Lira SA; Jung S. 2011. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118(22):e156-67. [PubMed: 21951685]  [MGI Ref ID J:178874]

Koenigsknecht-Talboo J; Meyer-Luehmann M; Parsadanian M; Garcia-Alloza M; Finn MB; Hyman BT; Bacskai BJ; Holtzman DM. 2008. Rapid microglial response around amyloid pathology after systemic anti-Abeta antibody administration in PDAPP mice. J Neurosci 28(52):14156-64. [PubMed: 19109498]  [MGI Ref ID J:143879]

Kohno H; Maeda T; Perusek L; Pearlman E; Maeda A. 2014. CCL3 production by microglial cells modulates disease severity in murine models of retinal degeneration. J Immunol 192(8):3816-27. [PubMed: 24639355]  [MGI Ref ID J:210001]

Krabbe G; Halle A; Matyash V; Rinnenthal JL; Eom GD; Bernhardt U; Miller KR; Prokop S; Kettenmann H; Heppner FL. 2013. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One 8(4):e60921. [PubMed: 23577177]  [MGI Ref ID J:199932]

Kumar AH; Martin K; Turner EC; Buneker CK; Dorgham K; Deterre P; Caplice NM. 2013. Role of CX3CR1 receptor in monocyte/macrophage driven neovascularization. PLoS One 8(2):e57230. [PubMed: 23437346]  [MGI Ref ID J:197189]

Kurihara T; Westenskow PD; Krohne TU; Aguilar E; Johnson RS; Friedlander M. 2011. Astrocyte pVHL and HIF-alpha isoforms are required for embryonic-to-adult vascular transition in the eye. J Cell Biol 195(4):689-701. [PubMed: 22084310]  [MGI Ref ID J:178823]

Kwan W; Trager U; Davalos D; Chou A; Bouchard J; Andre R; Miller A; Weiss A; Giorgini F; Cheah C; Moller T; Stella N; Akassoglou K; Tabrizi SJ; Muchowski PJ. 2012. Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Invest 122(12):4737-47. [PubMed: 23160193]  [MGI Ref ID J:193974]

Laffont S; Siddiqui KR; Powrie F. 2010. Intestinal inflammation abrogates the tolerogenic properties of MLN CD103(+) dendritic cells. Eur J Immunol 40(7):1877-1883. [PubMed: 20432234]  [MGI Ref ID J:161863]

Lammermann T; Afonso PV; Angermann BR; Wang JM; Kastenmuller W; Parent CA; Germain RN. 2013. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498(7454):371-5. [PubMed: 23708969]  [MGI Ref ID J:198733]

Landsman L; Bar-On L; Zernecke A; Kim KW; Krauthgamer R; Shagdarsuren E; Lira SA; Weissman IL; Weber C; Jung S. 2009. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113(4):963-72. [PubMed: 18971423]  [MGI Ref ID J:145036]

Lau-Kilby AW; Kretz CC; Pechhold S; Price JD; Dorta S; Ramos H; Trinchieri G; Tarbell KV. 2011. Interleukin-2 inhibits FMS-like tyrosine kinase 3 receptor ligand (flt3L)-dependent development and function of conventional and plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 108(6):2408-13. [PubMed: 21262836]  [MGI Ref ID J:169098]

Lauro C; Di Angelantonio S; Cipriani R; Sobrero F; Antonilli L; Brusadin V; Ragozzino D; Limatola C. 2008. Activity of adenosine receptors type 1 Is required for CX3CL1-mediated neuroprotection and neuromodulation in hippocampal neurons. J Immunol 180(11):7590-6. [PubMed: 18490761]  [MGI Ref ID J:136344]

Lee S; Varvel NH; Konerth ME; Xu G; Cardona AE; Ransohoff RM; Lamb BT. 2010. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models. Am J Pathol 177(5):2549-62. [PubMed: 20864679]  [MGI Ref ID J:166257]

Lee WY; Moriarty TJ; Wong CH; Zhou H; Strieter RM; van Rooijen N; Chaconas G; Kubes P. 2010. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol 11(4):295-302. [PubMed: 20228796]  [MGI Ref ID J:158972]

Lee YS; Morinaga H; Kim JJ; Lagakos W; Taylor S; Keshwani M; Perkins G; Dong H; Kayali AG; Sweet IR; Olefsky J. 2013. The fractalkine/CX3CR1 system regulates beta cell function and insulin secretion. Cell 153(2):413-25. [PubMed: 23582329]  [MGI Ref ID J:197365]

Lerchenberger M; Uhl B; Stark K; Zuchtriegel G; Eckart A; Miller M; Puhr-Westerheide D; Praetner M; Rehberg M; Khandoga AG; Lauber K; Massberg S; Krombach F; Reichel CA. 2013. Matrix metalloproteinases modulate ameboid-like migration of neutrophils through inflamed interstitial tissue. Blood 122(5):770-80. [PubMed: 23757732]  [MGI Ref ID J:201769]

Leuschner F; Panizzi P; Chico-Calero I; Lee WW; Ueno T; Cortez-Retamozo V; Waterman P; Gorbatov R; Marinelli B; Iwamoto Y; Chudnovskiy A; Figueiredo JL; Sosnovik DE; Pittet MJ; Swirski FK; Weissleder R; Nahrendorf M. 2010. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res 107(11):1364-73. [PubMed: 20930148]  [MGI Ref ID J:178180]

Lewis CA; Solomon JN; Rossi FM; Krieger C. 2009. Bone marrow-derived cells in the central nervous system of a mouse model of amyotrophic lateral sclerosis are associated with blood vessels and express CX(3)CR1. Glia 57(13):1410-9. [PubMed: 19243075]  [MGI Ref ID J:156201]

Li L; Huang L; Sung SS; Vergis AL; Rosin DL; Rose CE Jr; Lobo PI; Okusa MD. 2008. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int 74(12):1526-37. [PubMed: 18843253]  [MGI Ref ID J:162714]

Liang KJ; Lee JE; Wang YD; Ma W; Fontainhas AM; Fariss RN; Wong WT. 2009. Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest Ophthalmol Vis Sci 50(9):4444-51. [PubMed: 19443728]  [MGI Ref ID J:154542]

Lin KL; Suzuki Y; Nakano H; Ramsburg E; Gunn MD. 2008. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J Immunol 180(4):2562-72. [PubMed: 18250467]  [MGI Ref ID J:131979]

Lionakis MS; Swamydas M; Fischer BG; Plantinga TS; Johnson MD; Jaeger M; Green NM; Masedunskas A; Weigert R; Mikelis C; Wan W; Lee CC; Lim JK; Rivollier A; Yang JC; Laird GM; Wheeler RT; Alexander BD; Perfect JR; Gao JL; Kullberg BJ; Netea MG; Murphy PM. 2013. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J Clin Invest 123(12):5035-51. [PubMed: 24177428]  [MGI Ref ID J:207701]

Liu J; Copland DA; Horie S; Wu WK; Chen M; Xu Y; Paul Morgan B; Mack M; Xu H; Nicholson LB; Dick AD. 2013. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice. PLoS One 8(8):e72935. [PubMed: 23977372]  [MGI Ref ID J:206423]

Liu K; Victora GD; Schwickert TA; Guermonprez P; Meredith MM; Yao K; Chu FF; Randolph GJ; Rudensky AY; Nussenzweig M. 2009. In Vivo Analysis of Dendritic Cell Development and Homeostasis. Science :. [PubMed: 19286519]  [MGI Ref ID J:147362]

Liu P; Patil S; Rojas M; Fong AM; Smyth SS; Patel DD. 2006. CX3CR1 deficiency confers protection from intimal hyperplasia after arterial injury. Arterioscler Thromb Vasc Biol 26(9):2056-62. [PubMed: 16809547]  [MGI Ref ID J:124722]

Liu S; Li ZW; Weinreb RN; Xu G; Lindsey JD; Ye C; Yung WH; Pang CP; Lam DS; Leung CK. 2012. Tracking retinal microgliosis in models of retinal ganglion cell damage. Invest Ophthalmol Vis Sci 53(10):6254-62. [PubMed: 22879415]  [MGI Ref ID J:213967]

Liu Z; Condello C; Schain A; Harb R; Grutzendler J. 2010. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-beta phagocytosis. J Neurosci 30(50):17091-101. [PubMed: 21159979]  [MGI Ref ID J:167723]

Lloyd-Burton SM; York EM; Anwar MA; Vincent AJ; Roskams AJ. 2013. SPARC regulates microgliosis and functional recovery following cortical ischemia. J Neurosci 33(10):4468-81. [PubMed: 23467362]  [MGI Ref ID J:196279]

London A; Itskovich E; Benhar I; Kalchenko V; Mack M; Jung S; Schwartz M. 2011. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J Exp Med 208(1):23-39. [PubMed: 21220455]  [MGI Ref ID J:176855]

Luche H; Ardouin L; Teo P; See P; Henri S; Merad M; Ginhoux F; Malissen B. 2011. The earliest intrathymic precursors of CD8alpha(+) thymic dendritic cells correspond to myeloid-type double-negative 1c cells. Eur J Immunol 41(8):2165-75. [PubMed: 21630253]  [MGI Ref ID J:176820]

Lyszkiewicz M; Witzlau K; Pommerencke J; Krueger A. 2011. Chemokine receptor CX3CR1 promotes dendritic cell development under steady-state conditions. Eur J Immunol 41(5):1256-65. [PubMed: 21425158]  [MGI Ref ID J:175414]

Ma W; Coon S; Zhao L; Fariss RN; Wong WT. 2013. A2E accumulation influences retinal microglial activation and complement regulation. Neurobiol Aging 34(3):943-60. [PubMed: 22819137]  [MGI Ref ID J:194430]

Madsen DH; Leonard D; Masedunskas A; Moyer A; Jurgensen HJ; Peters DE; Amornphimoltham P; Selvaraj A; Yamada SS; Brenner DA; Burgdorf S; Engelholm LH; Behrendt N; Holmbeck K; Weigert R; Bugge TH. 2013. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol 202(6):951-66. [PubMed: 24019537]  [MGI Ref ID J:201738]

Maeda A; Palczewska G; Golczak M; Kohno H; Dong Z; Maeda T; Palczewski K. 2014. Two-photon microscopy reveals early rod photoreceptor cell damage in light-exposed mutant mice. Proc Natl Acad Sci U S A 111(14):E1428-37. [PubMed: 24706832]  [MGI Ref ID J:208625]

Masse GX; Corcuff E; Strick-Marchand H; Guy-Grand D; Tafuri-Bladt A; Albert ML; Lantz O; Di Santo JP. 2007. Gamma c cytokines condition the progressive differentiation of CD4+ T cells. Proc Natl Acad Sci U S A 104(39):15442-7. [PubMed: 17855567]  [MGI Ref ID J:125207]

Massena S; Christoffersson G; Hjertstrom E; Zcharia E; Vlodavsky I; Ausmees N; Rolny C; Li JP; Phillipson M. 2010. A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils. Blood 116(11):1924-31. [PubMed: 20530797]  [MGI Ref ID J:164516]

McAvoy EF; McDonald B; Parsons SA; Wong CH; Landmann R; Kubes P. 2011. The role of CD14 in neutrophil recruitment within the liver microcirculation during endotoxemia. J Immunol 186(4):2592-601. [PubMed: 21217012]  [MGI Ref ID J:169174]

McComb JG; Ranganathan M; Liu XH; Pilewski JM; Ray P; Watkins SC; Choi AM; Lee JS. 2008. CX3CL1 up-regulation is associated with recruitment of CX3CR1+ mononuclear phagocytes and T lymphocytes in the lungs during cigarette smoke-induced emphysema. Am J Pathol 173(4):949-61. [PubMed: 18772344]  [MGI Ref ID J:139658]

McDole JR; Wheeler LW; McDonald KG; Wang B; Konjufca V; Knoop KA; Newberry RD; Miller MJ. 2012. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483(7389):345-9. [PubMed: 22422267]  [MGI Ref ID J:182576]

Medina-Contreras O; Geem D; Laur O; Williams IR; Lira SA; Nusrat A; Parkos CA; Denning TL. 2011. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest 121(12):4787-95. [PubMed: 22045567]  [MGI Ref ID J:184030]

Meisner JK; Song J; Price RJ. 2012. Arteriolar and venular remodeling are differentially regulated by bone marrow-derived cell-specific CX3CR1 and CCR2 expression. PLoS One 7(9):e46312. [PubMed: 23029475]  [MGI Ref ID J:191962]

Meyer-Luehmann M; Spires-Jones TL; Prada C; Garcia-Alloza M; de Calignon A; Rozkalne A; Koenigsknecht-Talboo J; Holtzman DM; Bacskai BJ; Hyman BT. 2008. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature 451(7179):720-4. [PubMed: 18256671]  [MGI Ref ID J:132628]

Michaud JP; Bellavance MA; Prefontaine P; Rivest S. 2013. Real-time in vivo imaging reveals the ability of monocytes to clear vascular amyloid beta. Cell Rep 5(3):646-53. [PubMed: 24210819]  [MGI Ref ID J:205530]

Milo I; Sapoznikov A; Kalchenko V; Tal O; Krauthgamer R; van Rooijen N; Dudziak D; Jung S; Shakhar G. 2013. Dynamic imaging reveals promiscuous crosspresentation of blood-borne antigens to naive CD8+ T cells in the bone marrow. Blood 122(2):193-208. [PubMed: 23637125]  [MGI Ref ID J:200965]

Mionnet C; Buatois V; Kanda A; Milcent V; Fleury S; Lair D; Langelot M; Lacoeuille Y; Hessel E; Coffman R; Magnan A; Dombrowicz D; Glaichenhaus N; Julia V. 2010. CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung. Nat Med 16(11):1305-12. [PubMed: 21037587]  [MGI Ref ID J:166138]

Mizutani M; Pino PA; Saederup N; Charo IF; Ransohoff RM; Cardona AE. 2012. The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188(1):29-36. [PubMed: 22079990]  [MGI Ref ID J:180400]

Mohammad MG; Tsai VW; Ruitenberg MJ; Hassanpour M; Li H; Hart PH; Breit SN; Sawchenko PE; Brown DA. 2014. Immune cell trafficking from the brain maintains CNS immune tolerance. J Clin Invest 124(3):1228-41. [PubMed: 24569378]  [MGI Ref ID J:209720]

Mollah SA; Dobrin JS; Feder RE; Tse SW; Matos IG; Cheong C; Steinman RM; Anandasabapathy N. 2014. Flt3L Dependence Helps Define an Uncharacterized Subset of Murine Cutaneous Dendritic Cells. (Correction: J Invest Dermatol 2014;134:2850) J Invest Dermatol 134(5):1265-75. [PubMed: 24288007]  [MGI Ref ID J:208074]

Morimura S; Sugaya M; Sato S. 2013. Interaction between CX3CL1 and CX3CR1 Regulates Vasculitis Induced by Immune Complex Deposition. Am J Pathol 182(5):1640-7. [PubMed: 23470165]  [MGI Ref ID J:195540]

Morris DL; Cho KW; Delproposto JL; Oatmen KE; Geletka LM; Martinez-Santibanez G; Singer K; Lumeng CN. 2013. Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes 62(8):2762-72. [PubMed: 23493569]  [MGI Ref ID J:208974]

Mounier R; Theret M; Arnold L; Cuvellier S; Bultot L; Goransson O; Sanz N; Ferry A; Sakamoto K; Foretz M; Viollet B; Chazaud B. 2013. AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18(2):251-64. [PubMed: 23931756]  [MGI Ref ID J:200988]

Mueller-Steiner S; Zhou Y; Arai H; Roberson ED; Sun B; Chen J; Wang X; Yu G; Esposito L; Mucke L; Gan L. 2006. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 51(6):703-14. [PubMed: 16982417]  [MGI Ref ID J:113649]

Nahrendorf M; Swirski FK; Aikawa E; Stangenberg L; Wurdinger T; Figueiredo JL; Libby P; Weissleder R; Pittet MJ. 2007. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204(12):3037-47. [PubMed: 18025128]  [MGI Ref ID J:128499]

Nayak D; Johnson KR; Heydari S; Roth TL; Zinselmeyer BH; McGavern DB. 2013. Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system. PLoS Pathog 9(5):e1003395. [PubMed: 23737750]  [MGI Ref ID J:213399]

Niess JH; Adler G. 2010. Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions. J Immunol 184(4):2026-37. [PubMed: 20089703]  [MGI Ref ID J:159471]

Niess JH; Brand S; Gu X; Landsman L; Jung S; McCormick BA; Vyas JM; Boes M; Ploegh HL; Fox JG; Littman DR; Reinecker HC. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307(5707):254-8. [PubMed: 15653504]  [MGI Ref ID J:95694]

Oberbarnscheidt MH; Zeng Q; Li Q; Dai H; Williams AL; Shlomchik WD; Rothstein DM; Lakkis FG. 2014. Non-self recognition by monocytes initiates allograft rejection. J Clin Invest 124(8):3579-89. [PubMed: 24983319]  [MGI Ref ID J:213858]

Old EA; Nadkarni S; Grist J; Gentry C; Bevan S; Kim KW; Mogg AJ; Perretti M; Malcangio M. 2014. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J Clin Invest 124(5):2023-36. [PubMed: 24743146]  [MGI Ref ID J:212753]

Orr AG; Orr AL; Li XJ; Gross RE; Traynelis SF. 2009. Adenosine A(2A) receptor mediates microglial process retraction. Nat Neurosci 12(7):872-8. [PubMed: 19525944]  [MGI Ref ID J:163956]

Paolicelli RC; Bolasco G; Pagani F; Maggi L; Scianni M; Panzanelli P; Giustetto M; Ferreira TA; Guiducci E; Dumas L; Ragozzino D; Gross CT. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456-8. [PubMed: 21778362]  [MGI Ref ID J:175794]

Persson EK; Uronen-Hansson H; Semmrich M; Rivollier A; Hagerbrand K; Marsal J; Gudjonsson S; Hakansson U; Reizis B; Kotarsky K; Agace WW. 2013. IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38(5):958-69. [PubMed: 23664832]  [MGI Ref ID J:203154]

Platt AM; Bain CC; Bordon Y; Sester DP; Mowat AM. 2010. An independent subset of TLR expressing CCR2-dependent macrophages promotes colonic inflammation. J Immunol 184(12):6843-54. [PubMed: 20483766]  [MGI Ref ID J:161138]

Ponzetta A; Sciume G; Benigni G; Antonangeli F; Morrone S; Santoni A; Bernardini G. 2013. CX3CR1 regulates the maintenance of KLRG1+ NK cells into the bone marrow by promoting their entry into circulation. J Immunol 191(11):5684-94. [PubMed: 24184559]  [MGI Ref ID J:207151]

Postea O; Vasina EM; Cauwenberghs S; Projahn D; Liehn EA; Lievens D; Theelen W; Kramp BK; Butoi ED; Soehnlein O; Heemskerk JW; Ludwig A; Weber C; Koenen RR. 2012. Contribution of platelet CX(3)CR1 to platelet-monocyte complex formation and vascular recruitment during hyperlipidemia. Arterioscler Thromb Vasc Biol 32(5):1186-93. [PubMed: 22383701]  [MGI Ref ID J:196930]

Qu C; Edwards EW; Tacke F; Angeli V; Llodra J; Sanchez-Schmitz G; Garin A; Haque NS; Peters W; van Rooijen N; Sanchez-Torres C; Bromberg J; Charo IF; Jung S; Lira SA; Randolph GJ. 2004. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 200(10):1231-41. [PubMed: 15534368]  [MGI Ref ID J:94536]

Richter N; Wendt S; Georgieva PB; Hambardzumyan D; Nolte C; Kettenmann H. 2014. Glioma-associated microglia and macrophages/monocytes display distinct electrophysiological properties and do not communicate via gap junctions. Neurosci Lett 583:130-5. [PubMed: 25261595]  [MGI Ref ID J:215530]

Rigato C; Swinnen N; Buckinx R; Couillin I; Mangin JM; Rigo JM; Legendre P; Le Corronc H. 2012. Microglia Proliferation Is Controlled by P2X7 Receptors in a Pannexin-1-Independent Manner during Early Embryonic Spinal Cord Invasion. J Neurosci 32(34):11559-11573. [PubMed: 22915101]  [MGI Ref ID J:187706]

Rivollier A; He J; Kole A; Valatas V; Kelsall BL. 2012. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med 209(1):139-55. [PubMed: 22231304]  [MGI Ref ID J:181701]

Rogers JT; Morganti JM; Bachstetter AD; Hudson CE; Peters MM; Grimmig BA; Weeber EJ; Bickford PC; Gemma C. 2011. CX3CR1 Deficiency Leads to Impairment of Hippocampal Cognitive Function and Synaptic Plasticity. J Neurosci 31(45):16241-50. [PubMed: 22072675]  [MGI Ref ID J:177835]

Rotzius P; Thams S; Soehnlein O; Kenne E; Tseng CN; Bjorkstrom NK; Malmberg KJ; Lindbom L; Eriksson EE. 2010. Distinct infiltration of neutrophils in lesion shoulders in ApoE-/- mice. Am J Pathol 177(1):493-500. [PubMed: 20472897]  [MGI Ref ID J:162128]

Saederup N; Cardona AE; Croft K; Mizutani M; Cotleur AC; Tsou CL; Ransohoff RM; Charo IF. 2010. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5(10):e13693. [PubMed: 21060874]  [MGI Ref ID J:166664]

Salazar-Gonzalez RM; Niess JH; Zammit DJ; Ravindran R; Srinivasan A; Maxwell JR; Stoklasek T; Yadav R; Williams IR; Gu X; McCormick BA; Pazos MA; Vella AT; Lefrancois L; Reinecker HC; McSorley SJ. 2006. CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer's patches. Immunity 24(5):623-32. [PubMed: 16713979]  [MGI Ref ID J:113363]

Sapoznikov A; Pewzner-Jung Y; Kalchenko V; Krauthgamer R; Shachar I; Jung S. 2008. Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol 9(4):388-95. [PubMed: 18311142]  [MGI Ref ID J:133263]

Sathaliyawala T; O'Gorman WE; Greter M; Bogunovic M; Konjufca V; Hou ZE; Nolan GP; Miller MJ; Merad M; Reizis B. 2010. Mammalian target of rapamycin controls dendritic cell development downstream of flt3 ligand signaling. Immunity 33(4):597-606. [PubMed: 20933441]  [MGI Ref ID J:165522]

Satpathy AT; Briseno CG; Lee JS; Ng D; Manieri NA; Kc W; Wu X; Thomas SR; Lee WL; Turkoz M; McDonald KG; Meredith MM; Song C; Guidos CJ; Newberry RD; Ouyang W; Murphy TL; Stappenbeck TS; Gommerman JL; Nussenzweig MC; Colonna M; Kopan R; Murphy KM. 2013. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol 14(9):937-48. [PubMed: 23913046]  [MGI Ref ID J:208234]

Sawanobori Y; Ueha S; Kurachi M; Shimaoka T; Talmadge JE; Abe J; Shono Y; Kitabatake M; Kakimi K; Mukaida N; Matsushima K. 2008. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111(12):5457-66. [PubMed: 18375791]  [MGI Ref ID J:136844]

Schlitzer A; Heiseke AF; Einwachter H; Reindl W; Schiemann M; Manta CP; See P; Niess JH; Suter T; Ginhoux F; Krug AB. 2012. Tissue-specific differentiation of a circulating CCR9- pDC-like common dendritic cell precursor. Blood 119(25):6063-71. [PubMed: 22547585]  [MGI Ref ID J:188636]

Schlitzer A; McGovern N; Teo P; Zelante T; Atarashi K; Low D; Ho AW; See P; Shin A; Wasan PS; Hoeffel G; Malleret B; Heiseke A; Chew S; Jardine L; Purvis HA; Hilkens CM; Tam J; Poidinger M; Stanley ER; Krug AB; Renia L; Sivasankar B; Ng LG; Collin M; Ricciardi-Castagnoli P; Honda K; Haniffa M; Ginhoux F. 2013. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38(5):970-83. [PubMed: 23706669]  [MGI Ref ID J:203145]

Schulz C; Gomez Perdiguero E; Chorro L; Szabo-Rogers H; Cagnard N; Kierdorf K; Prinz M; Wu B; Jacobsen SE; Pollard JW; Frampton J; Liu KJ; Geissmann F. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86-90. [PubMed: 22442384]  [MGI Ref ID J:182209]

Schulz O; Jaensson E; Persson EK; Liu X; Worbs T; Agace WW; Pabst O. 2009. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 206(13):3101-14. [PubMed: 20008524]  [MGI Ref ID J:155671]

Sciume G; De Angelis G; Benigni G; Ponzetta A; Morrone S; Santoni A; Bernardini G. 2011. CX3CR1 expression defines 2 KLRG1+ mouse NK-cell subsets with distinct functional properties and positioning in the bone marrow. Blood 117(17):4467-75. [PubMed: 21364193]  [MGI Ref ID J:177799]

Seeley EJ; Barry SS; Narala S; Matthay MA; Wolters PJ. 2013. Noradrenergic Neurons Regulate Monocyte Trafficking and Mortality during Gram-Negative Peritonitis in Mice. J Immunol 190(9):4717-24. [PubMed: 23543756]  [MGI Ref ID J:195507]

Seillet C; Jackson JT; Markey KA; Brady HJ; Hill GR; Macdonald KP; Nutt SL; Belz GT. 2013. CD8alpha+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. Blood 121(9):1574-83. [PubMed: 23297132]  [MGI Ref ID J:194760]

Shechter R; London A; Kuperman Y; Ronen A; Rolls A; Chen A; Schwartz M. 2013. Hypothalamic neuronal toll-like receptor 2 protects against age-induced obesity. Sci Rep 3:1254. [PubMed: 23409245]  [MGI Ref ID J:207263]

Shechter R; Miller O; Yovel G; Rosenzweig N; London A; Ruckh J; Kim KW; Klein E; Kalchenko V; Bendel P; Lira SA; Jung S; Schwartz M. 2013. Recruitment of beneficial m2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38(3):555-69. [PubMed: 23477737]  [MGI Ref ID J:194904]

Shum WW; Smith TB; Cortez-Retamozo V; Grigoryeva LS; Roy JW; Hill E; Pittet MJ; Breton S; Da Silva N. 2014. Epithelial basal cells are distinct from dendritic cells and macrophages in the mouse epididymis. Biol Reprod 90(5):90. [PubMed: 24648397]  [MGI Ref ID J:210305]

Soehnlein O; Zernecke A; Eriksson EE; Rothfuchs AG; Pham CT; Herwald H; Bidzhekov K; Rottenberg ME; Weber C; Lindbom L. 2008. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112(4):1461-71. [PubMed: 18490516]  [MGI Ref ID J:138439]

Song JW; Misgeld T; Kang H; Knecht S; Lu J; Cao Y; Cotman SL; Bishop DL; Lichtman JW. 2008. Lysosomal activity associated with developmental axon pruning. J Neurosci 28(36):8993-9001. [PubMed: 18768693]  [MGI Ref ID J:141170]

Song KH; Park J; Park JH; Natarajan R; Ha H. 2013. Fractalkine and its receptor mediate extracellular matrix accumulation in diabetic nephropathy in mice. Diabetologia 56(7):1661-9. [PubMed: 23604552]  [MGI Ref ID J:198960]

Staumont-Salle D; Fleury S; Lazzari A; Molendi-Coste O; Hornez N; Lavogiez C; Kanda A; Wartelle J; Fries A; Pennino D; Mionnet C; Prawitt J; Bouchaert E; Delaporte E; Glaichenhaus N; Staels B; Julia V; Dombrowicz D. 2014. CX(3)CL1 (fractalkine) and its receptor CX(3)CR1 regulate atopic dermatitis by controlling effector T cell retention in inflamed skin. J Exp Med 211(6):1185-96. [PubMed: 24821910]  [MGI Ref ID J:213740]

Stephan AH; Madison DV; Mateos JM; Fraser DA; Lovelett EA; Coutellier L; Kim L; Tsai HH; Huang EJ; Rowitch DH; Berns DS; Tenner AJ; Shamloo M; Barres BA. 2013. A Dramatic Increase of C1q Protein in the CNS during Normal Aging. J Neurosci 33(33):13460-13474. [PubMed: 23946404]  [MGI Ref ID J:200899]

Sundberg TB; Choi HG; Song JH; Russell CN; Hussain MM; Graham DB; Khor B; Gagnon J; O'Connell DJ; Narayan K; Dancik V; Perez JR; Reinecker HC; Gray NS; Schreiber SL; Xavier RJ; Shamji AF. 2014. Small-molecule screening identifies inhibition of salt-inducible kinases as a therapeutic strategy to enhance immunoregulatory functions of dendritic cells. Proc Natl Acad Sci U S A 111(34):12468-73. [PubMed: 25114223]  [MGI Ref ID J:213913]

Swinnen N; Smolders S; Avila A; Notelaers K; Paesen R; Ameloot M; Brone B; Legendre P; Rigo JM. 2013. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 61(2):150-63. [PubMed: 23001583]  [MGI Ref ID J:191146]

Synowitz M; Glass R; Farber K; Markovic D; Kronenberg G; Herrmann K; Schnermann J; Nolte C; van Rooijen N; Kiwit J; Kettenmann H. 2006. A1 adenosine receptors in microglia control glioblastoma-host interaction. Cancer Res 66(17):8550-7. [PubMed: 16951167]  [MGI Ref ID J:112410]

Tacke F; Alvarez D; Kaplan TJ; Jakubzick C; Spanbroek R; Llodra J; Garin A; Liu J; Mack M; van Rooijen N; Lira SA; Habenicht AJ; Randolph GJ. 2007. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117(1):185-94. [PubMed: 17200718]  [MGI Ref ID J:117437]

Tagliani E; Shi C; Nancy P; Tay CS; Pamer EG; Erlebacher A. 2011. Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med 208(9):1901-16. [PubMed: 21825019]  [MGI Ref ID J:177594]

Tamoutounour S; Henri S; Lelouard H; de Bovis B; de Haar C; van der Woude CJ; Woltman AM; Reyal Y; Bonnet D; Sichien D; Bain CC; Mowat AM; Reis E Sousa C; Poulin LF; Malissen B; Guilliams M. 2012. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur J Immunol 42(12):3150-66. [PubMed: 22936024]  [MGI Ref ID J:190343]

Thomas DM; Francescutti-Verbeem DM; Kuhn DM. 2008. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling. J Neurochem 106(2):696-705. [PubMed: 18410508]  [MGI Ref ID J:139390]

Tighe RM; Li Z; Potts EN; Frush S; Liu N; Gunn MD; Foster WM; Noble PW; Hollingsworth JW. 2011. Ozone inhalation promotes CX3CR1-dependent maturation of resident lung macrophages that limit oxidative stress and inflammation. J Immunol 187(9):4800-8. [PubMed: 21930959]  [MGI Ref ID J:179462]

Ueno M; Fujita Y; Tanaka T; Nakamura Y; Kikuta J; Ishii M; Yamashita T. 2013. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16(5):543-51. [PubMed: 23525041]  [MGI Ref ID J:197621]

Ulmann L; Hirbec H; Rassendren F. 2010. P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 29(14):2290-300. [PubMed: 20562826]  [MGI Ref ID J:162082]

Vagaja NN; Chinnery HR; Binz N; Kezic JM; Rakoczy EP; McMenamin PG. 2012. Changes in murine hyalocytes are valuable early indicators of ocular disease. Invest Ophthalmol Vis Sci 53(3):1445-51. [PubMed: 22297487]  [MGI Ref ID J:196754]

Vaknin I; Kunis G; Miller O; Butovsky O; Bukshpan S; Beers DR; Henkel JS; Yoles E; Appel SH; Schwartz M. 2011. Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis. PLoS One 6(11):e26921. [PubMed: 22073221]  [MGI Ref ID J:180998]

Vallon-Eberhard A; Landsman L; Yogev N; Verrier B; Jung S. 2006. Transepithelial pathogen uptake into the small intestinal lamina propria. J Immunol 176(4):2465-9. [PubMed: 16456006]  [MGI Ref ID J:106225]

Varol C; Landsman L; Fogg DK; Greenshtein L; Gildor B; Margalit R; Kalchenko V; Geissmann F; Jung S. 2007. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 204(1):171-80. [PubMed: 17190836]  [MGI Ref ID J:125312]

Varol C; Vallon-Eberhard A; Elinav E; Aychek T; Shapira Y; Luche H; Fehling HJ; Hardt WD; Shakhar G; Jung S. 2009. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31(3):502-12. [PubMed: 19733097]  [MGI Ref ID J:152689]

Varvel NH; Bhaskar K; Kounnas MZ; Wagner SL; Yang Y; Lamb BT; Herrup K. 2009. NSAIDs prevent, but do not reverse, neuronal cell cycle reentry in a mouse model of Alzheimer disease. J Clin Invest 119(12):3692-702. [PubMed: 19907078]  [MGI Ref ID J:155100]

Vessey KA; Greferath U; Jobling AI; Phipps JA; Ho T; Waugh M; Fletcher EL. 2012. Ccl2/Cx3cr1 knockout mice have inner retinal dysfunction but are not an accelerated model of AMD. Invest Ophthalmol Vis Sci 53(12):7833-46. [PubMed: 23074204]  [MGI Ref ID J:214216]

Vukovic J; Blomster LV; Chinnery HR; Weninger W; Jung S; McMenamin PG; Ruitenberg MJ. 2010. Bone marrow chimeric mice reveal a role for CXCR1 in maintenance of the monocyte-derived cell population in the olfactory neuroepithelium. J Leukoc Biol 88(4):645-54. [PubMed: 20610801]  [MGI Ref ID J:165615]

Vukovic J; Colditz MJ; Blackmore DG; Ruitenberg MJ; Bartlett PF. 2012. Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J Neurosci 32(19):6435-43. [PubMed: 22573666]  [MGI Ref ID J:184859]

Waddell A; Ahrens R; Steinbrecher K; Donovan B; Rothenberg ME; Munitz A; Hogan SP. 2011. Colonic eosinophilic inflammation in experimental colitis is mediated by Ly6C(high) CCR2(+) inflammatory monocyte/macrophage-derived CCL11. J Immunol 186(10):5993-6003. [PubMed: 21498668]  [MGI Ref ID J:173219]

Wang J; Gusti V; Saraswati A; Lo DD. 2011. Convergent and divergent development among M cell lineages in mouse mucosal epithelium. J Immunol 187(10):5277-85. [PubMed: 21984701]  [MGI Ref ID J:179643]

Wantha S; Alard JE; Megens RT; van der Does AM; Doring Y; Drechsler M; Pham CT; Wang MW; Wang JM; Gallo RL; von Hundelshausen P; Lindbom L; Hackeng T; Weber C; Soehnlein O. 2013. Neutrophil-derived cathelicidin promotes adhesion of classical monocytes. Circ Res 112(5):792-801. [PubMed: 23283724]  [MGI Ref ID J:212860]

Weber B; Saurer L; Schenk M; Dickgreber N; Mueller C. 2011. CX3CR1 defines functionally distinct intestinal mononuclear phagocyte subsets which maintain their respective functions during homeostatic and inflammatory conditions. Eur J Immunol 41(3):773-9. [PubMed: 21341263]  [MGI Ref ID J:175420]

Willart MA; Jan de Heer H; Hammad H; Soullie T; Deswarte K; Clausen BE; Boon L; Hoogsteden HC; Lambrecht BN. 2009. The lung vascular filter as a site of immune induction for T cell responses to large embolic antigen. J Exp Med 206(12):2823-35. [PubMed: 19858325]  [MGI Ref ID J:154860]

Wojcik AJ; Skaflen MD; Srinivasan S; Hedrick CC. 2008. A Critical Role for ABCG1 in Macrophage Inflammation and Lung Homeostasis. J Immunol 180(6):4273-82. [PubMed: 18322240]  [MGI Ref ID J:132952]

Woodfin A; Voisin MB; Beyrau M; Colom B; Caille D; Diapouli FM; Nash GB; Chavakis T; Albelda SM; Rainger GE; Meda P; Imhof BA; Nourshargh S. 2011. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol 12(8):761-9. [PubMed: 21706006]  [MGI Ref ID J:174437]

Wu LJ; Vadakkan KI; Zhuo M. 2007. ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents. Glia 55(8):810-21. [PubMed: 17357150]  [MGI Ref ID J:156095]

Wu LJ; Wu G; Akhavan Sharif MR; Baker A; Jia Y; Fahey FH; Luo HR; Feener EP; Clapham DE. 2012. The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke. Nat Neurosci 15(4):565-73. [PubMed: 22388960]  [MGI Ref ID J:191259]

Xi H; Katschke KJ Jr; Helmy KY; Wark PA; Kljavin N; Clark H; Eastham-Anderson J; Shek T; Roose-Girma M; Ghilardi N; van Lookeren Campagne M. 2010. Negative regulation of autoimmune demyelination by the inhibitory receptor CLM-1. J Exp Med 207(1):7-16, S1-5. [PubMed: 20038601]  [MGI Ref ID J:156819]

Xiong Z; Leme AS; Ray P; Shapiro SD; Lee JS. 2011. CX3CR1+ Lung Mononuclear Phagocytes Spatially Confined to the Interstitium Produce TNF-{alpha} and IL-6 and Promote Cigarette Smoke-Induced Emphysema. J Immunol 186(5):3206-14. [PubMed: 21278339]  [MGI Ref ID J:169385]

Yamasaki R; Lu H; Butovsky O; Ohno N; Rietsch AM; Cialic R; Wu PM; Doykan CE; Lin J; Cotleur AC; Kidd G; Zorlu MM; Sun N; Hu W; Liu L; Lee JC; Taylor SE; Uehlein L; Dixon D; Gu J; Floruta CM; Zhu M; Charo IF; Weiner HL; Ransohoff RM. 2014. Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211(8):1533-49. [PubMed: 25002752]  [MGI Ref ID J:214724]

Yin N; Xu J; Ginhoux F; Randolph GJ; Merad M; Ding Y; Bromberg JS. 2012. Functional specialization of islet dendritic cell subsets. J Immunol 188(10):4921-30. [PubMed: 22508930]  [MGI Ref ID J:188667]

Yona S; Kim KW; Wolf Y; Mildner A; Varol D; Breker M; Strauss-Ayali D; Viukov S; Guilliams M; Misharin A; Hume DA; Perlman H; Malissen B; Zelzer E; Jung S. 2013. Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity 38(1):79-91. [PubMed: 23273845]  [MGI Ref ID J:193038]

Zawislak CL; Beaulieu AM; Loeb GB; Karo J; Canner D; Bezman NA; Lanier LL; Rudensky AY; Sun JC. 2013. Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proc Natl Acad Sci U S A 110(17):6967-72. [PubMed: 23572582]  [MGI Ref ID J:196148]

Zhang N; Schroppel B; Lal G; Jakubzick C; Mao X; Chen D; Yin N; Jessberger R; Ochando JC; Ding Y; Bromberg JS. 2009. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity 30(3):458-69. [PubMed: 19303390]  [MGI Ref ID J:147032]

Zhao L; Ma W; Fariss RN; Wong WT. 2009. Retinal vascular repair and neovascularization are not dependent on CX3CR1 signaling in a model of ischemic retinopathy. Exp Eye Res 88(6):1004-13. [PubMed: 19176215]  [MGI Ref ID J:151032]

Zigmond E; Varol C; Farache J; Elmaliah E; Satpathy AT; Friedlander G; Mack M; Shpigel N; Boneca IG; Murphy KM; Shakhar G; Halpern Z; Jung S. 2012. Ly6C(hi) Monocytes in the Inflamed Colon Give Rise to Proinflammatory Effector Cells and Migratory Antigen-Presenting Cells. Immunity 37(6):1076-90. [PubMed: 23219392]  [MGI Ref ID J:191054]

von Bruhl ML; Stark K; Steinhart A; Chandraratne S; Konrad I; Lorenz M; Khandoga A; Tirniceriu A; Coletti R; Kollnberger M; Byrne RA; Laitinen I; Walch A; Brill A; Pfeiler S; Manukyan D; Braun S; Lange P; Riegger J; Ware J; Eckart A; Haidari S; Rudelius M; Schulz C; Echtler K; Brinkmann V; Schwaiger M; Preissner KT; Wagner DD; Mackman N; Engelmann B; Massberg S. 2012. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209(4):819-35. [PubMed: 22451716]  [MGI Ref ID J:183864]

Ptprca related

Ashbaugh JJ; Brambilla R; Karmally SA; Cabello C; Malek TR; Bethea JR. 2013. IL7Ralpha Contributes to Experimental Autoimmune Encephalomyelitis through Altered T Cell Responses and Nonhematopoietic Cell Lineages. J Immunol 190(9):4525-34. [PubMed: 23530149]  [MGI Ref ID J:195519]

Ataera H; Simkins HM; Hyde E; Yang J; Hermans IF; Petersen TR; Ronchese F. 2013. The control of CD8+ T cell responses is preserved in perforin-deficient mice and released by depletion of CD4+CD25+ regulatory T cells. J Leukoc Biol 94(4):825-33. [PubMed: 23883515]  [MGI Ref ID J:205311]

Ball EA; Sambo MR; Martins M; Trovoada MJ; Benchimol C; Costa J; Antunes Goncalves L; Coutinho A; Penha-Goncalves C. 2013. IFNAR1 controls progression to cerebral malaria in children and CD8+ T cell brain pathology in Plasmodium berghei-infected mice. J Immunol 190(10):5118-27. [PubMed: 23585679]  [MGI Ref ID J:202560]

Basu S; Ray A; Dittel BN. 2011. Cannabinoid receptor 2 is critical for the homing and retention of marginal zone B lineage cells and for efficient T-independent immune responses. J Immunol 187(11):5720-32. [PubMed: 22048769]  [MGI Ref ID J:179699]

Belyaev NN; Biro J; Langhorne J; Potocnik AJ. 2013. Extramedullary myelopoiesis in malaria depends on mobilization of myeloid-restricted progenitors by IFN-gamma induced chemokines. PLoS Pathog 9(6):e1003406. [PubMed: 23762028]  [MGI Ref ID J:213395]

Boettcher S; Gerosa RC; Radpour R; Bauer J; Ampenberger F; Heikenwalder M; Kopf M; Manz MG. 2014. Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124(9):1393-403. [PubMed: 24990886]  [MGI Ref ID J:214513]

Buscarlet M; Krasteva V; Ho L; Simon C; Hebert J; Wilhelm B; Crabtree GR; Sauvageau G; Thibault P; Lessard JA. 2014. Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance. Blood 123(11):1720-8. [PubMed: 24478402]  [MGI Ref ID J:210092]

Cho RH; Sieburg HB; Muller-Sieburg CE. 2008. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111(12):5553-61. [PubMed: 18413859]  [MGI Ref ID J:162992]

Coleman MA; Bridge JA; Lane SW; Dixon CM; Hill GR; Wells JW; Thomas R; Steptoe RJ. 2013. Tolerance induction with gene-modified stem cells and immune-preserving conditioning in primed mice: restricting antigen to differentiated antigen-presenting cells permits efficacy. Blood 121(6):1049-58. [PubMed: 23233664]  [MGI Ref ID J:194614]

De Santo C; Arscott R; Booth S; Karydis I; Jones M; Asher R; Salio M; Middleton M; Cerundolo V. 2010. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 11(11):1039-46. [PubMed: 20890286]  [MGI Ref ID J:166540]

Del Cid N; Shen L; Belleisle J; Raghavan M. 2012. Assessment of roles for calreticulin in the cross-presentation of soluble and bead-associated antigens. PLoS One 7(7):e41727. [PubMed: 22848581]  [MGI Ref ID J:189698]

Ertelt JM; Buyukbasaran EZ; Jiang TT; Rowe JH; Xin L; Way SS. 2013. B7-1/B7-2 blockade overrides the activation of protective CD8 T cells stimulated in the absence of Foxp3+ regulatory T cells. J Leukoc Biol 94(2):367-76. [PubMed: 23744647]  [MGI Ref ID J:204423]

Ewald SJ; McKenzie IFC. 1979. Immunochemical characterization of the Ly-5 alloantigens on thymocytes. Immunogenetics 8:583-587.  [MGI Ref ID J:13367]

Felmy B; Songhet P; Slack EM; Muller AJ; Kremer M; Van Maele L; Cayet D; Heikenwalder M; Sirard JC; Hardt WD. 2013. NADPH oxidase deficient mice develop colitis and bacteremia upon infection with normally avirulent, TTSS-1- and TTSS-2-deficient Salmonella Typhimurium. PLoS One 8(10):e77204. [PubMed: 24143212]  [MGI Ref ID J:209119]

Florian MC; Nattamai KJ; Dorr K; Marka G; Uberle B; Vas V; Eckl C; Andra I; Schiemann M; Oostendorp RA; Scharffetter-Kochanek K; Kestler HA; Zheng Y; Geiger H. 2013. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503(7476):392-6. [PubMed: 24141946]  [MGI Ref ID J:206757]

Gardam S; Turner VM; Anderton H; Limaye S; Basten A; Koentgen F; Vaux DL; Silke J; Brink R. 2011. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 117(15):4041-51. [PubMed: 21300983]  [MGI Ref ID J:172843]

Gerloff J; Korshunov VA. 2012. Immune modulation of vascular resident cells by axl orchestrates carotid intima-media thickening. Am J Pathol 180(5):2134-43. [PubMed: 22538191]  [MGI Ref ID J:183990]

Glass AM; Wolf BJ; Schneider KM; Princiotta MF; Taffet SM. 2013. Connexin43 is dispensable for phagocytosis. J Immunol 190(9):4830-5. [PubMed: 23554311]  [MGI Ref ID J:195494]

Harp JA; Davis BS; Ewald SJ. 1984. Inhibition of T cell responses to alloantigens and polyclonal mitogens by Ly-5 antisera. J Immunol 133(1):10-5. [PubMed: 6233370]  [MGI Ref ID J:7453]

Held W; Clevers H; Grosschedl R. 2003. Redundant functions of TCF-1 and LEF-1 during T and NK cell development, but unique role of TCF-1 for Ly49 NK cell receptor acquisition. Eur J Immunol 33(5):1393-8. [PubMed: 12731066]  [MGI Ref ID J:85394]

Hirahara K; Ghoreschi K; Yang XP; Takahashi H; Laurence A; Vahedi G; Sciume G; Hall AO; Dupont CD; Francisco LM; Chen Q; Tanaka M; Kanno Y; Sun HW; Sharpe AH; Hunter CA; O'Shea JJ. 2012. Interleukin-27 priming of T cells controls IL-17 production in trans via induction of the ligand PD-L1. Immunity 36(6):1017-30. [PubMed: 22726954]  [MGI Ref ID J:187415]

Huang W; Huang F; Kannan AK; Hu J; August A. 2014. ITK tunes IL-4-induced development of innate memory CD8+ T cells in a gammadelta T and invariant NKT cell-independent manner. J Leukoc Biol 96(1):55-63. [PubMed: 24620029]  [MGI Ref ID J:212002]

Huber S; Hoffmann R; Muskens F; Voehringer D. 2010. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood 116(17):3311-20. [PubMed: 20625006]  [MGI Ref ID J:165869]

Iijima N; Mattei LM; Iwasaki A. 2011. Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc Natl Acad Sci U S A 108(1):284-9. [PubMed: 21173243]  [MGI Ref ID J:169008]

Janowska-Wieczorek A; Majka M; Kijowski J; Baj-Krzyworzeka M; Reca R; Turner AR; Ratajczak J; Emerson SG; Kowalska MA; Ratajczak MZ. 2001. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 98(10):3143-9. [PubMed: 11698303]  [MGI Ref ID J:109863]

Jiang S; Alberich-Jorda M; Zagozdzon R; Parmar K; Fu Y; Mauch P; Banu N; Makriyannis A; Tenen DG; Avraham S; Groopman JE; Avraham HK. 2011. Cannabinoid receptor 2 and its agonists mediate hematopoiesis and hematopoietic stem and progenitor cell mobilization. Blood 117(3):827-38. [PubMed: 21063029]  [MGI Ref ID J:168507]

Joller N; Lozano E; Burkett PR; Patel B; Xiao S; Zhu C; Xia J; Tan TG; Sefik E; Yajnik V; Sharpe AH; Quintana FJ; Mathis D; Benoist C; Hafler DA; Kuchroo VK. 2014. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40(4):569-81. [PubMed: 24745333]  [MGI Ref ID J:209951]

Kasai M; Leclerc JC; Shen FW; Cantor H. 1979. Identification of Ly 5 on the surface of `natural killer' cells in normal and athymic inbred mouse strains. Immunogenetics 8:153-159.  [MGI Ref ID J:12054]

Kitajima M; Ziegler SF. 2013. Cutting edge: identification of the thymic stromal lymphopoietin-responsive dendritic cell subset critical for initiation of type 2 contact hypersensitivity. J Immunol 191(10):4903-7. [PubMed: 24123684]  [MGI Ref ID J:206328]

Kitano M; Moriyama S; Ando Y; Hikida M; Mori Y; Kurosaki T; Okada T. 2011. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34(6):961-72. [PubMed: 21636294]  [MGI Ref ID J:174014]

Kole A; He J; Rivollier A; Silveira DD; Kitamura K; Maloy KJ; Kelsall BL. 2013. Type I IFNs regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis. J Immunol 191(5):2771-9. [PubMed: 23913971]  [MGI Ref ID J:205804]

Komuro K ; Itakura K ; Boyse EA ; John M. 1975. Ly-5: a new lymphocyte antigen system. Immunogenetics 1:452-456.  [MGI Ref ID J:12077]

Layseca-Espinosa E; Korniotis S; Montandon R; Gras C; Bouillie M; Gonzalez-Amaro R; Dy M; Zavala F. 2013. CCL22-producing CD8alpha- myeloid dendritic cells mediate regulatory T cell recruitment in response to G-CSF treatment. J Immunol 191(5):2266-72. [PubMed: 23878314]  [MGI Ref ID J:205824]

Leskov IL; Whitsett J; Vasquez-Vivar J; Stokes KY. 2011. NAD(P)H oxidase and eNOS play differential roles in cytomegalovirus infection-induced microvascular dysfunction. Free Radic Biol Med 51(12):2300-8. [PubMed: 22033010]  [MGI Ref ID J:179407]

Liu G; Bi Y; Wang R; Shen B; Zhang Y; Yang H; Wang X; Liu H; Lu Y; Han F. 2013. Kinase AKT1 negatively controls neutrophil recruitment and function in mice. J Immunol 191(5):2680-90. [PubMed: 23904165]  [MGI Ref ID J:205816]

Lu M; Varley AW; Munford RS. 2013. Persistently active microbial molecules prolong innate immune tolerance in vivo. PLoS Pathog 9(5):e1003339. [PubMed: 23675296]  [MGI Ref ID J:213407]

Lucas D; Scheiermann C; Chow A; Kunisaki Y; Bruns I; Barrick C; Tessarollo L; Frenette PS. 2013. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med 19(6):695-703. [PubMed: 23644514]  [MGI Ref ID J:198559]

Masson F; Minnich M; Olshansky M; Bilic I; Mount AM; Kallies A; Speed TP; Busslinger M; Nutt SL; Belz GT. 2013. Id2-Mediated Inhibition of E2A Represses Memory CD8+ T Cell Differentiation. J Immunol 190(9):4585-94. [PubMed: 23536629]  [MGI Ref ID J:195516]

McAleer JP; Liu B; Li Z; Ngoi SM; Dai J; Oft M; Vella AT. 2010. Potent intestinal Th17 priming through peripheral lipopolysaccharide-based immunization. J Leukoc Biol 88(1):21-31. [PubMed: 20130220]  [MGI Ref ID J:162449]

McNally A; Hill GR; Sparwasser T; Thomas R; Steptoe RJ. 2011. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis. Proc Natl Acad Sci U S A 108(18):7529-34. [PubMed: 21502514]  [MGI Ref ID J:172217]

Meisner JK; Song J; Price RJ. 2012. Arteriolar and venular remodeling are differentially regulated by bone marrow-derived cell-specific CX3CR1 and CCR2 expression. PLoS One 7(9):e46312. [PubMed: 23029475]  [MGI Ref ID J:191962]

Mobraaten LE. 1994. Ly5 gene nomenclature, C57BL/6J and SJL/J - A history of change JAX Notes Summer(458):2.  [MGI Ref ID J:22341]

Moebius J; van den Broek M; Groettrup M; Basler M. 2010. Immunoproteasomes are essential for survival and expansion of T cells in virus-infected mice. Eur J Immunol 40(12):3439-49. [PubMed: 21108466]  [MGI Ref ID J:174578]

Morse HC 3rd; Shen FW; Hammerling U. 1987. Genetic nomenclature for loci controlling mouse lymphocyte antigens. Immunogenetics 25(2):71-8. [PubMed: 3817907]  [MGI Ref ID J:8603]

Muller AJ; Filipe-Santos O; Eberl G; Aebischer T; Spath GF; Bousso P. 2012. CD4+ T cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity 37(1):147-57. [PubMed: 22727490]  [MGI Ref ID J:187413]

Nagashima H; Okuyama Y; Asao A; Kawabe T; Yamaki S; Nakano H; Croft M; Ishii N; So T. 2014. The adaptor TRAF5 limits the differentiation of inflammatory CD4(+) T cells by antagonizing signaling via the receptor for IL-6. Nat Immunol 15(5):449-56. [PubMed: 24681564]  [MGI Ref ID J:209978]

Ng RL; Scott NM; Strickland DH; Gorman S; Grimbaldeston MA; Norval M; Waithman J; Hart PH. 2013. Altered immunity and dendritic cell activity in the periphery of mice after long-term engraftment with bone marrow from ultraviolet-irradiated mice. J Immunol 190(11):5471-84. [PubMed: 23636055]  [MGI Ref ID J:204767]

Nobrega C; Nunes-Alves C; Cerqueira-Rodrigues B; Roque S; Barreira-Silva P; Behar SM; Correia-Neves M. 2013. T cells home to the thymus and control infection. J Immunol 190(4):1646-58. [PubMed: 23315077]  [MGI Ref ID J:193323]

Ocana-Morgner C; Gotz A; Wahren C; Jessberger R. 2013. SWAP-70 restricts spontaneous maturation of dendritic cells. J Immunol 190(11):5545-58. [PubMed: 23636062]  [MGI Ref ID J:204763]

Patton DT; Plumb AW; Redpath SA; Osborne LC; Perona-Wright G; Abraham N. 2014. The development and survival but not function of follicular B cells is dependent on IL-7Ralpha Tyr449 signaling. PLoS One 9(2):e88771. [PubMed: 24551160]  [MGI Ref ID J:213356]

Pepper M; Pagan AJ; Igyarto BZ; Taylor JJ; Jenkins MK. 2011. Opposing signals from the bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35(4):583-95. [PubMed: 22018468]  [MGI Ref ID J:177635]

Pulliam-Leath AC; Ciccone SL; Nalepa G; Li X; Si Y; Miravalle L; Smith D; Yuan J; Li J; Anur P; Orazi A; Vance GH; Yang FC; Hanenberg H; Bagby GC; Clapp DW. 2010. Genetic disruption of both Fancc and Fancg in mice recapitulates the hematopoietic manifestations of Fanconi anemia. Blood 116(16):2915-20. [PubMed: 20606166]  [MGI Ref ID J:165874]

Rabenstein H; Behrendt AC; Ellwart JW; Naumann R; Horsch M; Beckers J; Obst R. 2014. Differential kinetics of antigen dependency of CD4+ and CD8+ T cells. J Immunol 192(8):3507-17. [PubMed: 24639353]  [MGI Ref ID J:210002]

Raschke WC; Hendricks M; Chen CM. 1995. Genetic basis of antigenic differences between three alleles of Ly5 (CD45) in mice. Immunogenetics 41(2-3):144-7. [PubMed: 7806287]  [MGI Ref ID J:22485]

Robbins CS; Chudnovskiy A; Rauch PJ; Figueiredo JL; Iwamoto Y; Gorbatov R; Etzrodt M; Weber GF; Ueno T; van Rooijen N; Mulligan-Kehoe MJ; Libby P; Nahrendorf M; Pittet MJ; Weissleder R; Swirski FK. 2012. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 125(2):364-74. [PubMed: 22144566]  [MGI Ref ID J:193795]

Roman E; Shino H; Qin FX; Liu YJ. 2010. Cutting edge: Hematopoietic-derived APCs select regulatory T cells in thymus. J Immunol 185(7):3819-23. [PubMed: 20802149]  [MGI Ref ID J:164214]

Saunderson SC; Dunn AC; Crocker PR; McLellan AD. 2014. CD169 mediates the capture of exosomes in spleen and lymph node. Blood 123(2):208-16. [PubMed: 24255917]  [MGI Ref ID J:208086]

Schluns KS; Williams K; Ma A; Zheng XX; Lefrancois L. 2002. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J Immunol 168(10):4827-31. [PubMed: 11994430]  [MGI Ref ID J:109854]

Seldin MF; D'Hoostelaere LA; Steinberg AD; Saga Y; Morse HC 3rd. 1987. Allelic variants of Ly-5 in inbred and natural populations of mice. Immunogenetics 26(1-2):74-8. [PubMed: 2886425]  [MGI Ref ID J:8805]

Shang X; Cancelas JA; Li L; Guo F; Liu W; Johnson JF; Ficker A; Daria D; Geiger H; Ratner N; Zheng Y. 2011. R-Ras and Rac GTPase cross-talk regulates hematopoietic progenitor cell migration, homing, and mobilization. J Biol Chem 286(27):24068-78. [PubMed: 21572048]  [MGI Ref ID J:175297]

Shen FW; Saga Y; Litman G; Freeman G; Tung JS; Cantor H; Boyse EA. 1985. Cloning of Ly-5 cDNA. Proc Natl Acad Sci U S A 82(21):7360-3. [PubMed: 3864163]  [MGI Ref ID J:8080]

Shen FW; Tung JS; Boyse EA. 1986. Further definition of the Ly-5 system. Immunogenetics 24(3):146-9. [PubMed: 3489673]  [MGI Ref ID J:8430]

Shulzhenko N; Morgun A; Matzinger P. 2009. Spontaneous mutation in the Cd79b gene leads to a block in B-lymphocyte development at the C' (early pre-B) stage. Genes Immun 10(8):722-6. [PubMed: 19727123]  [MGI Ref ID J:157450]

Siggs OM; Arnold CN; Huber C; Pirie E; Xia Y; Lin P; Nemazee D; Beutler B. 2011. The P4-type ATPase ATP11C is essential for B lymphopoiesis in adult bone marrow. Nat Immunol 12(5):434-40. [PubMed: 21423172]  [MGI Ref ID J:171925]

Silva DG; Daley SR; Hogan J; Lee SK; Teh CE; Hu DY; Lam KP; Goodnow CC; Vinuesa CG. 2011. Anti-islet autoantibodies trigger autoimmune diabetes in the presence of an increased frequency of islet-reactive CD4 T cells. Diabetes 60(8):2102-11. [PubMed: 21788582]  [MGI Ref ID J:186792]

So T; Soroosh P; Eun SY; Altman A; Croft M. 2011. Antigen-independent signalosome of CARMA1, PKC{theta}, and TNF receptor-associated factor 2 (TRAF2) determines NF-{kappa}B signaling in T cells. Proc Natl Acad Sci U S A 108(7):2903-8. [PubMed: 21282629]  [MGI Ref ID J:169068]

Sun S; Xia S; Ji Y; Kersten S; Qi L. 2012. The ATP-P2X7 signaling axis is dispensable for obesity-associated inflammasome activation in adipose tissue. Diabetes 61(6):1471-8. [PubMed: 22415881]  [MGI Ref ID J:196855]

Tadagavadi RK; Reeves WB. 2010. Renal dendritic cells ameliorate nephrotoxic acute kidney injury. J Am Soc Nephrol 21(1):53-63. [PubMed: 19875815]  [MGI Ref ID J:185867]

Teng EC; Racioppi L; Means AR. 2011. A cell-intrinsic role for CaMKK2 in granulocyte lineage commitment and differentiation. J Leukoc Biol 90(5):897-909. [PubMed: 21816924]  [MGI Ref ID J:178260]

Waterstrat A; Liang Y; Swiderski CF; Shelton BJ; Van Zant G. 2010. Congenic interval of CD45/Ly-5 congenic mice contains multiple genes that may influence hematopoietic stem cell engraftment. Blood 115(2):408-17. [PubMed: 19901263]  [MGI Ref ID J:155980]

Weber GF; Chousterman BG; Hilgendorf I; Robbins CS; Theurl I; Gerhardt LM; Iwamoto Y; Quach TD; Ali M; Chen JW; Rothstein TL; Nahrendorf M; Weissleder R; Swirski FK. 2014. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. J Exp Med 211(6):1243-56. [PubMed: 24821911]  [MGI Ref ID J:213739]

Westmuckett AD; Thacker KM; Moore KL. 2011. Tyrosine sulfation of native mouse psgl-1 is required for optimal leukocyte rolling on p-selectin in vivo. PLoS One 6(5):e20406. [PubMed: 21633705]  [MGI Ref ID J:172569]

Wingender G; Hiss M; Engel I; Peukert K; Ley K; Haller H; Kronenberg M; von Vietinghoff S. 2012. Neutrophilic granulocytes modulate invariant NKT cell function in mice and humans. J Immunol 188(7):3000-8. [PubMed: 22387552]  [MGI Ref ID J:183092]

Yang G; Hisha H; Cui Y; Fan T; Jin T; Li Q; Lian Z; Hosaka N; Li Y; Ikehara S. 2002. A new assay method for late CFU-S formation and long-term reconstituting activity using a small number of pluripotent hemopoietic stem cells. Stem Cells 20(3):241-8. [PubMed: 12004082]  [MGI Ref ID J:109853]

Yeager AM; Shinn C; Shinohara M; Pardoll DM. 1993. Hematopoietic cell transplantation in the twitcher mouse. The effects of pretransplant conditioning with graded doses of busulfan. Transplantation 56(1):185-90. [PubMed: 8101401]  [MGI Ref ID J:14381]

Zebedee SL; Barritt DS; Raschke WC. 1991. Comparison of mouse Ly5a and Ly5b leucocyte common antigen alleles. Dev Immunol 1(4):243-54. [PubMed: 1822988]  [MGI Ref ID J:12548]

Zeng H; Yang K; Cloer C; Neale G; Vogel P; Chi H. 2013. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499(7459):485-90. [PubMed: 23812589]  [MGI Ref ID J:204754]

Zhu Y; Liu S; Yin Q; Xu T; Wu X; Zhuang Y. 2012. Generation of Dhx9-deficient clones in T-cell development with a mitotic recombination technique. Genesis 50(7):543-51. [PubMed: 22988576]  [MGI Ref ID J:207361]

de Andres-Aguayo L; Varas F; Kallin EM; Infante JF; Wurst W; Floss T; Graf T. 2011. Musashi 2 is a regulator of the HSC compartment identified by a retroviral insertion screen and knockout mice. Blood 118(3):554-64. [PubMed: 21613258]  [MGI Ref ID J:174870]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX11

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, these mice are bred as homozygous for the Cx3cr1 mutant allele and homozygous for the Ptprca allele.
Mating SystemHomozygote x Homozygote         (Female x Male)   18-JUL-08
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $199.90Female or MaleHomozygous for Ptprca, Homozygous for Cx3cr1tm1Litt  
Price per Pair (US dollars $)Pair Genotype
$399.80Homozygous for Ptprca, Homozygous for Cx3cr1tm1Litt x Homozygous for Ptprca, Homozygous for Cx3cr1tm1Litt  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $259.90Female or MaleHomozygous for Ptprca, Homozygous for Cx3cr1tm1Litt  
Price per Pair (US dollars $)Pair Genotype
$519.80Homozygous for Ptprca, Homozygous for Cx3cr1tm1Litt x Homozygous for Ptprca, Homozygous for Cx3cr1tm1Litt  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

  Control
   000664 C57BL/6J
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)