Strain Name:

FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*A111G)588Ahmb/J

Stock Number:

008782

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Use Restrictions Apply, see Terms of Use
Mice that are homozygous for the Tg(SMN2*A111G)588Ahmb transgene (survival of motor neuron 2, centromeric, human) , homozygous for the Smn1tm1Msd (survival motor neuron 1) targeted mutation and hemizygous or homozygous for the Tg(SMN2)89Ahmb transgene are viable and survive for longer than one year. This mutant mouse strain may be useful in studies of spinal muscular atrophy.

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Former Names FVB.Cg-Smn1tm1Msd Tg(SMN2)89Ahmb Tg(SMN2*A111G)588Ahmb/J    (Changed: 18-JUL-13 )
STOCK Smn1tm1Msd Tg(SMN2)89Ahmb Tg(SMN2*A111G)588Ahmb/J    (Changed: 13-JUL-09 )
Type Congenic; Targeted Mutation; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
GenerationN?+F4pN1
Generation Definitions
 
Donating Investigator Arthur H.M. Burghes,   The Ohio State University

Description
Mice that are homozygous for the Tg(SMN2*A111G)588Ahmb transgene and homozygous for the Smn1tm1Msd targeted mutation are not viable. Mice that are homozygous for the Tg(SMN2*A111G)588Ahmb transgene, homozygous for the Smn1tm1Msd targeted mutation and hemizygous or homozygous for the Tg(SMN2)89Ahmb transgene are viable and survive for longer than one year. Expression of the Tg(SMN2*A111G)588Ahmb in founder line 588 is detected in the spinal cord, forebrain and liver by RT-PCR. This mutant mouse strain may be useful in studies of spinal muscular atrophy.

Importation of this model was supported by the Spinal Muscular Atrophy Foundation.

Development
A transgenic construct containing the SMN(A111G) missense mutation under the control of 4.1 kb SMN promoter was injected into fertilized FVB/N mouse eggs. Founder line 588 was subsequently established. Transgenic animals were bred to mice homozygous for the Tg(SMN2)89Ahmb transgene and heterozygous for the Smn1tm1Msd targeted mutation (on a similar background to FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/J).

Control Information

  Control
   001800 FVB/NJ
 
  Considerations for Choosing Controls

Related Strains

Spinal Muscular Atrophy (SMA) Models
008849   B6.129(C)-Smn1tm1.1Jme/J
006146   B6.129-Smn1tm1Jme/J
008453   B6.129-Smn1tm4(SMN2)Mrph/J
008714   B6.129-Smn1tm5(Smn1/SMN2)Mrph/J
009378   B6.129-Smn1tm6(SMN2)Mrph/J
010921   B6.129P2(Cg)-Smn1tm1Msd/J
018439   B6.129S6-Tg(CAG-Bgeo,-SMN2)E9Dscd/J
009680   B6.B-Vps54wr/J
007963   B6.Cg-Smn1tm2Mrph/J
007966   B6.Cg-Smn1tm3(SMN2/Smn1)Mrph/J
006149   B6.Cg-Tg(ACTA1-cre)79Jme/J
006663   B6.Cg-Tg(Eno2-cre)39Jme/J
008629   B6.Cg-Tg(SMN2)11Tro Smn1tm1Msd/J
008631   B6.Cg-Tg(SMN2)11Tro Tg(SMN2)46Tro Smn1tm1Msd/J
008630   B6.Cg-Tg(SMN2)46Tro Smn1tm1Msd/J
007222   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/J
006964   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
006773   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/J
007246   B6;129-Smn1tm2Mrph/J
008383   B6;129-Smn1tm4(SMN2)Mrph/J
008384   B6;129-Smn1tm5(Smn1/SMN2)Mrph/J
008704   B6;129-Smn1tm6(SMN2)Mrph/J
006138   FVB.129(B6)-Smn1tm1Jme/J
008713   FVB.129(B6)-Smn1tm4(SMN2)Mrph/J
008604   FVB.129(B6)-Smn1tm5(Smn1/SMN2)Mrph/J
006214   FVB.129P2-Smn1tm1Msd/J
005058   FVB.Cg-Smn1tm1Hung Tg(SMN2)2Hung/J
008206   FVB.Cg-Smn1tm1Msd Tg(SMN2)566Ahmb/J
007955   FVB.Cg-Smn1tm2Mrph/J
007964   FVB.Cg-Smn1tm3(SMN2/Smn1)Mrph/J
009381   FVB.Cg-Smn1tm6(SMN2)Mrph/J
012252   FVB.Cg-Tbcepmn/J
006139   FVB.Cg-Tg(ACTA1-cre)79Jme/J
006297   FVB.Cg-Tg(Eno2-cre)39Jme/J
008209   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(ACTA1-SMN)69Ahmb/J
016573   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(S100B-EGFP)1Wjt Tg(SMN2*delta7)4299Ahmb/J
007968   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/2J
009134   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*A111G)591Ahmb/J
007952   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/2J
005025   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
005026   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/J
007949   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/2J
005024   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/J
009682   NMRI-Tbcepmn/J
017596   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#aAhmb/J
017597   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#bAhmb/J
007022   STOCK Mnx1tm4(cre)Tmj Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
008783   STOCK Tg(CAG-cre/Esr1*)5Amc Smn1tm3(SMN2/Smn1)Mrph Tg(SMN2*delta7)4299Ahmb Tg(SMN2)89Ahmb/J
005938   STOCK Tg(Eno2-cre)39Jme/J
008203   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(ACTA1-SMN)63Ahmb/J
006553   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(H2-K1-tsA58)6Kio Tg(SMN2*delta7)4299Ahmb/J
006570   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(Hlxb9-GFP)1Tmj/J
008212   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(Prnp-SMN)92Ahmb/J
018916   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1-SMN2*)16Cll/CllJ
007951   STOCK Tg(SMN2)89Ahmb Smn1tm3(SMN2/Smn1)Mrph Tg(SMN2*delta7)4299Ahmb/J
008359   STOCK Tg(SMN2)89Ahmb Smn1tm3(SMN2/Smn1)Mrph/J
017599   STOCK Tg(tetO-SMN2,-luc)#aAhmb/J
017600   STOCK Tg(tetO-SMN2,-luc)#bAhmb/J
View Spinal Muscular Atrophy (SMA) Models     (58 strains)

Strains carrying   Smn1tm1Msd allele
010921   B6.129P2(Cg)-Smn1tm1Msd/J
008629   B6.Cg-Tg(SMN2)11Tro Smn1tm1Msd/J
008631   B6.Cg-Tg(SMN2)11Tro Tg(SMN2)46Tro Smn1tm1Msd/J
008630   B6.Cg-Tg(SMN2)46Tro Smn1tm1Msd/J
007222   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/J
006964   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
006773   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/J
006214   FVB.129P2-Smn1tm1Msd/J
008206   FVB.Cg-Smn1tm1Msd Tg(SMN2)566Ahmb/J
008209   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(ACTA1-SMN)69Ahmb/J
016573   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(S100B-EGFP)1Wjt Tg(SMN2*delta7)4299Ahmb/J
007968   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/2J
009134   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*A111G)591Ahmb/J
007952   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/2J
005025   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
005026   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/J
007949   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/2J
005024   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/J
017596   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#aAhmb/J
017597   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#bAhmb/J
007022   STOCK Mnx1tm4(cre)Tmj Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
008203   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(ACTA1-SMN)63Ahmb/J
006553   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(H2-K1-tsA58)6Kio Tg(SMN2*delta7)4299Ahmb/J
006570   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(Hlxb9-GFP)1Tmj/J
008212   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(Prnp-SMN)92Ahmb/J
018916   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1-SMN2*)16Cll/CllJ
View Strains carrying   Smn1tm1Msd     (26 strains)

Strains carrying   Tg(SMN2)89Ahmb allele
007222   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/J
006964   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
006773   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/J
008209   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(ACTA1-SMN)69Ahmb/J
016573   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(S100B-EGFP)1Wjt Tg(SMN2*delta7)4299Ahmb/J
007968   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/2J
009134   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*A111G)591Ahmb/J
007952   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/2J
005025   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
005026   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1*A2G)2023Ahmb/J
007949   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/2J
005024   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd/J
017596   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#aAhmb/J
017597   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#bAhmb/J
007022   STOCK Mnx1tm4(cre)Tmj Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
008783   STOCK Tg(CAG-cre/Esr1*)5Amc Smn1tm3(SMN2/Smn1)Mrph Tg(SMN2*delta7)4299Ahmb Tg(SMN2)89Ahmb/J
008203   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(ACTA1-SMN)63Ahmb/J
006553   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(H2-K1-tsA58)6Kio Tg(SMN2*delta7)4299Ahmb/J
006570   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(Hlxb9-GFP)1Tmj/J
008212   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(Prnp-SMN)92Ahmb/J
018916   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1-SMN2*)16Cll/CllJ
007951   STOCK Tg(SMN2)89Ahmb Smn1tm3(SMN2/Smn1)Mrph Tg(SMN2*delta7)4299Ahmb/J
008359   STOCK Tg(SMN2)89Ahmb Smn1tm3(SMN2/Smn1)Mrph/J
View Strains carrying   Tg(SMN2)89Ahmb     (23 strains)

Strains carrying other alleles of SMN2
008453   B6.129-Smn1tm4(SMN2)Mrph/J
008714   B6.129-Smn1tm5(Smn1/SMN2)Mrph/J
009378   B6.129-Smn1tm6(SMN2)Mrph/J
018439   B6.129S6-Tg(CAG-Bgeo,-SMN2)E9Dscd/J
008629   B6.Cg-Tg(SMN2)11Tro Smn1tm1Msd/J
008631   B6.Cg-Tg(SMN2)11Tro Tg(SMN2)46Tro Smn1tm1Msd/J
008630   B6.Cg-Tg(SMN2)46Tro Smn1tm1Msd/J
006964   B6.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
008383   B6;129-Smn1tm4(SMN2)Mrph/J
008384   B6;129-Smn1tm5(Smn1/SMN2)Mrph/J
008704   B6;129-Smn1tm6(SMN2)Mrph/J
008713   FVB.129(B6)-Smn1tm4(SMN2)Mrph/J
008604   FVB.129(B6)-Smn1tm5(Smn1/SMN2)Mrph/J
005058   FVB.Cg-Smn1tm1Hung Tg(SMN2)2Hung/J
008206   FVB.Cg-Smn1tm1Msd Tg(SMN2)566Ahmb/J
009381   FVB.Cg-Smn1tm6(SMN2)Mrph/J
016573   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(S100B-EGFP)1Wjt Tg(SMN2*delta7)4299Ahmb/J
009134   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*A111G)591Ahmb/J
007952   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/2J
005025   FVB.Cg-Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
017596   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#aAhmb/J
017597   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#bAhmb/J
007022   STOCK Mnx1tm4(cre)Tmj Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb/J
008783   STOCK Tg(CAG-cre/Esr1*)5Amc Smn1tm3(SMN2/Smn1)Mrph Tg(SMN2*delta7)4299Ahmb Tg(SMN2)89Ahmb/J
006553   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(H2-K1-tsA58)6Kio Tg(SMN2*delta7)4299Ahmb/J
018916   STOCK Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN1-SMN2*)16Cll/CllJ
007951   STOCK Tg(SMN2)89Ahmb Smn1tm3(SMN2/Smn1)Mrph Tg(SMN2*delta7)4299Ahmb/J
017599   STOCK Tg(tetO-SMN2,-luc)#aAhmb/J
017600   STOCK Tg(tetO-SMN2,-luc)#bAhmb/J
View Strains carrying other alleles of SMN2     (29 strains)

View Strains carrying other alleles of Smn1     (22 strains)

Strains carrying other alleles of lacZ
002484   129-Alpltm1Sor/J
002292   129-Gt(ROSA)26Sor/J
006050   129-Sirt6tm1Fwa/J
003451   129-Smad3tm1Par/J
003310   129S-Gt(ROSA)26Sortm1Sor/J
003383   129S-Nogtm1Amc/J
004545   129S-Npytm1Rpa/J
005091   129S-Pnpla6tm1Blw/J
007199   129S-Sgpl1Gt(ROSA)78Sor/J
003082   129S1/SvImJ-Bcl2tm1Mpin/J
010633   B6(Cg)-Gt(ROSA)26Sortm1(CAG-taulacZ)Bene/J
023757   B6(Cg)-Tg(tetO-tetX,lacZ)1Gogo/UmriJ
005085   B6.129(Cg)-Cd44tm1Hbg/J
012239   B6.129(Cg)-Cd44tm1Hbg/SjJ
004178   B6.129(Cg)-Tg(CAG-Bgeo/GFP)21Lbe/J
004478   B6.129-Foxd1tm1Lai/J
006939   B6.129-Fut1tm1Sdo/J
005768   B6.129-Htr5atm1Dgen/J
002938   B6.129-Kdrtm1Jrt/J
004158   B6.129-Maftm1Gsb/J
008233   B6.129-Nrgntm1Kph/J
006497   B6.129-Skiltm2Spw/J
005849   B6.129-Tmprss11atm1Dgen/J
009348   B6.129P2(Cg)-Hprttm17(Ple48-lacZ)Ems/Mmjax
012572   B6.129P2(Cg)-Hprttm19(Ple88-lacZ)Ems/Mmjax
012574   B6.129P2(Cg)-Hprttm38(Ple17-lacZ)Ems/Mmjax
012575   B6.129P2(Cg)-Hprttm39(Ple24-lacZ)Ems/Mmjax
012576   B6.129P2(Cg)-Hprttm40(Ple34-lacZ)Ems/Mmjax
010805   B6.129P2(Cg)-Hprttm41(Ple160-lacZ)Ems/Mmjax
012331   B6.129P2(Cg)-Hprttm42(Ple131-lacZ)Ems/Mmjax
012577   B6.129P2(Cg)-Hprttm43(Ple140-lacZ)Ems/Mmjax
010709   B6.129P2(Cg)-Hprttm44(Ple49-lacZ)Ems/Mmjax
012333   B6.129P2(Cg)-Hprttm45(Ple67-lacZ)Ems/Mmjax
012733   B6.129P2(Cg)-Hprttm53(CAG-lacZ)Ems/Mmjax
012578   B6.129P2(Cg)-Hprttm56(Ple25-lacZ)Ems/Mmjax
012579   B6.129P2(Cg)-Hprttm58(Ple119-lacZ)Ems/Mmjax
012580   B6.129P2(Cg)-Hprttm59(Ple123-lacZ)Ems/Mmjax
012581   B6.129P2(Cg)-Hprttm62(Ple153-lacZ)Ems/Mmjax
012342   B6.129P2(Cg)-Hprttm63(Ple12-lacZ)Ems/Mmjax
012347   B6.129P2(Cg)-Hprttm64(Ple170-lacZ)Ems/Mmjax
012582   B6.129P2(Cg)-Hprttm67(Ple238-lacZ)Ems/Mmjax
012583   B6.129P2(Cg)-Hprttm68(Ple127-lacZ)Ems/Mmjax
012656   B6.129P2(Cg)-Hprttm70(Ple240-lacZ)Ems/Mmjax
012657   B6.129P2(Cg)-Hprttm71(Ple155-lacZ)Ems/Mmjax
012659   B6.129P2(Cg)-Hprttm73(Ple142-lacZ)Ems/Mmjax
012734   B6.129P2(Cg)-Hprttm74(Ple232-lacZ)Ems/Mmjax
008235   B6.129P2-Abcg5tm1Plo/J
005772   B6.129P2-Acvrl1tm1Dgen/J
005770   B6.129P2-Adamts4tm1Dgen/J
005771   B6.129P2-Adamts5tm1Dgen/J
005773   B6.129P2-Adcy3tm1Dgen/J
005774   B6.129P2-Adcy7tm1Dgen/J
005775   B6.129P2-Adipor2tm1Dgen/J
005776   B6.129P2-Avpr1atm1Dgen/J
009120   B6.129P2-Axin2tm1Wbm/J
005777   B6.129P2-Axltm1Dgen/J
005783   B6.129P2-Cacna1ctm1Dgen/J
005780   B6.129P2-Cacna2d3tm1Dgen/J
005781   B6.129P2-Cacng3tm1Dgen/J
005782   B6.129P2-Cacng4tm1Dgen/J
005784   B6.129P2-Capn5tm1Dgen/J
005785   B6.129P2-Capn7tm1Dgen/J
005792   B6.129P2-Ccr1l1tm1Dgen/J
005793   B6.129P2-Ccr6tm1Dgen/J
005794   B6.129P2-Ccr7tm1Dgen/J
005779   B6.129P2-Celsr2tm1Dgen/J
005797   B6.129P2-Chrna2tm1Dgen/J
007566   B6.129P2-Clip2tm1.1Gal/J
005787   B6.129P2-Ctsctm1Dgen/J
005796   B6.129P2-Cxcr3tm1Dgen/J
005798   B6.129P2-Drd5tm1Dgen/J
005800   B6.129P2-Efemp2tm1Dgen/J
005801   B6.129P2-Esrratm1Dgen/J
005802   B6.129P2-Faim2tm1Dgen/J
005803   B6.129P2-Fzd1tm1Dgen/J
005804   B6.129P2-Fzd8tm1Dgen/J
005811   B6.129P2-Gabra3tm1Dgen/J
005812   B6.129P2-Gabra4tm1Dgen/J
005810   B6.129P2-Gabrptm1Dgen/J
005809   B6.129P2-Galr1tm1Dgen/J
005816   B6.129P2-Glra3tm1Dgen/J
005805   B6.129P2-Gpr151tm1Dgen/J
005806   B6.129P2-Gpr37tm1Dgen/J
005807   B6.129P2-Gpr6tm1Dgen/J
005813   B6.129P2-Grik5tm1Dgen/J
005808   B6.129P2-Grk5tm1Dgen/J
005814   B6.129P2-Grm1tm1Dgen/J
005815   B6.129P2-Grm3tm1Dgen/J
005817   B6.129P2-Gsk3btm1Dgen/J
005818   B6.129P2-Hcrtr1tm1Dgen/J
005767   B6.129P2-Htr4tm1Dgen/J
005769   B6.129P2-Htr7tm1Dgen/J
005821   B6.129P2-Lats2tm1Dgen/J
005822   B6.129P2-Lmbr1tm1Dgen/J
005850   B6.129P2-Mapkapk2tm1Dgen/J
005824   B6.129P2-Mmp17tm1Dgen/J
005825   B6.129P2-Mtmr1tm1Dgen/J
005826   B6.129P2-Ntsr1tm1Dgen/J
005829   B6.129P2-Pkd2l2tm1Dgen/J
005828   B6.129P2-Ppardtm1Dgen/J
005831   B6.129P2-Ppm1ftm1Dgen/J
005827   B6.129P2-Ptch2tm1Dgen/J
005832   B6.129P2-Ptprotm1Dgen/J
005799   B6.129P2-S1pr4tm1Dgen/J
005837   B6.129P2-Scn11atm1Dgen/J
005836   B6.129P2-Scn9atm1Dgen/J
005834   B6.129P2-Sema5atm1Dgen/J
005835   B6.129P2-Sema6ctm1Dgen/J
006432   B6.129P2-Slc18a1tm1Dgen/J
005839   B6.129P2-Slc22a12tm1Dgen/J
005838   B6.129P2-Slc22a6tm1Dgen/J
005840   B6.129P2-Slc40a1tm1Dgen/J
005841   B6.129P2-Slc6a9tm1Dgen/J
005842   B6.129P2-Slc7a8tm1Dgen/J
005843   B6.129P2-Slc9a6tm1Dgen/J
005844   B6.129P2-Sstr1tm1Dgen/J
005847   B6.129P2-Tgfbr1tm1Dgen/J
005845   B6.129P2-Thbs4tm1Dgen/J
005790   B6.129P2-Tpp1tm1Dgen/J
005848   B6.129P2-Trpm5tm1Dgen/J
005791   B6.129P2-Xcr1tm1Dgen/J
012377   B6.129S-Cyp19a1tm1.1Shah/J
009089   B6.129S1(Cg)-Ndntm2Stw/J
009387   B6.129S1-Osr1tm1Jian/J
009386   B6.129S1-Osr2tm1Jian/J
010617   B6.129S1-Snai2tm1Grid/J
003474   B6.129S4-Gt(ROSA)26Sortm1Sor/J
006142   B6.129S4-Ppargtm1Rev/J
003754   B6.129S4-Shroom3Gt(ROSA53)Sor/J
005119   B6.129S6-Npas2tm1Slm/J
002741   B6.129S7-Alpltm1Sor/J
005970   B6.129S7-Atoh1tm2Hzo/J
006039   B6.129S7-Efnb2tm1And/J
002192   B6.129S7-Gt(ROSA)26Sor/J
005981   B6.129S7-Rai1tm1Jrl/J
005039   B6.129X1-Adra1atm1Pcs/J
006262   B6.129X1-Fut2tm1Sdo/J
025101   B6.Cg-Avpr1atm1Dgen Tg(AVPR1A)1Bux/BuxJ
014536   B6.Cg-Hprttm75(Ple143-lacZ)Ems/Mmjax
007745   B6.Cg-Mir155tm1.1Rsky/J
005317   B6.Cg-Tg(BAT-lacZ)3Picc/J
003139   B6.Cg-Tg(DBHn-lacZ)8Rpk/J
006229   B6.Cg-Tg(DRE-lacZ)2Gswz/J
024050   B6.Cg-Tg(Hmgcr-lacZ)H253Sest/J
024377   B6.Cg-Tg(TCF/Lef1-lacZ)34Efu/KatmJ
009136   B6.Cg-Tg(tetO-Kcnj2,lacZ)1Gogo/J
002982   B6.Cg-Tg(xstpx-lacZ)32And/J
018625   B6.FVB-Tg(Fabp4-lacZ)4Mosh/J
008615   B6;129-Frzbtm1Nat/J
008621   B6;129-Fzd5tm1Nat/J
016857   B6;129-Itga7tm1Burk/J
005064   B6;129-Slc30a3tm1Rpa/J
009599   B6;129P2-Adam19Gt(Betageo)1Bbl/J
006431   B6;129P2-Adam21tm1Dgen/J
005788   B6;129P2-Cd97tm1Dgen/J
008590   B6;129P2-Cxcl14tm1Litt/J
006703   B6;129P2-Gucy2dtm1Mom/MomJ
021162   B6;129P2-Mapttm2Arbr/J
006665   B6;129P2-Olfr151tm13(rI7)Mom/MomJ
006666   B6;129P2-Olfr151tm24(Olfr2)Mom/MomJ
005833   B6;129P2-Rgs4tm1Dgen/J
002073   B6;129S-Gt(ROSA)26Sor/J
006470   B6;129S-Hopxtm1Eno/J
004153   B6;129S-Map7Gt(ROSABetageo)1Sor/J
006958   B6;129S-Nkd1tm1Kwha/J
006960   B6;129S-Nkd2tm1Kwha/J
010619   B6;129S1-Lfngtm1Grid/J
007208   B6;129S4-Csrnp1Gt(ROSA)80Sor/J
011052   B6;129S4-Ctbp2Gt(ROSA61)Sor/J
003309   B6;129S4-Gt(ROSA)26Sortm1Sor/J
007207   B6;129S4-Zfp640Gt(ROSA)81Sor/J
004365   B6;129S6-Srebf1tm1Mbr/J
002317   B6;129S7-Alpltm1Sor/J
003266   B6;129S7-Epas1tm1Rus/J
006044   B6;129S7-Ephb4tm1And/J
012436   B6;129S7-Tg(CAG-lacZ,-BMPR1A*,-EGFP)1Mis/Mmjax
008618   B6;A-Tg(OPN1LW-lacZ)1Nat/J
006465   B6;CBA-Tg(CAG-lacZ-WGA)330Bbm/J
007975   B6;CBA-Tg(OR8A1-taulacZ)1Mom/MomJ
007972   B6;CBA-Tg(Olfr151-taulacZ)4Mom/MomJ
006680   B6;CBA-Tg(Olfr16*,taulacZ)19Mom/MomJ
006671   B6;CBA-Tg(Olfr16*,taulacZ)5Mom/MomJ
006672   B6;CBA-Tg(Olfr16*,taulacZ)7Mom/MomJ
006673   B6;CBA-Tg(Olfr16,taulacZ)sn2Mom/MomJ
007973   B6;CBA-Tg(Olfr16-taulacZ)1Mom/MomJ
007974   B6;CBA-Tg(Olfr160-taulacZ)V4-7Mom/MomJ
007976   B6;CBA-Tg(Olfr713-taulacZ)4Mom/MomJ
006743   B6;CBA-Tg(P-taulacZ)11Mom/MomJ
006793   B6;CBA-Tg(P-taulacZ)13Mom/MomJ
006742   B6;CBA-Tg(P-taulacZ)8Mom/MomJ
004141   B6;CBA-Tg(UAS-lacZ)65Rth/J
008344   B6;DBA-Tg(Fos-tTA,Fos-EGFP*)1Mmay Tg(tetO-lacZ,tTA*)1Mmay/J
018627   B6;SJL-Tg(Myl1-lacZ)1Ibdml/J
002369   B6;SJL-Tg(c177-lacZ)226Bri/J
002372   B6;SJL-Tg(c177-lacZ)227Bri/J
002621   B6;SJL-Tg(tetop-lacZ)2Mam/J
003299   B6;SWJ-Tg(TIMP3-lacZ)7Jeb/J
002865   B6CBA-Tg(Wnt1-lacZ)206Amc/J
019101   B6N.129S4(B6)-Gt(ROSA)26Sortm1Sor/CjDswJ
018913   B6N.Cg-Tg(tetO-GFP,-lacZ)G3Rsp/J
002955   C.129S7-Gt(ROSA)26Sor/J
009062   C57BL/6-Magel2tm1Stw/J
017955   C57BL/6-Tg(Gfap-rtTA,tetO-MAOB,-lacZ)1Jkan/J
002754   C57BL/6-Tg(LacZpl)60Vij/J
013729   C57BL/6-Tg(tetO-EDN1,-lacZ)9Mhus/J
013728   C57BL/6-Tg(tetO-NOS2,-lacZ)240iMhus/J
002193   C57BL/6J-Tg(MTn-lacZ)204Bri/J
005420   C;129S7 Gt(ROSA)26Sor-Bmp5cfe-se7J/GrsrJ
002981   DBA/2-Tg(xstpx-lacZ)36And/J
017333   FVB-Tg(tetO-Gnai2*,-lacZ)382Kndl/J
007225   FVB.129(B6)-Usp18tm1Dzh/J
009427   FVB.129S4(B6)-Gt(ROSA)26Sortm1Sor/J
012429   FVB.Cg-Gt(ROSA)26Sortm1(CAG-lacZ,-EGFP)Glh/J
003487   FVB.Cg-Tg(XGFAP-lacZ)3Mes/J
003140   FVB/N-Tg(PAI1-lacZ)1Jjb/J
002856   FVB/N-Tg(TIE2-lacZ)182Sato/J
005941   FVB/N-Tg(tetO-Aurkb,lacZ)41Kra/J
003315   FVB/N-Tg(tetORo1-lacZ)3Conk/J
005878   NOD.129(Cg)-Cd44tm1Hbg/J
003899   STOCK Cd44tm1Hbg/J
008602   STOCK Cdontm2Rsk/J
007912   STOCK En1tm2Alj/J
007925   STOCK En2tm5.1Alj/J
008211   STOCK Gli1tm2Alj/J
007922   STOCK Gli2tm2.1Alj/J
024746   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Hprttm1(tetO-Dkk1)Spdl Tg(TCF/Lef1-lacZ)34Efu/J
006241   STOCK Hhiptm1Amc/J
010707   STOCK Hprttm37(lacZ)Ems/Mmjax
012335   STOCK Hprttm50(Ple55-lacZ)Ems/Mmjax
013764   STOCK Hprttm57(Ple26-lacZ)Ems/Mmjax
012353   STOCK Hprttm65(Ple53-lacZ)Ems/Mmjax
012354   STOCK Hprttm66(Ple5-lacZ)Ems/Mmjax
012584   STOCK Hprttm69(Ple134-lacZ)Ems/Mmjax
006578   STOCK Myoz2tm1Eno/J
006646   STOCK Olfr151tm11(Olfr160)Mom/MomJ
006645   STOCK Olfr151tm12(Olfr16)Mom/MomJ
006691   STOCK Olfr151tm14(Adrb2)Mom/MomJ
006635   STOCK Olfr151tm15(V1rb2)Mom/MomJ
006630   STOCK Olfr151tm1Mom/MomJ
006629   STOCK Olfr151tm2Mom/MomJ
006628   STOCK Olfr151tm3Mom/MomJ
006740   STOCK Olfr160tm1(Olfr151)Mom Tg(Olfr151,taulacZ)AMom/MomJ
006741   STOCK Olfr160tm1(Olfr151)Mom Tg(Olfr151,taulacZ)BMom/MomJ
006651   STOCK Olfr17tm4Mom/MomJ
005707   STOCK Rag1tm1Mom Tg(TIE2-lacZ)182Sato/J
006633   STOCK Vmn1r49tm3Mom/MomJ
006634   STOCK Vmn1r49tm4(Olfr151)Mom/MomJ
014092   STOCK Tg(ACTB-tTA2,-MAPT/lacZ)1Luo/J
006613   STOCK Tg(CAG-Bgeo,-Tle1,-ALPP)1Lbe/J
003920   STOCK Tg(CAG-Bgeo/GFP)21Lbe/J
006674   STOCK Tg(Olfr16,taulacZ)2030Mom/MomJ
008477   STOCK Tg(RARE-Hspa1b/lacZ)12Jrt/J
004623   STOCK Tg(TCF/Lef1-lacZ)34Efu/J
005493   STOCK Tg(Tek-rtTA,TRE-lacZ)1425Tpr/J
002395   STOCK Tg(Zfy1-lacZ)218Bri/J
003274   STOCK Tg(tetNZL)2Bjd/J
005728   STOCK Tg(tetO-Ipf1,lacZ)958.1Macd/J
View Strains carrying other alleles of lacZ     (257 strains)

Additional Web Information

Reference Guide to Mouse Models of Spinal Muscular Atrophy manual [.pdf]
Visit the Spinal Muscular Atrophy (SMA) Mouse Model Resource site for helpful information on SMA Disease and research resources.

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Spinal Muscular Atrophy, Type I; SMA1   (SMN1)
Spinal Muscular Atrophy, Type II; SMA2   (SMN1)
Spinal Muscular Atrophy, Type III; SMA3   (SMN1)
Spinal Muscular Atrophy, Type IV; SMA4   (SMN1)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Smn1tm1Msd/Smn1tm1Msd Tg(SMN2)89Ahmb/0 Tg(SMN2*A111G)588Ahmb/0

        involves: 129P2/OlaHsd * FVB/N
  • mortality/aging
  • *normal* mortality/aging
    • mice survive over a year in contrast to mutants without Tg(SMN2*A111G)588Ahmb which exhibit embryonic lethality   (MGI Ref ID J:148541)

Smn1tm1Msd/Smn1tm1Msd Tg(SMN2)89Ahmb/Tg(SMN2)89Ahmb Tg(SMN2*A111G)588Ahmb/0

        involves: 129P2/OlaHsd * FVB/N
  • mortality/aging
  • *normal* mortality/aging
    • mice survive over a year (some up to 1.5 years) compared to mutants not carrying the Tg(SMN2*A111G)588Ahmb transgene which show a survival of 4.4-5 days   (MGI Ref ID J:148541)
    • animals have no obvious phenotype and are comparable to controls having normal mouse Smn   (MGI Ref ID J:148541)
  • muscle phenotype
  • abnormal skeletal muscle morphology
    • muscle morphology changes suggest muscles have undergone denervation followed by re-innervation   (MGI Ref ID J:148541)
    • abnormal gastrocnemius morphology
      • at 10 months, muscle fibers display hypertrophy with patches of atrophic fibers; average fiber size (mean size of 2870 um2) is greater than Tg(SMN2*A111G)588Ahmb/ Tg(SMN2*A111G)588Ahmb, Smn1tm1Msd/ + (carrier) controls (mean size of 2456 um2) and fiber distribution is shifted to larger range of 2800-3900 um2   (MGI Ref ID J:148541)
  • nervous system phenotype
  • *normal* nervous system phenotype
    • spinal cord have normal ventral root numbers relative to carrier controls   (MGI Ref ID J:148541)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Neurobiology Research
Spinal Muscular Atrophy (SMA)

Smn1tm1Msd related

Neurobiology Research
Spinal Muscular Atrophy (SMA)

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Smn1tm1Msd
Allele Name targeted mutation 1, Michael Sendtner
Allele Type Targeted (Null/Knockout, Reporter)
Common Name(s) SMN-;
Mutation Made By Michael Sendtner,  
Strain of Origin129P2/OlaHsd
ES Cell Line NameE14TG2aIV
ES Cell Line Strain129P2/OlaHsd
Site of ExpressionThe expression of the lacZ gene in tissues where Smn is normally expressed was noted.
Expressed Gene lacZ, beta-galactosidase, E. coli
Molecular Note A lacZ-neo cassette was inserted into exon 2 by homologous recombination resulting in an in-frame fusion of lacZ to exon 2. Homozygous mutant embryos were identified up to 80 hours post coitum. The expression of the lacZ gene in tissues where Smn is normally expressed was noted. [MGI Ref ID J:42813]
 
Gene Symbol and Name Smn1, survival motor neuron 1
Chromosome 13
Gene Common Name(s) AI849087; BCD541; C-BCD541; GEMIN1; SMA; SMA1; SMA2; SMA3; SMA4; SMA@; SMN; SMNC; SMNT; Smn; T-BCD541; TDRD16A; TDRD16B; expressed sequence AI849087; survival motor neuron;
 
Allele Symbol Tg(SMN2)89Ahmb
Allele Name transgene insertion 89, Arthur H M Burghes
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) SMN2;
Mutation Made By Arthur Burghes,   Ohio State University
Strain of OriginFVB/N
Site of ExpressionDendrites, axons, and soma of spinal motor neurons display distinct expression of GFP. GFP expression mimics endogenous HLXB9 expression pattern. Fluorscence is detected in axons, dendrites, and processes of spinal motor neurons at embryonic day 9.5 to postnatal day 10 aged mice.
Expressed Gene SMN2, survival of motor neuron 2, centromeric, human
Promoter SMN2, survival of motor neuron 2, centromeric, human
Molecular Note A 35.5 kb genomic fragment containing the human survival motor neuron 2 (SMN2) gene and promoter was used for the transgene. The transgene is ubiquitously expressed in all tissues examined by Northern blot analysis. Line 89 carries 1 copy of the transgene. [MGI Ref ID J:60592]
 
 
Allele Symbol Tg(SMN2*A111G)588Ahmb
Allele Name transgene insertion 588, Arthur H M Burghes
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) A588; A591; SMN(A111G); line 588; line 591;
Strain of OriginFVB/N
Expressed Gene SMN2, survival of motor neuron 2, centromeric, human
Promoter SMN2, survival of motor neuron 2, centromeric, human
Molecular Note A transgenic construct containing the SMN(A111G) missense mutation under the control of 4.1 kb SMN promoter was injected into fertilized FVB/N mouse eggs. Eleven founder lines were obtained and line 588 was subsequently established. This line was found to have 4 copies of the transgene. [MGI Ref ID J:148541]
 

Genotyping

Genotyping Information

Genotyping Protocols

Smn1tm1Msd,

Separated MCA


Smn1tm1Msd, High Resolution Melting
Tg(SMN2*A111G), Standard PCR
Tg(SMN2)89Ahmb, Melt Curve Analysis
Tg(SMN2*delta7)4299Ahmb, QPCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Workman E; Saieva L; Carrel TL; Crawford TO; Liu D; Lutz C; Beattie CE; Pellizzoni L; Burghes AH. 2009. A SMN missense mutation complements SMN2 restoring snRNPs and rescuing SMA mice. Hum Mol Genet 18(12):2215-29. [PubMed: 19329542]  [MGI Ref ID J:148541]

Additional References

Smn1tm1Msd related

Ahmad S; Wang Y; Shaik GM; Burghes AH; Gangwani L. 2012. The zinc finger protein ZPR1 is a potential modifier of spinal muscular atrophy. Hum Mol Genet 21(12):2745-58. [PubMed: 22422766]  [MGI Ref ID J:184463]

Balasubramaniam V; Ryan SL; Seedorf GJ; Roth EV; Heumann TR; Yoder MC; Ingram DA; Hogan CJ; Markham NE; Abman SH. 2010. Bone marrow-derived angiogenic cells restore lung alveolar and vascular structure after neonatal hyperoxia in infant mice. Am J Physiol Lung Cell Mol Physiol 298(3):L315-23. [PubMed: 20008116]  [MGI Ref ID J:157669]

Baumer D; Lee S; Nicholson G; Davies JL; Parkinson NJ; Murray LM; Gillingwater TH; Ansorge O; Davies KE; Talbot K. 2009. Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet 5(12):e1000773. [PubMed: 20019802]  [MGI Ref ID J:161744]

Bebee TW; Dominguez CE; Samadzadeh-Tarighat S; Akehurst KL; Chandler DS. 2012. Hypoxia is a modifier of SMN2 splicing and disease severity in a severe SMA mouse model. Hum Mol Genet 21(19):4301-13. [PubMed: 22763238]  [MGI Ref ID J:187404]

Bevan AK; Hutchinson KR; Foust KD; Braun L; McGovern VL; Schmelzer L; Ward JG; Petruska JC; Lucchesi PA; Burghes AH; Kaspar BK. 2010. Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Hum Mol Genet 19(20):3895-905. [PubMed: 20639395]  [MGI Ref ID J:164456]

Bordet T. 2009. Generation of an SMN2 transgene (line 11) MGI Direct Data Submission :.  [MGI Ref ID J:144852]

Bordet T. 2009. Generation of an SMN2 transgene (line 46) MGI Direct Data Submission :.  [MGI Ref ID J:144853]

Bosch-Marce M; Wee CD; Martinez TL; Lipkes CE; Choe DW; Kong L; Van Meerbeke JP; Musaro A; Sumner CJ. 2011. Increased IGF-1 in muscle modulates the phenotype of severe SMA mice. Hum Mol Genet 20(9):1844-53. [PubMed: 21325354]  [MGI Ref ID J:170476]

Bowerman M; Anderson CL; Beauvais A; Boyl PP; Witke W; Kothary R. 2009. SMN, profilin IIa and plastin 3: a link between the deregulation of actin dynamics and SMA pathogenesis. Mol Cell Neurosci 42(1):66-74. [PubMed: 19497369]  [MGI Ref ID J:154248]

Bowerman M; Beauvais A; Anderson CL; Kothary R. 2010. Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model. Hum Mol Genet 19(8):1468-78. [PubMed: 20097679]  [MGI Ref ID J:158345]

Bowerman M; Michalski JP; Beauvais A; Murray LM; DeRepentigny Y; Kothary R. 2014. Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology. Hum Mol Genet 23(13):3432-44. [PubMed: 24497575]  [MGI Ref ID J:210674]

Boyer JG; Murray LM; Scott K; De Repentigny Y; Renaud JM; Kothary R. 2013. Early onset muscle weakness and disruption of muscle proteins in mouse models of spinal muscular atrophy. Skelet Muscle 3(1):24. [PubMed: 24119341]  [MGI Ref ID J:202752]

Butchbach ME; Edwards JD; Burghes AH. 2007. Abnormal motor phenotype in the SMNDelta7 mouse model of spinal muscular atrophy. Neurobiol Dis 27(2):207-19. [PubMed: 17561409]  [MGI Ref ID J:134824]

Butchbach ME; Rose FF Jr; Rhoades S; Marston J; McCrone JT; Sinnott R; Lorson CL. 2010. Effect of diet on the survival and phenotype of a mouse model for spinal muscular atrophy. Biochem Biophys Res Commun 391(1):835-40. [PubMed: 19945425]  [MGI Ref ID J:156779]

Cobb MS; Rose FF; Rindt H; Glascock JJ; Shababi M; Miller MR; Osman EY; Yen PF; Garcia ML; Martin BR; Wetz MJ; Mazzasette C; Feng Z; Ko CP; Lorson CL. 2013. Development and characterization of an SMN2-based intermediate mouse model of Spinal Muscular Atrophy. Hum Mol Genet 22(9):1843-55. [PubMed: 23390132]  [MGI Ref ID J:194969]

Dachs E; Piedrafita L; Hereu M; Esquerda JE; Caldero J. 2013. Chronic treatment with lithium does not improve neuromuscular phenotype in a mouse model of severe spinal muscular atrophy. Neuroscience 250:417-33. [PubMed: 23876328]  [MGI Ref ID J:207041]

Dale JM; Shen H; Barry DM; Garcia VB; Rose FF Jr; Lorson CL; Garcia ML. 2011. The spinal muscular atrophy mouse model, SMADelta7, displays altered axonal transport without global neurofilament alterations. Acta Neuropathol 122(3):331-41. [PubMed: 21681521]  [MGI Ref ID J:176036]

Dominguez E; Marais T; Chatauret N; Benkhelifa-Ziyyat S; Duque S; Ravassard P; Carcenac R; Astord S; de Moura AP; Voit T; Barkats M. 2011. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 20(4):681-93. [PubMed: 21118896]  [MGI Ref ID J:168716]

El-Khodor BF; Edgar N; Chen A; Winberg ML; Joyce C; Brunner D; Suarez-Farinas M; Heyes MP. 2008. Identification of a battery of tests for drug candidate evaluation in the SMNDelta7 neonate model of spinal muscular atrophy. Exp Neurol 212(1):29-43. [PubMed: 18455159]  [MGI Ref ID J:137949]

Farooq F; Abadia-Molina F; Mackenzie D; Hadwen J; Shamim F; O'Reilly S; Holcik M; Mackenzie A. 2013. Celecoxib increases SMN and survival in a severe spinal muscular atrophy mouse model via p38 pathway activation. Hum Mol Genet 22(17):3415-24. [PubMed: 23656793]  [MGI Ref ID J:199128]

Farooq F; Molina FA; Hadwen J; MacKenzie D; Witherspoon L; Osmond M; Holcik M; MacKenzie A. 2011. Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway. J Clin Invest 121(8):3042-50. [PubMed: 21785216]  [MGI Ref ID J:176009]

Fulceri F; Bartalucci A; Paparelli S; Pasquali L; Biagioni F; Ferrucci M; Ruffoli R; Fornai F. 2012. Motor neuron pathology and behavioral alterations at late stages in a SMA mouse model. Brain Res 1442:66-75. [PubMed: 22306031]  [MGI Ref ID J:181868]

Gavrilina TO; McGovern VL; Workman E; Crawford TO; Gogliotti RG; Didonato CJ; Monani UR; Morris GE; Burghes HM. 2008. Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle specific SMN expression has no phenotypic effect. Hum Mol Genet :. [PubMed: 18178576]  [MGI Ref ID J:131663]

Gladman JT; Bebee TW; Edwards C; Wang X; Sahenk Z; Rich MM; Chandler DS. 2010. A humanized Smn gene containing the SMN2 nucleotide alteration in exon 7 mimics SMN2 splicing and the SMA disease phenotype. Hum Mol Genet 19(21):4239-52. [PubMed: 20705738]  [MGI Ref ID J:164889]

Gogliotti RG; Lutz C; Jorgensen M; Huebsch K; Koh S; Didonato CJ. 2011. Characterization of a commonly used mouse model of SMA reveals increased seizure susceptibility and heightened fear response in FVB/N mice. Neurobiol Dis 43(1):142-51. [PubMed: 21396450]  [MGI Ref ID J:174332]

Gogliotti RG; Quinlan KA; Barlow CB; Heier CR; Heckman CJ; Didonato CJ. 2012. Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci 32(11):3818-29. [PubMed: 22423102]  [MGI Ref ID J:183080]

Hayhurst M; Wagner AK; Cerletti M; Wagers AJ; Rubin LL. 2012. A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein. Dev Biol 368(2):323-34. [PubMed: 22705478]  [MGI Ref ID J:186551]

Heier CR; Satta R; Lutz C; DiDonato CJ. 2010. Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice. Hum Mol Genet 19(20):3906-18. [PubMed: 20693262]  [MGI Ref ID J:164446]

Hunter G; Aghamaleky Sarvestany A; Roche SL; Symes RC; Gillingwater TH. 2014. SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy. Hum Mol Genet 23(9):2235-50. [PubMed: 24301677]  [MGI Ref ID J:208449]

Jablonka S; Beck M; Lechner BD; Mayer C; Sendtner M. 2007. Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy. J Cell Biol 179(1):139-49. [PubMed: 17923533]  [MGI Ref ID J:134807]

Jablonka S; Holtmann B; Meister G; Bandilla M; Rossoll W; Fischer U; Sendtner M. 2002. Gene targeting of Gemin2 in mice reveals a correlation between defects in the biogenesis of U snRNPs and motoneuron cell death. Proc Natl Acad Sci U S A 99(15):10126-31. [PubMed: 12091709]  [MGI Ref ID J:81784]

Jablonka S; Karle K; Sandner B; Andreassi C; von Au K; Sendtner M. 2006. Distinct and overlapping alterations in motor and sensory neurons in a mouse model of spinal muscular atrophy. Hum Mol Genet 15(3):511-8. [PubMed: 16396995]  [MGI Ref ID J:105422]

Jablonka S; Schrank B; Kralewski M; Rossoll W; Sendtner M. 2000. Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. Hum Mol Genet 9(3):341-6. [PubMed: 10655542]  [MGI Ref ID J:60591]

Kariya S; Obis T; Garone C; Akay T; Sera F; Iwata S; Homma S; Monani UR. 2014. Requirement of enhanced Survival Motoneuron protein imposed during neuromuscular junction maturation. J Clin Invest 124(2):785-800. [PubMed: 24463453]  [MGI Ref ID J:208442]

Kariya S; Park GH; Maeno-Hikichi Y; Leykekhman O; Lutz C; Arkovitz MS; Landmesser LT; Monani UR. 2008. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum Mol Genet 17(16):2552-69. [PubMed: 18492800]  [MGI Ref ID J:138437]

Kariya S; Re DB; Jacquier A; Nelson K; Przedborski S; Monani UR. 2012. Mutant superoxide dismutase 1 (SOD1), a cause of amyotrophic lateral sclerosis, disrupts the recruitment of SMN, the spinal muscular atrophy protein to nuclear Cajal bodies. Hum Mol Genet 21(15):3421-34. [PubMed: 22581780]  [MGI Ref ID J:185362]

Kong L; Wang X; Choe DW; Polley M; Burnett BG; Bosch-Marce M; Griffin JW; Rich MM; Sumner CJ. 2009. Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J Neurosci 29(3):842-51. [PubMed: 19158308]  [MGI Ref ID J:144843]

Kwon DY; Motley WW; Fischbeck KH; Burnett BG. 2011. Increasing expression and decreasing degradation of SMN ameliorate the spinal muscular atrophy phenotype in mice. Hum Mol Genet 20(18):3667-77. [PubMed: 21693563]  [MGI Ref ID J:174791]

Le TT; McGovern VL; Alwine IE; Wang X; Massoni-Laporte A; Rich MM; Burghes AH. 2011. Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet 20(18):3578-91. [PubMed: 21672919]  [MGI Ref ID J:174960]

Le TT; Pham LT; Butchbach ME; Zhang HL; Monani UR; Coovert DD; Gavrilina TO; Xing L; Bassell GJ; Burghes AH. 2005. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14(6):845-57. [PubMed: 15703193]  [MGI Ref ID J:97103]

Lee YI; Mikesh M; Smith I; Rimer M; Thompson W. 2011. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev Biol 356(2):432-44. [PubMed: 21658376]  [MGI Ref ID J:175468]

Ling KK; Gibbs RM; Feng Z; Ko CP. 2012. Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy. Hum Mol Genet 21(1):185-95. [PubMed: 21968514]  [MGI Ref ID J:178856]

Ling KK; Lin MY; Zingg B; Feng Z; Ko CP. 2010. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS One 5(11):e15457. [PubMed: 21085654]  [MGI Ref ID J:166818]

Lotti F; Imlach WL; Saieva L; Beck ES; Hao le T; Li DK; Jiao W; Mentis GZ; Beattie CE; McCabe BD; Pellizzoni L. 2012. An SMN-Dependent U12 Splicing Event Essential for Motor Circuit Function. Cell 151(2):440-54. [PubMed: 23063131]  [MGI Ref ID J:189067]

Lutz CM; Kariya S; Patruni S; Osborne MA; Liu D; Henderson CE; Li DK; Pellizzoni L; Rojas J; Valenzuela DM; Murphy AJ; Winberg ML; Monani UR. 2011. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest 121(8):3029-41. [PubMed: 21785219]  [MGI Ref ID J:176007]

McGovern VL; Gavrilina TO; Beattie CE; Burghes AH. 2008. Embryonic motor axon development in the severe SMA mouse. Hum Mol Genet 17(18):2900-9. [PubMed: 18603534]  [MGI Ref ID J:138317]

Meyer K; Marquis J; Trub J; Nlend Nlend R; Verp S; Ruepp MD; Imboden H; Barde I; Trono D; Schumperli D. 2009. Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation. Hum Mol Genet 18(3):546-55. [PubMed: 19010792]  [MGI Ref ID J:143540]

Michaud M; Arnoux T; Bielli S; Durand E; Rotrou Y; Jablonka S; Robert F; Giraudon-Paoli M; Riessland M; Mattei MG; Andriambeloson E; Wirth B; Sendtner M; Gallego J; Pruss RM; Bordet T. 2010. Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy. Neurobiol Dis 38(1):125-35. [PubMed: 20085811]  [MGI Ref ID J:159930]

Monani UR; Pastore MT; Gavrilina TO; Jablonka S; Le TT; Andreassi C; DiCocco JM; Lorson C; Androphy EJ; Sendtner M; Podell M; Burghes AH. 2003. A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J Cell Biol 160(1):41-52. [PubMed: 12515823]  [MGI Ref ID J:81238]

Monani UR; Sendtner M; Coovert DD; Parsons DW; Andreassi C; Le TT; Jablonka S; Schrank B; Rossol W; Prior TW; Morris GE; Burghes AH. 2000. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9(3):333-9. [PubMed: 10655541]  [MGI Ref ID J:60592]

Murray LM; Comley LH; Thomson D; Parkinson N; Talbot K; Gillingwater TH. 2008. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet 17(7):949-62. [PubMed: 18065780]  [MGI Ref ID J:132467]

Murray LM; Lee S; Baumer D; Parson SH; Talbot K; Gillingwater TH. 2009. Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy. Hum Mol Genet :. [PubMed: 19884170]  [MGI Ref ID J:155336]

Mutsaers CA; Wishart TM; Lamont DJ; Riessland M; Schreml J; Comley LH; Murray LM; Parson SH; Lochmuller H; Wirth B; Talbot K; Gillingwater TH. 2011. Reversible molecular pathology of skeletal muscle in spinal muscular atrophy. Hum Mol Genet 20(22):4334-44. [PubMed: 21840928]  [MGI Ref ID J:176892]

Nolle A; Zeug A; van Bergeijk J; Tonges L; Gerhard R; Brinkmann H; Al Rayes S; Hensel N; Schill Y; Apkhazava D; Jablonka S; O Fmer J; Kumar Srivastav R; Baasner A; Lingor P; Wirth B; Ponimaskin E; Niedenthal R; Grothe C; Claus P. 2011. The spinal muscular atrophy disease protein SMN is linked to the rho-kinase pathway via profilin. Hum Mol Genet :. [PubMed: 21920940]  [MGI Ref ID J:177764]

Novoyatleva T; Heinrich B; Tang Y; Benderska N; Butchbach ME; Lorson CL; Lorson MA; Ben-Dov C; Fehlbaum P; Bracco L; Burghes AH; Bollen M; Stamm S. 2008. Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing. Hum Mol Genet 17(1):52-70. [PubMed: 17913700]  [MGI Ref ID J:130114]

Paez-Colasante X; Seaberg B; Martinez TL; Kong L; Sumner CJ; Rimer M. 2013. Improvement of neuromuscular synaptic phenotypes without enhanced survival and motor function in severe spinal muscular atrophy mice selectively rescued in motor neurons. PLoS One 8(9):e75866. [PubMed: 24086650]  [MGI Ref ID J:206015]

Park GH; Maeno-Hikichi Y; Awano T; Landmesser LT; Monani UR. 2010. Reduced survival of motor neuron (SMN) protein in motor neuronal progenitors functions cell autonomously to cause spinal muscular atrophy in model mice expressing the human centromeric (SMN2) gene. J Neurosci 30(36):12005-19. [PubMed: 20826664]  [MGI Ref ID J:164292]

Porensky PN; Mitrpant C; McGovern VL; Bevan AK; Foust KD; Kaspar BK; Wilton SD; Burghes AH. 2012. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 21(7):1625-38. [PubMed: 22186025]  [MGI Ref ID J:181560]

Riessland M; Ackermann B; Forster A; Jakubik M; Hauke J; Garbes L; Fritzsche I; Mende Y; Blumcke I; Hahnen E; Wirth B. 2010. SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet 19(8):1492-506. [PubMed: 20097677]  [MGI Ref ID J:158347]

Rose FF Jr; Mattis VB; Rindt H; Lorson CL. 2009. Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy. Hum Mol Genet 18(6):997-1005. [PubMed: 19074460]  [MGI Ref ID J:145746]

Rose FF Jr; Meehan PW; Coady TH; Garcia VB; Garcia ML; Lorson CL. 2008. The Wallerian degeneration slow (Wld(s)) gene does not attenuate disease in a mouse model of spinal muscular atrophy. Biochem Biophys Res Commun 375(1):119-23. [PubMed: 18680723]  [MGI Ref ID J:140130]

Rossoll W; Jablonka S; Andreassi C; Kroning AK; Karle K; Monani UR; Sendtner M. 2003. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163(4):801-12. [PubMed: 14623865]  [MGI Ref ID J:86712]

Ruggiu M; McGovern VL; Lotti F; Saieva L; Li DK; Kariya S; Monani UR; Burghes AH; Pellizzoni L. 2012. A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol 32(1):126-38. [PubMed: 22037760]  [MGI Ref ID J:183557]

Ruiz R; Casanas JJ; Torres-Benito L; Cano R; Tabares L. 2010. Altered intracellular Ca2+ homeostasis in nerve terminals of severe spinal muscular atrophy mice. J Neurosci 30(3):849-57. [PubMed: 20089893]  [MGI Ref ID J:157700]

Schrank B; Gotz R; Gunnersen JM; Ure JM; Toyka KV; Smith AG ; Sendtner M. 1997. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 94(18):9920-5. [PubMed: 9275227]  [MGI Ref ID J:42813]

See K; Yadav P; Giegerich M; Cheong PS; Graf M; Vyas H; Lee SG; Mathavan S; Fischer U; Sendtner M; Winkler C. 2014. SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy. Hum Mol Genet 23(7):1754-70. [PubMed: 24218366]  [MGI Ref ID J:207140]

Shababi M; Habibi J; Yang HT; Vale SM; Sewell WA; Lorson CL. 2010. Cardiac defects contribute to the pathology of spinal muscular atrophy models. Hum Mol Genet 19(20):4059-71. [PubMed: 20696672]  [MGI Ref ID J:164444]

Sleigh JN; Gillingwater TH; Talbot K. 2011. The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis Model Mech 4(4):457-67. [PubMed: 21708901]  [MGI Ref ID J:175452]

Subramanian N; Wetzel A; Dombert B; Yadav P; Havlicek S; Jablonka S; Nassar MA; Blum R; Sendtner M. 2012. Role of Nav1.9 in activity-dependent axon growth in motoneurons. Hum Mol Genet 21(16):3655-67. [PubMed: 22641814]  [MGI Ref ID J:185985]

Sumner CJ; Wee CD; Warsing LC; Choe DW; Ng AS; Lutz C; Wagner KR. 2009. Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice. Hum Mol Genet 18(17):3145-52. [PubMed: 19477958]  [MGI Ref ID J:151438]

Thomson SR; Nahon JE; Mutsaers CA; Thomson D; Hamilton G; Parson SH; Gillingwater TH. 2012. Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy. PLoS One 7(12):e52605. [PubMed: 23285108]  [MGI Ref ID J:195758]

Tisdale S; Lotti F; Saieva L; Van Meerbeke JP; Crawford TO; Sumner CJ; Mentis GZ; Pellizzoni L. 2013. SMN Is Essential for the Biogenesis of U7 Small Nuclear Ribonucleoprotein and 3'-End Formation of Histone mRNAs. Cell Rep 5(5):1187-95. [PubMed: 24332368]  [MGI Ref ID J:204134]

Turner BJ; Parkinson NJ; Davies KE; Talbot K. 2009. Survival motor neuron deficiency enhances progression in an amyotrophic lateral sclerosis mouse model. Neurobiol Dis 34(3):511-7. [PubMed: 19332122]  [MGI Ref ID J:150474]

Walker MP; Rajendra TK; Saieva L; Fuentes JL; Pellizzoni L; Matera AG. 2008. SMN complex localizes to the sarcomeric Z-disc and is a proteolytic target of calpain. Hum Mol Genet 17(21):3399-410. [PubMed: 18689355]  [MGI Ref ID J:140332]

Wishart TM; Huang JP; Murray LM; Lamont DJ; Mutsaers CA; Ross J; Geldsetzer P; Ansorge O; Talbot K; Parson SH; Gillingwater TH. 2010. SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy. Hum Mol Genet 19(21):4216-28. [PubMed: 20705736]  [MGI Ref ID J:164890]

Zhang H; Robinson N; Wu C; Wang W; Harrington MA. 2010. Electrophysiological properties of motor neurons in a mouse model of severe spinal muscular atrophy: in vitro versus in vivo development. PLoS One 5(7):e11696. [PubMed: 20657731]  [MGI Ref ID J:163103]

Zhang Z; Pinto AM; Wan L; Wang W; Berg MG; Oliva I; Singh LN; Dengler C; Wei Z; Dreyfuss G. 2013. Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci U S A 110(48):19348-53. [PubMed: 24191055]  [MGI Ref ID J:202974]

d'Errico P; Boido M; Piras A; Valsecchi V; De Amicis E; Locatelli D; Capra S; Vagni F; Vercelli A; Battaglia G. 2013. Selective vulnerability of spinal and cortical motor neuron subpopulations in delta7 SMA mice. PLoS One 8(12):e82654. [PubMed: 24324819]  [MGI Ref ID J:209739]

Tg(SMN2)89Ahmb related

Ahmad S; Wang Y; Shaik GM; Burghes AH; Gangwani L. 2012. The zinc finger protein ZPR1 is a potential modifier of spinal muscular atrophy. Hum Mol Genet 21(12):2745-58. [PubMed: 22422766]  [MGI Ref ID J:184463]

Avila AM; Burnett BG; Taye AA; Gabanella F; Knight MA; Hartenstein P; Cizman Z; Di Prospero NA; Pellizzoni L; Fischbeck KH; Sumner CJ. 2007. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 117(3):659-71. [PubMed: 17318264]  [MGI Ref ID J:120738]

Baumer D; Lee S; Nicholson G; Davies JL; Parkinson NJ; Murray LM; Gillingwater TH; Ansorge O; Davies KE; Talbot K. 2009. Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet 5(12):e1000773. [PubMed: 20019802]  [MGI Ref ID J:161744]

Bebee TW; Dominguez CE; Samadzadeh-Tarighat S; Akehurst KL; Chandler DS. 2012. Hypoxia is a modifier of SMN2 splicing and disease severity in a severe SMA mouse model. Hum Mol Genet 21(19):4301-13. [PubMed: 22763238]  [MGI Ref ID J:187404]

Bevan AK; Hutchinson KR; Foust KD; Braun L; McGovern VL; Schmelzer L; Ward JG; Petruska JC; Lucchesi PA; Burghes AH; Kaspar BK. 2010. Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Hum Mol Genet 19(20):3895-905. [PubMed: 20639395]  [MGI Ref ID J:164456]

Bosch-Marce M; Wee CD; Martinez TL; Lipkes CE; Choe DW; Kong L; Van Meerbeke JP; Musaro A; Sumner CJ. 2011. Increased IGF-1 in muscle modulates the phenotype of severe SMA mice. Hum Mol Genet 20(9):1844-53. [PubMed: 21325354]  [MGI Ref ID J:170476]

Bowerman M; Beauvais A; Anderson CL; Kothary R. 2010. Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model. Hum Mol Genet 19(8):1468-78. [PubMed: 20097679]  [MGI Ref ID J:158345]

Boyer JG; Murray LM; Scott K; De Repentigny Y; Renaud JM; Kothary R. 2013. Early onset muscle weakness and disruption of muscle proteins in mouse models of spinal muscular atrophy. Skelet Muscle 3(1):24. [PubMed: 24119341]  [MGI Ref ID J:202752]

Butchbach ME; Edwards JD; Burghes AH. 2007. Abnormal motor phenotype in the SMNDelta7 mouse model of spinal muscular atrophy. Neurobiol Dis 27(2):207-19. [PubMed: 17561409]  [MGI Ref ID J:134824]

Butchbach ME; Rose FF Jr; Rhoades S; Marston J; McCrone JT; Sinnott R; Lorson CL. 2010. Effect of diet on the survival and phenotype of a mouse model for spinal muscular atrophy. Biochem Biophys Res Commun 391(1):835-40. [PubMed: 19945425]  [MGI Ref ID J:156779]

Cobb MS; Rose FF; Rindt H; Glascock JJ; Shababi M; Miller MR; Osman EY; Yen PF; Garcia ML; Martin BR; Wetz MJ; Mazzasette C; Feng Z; Ko CP; Lorson CL. 2013. Development and characterization of an SMN2-based intermediate mouse model of Spinal Muscular Atrophy. Hum Mol Genet 22(9):1843-55. [PubMed: 23390132]  [MGI Ref ID J:194969]

Dachs E; Piedrafita L; Hereu M; Esquerda JE; Caldero J. 2013. Chronic treatment with lithium does not improve neuromuscular phenotype in a mouse model of severe spinal muscular atrophy. Neuroscience 250:417-33. [PubMed: 23876328]  [MGI Ref ID J:207041]

Dale JM; Shen H; Barry DM; Garcia VB; Rose FF Jr; Lorson CL; Garcia ML. 2011. The spinal muscular atrophy mouse model, SMADelta7, displays altered axonal transport without global neurofilament alterations. Acta Neuropathol 122(3):331-41. [PubMed: 21681521]  [MGI Ref ID J:176036]

Dominguez E; Marais T; Chatauret N; Benkhelifa-Ziyyat S; Duque S; Ravassard P; Carcenac R; Astord S; de Moura AP; Voit T; Barkats M. 2011. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 20(4):681-93. [PubMed: 21118896]  [MGI Ref ID J:168716]

Farooq F; Abadia-Molina F; Mackenzie D; Hadwen J; Shamim F; O'Reilly S; Holcik M; Mackenzie A. 2013. Celecoxib increases SMN and survival in a severe spinal muscular atrophy mouse model via p38 pathway activation. Hum Mol Genet 22(17):3415-24. [PubMed: 23656793]  [MGI Ref ID J:199128]

Farooq F; Molina FA; Hadwen J; MacKenzie D; Witherspoon L; Osmond M; Holcik M; MacKenzie A. 2011. Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway. J Clin Invest 121(8):3042-50. [PubMed: 21785216]  [MGI Ref ID J:176009]

Fulceri F; Bartalucci A; Paparelli S; Pasquali L; Biagioni F; Ferrucci M; Ruffoli R; Fornai F. 2012. Motor neuron pathology and behavioral alterations at late stages in a SMA mouse model. Brain Res 1442:66-75. [PubMed: 22306031]  [MGI Ref ID J:181868]

Gavrilina TO; McGovern VL; Workman E; Crawford TO; Gogliotti RG; Didonato CJ; Monani UR; Morris GE; Burghes HM. 2008. Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle specific SMN expression has no phenotypic effect. Hum Mol Genet :. [PubMed: 18178576]  [MGI Ref ID J:131663]

Gogliotti RG; Lutz C; Jorgensen M; Huebsch K; Koh S; Didonato CJ. 2011. Characterization of a commonly used mouse model of SMA reveals increased seizure susceptibility and heightened fear response in FVB/N mice. Neurobiol Dis 43(1):142-51. [PubMed: 21396450]  [MGI Ref ID J:174332]

Gogliotti RG; Quinlan KA; Barlow CB; Heier CR; Heckman CJ; Didonato CJ. 2012. Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci 32(11):3818-29. [PubMed: 22423102]  [MGI Ref ID J:183080]

Hayhurst M; Wagner AK; Cerletti M; Wagers AJ; Rubin LL. 2012. A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein. Dev Biol 368(2):323-34. [PubMed: 22705478]  [MGI Ref ID J:186551]

Heier CR; Satta R; Lutz C; DiDonato CJ. 2010. Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice. Hum Mol Genet 19(20):3906-18. [PubMed: 20693262]  [MGI Ref ID J:164446]

Hunter G; Aghamaleky Sarvestany A; Roche SL; Symes RC; Gillingwater TH. 2014. SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy. Hum Mol Genet 23(9):2235-50. [PubMed: 24301677]  [MGI Ref ID J:208449]

Jablonka S; Beck M; Lechner BD; Mayer C; Sendtner M. 2007. Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy. J Cell Biol 179(1):139-49. [PubMed: 17923533]  [MGI Ref ID J:134807]

Jablonka S; Karle K; Sandner B; Andreassi C; von Au K; Sendtner M. 2006. Distinct and overlapping alterations in motor and sensory neurons in a mouse model of spinal muscular atrophy. Hum Mol Genet 15(3):511-8. [PubMed: 16396995]  [MGI Ref ID J:105422]

Kariya S; Obis T; Garone C; Akay T; Sera F; Iwata S; Homma S; Monani UR. 2014. Requirement of enhanced Survival Motoneuron protein imposed during neuromuscular junction maturation. J Clin Invest 124(2):785-800. [PubMed: 24463453]  [MGI Ref ID J:208442]

Kariya S; Park GH; Maeno-Hikichi Y; Leykekhman O; Lutz C; Arkovitz MS; Landmesser LT; Monani UR. 2008. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum Mol Genet 17(16):2552-69. [PubMed: 18492800]  [MGI Ref ID J:138437]

Kong L; Wang X; Choe DW; Polley M; Burnett BG; Bosch-Marce M; Griffin JW; Rich MM; Sumner CJ. 2009. Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J Neurosci 29(3):842-51. [PubMed: 19158308]  [MGI Ref ID J:144843]

Le TT; Pham LT; Butchbach ME; Zhang HL; Monani UR; Coovert DD; Gavrilina TO; Xing L; Bassell GJ; Burghes AH. 2005. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14(6):845-57. [PubMed: 15703193]  [MGI Ref ID J:97103]

Lee AJ; Awano T; Park GH; Monani UR. 2012. Limited phenotypic effects of selectively augmenting the SMN protein in the neurons of a mouse model of severe spinal muscular atrophy. PLoS One 7(9):e46353. [PubMed: 23029491]  [MGI Ref ID J:191961]

Lee YI; Mikesh M; Smith I; Rimer M; Thompson W. 2011. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev Biol 356(2):432-44. [PubMed: 21658376]  [MGI Ref ID J:175468]

Ling KK; Gibbs RM; Feng Z; Ko CP. 2012. Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy. Hum Mol Genet 21(1):185-95. [PubMed: 21968514]  [MGI Ref ID J:178856]

Ling KK; Lin MY; Zingg B; Feng Z; Ko CP. 2010. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS One 5(11):e15457. [PubMed: 21085654]  [MGI Ref ID J:166818]

Lotti F; Imlach WL; Saieva L; Beck ES; Hao le T; Li DK; Jiao W; Mentis GZ; Beattie CE; McCabe BD; Pellizzoni L. 2012. An SMN-Dependent U12 Splicing Event Essential for Motor Circuit Function. Cell 151(2):440-54. [PubMed: 23063131]  [MGI Ref ID J:189067]

Lutz CM; Kariya S; Patruni S; Osborne MA; Liu D; Henderson CE; Li DK; Pellizzoni L; Rojas J; Valenzuela DM; Murphy AJ; Winberg ML; Monani UR. 2011. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest 121(8):3029-41. [PubMed: 21785219]  [MGI Ref ID J:176007]

McGovern VL; Gavrilina TO; Beattie CE; Burghes AH. 2008. Embryonic motor axon development in the severe SMA mouse. Hum Mol Genet 17(18):2900-9. [PubMed: 18603534]  [MGI Ref ID J:138317]

Meyer K; Marquis J; Trub J; Nlend Nlend R; Verp S; Ruepp MD; Imboden H; Barde I; Trono D; Schumperli D. 2009. Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation. Hum Mol Genet 18(3):546-55. [PubMed: 19010792]  [MGI Ref ID J:143540]

Monani UR; Pastore MT; Gavrilina TO; Jablonka S; Le TT; Andreassi C; DiCocco JM; Lorson C; Androphy EJ; Sendtner M; Podell M; Burghes AH. 2003. A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J Cell Biol 160(1):41-52. [PubMed: 12515823]  [MGI Ref ID J:81238]

Monani UR; Sendtner M; Coovert DD; Parsons DW; Andreassi C; Le TT; Jablonka S; Schrank B; Rossol W; Prior TW; Morris GE; Burghes AH. 2000. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9(3):333-9. [PubMed: 10655541]  [MGI Ref ID J:60592]

Murray LM; Comley LH; Thomson D; Parkinson N; Talbot K; Gillingwater TH. 2008. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet 17(7):949-62. [PubMed: 18065780]  [MGI Ref ID J:132467]

Murray LM; Lee S; Baumer D; Parson SH; Talbot K; Gillingwater TH. 2009. Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy. Hum Mol Genet :. [PubMed: 19884170]  [MGI Ref ID J:155336]

Mutsaers CA; Wishart TM; Lamont DJ; Riessland M; Schreml J; Comley LH; Murray LM; Parson SH; Lochmuller H; Wirth B; Talbot K; Gillingwater TH. 2011. Reversible molecular pathology of skeletal muscle in spinal muscular atrophy. Hum Mol Genet 20(22):4334-44. [PubMed: 21840928]  [MGI Ref ID J:176892]

Nolle A; Zeug A; van Bergeijk J; Tonges L; Gerhard R; Brinkmann H; Al Rayes S; Hensel N; Schill Y; Apkhazava D; Jablonka S; O Fmer J; Kumar Srivastav R; Baasner A; Lingor P; Wirth B; Ponimaskin E; Niedenthal R; Grothe C; Claus P. 2011. The spinal muscular atrophy disease protein SMN is linked to the rho-kinase pathway via profilin. Hum Mol Genet :. [PubMed: 21920940]  [MGI Ref ID J:177764]

Novoyatleva T; Heinrich B; Tang Y; Benderska N; Butchbach ME; Lorson CL; Lorson MA; Ben-Dov C; Fehlbaum P; Bracco L; Burghes AH; Bollen M; Stamm S. 2008. Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing. Hum Mol Genet 17(1):52-70. [PubMed: 17913700]  [MGI Ref ID J:130114]

Paez-Colasante X; Seaberg B; Martinez TL; Kong L; Sumner CJ; Rimer M. 2013. Improvement of neuromuscular synaptic phenotypes without enhanced survival and motor function in severe spinal muscular atrophy mice selectively rescued in motor neurons. PLoS One 8(9):e75866. [PubMed: 24086650]  [MGI Ref ID J:206015]

Park GH; Maeno-Hikichi Y; Awano T; Landmesser LT; Monani UR. 2010. Reduced survival of motor neuron (SMN) protein in motor neuronal progenitors functions cell autonomously to cause spinal muscular atrophy in model mice expressing the human centromeric (SMN2) gene. J Neurosci 30(36):12005-19. [PubMed: 20826664]  [MGI Ref ID J:164292]

Porensky PN; Mitrpant C; McGovern VL; Bevan AK; Foust KD; Kaspar BK; Wilton SD; Burghes AH. 2012. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 21(7):1625-38. [PubMed: 22186025]  [MGI Ref ID J:181560]

Riessland M; Ackermann B; Forster A; Jakubik M; Hauke J; Garbes L; Fritzsche I; Mende Y; Blumcke I; Hahnen E; Wirth B. 2010. SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet 19(8):1492-506. [PubMed: 20097677]  [MGI Ref ID J:158347]

Rose FF Jr; Mattis VB; Rindt H; Lorson CL. 2009. Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy. Hum Mol Genet 18(6):997-1005. [PubMed: 19074460]  [MGI Ref ID J:145746]

Rossoll W; Jablonka S; Andreassi C; Kroning AK; Karle K; Monani UR; Sendtner M. 2003. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163(4):801-12. [PubMed: 14623865]  [MGI Ref ID J:86712]

Ruggiu M; McGovern VL; Lotti F; Saieva L; Li DK; Kariya S; Monani UR; Burghes AH; Pellizzoni L. 2012. A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol 32(1):126-38. [PubMed: 22037760]  [MGI Ref ID J:183557]

Ruiz R; Casanas JJ; Torres-Benito L; Cano R; Tabares L. 2010. Altered intracellular Ca2+ homeostasis in nerve terminals of severe spinal muscular atrophy mice. J Neurosci 30(3):849-57. [PubMed: 20089893]  [MGI Ref ID J:157700]

Sanchez G; Dury AY; Murray LM; Biondi O; Tadesse H; El Fatimy R; Kothary R; Charbonnier F; Khandjian EW; Cote J. 2013. A novel function for the survival motoneuron protein as a translational regulator. Hum Mol Genet 22(4):668-84. [PubMed: 23136128]  [MGI Ref ID J:191211]

See K; Yadav P; Giegerich M; Cheong PS; Graf M; Vyas H; Lee SG; Mathavan S; Fischer U; Sendtner M; Winkler C. 2014. SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy. Hum Mol Genet 23(7):1754-70. [PubMed: 24218366]  [MGI Ref ID J:207140]

Shababi M; Habibi J; Yang HT; Vale SM; Sewell WA; Lorson CL. 2010. Cardiac defects contribute to the pathology of spinal muscular atrophy models. Hum Mol Genet 19(20):4059-71. [PubMed: 20696672]  [MGI Ref ID J:164444]

Sleigh JN; Gillingwater TH; Talbot K. 2011. The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis Model Mech 4(4):457-67. [PubMed: 21708901]  [MGI Ref ID J:175452]

Subramanian N; Wetzel A; Dombert B; Yadav P; Havlicek S; Jablonka S; Nassar MA; Blum R; Sendtner M. 2012. Role of Nav1.9 in activity-dependent axon growth in motoneurons. Hum Mol Genet 21(16):3655-67. [PubMed: 22641814]  [MGI Ref ID J:185985]

Sumner CJ; Wee CD; Warsing LC; Choe DW; Ng AS; Lutz C; Wagner KR. 2009. Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice. Hum Mol Genet 18(17):3145-52. [PubMed: 19477958]  [MGI Ref ID J:151438]

Thomson SR; Nahon JE; Mutsaers CA; Thomson D; Hamilton G; Parson SH; Gillingwater TH. 2012. Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy. PLoS One 7(12):e52605. [PubMed: 23285108]  [MGI Ref ID J:195758]

Tisdale S; Lotti F; Saieva L; Van Meerbeke JP; Crawford TO; Sumner CJ; Mentis GZ; Pellizzoni L. 2013. SMN Is Essential for the Biogenesis of U7 Small Nuclear Ribonucleoprotein and 3'-End Formation of Histone mRNAs. Cell Rep 5(5):1187-95. [PubMed: 24332368]  [MGI Ref ID J:204134]

Torres-Benito L; Neher MF; Cano R; Ruiz R; Tabares L. 2011. SMN requirement for synaptic vesicle, active zone and microtubule postnatal organization in motor nerve terminals. PLoS One 6(10):e26164. [PubMed: 22022549]  [MGI Ref ID J:179582]

Turner BJ; Parkinson NJ; Davies KE; Talbot K. 2009. Survival motor neuron deficiency enhances progression in an amyotrophic lateral sclerosis mouse model. Neurobiol Dis 34(3):511-7. [PubMed: 19332122]  [MGI Ref ID J:150474]

Walker MP; Rajendra TK; Saieva L; Fuentes JL; Pellizzoni L; Matera AG. 2008. SMN complex localizes to the sarcomeric Z-disc and is a proteolytic target of calpain. Hum Mol Genet 17(21):3399-410. [PubMed: 18689355]  [MGI Ref ID J:140332]

Wishart TM; Huang JP; Murray LM; Lamont DJ; Mutsaers CA; Ross J; Geldsetzer P; Ansorge O; Talbot K; Parson SH; Gillingwater TH. 2010. SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy. Hum Mol Genet 19(21):4216-28. [PubMed: 20705736]  [MGI Ref ID J:164890]

Wishart TM; Mutsaers CA; Riessland M; Reimer MM; Hunter G; Hannam ML; Eaton SL; Fuller HR; Roche SL; Somers E; Morse R; Young PJ; Lamont DJ; Hammerschmidt M; Joshi A; Hohenstein P; Morris GE; Parson SH; Skehel PA; Becker T; Robinson IM; Becker CG; Wirth B; Gillingwater TH. 2014. Dysregulation of ubiquitin homeostasis and beta-catenin signaling promote spinal muscular atrophy. J Clin Invest 124(4):1821-34. [PubMed: 24590288]  [MGI Ref ID J:209625]

Zhang H; Robinson N; Wu C; Wang W; Harrington MA. 2010. Electrophysiological properties of motor neurons in a mouse model of severe spinal muscular atrophy: in vitro versus in vivo development. PLoS One 5(7):e11696. [PubMed: 20657731]  [MGI Ref ID J:163103]

Zhang Z; Pinto AM; Wan L; Wang W; Berg MG; Oliva I; Singh LN; Dengler C; Wei Z; Dreyfuss G. 2013. Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci U S A 110(48):19348-53. [PubMed: 24191055]  [MGI Ref ID J:202974]

d'Errico P; Boido M; Piras A; Valsecchi V; De Amicis E; Locatelli D; Capra S; Vagni F; Vercelli A; Battaglia G. 2013. Selective vulnerability of spinal and cortical motor neuron subpopulations in delta7 SMA mice. PLoS One 8(12):e82654. [PubMed: 24324819]  [MGI Ref ID J:209739]

Health & husbandry

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Colony Maintenance

Breeding & HusbandryIn a live colony, these mice are maintained as hemizygous for the Tg(SMN2*A111G)588Ahmb transgene, hemizygous for the Tg(SMN2)89Ahmb transgene and heterozygous for the Smn1tm1Msd targeted mutation.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2140.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2782.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Control Information

  Control
   001800 FVB/NJ
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)