Strain Name:

D2.B10-Dmdmdx/J

Stock Number:

013141

Order this mouse

Availability:

Repository- Live

The DBA/2-congenic Dmdmdx mouse may be a superior Duchenne muscular dystrophy model as it better recapitulates several of the human characteristics of DMD myopathology (lower hind limb muscle weight, fewer myofibers, increased fibrosis and fat accumulation, and muscle weakness).

Description

Strain Information

Type Congenic; Mutant Strain; Spontaneous Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemHomozygote x Hemizygote         (Female x Male)   19-NOV-14
Specieslaboratory mouse
Generation?+F3 (12-DEC-13)
Generation Definitions
 
Donating Investigator IMR Colony,   The Jackson Laboratory

Description
Duchenne muscular dystrophy (DMD) is a progressive muscular disorder caused by an imbalance between muscle degeneration and regeneration resulting in muscle degeneration, necrosis, accumulation of fat and fibrosis, and insufficient regeneration/loss of myofibers. The genetic cause of DMD are mutations of the dystrophin muscular dystrophy gene (DMD) on the X chromosome. The Dmdmdx mutation in mice has a termination codon in exon 23 that is predicted to result in a truncated protein. Heterozygous females are viable and fertile with no gross phenotypic abnormalities. Homozygous females and hemizygous males are viable and fertile with myopathic features of DMD; although the myopathology is both less severe than the human disease course and variable by mouse strain genetic background.

The muscle pathology observed for C57BL/10ScSn-Dmdmdx mice (C57BL/10-mdx ; Stock No. 001801) includes active fiber necrosis, cellular infiltration, a wide range of fiber sizes, and numerous centrally nucleated regenerating fibers. However, adult C57BL/10-mdx mice fail to exhibit several of the skeletal muscle characteristics of DMD (such as smaller number of myofibers, accumulation of fat and fibrosis, insufficient myofiber regeneration, and loss of muscle weight). In addition, the C57BL/10 inbred strain is shown to possess greater muscle satellite cell self-renewal ability/efficiency than that of the DBA/2 inbred strain which may increase muscle regeneration/attenuate muscular dystrophy phenotype for MD mutations maintained on the C57BL/10 genetic background. As such, The Jackson Laboratory Repository created this DBA/2J-congenic Dmdmdx mouse model (DBA/2J-mdx ; Stock No. 013141).

These DBA/2J-mdx mice may be expected to have a phenotype similar to other DBA/2-congenic Dmdmdx mouse models. That is, when compared to C57BL/10-mdx animals, DBA/2-congenic Dmdmdx mice exhibit additional DMD characteristics such as lower hind limb muscle weight, fewer myofibers, increased fibrosis and fat accumulation, and remarkable muscle weakness. The DBA/2-congenic Dmdmdx phenotype is attributed to diminished myofiber regeneration (rather than accelerated myofiber degeneration). Unlike C57BL/10-mdx mice, no increased incidence of spontaneous rhabdomyosarcoma-like tumors are reported for the DBA/2-congenic Dmdmdx model.

In an attempt to offer alleles on well-characterized or multiple genetic backgrounds, alleles are frequently moved to a genetic background different from that on which an allele was first characterized. This is the case for these DBA/2J-mdx mice (Stock No. 013141). It should be noted that the phenotype could vary from that originally described for C57BL/10-mdx (Stock No. 001801). We will modify the strain description if necessary as published results become available.

Development
The spontaneous mutation "X chromosome-linked muscular dystrophy" (mdx) has as a C-to-T transition (resulting in a termination codon) at position 3185 within exon 23 of the dystrophin muscular dystrophy gene (Dmd) on the X chromosome. C57BL/10ScSn-Dmdmdx (C57BL/10-mdx) mice are available from The Jackson Laboratory as Stock No. 001801. In 2010, some C57BL/10-mdx mice were backcrossed to DBA/2J inbred mice (Stock No. 000671) for several generations using a marker-assisted, speed congenic approach to generate the DBA/2J-congenic strain (DBA/2J-mdx) as Stock No. 013141.

Control Information

  Control
   000671 DBA/2J
 
  Considerations for Choosing Controls

Related Strains

View Strains carrying   Dmdmdx     (7 strains)

Strains carrying other alleles of Dmd
002377   B6.Cg-Dmdmdx-3Cv/J
023535   B6.Cg-Terctm1Rdp Dmdmdx-4Cv/BlauJ
002388   B6Ros.Cg-Dmdmdx-2Cv/J
002378   B6Ros.Cg-Dmdmdx-4Cv/J
002379   B6Ros.Cg-Dmdmdx-5Cv/J
View Strains carrying other alleles of Dmd     (5 strains)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Model with phenotypic similarity to human disease where etiologies involve orthologs. Human genes are associated with this disease. Orthologs of those genes appear in the mouse genotype(s).
Muscular Dystrophy, Duchenne Type; DMD
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
Cardiomyopathy, Dilated, 3b; CMD3B   (DMD)
Muscular Dystrophy, Becker Type; BMD   (DMD)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Dmdmdx/Dmd+

        involves: C57BL/10ScSn
  • muscle phenotype
  • abnormal skeletal muscle fiber morphology
    • consistent with X-inactivation, heterozygous females have a mosaic absence of dystrophin, but this diminishes with age such that at 10 days of age 37% of the fibers in a cross section of the quadriceps lack dystrophin staining, at 35 days of age only 18% of fibers lack dystrophin, and by 60 days of age only 4% lack dystrophin, in extraocular muscles the proportions of dystrophin expressing and non-expressing fibers is similar and in cardiac ventricular muscle approximately 30% of fibers lack dystrophin at 10 days of age, and 28% lack dystrophin at 60 days of age   (MGI Ref ID J:121251)
    • unlike hemizygotes or homozygotes, necrosis of muscle fibers is very rare   (MGI Ref ID J:121251)

Dmdmdx/Dmd+

        involves: 129S4/SvJae * C57BL/10ScSn
  • muscle phenotype
  • dystrophic muscle
    • mice show isolated dystrophic changes in the muscle   (MGI Ref ID J:48851)
  • homeostasis/metabolism phenotype
  • abnormal circulating pyruvate kinase level
    • moderate elevation of pyruvate kinase levels is detectable by P21   (MGI Ref ID J:48851)

Dmdmdx/Dmdmdx

        C57BL/10ScSnJ
  • muscle phenotype
  • abnormal muscle morphology   (MGI Ref ID J:7361)
    • abnormal skeletal muscle fiber morphology
      • development of electron-dense bodies in the mitochondria resulting in swelling and degenerating mitochondria, and disruption of the plasmalemma basal lamina   (MGI Ref ID J:7361)
      • the normal myofibrillar architecture of bands and lines disappears and myofilaments disintegrate and become misaligned   (MGI Ref ID J:7361)
      • increased variability of skeletal muscle fiber size
        • variable muscle fiber size; progressive starting at 3 weeks of age   (MGI Ref ID J:7361)
    • dilated sarcoplasmic reticulum   (MGI Ref ID J:7361)
    • dystrophic muscle   (MGI Ref ID J:7361)
    • muscle degeneration
      • progressive starting at 3 weeks of age   (MGI Ref ID J:7361)
    • muscular atrophy
      • progressive starting at 3 weeks of age   (MGI Ref ID J:7361)
    • skeletal muscle fibrosis
      • exhibit mild muscle fibrosis, however there is no replacement of lost muscle by fat cells   (MGI Ref ID J:7361)
    • skeletal muscle necrosis
      • progressive starting at 9 weeks of age   (MGI Ref ID J:7361)
  • abnormal muscle physiology
    • increased intracellular sodium concentration in muscle; increased severity with age   (MGI Ref ID J:3666)
    • myopathy
      • progressive degenerative myopathy; increased severity with age   (MGI Ref ID J:7361)
  • homeostasis/metabolism phenotype
  • abnormal circulating pyruvate kinase level
    • exhibit elevated blood levels of pyruvate kinase   (MGI Ref ID J:7361)
  • increased circulating creatine kinase level
    • exhibit elevated blood levels of creatine kinase   (MGI Ref ID J:7361)
  • skeletal muscle fibrosis
    • exhibit mild muscle fibrosis, however there is no replacement of lost muscle by fat cells   (MGI Ref ID J:7361)
  • reproductive system phenotype
  • reduced female fertility
    • slight reduction in fertility   (MGI Ref ID J:7361)

Dmdmdx/Dmdmdx

        involves: C57BL/10ScSn
  • muscle phenotype
  • abnormal muscle physiology
    • in skeletal muscle fibers myosin magnesium-ATPase activity is higher than normal, myosin B ATPase activity is higher than normal in low free calcium concentrations, and rapid phosphate liberation by magnesium-ATPase is lower than normal   (MGI Ref ID J:152750)
    • abnormal muscle contractility
      • scattered hypercontracted fibers are found by electron microscopy at 10 days of age   (MGI Ref ID J:152525)
    • abnormal muscle electrophysiology
      • at 23 degrees hemidiaphragm preparations show lower than normal resting membrane potentials and insertion of a glass microelectrode into a single muscle fiber results in repetitive bursts of muscle action potentials in 30 to 50% of fibers, while at 37 degrees only 7.8% of muscle fibers display this electrical myotonia and the resting membrane potentials are normal   (MGI Ref ID J:142492)
    • abnormal muscle tone
      • at 4 weeks of age the soleus muscle has decreased twitch and tetanus tension compared with controls, but this is normal by 32 weeks of age   (MGI Ref ID J:152749)
      • at 3 and 32 weeks of age the extensor digitorum longus muscle has decreased twitch and tetanus tension and faster time-to-peak twitch tension compared with controls and the maximum velocity of unloaded shortening is also decreased at 32 weeks of age   (MGI Ref ID J:152749)
    • abnormal skeletal muscle satellite cell proliferation
      • satellite cell mitosis is found at 14 days of age and by 28 days increased satellite cells are found in healthy appearing fibers but frequently adjacent to necrotic fibers   (MGI Ref ID J:152892)
  • abnormal skeletal muscle morphology
    • regenerating fibers, with central nuclei, are most abundant around 35 to 39 days of age when they are approximately 30% of the extensor digitorum longus and 50% of the soleus   (MGI Ref ID J:152892)
    • abnormal diaphragm morphology
      • unlike skeletal muscle, the diaphragm undergoes progressive degeneration without regeneration such that, although at 30 days of age foci of myofiber degeneration, necrosis, mineralization, and regeneration are present but not extensive, at 6 months of age the diaphragm has a wide variation in myofiber size and architecture, continued necrosis and connective tissue proliferation, and at 16 months of age the diaphragm is pale due to the extensive myofiber loss and replacement fibrosis and the remaining fibers are ensheathed in dense collagenous tissue with most having architectural aberrations   (MGI Ref ID J:152891)
      • at 16 months of age there are twice normal levels of slow myosin in the diaphragm, a decrease in isometric force generation, and a shortened fiber length   (MGI Ref ID J:152891)
      • at 1.5 years of age the diaphragm is found to have significantly reduced passive stretch capacity although overt respiratory compromise is not found in aging mutants   (MGI Ref ID J:152891)
    • abnormal intercostal muscle morphology
      • the anterior scalene and intercostal muscles at 1 to 1.5 years of age have dystrophic changes similar to those of the diaphragm at 6 months of age   (MGI Ref ID J:152891)
    • abnormal skeletal muscle fiber morphology
      • at 15 days of age necrotic fibers are found, occassionally in clusters, at 20 days of age necrotic fibers are numerous as are groups of regenerating fibers with internally placed nuclei, necrotic fibers are most numerous between 30 and 60 days of age and gradually dissapear although a few scattered necrotic fibers are present at 120 and 180 days of age, and the regenerating fibers increase in size after 30 days of age and almost all of the fibers have internally placed nuclei by 60 to 120 days of age, but there is almost no fibrous tissue proliferation or adipose tissue replacement   (MGI Ref ID J:152525)
      • the extensor digitorum longus, but not the soleus, at 32 weeks of age has a greater proportion of fast-twitch-oxidative-glycolytic fibers and a smaller proportion of fast-twitch-glycolytic fibers than controls   (MGI Ref ID J:152749)
      • electron microscopy shows an accumulation of small pools of non-membrane-bound glycogen from 14 days of age on in both type 1 and type 2 fibers, and membrane-bound vacuoles of variable size and form with finely granular contents are found beginning at 2 weeks of age in the type 1 fibers of the soleus but not extensor digitorum longus   (MGI Ref ID J:152892)
      • centrally nucleated skeletal muscle fibers   (MGI Ref ID J:152525)
        • peripherally nucleated fibers replace the normal fibers in the tibialis anterior, extensor digitorum longus, plantaris, and soleus in a progressive manner, reaching a plateau of 80-90% of fibers at 26 weeks of age   (MGI Ref ID J:19034)
      • increased skeletal muscle fiber diameter
        • at 32 weeks of age in the soleus fast-twitch-oxidative-glycolytic fibers have a larger cross-sectional area than those of controls   (MGI Ref ID J:152749)
        • at 32 weeks of age in the extensor digitorum longus muscle both the slow-twitch-oxidative and fast-twitch-glycolytic fibers have a larger cross-sectional area than those of controls   (MGI Ref ID J:152749)
        • although the number of fibers is normal, the cross-sectional area of the fibers of the tibialis anterior is larger than normal at 3 and 6 months of age   (MGI Ref ID J:19034)
      • skeletal muscle fiber necrosis   (MGI Ref ID J:152525)
        • scattered foci of necrotizing fibers surrounded by cellular infiltration can be found in soleus and plantaris muscles as early as 14 days of age, and subsequently in the tibialis anterior, and lastly the extensor digitorum longus with foci of basophilic myotubes being found from 4 weeks of age on   (MGI Ref ID J:19034)
        • although younger homozygotes do not have fat or fibrous connective tissue in the skeletal muscles, by 270 days of age some fibrous connective tissue is found   (MGI Ref ID J:152892)
    • increased skeletal muscle mass
      • the cross-sectional area and wet weight of the tibialis anterior is greater than normal by 10 weeks of age   (MGI Ref ID J:19034)
      • skeletal muscle hypertrophy
        • detectable up to 12 months of age but not at 15 months of age, at which point muscle fibers appear atrophied and extensively split   (MGI Ref ID J:19034)
    • skeletal muscle endomysial fibrosis
      • found with age in the soleus and plantaris   (MGI Ref ID J:19034)
    • skeletal muscle necrosis
      • by 28 days of age necrosis and phagocytosis, with rounded off and swollen mitochondria in the necrotic fibers, is widespread, but is rare at 21 days of age   (MGI Ref ID J:152892)
      • skeletal muscle fiber necrosis   (MGI Ref ID J:152525)
        • scattered foci of necrotizing fibers surrounded by cellular infiltration can be found in soleus and plantaris muscles as early as 14 days of age, and subsequently in the tibialis anterior, and lastly the extensor digitorum longus with foci of basophilic myotubes being found from 4 weeks of age on   (MGI Ref ID J:19034)
        • although younger homozygotes do not have fat or fibrous connective tissue in the skeletal muscles, by 270 days of age some fibrous connective tissue is found   (MGI Ref ID J:152892)
  • dilated sarcoplasmic reticulum
    • from 2 weeks of age in both type 1 and 2 fibers of the extensor digitorum longus and soleus   (MGI Ref ID J:152892)
  • homeostasis/metabolism phenotype
  • decreased physiological sensitivity to xenobiotic
    • injection of the gastrocnemius muscle with chlorpromazine results in a less destruction of calmitine than in controls (20% versus 40%) and has less of an impact on calcium binding to calmitine   (MGI Ref ID J:20768)
  • skeletal muscle endomysial fibrosis
    • found with age in the soleus and plantaris   (MGI Ref ID J:19034)
  • vision/eye phenotype
  • anterior subcapsular cataracts
    • a slight anterior subcapsular opacity is seen at 4 days of age, which spreads anteriorly such that at 150 days of age there is complete anterior subcapsular opacity in addition to the nuclear opacity city   (MGI Ref ID J:142492)
  • nuclear cataracts
    • nuclear opacity of the lens is found at 1 day of age   (MGI Ref ID J:142492)
  • nervous system phenotype
  • *normal* nervous system phenotype
    • at 8 weeks of age miniature endplate potential frequency, the quantal content of endplate potentials, the amplitude and time course of miniature endplate currents, and the number of acetylcholine receptors at the postsynaptic membrane are all normal   (MGI Ref ID J:121319)
    • abnormal neuromuscular synapse morphology
      • although the nerve terminal innervation of epitronchleoanconeus muscle is normal, the terminal architecture of regenerated muscle fibers, those with central nuclei, are more complex than normal with an increase in the number of fine terminal aborizations, many of which have bouton-like swellings and, rather than the normal confluent pattern at postsynaptic regions, staining of acetylcholine receptors is found in numerous small spots corresponding to the boutons on the motor axon terminals with acetylcholinesterase staining in close association   (MGI Ref ID J:121319)
      • electron microscopy shows that neuromuscular junction postsynaptic membranes are variably simplified with a reduction in the number of secondary synaptic folds   (MGI Ref ID J:121319)
  • cellular phenotype
  • abnormal skeletal muscle satellite cell proliferation
    • satellite cell mitosis is found at 14 days of age and by 28 days increased satellite cells are found in healthy appearing fibers but frequently adjacent to necrotic fibers   (MGI Ref ID J:152892)

Dmdmdx/Dmdmdx

        C57BL/10ScSn-Dmdmdx/J
  • behavior/neurological phenotype
  • abnormal grip strength
    • performance is similar to that observed in double knockouts   (MGI Ref ID J:106640)
  • impaired coordination
    • performance is similar to that observed in double knockouts   (MGI Ref ID J:106640)
  • hearing/vestibular/ear phenotype
  • abnormal auditory brainstem response waveform shape
    • prolonged brainstem auditory evoked potential peak and interpeak latencies after noise exposure   (MGI Ref ID J:105938)
  • increased or absent threshold for auditory brainstem response
    • significantly increased hearing threshold after noise exposure   (MGI Ref ID J:105938)
  • increased susceptibility to noise-induced hearing loss
    • daily exposure to noise for 1 month increased hearing threshold and prolonged brainstem auditory evoked potential peak and interpeak latencies   (MGI Ref ID J:105938)
  • immune system phenotype
  • increased interferon-gamma secretion
    • in splenocytes at 2 weeks of age   (MGI Ref ID J:150572)
  • increased interleukin-12 secretion
    • in splenocytes at 2 weeks of age   (MGI Ref ID J:150572)
  • increased interleukin-2 secretion
    • in splenocytes at 2 weeks and 2 years of age   (MGI Ref ID J:150572)
  • increased interleukin-4 secretion
    • in splenocytes at 2 weeks, 4 weeks, and 2 years of age   (MGI Ref ID J:150572)
  • increased interleukin-6 secretion
    • in splenocytes at 2 weeks of age   (MGI Ref ID J:150572)
  • increased tumor necrosis factor secretion
    • in splenocytes at 2 weeks of age   (MGI Ref ID J:150572)

Dmdmdx/Dmdmdx

        C57BL/10ScSn
  • muscle phenotype
  • abnormal skeletal muscle fiber morphology
    • myopathic lesions in skeletal muscle are found by 22 days of age and are characterized by widespread loss of sarcoplasmic structure, vacuolation, and eosinophilia   (MGI Ref ID J:152524)
    • myotubes indicative of muscle regeneration are found by 22 days of age and by 31 days of age almost all muscles have numerous myotubes   (MGI Ref ID J:152524)
    • centrally nucleated skeletal muscle fibers
      • 25% of fibers have non-peripheral nuclei at 26 days of age and 53% at 100 to 303 days of age   (MGI Ref ID J:152524)
    • skeletal muscle fiber necrosis   (MGI Ref ID J:152524)
  • cardiovascular system phenotype
  • myocardial necrosis
    • 13 of 65 homozygotes display one or two foci of myocardial necrosis between 26 and 303 days of age and the necrotic fibers have sarcoplasmic vacuolation and loss of nuclei   (MGI Ref ID J:152524)
  • homeostasis/metabolism phenotype
  • *normal* homeostasis/metabolism phenotype
    • serum pyruvate kinase activity is normal   (MGI Ref ID J:152524)
    • serum T4 and thyroid stimulating hormone are normal   (MGI Ref ID J:18080)
    • increased circulating creatine kinase level
      • serum creatine kinase activity is elevated between 12 and 200 days of age   (MGI Ref ID J:152524)
      • serum creatine kinase is elevated at 2 months of age   (MGI Ref ID J:18080)
    • increased growth hormone level
      • pituitary growth hormone levels is slightly higher than normal in 8 to 10 month old females   (MGI Ref ID J:18080)
  • endocrine/exocrine gland phenotype
  • abnormal corticotroph morphology
    • some corticotrophs have enlarged golgi stacks   (MGI Ref ID J:18080)
  • abnormal somatotroph morphology
    • dilation of the rough endoplasmic reticulum, enlarged golgi apparatus, and the presence of many dense secretory granules of homogeneous size are characteristics of the hypertrophic somatotrophs of homozygotes   (MGI Ref ID J:18080)
  • nervous system phenotype
  • abnormal corticotroph morphology
    • some corticotrophs have enlarged golgi stacks   (MGI Ref ID J:18080)
  • abnormal somatotroph morphology
    • dilation of the rough endoplasmic reticulum, enlarged golgi apparatus, and the presence of many dense secretory granules of homogeneous size are characteristics of the hypertrophic somatotrophs of homozygotes   (MGI Ref ID J:18080)

Dmdmdx/Dmdmdx

        involves: C57BL/10ScSn * CB17
  • homeostasis/metabolism phenotype
  • impaired exercise endurance
    • mice exhibit a shorter time to exhaustion than wild type controls   (MGI Ref ID J:125527)
    • lower endurance on treadmill than Prkdcscid Dmdmdx double mutants   (MGI Ref ID J:125527)
  • increased transforming growth factor level
    • costal diaphragm (DIA) has higher quantity of active TGFB1 in comparison to Prkdcscid Dmdmdx double mutants although total quantity is similar   (MGI Ref ID J:125527)
    • tibialis anterior (TA) and quadricepts (QA) muscles have a higher content of total TGB1 in comparison to Prkdcscid Dmdmdx double mutants   (MGI Ref ID J:125527)
  • skeletal muscle fibrosis
    • high rate of fibrosis is observed in aged 12 month old mice   (MGI Ref ID J:125527)
  • muscle phenotype
  • centrally nucleated skeletal muscle fibers
    • small, centrally nucleated, regenerating muscle fibers are found in 2 and 12 month old mice   (MGI Ref ID J:125527)
    • 40-45% of muscle fibers exhibit centrally located nuclei   (MGI Ref ID J:125527)
  • impaired skeletal muscle contractility
    • loss of normalized tetanic force is observed in 2 and 12 month old mice   (MGI Ref ID J:125527)
  • increased skeletal muscle fiber diameter
    • area of muscle fibers is 1500-1700 um2 and coefficient of variance is 55-65   (MGI Ref ID J:125527)
  • skeletal muscle fiber degeneration
    • degenerating muscle fibers are found in 2 and 12 month old mice   (MGI Ref ID J:125527)
  • skeletal muscle fibrosis
    • high rate of fibrosis is observed in aged 12 month old mice   (MGI Ref ID J:125527)
  • skeleton phenotype
  • abnormal vertebral column morphology
    • progressive spinal deformity   (MGI Ref ID J:125527)
  • behavior/neurological phenotype
  • impaired exercise endurance
    • mice exhibit a shorter time to exhaustion than wild type controls   (MGI Ref ID J:125527)
    • lower endurance on treadmill than Prkdcscid Dmdmdx double mutants   (MGI Ref ID J:125527)

Dmdmdx/Y

        C57BL/10ScSnJ
  • behavior/neurological phenotype
  • abnormal motor capabilities/coordination/movement   (MGI Ref ID J:7361)
    • impaired coordination
      • mild incoordination noticeable by 12 months of age   (MGI Ref ID J:7361)
    • tremors
      • muscular tremors noticeable by 12 months of age   (MGI Ref ID J:7361)
  • muscle phenotype
  • abnormal muscle morphology   (MGI Ref ID J:7361)
    • abnormal skeletal muscle fiber morphology
      • development of electron-dense bodies in the mitochondria resulting in swelling and degenerating mitochondria, and disruption of the plasmalemma basal lamina   (MGI Ref ID J:7361)
      • the normal myofibrillar architecture of bands and lines disappears and myofilaments disintegrate and become misaligned   (MGI Ref ID J:7361)
      • increased variability of skeletal muscle fiber size
        • variable muscle fiber size; progressive starting at 3 weeks of age   (MGI Ref ID J:7361)
    • dilated sarcoplasmic reticulum   (MGI Ref ID J:7361)
    • dystrophic muscle   (MGI Ref ID J:7361)
    • muscle degeneration
      • progressive starting at 3 weeks of age   (MGI Ref ID J:7361)
    • muscular atrophy
      • progressive starting at 3 weeks of age   (MGI Ref ID J:7361)
    • skeletal muscle fibrosis
      • exhibit mild muscle fibrosis, however there is no replacement of lost muscle by fat cells   (MGI Ref ID J:7361)
    • skeletal muscle necrosis
      • progressive starting at 9 weeks of age   (MGI Ref ID J:7361)
  • abnormal muscle physiology
    • increased intracellular sodium concentration in muscle; increased severity with age   (MGI Ref ID J:3666)
    • myopathy
      • progressive degenerative myopathy; increased severity with age   (MGI Ref ID J:7361)
  • homeostasis/metabolism phenotype
  • abnormal circulating pyruvate kinase level
    • exhibit elevated blood levels of pyruvate kinase   (MGI Ref ID J:7361)
  • increased circulating creatine kinase level
    • exhibit elevated blood levels of creatine kinase   (MGI Ref ID J:7361)
  • skeletal muscle fibrosis
    • exhibit mild muscle fibrosis, however there is no replacement of lost muscle by fat cells   (MGI Ref ID J:7361)

Dmdmdx/Y

        B6.B10ScSn-Dmdmdx
  • muscle phenotype
  • abnormal skeletal muscle morphology
    • muscles contain occasional patches of pale tissue which are primarily connective tissue   (MGI Ref ID J:85088)
    • abnormal skeletal muscle fiber morphology
      • when mice are injected with the diazo dye EBD, dye is taken up by damaged muscle fibers to varying degrees, but preferentially into the hindlimb; uptake occurs because of focal breakdown of plasmalemma which is an early event in necrosis   (MGI Ref ID J:85088)
      • muscles are not stained homogeneously, but streaks of dye representing damaged muscle fibers are observed in the muscle fibers of the diaphragm and gluteus maximus; damage is less severe than in Fgf2/Fgf6/Dmd triple mutants   (MGI Ref ID J:85088)
  • dystrophic muscle
    • mutants show dystrophic changes to the muscle fibers, although less severely than Fgf2/Fgf6/Dmd triple mutants   (MGI Ref ID J:85088)

Dmdmdx/Y

        C57BL/10ScSn-Dmdmdx/J
  • immune system phenotype
  • increased interferon-gamma secretion
    • in splenocytes at 2 weeks of age   (MGI Ref ID J:150572)
  • increased interleukin-12 secretion
    • in splenocytes at 2 weeks of age   (MGI Ref ID J:150572)
  • increased interleukin-2 secretion
    • in splenocytes at 2 weeks and 2 years of age   (MGI Ref ID J:150572)
  • increased interleukin-4 secretion
    • in splenocytes at 2 weeks, 4 weeks, and 2 years of age   (MGI Ref ID J:150572)
  • increased interleukin-6 secretion
    • in splenocytes at 2 weeks of age   (MGI Ref ID J:150572)
  • increased tumor necrosis factor secretion
    • in splenocytes at 2 weeks of age   (MGI Ref ID J:150572)

Dmdmdx/Y

        C57BL/10ScSn-Dmdmdx
  • muscle phenotype
  • *normal* muscle phenotype
    • limb and diaphragm muscle weights are similar to controls in mice at 1 year of age   (MGI Ref ID J:177391)
    • abnormal muscle contractility
      • scattered hypercontracted fibers are found by electron microscopy at 10 days of age   (MGI Ref ID J:152525)
      • impaired skeletal muscle contractility
        • decrease in the tetanic force produced by the diaphragm and extensor digitorum longus muscles compared to wild-type controls   (MGI Ref ID J:177391)
    • abnormal skeletal muscle fiber morphology
      • at 15 days of age necrotic fibers are found, occassionally in clusters, at 20 days of age necrotic fibers are numerous as are groups of regenerating fibers with internally placed nuclei, necrotic fibers are most numerous between 30 and 60 days of age and gradually dissapear although a few scattered necrotic fibers are present at 120 and 180 days of age, and the regenerating fibers increase in size after 30 days of age and almost all of the fibers have internally placed nuclei by 60 to 120 days of age, but there is almost no fibrous tissue proliferation or adipose tissue replacement   (MGI Ref ID J:152525)
      • centrally nucleated skeletal muscle fibers   (MGI Ref ID J:152525)
      • skeletal muscle fiber degeneration
        • mice exhibit skeletal muscle fiber degeneration with phagocytosis unlike in wild-type mice   (MGI Ref ID J:9638)
      • skeletal muscle fiber necrosis   (MGI Ref ID J:152525)
    • impaired muscle relaxation
      • electromyograms reveal peudomyotonia unlike in wild-type mice   (MGI Ref ID J:9638)
    • myocardial fiber degeneration
      • unlike in wild-type mice, cardiac fiber degeneration with phagocytosis is observed   (MGI Ref ID J:9638)
    • skeletal muscle fibrosis
      • increased collagen deposition in the diaphragm and quadriceps muscles between 12 weeks and 1 year of age   (MGI Ref ID J:177391)
  • behavior/neurological phenotype
  • *normal* behavior/neurological phenotype
    • performance in a rotarod assay is not significantly different from controls in mice at 6 - 20 weeks of age   (MGI Ref ID J:177391)
    • abnormal gait
      • increased hind paw base width   (MGI Ref ID J:177391)
      • short stride length
        • at 1 year of age   (MGI Ref ID J:177391)
    • decreased grip strength
      • in fore and hind paws   (MGI Ref ID J:177391)
    • fatigue
      • at 6 weeks of age, display a decrease in rearings after exercise compared to wild-type controls   (MGI Ref ID J:177391)
      • at 12 weeks of age, display a decrease in ambulation and increase in rest time after exercise compared to wild-type controls   (MGI Ref ID J:177391)
      • at 1 year of age, display a decrease in distance traveled after exercise compared to wild-type controls   (MGI Ref ID J:177391)
      • interindividual responses to exercise induced fatigue are highly variable   (MGI Ref ID J:177391)
  • adipose tissue phenotype
  • abnormal adipose tissue amount
    • decrease in the accumulation of abdominal fat compared to wild-type controls   (MGI Ref ID J:177391)
  • growth/size/body phenotype
  • decreased body weight
    • between 8 and 20 weeks of age compared to wild-type controls   (MGI Ref ID J:177391)
    • however, body size as determined by measures of tibia length or body length is similar to wild-type controls   (MGI Ref ID J:177391)
  • cardiovascular system phenotype
  • myocardial fiber degeneration
    • unlike in wild-type mice, cardiac fiber degeneration with phagocytosis is observed   (MGI Ref ID J:9638)
  • homeostasis/metabolism phenotype
  • skeletal muscle fibrosis
    • increased collagen deposition in the diaphragm and quadriceps muscles between 12 weeks and 1 year of age   (MGI Ref ID J:177391)

Dmdmdx/Y

        involves: C57BL/10ScSn
  • muscle phenotype
  • abnormal diaphragm morphology
    • unlike skeletal muscle, the diaphragm undergoes progressive degeneration without regeneration such that, although at 30 days of age foci of myofiber degeneration, necrosis, mineralization, and regeneration are present but not extensive, at 6 months of age the diaphragm has a wide variation in myofiber size and architecture, continued necrosis and connective tissue proliferation, and at 16 months of age the diaphragm is pale due to the extensive myofiber loss and replacement fibrosis and the remaining fibers are ensheathed in dense collagenous tissue with most having architectural aberrations   (MGI Ref ID J:152891)
    • at 16 months of age there are twice normal levels of slow myosin in the diaphragm, a decrease in isometric force generation, and a shortened fiber length   (MGI Ref ID J:152891)
    • at 1.5 years of age the diaphragm is found to have significantly reduced passive stretch capacity although overt respiratory compromise is not found in aging mutants   (MGI Ref ID J:152891)
    • elevated hydroxyproline in the diaphragm at 24 weeks of age but not at 3 weeks of age   (MGI Ref ID J:95776)
  • abnormal intercostal muscle morphology
    • the anterior scalene and intercostal muscles at 1 to 1.5 years of age have dystrophic changes similar to those of the diaphragm at 6 months of age   (MGI Ref ID J:152891)
  • abnormal muscle electrophysiology
    • at 23 degrees hemidiaphragm preparations show lower than normal resting membrane potentials and insertion of a glass microelectrode into a single muscle fiber results in repetitive bursts of muscle action potentials in 30 to 50% of fibers, while at 37 degrees only 7.8% of muscle fibers display this electrical myotonia and the resting membrane potentials are normal   (MGI Ref ID J:142492)
  • abnormal muscle tone
    • at 4 weeks of age the soleus muscle has decreased twitch and tetanus tension compared with controls, but this is normal by 32 weeks of age   (MGI Ref ID J:152749)
    • at 3 and 32 weeks of age the extensor digitorum longus muscle has decreased twitch and tetanus tension and faster time-to-peak twitch tension compared with controls and the maximum velocity of unloaded shortening is also decreased at 32 weeks of age   (MGI Ref ID J:152749)
  • abnormal skeletal muscle fiber morphology
    • the extensor digitorum longus, but not the soleus, at 32 weeks of age has a greater proportion of fast-twitch-oxidative-glycolytic fibers and a smaller proportion of fast-twitch-glycolytic fibers than controls   (MGI Ref ID J:152749)
    • centrally nucleated skeletal muscle fibers
      • peripherally nucleated fibers replace the normal fibers in the tibialis anterior, extensor digitorum longus, plantaris, and soleus in a progressive manner, reaching a plateau of 80-90% of fibers at 26 weeks of age   (MGI Ref ID J:19034)
    • increased skeletal muscle fiber diameter
      • at 32 weeks of age in the soleus fast-twitch-oxidative-glycolytic fibers have a larger cross-sectional area than those of controls   (MGI Ref ID J:152749)
      • at 32 weeks of age in the extensor digitorum longus muscle both the slow-twitch-oxidative and fast-twitch-glycolytic fibers have a larger cross-sectional area than those of controls   (MGI Ref ID J:152749)
      • although the number of fibers is normal, the cross-sectional area of the fibers of the tibialis anterior is larger than normal at 3 and 6 months of age   (MGI Ref ID J:19034)
    • skeletal muscle fiber necrosis
      • scattered foci of necrotizing fibers surrounded by cellular infiltration can be found in soleus and plantaris muscles as early as 14 days of age, and subsequently in the tibialis anterior, and lastly the extensor digitorum longus with foci of basophilic myotubes being found from 4 weeks of age on   (MGI Ref ID J:19034)
  • increased skeletal muscle mass
    • the cross-sectional area and wet weight of the tibialis anterior is greater than normal by 10 weeks of age   (MGI Ref ID J:19034)
    • skeletal muscle hypertrophy
      • detectable up to 12 months of age but not at 15 months of age, at which point muscle fibers appear atrophied and extensively split   (MGI Ref ID J:19034)
  • skeletal muscle endomysial fibrosis
    • found with age in the soleus and plantaris   (MGI Ref ID J:19034)
  • skeletal muscle necrosis
    • conspicuous necrosis and regeneration at 3 weeks of age   (MGI Ref ID J:95776)
    • skeletal muscle fiber necrosis
      • scattered foci of necrotizing fibers surrounded by cellular infiltration can be found in soleus and plantaris muscles as early as 14 days of age, and subsequently in the tibialis anterior, and lastly the extensor digitorum longus with foci of basophilic myotubes being found from 4 weeks of age on   (MGI Ref ID J:19034)
  • vision/eye phenotype
  • *normal* vision/eye phenotype
    • hemizygous males between 20 and 24 weeks of age have normal ERG readings even though abnormal b-waves are often found in Duchenne Muscular Dystrophy patients and are found in the mdx-3cv hemizygotes   (MGI Ref ID J:23375)
    • anterior subcapsular cataracts
      • a slight anterior subcapsular opacity is seen at 4 days of age, which spreads anteriorly such that at 150 days of age there is complete anterior subcapsular opacity in addition to the nuclear opacity city   (MGI Ref ID J:142492)
    • nuclear cataracts
      • nuclear opacity of the lens is found at 1 day of age   (MGI Ref ID J:142492)
  • nervous system phenotype
  • *normal* nervous system phenotype
    • at 8 weeks of age miniature endplate potential frequency, the quantal content of endplate potentials, the amplitude and time course of miniature endplate currents, and the number of acetylcholine receptors at the postsynaptic membrane are all normal   (MGI Ref ID J:121319)
    • abnormal neuromuscular synapse morphology
      • although the nerve terminal innervation of epitronchleoanoconeus muscle is normal, the terminal architecture of regenerated muscle fibers, those with central nuclei, are more complex than normal with an increase in the number of fine terminal arborizations, many of which have bouton-like swellings and, rather than the normal confluent pattern at postsynaptic regions, staining of acetylcholine receptors is found in numerous small spots corresponding to the boutons on the motor axon terminals with acetylcholinesterase staining in close association   (MGI Ref ID J:121319)
      • electron microscopy shows that neuromuscular junction postsynaptic membranes are variably simplified with a reduction in the number of secondary synaptic folds   (MGI Ref ID J:121319)
  • homeostasis/metabolism phenotype
  • skeletal muscle endomysial fibrosis
    • found with age in the soleus and plantaris   (MGI Ref ID J:19034)

Dmdmdx/Y

        involves: 129S4/SvJae * C57BL/10ScSn
  • muscle phenotype
  • dystrophic muscle
    • mice show severe dystrophic changes in the muscle   (MGI Ref ID J:48851)
  • homeostasis/metabolism phenotype
  • abnormal circulating pyruvate kinase level
    • marked elevation of pyruvate kinase levels is detectable by P21   (MGI Ref ID J:48851)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cell Biology Research
Signal Transduction

Neurobiology Research
Muscular Dystrophy
      Duchenne type
Neuromuscular Defects

Dmdmdx related

Cell Biology Research
Signal Transduction

Neurobiology Research
Muscular Dystrophy
      Duchenne type

Sensorineural Research
Cataracts

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Dmdmdx
Allele Name X linked muscular dystrophy
Allele Type Spontaneous
Common Name(s) mdx; pke; pvruvate kinase expression;
Strain of OriginC57BL/10ScSn
Gene Symbol and Name Dmd, dystrophin, muscular dystrophy
Chromosome X
Gene Common Name(s) BMD; CMD3B; DXS142; DXS164; DXS206; DXS230; DXS239; DXS268; DXS269; DXS270; DXS272; Dp427; Dp71; Duchenne muscular dystrophy; MRX85; X-linked muscular dystrophy; dys; mdx; pke; pyruvate kinase expression;
Molecular Note This mutation arose in 1981 in a C57BL/10ScSn colony at University of Leicester. A C-to-T transition occurred at position 3185, resulting in a termination codon in place of a glutamine codon. This mutation is predicted to produce a truncated protein. [MGI Ref ID J:102707] [MGI Ref ID J:40541] [MGI Ref ID J:9866]

Genotyping

Genotyping Information

Genotyping Protocols

DmdmdxEnd Point, End Point Analysis


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Fukada S; Morikawa D; Yamamoto Y; Yoshida T; Sumie N; Yamaguchi M; Ito T; Miyagoe-Suzuki Y; Takeda S; Tsujikawa K; Yamamoto H. 2010. Genetic background affects properties of satellite cells and mdx phenotypes. Am J Pathol 176(5):2414-24. [PubMed: 20304955]  [MGI Ref ID J:160773]

Ito T; Ogawa R; Uezumi A; Ohtani T; Watanabe Y; Tsujikawa K; Miyagoe-Suzuki Y; Takeda S; Yamamoto H; Fukada S. 2013. Imatinib attenuates severe mouse dystrophy and inhibits proliferation and fibrosis-marker expression in muscle mesenchymal progenitors. Neuromuscul Disord 23(4):349-56. [PubMed: 23313020]  [MGI Ref ID J:197819]

Additional References

Dmdmdx related

't Hoen PA; de Meijer EJ; Boer JM; Vossen RH; Turk R; Maatman RG; Davies KE; van Ommen GJ; van Deutekom JC; den Dunnen JT. 2008. Generation and characterization of transgenic mice with the full-length human DMD gene. J Biol Chem 283(9):5899-907. [PubMed: 18083704]  [MGI Ref ID J:132320]

Abmayr S; Crawford RW; Chamberlain JS. 2004. Characterization of ARC, apoptosis repressor interacting with CARD, in normal and dystrophin-deficient skeletal muscle. Hum Mol Genet 13(2):213-21. [PubMed: 14645204]  [MGI Ref ID J:87688]

Acharyya S; Butchbach ME; Sahenk Z; Wang H; Saji M; Carathers M; Ringel MD; Skipworth RJ; Fearon KC; Hollingsworth MA; Muscarella P; Burghes AH; Rafael-Fortney JA; Guttridge DC. 2005. Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell 8(5):421-32. [PubMed: 16286249]  [MGI Ref ID J:103953]

Acharyya S; Villalta SA; Bakkar N; Bupha-Intr T; Janssen PM; Carathers M; Li ZW; Beg AA; Ghosh S; Sahenk Z; Weinstein M; Gardner KL; Rafael-Fortney JA; Karin M; Tidball JG; Baldwin AS; Guttridge DC. 2007. Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest 117(4):889-901. [PubMed: 17380205]  [MGI Ref ID J:121279]

Acuna MJ; Pessina P; Olguin H; Cabrera D; Vio CP; Bader M; Munoz-Canoves P; Santos RA; Cabello-Verrugio C; Brandan E. 2014. Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-beta signalling. Hum Mol Genet 23(5):1237-49. [PubMed: 24163134]  [MGI Ref ID J:206216]

Agbulut O; Noirez P; Butler-Browne G; Jockusch H. 2004. Specific isomyosin proportions in hyperexcitable and physiologically denervated mouse muscle. FEBS Lett 561(1-3):191-4. [PubMed: 15013776]  [MGI Ref ID J:117992]

Ahmad A; Brinson M; Hodges BL; Chamberlain JS; Amalfitano A. 2000. Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for duchenne muscular dystrophy Hum Mol Genet 9(17):2507-15. [PubMed: 11030755]  [MGI Ref ID J:65413]

Alameddine HS; Quantin B; Cartaud A; Dehaupas M; Mandel JL; Fardeau M. 1994. Expression of a recombinant dystrophin in mdx mice using adenovirus vector. Neuromuscul Disord 4(3):193-203. [PubMed: 7919968]  [MGI Ref ID J:19384]

Alfaro LA; Dick SA; Siegel AL; Anonuevo AS; McNagny KM; Megeney LA; Cornelison DD; Rossi FM. 2011. CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration. Stem Cells 29(12):2030-41. [PubMed: 21997891]  [MGI Ref ID J:190197]

Altamirano F; Valladares D; Henriquez-Olguin C; Casas M; Lopez JR; Allen PD; Jaimovich E. 2013. Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice. PLoS One 8(12):e81222. [PubMed: 24349043]  [MGI Ref ID J:209732]

Amenta AR; Yilmaz A; Bogdanovich S; McKechnie BA; Abedi M; Khurana TS; Fallon JR. 2011. Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. Proc Natl Acad Sci U S A 108(2):762-7. [PubMed: 21187385]  [MGI Ref ID J:170566]

Amirouche A; Tadesse H; Lunde JA; Belanger G; Cote J; Jasmin BJ. 2013. Activation of p38 signaling increases utrophin A expression in skeletal muscle via the RNA-binding protein KSRP and inhibition of AU-rich element-mediated mRNA decay: implications for novel DMD therapeutics. Hum Mol Genet 22(15):3093-111. [PubMed: 23575223]  [MGI Ref ID J:198527]

Anderson JE. 2000. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11(5):1859-74. [PubMed: 10793157]  [MGI Ref ID J:120497]

Anderson JE. 1991. Dystrophic changes in mdx muscle regenerating from denervation and devascularization. Muscle Nerve 14(3):268-79. [PubMed: 2041548]  [MGI Ref ID J:116345]

Anderson JE; Bressler BH; Ovalle WK. 1988. Functional regeneration in the hindlimb skeletal muscle of the mdx mouse. J Muscle Res Cell Motil 9(6):499-515. [PubMed: 3209690]  [MGI Ref ID J:152749]

Anderson JE; Garrett K; Moor A; McIntosh L; Penner K. 1998. Dystrophy and myogenesis in mdx diaphragm muscle. Muscle Nerve 21(9):1153-65. [PubMed: 9703441]  [MGI Ref ID J:116331]

Anderson JE; Kao L; Bressler BH; Gruenstein E. 1990. Analysis of dystrophin in fast- and slow-twitch skeletal muscles from mdx and dy2J mice at different ages. Muscle Nerve 13(1):6-11. [PubMed: 2183046]  [MGI Ref ID J:116019]

Anderson JE; Lentz DL; Johnson RB. 1993. Recovery from disuse osteopenia coincident to restoration of muscle strength in mdx mice. Bone 14(4):625-34. [PubMed: 8274305]  [MGI Ref ID J:17563]

Anderson JE; Liu L; Kardami E. 1994. The effects of hyperthyroidism on muscular dystrophy in the mdx mouse: greater dystrophy in cardiac and soleus muscle. Muscle Nerve 17(1):64-73. [PubMed: 8264704]  [MGI Ref ID J:115865]

Anderson JE; Liu L; Kardami E; Murphy LJ. 1994. The pituitary-muscle axis in mdx dystrophic mice. J Neurol Sci 123(1-2):80-7. [PubMed: 8064326]  [MGI Ref ID J:18080]

Anderson JE; McIntosh LM; Moor AN; Yablonka-Reuveni Z. 1998. Levels of MyoD protein expression following injury of mdx and normal limb muscle are modified by thyroid hormone. J Histochem Cytochem 46(1):59-67. [PubMed: 9407021]  [MGI Ref ID J:45263]

Anderson JL; Head SI; Morley JW. 2003. Altered inhibitory input to Purkinje cells of dystrophin-deficient mice. Brain Res 982(2):280-3. [PubMed: 12915262]  [MGI Ref ID J:85437]

Anderson JL; Head SI; Morley JW. 2004. Long-term depression is reduced in cerebellar Purkinje cells of dystrophin-deficient mdx mice. Brain Res 1019(1-2):289-92. [PubMed: 15306266]  [MGI Ref ID J:91994]

Angoli D; Corona P; Baresi R; Mora M; Wanke E. 1997. Laminin-alpha2 but not -alpha1-mediated adhesion of human (Duchenne) and murine (mdx) dystrophic myotubes is seriously defective. FEBS Lett 408(3):341-4. [PubMed: 9188790]  [MGI Ref ID J:40762]

Ardite E; Perdiguero E; Vidal B; Gutarra S; Serrano AL; Munoz-Canoves P. 2012. PAI-1-regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy. J Cell Biol 196(1):163-75. [PubMed: 22213800]  [MGI Ref ID J:179966]

Asai A; Sahani N; Kaneki M; Ouchi Y; Martyn JA; Yasuhara SE. 2007. Primary role of functional ischemia, quantitative evidence for the two-hit mechanism, and phosphodiesterase-5 inhibitor therapy in mouse muscular dystrophy. PLoS ONE 2(8):e806. [PubMed: 17726536]  [MGI Ref ID J:129397]

Ascah A; Khairhallah M; Daussin F; Bourcier-Lucas C; Godin R; Allen BG; Petrof BJ; Des Rosiers C; Burelle Y. 2010. STRESS-INDUCED OPENING OF THE PERMEABILITY TRANSITION PORE IN THE DYSTROPHIN-DEFICIENT HEART IS ATTENUATED BY ACUTE TREATMENT WITH SILDENAFIL. Am J Physiol Heart Circ Physiol :. [PubMed: 20971771]  [MGI Ref ID J:166227]

Asselin I; Tremblay M; Vilquin JT; Guerette B; Roy R; Tremblay JP. 1995. Quantification of normal dystrophin mRNA following myoblast transplantation in mdx mice. Muscle Nerve 18(9):980-6. [PubMed: 7643878]  [MGI Ref ID J:28866]

Asselin I; Tremblay M; Vilquin JT; Guerette B; Tremblay JP. 1994. Polymerase chain reaction-based assay to assess the success of myoblast transplantation in mdx mice. Transplant Proc 26(6):3389. [PubMed: 7527970]  [MGI Ref ID J:21945]

Attal P; Lambert F; Marchand-Adam S; Bobin S; Pourny JC; Chemla D; Lecarpentier Y; Coirault C. 2000. Severe mechanical dysfunction in pharyngeal muscle from adult mdx mice. Am J Respir Crit Care Med 162(1):278-81. [PubMed: 10903254]  [MGI Ref ID J:103161]

Auda-Boucher G; Rouaud T; Lafoux A; Levitsky D; Huchet-Cadiou C; Feron M; Guevel L; Talon S; Fontaine-Perus J; Gardahaut MF. 2007. Fetal muscle-derived cells can repair dystrophic muscles in mdx mice. Exp Cell Res 313(5):997-1007. [PubMed: 17275812]  [MGI Ref ID J:119767]

Augustin M; Klopp N; Ewald K; Jockusch H. 1998. A multicopy c-Myc transgene as a nuclear label: overgrowth of Myctg50 cells in allophenic mice. Cell Biol Int 22(6):401-11. [PubMed: 10328848]  [MGI Ref ID J:127669]

Austin L; Bower JJ; Bennett TM; Lynch GS; Kapsa R; White JD; Barnard W; Gregorevic P; Byrne E. 2000. Leukemia inhibitory factor ameliorates muscle fiber degeneration in the mdx mouse. Muscle Nerve 23(11):1700-5. [PubMed: 11054748]  [MGI Ref ID J:116201]

Azzena GB; Mancinelli R. 1999. Nitric oxide regenerates the normal colonic peristaltic activity in mdx dystrophic mouse. Neurosci Lett 261(1-2):9-12. [PubMed: 10081914]  [MGI Ref ID J:107984]

Baccari MC; Romagnani P; Calamai F. 2000. Impaired nitrergic relaxations in the gastric fundus of dystrophic (mdx) mice. Neurosci Lett 282(1-2):105-8. [PubMed: 10713407]  [MGI Ref ID J:107938]

Badalamente MA; Stracher A. 2000. Delay of muscle degeneration and necrosis in mdx mice by calpain inhibition. Muscle Nerve 23(1):106-11. [PubMed: 10590413]  [MGI Ref ID J:116195]

Bagher P; Duan D; Segal SS. 2011. Evidence for impaired neurovascular transmission in a murine model of Duchenne muscular dystrophy. J Appl Physiol 110(3):601-9. [PubMed: 21109597]  [MGI Ref ID J:185890]

Bakker AJ; Head SI; Williams DA; Stephenson DG. 1993. Ca2+ levels in myotubes grown from the skeletal muscle of dystrophic (mdx) and normal mice. J Physiol 460:1-13. [PubMed: 8487190]  [MGI Ref ID J:15813]

Baltgalvis KA; Jaeger MA; Fitzsimons DP; Thayer SA; Lowe DA; Ervasti JM. 2011. Transgenic overexpression of gamma-cytoplasmic actin protects against eccentric contraction-induced force loss in mdx mice. Skelet Muscle 1(1):32. [PubMed: 21995957]  [MGI Ref ID J:183731]

Banks GB; Chamberlain JS; Froehner SC. 2009. Truncated dystrophins can influence neuromuscular synapse structure. Mol Cell Neurosci 40(4):433-41. [PubMed: 19171194]  [MGI Ref ID J:146866]

Banks GB; Combs AC; Chamberlain JR; Chamberlain JS. 2008. Molecular and cellular adaptations to chronic myotendinous strain injury in mdx mice expressing a truncated dystrophin. Hum Mol Genet 17(24):3975-86. [PubMed: 18799475]  [MGI Ref ID J:142565]

Barnabei MS; Metzger JM. 2012. Ex vivo stretch reveals altered mechanical properties of isolated dystrophin-deficient hearts. PLoS One 7(3):e32880. [PubMed: 22427904]  [MGI Ref ID J:186918]

Barton ER. 2006. Impact of sarcoglycan complex on mechanical signal transduction in murine skeletal muscle. Am J Physiol Cell Physiol 290(2):C411-9. [PubMed: 16162659]  [MGI Ref ID J:104967]

Barton ER; Morris L; Musaro A; Rosenthal N; Sweeney HL. 2002. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157(1):137-48. [PubMed: 11927606]  [MGI Ref ID J:75770]

Barton-Davis ER; Cordier L; Shoturma DI; Leland SE; Sweeney HL. 1999. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice [see comments] J Clin Invest 104(4):375-81. [PubMed: 10449429]  [MGI Ref ID J:56908]

Bates G; Sigurdardottir S; Kachmar L; Zitouni NB; Benedetti A; Petrof BJ; Rassier D; Lauzon AM. 2013. Molecular, cellular, and muscle strip mechanics of the mdx mouse diaphragm. Am J Physiol Cell Physiol 304(9):C873-80. [PubMed: 23426972]  [MGI Ref ID J:196389]

Beastrom N; Lu H; Macke A; Canan BD; Johnson EK; Penton CM; Kaspar BK; Rodino-Klapac LR; Zhou L; Janssen PM; Montanaro F. 2011. mdx(5cv) Mice Manifest More Severe Muscle Dysfunction and Diaphragm Force Deficits than Do mdx Mice. Am J Pathol 179(5):2464-74. [PubMed: 21893021]  [MGI Ref ID J:177391]

Beedle AM; Nienaber PM; Campbell KP. 2007. Fukutin-related protein associates with the sarcolemmal dystrophin-glycoprotein complex. J Biol Chem 282(23):16713-7. [PubMed: 17452335]  [MGI Ref ID J:122734]

Belanto JJ; Mader TL; Eckhoff MD; Strandjord DM; Banks GB; Gardner MK; Lowe DA; Ervasti JM. 2014. Microtubule binding distinguishes dystrophin from utrophin. Proc Natl Acad Sci U S A 111(15):5723-8. [PubMed: 24706788]  [MGI Ref ID J:208636]

Bellinger AM; Reiken S; Carlson C; Mongillo M; Liu X; Rothman L; Matecki S; Lacampagne A; Marks AR. 2009. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 15(3):325-30. [PubMed: 19198614]  [MGI Ref ID J:146474]

Bentzinger CF; Romanino K; Cloetta D; Lin S; Mascarenhas JB; Oliveri F; Xia J; Casanova E; Costa CF; Brink M; Zorzato F; Hall MN; Ruegg MA. 2008. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8(5):411-24. [PubMed: 19046572]  [MGI Ref ID J:143748]

Bertoni C; Lau C; Rando TA. 2003. Restoration of dystrophin expression in mdx muscle cells by chimeraplast-mediated exon skipping. Hum Mol Genet 12(10):1087-99. [PubMed: 12719373]  [MGI Ref ID J:83434]

Bhagwati S; Ghatpande A; Shafiq SA; Leung B. 1996. In situ hybridization analysis for expression of myogenic regulatory factors in regenerating muscle of mdx mouse. J Neuropathol Exp Neurol 55(5):509-14. [PubMed: 8627340]  [MGI Ref ID J:33889]

Bia BL; Cassidy PJ; Young ME; Rafael JA; Leighton B; Davies KE; Radda GK; Clarke K. 1999. Decreased myocardial nNOS, increased iNOS and abnormal ECGs in mouse models of Duchenne muscular dystrophy. J Mol Cell Cardiol 31(10):1857-62. [PubMed: 10525423]  [MGI Ref ID J:102663]

Bittner RE; Streubel B; Shorny S; Schaden G; Voit T; Hoger H. 1994. Coisogenic all-plus-one immunization: a model for identifying missing proteins in null-mutant conditions. Antibodies to dystrophin in mdx mouse after transplantation of muscle from normal coisogenic donor. Neuropediatrics 25(4):176-82. [PubMed: 7824089]  [MGI Ref ID J:23190]

Blaauw B; Agatea L; Toniolo L; Canato M; Quarta M; Dyar KA; Danieli-Betto D; Betto R; Schiaffino S; Reggiani C. 2010. Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy. J Appl Physiol 108(1):105-11. [PubMed: 19910334]  [MGI Ref ID J:185865]

Blaauw B; Mammucari C; Toniolo L; Agatea L; Abraham R; Sandri M; Reggiani C; Schiaffino S. 2008. Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle. Hum Mol Genet 17(23):3686-96. [PubMed: 18753145]  [MGI Ref ID J:141001]

Blain A; Greally E; Laval S; Blamire A; Straub V; MacGowan GA. 2013. Beta-blockers, left and right ventricular function, and in-vivo calcium influx in muscular dystrophy cardiomyopathy. PLoS One 8(2):e57260. [PubMed: 23437355]  [MGI Ref ID J:199333]

Blanchet E; Annicotte JS; Pradelli LA; Hugon G; Matecki S; Mornet D; Rivier F; Fajas L. 2012. E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism. Hum Mol Genet 21(17):3910-7. [PubMed: 22678059]  [MGI Ref ID J:185978]

Bloom TJ. 2005. Age-related alterations in cyclic nucleotide phosphodiesterase activity in dystrophic mouse leg muscle. Can J Physiol Pharmacol 83(11):1055-60. [PubMed: 16391714]  [MGI Ref ID J:110508]

Bloom TJ. 2002. Cyclic nucleotide phosphodiesterase isozymes expressed in mouse skeletal muscle. Can J Physiol Pharmacol 80(12):1132-5. [PubMed: 12564638]  [MGI Ref ID J:102408]

Bobet J; Mooney RF; Gordon T. 1998. Force and stiffness of old dystrophic (mdx) mouse skeletal muscles. Muscle Nerve 21(4):536-9. [PubMed: 9533791]  [MGI Ref ID J:116778]

Boland B; Himpens B; Casteels R; Gillis JM. 1993. Lack of dystrophin but normal calcium homeostasis in smooth muscle from dystrophic mdx mice. J Muscle Res Cell Motil 14(1):133-9. [PubMed: 8478423]  [MGI Ref ID J:13345]

Boland B; Himpens B; Denef JF; Gillis JM. 1995. Site-dependent pathological differences in smooth muscles and skeletal muscles of the adult mdx mouse. Muscle Nerve 18(6):649-57. [PubMed: 7753128]  [MGI Ref ID J:26592]

Boppart MD; Burkin DJ; Kaufman SJ. 2011. Activation of AKT signaling promotes cell growth and survival in alpha7beta1 integrin-mediated alleviation of muscular dystrophy. Biochim Biophys Acta 1812(4):439-46. [PubMed: 21216283]  [MGI Ref ID J:170661]

Bornman L; Rossouw H; Gericke GS; Polla BS. 1998. Effects of iron deprivation on the pathology and stress protein expression in murine X-linked muscular dystrophy. Biochem Pharmacol 56(6):751-7. [PubMed: 9751080]  [MGI Ref ID J:49859]

Bostick B; Yue Y; Long C; Duan D. 2008. Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary dystrophin/utrophin expression. Circ Res 102(1):121-30. [PubMed: 17967782]  [MGI Ref ID J:145095]

Bostick B; Yue Y; Long C; Marschalk N; Fine DM; Chen J; Duan D. 2009. Cardiac expression of a mini-dystrophin that normalizes skeletal muscle force only partially restores heart function in aged Mdx mice. Mol Ther 17(2):253-61. [PubMed: 19066599]  [MGI Ref ID J:163970]

Braun U; Paju K; Eimre M; Seppet E; Orlova E; Kadaja L; Trumbeckaite S; Gellerich FN; Zierz S; Jockusch H; Seppet EK. 2001. Lack of dystrophin is associated with altered integration of the mitochondria and ATPases in slow-twitch muscle cells of MDX mice. Biochim Biophys Acta 1505(2-3):258-70. [PubMed: 11334790]  [MGI Ref ID J:69364]

Brazeau GA; Mathew M; Entrikin RK. 1992. Serum and organ indices of the mdx dystrophic mouse. Res Commun Chem Pathol Pharmacol 77(2):179-89. [PubMed: 1439189]  [MGI Ref ID J:3928]

Briguet A; Erb M; Courdier-Fruh I; Barzaghi P; Santos G; Herzner H; Lescop C; Siendt H; Henneboehle M; Weyermann P; Magyar JP; Dubach-Powell J; Metz G; Meier T. 2008. Effect of calpain and proteasome inhibition on Ca2+-dependent proteolysis and muscle histopathology in the mdx mouse. FASEB J 22(12):4190-200. [PubMed: 18728218]  [MGI Ref ID J:146043]

Bueno Junior CR; Pantaleao LC; Voltarelli VA; Bozi LH; Brum PC; Zatz M. 2012. Combined effect of AMPK/PPAR agonists and exercise training in mdx mice functional performance. PLoS One 7(9):e45699. [PubMed: 23029189]  [MGI Ref ID J:191984]

Bulfield G; Siller WG; Wight PA; Moore KJ. 1984. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81(4):1189-92. [PubMed: 6583703]  [MGI Ref ID J:7361]

Bulfield G; Siller WG; Wight PAL. 1982. Change pke, pyruvate kinase expression to X-linked muscular dystrophy, mdx. Mouse News Lett 66:57.  [MGI Ref ID J:13903]

Burkin DJ; Wallace GQ; Nicol KJ; Kaufman DJ; Kaufman SJ. 2001. Enhanced Expression of the alpha7beta1 Integrin Reduces Muscular Dystrophy and Restores Viability in Dystrophic Mice. J Cell Biol 152(6):1207-18. [PubMed: 11257121]  [MGI Ref ID J:68194]

Burr AR; Millay DP; Goonasekera SA; Park KH; Sargent MA; Collins J; Altamirano F; Philipson KD; Allen PD; Ma J; Lopez JR; Molkentin JD. 2014. Na+ dysregulation coupled with Ca2+ entry through NCX1 promotes muscular dystrophy in mice. Mol Cell Biol 34(11):1991-2002. [PubMed: 24662047]  [MGI Ref ID J:212146]

Burzyn D; Kuswanto W; Kolodin D; Shadrach JL; Cerletti M; Jang Y; Sefik E; Tan TG; Wagers AJ; Benoist C; Mathis D. 2013. A special population of regulatory T cells potentiates muscle repair. Cell 155(6):1282-95. [PubMed: 24315098]  [MGI Ref ID J:205258]

Buttgereit A; Weber C; Garbe CS; Friedrich O. 2013. From chaos to split-ups - SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle. J Pathol 229(3):477-85. [PubMed: 23132094]  [MGI Ref ID J:192258]

Cacchiarelli D; Incitti T; Martone J; Cesana M; Cazzella V; Santini T; Sthandier O; Bozzoni I. 2011. miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep 12(2):136-41. [PubMed: 21212803]  [MGI Ref ID J:168844]

Call JA; Warren GL; Verma M; Lowe DA. 2013. Acute failure of action potential conduction in mdx muscle reveals new mechanism of contraction-induced force loss. J Physiol 591(Pt 15):3765-76. [PubMed: 23753524]  [MGI Ref ID J:212138]

Camboni M; Hammond S; Martin LT; Martin PT. 2012. Induction of a regenerative microenvironment in skeletal muscle is sufficient to induce embryonal rhabdomyosarcoma in p53-deficient mice. J Pathol 226(1):40-9. [PubMed: 21915858]  [MGI Ref ID J:180024]

Capote J; DiFranco M; Vergara JL. 2010. Excitation-contraction coupling alterations in mdx and utrophin/dystrophin double knockout mice: a comparative study. Am J Physiol Cell Physiol 298(5):C1077-86. [PubMed: 20130206]  [MGI Ref ID J:159256]

Carlson CG. 1996. Acetylcholine receptor and calcium leakage activity in nondystrophic and dystrophic myotubes (MDX) Muscle Nerve 19(10):1258-67. [PubMed: 8808651]  [MGI Ref ID J:117913]

Carlson CG; Roshek DM. 2001. Adult dystrophic (mdx) endplates exhibit reduced quantal size and enhanced quantal variation. Pflugers Arch 442(3):369-75. [PubMed: 11484767]  [MGI Ref ID J:106311]

Carretta D; Santarelli M; Sbriccoli A; Pinto F; Catini C; Minciacchi D. 2004. Spatial analysis reveals alterations of parvalbumin- and calbindin-positive local circuit neurons in the cerebral cortex of mutant mdx mice. Brain Res 1016(1):1-11. [PubMed: 15234246]  [MGI Ref ID J:91225]

Carretta D; Santarelli M; Vanni D; Carrai R; Sbriccoli A; Pinto F; Minciacchi D. 2001. The organisation of spinal projecting brainstem neurons in an animal model of muscular dystrophy. A retrograde tracing study on mdx mutant mice. Brain Res 895(1-2):213-22. [PubMed: 11259780]  [MGI Ref ID J:68354]

Carretta D; Santarelli M; Vanni D; Ciabatti S; Sbriccoli A; Pinto F; Minciacchi D. 2003. Cortical and brainstem neurons containing calcium-binding proteins in a murine model of Duchenne's muscular dystrophy: selective changes in the sensorimotor cortex. J Comp Neurol 456(1):48-59. [PubMed: 12508313]  [MGI Ref ID J:125669]

Carter GT; Abresch RT; Walsh SA; Wineinger MA. 1997. The mdx mouse diaphragm: exercise-induced injury. Muscle Nerve 20(3):393-4. [PubMed: 9052828]  [MGI Ref ID J:116363]

Carter GT; Wineinger MA; Walsh SA; Horasek SJ; Abresch RT; Fowler WM Jr. 1995. Effect of voluntary wheel-running exercise on muscles of the mdx mouse. Neuromuscul Disord 5(4):323-32. [PubMed: 7580246]  [MGI Ref ID J:27376]

Cascabulho CM; Correa CB; Cotta-de-Almeida V; Henriques-Pons A. 2012. Defective T-lymphocyte migration to muscles in dystrophin-deficient mice. Am J Pathol 181(2):593-604. [PubMed: 22733008]  [MGI Ref ID J:186409]

Chakkalakal JV; Harrison MA; Carbonetto S; Chin E; Michel RN; Jasmin BJ. 2004. Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice. Hum Mol Genet 13(4):379-88. [PubMed: 14681302]  [MGI Ref ID J:88329]

Chakkalakal JV; Michel SA; Chin ER; Michel RN; Jasmin BJ. 2006. Targeted inhibition of Ca2+ /calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Hum Mol Genet 15(9):1423-35. [PubMed: 16551657]  [MGI Ref ID J:108236]

Chamberlain JS. 2010. Duchenne muscular dystrophy models show their age. Cell 143(7):1040-2. [PubMed: 21183068]  [MGI Ref ID J:167707]

Chamberlain JS; Metzger J; Reyes M; Townsend D; Faulkner JA. 2007. Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J 21(9):2195-204. [PubMed: 17360850]  [MGI Ref ID J:122706]

Chamberlain JS; Phelps SF; Cox GA; Maichele AJ; Greenwood AD. 1993. PCR analysis of muscular dystrophy in mdx mice. Mol Cell Biol Hum Dis Ser 3:167-89. [PubMed: 8111539]  [MGI Ref ID J:18427]

Chan S; Head SI; Morley JW. 2007. Branched fibers in dystrophic mdx muscle are associated with a loss of force following lengthening contractions. Am J Physiol Cell Physiol 293(3):C985-92. [PubMed: 17567750]  [MGI Ref ID J:125837]

Chandrasekharan K; Yoon JH; Xu Y; deVries S; Camboni M; Janssen PM; Varki A; Martin PT. 2010. A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med 2(42):42ra54. [PubMed: 20668298]  [MGI Ref ID J:164594]

Chang WJ; Iannaccone ST; Lau KS; Masters BS; McCabe TJ; McMillan K; Padre RC; Spencer MJ; Tidball JG; Stull JT. 1996. Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc Natl Acad Sci U S A 93(17):9142-7. [PubMed: 8799168]  [MGI Ref ID J:35595]

Chao DS; Silvagno F; Bredt DS. 1998. Muscular dystrophy in mdx mice despite lack of neuronal nitric oxide synthase. J Neurochem 71(2):784-9. [PubMed: 9681470]  [MGI Ref ID J:48851]

Chapman VM; Miller DR; Armstrong D; Caskey CT. 1989. Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proc Natl Acad Sci U S A 86(4):1292-6. [PubMed: 2919177]  [MGI Ref ID J:9638]

Charan RA; Hanson R; Clemens PR. 2012. Deubiquitinating enzyme A20 negatively regulates NF-kappaB signaling in skeletal muscle in mdx mice. FASEB J 26(2):587-95. [PubMed: 22012122]  [MGI Ref ID J:180624]

Chen G; Bressler BH; Quinn LS. 1994. Extracts from mdx and normal mouse skeletal muscle contain similar levels of mitogenic activity for myoblasts. Cell Biol Int 18(4):229-35. [PubMed: 8044140]  [MGI Ref ID J:18325]

Chen M; Li HJ; Fang Q; Goodwin TG; Florendo JA; Law PK. 1992. Dystrophin cytochemistry in mdx mouse muscles injected with labeled normal myoblasts. Cell Transplant 1(1):17-22. [PubMed: 1344288]  [MGI Ref ID J:18529]

Chen TJ; Chen SS; Wang DC; Hsieh YL. 2002. Increased vulnerability of auditory system to noise exposure in mdx mice. Laryngoscope 112(3):520-5. [PubMed: 12148865]  [MGI Ref ID J:105938]

Cheng YJ; Lang D; Caruthers SD; Efimov IR; Chen J; Wickline SA. 2012. Focal but reversible diastolic sheet dysfunction reflects regional calcium mishandling in dystrophic mdx mouse hearts. Am J Physiol Heart Circ Physiol 303(5):H559-68. [PubMed: 22777417]  [MGI Ref ID J:189172]

Chirieleison SM; Feduska JM; Schugar RC; Askew Y; Deasy BM. 2012. Human muscle-derived cell populations isolated by differential adhesion rates: phenotype and contribution to skeletal muscle regeneration in Mdx/SCID mice. Tissue Eng Part A 18(3-4):232-41. [PubMed: 21854253]  [MGI Ref ID J:181239]

Chiu YH; Hornsey MA; Klinge L; Jorgensen LH; Laval SH; Charlton R; Barresi R; Straub V; Lochmuller H; Bushby K. 2009. Attenuated muscle regeneration is a key factor in dysferlin-deficient muscular dystrophy. Hum Mol Genet 18(11):1976-89. [PubMed: 19286669]  [MGI Ref ID J:148110]

Chu V; Otero JM; Lopez O; Sullivan MF; Morgan JP; Amende I; Hampton TG. 2002. Electrocardiographic findings in mdx mice: a cardiac phenotype of Duchenne muscular dystrophy. Muscle Nerve 26(4):513-9. [PubMed: 12362417]  [MGI Ref ID J:116340]

Chun JL; O'Brien R; Berry SE. 2012. Cardiac dysfunction and pathology in the dystrophin and utrophin-deficient mouse during development of dilated cardiomyopathy. Neuromuscul Disord 22(4):368-79. [PubMed: 22266080]  [MGI Ref ID J:187876]

Coccurello R; Castellano C; Paggi P; Mele A; Oliverio A. 2002. Genetically dystrophic mdx/mdx mice exhibit decreased response to nicotine in passive avoidance. Neuroreport 13(9):1219-22. [PubMed: 12151773]  [MGI Ref ID J:103674]

Cohn RD; Durbeej M; Moore SA; Coral-Vazquez R; Prouty S; Campbell KP. 2001. Prevention of cardiomyopathy in mouse models lacking the smooth muscle sarcoglycan-sarcospan complex. J Clin Invest 107(2):R1-7. [PubMed: 11160141]  [MGI Ref ID J:66973]

Cohn RD; Liang HY; Shetty R; Abraham T; Wagner KR. 2007. Myostatin does not regulate cardiac hypertrophy or fibrosis. Neuromuscul Disord 17(4):290-6. [PubMed: 17336525]  [MGI Ref ID J:124477]

Cohn RD; van Erp C; Habashi JP; Soleimani AA; Klein EC; Lisi MT; Gamradt M; Ap Rhys CM; Holm TM; Loeys BL; Ramirez F; Judge DP; Ward CW; Dietz HC. 2007. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med 13(2):204-210. [PubMed: 17237794]  [MGI Ref ID J:117885]

Coirault C; Pignol B; Cooper RN; Butler-Browne G; Chabrier PE; Lecarpentier Y. 2003. Severe muscle dysfunction precedes collagen tissue proliferation in mdx mouse diaphragm. J Appl Physiol 94(5):1744-50. [PubMed: 12679345]  [MGI Ref ID J:103042]

Cole MA; Rafael JA; Taylor DJ; Lodi R; Davies KE; Styles P. 2002. A quantitative study of bioenergetics in skeletal muscle lacking utrophin and dystrophin. Neuromuscul Disord 12(3):247-57. [PubMed: 11801396]  [MGI Ref ID J:103103]

Collet C; Allard B; Tourneur Y; Jacquemond V. 1999. Intracellular calcium signals measured with indo-1 in isolated skeletal muscle fibres from control and mdx mice. J Physiol 520 Pt 2:417-29. [PubMed: 10523411]  [MGI Ref ID J:106307]

Colussi C; Gurtner A; Rosati J; Illi B; Ragone G; Piaggio G; Moggio M; Lamperti C; D'Angelo G; Clementi E; Minetti G; Mozzetta C; Antonini A; Capogrossi MC; Puri PL; Gaetano C. 2009. Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy. FASEB J 23(7):2131-41. [PubMed: 19264835]  [MGI Ref ID J:150530]

Colussi C; Mozzetta C; Gurtner A; Illi B; Rosati J; Straino S; Ragone G; Pescatori M; Zaccagnini G; Antonini A; Minetti G; Martelli F; Piaggio G; Gallinari P; Steinkulher C; Clementi E; Dell'Aversana C; Altucci L; Mai A; Capogrossi MC; Puri PL; Gaetano C. 2008. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc Natl Acad Sci U S A 105(49):19183-7. [PubMed: 19047631]  [MGI Ref ID J:142085]

Combaret L; Taillandier D; Voisin L; Samuels SE; Boespflug-Tanguy O; Attaix D. 1996. No alteration in gene expression of components of the ubiquitin-proteasome proteolytic pathway in dystrophin-deficient muscles. FEBS Lett 393(2-3):292-6. [PubMed: 8814307]  [MGI Ref ID J:35369]

Connolly AM; Keeling RM; Mehta S; Pestronk A; Sanes JR. 2001. Three mouse models of muscular dystrophy: the natural history of strength and fatigue in dystrophin-, dystrophin/utrophin-, and laminin alpha2-deficient mice. Neuromuscul Disord 11(8):703-12. [PubMed: 11595512]  [MGI Ref ID J:103061]

Corrado K; Rafael JA; Mills PL; Cole NM; Faulkner JA; Wang K; Chamberlain JS. 1996. Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a mild Becker phenotype. J Cell Biol 134(4):873-84. [PubMed: 8769413]  [MGI Ref ID J:34924]

Coulton GR; Morgan JE; Partridge TA; Sloper JC. 1988. The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation. Neuropathol Appl Neurobiol 14(1):53-70. [PubMed: 2967442]  [MGI Ref ID J:152524]

Cox GA; Cole NM; Matsumura K; Phelps SF; Hauschka SD; Campbell KP; Faulkner JA; Chamberlain JS. 1993. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity [see comments] Nature 364(6439):725-9. [PubMed: 8355788]  [MGI Ref ID J:14332]

Cox GA; Phelps SF; Chapman VM; Chamberlain JS. 1993. New mdx mutation disrupts expression of muscle and nonmuscle isoforms of dystrophin. Nat Genet 4(1):87-93. [PubMed: 8099842]  [MGI Ref ID J:12150]

Crisp A; Yin H; Goyenvalle A; Betts C; Moulton HM; Seow Y; Babbs A; Merritt T; Saleh AF; Gait MJ; Stuckey DJ; Clarke K; Davies KE; Wood MJ. 2011. Diaphragm rescue alone prevents heart dysfunction in dystrophic mice. Hum Mol Genet 20(3):413-21. [PubMed: 21062902]  [MGI Ref ID J:167240]

Crosbie RH; Dovico SA; Flanagan JD; Chamberlain JS; Ownby CL; Campbell KP. 2002. Characterization of aquaporin-4 in muscle and muscular dystrophy. FASEB J 16(9):943-9. [PubMed: 12087055]  [MGI Ref ID J:120469]

Crosbie RH; Straub V; Yun HY; Lee JC; Rafael JA; Chamberlain JS; Dawson VL; Dawson TM; Campbell KP. 1998. mdx muscle pathology is independent of nNOS perturbation. Hum Mol Genet 7(5):823-9. [PubMed: 9536086]  [MGI Ref ID J:47623]

Cullen MJ; Jaros E. 1988. Ultrastructure of the skeletal muscle in the X chromosome-linked dystrophic (mdx) mouse. Comparison with Duchenne muscular dystrophy. Acta Neuropathol 77(1):69-81. [PubMed: 3239377]  [MGI Ref ID J:152892]

Cully TR; Edwards JN; Friedrich O; Stephenson DG; Murphy RM; Launikonis BS. 2012. Changes in plasma membrane Ca-ATPase and stromal interacting molecule 1 expression levels for Ca(2+) signaling in dystrophic mdx mouse muscle. Am J Physiol Cell Physiol 303(5):C567-76. [PubMed: 22785116]  [MGI Ref ID J:192667]

D'Arcy CE; Feeney SJ; McLean CA; Gehrig SM; Lynch GS; Smith JE; Cowling BS; Mitchell CA; McGrath MJ. 2014. Identification of FHL1 as a therapeutic target for Duchenne muscular dystrophy. Hum Mol Genet 23(3):618-36. [PubMed: 24087791]  [MGI Ref ID J:215146]

D'Souza VN; Nguyen TM; Morris GE; Karges W; Pillers DA; Ray PN. 1995. A novel dystrophin isoform is required for normal retinal electrophysiology. Hum Mol Genet 4(5):837-42. [PubMed: 7633443]  [MGI Ref ID J:25211]

Dahiya S; Bhatnagar S; Hindi SM; Jiang C; Paul PK; Kuang S; Kumar A. 2011. Elevated levels of active matrix metalloproteinase-9 cause hypertrophy in skeletal muscle of normal and dystrophin-deficient mdx mice. Hum Mol Genet 20(22):4345-59. [PubMed: 21846793]  [MGI Ref ID J:176891]

Dahiya S; Givvimani S; Bhatnagar S; Qipshidze N; Tyagi SC; Kumar A. 2011. Osteopontin-stimulated expression of matrix metalloproteinase-9 causes cardiomyopathy in the mdx model of Duchenne muscular dystrophy. J Immunol 187(5):2723-31. [PubMed: 21810612]  [MGI Ref ID J:179125]

Dallerac G; Perronnet C; Chagneau C; Leblanc-Veyrac P; Samson-Desvignes N; Peltekian E; Danos O; Garcia L; Laroche S; Billard JM; Vaillend C. 2011. Rescue of a dystrophin-like protein by exon skipping normalizes synaptic plasticity in the hippocampus of the mdx mouse. Neurobiol Dis :. [PubMed: 21624465]  [MGI Ref ID J:173321]

Dangain J; Vrbova G. 1984. Muscle development in mdx mutant mice. Muscle Nerve 7(9):700-4. [PubMed: 6543918]  [MGI Ref ID J:8039]

Daoud F; Candelario-Martinez A; Billard JM; Avital A; Khelfaoui M; Rozenvald Y; Guegan M; Mornet D; Jaillard D; Nudel U; Chelly J; Martinez-Rojas D; Laroche S; Yaffe D; Vaillend C. 2009. Role of mental retardation-associated dystrophin-gene product Dp71 in excitatory synapse organization, synaptic plasticity and behavioral functions. PLoS One 4(8):e6574. [PubMed: 19649270]  [MGI Ref ID J:152485]

Darabi R; Gehlbach K; Bachoo RM; Kamath S; Osawa M; Kamm KE; Kyba M; Perlingeiro RC. 2008. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 14(2):134-43. [PubMed: 18204461]  [MGI Ref ID J:133565]

De Backer F; Vandebrouck C; Gailly P; Gillis JM. 2002. Long-term study of Ca(2+) homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. J Physiol 542(Pt 3):855-65. [PubMed: 12154184]  [MGI Ref ID J:106014]

De Luca A; Nico B; Liantonio A; Didonna MP; Fraysse B; Pierno S; Burdi R; Mangieri D; Rolland JF; Camerino C; Zallone A; Confalonieri P; Andreetta F; Arnoldi E; Courdier-Fruh I; Magyar JP; Frigeri A; Pisoni M; Svelto M; Conte Camerino D. 2005. A multidisciplinary evaluation of the effectiveness of cyclosporine a in dystrophic mdx mice. Am J Pathol 166(2):477-89. [PubMed: 15681831]  [MGI Ref ID J:95973]

De Luca A; Pierno S; Camerino DC. 1995. Changes of membrane electrical properties in extensor digitorum longus muscle from dystrophic (mdx) mice. Muscle Nerve 18(10):1196-8. [PubMed: 7659114]  [MGI Ref ID J:115862]

De Stefano ME; Leone L; Lombardi L; Paggi P. 2005. Lack of dystrophin leads to the selective loss of superior cervical ganglion neurons projecting to muscular targets in genetically dystrophic mdx mice. Neurobiol Dis 20(3):929-42. [PubMed: 16023353]  [MGI Ref ID J:104656]

Deconinck AE; Rafael JA; Skinner JA; Brown SC; Potter AC; Metzinger L ; Watt DJ ; Dickson JG ; Tinsley JM ; Davies KE. 1997. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90(4):717-27. [PubMed: 9288751]  [MGI Ref ID J:42388]

Deconinck N; Rafael JA; Beckers-Bleukx G; Kahn D; Deconinck AE; Davies KE; Gillis JM. 1998. Consequences of the combined deficiency in dystrophin and utrophin on the mechanical properties and myosin composition of some limb and respiratory muscles of the mouse. Neuromuscul Disord 8(6):362-70. [PubMed: 9713852]  [MGI Ref ID J:110988]

Deconinck N; Tinsley J; De Backer F; Fisher R; Kahn D; Phelps S; Davies K; Gillis JM. 1997. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nat Med 3(11):1216-21. [PubMed: 9359695]  [MGI Ref ID J:44111]

Decrouy A; Even PC; Chinet A. 1993. Decreased rates of Ca(2+)-dependent heat production in slow- and fast-twitch muscles from the dystrophic (mdx) mouse. Experientia 49(10):843-9. [PubMed: 8224098]  [MGI Ref ID J:15722]

Demoule A; Divangahi M; Danialou G; Gvozdic D; Larkin G; Bao W; Petrof BJ. 2005. Expression and regulation of CC class chemokines in the dystrophic (mdx) diaphragm. Am J Respir Cell Mol Biol 33(2):178-85. [PubMed: 15860797]  [MGI Ref ID J:112940]

Deng B; Glanzman D; Tidball JG. 2009. Nitric oxide generated by muscle corrects defects in hippocampal neurogenesis and neural differentiation caused by muscular dystrophy. J Physiol 587(Pt 8):1769-78. [PubMed: 19237426]  [MGI Ref ID J:176544]

Di Angelantonio S; De Stefano ME; Piccioni A; Lombardi L; Gotti C; Paggi P. 2011. Lack of dystrophin functionally affects alpha3beta2/beta4-nicotinic acethylcholine receptors in sympathetic neurons of dystrophic mdx mice. Neurobiol Dis 41(2):528-37. [PubMed: 21056666]  [MGI Ref ID J:168343]

Di Certo MG; Corbi N; Strimpakos G; Onori A; Luvisetto S; Severini C; Guglielmotti A; Batassa EM; Pisani C; Floridi A; Benassi B; Fanciulli M; Magrelli A; Mattei E; Passananti C. 2010. The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice. Hum Mol Genet 19(5):752-60. [PubMed: 19965907]  [MGI Ref ID J:157115]

DiFranco M; Woods CE; Capote J; Vergara JL. 2008. Dystrophic skeletal muscle fibers display alterations at the level of calcium microdomains. Proc Natl Acad Sci U S A 105(38):14698-703. [PubMed: 18787128]  [MGI Ref ID J:141246]

Diaz-Ramos A; Roig-Borrellas A; Garcia-Melero A; Llorens A; Lopez-Alemany R. 2012. Requirement of plasminogen binding to its cell-surface receptor alpha-enolase for efficient regeneration of normal and dystrophic skeletal muscle. PLoS One 7(12):e50477. [PubMed: 23239981]  [MGI Ref ID J:195546]

Dick J; Vrbova G. 1993. Progressive deterioration of muscles in mdx mice induced by overload. Clin Sci (Colch) 84(2):145-50. [PubMed: 8382579]  [MGI Ref ID J:12242]

Disatnik MH; Chamberlain JS; Rando TA. 2000. Dystrophin mutations predict cellular susceptibility to oxidative stress. Muscle Nerve 23(5):784-92. [PubMed: 10797403]  [MGI Ref ID J:116192]

Divet A; Huchet-Cadiou C. 2002. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice. Pflugers Arch 444(5):634-43. [PubMed: 12194017]  [MGI Ref ID J:106172]

Dominov JA; Kravetz AJ; Ardelt M; Kostek CA; Beermann ML; Miller JB. 2005. Muscle-specific BCL2 expression ameliorates muscle disease in laminin {alpha}2-deficient, but not in dystrophin-deficient, mice. Hum Mol Genet 14(8):1029-40. [PubMed: 15757977]  [MGI Ref ID J:98004]

Dubois C; Figarella-Branger D; Pastoret C; Rampini C; Karpati G; Rougon G. 1994. Expression of NCAM and its polysialylated isoforms during mdx mouse muscle regeneration and in vitro myogenesis. Neuromuscul Disord 4(3):171-82. [PubMed: 7919966]  [MGI Ref ID J:19382]

Dudley RW; Danialou G; Govindaraju K; Lands L; Eidelman DE; Petrof BJ. 2006. Sarcolemmal damage in dystrophin deficiency is modulated by synergistic interactions between mechanical and oxidative/nitrosative stresses. Am J Pathol 168(4):1276-87; quiz 1404-5. [PubMed: 16565501]  [MGI Ref ID J:107332]

Dunant P; Larochelle N; Thirion C; Stucka R; Ursu D; Petrof BJ; Wolf E; Lochmuller H. 2003. Expression of dystrophin driven by the 1.35-kb MCK promoter ameliorates muscular dystrophy in fast, but not in slow muscles of transgenic mdx mice. Mol Ther 8(1):80-9. [PubMed: 12842431]  [MGI Ref ID J:105122]

Dunckley MG; Wells KE; Piper TA; Wells DJ; Dickson G. 1994. Independent localization of dystrophin N- and C-terminal regions to the sarcolemma of mdx mouse myofibres in vivo. J Cell Sci 107(Pt 6):1469-75. [PubMed: 7962190]  [MGI Ref ID J:19097]

Dunn JF; Bannister N; Kemp GJ; Publicover SJ. 1993. Sodium is elevated in mdx muscles: ionic interactions in dystrophic cells. J Neurol Sci 114(1):76-80. [PubMed: 8433102]  [MGI Ref ID J:3666]

Dunn JF; Tracey I; Radda GK. 1992. A 31P-NMR study of muscle exercise metabolism in mdx mice: evidence for abnormal pH regulation. J Neurol Sci 113(1):108-13. [PubMed: 1469448]  [MGI Ref ID J:3269]

Dunn JF; Zaim-Wadghiri Y. 1999. Quantitative magnetic resonance imaging of the mdx mouse model of Duchenne muscular dystrophy. Muscle Nerve 22(10):1367-71. [PubMed: 10487902]  [MGI Ref ID J:116233]

Dupont-Versteegden EE; Baldwin RA; McCarter RJ; Vonlanthen MG. 1994. Does muscular dystrophy affect metabolic rate? A study in mdx mice. J Neurol Sci 121(2):203-7. [PubMed: 8158216]  [MGI Ref ID J:16597]

Dupont-Versteegden EE; McCarter RJ. 1992. Differential expression of muscular dystrophy in diaphragm versus hindlimb muscles of mdx mice. Muscle Nerve 15(10):1105-10. [PubMed: 1406767]  [MGI Ref ID J:116342]

Dye WW; Gleason RL; Wilson E; Humphrey JD. 2007. Altered biomechanical properties of carotid arteries in two mouse models of muscular dystrophy. J Appl Physiol 103(2):664-72. [PubMed: 17525297]  [MGI Ref ID J:148308]

Ebihara S; Guibinga GH; Gilbert R; Nalbantoglu J; Massie B; Karpati G; Petrof BJ. 2000. Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice Physiol Genomics 3(3):133-44. [PubMed: 11015608]  [MGI Ref ID J:65385]

Edwards JN; Friedrich O; Cully TR; von Wegner F; Murphy RM; Launikonis BS. 2010. Upregulation of store-operated Ca2+ entry in dystrophic mdx mouse muscle. Am J Physiol Cell Physiol 299(1):C42-50. [PubMed: 20427714]  [MGI Ref ID J:162510]

Elsherif L; Huang MS; Shai SY; Yang Y; Li RY; Chun J; Mekany MA; Chu AL; Kaufman SJ; Ross RS. 2008. Combined deficiency of dystrophin and beta1 integrin in the cardiac myocyte causes myocardial dysfunction, fibrosis and calcification. Circ Res 102(9):1109-17. [PubMed: 18340010]  [MGI Ref ID J:149030]

Enwere EK; Boudreault L; Holbrook J; Timusk K; Earl N; Lacasse E; Renaud JM; Korneluk RG. 2013. Loss of cIAP1 attenuates soleus muscle pathology and improves diaphragm function in mdx mice. Hum Mol Genet 22(5):867-78. [PubMed: 23184147]  [MGI Ref ID J:192578]

Farini A; Meregalli M; Belicchi M; Battistelli M; Parolini D; D'Antona G; Gavina M; Ottoboni L; Constantin G; Bottinelli R; Torrente Y. 2007. T and B lymphocyte depletion has a marked effect on the fibrosis of dystrophic skeletal muscles in the scid/mdx mouse. J Pathol 213(2):229-38. [PubMed: 17668421]  [MGI Ref ID J:125527]

Fauconnier J; Thireau J; Reiken S; Cassan C; Richard S; Matecki S; Marks AR; Lacampagne A. 2010. Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A :. [PubMed: 20080623]  [MGI Ref ID J:156537]

Fernandez K; Serinagaoglu Y; Hammond S; Martin LT; Martin PT. 2010. Mice lacking dystrophin or alpha sarcoglycan spontaneously develop embryonal rhabdomyosarcoma with cancer-associated p53 mutations and alternatively spliced or mutant Mdm2 transcripts. Am J Pathol 176(1):416-34. [PubMed: 20019182]  [MGI Ref ID J:156447]

Ferretti R; Neto HS; Marques MJ. 2011. Expression of utrophin at dystrophin-deficient neuromuscular synapses of mdx mice: a study of protected and affected muscles. Anat Rec (Hoboken) 294(2):283-6. [PubMed: 21235003]  [MGI Ref ID J:175589]

Fiore F; Sebille A; Birnbaum D. 2000. Skeletal muscle regeneration is not impaired in Fgf6 -/- mutant mice. Biochem Biophys Res Commun 272(1):138-43. [PubMed: 10872817]  [MGI Ref ID J:62522]

Fisher R; Tinsley JM; Phelps SR; Squire SE; Townsend ER; Martin JE; Davies KE. 2001. Non-toxic ubiquitous over-expression of utrophin in the mdx mouse. Neuromuscul Disord 11(8):713-21. [PubMed: 11595513]  [MGI Ref ID J:103062]

Floss T; Arnold HH; Braun T. 1997. A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11(16):2040-51. [PubMed: 9284044]  [MGI Ref ID J:42574]

Fortier M; Figeac N; White RB; Knopp P; Zammit PS. 2013. Sphingosine-1-phosphate receptor 3 influences cell cycle progression in muscle satellite cells. Dev Biol 382(2):504-16. [PubMed: 23911934]  [MGI Ref ID J:202223]

Franco A Jr; Lansman JB. 1990. Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344(6267):670-3. [PubMed: 1691450]  [MGI Ref ID J:12240]

Franco-Obregon A; Lansman JB. 2002. Changes in mechanosensitive channel gating following mechanical stimulation in skeletal muscle myotubes from the mdx mouse. J Physiol 539(Pt 2):391-407. [PubMed: 11882673]  [MGI Ref ID J:105953]

Friedrich O; Both M; Gillis JM; Chamberlain JS; Fink RH. 2004. Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice. J Physiol 555(Pt 1):251-65. [PubMed: 14594987]  [MGI Ref ID J:105401]

Frigeri A; Nicchia GP; Balena R; Nico B; Svelto M. 2004. Aquaporins in skeletal muscle: reassessment of the functional role of aquaporin-4. FASEB J 18(7):905-7. [PubMed: 15033928]  [MGI Ref ID J:118506]

Frigeri A; Nicchia GP; Nico B; Quondamatteo F; Herken R; Roncali L; Svelto M. 2001. Aquaporin-4 deficiency in skeletal muscle and brain of dystrophic mdx mice. FASEB J 15(1):90-98. [PubMed: 11149896]  [MGI Ref ID J:66891]

Gaedigk R; Law DJ; Fitzgerald-Gustafson KM; McNulty SG; Nsumu NN; Modrcin AC; Rinaldi RJ; Pinson D; Fowler SC; Bilgen M; Burns J; Hauschka SD; White RA. 2006. Improvement in survival and muscle function in an mdx/utrn(-/-) double mutant mouse using a human retinal dystrophin transgene. Neuromuscul Disord 16(3):192-203. [PubMed: 16487708]  [MGI Ref ID J:112787]

Gailly P; Boland B; Himpens B; Casteels R; Gillis JM. 1993. Critical evaluation of cytosolic calcium determination in resting muscle fibres from normal and dystrophic (mdx) mice. Cell Calcium 14(6):473-83. [PubMed: 8358771]  [MGI Ref ID J:16250]

Gailly P; Hermans E; Octave JN; Gillis JM. 1993. Specific increase of genetic expression of parvalbumin in fast skeletal muscles of mdx mice. FEBS Lett 326(1-3):272-4. [PubMed: 8325378]  [MGI Ref ID J:13734]

Gang EJ; Darabi R; Bosnakovski D; Xu Z; Kamm KE; Kyba M; Perlingeiro RC. 2009. Engraftment of mesenchymal stem cells into dystrophin-deficient mice is not accompanied by functional recovery. Exp Cell Res 315(15):2624-36. [PubMed: 19460366]  [MGI Ref ID J:154502]

Gannoun-Zaki L; Fournier-Bidoz S; Le Cam G; Chambon C; Millasseau P; Leger JJ; Dechesne CA. 1995. Down-regulation of mitochondrial mRNAs in the mdx mouse model for Duchenne muscular dystrophy. FEBS Lett 375(3):268-72. [PubMed: 7498514]  [MGI Ref ID J:29965]

Gao HL; Li C; Nabeka H; Shimokawa T; Kobayashi N; Saito S; Wang ZY; Cao YM; Matsuda S. 2013. Decrease in prosaposin in the Dystrophic mdx mouse brain. PLoS One 8(11):e80032. [PubMed: 24244600]  [MGI Ref ID J:209694]

Garrett KL; Anderson JE. 1995. Colocalization of bFGF and the myogenic regulatory gene myogenin in dystrophic mdx muscle precursors and young myotubes in vivo. Dev Biol 169(2):596-608. [PubMed: 7781901]  [MGI Ref ID J:26128]

Garry DJ; Meeson A; Elterman J; Zhao Y; Yang P; Bassel-Duby R; Williams RS. 2000. Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF. Proc Natl Acad Sci U S A 97(10):5416-21. [PubMed: 10792059]  [MGI Ref ID J:62225]

Gawlik KI; Holmberg J; Durbeej M. 2014. Loss of Dystrophin and beta-Sarcoglycan Significantly Exacerbates the Phenotype of Laminin alpha2 Chain-Deficient Animals. Am J Pathol 184(3):740-52. [PubMed: 24393714]  [MGI Ref ID J:206359]

Gawlik KI; Oliveira BM; Durbeej M. 2011. Transgenic Expression of Laminin alpha1 Chain Does Not Prevent Muscle Disease in the mdx Mouse Model for Duchenne Muscular Dystrophy. Am J Pathol 178(4):1728-37. [PubMed: 21435454]  [MGI Ref ID J:169848]

Gehrig SM; Koopman R; Naim T; Tjoakarfa C; Lynch GS. 2010. Making fast-twitch dystrophic muscles bigger protects them from contraction injury and attenuates the dystrophic pathology. Am J Pathol 176(1):29-33. [PubMed: 19959813]  [MGI Ref ID J:156505]

Gehrig SM; van der Poel C; Sayer TA; Schertzer JD; Henstridge DC; Church JE; Lamon S; Russell AP; Davies KE; Febbraio MA; Lynch GS. 2012. Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature 484(7394):394-8. [PubMed: 22495301]  [MGI Ref ID J:183833]

Gervasio OL; Whitehead NP; Yeung EW; Phillips WD; Allen DG. 2008. TRPC1 binds to caveolin-3 and is regulated by Src kinase - role in Duchenne muscular dystrophy. J Cell Sci 121(Pt 13):2246-55. [PubMed: 18544631]  [MGI Ref ID J:139759]

Ghahramani Seno MM; Graham IR; Athanasopoulos T; Trollet C; Pohlschmidt M; Crompton MR; Dickson G. 2008. RNAi-mediated knockdown of dystrophin expression in adult mice does not lead to overt muscular dystrophy pathology. Hum Mol Genet 17(17):2622-32. [PubMed: 18511456]  [MGI Ref ID J:138171]

Ghedini PC; Avellar MC; De Lima TC; Lima-Landman MT; Lapa AJ; Souccar C. 2012. Quantitative changes of nicotinic receptors in the hippocampus of dystrophin-deficient mice. Brain Res 1483:96-104. [PubMed: 22995368]  [MGI Ref ID J:193571]

Gilbert R; Dudley RW; Liu AB; Petrof BJ; Nalbantoglu J; Karpati G. 2003. Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Hum Mol Genet 12(11):1287-99. [PubMed: 12761044]  [MGI Ref ID J:83809]

Gillet B; Doan BT; Verre-Serrie C; Barbere B; Berenger G; Morin S; Koenig J; Peres M; Sebille A; Beloeil JC. 1993. In vivo 2D 1H NMR of mdx mouse muscle and myoblast cells during fusion: evidence for a characteristic signal of long chain fatty acids. Neuromuscul Disord 3(5-6):433-8. [PubMed: 8186688]  [MGI Ref ID J:19036]

Godfraind JM; Tekkok SB; Krnjevic K. 2000. Hypoxia on hippocampal slices from mice deficient in dystrophin (mdx) and isoforms (mdx3cv). J Cereb Blood Flow Metab 20(1):145-52. [PubMed: 10616803]  [MGI Ref ID J:60086]

Godin R; Daussin F; Matecki S; Li T; Petrof BJ; Burelle Y. 2012. Peroxisome proliferator-activated receptor gamma coactivator1- gene alpha transfer restores mitochondrial biomass and improves mitochondrial calcium handling in post-necrotic mdx mouse skeletal muscle. J Physiol 590(Pt 21):5487-502. [PubMed: 22907054]  [MGI Ref ID J:202448]

Goldspink G; Fernandes K; Williams PE; Wells DJ. 1994. Age-related changes in collagen gene expression in the muscles of mdx dystrophic and normal mice. Neuromuscul Disord 4(3):183-91. [PubMed: 7919967]  [MGI Ref ID J:19383]

Golumbek PT; Keeling RM; Connolly AM. 2007. Strength and corticosteroid responsiveness of mdx mice is unchanged by RAG2 gene knockout. Neuromuscul Disord 17(5):376-84. [PubMed: 17452104]  [MGI Ref ID J:124559]

Goodall MH; Ward CW; Pratt SJ; Bloch RJ; Lovering RM. 2012. Structural and functional evaluation of branched myofibers lacking intermediate filaments. Am J Physiol Cell Physiol 303(2):C224-32. [PubMed: 22592402]  [MGI Ref ID J:191363]

Gosselin LE; Barkley JE; Spencer MJ; McCormick KM; Farkas GA. 2003. Ventilatory dysfunction in mdx mice: impact of tumor necrosis factor-alpha deletion. Muscle Nerve 28(3):336-43. [PubMed: 12929194]  [MGI Ref ID J:116208]

Gotic I; Leschnik M; Kolm U; Markovic M; Haubner BJ; Biadasiewicz K; Metzler B; Stewart CL; Foisner R. 2010. Lamina-associated polypeptide 2alpha loss impairs heart function and stress response in mice. Circ Res 106(2):346-53. [PubMed: 19926876]  [MGI Ref ID J:170061]

Goyenvalle A; Babbs A; Wright J; Wilkins V; Powell D; Garcia L; Davies KE. 2012. Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Hum Mol Genet 21(11):2559-71. [PubMed: 22388933]  [MGI Ref ID J:183897]

Graciotti L; Becker J; Granata AL; Procopio AD; Tessarollo L; Fulgenzi G. 2011. Dystrophin Is Required for the Normal Function of the Cardio-Protective K(ATP) Channel in Cardiomyocytes. PLoS One 6(10):e27034. [PubMed: 22066028]  [MGI Ref ID J:178064]

Grady RM; Grange RW; Lau KS; Maimone MM; Nichol MC; Stull JT; Sanes JR. 1999. Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat Cell Biol 1(4):215-20. [PubMed: 10559919]  [MGI Ref ID J:59675]

Grady RM; Teng H; Nichol MC; Cunningham JC; Wilkinson RS; Sanes JR. 1997. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90(4):729-38. [PubMed: 9288752]  [MGI Ref ID J:42389]

Grady RM; Wozniak DF; Ohlemiller KK; Sanes JR. 2006. Cerebellar synaptic defects and abnormal motor behavior in mice lacking alpha- and beta-dystrobrevin. J Neurosci 26(11):2841-51. [PubMed: 16540561]  [MGI Ref ID J:106640]

Grady RM; Zhou H; Cunningham JM; Henry MD; Campbell KP; Sanes JR. 2000. Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin--glycoprotein complex. Neuron 25(2):279-93. [PubMed: 10719885]  [MGI Ref ID J:60776]

Granchelli JA; Pollina C; Hudecki MS. 1995. Duchenne-like myopathy in double-mutant mdx mice expressing exaggerated mast cell activity. J Neurol Sci 131(1):1-7. [PubMed: 7561939]  [MGI Ref ID J:26738]

Grange RW; Gainer TG; Marschner KM; Talmadge RJ; Stull JT. 2002. Fast-twitch skeletal muscles of dystrophic mouse pups are resistant to injury from acute mechanical stress. Am J Physiol Cell Physiol 283(4):C1090-101. [PubMed: 12225973]  [MGI Ref ID J:107767]

Greenberg DS; Schatz Y; Levy Z; Pizzo P; Yaffe D; Nudel U. 1996. Reduced levels of dystrophin associated proteins in the brains of mice deficient for Dp71. Hum Mol Genet 5(9):1299-303. [PubMed: 8872469]  [MGI Ref ID J:35275]

Greenberg DS; Sunada Y; Campbell KP; Yaffe D; Nudel U. 1994. Exogenous Dp71 restores the levels of dystrophin associated proteins but does not alleviate muscle damage in mdx mice [see comments] Nat Genet 8(4):340-4. [PubMed: 7894483]  [MGI Ref ID J:22142]

Gregorevic P; Allen JM; Minami E; Blankinship MJ; Haraguchi M; Meuse L; Finn E; Adams ME; Froehner SC; Murry CE; Chamberlain JS. 2006. rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 12(7):787-9. [PubMed: 16819550]  [MGI Ref ID J:111980]

Griffin JL; Sang E; Evens T; Davies K; Clarke K. 2002. Metabolic profiles of dystrophin and utrophin expression in mouse models of Duchenne muscular dystrophy. FEBS Lett 530(1-3):109. [PubMed: 12387876]  [MGI Ref ID J:79770]

Griffin JL; Williams HJ; Sang E; Clarke K; Rae C; Nicholson JK. 2001. Metabolic profiling of genetic disorders: a multitissue (1)H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue. Anal Biochem 293(1):16-21. [PubMed: 11373073]  [MGI Ref ID J:102707]

Grounds MD; McGeachie JK. 1992. Skeletal muscle regeneration after crush injury in dystrophic mdx mice: an autoradiographic study. Muscle Nerve 15(5):580-6. [PubMed: 1584249]  [MGI Ref ID J:1466]

Guido AN; Campos GE; Neto HS; Marques MJ; Minatel E. 2010. Fiber type composition of the sternomastoid and diaphragm muscles of dystrophin-deficient mdx mice. Anat Rec (Hoboken) 293(10):1722-8. [PubMed: 20730859]  [MGI Ref ID J:175593]

Guo C; Willem M; Werner A; Raivich G; Emerson M; Neyses L; Mayer U. 2006. Absence of alpha7 integrin in dystrophin-deficient mice causes a myopathy similar to Duchenne muscular dystrophy. Hum Mol Genet 15(6):989-98. [PubMed: 16476707]  [MGI Ref ID J:106836]

Guo Y; Petrof BJ; Hussain SN. 2001. Expression and localization of protein inhibitor of neuronal nitric oxide synthase in Duchenne muscular dystrophy. Muscle Nerve 24(11):1468-75. [PubMed: 11745948]  [MGI Ref ID J:116637]

Gurpur PB ; Liu J ; Burkin DJ ; Kaufman SJ. 2009. Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. Am J Pathol 174(3):999-1008. [PubMed: 19179609]  [MGI Ref ID J:146661]

Gussoni E; Soneoka Y; Strickland CD; Buzney EA; Khan MK; Flint AF; Kunkel LM; Mulligan RC. 1999. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401(6751):390-4. [PubMed: 10517639]  [MGI Ref ID J:57901]

Hack AA; Lam MY; Cordier L; Shoturma DI; Ly CT; Hadhazy MA; Hadhazy MR; Sweeney HL; McNally EM. 2000. Differential requirement for individual sarcoglycans and dystrophin in the assembly and function of the dystrophin-glycoprotein complex. J Cell Sci 113(Pt 14):2535-44. [PubMed: 10862711]  [MGI Ref ID J:76730]

Haenggi T; Schaub MC; Fritschy JM. 2005. Molecular heterogeneity of the dystrophin-associated protein complex in the mouse kidney nephron: differential alterations in the absence of utrophin and dystrophin. Cell Tissue Res 319(2):299-313. [PubMed: 15565469]  [MGI Ref ID J:105083]

Hager M; Bigotti MG; Meszaros R; Carmignac V; Holmberg J; Allamand V; Akerlund M; Kalamajski S; Brancaccio A; Mayer U; Durbeej M. 2008. Cib2 binds integrin alpha7Bbeta1D and is reduced in laminin alpha2 chain-deficient muscular dystrophy. J Biol Chem 283(36):24760-9. [PubMed: 18611855]  [MGI Ref ID J:142018]

Hainsey TA; Senapati S; Kuhn DE; Rafael JA. 2003. Cardiomyopathic features associated with muscular dystrophy are independent of dystrophin absence in cardiovasculature. Neuromuscul Disord 13(4):294-302. [PubMed: 12868498]  [MGI Ref ID J:132534]

Han R; Bansal D; Miyake K; Muniz VP; Weiss RM; McNeil PL; Campbell KP. 2007. Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury. J Clin Invest 117(7):1805-13. [PubMed: 17607357]  [MGI Ref ID J:124212]

Han R; Frett EM; Levy JR; Rader EP; Lueck JD; Bansal D; Moore SA; Ng R; Beltran-Valero de Bernabe D; Faulkner JA; Campbell KP. 2010. Genetic ablation of complement C3 attenuates muscle pathology in dysferlin-deficient mice. J Clin Invest 120(12):4366-74. [PubMed: 21060153]  [MGI Ref ID J:171870]

Han R; Rader EP; Levy JR; Bansal D; Campbell KP. 2011. Dystrophin deficiency exacerbates skeletal muscle pathology in dysferlin-null mice. Skelet Muscle 1(1):35. [PubMed: 22132688]  [MGI Ref ID J:183725]

Handschin C; Kobayashi YM; Chin S; Seale P; Campbell KP; Spiegelman BM. 2007. PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev 21(7):770-83. [PubMed: 17403779]  [MGI Ref ID J:120376]

Hanft LM; Bogan DJ; Mayer U; Kaufman SJ; Kornegay JN; Ervasti JM. 2007. Cytoplasmic gamma-actin expression in diverse animal models of muscular dystrophy. Neuromuscul Disord 17(7):569-74. [PubMed: 17475492]  [MGI Ref ID J:124551]

Hanft LM; Rybakova IN; Patel JR; Rafael-Fortney JA; Ervasti JM. 2006. Cytoplasmic gamma-actin contributes to a compensatory remodeling response in dystrophin-deficient muscle. Proc Natl Acad Sci U S A 103(14):5385-90. [PubMed: 16565216]  [MGI Ref ID J:108299]

Hara H; Nolan PM; Scott MO; Bucan M; Wakayama Y; Fischbeck KH. 2002. Running endurance abnormality in mdx mice. Muscle Nerve 25(2):207-11. [PubMed: 11870688]  [MGI Ref ID J:116636]

Harcourt LJ; Holmes AG; Gregorevic P; Schertzer JD; Stupka N; Plant DR; Lynch GS. 2005. Interleukin-15 Administration Improves Diaphragm Muscle Pathology and Function in Dystrophic mdx Mice. Am J Pathol 166(4):1131-41. [PubMed: 15793293]  [MGI Ref ID J:97063]

Harper SQ; Crawford RW; DelloRusso C; Chamberlain JS. 2002. Spectrin-like repeats from dystrophin and alpha-actinin-2 are not functionally interchangeable. Hum Mol Genet 11(16):1807-15. [PubMed: 12140183]  [MGI Ref ID J:118411]

Harper SQ; Hauser MA; DelloRusso C; Duan D; Crawford RW; Phelps SF; Harper HA; Robinson AS; Engelhardt JF; Brooks SV; Chamberlain JS. 2002. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8(3):253-61. [PubMed: 11875496]  [MGI Ref ID J:109823]

Hartel JV; Granchelli JA; Hudecki MS; Pollina CM; Gosselin LE. 2001. Impact of prednisone on TGF-beta1 and collagen in diaphragm muscle from mdx mice. Muscle Nerve 24(3):428-32. [PubMed: 11353432]  [MGI Ref ID J:116196]

Hartigan-O'Connor D; Kirk CJ; Crawford R; Mule JJ; Chamberlain JS. 2001. Immune evasion by muscle-specific gene expression in dystrophic muscle. Mol Ther 4(6):525-33. [PubMed: 11735336]  [MGI Ref ID J:127849]

Haslett JN; Kang PB; Han M; Kho AT; Sanoudou D; Volinski JM; Beggs AH; Kohane IS; Kunkel LM. 2005. The influence of muscle type and dystrophin deficiency on murine expression profiles. Mamm Genome 16(10):739-48. [PubMed: 16261416]  [MGI Ref ID J:102635]

Hawke TJ; Atkinson DJ; Kanatous SB; Van der Ven PF; Goetsch SC; Garry DJ. 2007. Xin, an actin binding protein, is expressed within muscle satellite cells and newly regenerated skeletal muscle fibers. Am J Physiol Cell Physiol 293(5):C1636-44. [PubMed: 17855775]  [MGI Ref ID J:128715]

Haws CM; Lansman JB. 1991. Developmental regulation of mechanosensitive calcium channels in skeletal muscle from normal and mdx mice. Proc R Soc Lond B Biol Sci 245(1314):173-7. [PubMed: 1684042]  [MGI Ref ID J:3912]

Hayes A; Lynch GS; Williams DA. 1993. The effects of endurance exercise on dystrophic mdx mice. I. Contractile and histochemical properties of intact muscles. Proc R Soc Lond B Biol Sci 253(1336):19-25. [PubMed: 8396774]  [MGI Ref ID J:14058]

Hayes A; Williams DA. 1998. Contractile function and low-intensity exercise effects of old dystrophic (mdx) mice. Am J Physiol 274(4 Pt 1):C1138-44. [PubMed: 9575811]  [MGI Ref ID J:47176]

He WA; Berardi E; Cardillo VM; Acharyya S; Aulino P; Thomas-Ahner J; Wang J; Bloomston M; Muscarella P; Nau P; Shah N; Butchbach ME; Ladner K; Adamo S; Rudnicki MA; Keller C; Coletti D; Montanaro F; Guttridge DC. 2013. NF-kappaB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest :. [PubMed: 24084740]  [MGI Ref ID J:203988]

Head S; Williams D; Stephenson G. 1994. Increased susceptibility of EDL muscles from mdx mice to damage induced by contraction with stretch [letter; comment] J Muscle Res Cell Motil 15(4):490-2. [PubMed: 7848493]  [MGI Ref ID J:23202]

Head SI; Williams DA; Stephenson DG. 1992. Abnormalities in structure and function of limb skeletal muscle fibres of dystrophic mdx mice. Proc R Soc Lond B Biol Sci 248(1322):163-9. [PubMed: 1352891]  [MGI Ref ID J:1202]

Heimann P; Augustin M; Wieneke S; Heising S; Jockusch H. 1998. Mutual interference of myotonia and muscular dystrophy in the mouse: a study on ADR-MDX double mutants. Neuromuscul Disord 8(8):551-60. [PubMed: 10093061]  [MGI Ref ID J:52182]

Henriques-Pons A; Yu Q; Rayavarapu S; Cohen TV; Ampong B; Cha HJ; Jahnke V; Van der Meulen J; Wang D; Jiang W; Kandimalla ER; Agrawal S; Spurney CF; Nagaraju K. 2014. Role of Toll-like receptors in the pathogenesis of dystrophin-deficient skeletal and heart muscle. Hum Mol Genet 23(10):2604-17. [PubMed: 24368419]  [MGI Ref ID J:209059]

Hindi SM; Sato S; Choi Y; Kumar A. 2014. Distinct roles of TRAF6 at early and late stages of muscle pathology in the mdx model of Duchenne muscular dystrophy. Hum Mol Genet 23(6):1492-505. [PubMed: 24163132]  [MGI Ref ID J:206217]

Hirota M; Furukawa Y; Shinoda I; Yoneoka T; Ito T; Furukawa S; Hayashi K. 1994. Changes in nerve growth factor content of the submaxillary gland in the genetically dystrophic (mdx) mouse. J Neurol Sci 121(2):176-82. [PubMed: 8158212]  [MGI Ref ID J:16617]

Hnia K; Gayraud J; Hugon G; Ramonatxo M; De La Porte S; Matecki S; Mornet D. 2008. L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. Am J Pathol 172(6):1509-19. [PubMed: 18458097]  [MGI Ref ID J:136234]

Hnia K; Hugon G; Masmoudi A; Mercier J; Rivier F; Mornet D. 2006. Effect of beta-dystroglycan processing on utrophin/Dp116 anchorage in normal and mdx mouse Schwann cell membrane. Neuroscience 141(2):607-620. [PubMed: 16735092]  [MGI Ref ID J:111763]

Hollingworth S; Marshall MW; Robson E. 1990. Excitation contraction coupling in normal and mdx mice. Muscle Nerve 13(1):16-20. [PubMed: 2183043]  [MGI Ref ID J:115990]

Hourde C; Joanne P; Medja F; Mougenot N; Jacquet A; Mouisel E; Pannerec A; Hatem S; Butler-Browne G; Agbulut O; Ferry A. 2013. Voluntary Physical Activity Protects from Susceptibility to Skeletal Muscle Contraction-Induced Injury But Worsens Heart Function in mdx Mice. Am J Pathol 182(5):1509-18. [PubMed: 23465861]  [MGI Ref ID J:195304]

Howard PL; Dally GY; Wong MH; Ho A; Weleber RG; Pillers DA; Ray PN. 1998. Localization of dystrophin isoform Dp71 to the inner limiting membrane of the retina suggests a unique functional contribution of Dp71 in the retina. Hum Mol Genet 7(9):1385-91. [PubMed: 9700191]  [MGI Ref ID J:115134]

Hoyte K; Jayasinha V; Xia B; Martin PT. 2004. Transgenic overexpression of dystroglycan does not inhibit muscular dystrophy in mdx mice. Am J Pathol 164(2):711-8. [PubMed: 14742274]  [MGI Ref ID J:88377]

Hulmi JJ; Oliveira BM; Silvennoinen M; Hoogaars WM; Pasternack A; Kainulainen H; Ritvos O. 2013. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice. Am J Physiol Endocrinol Metab 305(2):E171-82. [PubMed: 23695214]  [MGI Ref ID J:199262]

Hutter OF; Burton FL; Bovell DL. 1991. Mechanical properties of normal and mdx mouse sarcolemma: bearing on function of dystrophin. J Muscle Res Cell Motil 12(6):585-9. [PubMed: 1791198]  [MGI Ref ID J:2820]

Huynh T; Uaesoontrachoon K; Quinn JL; Tatem KS; Heier CR; Van Der Meulen JH; Yu Q; Harris M; Nolan CJ; Haegeman G; Grounds MD; Nagaraju K. 2013. Selective modulation through the glucocorticoid receptor ameliorates muscle pathology in mdx mice. J Pathol 231(2):223-35. [PubMed: 23794417]  [MGI Ref ID J:202506]

Im WB; Phelps SF; Copen EH; Adams EG; Slightom JL; Chamberlain JS. 1996. Differential expression of dystrophin isoforms in strains of mdx mice with different mutations. Hum Mol Genet 5(8):1149-53. [PubMed: 8842734]  [MGI Ref ID J:34517]

Inanlou MR; Dhillon GS; Belliveau AC; Reid GA; Ying C; Rudnicki MA; Kablar B. 2003. A significant reduction of the diaphragm in mdx:MyoD-/-(9th) embryos suggests a role for MyoD in the diaphragm development. Dev Biol 261(2):324-36. [PubMed: 14499644]  [MGI Ref ID J:85548]

Inanlou MR; Kablar B. 2003. Abnormal development of the diaphragm in mdx:MyoD-/-(9th) embryos leads to pulmonary hypoplasia. Int J Dev Biol 47(5):363-71. [PubMed: 12895031]  [MGI Ref ID J:100052]

Ishizaki M; Suga T; Kimura E; Shiota T; Kawano R; Uchida Y; Uchino K; Yamashita S; Maeda Y; Uchino M. 2008. Mdx respiratory impairment following fibrosis of the diaphragm. Neuromuscul Disord 18(4):342-8. [PubMed: 18358722]  [MGI Ref ID J:139598]

Iwata Y; Katanosaka Y; Arai Y; Shigekawa M; Wakabayashi S. 2009. Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet 18(5):824-34. [PubMed: 19050039]  [MGI Ref ID J:145007]

Janke A; Upadhaya R; Snow WM; Anderson JE. 2013. A new look at cytoskeletal NOS-1 and beta-dystroglycan changes in developing muscle and brain in control and mdx dystrophic mice. Dev Dyn 242(12):1369-81. [PubMed: 23940011]  [MGI Ref ID J:203003]

Janssen PM. 2010. Kinetics of cardiac muscle contraction and relaxation are linked and determined by properties of the cardiac sarcomere. Am J Physiol Heart Circ Physiol 299(4):H1092-9. [PubMed: 20656885]  [MGI Ref ID J:165683]

Janssen PM; Hiranandani N; Mays TA; Rafael-Fortney JA. 2005. Utrophin deficiency worsens cardiac contractile dysfunction present in dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol 289(6):H2373-8. [PubMed: 16024571]  [MGI Ref ID J:104747]

Jasmin BJ; Alameddine H; Lunde JA; Stetzkowski-Marden F; Collin H; Tinsley JM; Davies KE; Tome FM; Parry DJ; Cartaud J. 1995. Expression of utrophin and its mRNA in denervated mdx mouse muscle. FEBS Lett 374(3):393-8. [PubMed: 7589578]  [MGI Ref ID J:29669]

Joanne P; Hourde C; Ochala J; Cauderan Y; Medja F; Vignaud A; Mouisel E; Hadj-Said W; Arandel L; Garcia L; Goyenvalle A; Mounier R; Zibroba D; Sakamato K; Butler-Browne G; Agbulut O; Ferry A. 2012. Impaired adaptive response to mechanical overloading in dystrophic skeletal muscle. PLoS One 7(4):e35346. [PubMed: 22511986]  [MGI Ref ID J:187085]

Johnson BD; Scheuer T; Catterall WA. 2005. Convergent regulation of skeletal muscle Ca2+ channels by dystrophin, the actin cytoskeleton, and cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 102(11):4191-6. [PubMed: 15753322]  [MGI Ref ID J:97171]

Jones GL; Sang E; Goddard C; Mortishire-Smith RJ; Sweatman BC; Haselden JN; Davies K; Grace AA; Clarke K; Griffin JL. 2005. A functional analysis of mouse models of cardiac disease through metabolic profiling. J Biol Chem 280(9):7530-9. [PubMed: 15546876]  [MGI Ref ID J:105049]

Jorgensen LH; Blain A; Greally E; Laval SH; Blamire AM; Davison BJ; Brinkmeier H; MacGowan GA; Schroder HD; Bushby K; Straub V; Lochmuller H. 2011. Long-term blocking of calcium channels in mdx mice results in differential effects on heart and skeletal muscle. Am J Pathol 178(1):273-83. [PubMed: 21224064]  [MGI Ref ID J:168085]

Jorgensen LH; Jensen CH; Wewer UM; Schroder HD. 2007. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice. Am J Pathol 171(5):1599-607. [PubMed: 17982130]  [MGI Ref ID J:127259]

Judge LM; Arnett AL; Banks GB; Chamberlain JS. 2011. Expression of the dystrophin isoform Dp116 preserves functional muscle mass and extends lifespan without preventing dystrophy in severely dystrophic mice. Hum Mol Genet 20(24):4978-90. [PubMed: 21949353]  [MGI Ref ID J:177877]

Jung C; Martins AS; Niggli E; Shirokova N. 2008. Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways. Cardiovasc Res 77(4):766-73. [PubMed: 18056762]  [MGI Ref ID J:161914]

Kaczor JJ; Hall JE; Payne E; Tarnopolsky MA. 2007. Low intensity training decreases markers of oxidative stress in skeletal muscle of mdx mice. Free Radic Biol Med 43(1):145-54. [PubMed: 17561103]  [MGI Ref ID J:122382]

Kafadar KA; Yi L; Ahmad Y; So L; Rossi F; Pavlath GK. 2009. Sca-1 expression is required for efficient remodeling of the extracellular matrix during skeletal muscle regeneration. Dev Biol 326(1):47-59. [PubMed: 19059231]  [MGI Ref ID J:145180]

Kamogawa Y; Biro S; Maeda M; Setoguchi M; Hirakawa T; Yoshida H; Tei C. 2001. Dystrophin-deficient myocardium is vulnerable to pressure overload in vivo. Cardiovasc Res 50(3):509-15. [PubMed: 11376626]  [MGI Ref ID J:162753]

Kanai A; Epperly M; Pearce L; Birder L; Zeidel M; Meyers S; Greenberger J; de Groat W; Apodaca G; Peterson J. 2004. Differing roles of mitochondrial nitric oxide synthase in cardiomyocytes and urothelial cells. Am J Physiol Heart Circ Physiol 286(1):H13-21. [PubMed: 14684357]  [MGI Ref ID J:87605]

Kanai AJ; Pearce LL; Clemens PR; Birder LA; VanBibber MM; Choi SY; de Groat WC; Peterson J. 2001. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci U S A 98(24):14126-31. [PubMed: 11717466]  [MGI Ref ID J:125463]

Karpati G; Zubrzycka-Gaarn EE; Carpenter S; Bulman DE; Ray PN; Worton RG. 1990. Age-related conversion of dystrophin-negative to -positive fiber segments of skeletal but not cardiac muscle fibers in heterozygote mdx mice. J Neuropathol Exp Neurol 49(2):96-105. [PubMed: 2407807]  [MGI Ref ID J:121251]

Kayali R; Ku JM; Khitrov G; Jung ME; Prikhodko O; Bertoni C. 2012. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum Mol Genet 21(18):4007-20. [PubMed: 22692682]  [MGI Ref ID J:187428]

Kendall GC; Mokhonova EI; Moran M; Sejbuk NE; Wang DW; Silva O; Wang RT; Martinez L; Lu QL; Damoiseaux R; Spencer MJ; Nelson SF; Miceli MC. 2012. Dantrolene enhances antisense-mediated exon skipping in human and mouse models of Duchenne muscular dystrophy. Sci Transl Med 4(164):164ra160. [PubMed: 23241744]  [MGI Ref ID J:194409]

Khairallah M; Khairallah R; Young ME; Dyck JR; Petrof BJ; Des Rosiers C. 2007. Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy. J Mol Cell Cardiol 43(2):119-29. [PubMed: 17583724]  [MGI Ref ID J:123076]

Khairallah M; Khairallah RJ; Young ME; Allen BG; Gillis MA; Danialou G; Deschepper CF; Petrof BJ; Des Rosiers C. 2008. Sildenafil and cardiomyocyte-specific cGMP signaling prevent cardiomyopathic changes associated with dystrophin deficiency. Proc Natl Acad Sci U S A 105(19):7028-33. [PubMed: 18474859]  [MGI Ref ID J:134880]

Kim JH; Lawler JM. 2012. Amplification of proinflammatory phenotype, damage, and weakness by oxidative stress in the diaphragm muscle of mdx mice. Free Radic Biol Med 52(9):1597-606. [PubMed: 22330042]  [MGI Ref ID J:183264]

Kinoshita I; Vilquin JT; Tremblay JP. 1995. Pretreatment of myoblast cultures with basic fibroblast growth factor increases the efficacy of their transplantation in mdx mice. Muscle Nerve 18(8):834-41. [PubMed: 7630343]  [MGI Ref ID J:115863]

Kitamoto T; Hanaoka K. 2010. Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells 28(12):2205-16. [PubMed: 20960513]  [MGI Ref ID J:168858]

Knuesel I; Mastrocola M; Zuellig RA; Bornhauser B; Schaub MC; Fritschy JM. 1999. Short communication: altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice). Eur J Neurosci 11(12):4457-62. [PubMed: 10594673]  [MGI Ref ID J:89883]

Knuesel I; Riban V; Zuellig RA; Schaub MC; Grady RM; Sanes JR; Fritschy JM. 2002. Increased vulnerability to kainate-induced seizures in utrophin-knockout mice. Eur J Neurosci 15(9):1474-84. [PubMed: 12028357]  [MGI Ref ID J:89397]

Kobayashi K. 1993. Effect of submaximal treadmill running on skeletal muscles of MDX mice Jikeikai Med J 40:453-63.  [MGI Ref ID J:17056]

Kobayashi YM; Rader EP; Crawford RW; Iyengar NK; Thedens DR; Faulkner JA; Parikh SV; Weiss RM; Chamberlain JS; Moore SA; Campbell KP. 2008. Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature 456(7221):511-5. [PubMed: 18953332]  [MGI Ref ID J:144084]

Koenig X; Dysek S; Kimbacher S; Mike AK; Cervenka R; Lukacs P; Nagl K; Dang XB; Todt H; Bittner RE; Hilber K. 2011. Voltage-gated ion channel dysfunction precedes cardiomyopathy development in the dystrophic heart. PLoS One 6(5):e20300. [PubMed: 21677768]  [MGI Ref ID J:196253]

Koenig X; Rubi L; Obermair GJ; Cervenka R; Dang XB; Lukacs P; Kummer S; Bittner RE; Kubista H; Todt H; Hilber K. 2014. Enhanced currents through L-type calcium channels in cardiomyocytes disturb the electrophysiology of the dystrophic heart. Am J Physiol Heart Circ Physiol 306(4):H564-73. [PubMed: 24337461]  [MGI Ref ID J:208702]

Kolodziejczyk SM; Walsh GS; Balazsi K; Seale P; Sandoz J; Hierlihy AM; Rudnicki MA; Chamberlain JS; Miller FD; Megeney LA. 2001. Activation of JNK1 contributes to dystrophic muscle pathogenesis. Curr Biol 11(16):1278-82. [PubMed: 11525743]  [MGI Ref ID J:71463]

Koltgen D; Franke C. 1994. The coexistence of embryonic and adult acetylcholine receptors in sarcolemma of mdx dystrophic mouse muscle: an effect of regeneration or muscular dystrophy? Neurosci Lett 173(1-2):79-82. [PubMed: 7936429]  [MGI Ref ID J:21986]

Kong J; Anderson JE. 2001. Dynamic restoration of dystrophin to dystrophin-deficient myotubes. Muscle Nerve 24(1):77-88. [PubMed: 11150969]  [MGI Ref ID J:116200]

Kong J; Anderson JE. 1999. Dystrophin is required for organizing large acetylcholine receptor aggregates. Brain Res 839(2):298-304. [PubMed: 10519053]  [MGI Ref ID J:57508]

Korner Z; Fontes-Oliveira CC; Holmberg J; Carmignac V; Durbeej M. 2014. Bortezomib Partially Improves Laminin alpha2 Chain-Deficient Muscular Dystrophy. Am J Pathol 184(5):1518-28. [PubMed: 24631023]  [MGI Ref ID J:208398]

Kossler N; Stricker S; Rodelsperger C; Robinson PN; Kim J; Dietrich C; Osswald M; Kuhnisch J; Stevenson DA; Braun T; Mundlos S; Kolanczyk M. 2011. Neurofibromin (Nf1) is required for skeletal muscle development. Hum Mol Genet 20(14):2697-709. [PubMed: 21478499]  [MGI Ref ID J:173779]

Krag TO; Bogdanovich S; Jensen CJ; Fischer MD; Hansen-Schwartz J; Javazon EH; Flake AW; Edvinsson L; Khurana TS. 2004. Heregulin ameliorates the dystrophic phenotype in mdx mice. Proc Natl Acad Sci U S A 101(38):13856-60. [PubMed: 15365169]  [MGI Ref ID J:92602]

Krahn MJ; Anderson JE. 1994. Anabolic steroid treatment increases myofiber damage in mdx mouse muscular dystrophy. J Neurol Sci 125(2):138-46. [PubMed: 7807158]  [MGI Ref ID J:19960]

Kramer R; Lochmuller H; Abicht A; Rudel R; Brinkmeier H. 1998. Myotonic ADR-MDX mutant mice show less severe muscular dystrophy than MDX mice. Neuromuscul Disord 8(8):542-50. [PubMed: 10093060]  [MGI Ref ID J:52181]

Kronqvist P; Kawaguchi N; Albrechtsen R; Xu X; Schroder HD; Moghadaszadeh B; Nielsen FC; Frohlich C; Engvall E; Wewer UM. 2002. ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice. Am J Pathol 161(5):1535-40. [PubMed: 12414501]  [MGI Ref ID J:79904]

Kueh SL; Dempster J; Head SI; Morley JW. 2011. Reduced postsynaptic GABA(A) receptor number and enhanced gaboxadol induced change in holding currents in Purkinje cells of the dystrophin-deficient mdx mouse. Neurobiol Dis :. [PubMed: 21601636]  [MGI Ref ID J:173345]

Kumar A; Bhatnagar S; Kumar A. 2010. Matrix metalloproteinase inhibitor batimastat alleviates pathology and improves skeletal muscle function in dystrophin-deficient mdx mice. Am J Pathol 177(1):248-60. [PubMed: 20472898]  [MGI Ref ID J:162127]

Kumar A; Khandelwal N; Malya R; Reid MB; Boriek AM. 2004. Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB J 18(1):102-13. [PubMed: 14718391]  [MGI Ref ID J:87819]

Kuno A; Hori YS; Hosoda R; Tanno M; Miura T; Shimamoto K; Horio Y. 2013. Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of p300 protein. J Biol Chem 288(8):5963-72. [PubMed: 23297412]  [MGI Ref ID J:196087]

Kuraitis D; Berardinelli MG; Suuronen EJ; Musaro A. 2013. A necrotic stimulus is required to maximize matrix-mediated myogenesis in mice. Dis Model Mech 6(3):793-801. [PubMed: 23471914]  [MGI Ref ID J:196369]

Kurek JB; Nouri S; Kannourakis G; Murphy M; Austin L. 1996. Leukemia inhibitory factor and interleukin-6 are produced by diseased and regenerating skeletal muscle. Muscle Nerve 19(10):1291-301. [PubMed: 8808655]  [MGI Ref ID J:116333]

Kurihara T; Kishi M; Saito N; Komoto M; Hidaka T; Kinoshita M. 1990. Electrical myotonia and cataract in X-linked muscular dystrophy (mdx) mouse. J Neurol Sci 99(1):83-92. [PubMed: 2250175]  [MGI Ref ID J:142492]

Kyrychenko S; Polakova E; Kang C; Pocsai K; Ullrich ND; Niggli E; Shirokova N. 2013. Hierarchical accumulation of RyR post-translational modifications drives disease progression in dystrophic cardiomyopathy. Cardiovasc Res 97(4):666-75. [PubMed: 23263329]  [MGI Ref ID J:196427]

Lagrota-Candido J; Canella I; Savino W; Quirico-Santos T. 1999. Expression of extracellular matrix ligands and receptors in the muscular tissue and draining lymph nodes of mdx dystrophic mice. Clin Immunol 93(2):143-51. [PubMed: 10527690]  [MGI Ref ID J:114168]

Lagrota-Candido J; Vasconcellos R; Cavalcanti M; Bozza M; Savino W; Quirico-Santos T. 2002. Resolution of skeletal muscle inflammation in mdx dystrophic mouse is accompanied by increased immunoglobulin and interferon-gamma production. Int J Exp Pathol 83(3):121-32. [PubMed: 12383191]  [MGI Ref ID J:79589]

Lai Y; Zhao J; Yue Y; Duan D. 2013. alpha2 and alpha3 helices of dystrophin R16 and R17 frame a microdomain in the alpha1 helix of dystrophin R17 for neuronal NOS binding. Proc Natl Acad Sci U S A 110(2):525-30. [PubMed: 23185009]  [MGI Ref ID J:192576]

Lancioni A; Luisa Rotundo I; Monique Kobayashi Y; D'Orsi L; Aurino S; Nigro G; Piluso G; Acampora D; Cacciottolo M; Campbell KP; Nigro V. 2011. Combined deficiency of alpha and epsilon sarcoglycan disrupts the cardiac dystrophin complex. Hum Mol Genet 20(23):4644-54. [PubMed: 21890494]  [MGI Ref ID J:177563]

Lang JM; Esser KA; Dupont-Versteegden EE. 2004. Altered activity of signaling pathways in diaphragm and tibialis anterior muscle of dystrophic mice. Exp Biol Med (Maywood) 229(6):503-11. [PubMed: 15169969]  [MGI Ref ID J:102072]

Law DJ; Allen DL; Tidball JG. 1994. Talin, vinculin and DRP (utrophin) concentrations are increased at mdx myotendinous junctions following onset of necrosis. J Cell Sci 107(Pt 6):1477-83. [PubMed: 7962191]  [MGI Ref ID J:19098]

Laws N; Hoey A. 2004. Progression of kyphosis in mdx mice. J Appl Physiol 97(5):1970-7. [PubMed: 15234960]  [MGI Ref ID J:103692]

Lee CC; Pons F; Jones PG; Bies RD; Schlang AM; Leger JJ; Caskey CT. 1993. Mdx transgenic mouse: restoration of recombinant dystrophin to the dystrophic muscle. Hum Gene Ther 4(3):273-81. [PubMed: 8338875]  [MGI Ref ID J:21429]

Lefaucheur JP; Pastoret C; Sebille A. 1995. Phenotype of dystrophinopathy in old mdx mice. Anat Rec 242(1):70-6. [PubMed: 7604983]  [MGI Ref ID J:25057]

Lefaucheur JP; Sebille A. 1996. Features of dystrophy in smooth and skeletal muscles of mdx mice. Muscle Nerve 19(6):793-4. [PubMed: 8609936]  [MGI Ref ID J:116334]

Leng Y; Zheng Z; Zhou C; Zhang C; Shi X; Zhang W. 2012. A comparative study of bone marrow mesenchymal stem cell functionality in C57BL and mdx mice. Neurosci Lett 523(2):139-44. [PubMed: 22766138]  [MGI Ref ID J:188800]

Levi S; Grady RM; Henry MD; Campbell KP; Sanes JR; Craig AM. 2002. Dystroglycan is selectively associated with inhibitory GABAergic synapses but is dispensable for their differentiation. J Neurosci 22(11):4274-85. [PubMed: 12040032]  [MGI Ref ID J:125567]

Lewis C; Ohlendieck K. 2010. Proteomic profiling of naturally protected extraocular muscles from the dystrophin-deficient mdx mouse. Biochem Biophys Res Commun 396(4):1024-9. [PubMed: 20471957]  [MGI Ref ID J:162430]

Li D; Long C; Yue Y; Duan D. 2009. Sub-physiological sarcoglycan expression contributes to compensatory muscle protection in mdx mice. Hum Mol Genet 18(7):1209-20. [PubMed: 19131360]  [MGI Ref ID J:146188]

Li D; Yue Y; Duan D. 2010. Marginal level dystrophin expression improves clinical outcome in a strain of dystrophin/utrophin double knockout mice. PLoS One 5(12):e15286. [PubMed: 21187970]  [MGI Ref ID J:168677]

Li D; Yue Y; Lai Y; Hakim CH; Duan D. 2011. Nitrosative stress elicited by nNOSmicro delocalization inhibits muscle force in dystrophin-null mice. J Pathol 223(1):88-98. [PubMed: 21125668]  [MGI Ref ID J:167308]

Li H; Mittal A; Makonchuk DY; Bhatnagar S; Kumar A. 2009. Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy. Hum Mol Genet 18(14):2584-98. [PubMed: 19401296]  [MGI Ref ID J:150030]

Li R; Ren M; Chen N; Luo M; Zhang Z; Wu J. 2012. Vitronectin increases vascular permeability by promoting VE-cadherin internalization at cell junctions. PLoS One 7(5):e37195. [PubMed: 22606350]  [MGI Ref ID J:187242]

Licursi V; Caiello I; Lombardi L; De Stefano ME; Negri R; Paggi P. 2012. Lack of dystrophin in mdx mice modulates the expression of genes involved in neuron survival and differentiation. Eur J Neurosci 35(5):691-701. [PubMed: 22309284]  [MGI Ref ID J:184295]

Lin B; Govindan S; Lee K; Zhao P; Han R; Runte KE; Craig R; Palmer BM; Sadayappan S. 2013. Cardiac myosin binding protein-C plays no regulatory role in skeletal muscle structure and function. PLoS One 8(7):e69671. [PubMed: 23936073]  [MGI Ref ID J:204454]

Lin X; Miller JW; Mankodi A; Kanadia RN; Yuan Y; Moxley RT; Swanson MS; Thornton CA. 2006. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 15(13):2087-97. [PubMed: 16717059]  [MGI Ref ID J:112061]

Liu J; Milner DJ; Boppart MD; Ross RS; Kaufman SJ. 2012. beta1D chain increases alpha7beta1 integrin and laminin and protects against sarcolemmal damage in mdx mice. Hum Mol Genet 21(7):1592-603. [PubMed: 22180459]  [MGI Ref ID J:181562]

Liu N; Williams AH; Maxeiner JM; Bezprozvannaya S; Shelton JM; Richardson JA; Bassel-Duby R; Olson EN. 2012. microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest 122(6):2054-65. [PubMed: 22546853]  [MGI Ref ID J:188300]

Ljubicic V; Khogali S; Renaud JM; Jasmin BJ. 2012. Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle. Am J Physiol Cell Physiol 302(1):C110-21. [PubMed: 21940670]  [MGI Ref ID J:180633]

Ljubicic V; Miura P; Burt M; Boudreault L; Khogali S; Lunde JA; Renaud JM; Jasmin BJ. 2011. Chronic AMPK activation evokes the slow, oxidative myogenic program and triggers beneficial adaptations in mdx mouse skeletal muscle. Hum Mol Genet 20(17):3478-93. [PubMed: 21659335]  [MGI Ref ID J:174458]

Lombardi L; De Stefano ME; Paggi P. 2008. Components of the NGF signaling complex are altered in mdx mouse superior cervical ganglion and its target organs. Neurobiol Dis 32(3):402-11. [PubMed: 18725298]  [MGI Ref ID J:142260]

Louboutin JP; Fichter-Gagnepain V; Thaon E; Fardeau M. 1993. Morphometric analysis of mdx diaphragm muscle fibres. Comparison with hindlimb muscles. Neuromuscul Disord 3(5-6):463-9. [PubMed: 8186695]  [MGI Ref ID J:19035]

Loufrani L; Levy BI; Henrion D. 2002. Defect in microvascular adaptation to chronic changes in blood flow in mice lacking the gene encoding for dystrophin. Circ Res 91(12):1183-9. [PubMed: 12480820]  [MGI Ref ID J:108996]

Lovering RM; Michaelson L; Ward CW. 2009. Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling. Am J Physiol Cell Physiol 297(3):C571-80. [PubMed: 19605736]  [MGI Ref ID J:152090]

Lu A; Poddar M; Tang Y; Proto JD; Sohn J; Mu X; Oyster N; Wang B; Huard J. 2014. Rapid depletion of muscle progenitor cells in dystrophic mdx/utrophin-/- mice. Hum Mol Genet 23(18):4786-800. [PubMed: 24781208]  [MGI Ref ID J:213595]

Lu S; Hoey A. 2000. Changes in function of cardiac receptors mediating the effects of the autonomic nervous system in the muscular dystrophy (MDX) mouse J Mol Cell Cardiol 32(1):143-52. [PubMed: 10652198]  [MGI Ref ID J:60523]

Lucas-Heron B; Schmitt N; Ollivier B. 1994. Mdx mouse skeletal muscle: could a mitochondrial factor be responsible for the absence of progressive necrosis? Neurosci Lett 169(1-2):97-100. [PubMed: 8047301]  [MGI Ref ID J:20768]

Lueck JD; Lungu C; Mankodi A; Osborne RJ; Welle SL; Dirksen RT; Thornton CA. 2007. Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1. Am J Physiol Cell Physiol 292(4):C1291-7. [PubMed: 17135300]  [MGI Ref ID J:125885]

Luz MA; Marques MJ; Santo Neto H. 2002. Impaired regeneration of dystrophin-deficient muscle fibers is caused by exhaustion of myogenic cells. Braz J Med Biol Res 35(6):691-5. [PubMed: 12045834]  [MGI Ref ID J:102527]

Lynch GS; Hayes A; Lam MH; Williams DA. 1993. The effects of endurance exercise on dystrophic mdx mice. II. Contractile properties of skinned muscle fibres. Proc R Soc Lond B Biol Sci 253(1336):27-33. [PubMed: 8396775]  [MGI Ref ID J:15490]

Lynch GS; Hinkle RT; Chamberlain JS; Brooks SV; Faulkner JA. 2001. Force and power output of fast and slow skeletal muscles from mdx mice 6-28 months old. J Physiol 535(Pt 2):591-600. [PubMed: 11533147]  [MGI Ref ID J:106518]

Lynch GS; Hinkle RT; Faulkner JA. 2000. Power output of fast and slow skeletal muscles of mdx (dystrophic) and control mice after clenbuterol treatment. Exp Physiol 85(3):295-9. [PubMed: 10825417]  [MGI Ref ID J:62414]

Lynch GS; Rafael JA; Chamberlain JS; Faulkner JA. 2000. Contraction-induced injury to single permeabilized muscle fibers from mdx, transgenic mdx, and control mice Am J Physiol Cell Physiol 279(4):C1290-4. [PubMed: 11003610]  [MGI Ref ID J:65220]

Lynch GS; Rafael JA; Hinkle RT; Cole NM; Chamberlain JS; Faulkner JA. 1997. Contractile properties of diaphragm muscle segments from old mdx and old transgenic mdx mice. Am J Physiol 272(6 Pt 1):C2063-8. [PubMed: 9227435]  [MGI Ref ID J:113048]

Lyons PR; Slater CR. 1991. Structure and function of the neuromuscular junction in young adult mdx mice. J Neurocytol 20(12):969-81. [PubMed: 1686056]  [MGI Ref ID J:121319]

Maillet M; Lynch JM; Sanna B; York AJ; Zheng Y; Molkentin JD. 2009. Cdc42 is an antihypertrophic molecular switch in the mouse heart. J Clin Invest 119(10):3079-88. [PubMed: 19741299]  [MGI Ref ID J:154646]

Mallouk N; Jacquemond V; Allard B. 2000. Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci U S A 97(9):4950-5. [PubMed: 10781103]  [MGI Ref ID J:126699]

Mancinelli R; Tonali P; Romani R; Tringali A; Vargiu R; AZZENA GB. 1999. Mechanical properties of smooth muscle portal vein in normal and dystrophin-deficient (mdx) mice. Exp Physiol 84(5):929-40. [PubMed: 10502660]  [MGI Ref ID J:106559]

Mann CJ; Honeyman K; Cheng AJ; Ly T; Lloyd F; Fletcher S; Morgan JE; Partridge TA; Wilton SD. 2001. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc Natl Acad Sci U S A 98(1):42-7. [PubMed: 11120883]  [MGI Ref ID J:66709]

Marques MJ; Minatel E; Guimaraes AO; Neto HS. 2004. Distribution of calcitonin gene-related peptide at the neuromuscular junction of mdx mice. Anat Rec A Discov Mol Cell Evol Biol 279(2):798-803. [PubMed: 15278951]  [MGI Ref ID J:174186]

Marques MJ; Taniguti AP; Minatel E; Neto HS. 2007. Nerve terminal contributes to acetylcholine receptor organization at the dystrophic neuromuscular junction of mdx mice. Anat Rec (Hoboken) 290(2):181-7. [PubMed: 17441210]  [MGI Ref ID J:174176]

Marshall JL; Holmberg J; Chou E; Ocampo AC; Oh J; Lee J; Peter AK; Martin PT; Crosbie-Watson RH. 2012. Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. J Cell Biol 197(7):1009-27. [PubMed: 22734004]  [MGI Ref ID J:185346]

Martin PT; Xu R; Rodino-Klapac LR; Oglesbay E; Camboni M; Montgomery CL; Shontz K; Chicoine LG; Clark KR; Sahenk Z; Mendell JR; Janssen PM. 2009. Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice. Am J Physiol Cell Physiol 296(3):C476-88. [PubMed: 19109526]  [MGI Ref ID J:146366]

Martins PC; Ayub-Guerrieri D; Martins-Bach AB; Onofre-Oliveira P; Malheiros JM; Tannus A; de Sousa PL; Carlier PG; Vainzof M. 2013. Dmdmdx/Largemyd: a new mouse model of neuromuscular diseases useful for studying physiopathological mechanisms and testing therapies. Dis Model Mech 6(5):1167-74. [PubMed: 23798567]  [MGI Ref ID J:201690]

Matecki S; Guibinga GH; Petrof BJ. 2004. Regenerative capacity of the dystrophic (mdx) diaphragm after induced injury. Am J Physiol Regul Integr Comp Physiol 287(4):R961-8. [PubMed: 15191902]  [MGI Ref ID J:109378]

Matsakas A; Yadav V; Lorca S; Narkar V. 2013. Muscle ERRgamma mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming. FASEB J 27(10):4004-4016. [PubMed: 23781095]  [MGI Ref ID J:201176]

Matsumura CY; Menezes de Oliveira B; Durbeej M; Marques MJ. 2013. Isobaric Tagging-Based Quantification for Proteomic Analysis: A Comparative Study of Spared and Affected Muscles from Mice at the Early Phase of Dystrophy. PLoS One 8(6):e65831. [PubMed: 23823696]  [MGI Ref ID J:203463]

Matsumura CY; Taniguti AP; Pertille A; Neto HS; Marques MJ. 2011. Stretch-activated calcium channel protein TRPC1 is correlated with the different degrees of the dystrophic phenotype in mdx mice. Am J Physiol Cell Physiol 301(6):C1344-50. [PubMed: 21900691]  [MGI Ref ID J:178321]

Matsumura K; Ervasti JM; Ohlendieck K; Kahl SD; Campbell KP. 1992. Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360(6404):588-91. [PubMed: 1461282]  [MGI Ref ID J:3426]

McArdle A; Edwards RH; Jackson MJ. 1992. Accumulation of calcium by normal and dystrophin-deficient mouse muscle during contractile activity in vitro. Clin Sci (Colch) 82(4):455-9. [PubMed: 1315657]  [MGI Ref ID J:4056]

McArdle A; Edwards RH; Jackson MJ. 1994. Time course of changes in plasma membrane permeability in the dystrophin-deficient mdx mouse. Muscle Nerve 17(12):1378-84. [PubMed: 7969238]  [MGI Ref ID J:21964]

McCarthy JJ; Esser KA; Andrade FH. 2007. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol 293(1):C451-7. [PubMed: 17459947]  [MGI Ref ID J:125844]

McDonald AA; Kunz MD; McLoon LK. 2014. Dystrophic changes in extraocular muscles after gamma irradiation in mdx:utrophin(+/-) mice. PLoS One 9(1):e86424. [PubMed: 24466085]  [MGI Ref ID J:212562]

McGeachie JK; Grounds MD. 1999. The timing between skeletal muscle myoblast replication and fusion into myotubes, and the stability of regenerated dystrophic myofibres: an autoradiographic study in mdx mice. J Anat 194(Pt 2):287-95. [PubMed: 10337961]  [MGI Ref ID J:54955]

McIntosh LM; Anderson JE. 1995. Hypothyroidism prolongs and increases mdx muscle precursor proliferation and delays myotube formation in normal and dystrophic limb muscle. Biochem Cell Biol 73(3-4):181-90. [PubMed: 7576492]  [MGI Ref ID J:28051]

McIntosh LM; Pernitsky AN; Anderson JE. 1994. The effects of altered metabolism (hypothyroidism) on muscle repair in the mdx dystrophic mouse. Muscle Nerve 17(4):444-53. [PubMed: 8170492]  [MGI Ref ID J:19048]

Meadows E; Flynn JM; Klein WH. 2011. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice. PLoS One 6(1):e16184. [PubMed: 21264243]  [MGI Ref ID J:169466]

Mechalchuk CL; Bressler BH. 1992. Contractility of mdx skeletal muscle after denervation and devascularization. Muscle Nerve 15(3):310-7. [PubMed: 1557078]  [MGI Ref ID J:116343]

Meech R; Gonzalez KN; Barro M; Gromova A; Zhuang L; Hulin JA; Makarenkova HP. 2012. Barx2 is expressed in satellite cells and is required for normal muscle growth and regeneration. Stem Cells 30(2):253-65. [PubMed: 22076929]  [MGI Ref ID J:187799]

Meeson AP; Shi X; Alexander MS; Williams RS; Allen RE; Jiang N; Adham IM; Goetsch SC; Hammer RE; Garry DJ. 2007. Sox15 and Fhl3 transcriptionally coactivate Foxk1 and regulate myogenic progenitor cells. EMBO J 26(7):1902-12. [PubMed: 17363903]  [MGI Ref ID J:122510]

Megeney LA; Kablar B; Garrett K; Anderson JE; Rudnicki MA. 1996. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10(10):1173-83. [PubMed: 8675005]  [MGI Ref ID J:33260]

Megeney LA; Kablar B; Perry RL; Ying C; May L; Rudnicki MA. 1999. Severe cardiomyopathy in mice lacking dystrophin and MyoD. Proc Natl Acad Sci U S A 96(1):220-5. [PubMed: 9874799]  [MGI Ref ID J:52248]

Meinen S; Lin S; Ruegg MA; Punga AR. 2012. Fatigue and muscle atrophy in a mouse model of myasthenia gravis is paralleled by loss of sarcolemmal nNOS. PLoS One 7(8):e44148. [PubMed: 22952904]  [MGI Ref ID J:191651]

Menazza S; Blaauw B; Tiepolo T; Toniolo L; Braghetta P; Spolaore B; Reggiani C; Di Lisa F; Bonaldo P; Canton M. 2010. Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy. Hum Mol Genet 19(21):4207-15. [PubMed: 20716577]  [MGI Ref ID J:164888]

Merrick D; Stadler LK; Larner D; Smith J. 2009. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation. Dis Model Mech 2(7-8):374-88. [PubMed: 19535499]  [MGI Ref ID J:150127]

Messina S; Altavilla D; Aguennouz M; Seminara P; Minutoli L; Monici MC; Bitto A; Mazzeo A; Marini H; Squadrito F; Vita G. 2006. Lipid peroxidation inhibition blunts nuclear factor-kappaB activation, reduces skeletal muscle degeneration, and enhances muscle function in mdx mice. Am J Pathol 168(3):918-26. [PubMed: 16507907]  [MGI Ref ID J:106560]

Messina S; Bitto A; Aguennouz M; Minutoli L; Monici MC; Altavilla D; Squadrito F; Vita G. 2006. Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol 198(1):234-41. [PubMed: 16410003]  [MGI Ref ID J:107902]

Millay DP; Goonasekera SA; Sargent MA; Maillet M; Aronow BJ; Molkentin JD. 2009. Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proc Natl Acad Sci U S A 106(45):19023-8. [PubMed: 19864620]  [MGI Ref ID J:154908]

Millay DP; Sargent MA; Osinska H; Baines CP; Barton ER; Vuagniaux G; Sweeney HL; Robbins J; Molkentin JD. 2008. Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat Med 14(4):442-7. [PubMed: 18345011]  [MGI Ref ID J:133679]

Miller G; Moore CJ; Terry R; La Riviere T; Mitchell A; Piggott R; Dear TN; Wells DJ; Winder SJ. 2012. Preventing phosphorylation of dystroglycan ameliorates the dystrophic phenotype in mdx mouse. Hum Mol Genet 21(20):4508-20. [PubMed: 22810924]  [MGI Ref ID J:187750]

Minatel E; Neto HS; Marques MJ. 2003. Acetylcholine receptor distribution and synapse elimination at the developing neuromuscular junction of mdx mice. Muscle Nerve 28(5):561-9. [PubMed: 14571457]  [MGI Ref ID J:105143]

Minatel E; Santo Neto H; Marques MJ. 2001. Acetylcholine receptors and neuronal nitric oxide synthase distribution at the neuromuscular junction of regenerated muscle fibers. Muscle Nerve 24(3):410-6. [PubMed: 11353428]  [MGI Ref ID J:116197]

Minciacchi D; Del Tongo C; Carretta D; Nosi D; Granato A. 2010. Alterations of the cortico-cortical network in sensori-motor areas of dystrophin deficient mice. Neuroscience 166(4):1129-39. [PubMed: 20109538]  [MGI Ref ID J:159718]

Miranda R; Nudel U; Laroche S; Vaillend C. 2011. Altered presynaptic ultrastructure in excitatory hippocampal synapses of mice lacking dystrophins Dp427 or Dp71. Neurobiol Dis 43(1):134-41. [PubMed: 21397023]  [MGI Ref ID J:174331]

Miranda R; Sebrie C; Degrouard J; Gillet B; Jaillard D; Laroche S; Vaillend C. 2009. Reorganization of inhibitory synapses and increased PSD length of perforated excitatory synapses in hippocampal area CA1 of dystrophin-deficient mdx mice. Cereb Cortex 19(4):876-88. [PubMed: 18794205]  [MGI Ref ID J:174113]

Miyagoe-Suzuki Y; Masubuchi N; Miyamoto K; Wada MR; Yuasa S; Saito F; Matsumura K; Kanesaki H; Kudo A; Manya H; Endo T; Takeda S. 2008. Reduced proliferative activity of primary POMGnT1-null myoblasts in vitro. Mech Dev :. [PubMed: 19114101]  [MGI Ref ID J:144928]

Miyazaki D; Nakamura A; Fukushima K; Yoshida K; Takeda S; Ikeda S. 2011. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers. Hum Mol Genet 20(9):1787-99. [PubMed: 21320869]  [MGI Ref ID J:170485]

Mizunoya W; Upadhaya R; Burczynski FJ; Wang G; Anderson JE. 2011. Nitric oxide donors improve prednisone effects on muscular dystrophy in the mdx mouse diaphragm. Am J Physiol Cell Physiol 300(5):C1065-77. [PubMed: 21270295]  [MGI Ref ID J:174258]

Moghadaszadeh B; Albrechtsen R; Guo LT; Zaik M; Kawaguchi N; Borup RH; Kronqvist P; Schroder HD; Davies KE; Voit T; Nielsen FC; Engvall E; Wewer UM. 2003. Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha 7 integrin, utrophin and associated glycoproteins. Hum Mol Genet 12(19):2467-79. [PubMed: 12915458]  [MGI Ref ID J:85973]

Mohri I; Aritake K; Taniguchi H; Sato Y; Kamauchi S; Nagata N; Maruyama T; Taniike M; Urade Y. 2009. Inhibition of prostaglandin D synthase suppresses muscular necrosis. Am J Pathol 174(5):1735-44. [PubMed: 19359520]  [MGI Ref ID J:148025]

Mokalled MH; Johnson AN; Creemers EE; Olson EN. 2012. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev 26(2):190-202. [PubMed: 22279050]  [MGI Ref ID J:179880]

Mokhtarian A; Lefaucheur JP; Even PC; Sebille A. 1999. Hindlimb immobilization applied to 21-day-old mdx mice prevents the occurrence of muscle degeneration. J Appl Physiol 86(3):924-31. [PubMed: 10066706]  [MGI Ref ID J:103296]

Montanaro F; Carbonetto S; Campbell KP; Lindenbaum M. 1995. Dystroglycan expression in the wild type and mdx mouse neural retina: synaptic colocalization with dystrophin, dystrophin-related protein but not laminin. J Neurosci Res 42(4):528-38. [PubMed: 8568939]  [MGI Ref ID J:29769]

Montgomery E; Pennington C; Isales CM; Hamrick MW. 2005. Muscle-bone interactions in dystrophin-deficient and myostatin-deficient mice. Anat Rec A Discov Mol Cell Evol Biol 286(1):814-22. [PubMed: 16078270]  [MGI Ref ID J:174184]

Moore K; Bulfield G. 1981. Research News (Dmd) Mouse News Lett 64:61.  [MGI Ref ID J:28684]

Moorwood C; Barton ER. 2014. Caspase-12 ablation preserves muscle function in the mdx mouse. Hum Mol Genet 23(20):5325-41. [PubMed: 24879640]  [MGI Ref ID J:214751]

Morales MG; Gutierrez J; Cabello-Verrugio C; Cabrera D; Lipson KE; Goldschmeding R; Brandan E. 2013. Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet 22(24):4938-51. [PubMed: 23904456]  [MGI Ref ID J:203131]

Morgan JE; Pagel CN; Sherratt T; Partridge TA. 1993. Long-term persistence and migration of myogenic cells injected into pre-irradiated muscles of mdx mice. J Neurol Sci 115(2):191-200. [PubMed: 7683332]  [MGI Ref ID J:4395]

Morin S; de la Porte S; Fiszman M; Koenig J. 1995. Inhibition of proliferation in 8-week-old mdx mouse muscle fibroblasts in vitro. Differentiation 59(3):145-54. [PubMed: 7589898]  [MGI Ref ID J:29793]

Morris CA; Selsby JT; Morris LD; Pendrak K; Sweeney HL. 2010. Bowman-Birk inhibitor attenuates dystrophic pathology in mdx mice. J Appl Physiol 109(5):1492-9. [PubMed: 20847128]  [MGI Ref ID J:185904]

Morrison J; Lu QL; Pastoret C; Partridge T; Bou-Gharios G. 2000. T-cell-dependent fibrosis in the mdx dystrophic mouse. Lab Invest 80(6):881-91. [PubMed: 10879739]  [MGI Ref ID J:62881]

Morrison J; Palmer DB; Cobbold S; Partridge T; Bou-Gharios G. 2005. Effects of T-Lymphocyte Depletion on Muscle Fibrosis in the mdx Mouse. Am J Pathol 166(6):1701-10. [PubMed: 15920155]  [MGI Ref ID J:98815]

Morrison J; Partridge T; Bou-Gharios G. 2005. Nude mutation influences limb skeletal muscle development. Matrix Biol 23(8):535-42. [PubMed: 15694130]  [MGI Ref ID J:95776]

Mu X; Usas A; Tang Y; Lu A; Wang B; Weiss K; Huard J. 2013. RhoA mediates defective stem cell function and heterotopic ossification in dystrophic muscle of mice. FASEB J 27(9):3619-31. [PubMed: 23704088]  [MGI Ref ID J:201105]

Mu X; Xiang G; Rathbone CR; Pan H; Bellayr IH; Walters TJ; Li Y. 2011. Slow-adhering stem cells derived from injured skeletal muscle have improved regenerative capacity. Am J Pathol 179(2):931-41. [PubMed: 21684246]  [MGI Ref ID J:174133]

Mueck T; Berger F; Buechsler I; Valchanova RS; Landuzzi L; Lollini PL; Klingel K; Munz B. 2011. TRAF6 regulates proliferation and differentiation of skeletal myoblasts. Differentiation 81(2):99-106. [PubMed: 21131124]  [MGI Ref ID J:168480]

Mule F; Vannucchi MG; Corsani L; Serio R; Faussone-Pellegrini MS. 2001. Myogenic NOS and endogenous NO production are defective in colon from dystrophic (mdx) mice. Am J Physiol Gastrointest Liver Physiol 281(5):G1264-70. [PubMed: 11668035]  [MGI Ref ID J:72563]

Muntoni F; Mateddu A; Marchei F; Clerk A; Serra G. 1993. Muscular weakness in the mdx mouse. J Neurol Sci 120(1):71-7. [PubMed: 8289081]  [MGI Ref ID J:15976]

Murphy KT; Ryall JG; Snell SM; Nair L; Koopman R; Krasney PA; Ibebunjo C; Holden KS; Loria PM; Salatto CT; Lynch GS. 2010. Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. Am J Pathol 176(5):2425-34. [PubMed: 20363926]  [MGI Ref ID J:160748]

Murphy RM; Dutka TL; Horvath D; Bell JR; Delbridge LM; Lamb GD. 2013. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle. J Physiol 591(Pt 3):719-29. [PubMed: 23148318]  [MGI Ref ID J:205977]

Nagaraju K; Rawat R; Veszelovszky E; Thapliyal R; Kesari A; Sparks S; Raben N; Plotz P; Hoffman EP. 2008. Dysferlin Deficiency Enhances Monocyte Phagocytosis: A Model for the Inflammatory Onset of Limb-Girdle Muscular Dystrophy 2B. Am J Pathol 172(3):774-785. [PubMed: 18276788]  [MGI Ref ID J:132272]

Nahirney PC; Ovalle WK. 1993. Distribution of dystrophin and neurofilament protein in muscle spindles of normal and Mdx-dystrophic mice: an immunocytochemical study. Anat Rec 235(4):501-10. [PubMed: 8465985]  [MGI Ref ID J:4328]

Nakagaki WR; Bertran CA; Matsumura CY; Santo-Neto H; Camilli JA. 2011. Mechanical, biochemical and morphometric alterations in the femur of mdx mice. Bone 48(2):372-9. [PubMed: 20850579]  [MGI Ref ID J:170207]

Nakagaki WR; Camilli JA. 2012. Spontaneous Healing Capacity of Calvarial Bone Defects in mdx Mice. Anat Rec (Hoboken) 295(4):590-6. [PubMed: 22271453]  [MGI Ref ID J:181555]

Nakagaki WR; Tomiosso TC; Pimentel ER; Camilli JA. 2013. Mechanical and morphological aspects of the calcaneal tendon of mdx mice at 21 days of age. Anat Rec (Hoboken) 296(10):1546-51. [PubMed: 23934706]  [MGI Ref ID J:202862]

Nakamura A; Harrod GV; Davies KE. 2001. Activation of calcineurin and stress activated protein kinase/p38-mitogen activated protein kinase in hearts of utrophin-dystrophin knockout mice. Neuromuscul Disord 11(3):251-9. [PubMed: 11297940]  [MGI Ref ID J:112432]

Nakamura A; Yoshida K; Takeda S; Dohi N; Ikeda S. 2002. Progression of dystrophic features and activation of mitogen-activated protein kinases and calcineurin by physical exercise, in hearts of mdx mice. FEBS Lett 520(1-3):18-24. [PubMed: 12044863]  [MGI Ref ID J:119432]

Nakatani M; Takehara Y; Sugino H; Matsumoto M; Hashimoto O; Hasegawa Y; Murakami T; Uezumi A; Takeda S; Noji S; Sunada Y; Tsuchida K. 2008. Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice. FASEB J 22(2):477-87. [PubMed: 17893249]  [MGI Ref ID J:134809]

Narita S; Yorifuji H. 1999. Centrally nucleated fibers (CNFs) compensate the fragility of myofibers in mdx mouse. Neuroreport 10(15):3233-5. [PubMed: 10574566]  [MGI Ref ID J:103724]

Nelson CA; Hunter RB; Quigley LA; Girgenrath S; Weber WD; McCullough JA; Dinardo CJ; Keefe KA; Ceci L; Clayton NP; McVie-Wylie A; Cheng SH; Leonard JP; Wentworth BM. 2011. Inhibiting TGF-beta Activity Improves Respiratory Function in mdx Mice. Am J Pathol 178(6):2611-21. [PubMed: 21641384]  [MGI Ref ID J:173295]

Neuhaus P; Oustanina S; Loch T; Kruger M; Bober E; Dono R; Zeller R; Braun T. 2003. Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice. Mol Cell Biol 23(17):6037-48. [PubMed: 12917328]  [MGI Ref ID J:85088]

Ng R; Metzger JM; Claflin DR; Faulkner JA. 2008. Poloxamer 188 reduces the contraction-induced force decline in lumbrical muscles from mdx mice. Am J Physiol Cell Physiol 295(1):C146-50. [PubMed: 18495816]  [MGI Ref ID J:138653]

Nguyen HH; Jayasinha V; Xia B; Hoyte K; Martin PT. 2002. Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc Natl Acad Sci U S A 99(8):5616-21. [PubMed: 11960016]  [MGI Ref ID J:76069]

Nguyen-Tran DH; Hait NC; Sperber H; Qi J; Fischer K; Ieronimakis N; Pantoja M; Hays A; Allegood J; Reyes M; Spiegel S; Ruohola-Baker H. 2014. Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech 7(1):41-54. [PubMed: 24077965]  [MGI Ref ID J:208735]

Nico B; Corsi P; Ria R; Crivellato E; Vacca A; Roccaro AM; Mangieri D; Ribatti D; Roncali L. 2006. Increased matrix-metalloproteinase-2 and matrix-metalloproteinase-9 expression in the brain of dystrophic mdx mouse. Neuroscience 140(3):835-48. [PubMed: 16650610]  [MGI Ref ID J:110290]

Nico B; Frigeri A; Nicchia GP; Corsi P; Ribatti D; Quondamatteo F; Herken R; Girolamo F; Marzullo A; Svelto M; Roncali L. 2003. Severe alterations of endothelial and glial cells in the blood-brain barrier of dystrophic mdx mice. Glia 42(3):235-51. [PubMed: 12673830]  [MGI Ref ID J:104866]

Nico B; Mangieri D; De Luca A; Corsi P; Benagiano V; Tamma R; Annese T; Longo V; Crivellato E; Ribatti D. 2009. Nerve growth factor and its receptors TrkA and p75 are upregulated in the brain of mdx dystrophic mouse. Neuroscience 161(4):1057-66. [PubMed: 19376199]  [MGI Ref ID J:152938]

Nico B; Marzullo A; Corsi P; Vacca A; Roncali L; Ribatti D. 2004. A possible role of tryptase in angiogenesis in the brain of mdx mouse, a model of Duchenne muscular dystrophy. Neuroscience 123(3):585-8. [PubMed: 14706770]  [MGI Ref ID J:89994]

Nico B; Paola Nicchia G; Frigeri A; Corsi P; Mangieri D; Ribatti D; Svelto M; Roncali L. 2004. Altered blood-brain barrier development in dystrophic MDX mice. Neuroscience 125(4):921-35. [PubMed: 15120852]  [MGI Ref ID J:89984]

Nico B; Tamma R; Annese T; Mangieri D; De Luca A; Corsi P; Benagiano V; Longo V; Crivellato E; Salmaggi A; Ribatti D. 2010. Glial dystrophin-associated proteins, laminin and agrin, are downregulated in the brain of mdx mouse. Lab Invest 90(11):1645-60. [PubMed: 20714324]  [MGI Ref ID J:165342]

Nitahara-Kasahara Y; Hayashita-Kinoh H; Chiyo T; Nishiyama A; Okada H; Takeda S; Okada T. 2014. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10. Hum Mol Genet 23(15):3990-4000. [PubMed: 24659498]  [MGI Ref ID J:211195]

Oh HJ; Abraham LS; van Hengel J; Stove C; Proszynski TJ; Gevaert K; DiMario JX; Sanes JR; van Roy F; Kim H. 2012. Interaction of alpha-catulin with dystrobrevin contributes to integrity of dystrophin complex in muscle. J Biol Chem 287(26):21717-28. [PubMed: 22577143]  [MGI Ref ID J:192994]

Ohlendieck K; Campbell KP. 1991. Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice. J Cell Biol 115(6):1685-94. [PubMed: 1757468]  [MGI Ref ID J:1875]

Okamoto Y; Takahashi K; Toriyama K; Takeda N; Kitagawa K; Hosokawa M; Takeda T. 1995. Femoral peak bone mass and osteoclast number in an animal model of age-related spontaneous osteopenia. Anat Rec 242(1):21-8. [PubMed: 7604978]  [MGI Ref ID J:25058]

Olichon-Berthe C; Gautier N; Van Obberghen E; Le Marchand-Brustel Y. 1993. Expression of the glucose transporter GLUT4 in the muscular dystrophic mdx mouse. Biochem J 291(Pt 1):257-61. [PubMed: 8471042]  [MGI Ref ID J:4547]

Pagel C; Watt D; Naudeer S; Partridge T; Morgan J. 1991. The change in dystrophin phenotype in heterozygous mdx mice. J Neuropathol Exp Neurol 50(3):278-80. [PubMed: 2022969]  [MGI Ref ID J:121258]

Park CW; Ryu HW; Ryu KY. 2012. Locus coeruleus neurons are resistant to dysfunction and degeneration by maintaining free ubiquitin levels although total ubiquitin levels decrease upon disruption of polyubiquitin gene Ubb. Biochem Biophys Res Commun 418(3):541-6. [PubMed: 22285186]  [MGI Ref ID J:181255]

Pastoret C; Sebille A. 1995. Age-related differences in regeneration of dystrophic (mdx) and normal muscle in the mouse. Muscle Nerve 18(10):1147-54. [PubMed: 7659109]  [MGI Ref ID J:29605]

Pastoret C; Sebille A. 1993. Fibres of intermediate type 1C and 2C are found continuously in mdx soleus muscle up to 52 weeks. Histochemistry 100(4):271-6. [PubMed: 8276641]  [MGI Ref ID J:17566]

Pastoret C; Sebille A. 1993. Further aspects of muscular dystrophy in mdx mice. Neuromuscul Disord 3(5-6):471-5. [PubMed: 8186696]  [MGI Ref ID J:19034]

Pastoret C; Sebille A. 1993. Time course study of the isometric contractile properties of mdx mouse striated muscles. J Muscle Res Cell Motil 14(4):423-31. [PubMed: 8227301]  [MGI Ref ID J:15488]

Pastoret C; Sebille A. 1995. mdx mice show progressive weakness and muscle deterioration with age. J Neurol Sci 129(2):97-105. [PubMed: 7608742]  [MGI Ref ID J:24527]

Pauly M; Daussin F; Burelle Y; Li T; Godin R; Fauconnier J; Koechlin-Ramonatxo C; Hugon G; Lacampagne A; Coisy-Quivy M; Liang F; Hussain S; Matecki S; Petrof BJ. 2012. AMPK Activation Stimulates Autophagy and Ameliorates Muscular Dystrophy in the mdx Mouse Diaphragm. Am J Pathol 181(2):583-92. [PubMed: 22683340]  [MGI Ref ID J:187001]

Percival JM; Siegel MP; Knowels G; Marcinek DJ. 2013. Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition. Hum Mol Genet 22(1):153-67. [PubMed: 23049075]  [MGI Ref ID J:191136]

Percival JM; Whitehead NP; Adams ME; Adamo CM; Beavo JA; Froehner SC. 2012. Sildenafil reduces respiratory muscle weakness and fibrosis in the mdx mouse model of Duchenne muscular dystrophy. J Pathol 228(1):77-87. [PubMed: 22653783]  [MGI Ref ID J:188433]

Pereon Y; Dettbarn C; Navarro J; Noireaud J; Palade PT. 1997. Dihydropyridine receptor gene expression in skeletal muscle from mdx and control mice. Biochim Biophys Acta 1362(2-3):201-7. [PubMed: 9540851]  [MGI Ref ID J:46983]

Pereon Y; Elkhammari A; Noireaud J. 1993. Differential susceptibility to repetitive potassium induced contractures in diaphragm versus extensor digitorum longus muscles of mdx mice [letter] Muscle Nerve 16(12):1423-4. [PubMed: 8232408]  [MGI Ref ID J:16472]

Perronnet C; Chagneau C; Le Blanc P; Samson-Desvignes N; Mornet D; Laroche S; De La Porte S; Vaillend C. 2012. Upregulation of brain utrophin does not rescue behavioral alterations in dystrophin-deficient mice. Hum Mol Genet 21(10):2263-76. [PubMed: 22343141]  [MGI Ref ID J:183789]

Personius KE; Sawyer RP. 2006. Variability and failure of neurotransmission in the diaphragm of mdx mice. Neuromuscul Disord 16(3):168-77. [PubMed: 16483776]  [MGI Ref ID J:112783]

Peter AK; Marshall JL; Crosbie RH. 2008. Sarcospan reduces dystrophic pathology: stabilization of the utrophin-glycoprotein complex. J Cell Biol 183(3):419-27. [PubMed: 18981229]  [MGI Ref ID J:141069]

Peter AK; Miller G; Crosbie RH. 2007. Disrupted mechanical stability of the dystrophin-glycoprotein complex causes severe muscular dystrophy in sarcospan transgenic mice. J Cell Sci 120(Pt 6):996-1008. [PubMed: 17311848]  [MGI Ref ID J:120731]

Petitprez S; Zmoos AF; Ogrodnik J; Balse E; Raad N; El-Haou S; Albesa M; Bittihn P; Luther S; Lehnart SE; Hatem SN; Coulombe A; Abriel H. 2011. SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ Res 108(3):294-304. [PubMed: 21164104]  [MGI Ref ID J:183504]

Phelps SF; Hauser MA; Cole NM; Rafael JA; Hinkle RT; Faulkner JA; Chamberlain JS. 1995. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 4(8):1251-8. [PubMed: 7581361]  [MGI Ref ID J:27471]

Pigozzo SR; Da Re L; Romualdi C; Mazzara PG; Galletta E; Fletcher S; Wilton SD; Vitiello L. 2013. Revertant fibers in the mdx murine model of Duchenne muscular dystrophy: an age- and muscle-related reappraisal. PLoS One 8(8):e72147. [PubMed: 24015212]  [MGI Ref ID J:206411]

Pillers DA; Weleber RG; Green DG; Rash SM; Dally GY; Howard PL ; Powers MR ; Hood DC ; Chapman VM ; Ray PN ; Woodward WR. 1999. Effects of dystrophin isoforms on signal transduction through neural retina: genotype-phenotype analysis of duchenne muscular dystrophy mouse mutants. Mol Genet Metab 66(2):100-10. [PubMed: 10068512]  [MGI Ref ID J:53822]

Pillers DM; Weleber RG; Woodward WR; Green DG; Chapman VM; Ray PN. 1995. mdxCv3 mouse is a model for electroretinography of Duchenne/Becker muscular dystrophy. Invest Ophthalmol Vis Sci 36(2):462-6. [PubMed: 7843915]  [MGI Ref ID J:23375]

Pinto ML; Tokunaga HH; Souccar C; Schoorlemmer GH; Lapa Rde C. 2007. Morphological changes in the trigemino-rubral pathway in dystrophic (mdx) mice. Neurosci Lett 416(2):175-9. [PubMed: 17324512]  [MGI Ref ID J:141668]

Pinto ML; Tokunaga HH; Souccar C; Schoorlemmer GH; da Silva Lapa Rde C. 2008. Loss of neuronal projections in the dystrophin-deficient mdx mouse is not progressive. Brain Res 1224:127-32. [PubMed: 18603229]  [MGI Ref ID J:139873]

Pistilli EE; Bogdanovich S; Goncalves MD; Ahima RS; Lachey J; Seehra J; Khurana T. 2011. Targeting the Activin Type IIB Receptor to Improve Muscle Mass and Function in the mdx Mouse Model of Duchenne Muscular Dystrophy. Am J Pathol 178(3):1287-97. [PubMed: 21356379]  [MGI Ref ID J:169683]

Pistoni M; Shiue L; Cline MS; Bortolanza S; Neguembor MV; Xynos A; Ares M Jr; Gabellini D. 2013. Rbfox1 downregulation and altered calpain 3 splicing by FRG1 in a mouse model of Facioscapulohumeral muscular dystrophy (FSHD). PLoS Genet 9(1):e1003186. [PubMed: 23300487]  [MGI Ref ID J:195085]

Pons F; Robert A; Marini JF; Leger JJ. 1994. Does utrophin expression in muscles of mdx mice during postnatal development functionally compensate for dystrophin deficiency? J Neurol Sci 122(2):162-70. [PubMed: 8021701]  [MGI Ref ID J:17298]

Porter JD; Khanna S; Kaminski HJ; Rao JS; Merriam AP; Richmonds CR; Leahy P; Li J; Guo W; Andrade FH. 2002. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 11(3):263-72. [PubMed: 11823445]  [MGI Ref ID J:74738]

Porter JD; Merriam AP; Khanna S; Andrade FH; Richmonds CR; Leahy P; Cheng G; Karathanasis P; Zhou X; Kusner LL; Adams ME; Willem M; Mayer U; Kaminski HJ. 2003. Constitutive properties, not molecular adaptations, mediate extraocular muscle sparing in dystrophic mdx mice. FASEB J 17(8):893-5. [PubMed: 12670877]  [MGI Ref ID J:118481]

Porter JD; Merriam AP; Leahy P; Gong B; Feuerman J; Cheng G; Khanna S. 2004. Temporal gene expression profiling of dystrophin-deficient (mdx) mouse diaphragm identifies conserved and muscle group-specific mechanisms in the pathogenesis of muscular dystrophy. Hum Mol Genet 13(3):257-69. [PubMed: 14681298]  [MGI Ref ID J:119422]

Porter JD; Rafael JA; Ragusa RJ; Brueckner JK; Trickett JI; Davies KE. 1998. The sparing of extraocular muscle in dystrophinopathy is lost in mice lacking utrophin and dystrophin. J Cell Sci 111(Pt 13):1801-11. [PubMed: 9625743]  [MGI Ref ID J:48675]

Pratt SJ; Shah SB; Ward CW; Inacio MP; Stains JP; Lovering RM. 2013. Effects of in vivo injury on the neuromuscular junction in healthy and dystrophic muscles. J Physiol 591(Pt 2):559-70. [PubMed: 23109110]  [MGI Ref ID J:205097]

Prattis SM; Horton SB; van Camp SD; Kornegay JN. 1994. Immunohistochemical detection of neural cell adhesion molecule and laminin in X-linked dystrophic dogs and mdx mice. J Comp Pathol 110(3):253-66. [PubMed: 8040390]  [MGI Ref ID J:20707]

Pressmar J; Brinkmeier H; Seewald MJ; Naumann T; Rudel R. 1994. Intracellular Ca2+ concentrations are not elevated in resting cultured muscle from Duchenne (DMD) patients and in MDX mouse muscle fibres. Pflugers Arch 426(6):499-505. [PubMed: 8052519]  [MGI Ref ID J:20764]

Pribiag H; Peng H; Shah WA; Stellwagen D; Carbonetto S. 2014. Dystroglycan mediates homeostatic synaptic plasticity at GABAergic synapses. Proc Natl Acad Sci U S A 111(18):6810-5. [PubMed: 24753587]  [MGI Ref ID J:211088]

Prins KW; Humston JL; Mehta A; Tate V; Ralston E; Ervasti JM. 2009. Dystrophin is a microtubule-associated protein. J Cell Biol 186(3):363-9. [PubMed: 19651889]  [MGI Ref ID J:153847]

Prins KW; Lowe DA; Ervasti JM. 2008. Skeletal muscle-specific ablation of gamma(cyto)-actin does not exacerbate the mdx phenotype. PLoS ONE 3(6):e2419. [PubMed: 18545671]  [MGI Ref ID J:137146]

Prosser BL; Ward CW; Lederer WJ. 2011. X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333(6048):1440-5. [PubMed: 21903813]  [MGI Ref ID J:176664]

Quinlan JG; Cambier D; Lyden S; Dalvi A; Upputuri RK; Gartside P; Michaels SE; Denman D. 1997. Regeneration-blocked mdx muscle: in vivo model for testing treatments. Muscle Nerve 20(8):1016-23. [PubMed: 9236793]  [MGI Ref ID J:116234]

Quinlan JG; Hahn HS; Wong BL; Lorenz JN; Wenisch AS; Levin LS. 2004. Evolution of the mdx mouse cardiomyopathy: physiological and morphological findings. Neuromuscul Disord 14(8-9):491-6. [PubMed: 15336690]  [MGI Ref ID J:102071]

Quinlan JG; Lyden SP; Cambier DM; Johnson SR; Michaels SE; Denman DL. 1995. Radiation inhibition of mdx mouse muscle regeneration: dose and age factors. Muscle Nerve 18(2):201-6. [PubMed: 7823979]  [MGI Ref ID J:115864]

Quirico-Santos T; Ribeiro MM; Savino W. 1995. Increased deposition of extracellular matrix components in the thymus gland of MDX mouse: correlation with the muscular lesion. J Neuroimmunol 59(1-2):9-18. [PubMed: 7797624]  [MGI Ref ID J:28353]

Rae C; Griffin JL; Blair DH; Bothwell JH; Bubb WA; Maitland A; Head S. 2002. Abnormalities in brain biochemistry associated with lack of dystrophin: studies of the mdx mouse. Neuromuscul Disord 12(2):121-9. [PubMed: 11738353]  [MGI Ref ID J:102988]

Rafael JA; Nitta Y; Peters J; Davies KE. 2000. Testing of SHIRPA, a mouse phenotypic assessment protocol, on Dmd(mdx) and Dmd(mdx3cv) dystrophin-deficient mice. Mamm Genome 11(9):725-8. [PubMed: 10967129]  [MGI Ref ID J:64319]

Rafael JA; Sunada Y; Cole NM; Campbell KP; Faulkner JA; Chamberlain JS. 1994. Prevention of dystrophic pathology in mdx mice by a truncated dystrophin isoform. Hum Mol Genet 3(10):1725-33. [PubMed: 7849695]  [MGI Ref ID J:20979]

Rafael JA; Tinsley JM; Potter AC; Deconinck AE; Davies KE. 1998. Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice. Nat Genet 19(1):79-82. [PubMed: 9590295]  [MGI Ref ID J:47311]

Ramachandran J; Schneider JS; Crassous PA; Zheng R; Gonzalez JP; Xie LH; Beuve A; Fraidenraich D; Peluffo RD. 2013. Nitric oxide signalling pathway in Duchenne muscular dystrophy mice: up-regulation of L-arginine transporters. Biochem J 449(1):133-42. [PubMed: 23009292]  [MGI Ref ID J:192880]

Ramaswamy KS; Palmer ML; van der Meulen JH; Renoux A; Kostrominova TY; Michele DE; Faulkner JA. 2011. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol 589(Pt 5):1195-208. [PubMed: 21224224]  [MGI Ref ID J:183137]

Rawat R; Cohen TV; Ampong B; Francia D; Henriques-Pons A; Hoffman EP; Nagaraju K. 2010. Inflammasome up-regulation and activation in dysferlin-deficient skeletal muscle. Am J Pathol 176(6):2891-900. [PubMed: 20413686]  [MGI Ref ID J:161333]

Raymackers JM; Debaix H; Colson-Van Schoor M; De Backer F; Tajeddine N; Schwaller B; Gailly P; Gillis JM. 2003. Consequence of parvalbumin deficiency in the mdx mouse: histological, biochemical and mechanical phenotype of a new double mutant. Neuromuscul Disord 13(5):376-87. [PubMed: 12798793]  [MGI Ref ID J:102770]

Reay DP; Yang M; Watchko JF; Daood M; O'Day TL; Rehman KK; Guttridge DC; Robbins PD; Clemens PR. 2011. Systemic delivery of NEMO binding domain/IKKgamma inhibitory peptide to young mdx mice improves dystrophic skeletal muscle histopathology. Neurobiol Dis :. [PubMed: 21624467]  [MGI Ref ID J:173320]

Reed P; Bloch RJ. 2005. Postnatal changes in sarcolemmal organization in the mdx mouse. Neuromuscul Disord 15(8):552-61. [PubMed: 16051092]  [MGI Ref ID J:103939]

Reeve JL; McArdle A; Jackson MJ. 1997. Age-related changes in muscle calcium content in dystrophin-deficient mdx mice. Muscle Nerve 20(3):357-60. [PubMed: 9052816]  [MGI Ref ID J:116434]

Reimann J; Irintchev A; Wernig A. 2000. Regenerative capacity and the number of satellite cells in soleus muscles of normal and mdx mice. Neuromuscul Disord 10(4-5):276-82. [PubMed: 10838255]  [MGI Ref ID J:103095]

Rezniczek GA; Konieczny P; Nikolic B; Reipert S; Schneller D; Abrahamsberg C; Davies KE; Winder SJ; Wiche G. 2007. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J Cell Biol 176(7):965-77. [PubMed: 17389230]  [MGI Ref ID J:134710]

Rhoads RP; Flann KL; Cardinal TR; Rathbone CR; Liu X; Allen RE. 2013. Satellite cells isolated from aged or dystrophic muscle exhibit a reduced capacity to promote angiogenesis in vitro. Biochem Biophys Res Commun 440(3):399-404. [PubMed: 24070607]  [MGI Ref ID J:211416]

Ribaux P; Bleicher F; Couble ML; Amsellem J; Cohen SA; Berthier C; Blaineau S. 2001. Voltage-gated sodium channel (SkM1) content in dystrophin-deficient muscle. Pflugers Arch 441(6):746-55. [PubMed: 11316257]  [MGI Ref ID J:106474]

Roder IV; Strack S; Reischl M; Dahley O; Khan MM; Kassel O; Zaccolo M; Rudolf R. 2012. Participation of myosin Va and Pka type I in the regeneration of neuromuscular junctions. PLoS One 7(7):e40860. [PubMed: 22815846]  [MGI Ref ID J:189610]

Rodino-Klapac LR; Janssen PM; Shontz KM; Canan B; Montgomery CL; Griffin D; Heller K; Schmelzer L; Handy C; Clark KR; Sahenk Z; Mendell JR; Kaspar BK. 2013. Micro-dystrophin and follistatin co-delivery restores muscle function in aged DMD model. Hum Mol Genet 22(24):4929-37. [PubMed: 23863459]  [MGI Ref ID J:203139]

Rooney JE; Gurpur PB; Burkin DJ. 2009. Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 106(19):7991-6. [PubMed: 19416897]  [MGI Ref ID J:148396]

Rooney JE; Welser JV; Dechert MA; Flintoff-Dye NL; Kaufman SJ; Burkin DJ. 2006. Severe muscular dystrophy in mice that lack dystrophin and alpha7 integrin. J Cell Sci 119(Pt 11):2185-95. [PubMed: 16684813]  [MGI Ref ID J:110358]

Rouger K; Le Cunff M; Steenman M; Potier MC; Gibelin N; Dechesne CA; Leger JJ. 2002. Global/temporal gene expression in diaphragm and hindlimb muscles of dystrophin-deficient (mdx) mice. Am J Physiol Cell Physiol 283(3):C773-84. [PubMed: 12176734]  [MGI Ref ID J:107769]

Rufo A; Del Fattore A; Capulli M; Carvello F; De Pasquale L; Ferrari S; Pierroz D; Morandi L; De Simone M; Rucci N; Bertini E; Bianchi ML; De Benedetti F; Teti A. 2011. Mechanisms inducing low bone density in Duchenne muscular dystrophy in mice and humans. J Bone Miner Res 26(8):1891-903. [PubMed: 21509823]  [MGI Ref ID J:184354]

Sacco A; Mourkioti F; Tran R; Choi J; Llewellyn M; Kraft P; Shkreli M; Delp S; Pomerantz JH; Artandi SE; Blau HM. 2010. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 143(7):1059-71. [PubMed: 21145579]  [MGI Ref ID J:167294]

Saccone V; Consalvi S; Giordani L; Mozzetta C; Barozzi I; Sandona M; Ryan T; Rojas-Munoz A; Madaro L; Fasanaro P; Borsellino G; De Bardi M; Frige G; Termanini A; Sun X; Rossant J; Bruneau BG; Mercola M; Minucci S; Puri PL. 2014. HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 28(8):841-57. [PubMed: 24682306]  [MGI Ref ID J:209577]

Sakamoto M; Yuasa K; Yoshimura M; Yokota T; Ikemoto T; Suzuki M; Dickson G; Miyagoe-Suzuki Y; Takeda S. 2002. Micro-dystrophin cDNA ameliorates dystrophic phenotypes when introduced into mdx mice as a transgene. Biochem Biophys Res Commun 293(4):1265-72. [PubMed: 12054513]  [MGI Ref ID J:76949]

Sali A; Many GM; Gordish-Dressman H; van der Meulen JH; Phadke A; Spurney CF; Cnaan A; Hoffman EP; Nagaraju K. 2013. The proton pump inhibitor lansoprazole improves the skeletal phenotype in dystrophin deficient mdx mice. PLoS One 8(7):e66617. [PubMed: 23843959]  [MGI Ref ID J:204312]

Salimena MC; Lagrota-Candido J; Quirico-Santos T. 2004. Gender dimorphism influences extracellular matrix expression and regeneration of muscular tissue in mdx dystrophic mice. Histochem Cell Biol 122(5):435-44. [PubMed: 15452719]  [MGI Ref ID J:108178]

Sandri M; Massimino ML; Cantini M; Giurisato E; Sandri C; Arslan P; Carraro U. 1998. Dystrophin deficient myotubes undergo apoptosis in mouse primary muscle cell culture after DNA damage. Neurosci Lett 252(2):123-6. [PubMed: 9756337]  [MGI Ref ID J:51579]

Sandri M; Podhorska-Okolow M; Geromel V; Rizzi C; Arslan P; Franceschi C; Carraro U. 1997. Exercise induces myonuclear ubiquitination and apoptosis in dystrophin-deficient muscle of mice. J Neuropathol Exp Neurol 56(1):45-57. [PubMed: 8990128]  [MGI Ref ID J:38431]

Sanford JL; Edwards JD; Mays TA; Gong B; Merriam AP; Rafael-Fortney JA. 2005. Claudin-5 localizes to the lateral membranes of cardiomyocytes and is altered in utrophin/dystrophin-deficient cardiomyopathic mice. J Mol Cell Cardiol 38(2):323-32. [PubMed: 15698839]  [MGI Ref ID J:101912]

Santo Neto H; Martins AJ; Minatel E; Marques MJ. 2003. Axonal sprouting in mdx mice and its relevance to cell and gene mediated therapies for Duchenne muscular dystrophy. Neurosci Lett 343(1):67-9. [PubMed: 12749999]  [MGI Ref ID J:107959]

Sawada H; Kikukawa Y; Ban S; Kakudo T; Yokosawa H. 2004. Expression of trypsin-like proteases and protease nexin-1 in mdx mouse muscles. Biochem Biophys Res Commun 314(2):654-8. [PubMed: 14733957]  [MGI Ref ID J:113601]

Sbriccoli A; Santarelli M; Carretta D; Pinto F; Granato A; Minciacchi D. 1995. Architectural changes of the cortico-spinal system in the dystrophin defective mdx mouse. Neurosci Lett 200(1):53-6. [PubMed: 8584266]  [MGI Ref ID J:32173]

Schafer R; Zweyer M; Knauf U; Mundegar RR; Wernig A. 2005. The ontogeny of soleus muscles in mdx and wild type mice. Neuromuscul Disord 15(1):57-64. [PubMed: 15639122]  [MGI Ref ID J:101871]

Schertzer JD; Gehrig SM; Ryall JG; Lynch GS. 2007. Modulation of insulin-like growth factor (IGF)-I and IGF-binding protein interactions enhances skeletal muscle regeneration and ameliorates the dystrophic pathology in mdx mice. Am J Pathol 171(4):1180-8. [PubMed: 17823291]  [MGI Ref ID J:125517]

Schertzer JD; van der Poel C; Shavlakadze T; Grounds MD; Lynch GS. 2008. Muscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice. Am J Physiol Cell Physiol 294(1):C161-8. [PubMed: 17989207]  [MGI Ref ID J:130508]

Schofield JN; Gorecki DC; Blake DJ; Davies K; Edwards YH. 1995. Dystroglycan mRNA expression during normal and mdx mouse embryogenesis: a comparison with utrophin and the apo-dystrophins. Dev Dyn 204(2):178-85. [PubMed: 8589441]  [MGI Ref ID J:29265]

Sedehizade F; Klocke R; Jockusch H. 1997. Expression of nerve-regulated genes in muscles of mouse mutants affected by spinal muscular atrophies and muscular dystrophies. Muscle Nerve 20(2):186-94. [PubMed: 9040657]  [MGI Ref ID J:53205]

Selbert S; Fischer P; Menke A; Jockusch H; Pongratz D; Noegel AA. 1996. Annexin VII relocalization as a result of dystrophin deficiency. Exp Cell Res 222(1):199-208. [PubMed: 8549664]  [MGI Ref ID J:30883]

Selsby JT; Morine KJ; Pendrak K; Barton ER; Sweeney HL. 2012. Rescue of dystrophic skeletal muscle by PGC-1alpha involves a fast to slow fiber type shift in the mdx mouse. PLoS One 7(1):e30063. [PubMed: 22253880]  [MGI Ref ID J:184310]

Shavlakadze T; Boswell JM; Burt DW; Asante EA; Tomas FM; Davies MJ; White JD; Grounds MD; Goddard C. 2006. Rskalpha-actin/hIGF-1 transgenic mice with increased IGF-I in skeletal muscle and blood: impact on regeneration, denervation and muscular dystrophy. Growth Horm IGF Res 16(3):157-73. [PubMed: 16716629]  [MGI Ref ID J:128230]

Shavlakadze T; Chai J; Maley K; Cozens G; Grounds G; Winn N; Rosenthal N; Grounds MD. 2010. A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo. J Cell Sci 123(Pt 6):960-71. [PubMed: 20179101]  [MGI Ref ID J:158766]

Shi H; Boadu E; Mercan F; Le AM; Flach RJ; Zhang L; Tyner KJ; Olwin BB; Bennett AM. 2010. MAP kinase phosphatase-1 deficiency impairs skeletal muscle regeneration and exacerbates muscular dystrophy. FASEB J 24(8):2985-97. [PubMed: 20371627]  [MGI Ref ID J:162340]

Shi H; Verma M; Zhang L; Dong C; Flavell RA; Bennett AM. 2013. Improved regenerative myogenesis and muscular dystrophy in mice lacking Mkp5. J Clin Invest 123(5):2064-77. [PubMed: 23543058]  [MGI Ref ID J:201351]

Shiao T; Fond A; Deng B; Wehling-Henricks M; Adams ME; Froehner SC; Tidball JG. 2004. Defects in neuromuscular junction structure in dystrophic muscle are corrected by expression of a NOS transgene in dystrophin-deficient muscles, but not in muscles lacking {alpha}- and {beta}1-syntrophins. Hum Mol Genet 13(17):1873-1884. [PubMed: 15238508]  [MGI Ref ID J:92094]

Shibuya S; Wakayama Y; Inoue M; Oniki H; Kominami E. 2002. Changes in the distribution and density of caveolin 3 molecules at the plasma membrane of mdx mouse skeletal muscles: a fracture-label electron microscopic study. Neurosci Lett 325(3):171-4. [PubMed: 12044648]  [MGI Ref ID J:108032]

Shin JH; Hakim CH; Zhang K; Duan D. 2011. Genotyping mdx, mdx3cv, and mdx4cv mice by primer competition polymerase chain reaction. Muscle Nerve 43(2):283-6. [PubMed: 21254096]  [MGI Ref ID J:169288]

Shrager JB; Naji A; Kelly AM; Stedman HH. 1992. A PCR-based assay for the wild-type dystrophin gene transferred into the mdx mouse. Muscle Nerve 15(10):1133-7. [PubMed: 1357549]  [MGI Ref ID J:22170]

Sicinski P; Geng Y; Ryder-Cook AS; Barnard EA; Darlison MG; Barnard PJ. 1989. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244(4912):1578-80. [PubMed: 2662404]  [MGI Ref ID J:9866]

Sillitoe RV; Benson MA; Blake DJ; Hawkes R. 2003. Abnormal dysbindin expression in cerebellar mossy fiber synapses in the mdx mouse model of Duchenne muscular dystrophy. J Neurosci 23(16):6576-85. [PubMed: 12878699]  [MGI Ref ID J:84703]

Simoes GF; de Oliveira AL. 2012. Granulocyte-colony stimulating factor improves MDX mouse response to peripheral nerve injury. PLoS One 7(8):e42803. [PubMed: 22912741]  [MGI Ref ID J:189980]

Sinha M; Jang YC; Oh J; Khong D; Wu EY; Manohar R; Miller C; Regalado SG; Loffredo FS; Pancoast JR; Hirshman MF; Lebowitz J; Shadrach JL; Cerletti M; Kim MJ; Serwold T; Goodyear LJ; Rosner B; Lee RT; Wagers AJ. 2014. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344(6184):649-52. [PubMed: 24797481]  [MGI Ref ID J:211283]

Skrabek RQ; Anderson JE. 2001. Metabolic shifts and myocyte hypertrophy in deflazacort treatment of mdx mouse cardiomyopathy. Muscle Nerve 24(2):192-202. [PubMed: 11180202]  [MGI Ref ID J:116202]

Smith J; Fowkes G; Schofield PN. 1995. Programmed cell death in dystrophic (mdx) muscle is inhibited by IGF-II. Cell Death Differ 2(4):243-251. [PubMed: 17180029]  [MGI Ref ID J:30276]

Smith J; Goldsmith C; Ward A; LeDieu R. 2000. IGF-II ameliorates the dystrophic phenotype and coordinately down-regulates programmed cell death. Cell Death Differ 7(11):1109-18. [PubMed: 11139285]  [MGI Ref ID J:114190]

Smith J; Schofield PN. 1994. The effects of fibroblast growth factors in long-term primary culture of dystrophic (mdx) mouse muscle myoblasts. Exp Cell Res 210(1):86-93. [PubMed: 8270001]  [MGI Ref ID J:16311]

Smythe GM; Fan Y; Grounds MD. 2000. Enhanced migration and fusion of donor myoblasts in dystrophic and normal host muscle. Muscle Nerve 23(4):560-74. [PubMed: 10716768]  [MGI Ref ID J:116193]

Sonnemann KJ; Heun-Johnson H; Turner AJ; Baltgalvis KA; Lowe DA; Ervasti JM. 2009. Functional substitution by TAT-utrophin in dystrophin-deficient mice. PLoS Med 6(5):e1000083. [PubMed: 19478831]  [MGI Ref ID J:207592]

Souccar C; Goncalo Mdo C; Buck Hde S; Lima-Landman MT; Lapa AJ. 2005. Mild dystrophic damage in the androgen-sensitive levator ani muscle of the mdx mouse. Neuromuscul Disord 15(1):48-56. [PubMed: 15639121]  [MGI Ref ID J:101885]

Spector I; Zilberstein Y; Lavy A; Genin O; Barzilai-Tutsch H; Bodanovsky A; Halevy O; Pines M. 2013. The involvement of collagen triple helix repeat containing 1 in muscular dystrophies. Am J Pathol 182(3):905-16. [PubMed: 23274062]  [MGI Ref ID J:193271]

Spencer MJ; Marino MW; Winckler WM. 2000. Altered pathological progression of diaphragm and quadriceps muscle in TNF-deficient, dystrophin-deficient mice. Neuromuscul Disord 10(8):612-9. [PubMed: 11053690]  [MGI Ref ID J:103113]

Spencer MJ; Mellgren RL. 2002. Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Hum Mol Genet 11(21):2645-55. [PubMed: 12354790]  [MGI Ref ID J:118408]

Spencer MJ; Tidball JG. 1996. Calpain translocation during muscle fiber necrosis and regeneration in dystrophin-deficient mice. Exp Cell Res 226(2):264-72. [PubMed: 8806430]  [MGI Ref ID J:34594]

Spurney CF; Knoblach S; Pistilli EE; Nagaraju K; Martin GR; Hoffman EP. 2008. Dystrophin-deficient cardiomyopathy in mouse: expression of Nox4 and Lox are associated with fibrosis and altered functional parameters in the heart. Neuromuscul Disord 18(5):371-81. [PubMed: 18440230]  [MGI Ref ID J:139789]

Squire S; Raymackers JM; Vandebrouck C; Potter A; Tinsley J; Fisher R; Gillis JM; Davies KE. 2002. Prevention of pathology in mdx mice by expression of utrophin: analysis using an inducible transgenic expression system. Hum Mol Genet 11(26):3333-44. [PubMed: 12471059]  [MGI Ref ID J:80809]

Stedman HH; Sweeney HL; Shrager JB; Maguire HC; Panettieri RA; Petrof B; Narusawa M; Leferovich JM; Sladky JT; Kelly AM. 1991. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352(6335):536-9. [PubMed: 1865908]  [MGI Ref ID J:152891]

Stevens ED; Faulkner JA. 2000. The capacity of mdx mouse diaphragm muscle to do oscillatory work. J Physiol 522 Pt 3:457-66. [PubMed: 10713969]  [MGI Ref ID J:106297]

Stewart R; Flechner L; Montminy M; Berdeaux R. 2011. CREB is activated by muscle injury and promotes muscle regeneration. PLoS One 6(9):e24714. [PubMed: 21931825]  [MGI Ref ID J:177923]

Stuckey DJ; Carr CA; Camelliti P; Tyler DJ; Davies KE; Clarke K. 2012. In vivo MRI characterization of progressive cardiac dysfunction in the mdx mouse model of muscular dystrophy. PLoS One 7(1):e28569. [PubMed: 22235247]  [MGI Ref ID J:184154]

Stupka N; Michell BJ; Kemp BE; Lynch GS. 2006. Differential calcineurin signalling activity and regeneration efficacy in diaphragm and limb muscles of dystrophic mdx mice. Neuromuscul Disord 16(5):337-46. [PubMed: 16621557]  [MGI Ref ID J:112803]

Stupka N; Plant DR; Schertzer JD; Emerson TM; Bassel-Duby R; Olson EN; Lynch GS. 2006. Activated calcineurin ameliorates contraction-induced injury to skeletal muscles of mdx dystrophic mice. J Physiol 575(Pt 2):645-56. [PubMed: 16793906]  [MGI Ref ID J:133049]

Stupka N; Schertzer JD; Bassel-Duby R; Olson EN; Lynch GS. 2008. Stimulation of calcineurin A{alpha} activity attenuates muscle pathophysiology in mdx dystrophic mice. Am J Physiol Regul Integr Comp Physiol 294(3):R983-92. [PubMed: 18199592]  [MGI Ref ID J:132018]

Suelves M; Vidal B; Serrano AL; Tjwa M; Roma J; Lopez-Alemany R; Luttun A; de Lagran MM; Diaz-Ramos A; Jardi M; Roig M; Dierssen M; Dewerchin M; Carmeliet P; Munoz-Canoves P. 2007. uPA deficiency exacerbates muscular dystrophy in MDX mice. J Cell Biol 178(6):1039-51. [PubMed: 17785520]  [MGI Ref ID J:134802]

Sugimoto S; Takenaka H; Yamashita S; Matsukura S; Hamada M. 1990. Kinetic properties and isozyme composition of myosin in the mdx mutant mouse. J Neurol Sci 97(2-3):207-19. [PubMed: 2144875]  [MGI Ref ID J:152750]

Suh JG; Yamazaki A; Tomita T. 1994. Breeding of the gad-mdx mouse: influence of genetically induced denervation on dystrophic muscle fibers. Lab Anim Sci 44(1):42-6. [PubMed: 8007658]  [MGI Ref ID J:28545]

Takagi A; Kojima S; Ida M; Araki M. 1992. Increased leakage of calcium ion from the sarcoplasmic reticulum of the mdx mouse. J Neurol Sci 110(1-2):160-4. [PubMed: 1506855]  [MGI Ref ID J:1413]

Tamaki T; Sekine T; Akatsuka A; Uchiyama S; Nakano S. 1993. Three-dimensional cytoarchitecture of complex branched fibers in soleus muscle from mdx mutant mice. Anat Rec 237(3):338-44. [PubMed: 8291687]  [MGI Ref ID J:15295]

Tamma R; Annese T; Capogrosso RF; Cozzoli A; Benagiano V; Sblendorio V; Ruggieri S; Crivellato E; Specchia G; Ribatti D; De Luca A; Nico B. 2013. Effects of prednisolone on the dystrophin-associated proteins in the blood-brain barrier and skeletal muscle of dystrophic mdx mice. Lab Invest 93(5):592-610. [PubMed: 23528847]  [MGI Ref ID J:196197]

Tanabe Y; Esaki K; Nomura T. 1986. Skeletal muscle pathology in X chromosome-linked muscular dystrophy (mdx) mouse. Acta Neuropathol (Berl) 69(1-2):91-5. [PubMed: 3962599]  [MGI Ref ID J:8256]

Teichmann MD; Wegner FV; Fink RH; Chamberlain JS; Launikonis BS; Martinac B; Friedrich O. 2008. Inhibitory control over Ca(2+) sparks via mechanosensitive channels is disrupted in dystrophin deficient muscle but restored by mini-dystrophin expression. PLoS ONE 3(11):e3644. [PubMed: 18982068]  [MGI Ref ID J:143913]

Terada M; Kawano F; Ohira T; Nakai N; Nishimoto N; Ohira Y. 2012. Effects of mechanical over-loading on the properties of soleus muscle fibers, with or without damage, in wild type and mdx mice. PLoS One 7(4):e34557. [PubMed: 22523551]  [MGI Ref ID J:187212]

Thomas GD; Ye J; De Nardi C; Monopoli A; Ongini E; Victor RG. 2012. Treatment with a nitric oxide-donating NSAID alleviates functional muscle ischemia in the mouse model of Duchenne muscular dystrophy. PLoS One 7(11):e49350. [PubMed: 23139842]  [MGI Ref ID J:195358]

Tidball JG; Albrecht DE; Lokensgard BE; Spencer MJ. 1995. Apoptosis precedes necrosis of dystrophin-deficient muscle. J Cell Sci 108(Pt 6):2197-204. [PubMed: 7673339]  [MGI Ref ID J:26255]

Tidball JG; Wehling-Henricks M. 2004. Expression of a NOS transgene in dystrophin-deficient muscle reduces muscle membrane damage without increasing the expression of membrane-associated cytoskeletal proteins. Mol Genet Metab 82(4):312-20. [PubMed: 15308129]  [MGI Ref ID J:94166]

Tinsley J; Deconinck N; Fisher R; Kahn D; Phelps S; Gillis JM; Davies K. 1998. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 4(12):1441-4. [PubMed: 9846586]  [MGI Ref ID J:51364]

Tinsley JM; Potter AC; Phelps SR; Fisher R; Trickett JI; Davies KE. 1996. Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene [see comments] Nature 384(6607):349-53. [PubMed: 8934518]  [MGI Ref ID J:36822]

Tkatchenko AV; Le Cam G; Leger JJ; Dechesne CA. 2000. Large-scale analysis of differential gene expression in the hindlimb muscles and diaphragm of mdx mouse. Biochim Biophys Acta 1500(1):17-30. [PubMed: 10564714]  [MGI Ref ID J:58586]

Tohma H; Hepworth AR; Shavlakadze T; Grounds MD; Arthur PG. 2011. Quantification of ceroid and lipofuscin in skeletal muscle. J Histochem Cytochem 59(8):769-79. [PubMed: 21804079]  [MGI Ref ID J:181062]

Torrente Y; D'Angelo MG; Li Z; Del Bo R; Corti S; Mericskay M; DeLiso A; Fassati A; Paulin D; Comi GP; Scarlato G; Bresolin N. 2000. Transplacental injection of somite-derived cells in mdx mouse embryos for the correction of dystrophin deficiency Hum Mol Genet 9(12):1843-52. [PubMed: 10915773]  [MGI Ref ID J:63753]

Townsend D; Yasuda S; McNally E; Metzger JM. 2011. Distinct pathophysiological mechanisms of cardiomyopathy in hearts lacking dystrophin or the sarcoglycan complex. FASEB J 25(9):3106-14. [PubMed: 21665956]  [MGI Ref ID J:175721]

Tracey I; Dunn JF; Radda GK. 1996. Brain metabolism is abnormal in the mdx model of Duchenne muscular dystrophy. Brain 119(Pt 3):1039-44. [PubMed: 8673481]  [MGI Ref ID J:34730]

Trensz F; Haroun S; Cloutier A; Richter MV; Grenier G. 2010. A muscle resident cell population promotes fibrosis in hindlimb skeletal muscles of mdx mice through the Wnt canonical pathway. Am J Physiol Cell Physiol 299(5):C939-47. [PubMed: 20810909]  [MGI Ref ID J:165822]

Turk R; Sterrenburg E; de Meijer EJ; van Ommen GJ; den Dunnen JT; 't Hoen PA. 2005. Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 6:98. [PubMed: 16011810]  [MGI Ref ID J:123873]

Turk R; Sterrenburg E; van der Wees CG; de Meijer EJ; de Menezes RX; Groh S; Campbell KP; Noguchi S; van Ommen GJ; den Dunnen JT; 't Hoen PA. 2006. Common pathological mechanisms in mouse models for muscular dystrophies. FASEB J 20(1):127-9. [PubMed: 16306063]  [MGI Ref ID J:104560]

Turner PR; Fong PY; Denetclaw WF; Steinhardt RA. 1991. Increased calcium influx in dystrophic muscle. J Cell Biol 115(6):1701-12. [PubMed: 1661733]  [MGI Ref ID J:1876]

Turner PR; Schultz R; Ganguly B; Steinhardt RA. 1993. Proteolysis results in altered leak channel kinetics and elevated free calcium in mdx muscle. J Membr Biol 133(3):243-51. [PubMed: 8392585]  [MGI Ref ID J:21447]

Uchino M; Yoshioka K; Miike T; Tokunaga M; Uyama E; Teramoto H; Naoe H; Ando M. 1994. Dystrophin and dystrophin-related protein in the brains of normal and mdx mice. Muscle Nerve 17(5):533-8. [PubMed: 8159184]  [MGI Ref ID J:19067]

Ullrich ND; Fanchaouy M; Gusev K; Shirokova N; Niggli E. 2009. Hypersensitivity of excitation-contraction coupling in dystrophic cardiomyocytes. Am J Physiol Heart Circ Physiol 297(6):H1992-2003. [PubMed: 19783774]  [MGI Ref ID J:158238]

Vaghy PL; Fang J; Wu W; Vaghy LP. 1998. Increased caveolin-3 levels in mdx mouse muscles. FEBS Lett 431(1):125-7. [PubMed: 9684879]  [MGI Ref ID J:48804]

Vaillend C; Billard JM; Claudepierre T; Rendon A; Dutar P; Ungerer A. 1998. Spatial discrimination learning and CA1 hippocampal synaptic plasticity in mdx and mdx3cv mice lacking dystrophin gene products. Neuroscience 86(1):53-66. [PubMed: 9692743]  [MGI Ref ID J:48768]

Vaillend C; Billard JM; Laroche S. 2004. Impaired long-term spatial and recognition memory and enhanced CA1 hippocampal LTP in the dystrophin-deficient Dmd(mdx) mouse. Neurobiol Dis 17(1):10-20. [PubMed: 15350961]  [MGI Ref ID J:92466]

Vaillend C; Rendon A; Misslin R; Ungerer A. 1995. Influence of dystrophin-gene mutation on mdx mouse behavior. I. Retention deficits at long delays in spontaneous alternation and bar-pressing tasks. Behav Genet 25(6):569-79. [PubMed: 8540895]  [MGI Ref ID J:29805]

Vaillend C; Ungerer A. 1999. Behavioral characterization of mdx3cv mice deficient in C-terminal dystrophins. Neuromuscul Disord 9(5):296-304. [PubMed: 10407849]  [MGI Ref ID J:56477]

Valladares D; Almarza G; Contreras A; Pavez M; Buvinic S; Jaimovich E; Casas M. 2013. Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy. PLoS One 8(11):e75340. [PubMed: 24282497]  [MGI Ref ID J:209771]

Vannucchi MG; Corsani L; Faussone-Pellegrini MS. 2003. Synaptic vesicle morphology and recycling are altered in myenteric neurons of mice lacking dystrophin (mdx mice). J Cell Physiol 197(2):232-42. [PubMed: 14502563]  [MGI Ref ID J:85623]

Vannucchi MG; Garella R; Cipriani G; Baccari MC. 2011. Relaxin counteracts the altered gastric motility of dystrophic (mdx) mice: functional and immunohistochemical evidence for the involvement of nitric oxide. Am J Physiol Endocrinol Metab 300(2):E380-91. [PubMed: 21081707]  [MGI Ref ID J:172322]

Vasquez I; Tan N; Boonyasampant M; Koppitch KA; Lansman JB. 2012. Partial opening and subconductance gating of mechanosensitive ion channels in dystrophic skeletal muscle. J Physiol 590(Pt 23):6167-85. [PubMed: 22966155]  [MGI Ref ID J:203025]

Veal EA; Jackson MJ. 1995. Expression of c-fos and c-myc in satellite cell cultures from dystrophic mdx and control mouse muscle. Biochem Soc Trans 23(3):456S. [PubMed: 8566348]  [MGI Ref ID J:29286]

Veal EA; Jackson MJ. 1995. Expression of the proto-oncogenes c-fos and c-myc in mdx dystrophic mouse muscle. Biochem Soc Trans 23(1):131S. [PubMed: 7758695]  [MGI Ref ID J:23308]

Vercherat C; Chung TK; Yalcin S; Gulbagci N; Gopinadhan S; Ghaffari S; Taneja R. 2009. Stra13 regulates oxidative stress mediated skeletal muscle degeneration. Hum Mol Genet 18(22):4304-16. [PubMed: 19679564]  [MGI Ref ID J:153720]

Vetrone SA; Montecino-Rodriguez E; Kudryashova E; Kramerova I; Hoffman EP; Liu SD; Miceli MC; Spencer MJ. 2009. Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest 119(6):1583-94. [PubMed: 19451692]  [MGI Ref ID J:150572]

Vidal B; Serrano AL; Tjwa M; Suelves M; Ardite E; De Mori R; Baeza-Raja B; Martinez de Lagran M; Lafuste P; Ruiz-Bonilla V; Jardi M; Gherardi R; Christov C; Dierssen M; Carmeliet P; Degen JL; Dewerchin M; Munoz-Canoves P. 2008. Fibrinogen drives dystrophic muscle fibrosis via a TGF{beta}/alternative macrophage activation pathway. Genes Dev 22(13):1747-52. [PubMed: 18593877]  [MGI Ref ID J:137450]

Villalta SA; Deng B; Rinaldi C; Wehling-Henricks M; Tidball JG. 2011. IFN-gamma promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation. J Immunol 187(10):5419-28. [PubMed: 22013114]  [MGI Ref ID J:179601]

Villalta SA; Nguyen HX; Deng B; Gotoh T; Tidball JG. 2009. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18(3):482-96. [PubMed: 18996917]  [MGI Ref ID J:143545]

Vilquin JT; Brussee V; Asselin I; Kinoshita I; Gingras M; Tremblay JP. 1998. Evidence of mdx mouse skeletal muscle fragility in vivo by eccentric running exercise. Muscle Nerve 21(5):567-76. [PubMed: 9572235]  [MGI Ref ID J:117426]

Viola HM; Adams AM; Davies SM; Fletcher S; Filipovska A; Hool LC. 2014. Impaired functional communication between the L-type calcium channel and mitochondria contributes to metabolic inhibition in the mdx heart. Proc Natl Acad Sci U S A 111(28):E2905-14. [PubMed: 24969422]  [MGI Ref ID J:212163]

Viola HM; Davies SM; Filipovska A; Hool LC. 2013. L-type Ca(2+) channel contributes to alterations in mitochondrial calcium handling in the mdx ventricular myocyte. Am J Physiol Heart Circ Physiol 304(6):H767-75. [PubMed: 23335798]  [MGI Ref ID J:196422]

Wagner KR; Liu X; Chang X; Allen RE. 2005. Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci U S A 102(7):2519-24. [PubMed: 15699335]  [MGI Ref ID J:96635]

Wagner KR; McPherron AC; Winik N; Lee SJ. 2002. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 52(6):832-6. [PubMed: 12447939]  [MGI Ref ID J:97521]

Wakefield PM; Tinsley JM; Wood MJ; Gilbert R; Karpati G; Davies KE. 2000. Prevention of the dystrophic phenotype in dystrophin/utrophin-deficient muscle following adenovirus-mediated transfer of a utrophin minigene. Gene Ther 7(3):201-4. [PubMed: 10694796]  [MGI Ref ID J:61318]

Wakeford S; Watt DJ; Partridge TA. 1991. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve 14(1):42-50. [PubMed: 1992296]  [MGI Ref ID J:116018]

Wang X; Weisleder N; Collet C; Zhou J; Chu Y; Hirata Y; Zhao X; Pan Z; Brotto M; Cheng H; Ma J. 2005. Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 7(5):525-30. [PubMed: 15834406]  [MGI Ref ID J:105418]

Wardrop KE; Dominov JA. 2011. Proinflammatory signals and the loss of lymphatic vessel hyaluronan receptor-1 (LYVE-1) in the early pathogenesis of laminin alpha2-deficient skeletal muscle. J Histochem Cytochem 59(2):167-79. [PubMed: 20876525]  [MGI Ref ID J:170192]

Wasala NB; Bostick B; Yue Y; Duan D. 2013. Exclusive skeletal muscle correction does not modulate dystrophic heart disease in the aged mdx model of Duchenne cardiomyopathy. Hum Mol Genet 22(13):2634-41. [PubMed: 23459935]  [MGI Ref ID J:198236]

Watt DJ; Karasinski J; England MA. 1993. Migration of lacZ positive cells from the tibialis anterior to the extensor digitorum longus muscle of the X-linked muscular dystrophic (mdx) mouse. J Muscle Res Cell Motil 14(1):121-32. [PubMed: 8478422]  [MGI Ref ID J:12646]

Wehling M; Spencer MJ; Tidball JG. 2001. A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 155(1):123-31. [PubMed: 11581289]  [MGI Ref ID J:71898]

Wehling-Henricks M; Jordan MC; Gotoh T; Grody WW; Roos KP; Tidball JG. 2010. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS One 5(5):e10763. [PubMed: 20505827]  [MGI Ref ID J:160818]

Wehling-Henricks M; Jordan MC; Roos KP; Deng B; Tidball JG. 2005. Cardiomyopathy in dystrophin-deficient hearts is prevented by expression of a neuronal nitric oxide synthase transgene in the myocardium. Hum Mol Genet 14(14):1921-33. [PubMed: 15917272]  [MGI Ref ID J:182128]

Wehling-Henricks M; Oltmann M; Rinaldi C; Myung KH; Tidball JG. 2009. Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphofructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy. Hum Mol Genet 18(18):3439-51. [PubMed: 19542095]  [MGI Ref ID J:151716]

Wehling-Henricks M; Sokolow S; Lee JJ; Myung KH; Villalta SA; Tidball JG. 2008. Major basic protein-1 promotes fibrosis of dystrophic muscle and attenuates the cellular immune response in muscular dystrophy. Hum Mol Genet 17(15):2280-92. [PubMed: 18430716]  [MGI Ref ID J:137633]

Wehling-Henricks M; Tidball JG. 2011. Neuronal nitric oxide synthase-rescue of dystrophin/utrophin double knockout mice does not require nNOS localization to the cell membrane. PLoS One 6(10):e25071. [PubMed: 22003386]  [MGI Ref ID J:179610]

Weisleder N; Takizawa N; Lin P; Wang X; Cao C; Zhang Y; Tan T; Ferrante C; Zhu H; Chen PJ; Yan R; Sterling M; Zhao X; Hwang M; Takeshima M; Cai C; Cheng H; Takeshima H; Xiao RP; Ma J. 2012. Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy. Sci Transl Med 4(139):139ra85. [PubMed: 22723464]  [MGI Ref ID J:186705]

Wells DJ; Wells KE; Asante EA; Turner G; Sunada Y; Campbell KP; Walsh FS; Dickson G. 1995. Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 4(8):1245-50. [PubMed: 7581360]  [MGI Ref ID J:27472]

Wells DJ; Wells KE; Walsh FS; Davies KE; Goldspink G; Love DR; Chan-Thomas P; Dunckley MG; Piper T; Dickson G. 1992. Human dystrophin expression corrects the myopathic phenotype in transgenic mdx mice. Hum Mol Genet 1(1):35-40. [PubMed: 1301134]  [MGI Ref ID J:2092]

Wheeler TM; Leger AJ; Pandey SK; MacLeod AR; Nakamori M; Cheng SH; Wentworth BM; Bennett CF; Thornton CA. 2012. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488(7409):111-5. [PubMed: 22859208]  [MGI Ref ID J:186768]

Whitehead NP; Yeung EW; Froehner SC; Allen DG. 2010. Skeletal muscle NADPH oxidase is increased and triggers stretch-induced damage in the mdx mouse. PLoS One 5(12):e15354. [PubMed: 21187957]  [MGI Ref ID J:168678]

Wieneke S; Heimann P; Leibovitz S; Nudel U; Jockusch H. 2003. Acute pathophysiological effects of muscle-expressed Dp71 transgene on normal and dystrophic mouse muscle. J Appl Physiol 95(5):1861-6. [PubMed: 14555666]  [MGI Ref ID J:103011]

Wilding JR; Schneider JE; Sang AE; Davies KE; Neubauer S; Clarke K. 2005. Dystrophin- and MLP-deficient mouse hearts: marked differences in morphology and function, but similar accumulation of cytoskeletal proteins. FASEB J 19(1):79-81. [PubMed: 15494447]  [MGI Ref ID J:105036]

Williams DA; Head SI; Lynch GS; Stephenson DG. 1993. Contractile properties of skinned muscle fibres from young and adult normal and dystrophic (mdx) mice. J Physiol 460:51-67. [PubMed: 8487206]  [MGI Ref ID J:17900]

Williams IA; Allen DG. 2007. Intracellular calcium handling in ventricular myocytes from mdx mice. Am J Physiol Heart Circ Physiol 292(2):H846-55. [PubMed: 17012353]  [MGI Ref ID J:120592]

Williams IA; Allen DG. 2007. The role of reactive oxygen species in the hearts of dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol 293(3):H1969-77. [PubMed: 17573457]  [MGI Ref ID J:126149]

Williams MW; Bloch RJ. 1999. Extensive but coordinated reorganization of the membrane skeleton in myofibers of dystrophic (mdx) mice. J Cell Biol 144(6):1259-70. [PubMed: 10087268]  [MGI Ref ID J:54110]

Wilton SD; Dye DE; Laing NG. 1997. Dystrophin gene transcripts skipping the mdx mutation. Muscle Nerve 20(6):728-34. [PubMed: 9149080]  [MGI Ref ID J:40541]

Wilton SD; Lloyd F; Carville K; Fletcher S; Honeyman K; Agrawal S; Kole R. 1999. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul Disord 9(5):330-8. [PubMed: 10407856]  [MGI Ref ID J:57356]

Wineinger MA; Walsh SA; Abresch RT. 1998. The effect of age and temperature on mdx muscle fatigue. Muscle Nerve 21(8):1075-7. [PubMed: 9655128]  [MGI Ref ID J:116332]

Wong A; Garrett KL; Anderson JE. 1999. Myoid cell density in the thymus is reduced during mdx dystrophy and after muscle crush. Biochem Cell Biol 77(1):33-40. [PubMed: 10426284]  [MGI Ref ID J:55875]

Woo M; Tanabe Y; Ishii H; Nonaka I; Yokoyama M; Esaki K. 1987. Muscle fiber growth and necrosis in dystrophic muscles: a comparative study between dy and mdx mice. J Neurol Sci 82(1-3):111-22. [PubMed: 3440862]  [MGI Ref ID J:152525]

Woods CE; Novo D; DiFranco M; Vergara JL. 2004. The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres. J Physiol 557(Pt 1):59-75. [PubMed: 15004213]  [MGI Ref ID J:105267]

Woolf PJ; Lu S; Cornford-Nairn R; Watson M; Xiao XH; Holroyd SM; Brown L; Hoey AJ. 2006. Alterations in dihydropyridine receptors in dystrophin-deficient cardiac muscle. Am J Physiol Heart Circ Physiol 290(6):H2439-45. [PubMed: 16415078]  [MGI Ref ID J:111846]

Wu B; Benrashid E; Lu P; Cloer C; Zillmer A; Shaban M; Lu QL. 2011. Targeted skipping of human dystrophin exons in transgenic mouse model systemically for antisense drug development. PLoS One 6(5):e19906. [PubMed: 21611204]  [MGI Ref ID J:172587]

Wu B; Moulton HM; Iversen PL; Jiang J; Li J; Li J; Spurney CF; Sali A; Guerron AD; Nagaraju K; Doran T; Lu P; Xiao X; Lu QL. 2008. Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci U S A 105(39):14814-9. [PubMed: 18806224]  [MGI Ref ID J:142846]

Xiong D; Lee GH; Badorff C; Dorner A; Lee S; Wolf P; Knowlton KU. 2002. Dystrophin deficiency markedly increases enterovirus-induced cardiomyopathy: a genetic predisposition to viral heart disease. Nat Med 8(8):872-7. [PubMed: 12118246]  [MGI Ref ID J:78276]

Xu R; Camboni M; Martin PT. 2007. Postnatal overexpression of the CT GalNAc transferase inhibits muscular dystrophy in mdx mice without altering muscle growth or neuromuscular development: evidence for a utrophin-independent mechanism. Neuromuscul Disord 17(3):209-20. [PubMed: 17300937]  [MGI Ref ID J:124487]

Xu R; Chandrasekharan K; Yoon JH; Camboni M; Martin PT. 2007. Overexpression of the cytotoxic T cell (CT) carbohydrate inhibits muscular dystrophy in the dyW mouse model of congenital muscular dystrophy 1A. Am J Pathol 171(1):181-99. [PubMed: 17591965]  [MGI Ref ID J:122854]

Xu R; DeVries S; Camboni M; Martin PT. 2009. Overexpression of Galgt2 reduces dystrophic pathology in the skeletal muscles of alpha sarcoglycan-deficient mice. Am J Pathol 175(1):235-47. [PubMed: 19498002]  [MGI Ref ID J:150058]

Xu R; Salpeter MM. 1997. Acetylcholine receptors in innervated muscles of dystrophic mdx mice degrade as after denervation. J Neurosci 17(21):8194-200. [PubMed: 9334395]  [MGI Ref ID J:43694]

Yamane A; Akutsu S; Diekwisch TG; Matsuda R. 2005. Satellite cells and utrophin are not directly correlated with the degree of skeletal muscle damage in mdx mice. Am J Physiol Cell Physiol 289(1):C42-8. [PubMed: 15703201]  [MGI Ref ID J:101256]

Yang B; Ibraghimov-Beskrovnaya O; Moomaw CR; Slaughter CA; Campbell KP. 1994. Heterogeneity of the 59-kDa dystrophin-associated protein revealed by cDNA cloning and expression. J Biol Chem 269(8):6040-4. [PubMed: 8119949]  [MGI Ref ID J:16941]

Yang L; Niu H; Gao X; Wang Q; Han G; Cao L; Cai C; Weiler J; Yin H. 2013. Effective exon skipping and dystrophin restoration by 2'-o-methoxyethyl antisense oligonucleotide in dystrophin-deficient mice. PLoS One 8(4):e61584. [PubMed: 23658612]  [MGI Ref ID J:200540]

Yeung D; Kharidia R; Brown SC; Gorecki DC. 2004. Enhanced expression of the P2X4 receptor in Duchenne muscular dystrophy correlates with macrophage invasion. Neurobiol Dis 15(2):212-20. [PubMed: 15006691]  [MGI Ref ID J:121035]

Yokota T; Lu QL; Morgan JE; Davies KE; Fisher R; Takeda S; Partridge TA. 2006. Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration. J Cell Sci 119(Pt 13):2679-87. [PubMed: 16757519]  [MGI Ref ID J:110347]

Yoshida M; Matsuzaki T; Date M; Wada K. 1997. Skeletal muscle fiber degeneration in mdx mice induced by electrical stimulation. Muscle Nerve 20(11):1422-32. [PubMed: 9342159]  [MGI Ref ID J:116432]

Yoshida M; Yonetani A; Shirasaki T; Wada K. 2006. Dietary NaCl supplementation prevents muscle necrosis in a mouse model of Duchenne muscular dystrophy. Am J Physiol Regul Integr Comp Physiol 290(2):R449-55. [PubMed: 16179484]  [MGI Ref ID J:115746]

Yoshihara Y; Onodera H; Iinuma K; itoyama Y. 2003. Abnormal kainic acid receptor density and reduced seizure susceptibility in dystrophin-deficient mdx mice. Neuroscience 117(2):391-5. [PubMed: 12614679]  [MGI Ref ID J:110894]

Yue Y; Skimming JW; Liu M; Strawn T; Duan D. 2004. Full-length dystrophin expression in half of the heart cells ameliorates beta-isoproterenol-induced cardiomyopathy in mdx mice. Hum Mol Genet 13(15):1669-75. [PubMed: 15190010]  [MGI Ref ID J:118895]

Zacharias JM; Anderson JE. 1991. Muscle regeneration after imposed injury is better in younger than older mdx dystrophic mice. J Neurol Sci 104(2):190-6. [PubMed: 1940973]  [MGI Ref ID J:28686]

Zanou N; Iwata Y; Schakman O; Lebacq J; Wakabayashi S; Gailly P. 2009. Essential role of TRPV2 ion channel in the sensitivity of dystrophic muscle to eccentric contractions. FEBS Lett 583(22):3600-4. [PubMed: 19840792]  [MGI Ref ID J:154680]

Zeman RJ; Peng H; Danon MJ; Etlinger JD. 2000. Clenbuterol reduces degeneration of exercised or aged dystrophic (mdx) muscle. Muscle Nerve 23(4):521-8. [PubMed: 10716762]  [MGI Ref ID J:116194]

Zhang M; Liu J; Cheng A; Deyoung SM; Saltiel AR. 2007. Identification of CAP as a costameric protein that interacts with filamin C. Mol Biol Cell 18(12):4731-40. [PubMed: 17898075]  [MGI Ref ID J:145220]

Zhang W; ten Hove M; Schneider JE; Stuckey DJ; Sebag-Montefiore L; Bia BL; Radda GK; Davies KE; Neubauer S; Clarke K. 2008. Abnormal cardiac morphology, function and energy metabolism in the dystrophic mdx mouse: an MRI and MRS study. J Mol Cell Cardiol 45(6):754-60. [PubMed: 18929569]  [MGI Ref ID J:143578]

Zhang Y; Yue Y; Li L; Hakim CH; Zhang K; Thomas GD; Duan D. 2013. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy. Hum Mol Genet 22(18):3720-9. [PubMed: 23681067]  [MGI Ref ID J:199584]

Zhao J; Yoshioka K; Miike T; Miyatake M. 1993. Developmental studies of dystrophin-positive fibers in mdx, and DRP localization. J Neurol Sci 114(1):104-8. [PubMed: 8433092]  [MGI Ref ID J:3667]

Zhao X; Moloughney JG; Zhang S; Komazaki S; Weisleder N. 2012. Orai1 mediates exacerbated Ca(2+) entry in dystrophic skeletal muscle. PLoS One 7(11):e49862. [PubMed: 23185465]  [MGI Ref ID J:195456]

Zhou L; Porter JD; Cheng G; Gong B; Hatala DA; Merriam AP; Zhou X; Rafael JA; Kaminski HJ. 2006. Temporal and spatial mRNA expression patterns of TGF-beta1, 2, 3 and TbetaRI, II, III in skeletal muscles of mdx mice. Neuromuscul Disord 16(1):32-8. [PubMed: 16373085]  [MGI Ref ID J:112758]

Zhou L; Rafael-Fortney JA; Huang P; Zhao XS; Cheng G; Zhou X; Kaminski HJ; Liu L; Ransohoff RM. 2008. Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice. J Neurol Sci 264(1-2):106-11. [PubMed: 17889902]  [MGI Ref ID J:140282]

Zhuang W; Eby JC; Cheong M; Mohapatra PK; Bredt DS; Disatnik MH; Rando TA. 2001. The susceptibility of muscle cells to oxidative stress is independent of nitric oxide synthase expression. Muscle Nerve 24(4):502-11. [PubMed: 11268022]  [MGI Ref ID J:116198]

van Deutekom JC; Cao B; Pruchnic R; Wickham TJ; Kovesdi I; Huard J. 1999. Extended tropism of an adenoviral vector does not circumvent the maturation-dependent transducibility of mouse skeletal muscle. J Gene Med 1(6):393-9. [PubMed: 10753064]  [MGI Ref ID J:62398]

van Putten M; Hulsker M; Nadarajah VD; van Heiningen SH; van Huizen E; van Iterson M; Admiraal P; Messemaker T; den Dunnen JT; 't Hoen PA; Aartsma-Rus A. 2012. The effects of low levels of dystrophin on mouse muscle function and pathology. PLoS One 7(2):e31937. [PubMed: 22359642]  [MGI Ref ID J:185221]

van Putten M; Hulsker M; Young C; Nadarajah VD; Heemskerk H; van der Weerd L; 't Hoen PA; van Ommen GJ; Aartsma-Rus AM. 2013. Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/utrophin double-knockout mice. FASEB J 27(6):2484-95. [PubMed: 23460734]  [MGI Ref ID J:199957]

von Maltzahn J; Renaud JM; Parise G; Rudnicki MA. 2012. Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci U S A 109(50):20614-9. [PubMed: 23185011]  [MGI Ref ID J:193128]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX18

Colony Maintenance

Breeding & HusbandryThe Dmdmdx mutant allele is on the X chromosome. Mutant mice were bred to DBA/2J inbred mice (Stock No. 000671) for many generations using a marker-assisted, speed congenic approach to establish this congenic strain. When maintaining the live congenic colony, heterozygous or homozygous females may be bred with hemizygous males.
Mating SystemHomozygote x Hemizygote         (Female x Male)   19-NOV-14
Diet Information LabDiet® 5K52/5K67

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $199.90MaleHemizygous for Dmdmdx  
$199.90FemaleHomozygous for Dmdmdx  
Price per Pair (US dollars $)Pair Genotype
$399.80Homozygous for Dmdmdx x Hemizygous for Dmdmdx  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $259.90MaleHemizygous for Dmdmdx  
$259.90FemaleHomozygous for Dmdmdx  
Price per Pair (US dollars $)Pair Genotype
$519.80Homozygous for Dmdmdx x Hemizygous for Dmdmdx  

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live.
Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

  Control
   000671 DBA/2J
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)