Strain Name:

FVB.Cg-Tg(SOD1*G93A)1Gur/J

Stock Number:

013199

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Use Restrictions Apply, see Terms of Use
These SOD1-G93A (also called G93A-SOD1) transgenic mice may be useful in studying neuromuscular disorders, including Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig's Disease).

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Type Congenic; Mutant Strain; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
GenerationN15pN1F1pN1
Generation Definitions
 
Donating Investigator Catherine Kunst,   University of Denver

Description
Male mice hemizygous for this SOD1-G93A (also called G93A-SOD1) transgene are viable and fertile, with transgenic expression of a G93A mutant form of human SOD1, superoxide dismutase 1, soluble. This founder line (often referred to as G1H) is reported to have high transgene copy number. The Donating Investigator reports that female hemizygous mice are sterile. Hemizygotes exhibit a phenotype similar to amyotrophic lateral sclerosis (ALS) in humans; becoming paralyzed in one or more limbs with paralysis due to loss of motor neurons from the spinal cord. Transgenic mice have an abbreviated life span: on a congenic C57BL/6J background, 50% survive at 157.1+/-9.3 days (in contrast to the mixed B6SJL background where 50% survival is observed at 128.9+/-9.1 days). The Donating Investigator reports that mice carrying this transgene on the congenic FVB/NJ background can die as early as 100 days of age.

In an attempt to offer alleles on well-characterized or multiple genetic backgrounds, alleles are frequently moved to a genetic background different from that on which an allele was first characterized. As the SOD1-G93A transgenic mice were originally created on a mixed genetic background, it should be noted that the phenotype of the congenic mice could vary from that originally described. We will modify the strain description if necessary as published results become available.

Development
The SOD1-G93A (or G93A-SOD1) transgene was designed with a mutant human SOD1 gene (harboring a single amino acid substitution of glycine to alanine at codon 93) driven by its endogenous human SOD1 promoter. This transgene was injected into fertilized B6SJLF1 mouse eggs and founder animals were obtained. The mice were backcrossed to FVB/NJ (Stock No. 001800) for 15 generations. During backcrossing, the Y chromosome was not fixed to the FVB/NJ genetic background. Upon arrival, mice were crossed to FVB/NJ for at least 1 generation to establish the colony.

Control Information

  Control
   Noncarrier
   001800 FVB/NJ
 
  Considerations for Choosing Controls

Related Strains

View Amyotrophic Lateral Sclerosis (ALS)     (30 strains)

Strains carrying   Tg(SOD1*G93A)1Gur allele
004435   B6.Cg-Tg(SOD1*G93A)1Gur/J
002726   B6SJL-Tg(SOD1*G93A)1Gur/J
View Strains carrying   Tg(SOD1*G93A)1Gur     (2 strains)

View Strains carrying other alleles of SOD1     (13 strains)

Additional Web Information

Visit the Amyotrophic Lateral Sclerosis (ALS) Mouse Model Resource site for helpful information on ALS Disease and research resources.

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Characteristics of this human disease are associated with transgenes and other mutation types in the mouse.
Amyotrophic Lateral Sclerosis 1; ALS1
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Tg(SOD1*G93A)1Gur/0

        involves: C57BL/6 * SJL
  • mortality/aging
  • premature death   (MGI Ref ID J:109458)
    • increased survival on C57BL/6J background (50% survival at 157.1+/-9.3 days) in contrast to B6SJL background (50% survival at 128.9+/-9.1 days)   (MGI Ref ID J:115355)
    • die within 7-10 days after paralysis   (MGI Ref ID J:109423)
    • die after 124 4 days   (MGI Ref ID J:84843)
    • lifespan is on average 127.4 days   (MGI Ref ID J:111498)
  • growth/size/body phenotype
  • decreased body weight
    • lower body mass   (MGI Ref ID J:91800)
    • weight loss
      • body weight begins to significantly decrease at 77 days of age   (MGI Ref ID J:130581)
  • nervous system phenotype
  • abnormal nervous system physiology
    • mutants develop amyotrophic lateral sclerosis-like disease, with onset of disease on average at 103.2 days   (MGI Ref ID J:109458)
    • abnormal CNS synaptic transmission   (MGI Ref ID J:109423)
      • abnormal excitatory postsynaptic potential
        • intracellular recordings of single excitatory postsynaptic potentials from striatal medium spiny neurons showing an LTP, instead of an LTD   (MGI Ref ID J:109423)
      • abnormal long term potentiation
        • a tetanic stimulation induced a long term potential (LTP), instead of an long term depression (LTD) in field potentials induced in the striatum following corticostriatal pathway stimulation   (MGI Ref ID J:109423)
      • reduced long term depression
        • in the presence of the N-methyl-D-aspartic acid (NMDA) receptor antagonist AP5, repetitive stimulation of the corticostriatal pathway results in LTD   (MGI Ref ID J:109423)
        • the degree of field-amplitude depression is smaller in the presence of the NMDA receptor antagonist AP5   (MGI Ref ID J:109423)
        • exogenous dopamine (DA) restores LTD   (MGI Ref ID J:109423)
        • the presence of the selective DA D2 receptor agonist restores LTD   (MGI Ref ID J:109423)
    • abnormal neuron physiology
      • increased expression of unfolded protein response target genes by 50 days of age in motor neurons   (MGI Ref ID J:130581)
    • abnormal paired-pulse inhibition
      • trend towards less susceptible to paired-pulse depression   (MGI Ref ID J:109423)
    • impaired synaptic plasticity
      • abnormal corticostriatal synaptic plasticity between postnatal days 100 and 110   (MGI Ref ID J:109423)
    • increased cerebral infarction size
      • increased infarct volume at 24 hours after transient focal cerebral ischemia   (MGI Ref ID J:61249)
  • abnormal spinal cord morphology
    • exhibit neurofilament-rich spheroids at 82-days of age, similar to those seen in human amyotrophic lateral sclerosis; other neuronal intermediate filament proteins (alpha-internexin, peripherin) also accumulate in the spheroids   (MGI Ref ID J:76718)
    • more spheroids are seen in cervical and thoracic regions compared to lumbar and sacral spinal cord in early symptomatic mutants, however similar numbers at all spinal cord levels are seen in older mutants   (MGI Ref ID J:76718)
    • spheroids are more frequently found in the anterior horn and in the anterior and lateral columns of the white matter than in the posterior horn   (MGI Ref ID J:76718)
    • exhibit thickened dystrophic neurites filled with immunoreactive neurofilament-rich inclusions   (MGI Ref ID J:76718)
    • abnormal motor neuron morphology
      • mutant SOD1-positive inclusions in the ventral horn starting at P30   (MGI Ref ID J:111890)
      • the number of motoneurons with aggregates decreased dramatically over time   (MGI Ref ID J:111890)
      • decreased motor neuron number
        • motoneuron loss beyond 3 months of age   (MGI Ref ID J:84843)
      • motor neuron degeneration
        • develop motor neuron disease; exhibit degenerating motor neurons filled with perikaryal vacuoles in the anterior and lateral horns   (MGI Ref ID J:76718)
        • significant decrease in sciatic motor neuron survival by 90 days of age   (MGI Ref ID J:130581)
  • gliosis
    • gliosis and microglial activation are seen in the spinal cord by 90 days of age   (MGI Ref ID J:130581)
    • resting microglial cells in the white matter of the spinal cord   (MGI Ref ID J:55026)
    • reactive microglial cells in the gray matter of the spinal cord at 117 and165 days of age   (MGI Ref ID J:55026)
    • using MAC-1 and F4/80 as specific markers of microglial cells   (MGI Ref ID J:55026)
    • astrocytosis
      • exhibit astrocytosis in spinal cord, mainly in the anterior and lateral horns   (MGI Ref ID J:76718)
      • resting astrocytes in the white matter of the spinal cord at both the cervical and lumbar levels   (MGI Ref ID J:55026)
      • reactive astrocytes in the gray matter of the spinal cord at 117 and165 days of age, predominated in the anterior horn of the spinal cord   (MGI Ref ID J:55026)
      • using GFAP as a specific marker of astrocytes   (MGI Ref ID J:55026)
  • behavior/neurological phenotype
  • abnormal active avoidance behavior
    • less conditioned responses   (MGI Ref ID J:109423)
    • less increased performance as training proceeds   (MGI Ref ID J:109423)
    • normal minimal foot-shock intensity eliciting vocalization   (MGI Ref ID J:109423)
  • abnormal motor capabilities/coordination/movement
    • the first signs of motor neuron disease, hyperflexia, crossed spread of spinal reflexes, and shaking of the limbs when suspended in the air, occur by 91 days of age   (MGI Ref ID J:76718)
    • abnormal locomotor behavior
      • locomotor activity decreases more rapidly across 5 sessions   (MGI Ref ID J:109423)
      • abnormal gait
        • impairment in walking patterns with reduced stride length beginning at 90 days of age   (MGI Ref ID J:130581)
        • short stride length
          • beginning at 90 days of age   (MGI Ref ID J:130581)
    • decreased grip strength
      • steady decline in paw grip endurance beginning at 77 days of age   (MGI Ref ID J:130581)
    • impaired coordination
      • unable to stay for 2 min on the rotarod beyond 118 4 days of age   (MGI Ref ID J:84843)
    • paralysis
      • end-stage disease occurs at an average of 136 days, with mutants exhibiting severe paralysis and inability to forge for food or water   (MGI Ref ID J:76718)
      • develop paralysis rapidly after signs of hindlimb weakness   (MGI Ref ID J:109423)
      • hindlimb paralysis
        • develop a progressive worsening paresis involving primarily the hind limbs with atrophy of the skeletal musculature   (MGI Ref ID J:76718)
  • muscle phenotype
  • abnormal muscle physiology
    • mice exhibit decreased muscle tetanic force compared with wild-type mice   (MGI Ref ID J:111498)
    • mice exhibit reduced survival of motor units compared with wild-type mice   (MGI Ref ID J:111498)
    • the extensor digitorum longus exhibits fatigue resistance compared with wild-type muscles   (MGI Ref ID J:111498)
    • muscle weakness
      • hindlimb weakness from 4 months of age   (MGI Ref ID J:109423)
      • severe muscle weakness beyond 3 months of age   (MGI Ref ID J:84843)
  • skeletal muscle atrophy
    • develop atrophy of skeletal musculature   (MGI Ref ID J:76718)
  • adipose tissue phenotype
  • abnormal adipose tissue morphology
    • exhibit reduced adipose tissue accumulation   (MGI Ref ID J:91800)
    • abnormal fat pad morphology
      • epididymal and retroperitoneal white adipose tissue is markedly reduced or almost nonexistent in the asymptomatic phase of the disease   (MGI Ref ID J:91800)
  • homeostasis/metabolism phenotype
  • abnormal circulating hormone level   (MGI Ref ID J:91800)
    • decreased circulating insulin level   (MGI Ref ID J:91800)
    • decreased circulating leptin level
      • plasma leptin levels are diminished   (MGI Ref ID J:91800)
    • increased circulating corticosterone level   (MGI Ref ID J:91800)
  • abnormal energy expenditure
    • exhibit increased energy expenditure at rest   (MGI Ref ID J:91800)
  • abnormal nitric oxide homeostasis
    • increased spinal cord iNOS activity at 117 and 165 days of age   (MGI Ref ID J:55026)
    • decreased spinal cord nNOS activity at 165 days of age   (MGI Ref ID J:55026)
  • increased cerebral infarction size
    • increased infarct volume at 24 hours after transient focal cerebral ischemia   (MGI Ref ID J:61249)
  • increased oxygen consumption
    • exhibit higher rates of total oxygen consumption   (MGI Ref ID J:91800)
  • cellular phenotype
  • abnormal cell physiology
    • decreased glutamate uptake in synaptosomes   (MGI Ref ID J:61249)
    • impaired cellular glucose import
      • decreased glucose uptake in synaptosomes   (MGI Ref ID J:61249)
    • increased cellular sensitivity to oxidative stress
      • increased basal and induced lipid peroxidation levels in synaptosomes   (MGI Ref ID J:61249)

Tg(SOD1*G93A)1Gur/0

        B6.Cg-Tg(SOD1*G93A)1Gur/J
  • mortality/aging
  • premature death
    • mean time from onset of tremors to death is 16.5 +/-9.3 days   (MGI Ref ID J:115355)
    • increased survival on C57BL/6J background (50% survival at 157.1+/-9.3 days) in contrast to B6SJL background (50% survival at 128.9+/-9.1 days)   (MGI Ref ID J:115355)
    • disease onset at 1111.8 days (d)   (MGI Ref ID J:95812)
    • die within 100.6 d of clinical disease onset   (MGI Ref ID J:95812)
    • maximal life span of 145 d   (MGI Ref ID J:95812)
    • increased survival on C57BL/6J background (143.67.5 days) in contrast to B6SJL/J background (130.211.2 days)   (MGI Ref ID J:128550)
    • survive from 19-22 weeks   (MGI Ref ID J:138237)
    • increased survival by weekly immunization with Copolymer-1 (9.9%) in female mice   (MGI Ref ID J:138237)
    • reconstitution with polyclonal-activated Treg and Teff subsets delays loss of motor function and extends survival   (MGI Ref ID J:138237)
    • reconstitution with Treg delays neurological symptom onset   (MGI Ref ID J:138237)
    • reconstitution with Teff increases latency between disease onset and entry into late stage   (MGI Ref ID J:138237)
  • behavior/neurological phenotype
  • abnormal gait
    • exhibited longer stride and stance times as compared to C57BL/6J controls, however swing time difference was not significant   (MGI Ref ID J:115355)
    • long stride length   (MGI Ref ID J:138237)
  • tremors
    • observed hindlimb tremors when suspended by tail at 142.3 +/- 10.6 days (approx. 20 weeks)   (MGI Ref ID J:115355)
    • hind limb tremors at 14 weeks of age   (MGI Ref ID J:138237)
  • muscle phenotype
  • abnormal skeletal muscle fiber type ratio
    • altered fiber type composition at 80 d with a shift toward a fast fiber type   (MGI Ref ID J:95812)
  • decreased skeletal muscle fiber diameter
    • at 112 d and 123 d compared with wild-type mice   (MGI Ref ID J:95812)
    • severe muscle atrophy at 123 d   (MGI Ref ID J:95812)
  • nervous system phenotype
  • decreased motor neuron number
    • progressive reduction in the number of motor neuron from clinical onset to end-stage disease   (MGI Ref ID J:95812)
    • a reduction of 37 and 55% in the number of motor neurons at clinical onset (112 d) and at end-stage disease (123 d), respectively   (MGI Ref ID J:95812)
  • immune system phenotype
  • abnormal T cell physiology
    • progressively diminished proliferative capacity of T cells with age   (MGI Ref ID J:138237)
  • abnormal spleen morphology
    • diminished follicular area by 67% with a greater number (41%) of follicles at end stage   (MGI Ref ID J:138237)
    • decreased spleen weight
      • reduced spleen weight (59%) at 22 weeks of age   (MGI Ref ID J:138237)
    • decreased splenocyte number
      • reduced viable spleen cell numbers (70%) at 22 weeks of age   (MGI Ref ID J:138237)
  • hematopoietic system phenotype
  • abnormal T cell physiology
    • progressively diminished proliferative capacity of T cells with age   (MGI Ref ID J:138237)
  • abnormal spleen morphology
    • diminished follicular area by 67% with a greater number (41%) of follicles at end stage   (MGI Ref ID J:138237)
    • decreased spleen weight
      • reduced spleen weight (59%) at 22 weeks of age   (MGI Ref ID J:138237)
    • decreased splenocyte number
      • reduced viable spleen cell numbers (70%) at 22 weeks of age   (MGI Ref ID J:138237)

Tg(SOD1*G93A)1Gur/0

        B6SJL-Tg(SOD1*G93A)1Gur/J
  • mortality/aging
  • premature death
    • survival in male mice ranges between 105 days and 127 days   (MGI Ref ID J:146652)
    • survival is 157.2 2.2 days   (MGI Ref ID J:103582)
    • decreased survival on SJL/J background (119.29.7 days) in contrast to B6SJL/J background (130.211.2 days)   (MGI Ref ID J:128550)
    • female mice survive longer than the male on B6SJL/J (132.812.4 vs. 127.99.5 days) and SJL/J (122.510.9 vs. 115.26.2 days) background   (MGI Ref ID J:128550)
    • survive from 16-20 weeks   (MGI Ref ID J:138237)
  • behavior/neurological phenotype
  • abnormal drinking behavior
    • progressive decrease in lick rhythm over time beginning at approximately 102 days of age   (MGI Ref ID J:130811)
  • abnormal motor capabilities/coordination/movement   (MGI Ref ID J:130811)
    • decreased grip strength
      • reduced muscle strength in this traction test even from the age of 35 days   (MGI Ref ID J:103582)
      • progressive reduced forelimb and hindlimb grip force from the onset of testing (64 days of age)   (MGI Ref ID J:130811)
    • hindlimb paralysis
      • dragging in one hindlimb and inability to grasp a cage bar at 103 days of age   (MGI Ref ID J:146652)
      • paralysis progresses to both hindlimbs within 3-4 days   (MGI Ref ID J:146652)
      • first signs of hindlimb paralysis at 3.5-5 months of age   (MGI Ref ID J:110437)
    • hypoactivity
      • progressively decreased overall motor activity during the first 3 months   (MGI Ref ID J:110437)
      • lower horizontal travel distance and number of stops at 3.5 months of age in open field analysis   (MGI Ref ID J:110437)
      • longer duration of stops at 3.5-4.5 months of age   (MGI Ref ID J:110437)
    • impaired coordination
      • lower performance rate (<90%) in rotarod test from 71 days of age   (MGI Ref ID J:130811)
      • failed rotarod test after 113 days of age   (MGI Ref ID J:130811)
    • tremors
      • mild hindlimb tremor at 90 days of age   (MGI Ref ID J:146652)
      • hind limb tremors at 14 weeks of age   (MGI Ref ID J:138237)
  • increased anxiety-related response
    • slightly increased anxiety-related behavior   (MGI Ref ID J:110437)
    • reduced mean time spent in the center of the open field from 4 months on   (MGI Ref ID J:110437)
  • nervous system phenotype
  • abnormal astrocyte morphology
    • swollen, progressive degeneration of astrocytes in the brainstem, cervical and lumbar spinal cord   (MGI Ref ID J:165019)
    • characterized by mitochondrial damage, cellular edema and cell rupture   (MGI Ref ID J:165019)
    • astrocytosis
      • appear simultaneously to the degenerative changes and increase substantially with time   (MGI Ref ID J:110437)
  • abnormal brain morphology
    • degenerating somata in the brain at 4 months of age   (MGI Ref ID J:110437)
    • abnormal brainstem morphology
      • degeneration of brainstem motor nuclei (the trigeminal, hypoglossal and facial nucleus as early as Day 80 by magnetic resonance imaging (MRI)   (MGI Ref ID J:127265)
      • higher relaxation parameter T2 values for all the three brainstem nuclei after 80 days   (MGI Ref ID J:127265)
      • continuous age-dependent T2 values increase   (MGI Ref ID J:127265)
      • increased area of the brainstem nuclei (hypoglossal and facial nucleus) between 80 and 120 days after birth   (MGI Ref ID J:127265)
      • H&E staining with brain sections show same morphological alterations   (MGI Ref ID J:127265)
      • increased number of vacuoles in the brainstem nuclei from Day 80 onwards   (MGI Ref ID J:127265)
      • continuous age-dependent increased number of vacuoles   (MGI Ref ID J:127265)
      • swollen neurites and vacuoles in the brainstem affecting cerebellar and various motor nuclei (the hypoglossal, the ambiguus and the facial nucleus) within the following month   (MGI Ref ID J:110437)
      • vacuoles in the trigeminal nucleus and the locus coeruleus neuropil at 3 months of age   (MGI Ref ID J:110437)
      • abnormal midbrain morphology
        • degeneration lesions in the retrorubral field   (MGI Ref ID J:110437)
        • abnormal oculomotor nucleus morphology
          • heavily filled with Gallyas+, coiled and ballooned axonal and dendritic profiles in the oculomotor ,the trochlear nucleus at 4 months of age   (MGI Ref ID J:110437)
        • abnormal substantia nigra morphology
          • degeneration lesions in the substantia nigra   (MGI Ref ID J:110437)
        • abnormal superior colliculus morphology
          • degeneration lesions in the deep layers of the colliculi superior   (MGI Ref ID J:110437)
        • abnormal tegmentum morphology
          • degeneration lesions in the neuropil of the ventral tegmental field   (MGI Ref ID J:110437)
          • abnormal red nucleus morphology
            • spongio-form degenerative changes in the red nucleus   (MGI Ref ID J:110437)
    • abnormal cerebral cortex morphology
      • degenerative pyramidal-shaped neurons and several long neurites in motor as well as in extra-motor areas of the cerebral cortex at 5 months of age   (MGI Ref ID J:110437)
    • abnormal globus pallidus morphology
      • degenerative changes in the globus pallidus at 5 months of age   (MGI Ref ID J:110437)
    • abnormal hypothalamus morphology
      • degenerative changes in the hypothalamic nuclei at 5 months of age   (MGI Ref ID J:110437)
    • abnormal thalamus morphology
      • degeneration lesions in the nucleus anterior thalami   (MGI Ref ID J:110437)
    • brain vacuoles
      • increased number of vacuoles in the brainstem nuclei from Day 80 onwards   (MGI Ref ID J:127265)
      • continuous age-dependent increased number of vacuoles   (MGI Ref ID J:127265)
      • vacuolization in the brain and reach telencephalic regions at 5 months of age   (MGI Ref ID J:110437)
  • abnormal corticospinal tract morphology
    • progressive loss of corticospinal tract neurons (9% at 60 days, 30% at 90 days and 53% at 110 days)   (MGI Ref ID J:133155)
    • progressive loss of dorsal corticospinal axons (13% at 60 days, 22% at 90 days and 32% at 110 days)   (MGI Ref ID J:133155)
  • abnormal microglial cell morphology
    • increased cell size starting at day 100   (MGI Ref ID J:143173)
    • increased granularity starting at day 100   (MGI Ref ID J:143173)
    • large vacuoles in microglial cell cytoplasm in the cervical and lumbar spinal cord   (MGI Ref ID J:165019)
    • microgliosis
      • microglia (CD11b+ CD45lo) population expanded 1.65-fold by day 135 in spinal cords   (MGI Ref ID J:143173)
      • increase in the number of glial processes abutting onto the neuronal surface and apposed to the presynaptic terminal in 10-week-old and 18-week-old mice   (MGI Ref ID J:146652)
      • first noted at 6 weeks   (MGI Ref ID J:146652)
      • appear simultaneously to the degenerative changes and increase substantially with time   (MGI Ref ID J:110437)
      • some microglial cells occupy areas where formerly occupied by astrocytes or oligodendrocytes in the cervical and lumbar spinal cord   (MGI Ref ID J:165019)
  • abnormal nervous system physiology
    • lower basal ATP levels in cerebral cortex in 30-day-old mice   (MGI Ref ID J:111280)
    • the extent of impairment in ATP production progresses with age   (MGI Ref ID J:111280)
    • partially ameliorated by creatine administration   (MGI Ref ID J:111280)
    • reduced ADP levels by 60 days of age   (MGI Ref ID J:111280)
    • reduced creatine levels by 90 days of age in both cerebral cortex and spinal cord   (MGI Ref ID J:111280)
    • CNS inflammation
      • lymphocytes and CD11c positive dendritic cells infiltrate the affected CNS regions not before 4 months of age   (MGI Ref ID J:110437)
      • first in the spinal cord, predominantly in the white matter   (MGI Ref ID J:110437)
      • later in the degenerating regions up to the mesencephalon   (MGI Ref ID J:110437)
    • abnormal axonal transport
      • increased number of retrograde mitochondria by around 80% after fast axonal transport (FAT)   (MGI Ref ID J:129976)
      • decreased fraction of anterograde mitochondria   (MGI Ref ID J:129976)
  • abnormal spinal cord morphology
    • increased lymphocyte population in spinal cords at day 65   (MGI Ref ID J:143173)
    • increase with disease progression, 36-fold by day 135   (MGI Ref ID J:143173)
    • significant accumulation of CD4+ and CD8+ T cells in spinal cords   (MGI Ref ID J:143173)
    • natural killer cell in spinal cords   (MGI Ref ID J:143173)
    • swollen neurites and vacuoles of various dimensions and large neuritic spheroids in some spinal motor neurons at the age of 2 months   (MGI Ref ID J:110437)
    • restricted to the ventral horns of spinal cords at the age of 2 months   (MGI Ref ID J:110437)
    • increase and extend into the dorsal horn of the spinal cord within the following month   (MGI Ref ID J:110437)
    • abnormal motor neuron morphology
      • increased mitochondria in cell bodies of motoneurons   (MGI Ref ID J:129976)
      • decreased mitochondria in axonal mitochondria   (MGI Ref ID J:129976)
      • increased intermitochondrial distance by 30-50% in axons   (MGI Ref ID J:129976)
      • paler and more strongly stained motoneurons, with vacuolation in the more strongly stained motoneurons by 6 weeks   (MGI Ref ID J:146652)
      • more electron-lucent than electron-dense motoneurons by 18 weeks, and many motoneurons exhibit extensive vacuolation   (MGI Ref ID J:146652)
      • large membrane bound vacuoles consisting of either dilated axons or dendrite   (MGI Ref ID J:165019)
      • mitochondria with swollen cristae in both axons and dendrites near capillaries   (MGI Ref ID J:165019)
      • decreased motor neuron number
        • progressive loss of upper motor neurons   (MGI Ref ID J:133155)
        • small loss of corticospinal (9%), bulbospinal (12%) and rubrospinal (14%) projections at 60 days   (MGI Ref ID J:133155)
        • loss of 30% of corticospinal, 33% of bulbospinal and 33% of rubrospinal neurons at 90 days   (MGI Ref ID J:133155)
        • loss of 53% of corticospinal, 41% of bulbospinal and 43% of rubrospinal neurons at 110 days   (MGI Ref ID J:133155)
      • motor neuron degeneration
        • vacuolization and silver-impregnated neurites at 2 months of age in the spinal cord, proceed caudocranially into the brain and reach telencephalic regions at 5 months of age   (MGI Ref ID J:110437)
        • swollen and degenerating motor neurons in the late stage in the brainstem, cervical and lumbar spinal cord   (MGI Ref ID J:165019)
        • intracellular edema in some motor neurons, characterized by cytoplasmic enlargement   (MGI Ref ID J:165019)
  • abnormal synaptic bouton morphology
    • degenerative changes occurred in all classes of terminal at 6, 10 and 18 weeks of age, apart from the C-type terminal   (MGI Ref ID J:146652)
    • thin glial processes either partly or totally engulfed some terminals at 18 weeks of age   (MGI Ref ID J:146652)
    • reduction in both terminal number and coverage of the somal membrane, and decline further by around 60% at 18 weeks of age   (MGI Ref ID J:146652)
    • increase in the proportional numbers of C-terminals at 6 and 18 weeks of age   (MGI Ref ID J:146652)
    • increase in the membrane coverage of C-terminals at 6, 10 and 18 weeks of age   (MGI Ref ID J:146652)
    • progressive enlargement of the C-terminal presynaptic terminal at 10 and 18 weeks of age   (MGI Ref ID J:146652)
    • increased size of the postsynaptic structure of C-terminals   (MGI Ref ID J:146652)
    • increased length of the subsynaptic cistern of C-terminals   (MGI Ref ID J:146652)
    • increased number of the Nissl body rER lamellae of C-terminals at 18 weeks of age   (MGI Ref ID J:146652)
    • increased overall length of the Nissl body rER lamellae of C-terminals at 10 and 18 weeks of age   (MGI Ref ID J:146652)
  • cellular phenotype
  • abnormal cell physiology
    • decreased anterograde frequency by almost 60% for the activity of mitochondrial molecular motors   (MGI Ref ID J:129976)
    • decreased velocity of anterograde transport   (MGI Ref ID J:129976)
    • reduced persistence of movement in the anterograde direction   (MGI Ref ID J:129976)
    • normal retrograde frequency   (MGI Ref ID J:129976)
    • normal overall level of activity of mitochondrial molecular motors   (MGI Ref ID J:129976)
    • normal velocity of retrograde transport   (MGI Ref ID J:129976)
    • decreased glutamate uptake in synaptosomes at 150 days of age   (MGI Ref ID J:103582)
    • abnormal mitochondrial physiology
      • loss of mitochondrial inner membrane potential in fiber segments near the neuromuscular junction starting at the age of 37 days   (MGI Ref ID J:158298)
      • abnormal respiratory electron transport chain
        • reduced mitochondrial electron transport activity   (MGI Ref ID J:129976)
  • abnormal endoplasmic reticulum morphology
    • Nissl body rough ERs (rER) in the terminals appear more prominent, with evidence of polyribosomal hyperplasia at 10 weeks of age   (MGI Ref ID J:146652)
    • dilated Golgi-ER and less organized, with increased numbers of separated highly dilated ER profiles   (MGI Ref ID J:146652)
    • rER damage appearing as 'splits' in the cytoplasm by 18 weeks   (MGI Ref ID J:146652)
    • dilation of the endoplasmic reticulum in motor neuron cytoplasm in the brainstem, cervical and lumbar spinal cord   (MGI Ref ID J:165019)
  • abnormal mitochondrion morphology
    • characterized by swelling, cristae disruption and eventual vacuolization of mitochondria   (MGI Ref ID J:165019)
    • disorganized mitochondrial cristae and degenerating mitochondria in astrocytes, capillary endothelial cells and neuropil in the brainstem, cervical and lumbar spinal cord   (MGI Ref ID J:165019)
    • abnormal mitochondrial crista morphology
      • reduced numbers of short, 'broken' cristae in the terminals at 10 weeks of age   (MGI Ref ID J:146652)
    • abnormal mitochondrial shape
      • lower aspect ratio showing rounding up mitochondria   (MGI Ref ID J:129976)
    • increased mitochondria size
      • enlarged mitochondria with vacuoles, invading the sarcomeric A band   (MGI Ref ID J:158298)
      • dilated mitochondria
        • swollen mitochondria   (MGI Ref ID J:146652)
  • homeostasis/metabolism phenotype
  • abnormal calcium ion homeostasis
    • greater osmotic stress-induced Ca2+ release activity in fiber segments with depolarized mitochondria   (MGI Ref ID J:158298)
  • abnormal glucose homeostasis
    • impaired glucose utilization rates in multiple brain components of the motor system as early as 60 days of age   (MGI Ref ID J:111280)
    • components of the bulbospinal projection pathway are compromised by 60 days of age, whereas rubrospinal projections become involved later   (MGI Ref ID J:111280)
    • reductions in glucose use in the gray matter of cervical, thoracic, or lumbar regions of the spinal cord in 120-day-old mice   (MGI Ref ID J:111280)
  • edema
    • progressive edema in the brainstem, cervical and lumbar spinal cord   (MGI Ref ID J:165019)
    • characterized by the formation of protein-filled areas in the extracellular space formerly occupied by astrocytes or neuropil   (MGI Ref ID J:165019)
  • muscle phenotype
  • abnormal muscle physiology
    • greater osmotic stress-induced Ca2+ release activity in fiber segments with depolarized mitochondria   (MGI Ref ID J:158298)
    • muscle weakness
      • progressive decrease in tongue force beginning at approximately 113 days of age   (MGI Ref ID J:130811)
      • progressive reduced forelimb and hindlimb grip force from the onset of testing (64 days of age)   (MGI Ref ID J:130811)
      • progressive muscle weakness
        • dragging in one hindlimb and inability to grasp a cage bar at 103 days of age   (MGI Ref ID J:146652)
        • paralysis progresses to both hindlimbs within 3-4 days   (MGI Ref ID J:146652)
        • after 120 days of age   (MGI Ref ID J:103582)
  • abnormal skeletal muscle fiber morphology
    • enlarged mitochondria with vacuoles, invading the sarcomeric A band   (MGI Ref ID J:158298)
  • immune system phenotype
  • CNS inflammation
    • lymphocytes and CD11c positive dendritic cells infiltrate the affected CNS regions not before 4 months of age   (MGI Ref ID J:110437)
    • first in the spinal cord, predominantly in the white matter   (MGI Ref ID J:110437)
    • later in the degenerating regions up to the mesencephalon   (MGI Ref ID J:110437)
  • abnormal lymphocyte morphology
    • a number of lymphocytes spontaneously form rosettes with autologous erythrocytes in two thirds of the mice   (MGI Ref ID J:129215)
    • decreased lymphocyte cell number
      • lower lymphocyte density   (MGI Ref ID J:129215)
  • abnormal microglial cell morphology
    • increased cell size starting at day 100   (MGI Ref ID J:143173)
    • increased granularity starting at day 100   (MGI Ref ID J:143173)
    • large vacuoles in microglial cell cytoplasm in the cervical and lumbar spinal cord   (MGI Ref ID J:165019)
    • microgliosis
      • microglia (CD11b+ CD45lo) population expanded 1.65-fold by day 135 in spinal cords   (MGI Ref ID J:143173)
      • increase in the number of glial processes abutting onto the neuronal surface and apposed to the presynaptic terminal in 10-week-old and 18-week-old mice   (MGI Ref ID J:146652)
      • first noted at 6 weeks   (MGI Ref ID J:146652)
      • appear simultaneously to the degenerative changes and increase substantially with time   (MGI Ref ID J:110437)
      • some microglial cells occupy areas where formerly occupied by astrocytes or oligodendrocytes in the cervical and lumbar spinal cord   (MGI Ref ID J:165019)
  • abnormal spleen morphology
    • diminished follicular architecture with a greater number of follicles at end stage   (MGI Ref ID J:138237)
    • abnormal splenic cell ratio
      • decreased levels of CD45RA+ (naive) T cells   (MGI Ref ID J:138237)
      • increased levels of CD45RO+ (memory) T cells   (MGI Ref ID J:138237)
    • abnormal splenocyte morphology
      • increased annexin-V associated apoptosis and necrosis of lymphocytes at pre-symptomatic stage (14 weeks of age)   (MGI Ref ID J:138237)
    • small spleen
      • reduced spleen size at end stage (20-22 weeks of age)   (MGI Ref ID J:138237)
      • decreased spleen weight
        • reduced spleen weight (45%) at 19 weeks of age   (MGI Ref ID J:138237)
  • decreased leukocyte cell number
    • reduced WBC numbers   (MGI Ref ID J:129215)
    • normal neutrophil levels   (MGI Ref ID J:129215)
    • decreased eosinophil cell number
      • decreased number of circulating eosinophils   (MGI Ref ID J:129215)
    • decreased lymphocyte cell number
      • lower lymphocyte density   (MGI Ref ID J:129215)
    • decreased monocyte cell number
      • decreased number of circulating monocytes   (MGI Ref ID J:129215)
  • increased basophil cell number
    • increased basophil number compared with Tg(SOD1)2Gur mice   (MGI Ref ID J:129215)
  • growth/size/body phenotype
  • slow postnatal weight gain
    • no weight gain beginning at approximately 108 days of age   (MGI Ref ID J:130811)
  • cardiovascular system phenotype
  • abnormal capillary morphology
    • disruption of blood-brain barrier and blood-spinal cord barrier in areas of motor neuron degeneration in the brainstem, cervical and lumbar spinal cord   (MGI Ref ID J:165019)
    • pericytes under the capillary basement membrane   (MGI Ref ID J:165019)
    • intracellular edema, endoplasmic reticulum swelling and formation of numerous large vacuoles in capillary endothelial cells cytoplasm   (MGI Ref ID J:165019)
    • multiple layers of endothelial cells separated by sheets of basement membrane material   (MGI Ref ID J:165019)
  • abnormal vascular endothelial cell morphology
    • characterized by mitochondrial damage, swelling of endoplasmic reticulum, cytoplasmic vacuolization and cell death   (MGI Ref ID J:165019)
    • endothelial cell membrane and/or basement membrane damage, followed by vascular leakage   (MGI Ref ID J:165019)
    • progressive swollen and degenerating capillary endothelial cells in the brainstem, cervical and lumbar spinal cord   (MGI Ref ID J:165019)
  • hematopoietic system phenotype
  • abnormal lymphocyte morphology
    • a number of lymphocytes spontaneously form rosettes with autologous erythrocytes in two thirds of the mice   (MGI Ref ID J:129215)
    • decreased lymphocyte cell number
      • lower lymphocyte density   (MGI Ref ID J:129215)
  • abnormal microglial cell morphology
    • increased cell size starting at day 100   (MGI Ref ID J:143173)
    • increased granularity starting at day 100   (MGI Ref ID J:143173)
    • large vacuoles in microglial cell cytoplasm in the cervical and lumbar spinal cord   (MGI Ref ID J:165019)
    • microgliosis
      • microglia (CD11b+ CD45lo) population expanded 1.65-fold by day 135 in spinal cords   (MGI Ref ID J:143173)
      • increase in the number of glial processes abutting onto the neuronal surface and apposed to the presynaptic terminal in 10-week-old and 18-week-old mice   (MGI Ref ID J:146652)
      • first noted at 6 weeks   (MGI Ref ID J:146652)
      • appear simultaneously to the degenerative changes and increase substantially with time   (MGI Ref ID J:110437)
      • some microglial cells occupy areas where formerly occupied by astrocytes or oligodendrocytes in the cervical and lumbar spinal cord   (MGI Ref ID J:165019)
  • abnormal spleen morphology
    • diminished follicular architecture with a greater number of follicles at end stage   (MGI Ref ID J:138237)
    • abnormal splenic cell ratio
      • decreased levels of CD45RA+ (naive) T cells   (MGI Ref ID J:138237)
      • increased levels of CD45RO+ (memory) T cells   (MGI Ref ID J:138237)
    • abnormal splenocyte morphology
      • increased annexin-V associated apoptosis and necrosis of lymphocytes at pre-symptomatic stage (14 weeks of age)   (MGI Ref ID J:138237)
    • small spleen
      • reduced spleen size at end stage (20-22 weeks of age)   (MGI Ref ID J:138237)
      • decreased spleen weight
        • reduced spleen weight (45%) at 19 weeks of age   (MGI Ref ID J:138237)
  • decreased leukocyte cell number
    • reduced WBC numbers   (MGI Ref ID J:129215)
    • normal neutrophil levels   (MGI Ref ID J:129215)
    • decreased eosinophil cell number
      • decreased number of circulating eosinophils   (MGI Ref ID J:129215)
    • decreased lymphocyte cell number
      • lower lymphocyte density   (MGI Ref ID J:129215)
    • decreased monocyte cell number
      • decreased number of circulating monocytes   (MGI Ref ID J:129215)
  • increased basophil cell number
    • increased basophil number compared with Tg(SOD1)2Gur mice   (MGI Ref ID J:129215)

Tg(SOD1*G93A)1Gur/0

        B6SJL-Tg(SOD1*G93A)1Gur
  • nervous system phenotype
  • abnormal neuron morphology
    • about 20% lower glycinergic synapses (GlyT2-boutons) densities on lumbar spinal motoneurons in asymptomatic 8-week-old mice   (MGI Ref ID J:144199)
    • the density of GlyT2-boutons shows a slight recovery at 10 weeks of age compared with 8-week-old transgenic mice   (MGI Ref ID J:144199)
    • the number of GlyT2-boutons is reduced further at 12 and 14 weeks of age   (MGI Ref ID J:144199)
    • majority of GlyT2-boutons is lost at 16 weeks of age   (MGI Ref ID J:144199)
    • decreased number of Renshaw cells at 12 and 14 weeks of age   (MGI Ref ID J:144199)
    • abnormal cholinergic neuron morphology
      • decreased density of ChAT-boutons at 16 weeks of age   (MGI Ref ID J:144199)
    • abnormal dendrite morphology
      • reduction in dendrite length and branch nodes on basal dendrites of prelimbic/infralimbic medial prefrontal cortex neurons   (MGI Ref ID J:149044)
      • smaller diameter of basal dendrites on branch order one   (MGI Ref ID J:149044)
      • abnormal dendritic spine morphology
        • decreased spine density on basal dendrite segments of branch order four   (MGI Ref ID J:149044)
    • abnormal motor neuron morphology
      • cytoplasmic vacuoles starting at 10 weeks of age   (MGI Ref ID J:144199)
      • swollen, degenerating axons with segmental enlargements in the ventral horn neuropil and white matter starting at 10 weeks of age   (MGI Ref ID J:144199)
      • the residual motoneurons tend to be smaller than that the typical alpha-motoneurons at 16 weeks of age   (MGI Ref ID J:144199)
      • the average size of motoneurons gradually increases from 10 weeks of age and reaches maximum at 12 weeks   (MGI Ref ID J:144199)
      • decreased number of mid-size (20-30 micrometer) motoneurons at 14 weeks of age   (MGI Ref ID J:144199)
      • decreased motor neuron number
        • decreased number of motoneurons at 14 weeks of age   (MGI Ref ID J:144199)
        • the number of motoneurons is reduced further at 16 weeks of age   (MGI Ref ID J:144199)
      • motor neuron degeneration
        • swollen, degenerating axons with segmental enlargements in the ventral horn neuropil at 10 weeks of age   (MGI Ref ID J:144199)
        • decreased number of motoneurons at 14 weeks of age   (MGI Ref ID J:144199)
        • the number of motoneurons is reduced further at 16 weeks of age   (MGI Ref ID J:144199)
  • abnormal spinal cord morphology
    • cytoplasmic vacuoles in some motoneuron cell bodies and proximal dendrites in lumbar spinal cord at 10 weeks of age   (MGI Ref ID J:144199)
    • more apparent cytoplasmic vacuoles in motoneurons and more motoneurons possessed vacuoles at 12 weeks of age   (MGI Ref ID J:144199)
    • abnormal motor neuron morphology
      • cytoplasmic vacuoles starting at 10 weeks of age   (MGI Ref ID J:144199)
      • swollen, degenerating axons with segmental enlargements in the ventral horn neuropil and white matter starting at 10 weeks of age   (MGI Ref ID J:144199)
      • the residual motoneurons tend to be smaller than that the typical alpha-motoneurons at 16 weeks of age   (MGI Ref ID J:144199)
      • the average size of motoneurons gradually increases from 10 weeks of age and reaches maximum at 12 weeks   (MGI Ref ID J:144199)
      • decreased number of mid-size (20-30 micrometer) motoneurons at 14 weeks of age   (MGI Ref ID J:144199)
      • decreased motor neuron number
        • decreased number of motoneurons at 14 weeks of age   (MGI Ref ID J:144199)
        • the number of motoneurons is reduced further at 16 weeks of age   (MGI Ref ID J:144199)
      • motor neuron degeneration
        • swollen, degenerating axons with segmental enlargements in the ventral horn neuropil at 10 weeks of age   (MGI Ref ID J:144199)
        • decreased number of motoneurons at 14 weeks of age   (MGI Ref ID J:144199)
        • the number of motoneurons is reduced further at 16 weeks of age   (MGI Ref ID J:144199)
    • abnormal spinal cord interneuron morphology
      • about 20% lower GlyT2-boutons densities on lumbar spinal motoneurons in asymptomatic 8-week-old mice   (MGI Ref ID J:144199)
      • the density of GlyT2-boutons shows a slight recovery at 10 weeks of age compared with 8-week-old transgenic mice   (MGI Ref ID J:144199)
      • the number of GlyT2-boutons is reduced further at 12 and 14 weeks of age   (MGI Ref ID J:144199)
      • majority of GlyT2-boutons is lost at 16 weeks of age   (MGI Ref ID J:144199)
      • decreased number of Renshaw cells at 12 and 14 weeks of age   (MGI Ref ID J:144199)
      • decreased density of ChAT-boutons at 16 weeks of age   (MGI Ref ID J:144199)
    • abnormal spinal cord ventral horn morphology
      • swollen, degenerating axons with segmental enlargements in the ventral horn neuropil at 10 weeks of age   (MGI Ref ID J:144199)
    • abnormal spinal cord white matter morphology
      • swollen, degenerating axons with segmental enlargements in the white matter at 10 weeks of age   (MGI Ref ID J:144199)
  • cellular phenotype
  • abnormal mitochondrion morphology
    • vacuoles in large swollen mitochondria in the cell bodies and proximal dendrites of some motoneurons and in dendrites within in the neuropil at 10 weeks of age   (MGI Ref ID J:144199)
    • fulminant mitochondrial swelling at 12 weeks of age   (MGI Ref ID J:144199)
  • behavior/neurological phenotype
  • abnormal fear-related response
    • impaired extinction of conditioned fear   (MGI Ref ID J:149044)
    • a stronger amount of freezing and run a shorter distance in comparison with wild-type following the three tone alone presentations on day 3   (MGI Ref ID J:149044)

Tg(SOD1*G93A)1Gur/0

        involves: C57BL/6 * CD-1 * SJL
  • nervous system phenotype
  • abnormal substantia nigra morphology
    • decreased number of total neurons within the substatia nigra at 110 days of age   (MGI Ref ID J:62381)
  • decreased neuron number
    • decreased number of total neurons within the ventral horns of the lumbar cord at 110 days of age   (MGI Ref ID J:62381)
  • decreased spinal cord ventral horn cell number
    • decreased number of total neurons within the ventral horns of the lumbar cord at 110 days of age   (MGI Ref ID J:62381)

Tg(SOD1*G93A)1Gur/0

        involves: C57BL/6Ico
  • mortality/aging
  • premature death
    • decreased survival (208.45.06 vs. >350 days), compared with wild-type mice   (MGI Ref ID J:97818)
  • growth/size/body phenotype
  • weight loss
    • declined body weight (12% over 64 days) after 20 weeks of age   (MGI Ref ID J:97818)
  • behavior/neurological phenotype
  • tremors
    • onset at 1856.3 days   (MGI Ref ID J:97818)
    • in only 3 of 11 mice   (MGI Ref ID J:97818)

Tg(SOD1*G93A)1Gur/0

        involves: C57BL/6J * C57BL/Ola * SJL/J
  • mortality/aging
  • premature death
    • mice reach end stage by day 131.13.7   (MGI Ref ID J:105092)
  • nervous system phenotype
  • decreased sensory neuron number
    • lose 53% of total dorsal root axons by day 80   (MGI Ref ID J:105092)

Tg(SOD1*G93A)1Gur/0

        B6.Cg-Tg(SOD1*G93A)1Gur
  • mortality/aging
  • premature death
    • mean survivals in male and female mice are 153 2 and 161 2 days respectively   (MGI Ref ID J:155140)
  • growth/size/body phenotype
  • decreased body weight
    • decreased body weight starting at P65   (MGI Ref ID J:155140)
  • behavior/neurological phenotype
  • decreased grip strength
    • deficits in paw grip endurance test (PaGE)   (MGI Ref ID J:155140)
    • delayed chronic deficits in female compared to male   (MGI Ref ID J:155140)
  • decreased vertical activity
    • decreased average locomotion velocity and rearing episodes   (MGI Ref ID J:155140)
    • significant motor deficits in male and female mice (at P45 and P65 respectively) in average locomotion velocity   (MGI Ref ID J:155140)
    • motor deficits in rearing episodes beginning at P45   (MGI Ref ID J:155140)
    • persist at each subsequent time point up to and beyond the onset of overt clinical symptoms   (MGI Ref ID J:155140)
    • deficits in all four open-field performance measures start earlier than the conventional PaGE or rotarod tests   (MGI Ref ID J:155140)
    • delayed chronic deficits in average velocity in female compared to male   (MGI Ref ID J:155140)
  • hypoactivity
    • motor deficits in ambulatory distance and resting time in male mice beginning at P45   (MGI Ref ID J:155140)
    • transient or no deficits in ambulatory distance and rest behaviors, respectively in female   (MGI Ref ID J:155140)
  • impaired coordination
    • deficits in rotarod test   (MGI Ref ID J:155140)
  • tremors
    • tremor onset occurred significantly sooner in male (912 days) compared to female (1002 days)   (MGI Ref ID J:155140)
  • muscle phenotype
  • decreased skeletal muscle size
    • smaller hindlimb calf girth dorsal/ventral (d/v) starting at P55   (MGI Ref ID J:155140)
    • smaller hindlimb calf girth medial/lateral starting at P65   (MGI Ref ID J:155140)
    • smaller hindlimb thigh girth medial/lateral starting at P75   (MGI Ref ID J:155140)
    • calf (d/v) and thigh muscle girth are able to predict genotype in pre-symptomatic animals with 80% or greater accuracy (about 40 day prior to tremor onset)   (MGI Ref ID J:155140)

Tg(SOD1*G93A)1Gur/0

        involves: ABH * C57BL/6 * SJL
  • mortality/aging
  • premature death
    • mice on a background containing ABH exhibit shorter life span than mice on a mixed C57BL/6 and SJL background   (MGI Ref ID J:111498)

Tg(SOD1*G93A)1Gur/?

        involves: C57BL/6 * SJL
  • mortality/aging
  • premature death
    • mice reach end stage by day 147 +/-2.5 SEM (standard error of measurement)   (MGI Ref ID J:107901)
  • growth/size/body phenotype
  • decreased body weight
    • body weights are lower than in wild-type mice and continues to deteriorate after day 115   (MGI Ref ID J:107901)
  • nervous system phenotype
  • abnormal spinal cord morphology
    • degeneration of the motor neurons in the cervical and lumbar spinal cord is visible at end stage with astrocytosis and vacuolization   (MGI Ref ID J:107901)
    • decreased motor neuron number
      • 50% of motor neurons in the cervical spinal cord and 60% in lumbar spinal cord are degenerated at day 152   (MGI Ref ID J:107901)
  • astrocytosis
    • astrocytosis is evident in the spinal cord   (MGI Ref ID J:107901)
  • behavior/neurological phenotype
  • hypoactivity
    • mice exhibit decreased locomotor activity compared to wild-type mice after day 115   (MGI Ref ID J:107901)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Metabolism Research

Neurobiology Research
Amyotrophic Lateral Sclerosis (ALS)
Metabolic Defects
Neurodegeneration

Research Tools
Metabolism Research

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tg(SOD1*G93A)1Gur
Allele Name transgene insertion 1, Mark E Gurney
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) (G93A)Tg+; G1H; G93A; G93A SOD1; G93A+; G93A-SOD1; G93AGurdl; SOD1 G93A; SOD1 Tg; SOD1G93A; Tg(G93A-SOD1)1Gur; Tg(SOD1-G93A)1Gur; TgN(SOD1-G93A)1Gur; TgN[SOD1-G93A]1Gur; hSOD1G93A;
Mutation Made ByDr. Mark Gurney,   Tetra Discovery Partners
Strain of Origin(C57BL/6 x SJL)F1
Expressed Gene SOD1, superoxide dismutase 1, soluble, human
Promoter SOD1, superoxide dismutase 1, soluble, human
General Note This line, G1H, was derived from the original G1 line (now designated Tg(SOD1*G93A)2Gur) reported in J:32665.

Transgenic mice on a background that involves C57BL/6 and SJL express high levels of the transgene with a 4-fold increase in SOD activity, and exhibit a phenotype similar to amyotrophic lateral sclerosis (ALS) in humans. Hemizygous transgenic mice become paralyzed in one or more limbs and have a life span of approximately 19-23 weeks. Paralysis is due to loss of motor neurons from the spinal cord.

Molecular Note This transgenic subline (designated G1H in J:76718) is derived from the G1 parental transgenic line (originally described in J:32665). This line carries a 40% expansion in transgene copy number compared to the original G1 line (described in J:32665, in MGI as Tg(SOD1*G93A)2Gur). The transgene construct is composed of the human SOD1 gene carrying a glycine to alanine transition at position 93 (G93A). The G93A mutation does not alter the activity of the protein. This line carries a high copy number. [MGI Ref ID J:32665] [MGI Ref ID J:76718]
 

Genotyping

Genotyping Information

Genotyping Protocols

Sod TgN Copy Number, QPCR
Tg(SOD1), Standard PCR


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Gurney ME; Pu H; Chiu AY; Dal Canto MC; Polchow CY; Alexander DD; Caliendo J; Hentati A; Kwon YW; Deng HX; Chen W; Zhai P; Sufit RL; Siddique T. 1994. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation [see comments] [published erratum appears in Science 1995 Jul 14;269(5221):149] Science 264(5166):1772-5. [PubMed: 8209258]  [MGI Ref ID J:32665]

Tu PH; Raju P; Robinson KA; Gurney ME; Trojanowski JQ; Lee VM. 1996. Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci U S A 93(7):3155-60. [PubMed: 8610185]  [MGI Ref ID J:76718]

Additional References

Tg(SOD1*G93A)1Gur related

Acevedo-Arozena A; Kalmar B; Essa S; Ricketts T; Joyce P; Kent R; Rowe C; Parker A; Gray A; Hafezparast M; Thorpe JR; Greensmith L; Fisher EM. 2011. A comprehensive assessment of the SOD1G93A low-copy transgenic mouse, which models human amyotrophic lateral sclerosis. Dis Model Mech :. [PubMed: 21540242]  [MGI Ref ID J:171413]

Achilli F; Boyle S; Kieran D; Chia R; Hafezparast M; Martin JE; Schiavo G; Greensmith L; Bickmore W; Fisher EM. 2005. The SOD1 transgene in the G93A mouse model of amyotrophic lateral sclerosis lies on distal mouse chromosome 12. Amyotroph Lateral Scler Other Motor Neuron Disord 6(2):111-4. [PubMed: 16036435]  [MGI Ref ID J:100363]

Albano R; Liu X; Lobner D. 2013. Regulation of system x(c)- in the SOD1-G93A mouse model of ALS. Exp Neurol 250:69-73. [PubMed: 24041987]  [MGI Ref ID J:206627]

Alexander GM; Deitch JS; Seeburger JL; Del Valle L; Heiman-Patterson TD. 2000. Elevated cortical extracellular fluid glutamate in transgenic mice expressing human mutant (G93A) Cu/Zn superoxide dismutase. J Neurochem 74(4):1666-73. [PubMed: 10737625]  [MGI Ref ID J:61168]

Alexander GM; Erwin KL; Byers N; Deitch JS; Augelli BJ; Blankenhorn EP; Heiman-Patterson TD. 2004. Effect of transgene copy number on survival in the G93A SOD1 transgenic mouse model of ALS. Brain Res Mol Brain Res 130(1-2):7-15. [PubMed: 15519671]  [MGI Ref ID J:94198]

Almer G; Vukosavic S; Romero N; Przedborski S. 1999. Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 72(6):2415-25. [PubMed: 10349851]  [MGI Ref ID J:55026]

Alves CJ; de Santana LP; Santos AJ; de Oliveira GP; Duobles T; Scorisa JM; Martins RS; Maximino JR; Chadi G. 2011. Early motor and electrophysiological changes in transgenic mouse model of amyotrophic lateral sclerosis and gender differences on clinical outcome. Brain Res 1394:90-104. [PubMed: 21354109]  [MGI Ref ID J:172529]

Ammassari-Teule M; Restivo L; Pietteur V; Passino E. 2001. Learning about the context in genetically-defined mice. Behav Brain Res 125(1-2):195-204. [PubMed: 11682111]  [MGI Ref ID J:92773]

Andreassen OA; Ferrante RJ; Klivenyi P; Klein AM; Dedeoglu A; Albers DS; Kowall NW; Beal MF. 2001. Transgenic ALS mice show increased vulnerability to the mitochondrial toxins MPTP and 3-nitropropionic acid. Exp Neurol 168(2):356-63. [PubMed: 11259123]  [MGI Ref ID J:127805]

Andreassen OA; Ferrante RJ; Klivenyi P; Klein AM; Shinobu LA; Epstein CJ; Beal MF. 2000. Partial deficiency of manganese superoxide dismutase exacerbates a transgenic mouse model of amyotrophic lateral sclerosis. Ann Neurol 47(4):447-55. [PubMed: 10762155]  [MGI Ref ID J:62381]

Apolloni S; Parisi C; Pesaresi MG; Rossi S; Carri MT; Cozzolino M; Volonte C; D'Ambrosi N. 2013. The NADPH oxidase pathway is dysregulated by the P2X7 receptor in the SOD1-G93A microglia model of amyotrophic lateral sclerosis. J Immunol 190(10):5187-95. [PubMed: 23589615]  [MGI Ref ID J:202552]

Atkin JD; Farg MA; Soo KY; Walker AK; Halloran M; Turner BJ; Nagley P; Horne MK. 2014. Mutant SOD1 inhibits ER-Golgi transport in amyotrophic lateral sclerosis. J Neurochem 129(1):190-204. [PubMed: 24134191]  [MGI Ref ID J:208196]

Atkin JD; Farg MA; Turner BJ; Tomas D; Lysaght JA; Nunan J; Rembach A; Nagley P; Beart PM; Cheema SS; Horne MK. 2006. Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281(40):30152-65. [PubMed: 16847061]  [MGI Ref ID J:117296]

Atkin JD; Scott RL; West JM; Lopes E; Quah AK; Cheema SS. 2005. Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis. Neuromuscul Disord 15(5):377-88. [PubMed: 15833433]  [MGI Ref ID J:132546]

Audet JN; Gowing G; Julien JP. 2010. Wild-type human SOD1 overexpression does not accelerate motor neuron disease in mice expressing murine Sod1(G86R). Neurobiol Dis 40(1):245-250. [PubMed: 20573565]  [MGI Ref ID J:163019]

Audet JN; Soucy G; Julien JP. 2012. Methylene blue administration fails to confer neuroprotection in two amyotrophic lateral sclerosis mouse models. Neuroscience 209:136-43. [PubMed: 22230045]  [MGI Ref ID J:184644]

Avossa D; Grandolfo M; Mazzarol F; Zatta M; Ballerini L. 2006. Early signs of motoneuron vulnerability in a disease model system: Characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice. Neuroscience 138(4):1179-94. [PubMed: 16442737]  [MGI Ref ID J:106998]

Azzouz M; Krezel W; Dolle P; Vodouhe C; Warter JM; Poindron P; Borg J. 1999. Compensatory mechanism of motor defect in SOD1 transgenic mice by overactivation of striatal cholinergic neurons. Neuroreport 10(5):1013-8. [PubMed: 10321477]  [MGI Ref ID J:56222]

Banerjee R; Mosley RL; Reynolds AD; Dhar A; Jackson-Lewis V; Gordon PH; Przedborski S; Gendelman HE. 2008. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS ONE 3(7):e2740. [PubMed: 18648532]  [MGI Ref ID J:138237]

Banks GT; Bros-Facer V; Williams HP; Chia R; Achilli F; Bryson JB; Greensmith L; Fisher EM. 2009. Mutant glycyl-tRNA synthetase (Gars) ameliorates SOD1(G93A) motor neuron degeneration phenotype but has little affect on Loa dynein heavy chain mutant mice. PLoS One 4(7):e6218. [PubMed: 19593442]  [MGI Ref ID J:151592]

Barneoud P; Curet O. 1999. Beneficial effects of lysine acetylsalicylate, a soluble salt of aspirin, on motor performance in a transgenic model of amyotrophic lateral sclerosis. Exp Neurol 155(2):243-51. [PubMed: 10072299]  [MGI Ref ID J:53856]

Basso M; Massignan T; Samengo G; Cheroni C; De Biasi S; Salmona M; Bendotti C; Bonetto V. 2006. Insoluble mutant SOD1 is partly oligoubiquitinated in amyotrophic lateral sclerosis mice. J Biol Chem 281(44):33325-35. [PubMed: 16943203]  [MGI Ref ID J:117191]

Beers DR; Henkel JS; Xiao Q; Zhao W; Wang J; Yen AA; Siklos L; McKercher SR; Appel SH. 2006. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103(43):16021-6. [PubMed: 17043238]  [MGI Ref ID J:116087]

Beers DR; Henkel JS; Zhao W; Wang J; Appel SH. 2008. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci U S A 105(40):15558-63. [PubMed: 18809917]  [MGI Ref ID J:143094]

Beers DR; Ho BK; Siklos L; Alexianu ME; Mosier DR; Mohamed AH; Otsuka Y; Kozovska ME; McAlhany RE; Smith RG; Appel SH. 2001. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis. J Neurochem 79(3):499-509. [PubMed: 11701753]  [MGI Ref ID J:133166]

Benkler C; Ben-Zur T; Barhum Y; Offen D. 2013. Altered astrocytic response to activation in SOD1(G93A) mice and its implications on amyotrophic lateral sclerosis pathogenesis. Glia 61(3):312-26. [PubMed: 23280929]  [MGI Ref ID J:192589]

Bernard-Marissal N; Moumen A; Sunyach C; Pellegrino C; Dudley K; Henderson CE; Raoul C; Pettmann B. 2012. Reduced calreticulin levels link endoplasmic reticulum stress and Fas-triggered cell death in motoneurons vulnerable to ALS. J Neurosci 32(14):4901-12. [PubMed: 22492046]  [MGI Ref ID J:184132]

Bhattacharya A; Muller FL; Liu Y; Sabia M; Liang H; Song W; Jang YC; Ran Q; Van Remmen H. 2009. Denervation induces cytosolic phospholipase A2-mediated fatty acid hydroperoxide generation by muscle mitochondria. J Biol Chem 284(1):46-55. [PubMed: 19001413]  [MGI Ref ID J:145894]

Bilsland LG; Dick JR; Pryce G; Petrosino S; Di Marzo V; Baker D; Greensmith L. 2006. Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SOD1 mice. FASEB J 20(7):1003-5. [PubMed: 16571781]  [MGI Ref ID J:111498]

Bilsland LG; Nirmalananthan N; Yip J; Greensmith L; Duchen MR. 2008. Expression of mutant SOD1 in astrocytes induces functional deficits in motoneuron mitochondria. J Neurochem 107(5):1271-83. [PubMed: 18808448]  [MGI Ref ID J:142837]

Bilsland LG; Sahai E; Kelly G; Golding M; Greensmith L; Schiavo G. 2010. Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci U S A 107(47):20523-8. [PubMed: 21059924]  [MGI Ref ID J:166591]

Boston-Howes W; Gibb SL; Williams EO; Pasinelli P; Brown RH Jr; Trotti D. 2006. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem 281(20):14076-84. [PubMed: 16567804]  [MGI Ref ID J:113480]

Brotherton TE; Li Y; Cooper D; Gearing M; Julien JP; Rothstein JD; Boylan K; Glass JD. 2012. Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. Proc Natl Acad Sci U S A 109(14):5505-10. [PubMed: 22431618]  [MGI Ref ID J:182654]

Browne SE; Yang L; DiMauro JP; Fuller SW; Licata SC; Beal MF. 2006. Bioenergetic abnormalities in discrete cerebral motor pathways presage spinal cord pathology in the G93A SOD1 mouse model of ALS. Neurobiol Dis 22(3):599-610. [PubMed: 16616851]  [MGI Ref ID J:111280]

Bryson JB; Hobbs C; Parsons MJ; Bosch KD; Pandraud A; Walsh FS; Doherty P; Greensmith L. 2012. Amyloid precursor protein (APP) contributes to pathology in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 21(17):3871-82. [PubMed: 22678056]  [MGI Ref ID J:185980]

Bucher S; Braunstein KE; Niessen HG; Kaulisch T; Neumaier M; Boeckers TM; Stiller D; Ludolph AC. 2007. Vacuolization correlates with spin-spin relaxation time in motor brainstem nuclei and behavioural tests in the transgenic G93A-SOD1 mouse model of ALS. Eur J Neurosci 26(7):1895-901. [PubMed: 17868365]  [MGI Ref ID J:127265]

Caioli S; Curcio L; Pieri M; Antonini A; Marolda R; Severini C; Zona C. 2011. Substance P receptor activation induces downregulation of the AMPA receptor functionality in cortical neurons from a genetic model of Amyotrophic Lateral Sclerosis. Neurobiol Dis 44(1):92-101. [PubMed: 21726643]  [MGI Ref ID J:178565]

Canton T; Pratt J; Stutzmann JM; Imperato A; Boireau A. 1998. Glutamate uptake is decreased tardively in the spinal cord of FALS mice. Neuroreport 9(5):775-8. [PubMed: 9579663]  [MGI Ref ID J:103582]

Cardona AE; Pioro EP; Sasse ME; Kostenko V; Cardona SM; Dijkstra IM; Huang D; Kidd G; Dombrowski S; Dutta R; Lee JC; Cook DN; Jung S; Lira SA; Littman DR; Ransohoff RM. 2006. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917-24. [PubMed: 16732273]  [MGI Ref ID J:110266]

Carrasco DI; Bichler EK; Seburn KL; Pinter MJ. 2010. Nerve terminal degeneration is independent of muscle fiber genotype in SOD1 mice. PLoS One 5(3):e9802. [PubMed: 20339550]  [MGI Ref ID J:158879]

Carreras I; Yuruker S; Aytan N; Hossain L; Choi JK; Jenkins BG; Kowall NW; Dedeoglu A. 2010. Moderate exercise delays the motor performance decline in a transgenic model of ALS. Brain Res 1313:192-201. [PubMed: 19968977]  [MGI Ref ID J:158789]

Carunchio I; Curcio L; Pieri M; Pica F; Caioli S; Viscomi MT; Molinari M; Canu N; Bernardi G; Zona C. 2010. Increased levels of p70S6 phosphorylation in the G93A mouse model of Amyotrophic Lateral Sclerosis and in valine-exposed cortical neurons in culture. Exp Neurol 226(1):218-30. [PubMed: 20832409]  [MGI Ref ID J:165265]

Carunchio I; Mollinari C; Pieri M; Merlo D; Zona C. 2008. GAB(A) receptors present higher affinity and modified subunit composition in spinal motor neurons from a genetic model of amyotrophic lateral sclerosis. Eur J Neurosci 28(7):1275-85. [PubMed: 18973555]  [MGI Ref ID J:143249]

Casoni F; Basso M; Massignan T; Gianazza E; Cheroni C; Salmona M; Bendotti C; Bonetto V. 2005. Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J Biol Chem 280(16):16295-304. [PubMed: 15699043]  [MGI Ref ID J:98724]

Chandra S; Gallardo G; Fernandez-Chacon R; Schluter OM; Sudhof TC. 2005. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123(3):383-96. [PubMed: 16269331]  [MGI Ref ID J:115193]

Chang Q; Martin LJ. 2009. Glycinergic innervation of motoneurons is deficient in amyotrophic lateral sclerosis mice: a quantitative confocal analysis. Am J Pathol 174(2):574-85. [PubMed: 19116365]  [MGI Ref ID J:144199]

Chang Y; Kong Q; Shan X; Tian G; Ilieva H; Cleveland DW; Rothstein JD; Borchelt DR; Wong PC; Lin CL. 2008. Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS ONE 3(8):e2849. [PubMed: 18682740]  [MGI Ref ID J:140123]

Chen X; Zhang X; Li C; Guan T; Shang H; Cui L; Li XM; Kong J. 2013. S-nitrosylated protein disulfide isomerase contributes to mutant SOD1 aggregates in amyotrophic lateral sclerosis. J Neurochem 124(1):45-58. [PubMed: 23043510]  [MGI Ref ID J:191002]

Chen XJ; Levedakou EN; Millen KJ; Wollmann RL; Soliven B; Popko B. 2007. Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic Dynein heavy chain 1 gene. J Neurosci 27(52):14515-24. [PubMed: 18160659]  [MGI Ref ID J:131126]

Chen Y; Guan Y; Liu H; Wu X; Yu L; Wang S; Zhao C; Du H; Wang X. 2012. Activation of the Wnt/beta-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. Biochem Biophys Res Commun 420(2):397-403. [PubMed: 22426476]  [MGI Ref ID J:183384]

Cheroni C; Marino M; Tortarolo M; Veglianese P; De Biasi S; Fontana E; Zuccarello LV; Maynard CJ; Dantuma NP; Bendotti C. 2009. Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis. Hum Mol Genet 18(1):82-96. [PubMed: 18826962]  [MGI Ref ID J:142811]

Chian RJ; Li J; Ay I; Celia SA; Kashi BB; Tamrazian E; Matthews JC; Bronson RT; Rossomando A; Pepinsky RB; Fishman PS; Brown RH Jr; Francis JW. 2009. IGF-1:tetanus toxin fragment C fusion protein improves delivery of IGF-1 to spinal cord but fails to prolong survival of ALS mice. Brain Res 1287:1-19. [PubMed: 19563785]  [MGI Ref ID J:157424]

Chiu AY; Zhai P; Dal Canto MC; Peters TM; Kwon YW; Prattis SM; Gurney ME. 1995. Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol Cell Neurosci 6(4):349-62. [PubMed: 8846004]  [MGI Ref ID J:80625]

Chiu IM; Chen A; Zheng Y; Kosaras B; Tsiftsoglou SA; Vartanian TK; Brown RH Jr; Carroll MC. 2008. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A 105(46):17913-8. [PubMed: 18997009]  [MGI Ref ID J:143173]

Chiu IM; Morimoto ET; Goodarzi H; Liao JT; O'Keeffe S; Phatnani HP; Muratet M; Carroll MC; Levy S; Tavazoie S; Myers RM; Maniatis T. 2013. A Neurodegeneration-Specific Gene-Expression Signature of Acutely Isolated Microglia from an Amyotrophic Lateral Sclerosis Mouse Model. Cell Rep :. [PubMed: 23850290]  [MGI Ref ID J:198339]

Cho KJ; Chung YH; Shin C; Shin DH; Kim YS; Gurney ME; Lee KW; Cha CI. 1999. Reactive astrocytes express p53 in the spinal cord of transgenic mice expressing a human Cu/Zn SOD mutation Neuroreport 10(18):3939-43. [PubMed: 10716237]  [MGI Ref ID J:61275]

Choi JK; Kustermann E; Dedeoglu A; Jenkins BG. 2009. Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. Eur J Neurosci 30(11):2143-50. [PubMed: 19930399]  [MGI Ref ID J:157257]

Choi MC; Cohen TJ; Barrientos T; Wang B; Li M; Simmons BJ; Yang JS; Cox GA; Zhao Y; Yao TP. 2012. A direct HDAC4-MAP kinase crosstalk activates muscle atrophy program. Mol Cell 47(1):122-32. [PubMed: 22658415]  [MGI Ref ID J:188016]

Chung YH; Joo KM; Lee YJ; Lee WB; Lee KH; Cha CI. 2004. Enhanced expression of erythropoietin in the central nervous system of SOD1(G93A) transgenic mice. Brain Res 1016(2):272-80. [PubMed: 15246865]  [MGI Ref ID J:91260]

Chung YH; Joo KM; Lim HC; Cho MH; Kim D; Lee WB; Cha CI. 2005. Immunohistochemical study on the distribution of phosphorylated extracellular signal-regulated kinase (ERK) in the central nervous system of SOD1(G93A) transgenic mice. Brain Res 1050(1-2):203-9. [PubMed: 15978558]  [MGI Ref ID J:99567]

Chung YH; Joo KM; Nam RH; Cho MH; Kim DJ; Lee WB; Cha CI. 2005. Decreased expression of calretinin in the cerebral cortex and hippocampus of SOD1G93A transgenic mice. Brain Res 1035(1):105-9. [PubMed: 15713283]  [MGI Ref ID J:97425]

Copray JC; Jaarsma D; Kust BM; Bruggeman RW; Mantingh I; Brouwer N; Boddeke HW. 2003. Expression of the low affinity neurotrophin receptor p75 in spinal motoneurons in a transgenic mouse model for amyotrophic lateral sclerosis. Neuroscience 116(3):685-94. [PubMed: 12573711]  [MGI Ref ID J:132258]

Corti S; Nizzardo M; Nardini M; Donadoni C; Salani S; Simone C; Falcone M; Riboldi G; Govoni A; Bresolin N; Comi GP. 2010. Systemic transplantation of c-kit+ cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. Hum Mol Genet 19(19):3782-96. [PubMed: 20650960]  [MGI Ref ID J:163630]

Crosio C; Casciati A; Iaccarino C; Rotilio G; Carri MT. 2006. Bcl2a1 serves as a switch in death of motor neurons in amyotrophic lateral sclerosis. Cell Death Differ 13(12):2150-3. [PubMed: 16710367]  [MGI Ref ID J:132252]

Crosio C; Valle C; Casciati A; Iaccarino C; Carri MT. 2011. Astroglial inhibition of NF-kappaB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS). PLoS One 6(3):e17187. [PubMed: 21445241]  [MGI Ref ID J:171682]

Damiano M; Starkov AA; Petri S; Kipiani K; Kiaei M; Mattiazzi M; Flint Beal M; Manfredi G. 2006. Neural mitochondrial Ca capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J Neurochem 96(5):1349-61. [PubMed: 16478527]  [MGI Ref ID J:106152]

Dardiotis E; Panayiotou E; Feldman ML; Hadjisavvas A; Malas S; Vonta I; Hadjigeorgiou G; Kyriakou K; Kyriakides T. 2013. Intraperitoneal melatonin is not neuroprotective in the G93ASOD1 transgenic mouse model of familial ALS and may exacerbate neurodegeneration. Neurosci Lett 548:170-5. [PubMed: 23748038]  [MGI Ref ID J:201538]

David G; Nguyen K; Barrett EF. 2007. Early vulnerability to ischemia/reperfusion injury in motor terminals innervating fast muscles of SOD1-G93A mice. Exp Neurol 204(1):411-20. [PubMed: 17292357]  [MGI Ref ID J:119705]

De Vos KJ; Chapman AL; Tennant ME; Manser C; Tudor EL; Lau KF; Brownlees J; Ackerley S; Shaw PJ; McLoughlin DM; Shaw CE; Leigh PN; Miller CC; Grierson AJ. 2007. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet 16(22):2720-8. [PubMed: 17725983]  [MGI Ref ID J:129976]

De Winter F; Vo T; Stam FJ; Wisman LA; Bar PR; Niclou SP; van Muiswinkel FL; Verhaagen J. 2006. The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol Cell Neurosci 32(1-2):102-17. [PubMed: 16677822]  [MGI Ref ID J:111941]

Deforges S; Branchu J; Biondi O; Grondard C; Pariset C; Lecolle S; Lopes P; Vidal PP; Chanoine C; Charbonnier F. 2009. Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis. J Physiol 587(Pt 14):3561-72. [PubMed: 19491245]  [MGI Ref ID J:176795]

Deng HX; Shi Y; Furukawa Y; Zhai H; Fu R; Liu E; Gorrie GH; Khan MS; Hung WY; Bigio EH; Lukas T; Dal Canto MC; O'Halloran TV; Siddique T. 2006. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci U S A 103(18):7142-7. [PubMed: 16636275]  [MGI Ref ID J:109458]

Deng HX; Zhai H; Fu R; Shi Y; Gorrie GH; Yang Y; Liu E; Dal Canto MC; Mugnaini E; Siddique T. 2007. Distal axonopathy in an alsin-deficient mouse model. Hum Mol Genet 16(23):2911-20. [PubMed: 17855450]  [MGI Ref ID J:129939]

Dewil M; Schurmans C; Starckx S; Opdenakker G; Van Den Bosch L; Robberecht W. 2005. Role of matrix metalloproteinase-9 in a mouse model for amyotrophic lateral sclerosis. Neuroreport 16(4):321-4. [PubMed: 15729130]  [MGI Ref ID J:103535]

Dewil M; dela Cruz VF; Van Den Bosch L; Robberecht W. 2007. Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1(G93A)-induced motor neuron death. Neurobiol Dis 26(2):332-41. [PubMed: 17346981]  [MGI Ref ID J:134849]

Di Giorgio FP; Boulting GL; Bobrowicz S; Eggan KC. 2008. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3(6):637-48. [PubMed: 19041780]  [MGI Ref ID J:149862]

Di Giorgio FP; Carrasco MA; Siao MC; Maniatis T; Eggan K. 2007. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10(5):608-14. [PubMed: 17435754]  [MGI Ref ID J:121861]

Dibaj P; Steffens H; Zschuntzsch J; Kirchhoff F; Schomburg ED; Neusch C. 2011. In vivo imaging reveals rapid morphological reactions of astrocytes towards focal lesions in an ALS mouse model. Neurosci Lett 497(2):148-51. [PubMed: 21539893]  [MGI Ref ID J:173168]

Dibaj P; Zschuntzsch J; Steffens H; Scheffel J; Goricke B; Weishaupt JH; Le Meur K; Kirchhoff F; Hanisch UK; Schomburg ED; Neusch C. 2012. Influence of methylene blue on microglia-induced inflammation and motor neuron degeneration in the SOD1(G93A) model for ALS. PLoS One 7(8):e43963. [PubMed: 22952827]  [MGI Ref ID J:191656]

Dobrowolny G; Aucello M; Musaro A. 2011. Muscle atrophy induced by SOD1G93A expression does not involve the activation of caspase in the absence of denervation. Skelet Muscle 1(1):3. [PubMed: 21798081]  [MGI Ref ID J:183733]

Dobrowolny G; Giacinti C; Pelosi L; Nicoletti C; Winn N; Barberi L; Molinaro M; Rosenthal N; Musaro A. 2005. Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol 168(2):193-9. [PubMed: 15657392]  [MGI Ref ID J:95812]

Dodge JC; Treleaven CM; Fidler JA; Tamsett TJ; Bao C; Searles M; Taksir TV; Misra K; Sidman RL; Cheng SH; Shihabuddin LS. 2013. Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc Natl Acad Sci U S A 110(26):10812-10817. [PubMed: 23754387]  [MGI Ref ID J:197377]

Duplan L; Bernard N; Casseron W; Dudley K; Thouvenot E; Honnorat J; Rogemond V; De Bovis B; Aebischer P; Marin P; Raoul C; Henderson CE; Pettmann B. 2010. Collapsin response mediator protein 4a (CRMP4a) is upregulated in motoneurons of mutant SOD1 mice and can trigger motoneuron axonal degeneration and cell death. J Neurosci 30(2):785-96. [PubMed: 20071543]  [MGI Ref ID J:157705]

Dupuis L; Oudart H; Rene F; Gonzalez de Aguilar JL; Loeffler JP. 2004. Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci U S A 101(30):11159-64. [PubMed: 15263088]  [MGI Ref ID J:91800]

El-Kadi AM; Bros-Facer V; Deng W; Philpott A; Stoddart E; Banks G; Jackson GS; Fisher EM; Duchen MR; Greensmith L; Moore AL; Hafezparast M. 2010. The legs at odd angles (Loa) mutation in cytoplasmic dynein ameliorates mitochondrial function in SOD1G93A mouse model for motor neuron disease. J Biol Chem 285(24):18627-39. [PubMed: 20382740]  [MGI Ref ID J:164557]

Eschbach J; Schwalenstocker B; Soyal SM; Bayer H; Wiesner D; Akimoto C; Nilsson AC; Birve A; Meyer T; Dupuis L; Danzer KM; Andersen PM; Witting A; Ludolph AC; Patsch W; Weydt P. 2013. PGC-1alpha is a male-specific disease modifier of human and experimental amyotrophic lateral sclerosis. Hum Mol Genet 22(17):3477-84. [PubMed: 23669350]  [MGI Ref ID J:199189]

Esposito E; Capasso M; di Tomasso N; Corona C; Pellegrini F; Uncini A; Vitaglione P; Fogliano V; Piantelli M; Sensi SL. 2007. Antioxidant strategies based on tomato-enriched food or pyruvate do not affect disease onset and survival in an animal model of amyotrophic lateral sclerosis. Brain Res 1168:90-6. [PubMed: 17706944]  [MGI Ref ID J:125725]

Facchinetti F; Sasaki M; Cutting FB; Zhai P; MacDonald JE; Reif D; Beal MF; Huang PL; Dawson TM; Gurney ME; Dawson VL. 1999. Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis. Neuroscience 90(4):1483-92. [PubMed: 10338314]  [MGI Ref ID J:57196]

Fanara P; Banerjee J; Hueck RV; Harper MR; Awada M; Turner H; Husted KH; Brandt R; Hellerstein MK. 2007. Stabilization of hyperdynamic microtubules is neuroprotective in amyotrophic lateral sclerosis. J Biol Chem 282(32):23465-72. [PubMed: 17567579]  [MGI Ref ID J:124798]

Fanara P; Wong PY; Husted KH; Liu S; Liu VM; Kohlstaedt LA; Riiff T; Protasio JC; Boban D; Killion S; Killian M; Epling L; Sinclair E; Peterson J; Price RW; Cabin DE; Nussbaum RL; Bruhmann J; Brandt R; Christine CW; Aminoff MJ; Hellerstein MK. 2012. Cerebrospinal fluid-based kinetic biomarkers of axonal transport in monitoring neurodegeneration. J Clin Invest 122(9):3159-69. [PubMed: 22922254]  [MGI Ref ID J:190745]

Ferrucci M; Spalloni A; Bartalucci A; Cantafora E; Fulceri F; Nutini M; Longone P; Paparelli A; Fornai F. 2010. A systematic study of brainstem motor nuclei in a mouse model of ALS, the effects of lithium. Neurobiol Dis 37(2):370-383. [PubMed: 19874893]  [MGI Ref ID J:156899]

Fischer LR; Culver DG; Davis AA; Tennant P; Wang M; Coleman M; Asress S; Adalbert R; Alexander GM; Glass JD. 2005. The WldS gene modestly prolongs survival in the SOD1G93A fALS mouse. Neurobiol Dis 19(1-2):293-300. [PubMed: 15837585]  [MGI Ref ID J:105092]

Fischer LR; Culver DG; Tennant P; Davis AA; Wang M; Castellano-Sanchez A; Khan J; Polak MA; Glass JD. 2004. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185(2):232-40. [PubMed: 14736504]  [MGI Ref ID J:115479]

Fontanilla CV; Wei X; Zhao L; Johnstone B; Pascuzzi RM; Farlow MR; Du Y. 2012. Caffeic acid phenethyl ester extends survival of a mouse model of amyotrophic lateral sclerosis. Neuroscience 205:185-93. [PubMed: 22206942]  [MGI Ref ID J:184386]

Foran E; Bogush A; Goffredo M; Roncaglia P; Gustincich S; Pasinelli P; Trotti D. 2011. Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia 59(11):1719-31. [PubMed: 21769946]  [MGI Ref ID J:175806]

Fornai F; Longone P; Cafaro L; Kastsiuchenka O; Ferrucci M; Manca ML; Lazzeri G; Spalloni A; Bellio N; Lenzi P; Modugno N; Siciliano G; Isidoro C; Murri L; Ruggieri S; Paparelli A. 2008. Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 105(6):2052-7. [PubMed: 18250315]  [MGI Ref ID J:132005]

Frey D; Schneider C; Xu L; Borg J; Spooren W; Caroni P. 2000. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 20(7):2534-42. [PubMed: 10729333]  [MGI Ref ID J:109472]

Fuchs A; Kutterer S; Muhling T; Duda J; Schutz B; Liss B; Keller BU; Roeper J. 2013. Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Physiol 591(Pt 10):2723-45. [PubMed: 23401612]  [MGI Ref ID J:210875]

Fujita Y; Okamoto K. 2005. Golgi apparatus of the motor neurons in patients with amyotrophic lateral sclerosis and in mice models of amyotrophic lateral sclerosis. Neuropathology 25(4):388-94. [PubMed: 16382790]  [MGI Ref ID J:128635]

Gal J; Strom AL; Kilty R; Zhang F; Zhu H. 2007. p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J Biol Chem 282(15):11068-77. [PubMed: 17296612]  [MGI Ref ID J:121167]

Garbuzova-Davis S; Haller E; Saporta S; Kolomey I; Nicosia SV; Sanberg PR. 2007. Ultrastructure of blood-brain barrier and blood-spinal cord barrier in SOD1 mice modeling ALS. Brain Res 1157:126-37. [PubMed: 17512910]  [MGI Ref ID J:165019]

Garbuzova-Davis S; Saporta S; Haller E; Kolomey I; Bennett SP; Potter H; Sanberg PR. 2007. Evidence of Compromised Blood-Spinal Cord Barrier in Early and Late Symptomatic SOD1 Mice Modeling ALS. PLoS ONE 2(11):e1205. [PubMed: 18030339]  [MGI Ref ID J:130197]

Geracitano R; Paolucci E; Prisco S; Guatteo E; Zona C; Longone P; Ammassari-Teule M; Bernardi G; Berretta N; Mercuri NB. 2003. Altered long-term corticostriatal synaptic plasticity in transgenic mice overexpressing human CU/ZN superoxide dismutase (GLY(93)-->ALA) mutation. Neuroscience 118(2):399-408. [PubMed: 12699776]  [MGI Ref ID J:109423]

Gerber YN; Sabourin JC; Hugnot JP; Perrin FE. 2012. Unlike physical exercise, modified environment increases the lifespan of SOD1G93A mice however both conditions induce cellular changes. PLoS One 7(9):e45503. [PubMed: 23029057]  [MGI Ref ID J:191997]

Gianforcaro A; Solomon JA; Hamadeh MJ. 2013. Vitamin D(3) at 50x AI attenuates the decline in paw grip endurance, but not disease outcomes, in the G93A mouse model of ALS, and is toxic in females. PLoS One 8(2):e30243. [PubMed: 23405058]  [MGI Ref ID J:197211]

Gibb SL; Boston-Howes W; Lavina ZS; Gustincich S; Brown RH Jr; Pasinelli P; Trotti D. 2007. A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem 282(44):32480-90. [PubMed: 17823119]  [MGI Ref ID J:126836]

Gilchrist CA; Gray DA; Stieber A; Gonatas NK; Kopito RR. 2005. Effect of ubiquitin expression on neuropathogenesis in a mouse model of familial amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 31(1):20-33. [PubMed: 15634228]  [MGI Ref ID J:128568]

Giribaldi F; Milanese M; Bonifacino T; Anna Rossi PI; Di Prisco S; Pittaluga A; Tacchetti C; Puliti A; Usai C; Bonanno G. 2013. Group I metabotropic glutamate autoreceptors induce abnormal glutamate exocytosis in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology 66:253-63. [PubMed: 22634363]  [MGI Ref ID J:192685]

Goldsteins G; Keksa-Goldsteine V; Ahtoniemi T; Jaronen M; Arens E; Akerman K; Chan PH; Koistinaho J. 2008. Deleterious role of superoxide dismutase in the mitochondrial intermembrane space. J Biol Chem 283(13):8446-52. [PubMed: 18171673]  [MGI Ref ID J:135530]

Gordon T; Tyreman N; Li S; Putman CT; Hegedus J. 2010. Functional over-load saves motor units in the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 37(2):412-422. [PubMed: 19879358]  [MGI Ref ID J:156895]

Gould TW; Buss RR; Vinsant S; Prevette D; Sun W; Knudson CM; Milligan CE; Oppenheim RW. 2006. Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci 26(34):8774-86. [PubMed: 16928866]  [MGI Ref ID J:111890]

Gowing G; Dequen F; Soucy G; Julien JP. 2006. Absence of tumor necrosis factor-alpha does not affect motor neuron disease caused by superoxide dismutase 1 mutations. J Neurosci 26(44):11397-402. [PubMed: 17079668]  [MGI Ref ID J:114680]

Gowing G; Philips T; Van Wijmeersch B; Audet JN; Dewil M; Van Den Bosch L; Billiau AD; Robberecht W; Julien JP. 2008. Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase. J Neurosci 28(41):10234-44. [PubMed: 18842883]  [MGI Ref ID J:141126]

Graffmo KS; Forsberg K; Bergh J; Birve A; Zetterstrom P; Andersen PM; Marklund SL; Brannstrom T. 2013. Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis. Hum Mol Genet 22(1):51-60. [PubMed: 23026746]  [MGI Ref ID J:191143]

Grant RA; Sharp PS; Kennerley AJ; Berwick J; Grierson A; Ramesh T; Prescott TJ. 2014. Abnormalities in whisking behaviour are associated with lesions in brain stem nuclei in a mouse model of amyotrophic lateral sclerosis. Behav Brain Res 259:274-83. [PubMed: 24239688]  [MGI Ref ID J:208294]

Groeneveld GJ; Van Muiswinkel FL; Sturkenboom JM; Wokke JH; Bar PR; Van Den Berg LH. 2004. Ovariectomy and 17beta-estradiol modulate disease progression of a mouse model of ALS. Brain Res 1021(1):128-31. [PubMed: 15328040]  [MGI Ref ID J:91976]

Guan YJ; Wang X; Wang HY; Kawagishi K; Ryu H; Huo CF; Shimony EM; Kristal BS; Kuhn HG; Friedlander RM. 2007. Increased stem cell proliferation in the spinal cord of adult amyotrophic lateral sclerosis transgenic mice. J Neurochem 102(4):1125-38. [PubMed: 17472707]  [MGI Ref ID J:124131]

Guatteo E; Carunchio I; Pieri M; Albo F; Canu N; Mercuri NB; Zona C. 2007. Altered calcium homeostasis in motor neurons following AMPA receptor but not voltage-dependent calcium channels' activation in a genetic model of amyotrophic lateral sclerosis. Neurobiol Dis 28(1):90-100. [PubMed: 17706428]  [MGI Ref ID J:134834]

Guo Y; Duan W; Li Z; Huang J; Yin Y; Zhang K; Wang Q; Zhang Z; Li C. 2010. Decreased GLT-1 and increased SOD1 and HO-1 expression in astrocytes contribute to lumbar spinal cord vulnerability of SOD1-G93A transgenic mice. FEBS Lett 584(8):1615-22. [PubMed: 20303959]  [MGI Ref ID J:159324]

Guo Y; Li C; Wu D; Wu S; Yang C; Liu Y; Wu H; Li Z. 2010. Ultrastructural diversity of inclusions and aggregations in the lumbar spinal cord of SOD1-G93A transgenic mice. Brain Res 1353:234-44. [PubMed: 20637744]  [MGI Ref ID J:165156]

Guo Y; Zhang Y; Wen D; Duan W; An T; Shi P; Wang J; Li Z; Chen X; Li C. 2013. The modest impact of transcription factor Nrf2 on the course of disease in an ALS animal model. Lab Invest 93(7):825-33. [PubMed: 23711824]  [MGI Ref ID J:198732]

Guo Z; Kindy MS; Kruman I; Mattson MP. 2000. ALS-linked Cu/Zn-SOD mutation impairs cerebral synaptic glucose and glutamate transport and exacerbates ischemic brain injury. J Cereb Blood Flow Metab 20(3):463-8. [PubMed: 10724110]  [MGI Ref ID J:61249]

Hadano S; Otomo A; Kunita R; Suzuki-Utsunomiya K; Akatsuka A; Koike M; Aoki M; Uchiyama Y; Itoyama Y; Ikeda JE. 2010. Loss of ALS2/Alsin exacerbates motor dysfunction in a SOD1-expressing mouse ALS model by disturbing endolysosomal trafficking. PLoS One 5(3):e9805. [PubMed: 20339559]  [MGI Ref ID J:158877]

Haenggeli C; Kato AC. 2002. Differential vulnerability of cranial motoneurons in mouse models with motor neuron degeneration. Neurosci Lett 335(1):39-43. [PubMed: 12457737]  [MGI Ref ID J:131493]

Haidet-Phillips AM; Gross SK; Williams T; Tuteja A; Sherman A; Ko M; Jeong YH; Wong PC; Maragakis NJ. 2013. Altered astrocytic expression of TDP-43 does not influence motor neuron survival. Exp Neurol 250:250-9. [PubMed: 24120466]  [MGI Ref ID J:206607]

Hamson DK; Hu JH; Krieger C; Watson NV. 2002. Lumbar motoneuron fate in a mouse model of amyotrophic lateral sclerosis. Neuroreport 13(17):2291-4. [PubMed: 12488813]  [MGI Ref ID J:89674]

Harraz MM; Marden JJ; Zhou W; Zhang Y; Williams A; Sharov VS; Nelson K; Luo M; Paulson H; Schoneich C; Engelhardt JF. 2008. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest 118(2):659-70. [PubMed: 18219391]  [MGI Ref ID J:131850]

Hayworth CR; Gonzalez-Lima F. 2009. Pre-symptomatic detection of chronic motor deficits and genotype prediction in congenic B6.SOD1(G93A) ALS mouse model. Neuroscience 164(3):975-85. [PubMed: 19699279]  [MGI Ref ID J:155140]

Hegedus J; Putman CT; Gordon T. 2007. Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 28(2):154-64. [PubMed: 17766128]  [MGI Ref ID J:134803]

Hegedus J; Putman CT; Tyreman N; Gordon T. 2008. Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. J Physiol 586(14):3337-51. [PubMed: 18467368]  [MGI Ref ID J:176393]

Heiman-Patterson TD; Deitch JS; Blankenhorn EP; Erwin KL; Perreault MJ; Alexander BK; Byers N; Toman I; Alexander GM. 2005. Background and gender effects on survival in the TgN(SOD1-G93A)1Gur mouse model of ALS. J Neurol Sci 236(1-2):1-7. [PubMed: 16024047]  [MGI Ref ID J:128550]

Henriques A; Pitzer C; Schneider A. 2010. Characterization of a novel SOD-1(G93A) transgenic mouse line with very decelerated disease development. PLoS One 5(11):e15445. [PubMed: 21102999]  [MGI Ref ID J:166991]

Herron LR; Miles GB. 2012. Gender-specific perturbations in modulatory inputs to motoneurons in a mouse model of amyotrophic lateral sclerosis. Neuroscience 226:313-23. [PubMed: 23000617]  [MGI Ref ID J:192753]

Hirano K; Ohgomori T; Kobayashi K; Tanaka F; Matsumoto T; Natori T; Matsuyama Y; Uchimura K; Sakamoto K; Takeuchi H; Hirakawa A; Suzumura A; Sobue G; Ishiguro N; Imagama S; Kadomatsu K. 2013. Ablation of keratan sulfate accelerates early phase pathogenesis of ALS. PLoS One 8(6):e66969. [PubMed: 23825599]  [MGI Ref ID J:204346]

Hoyaux D; Alao J; Fuchs J; Kiss R; Keller B; Heizmann CW; Pochet R; Frermann D. 2000. S100A6, a calcium- and zinc-binding protein, is overexpressed in SOD1 mutant mice, a model for amyotrophic lateral sclerosis. Biochim Biophys Acta 1498(2-3):264-72. [PubMed: 11108968]  [MGI Ref ID J:66524]

Ilieva HS; Yamanaka K; Malkmus S; Kakinohana O; Yaksh T; Marsala M; Cleveland DW. 2008. Mutant dynein (Loa) triggers proprioceptive axon loss that extends survival only in the SOD1 ALS model with highest motor neuron death. Proc Natl Acad Sci U S A 105(34):12599-604. [PubMed: 18719118]  [MGI Ref ID J:138825]

Ishigaki S; Liang Y; Yamamoto M; Niwa J; Ando Y; Yoshihara T; Takeuchi H; Doyu M; Sobue G. 2002. X-Linked inhibitor of apoptosis protein is involved in mutant SOD1-mediated neuronal degeneration. J Neurochem 82(3):576-84. [PubMed: 12153481]  [MGI Ref ID J:78107]

Israelsson C; Bengtsson H; Lobell A; Nilsson LN; Kylberg A; Isaksson M; Wootz H; Lannfelt L; Kullander K; Hillered L; Ebendal T. 2010. Appearance of Cxcl10-expressing cell clusters is common for traumatic brain injury and neurodegenerative disorders. Eur J Neurosci 31(5):852-63. [PubMed: 20374285]  [MGI Ref ID J:159617]

Ito Y; Yamada M; Tanaka H; Aida K; Tsuruma K; Shimazawa M; Hozumi I; Inuzuka T; Takahashi H; Hara H. 2009. Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice. Neurobiol Dis 36(3):470-6. [PubMed: 19733664]  [MGI Ref ID J:154934]

Jiang F; DeSilva S; Turnbull J. 2000. Beneficial effect of ginseng root in SOD-1 (G93A) transgenic mice J Neurol Sci 180(1-2):52-4. [PubMed: 11090864]  [MGI Ref ID J:66115]

Jonsson PA; Ernhill K; Andersen PM; Bergemalm D; Brannstrom T; Gredal O; Nilsson P; Marklund SL. 2004. Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. Brain 127(Pt 1):73-88. [PubMed: 14534160]  [MGI Ref ID J:175594]

Jouroukhin Y; Ostritsky R; Assaf Y; Pelled G; Giladi E; Gozes I. 2013. NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport. Neurobiol Dis 56:79-94. [PubMed: 23631872]  [MGI Ref ID J:201558]

Jung C; Higgins CM; Xu Z. 2002. Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J Neurochem 83(3):535-45. [PubMed: 12390515]  [MGI Ref ID J:79894]

Kabashi E; Agar JN; Taylor DM; Minotti S; Durham HD. 2004. Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J Neurochem 89(6):1325-35. [PubMed: 15189335]  [MGI Ref ID J:92215]

Kaneb HM; Sharp PS; Rahmani-Kondori N; Wells DJ. 2011. Metformin treatment has no beneficial effect in a dose-response survival study in the SOD1(G93A) mouse model of ALS and is harmful in female mice. PLoS One 6(9):e24189. [PubMed: 21909419]  [MGI Ref ID J:177703]

Kang SH; Fukaya M; Yang JK; Rothstein JD; Bergles DE. 2010. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68(4):668-81. [PubMed: 21092857]  [MGI Ref ID J:167748]

Karch CM; Borchelt DR. 2008. A limited role for disulfide cross-linking in the aggregation of mutant SOD1 linked to familial amyotrophic lateral sclerosis. J Biol Chem 283(20):13528-37. [PubMed: 18316367]  [MGI Ref ID J:137090]

Karch CM; Prudencio M; Winkler DD; Hart PJ; Borchelt DR. 2009. Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS. Proc Natl Acad Sci U S A 106(19):7774-9. [PubMed: 19416874]  [MGI Ref ID J:148399]

Kasai A; Kinjo T; Ishihara R; Sakai I; Ishimaru Y; Yoshioka Y; Yamamuro A; Ishige K; Ito Y; Maeda S. 2011. Apelin deficiency accelerates the progression of amyotrophic lateral sclerosis. PLoS One 6(8):e23968. [PubMed: 21887354]  [MGI Ref ID J:176147]

Kawamata H; Magrane J; Kunst C; King MP; Manfredi G. 2008. Lysyl-tRNA synthetase is a target for mutant SOD1 toxicity in mitochondria. J Biol Chem 283(42):28321-8. [PubMed: 18715867]  [MGI Ref ID J:142289]

Kawamata H; Ng SK; Diaz N; Burstein S; Morel L; Osgood A; Sider B; Higashimori H; Haydon PG; Manfredi G; Yang Y. 2014. Abnormal intracellular calcium signaling and SNARE-dependent exocytosis contributes to SOD1G93A astrocyte-mediated toxicity in amyotrophic lateral sclerosis. J Neurosci 34(6):2331-48. [PubMed: 24501372]  [MGI Ref ID J:206946]

Keller AF; Gravel M; Kriz J. 2009. Live imaging of amyotrophic lateral sclerosis pathogenesis: disease onset is characterized by marked induction of GFAP in Schwann cells. Glia 57(10):1130-42. [PubMed: 19115383]  [MGI Ref ID J:156209]

Kiaei M; Kipiani K; Calingasan NY; Wille E; Chen J; Heissig B; Rafii S; Lorenzl S; Beal MF. 2007. Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 205(1):74-81. [PubMed: 17362932]  [MGI Ref ID J:141587]

Kiaei M; Kipiani K; Chen J; Calingasan NY; Beal MF. 2005. Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 191(2):331-6. [PubMed: 15649489]  [MGI Ref ID J:95563]

Kiaei M; Petri S; Kipiani K; Gardian G; Choi DK; Chen J; Calingasan NY; Schafer P; Muller GW; Stewart C; Hensley K; Beal MF. 2006. Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 26(9):2467-73. [PubMed: 16510725]  [MGI Ref ID J:106056]

Kieran D; Sebastia J; Greenway MJ; King MA; Connaughton D; Concannon CG; Fenner B; Hardiman O; Prehn JH. 2008. Control of motoneuron survival by angiogenin. J Neurosci 28(52):14056-61. [PubMed: 19109488]  [MGI Ref ID J:143883]

Kieran D; Woods I; Villunger A; Strasser A; Prehn JH. 2007. Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice. Proc Natl Acad Sci U S A 104(51):20606-11. [PubMed: 18077368]  [MGI Ref ID J:130581]

Kilic E; Weishaupt JH; Kilic U; Rohde G; Yulug B; Peters K; Hermann DM; Bahr M. 2004. The superoxide dismutase1 (sod1) G93A mutation does not promote neuronal injury after focal brain ischemia and optic nerve transection in mice. Neuroscience 128(2):359-64. [PubMed: 15350647]  [MGI Ref ID J:92468]

Kim J; Kim TY; Cho KS; Kim HN; Koh JY. 2013. Autophagy activation and neuroprotection by progesterone in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 59:80-5. [PubMed: 23891729]  [MGI Ref ID J:201659]

Kim SM; Kim H; Lee JS; Park KS; Jeon GS; Shon J; Ahn SW; Kim SH; Lee KM; Sung JJ; Lee KW. 2013. Intermittent hypoxia can aggravate motor neuronal loss and cognitive dysfunction in ALS mice. PLoS One 8(11):e81808. [PubMed: 24303073]  [MGI Ref ID J:209761]

Kimura T; Takahashi MP; Fujimura H; Sakoda S. 2003. Expression and distribution of a small-conductance calcium-activated potassium channel (SK3) protein in skeletal muscles from myotonic muscular dystrophy patients and congenital myotonic mice. Neurosci Lett 347(3):191-5. [PubMed: 12875918]  [MGI Ref ID J:108028]

King AE; Blizzard CA; Southam KA; Vickers JC; Dickson TC. 2012. Degeneration of axons in spinal white matter in G93A mSOD1 mouse characterized by NFL and alpha-internexin immunoreactivity. Brain Res 1465:90-100. [PubMed: 22609817]  [MGI Ref ID J:186439]

Kira Y; Nishikawa M; Ochi A; Sato E; Inoue M. 2006. l-Carnitine suppresses the onset of neuromuscular degeneration and increases the life span of mice with familial amyotrophic lateral sclerosis. Brain Res 1070(1):206-14. [PubMed: 16412993]  [MGI Ref ID J:105888]

Kirkinezos IG; Bacman SR; Hernandez D; Oca-Cossio J; Arias LJ; Perez-Pinzon MA; Bradley WG; Moraes CT. 2005. Cytochrome c association with the inner mitochondrial membrane is impaired in the CNS of G93A-SOD1 mice. J Neurosci 25(1):164-72. [PubMed: 15634778]  [MGI Ref ID J:96714]

Kirkinezos IG; Hernandez D; Bradley WG; Moraes CT. 2004. An ALS mouse model with a permeable blood-brain barrier benefits from systemic cyclosporine A treatment. J Neurochem 88(4):821-6. [PubMed: 14756802]  [MGI Ref ID J:90123]

Klivenyi P; Ferrante RJ; Matthews RT; Bogdanov MB; Klein AM; Andreassen OA; Mueller G; Wermer M; Kaddurah-Daouk R; Beal MF. 1999. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5(3):347-50. [PubMed: 10086395]  [MGI Ref ID J:53328]

Knippenberg S; Thau N; Dengler R; Petri S. 2010. Significance of behavioural tests in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Behav Brain Res 213(1):82-7. [PubMed: 20450936]  [MGI Ref ID J:160359]

Kong J; Xu Z. 1999. Peripheral axotomy slows motoneuron degeneration in a transgenic mouse line expressing mutant SOD1 G93A. J Comp Neurol 412(2):373-80. [PubMed: 10441762]  [MGI Ref ID J:56912]

Kong Q; Chang LC; Takahashi K; Liu Q; Schulte DA; Lai L; Ibabao B; Lin Y; Stouffer N; Das Mukhopadhyay C; Xing X; Seyb KI; Cuny GD; Glicksman MA; Lin CL. 2014. Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J Clin Invest 124(3):1255-67. [PubMed: 24569372]  [MGI Ref ID J:209724]

Krishnan J; Vannuvel K; Andries M; Waelkens E; Robberecht W; Van Den Bosch L. 2008. Over-expression of Hsp27 does not influence disease in the mutant SOD1 mouse model of amyotrophic lateral sclerosis. J Neurochem 106(5):2170-83. [PubMed: 18624915]  [MGI Ref ID J:138853]

Kruman II; Pedersen WA; Springer JE; Mattson MP. 1999. ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp Neurol 160(1):28-39. [PubMed: 10630188]  [MGI Ref ID J:58537]

Kuner R; Groom AJ; Bresink I; Kornau HC; Stefovska V; Muller G; Hartmann B; Tschauner K; Waibel S; Ludolph AC; Ikonomidou C; Seeburg PH; Turski L. 2005. Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. Proc Natl Acad Sci U S A 102(16):5826-31. [PubMed: 15827116]  [MGI Ref ID J:97818]

Kunishige M; Hill KA; Riemer AM; Farwell KD; Halangoda A; Heinmoller E; Moore SR; Turner DM; Sommer SS. 2001. Mutation frequency is reduced in the cerebellum of Big Blue mice overexpressing a human wild type SOD1 gene. Mutat Res 473(2):139-49. [PubMed: 11166032]  [MGI Ref ID J:126863]

Kuntz C 4th; Kinoshita Y; Beal MF; Donehower LA; Morrison RS. 2000. Absence of p53: no effect in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp Neurol 165(1):184-90. [PubMed: 10964497]  [MGI Ref ID J:64503]

Kuzmenok OI; Sanberg PR; Desjarlais TG; Bennett SP; Garbuzova-Davis SN. 2006. Lymphopenia and spontaneous autorosette formation in SOD1 mouse model of ALS. J Neuroimmunol 172(1-2):132-6. [PubMed: 16376995]  [MGI Ref ID J:129215]

Kwak YD; Wang B; Li JJ; Wang R; Deng Q; Diao S; Chen Y; Xu R; Masliah E; Xu H; Sung JJ; Liao FF. 2012. Upregulation of the E3 ligase NEDD4-1 by Oxidative Stress Degrades IGF-1 Receptor Protein in Neurodegeneration. J Neurosci 32(32):10971-10981. [PubMed: 22875931]  [MGI Ref ID J:186616]

Lai C; Lin X; Chandran J; Shim H; Yang WJ; Cai H. 2007. The G59S mutation in p150(glued) causes dysfunction of dynactin in mice. J Neurosci 27(51):13982-90. [PubMed: 18094236]  [MGI Ref ID J:129269]

Lambrechts D; Storkebaum E; Morimoto M; Del-Favero J; Desmet F; Marklund SL; Wyns S; Thijs V; Andersson J; van Marion I; Al-Chalabi A; Bornes S; Musson R; Hansen V; Beckman L; Adolfsson R; Pall HS; Prats H; Vermeire S; Rutgeerts P; Katayama S; Awata T; Leigh N; Lang-Lazdunski L; Dewerchin M; Shaw C; Moons L; Vlietinck R; Morrison KE; Robberecht W; Van Broeckhoven C; Collen D; Andersen PM; Carmeliet P. 2003. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 34(4):383-94. [PubMed: 12847526]  [MGI Ref ID J:84843]

Le Pichon CE; Dominguez SL; Solanoy H; Ngu H; Lewin-Koh N; Chen M; Eastham-Anderson J; Watts R; Scearce-Levie K. 2013. EGFR inhibitor erlotinib delays disease progression but does not extend survival in the SOD1 mouse model of ALS. PLoS One 8(4):e62342. [PubMed: 23638043]  [MGI Ref ID J:200550]

Lee J; Kannagi M; Ferrante RJ; Kowall NW; Ryu H. 2009. Activation of Ets-2 by oxidative stress induces Bcl-xL expression and accounts for glial survival in amyotrophic lateral sclerosis. FASEB J 23(6):1739-49. [PubMed: 19179380]  [MGI Ref ID J:150551]

Lee J; Ryu H; Kowall NW. 2009. Differential regulation of neuronal and inducible nitric oxide synthase (NOS) in the spinal cord of mutant SOD1 (G93A) ALS mice. Biochem Biophys Res Commun 387(1):202-6. [PubMed: 19580782]  [MGI Ref ID J:151621]

Lee JC; Seong J; Kim SH; Lee SJ; Cho YJ; An J; Nam DH; Joo KM; Cha CI. 2012. Replacement of microglial cells using Clodronate liposome and bone marrow transplantation in the central nervous system of SOD1(G93A) transgenic mice as an in vivo model of amyotrophic lateral sclerosis. Biochem Biophys Res Commun 418(2):359-65. [PubMed: 22269142]  [MGI Ref ID J:181281]

Lee JK; Shin JH; Hwang SG; Gwag BJ; McKee AC; Lee J; Kowall NW; Ryu H; Lim DS; Choi EJ. 2013. MST1 functions as a key modulator of neurodegeneration in a mouse model of ALS. Proc Natl Acad Sci U S A 110(29):12066-71. [PubMed: 23818595]  [MGI Ref ID J:198804]

Lee JK; Shin JH; Suh J; Choi IS; Ryu KS; Gwag BJ. 2008. Tissue inhibitor of metalloproteinases-3 (TIMP-3) expression is increased during serum deprivation-induced neuronal apoptosis in vitro and in the G93A mouse model of amyotrophic lateral sclerosis: a potential modulator of Fas-mediated apoptosis. Neurobiol Dis 30(2):174-85. [PubMed: 18316197]  [MGI Ref ID J:136551]

Leger B; Vergani L; Soraru G; Hespel P; Derave W; Gobelet C; D'Ascenzio C; Angelini C; Russell AP. 2006. Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals a reduction in Akt and an increase in atrogin-1. FASEB J 20(3):583-5. [PubMed: 16507768]  [MGI Ref ID J:107912]

Leichsenring A; Linnartz B; Zhu XR; Lubbert H; Stichel CC. 2006. Ascending neuropathology in the CNS of a mutant SOD1 mouse model of amyotrophic lateral sclerosis. Brain Res 1096(1):180-95. [PubMed: 16737688]  [MGI Ref ID J:110437]

Lepore AC; Haenggeli C; Gasmi M; Bishop KM; Bartus RT; Maragakis NJ; Rothstein JD. 2007. Intraparenchymal spinal cord delivery of adeno-associated virus IGF-1 is protective in the SOD1(G93A) model of ALS. Brain Res 1185:256-65. [PubMed: 17963733]  [MGI Ref ID J:128943]

Letiembre M; Liu Y; Walter S; Hao W; Pfander T; Wrede A; Schulz-Schaeffer W; Fassbender K. 2009. Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging 30(5):759-68. [PubMed: 17905482]  [MGI Ref ID J:149576]

Levine JB; Kong J; Nadler M; Xu Z. 1999. Astrocytes interact intimately with degenerating motor neurons in mouse amyotrophic lateral sclerosis (ALS). Glia 28(3):215-24. [PubMed: 10559780]  [MGI Ref ID J:59666]

Lewis CA; Solomon JN; Rossi FM; Krieger C. 2009. Bone marrow-derived cells in the central nervous system of a mouse model of amyotrophic lateral sclerosis are associated with blood vessels and express CX(3)CR1. Glia 57(13):1410-9. [PubMed: 19243075]  [MGI Ref ID J:156201]

Li J; Staats WL; Spieker A; Sung M; Rutkove SB. 2012. A technique for performing electrical impedance myography in the mouse hind limb: data in normal and ALS SOD1 G93A animals. PLoS One 7(9):e45004. [PubMed: 23028733]  [MGI Ref ID J:191867]

Li J; Sung M; Rutkove SB. 2013. Electrophysiologic biomarkers for assessing disease progression and the effect of riluzole in SOD1 G93A ALS mice. PLoS One 8(6):e65976. [PubMed: 23762454]  [MGI Ref ID J:204242]

Li PA; He Q; Cao T; Yong G; Szauter KM; Fong KS; Karlsson J; Keep MF; Csiszar K. 2004. Up-regulation and altered distribution of lysyl oxidase in the central nervous system of mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Brain Res Mol Brain Res 120(2):115-22. [PubMed: 14741400]  [MGI Ref ID J:88033]

Li W; Brakefield D; Pan Y; Hunter D; Myckatyn TM; Parsadanian A. 2007. Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS. Exp Neurol 203(2):457-71. [PubMed: 17034790]  [MGI Ref ID J:141508]

Liao B; Zhao W; Beers DR; Henkel JS; Appel SH. 2012. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237(1):147-52. [PubMed: 22735487]  [MGI Ref ID J:187180]

Liebetanz D; Hagemann K; von Lewinski F; Kahler E; Paulus W. 2004. Extensive exercise is not harmful in amyotrophic lateral sclerosis. Eur J Neurosci 20(11):3115-20. [PubMed: 15579165]  [MGI Ref ID J:101273]

Lilo E; Wald-Altman S; Solmesky LJ; Ben Yaakov K; Gershoni-Emek N; Bulvik S; Kassis I; Karussis D; Perlson E; Weil M. 2013. Characterization of human sporadic ALS biomarkers in the familial ALS transgenic mSOD1G93A mouse model. Hum Mol Genet 22(23):4720-5. [PubMed: 23836781]  [MGI Ref ID J:202244]

Lim MA; Selak MA; Xiang Z; Krainc D; Neve RL; Kraemer BC; Watts JL; Kalb RG. 2012. Reduced Activity of AMP-Activated Protein Kinase Protects against Genetic Models of Motor Neuron Disease. J Neurosci 32(3):1123-1141. [PubMed: 22262909]  [MGI Ref ID J:179885]

Lin X; Shim H; Cai H. 2007. Deficiency in the ALS2 gene does not affect the motor neuron degeneration in SOD1(G93A) transgenic mice. Neurobiol Aging 28(10):1628-30. [PubMed: 16973244]  [MGI Ref ID J:125773]

Liu D; Bao F; Wen J; Liu J. 2007. Mutation of superoxide dismutase elevates reactive species: comparison of nitration and oxidation of proteins in different brain regions of transgenic mice with amyotrophic lateral sclerosis. Neuroscience 146(1):255-64. [PubMed: 17368952]  [MGI Ref ID J:122050]

Liu D; Wen J; Liu J; Li L. 1999. The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. FASEB J 13(15):2318-28. [PubMed: 10593879]  [MGI Ref ID J:58839]

Liu J; Shinobu LA; Ward CM; Young D; Cleveland DW. 2005. Elevation of the Hsp70 chaperone does not effect toxicity in mouse models of familial amyotrophic lateral sclerosis. J Neurochem 93(4):875-82. [PubMed: 15857390]  [MGI Ref ID J:98232]

Liu JX; Brannstrom T; Andersen PM; Pedrosa-Domellof F. 2011. Different impact of ALS on laminin isoforms in human extraocular muscles versus limb muscles. Invest Ophthalmol Vis Sci 52(7):4842-52. [PubMed: 21372009]  [MGI Ref ID J:181439]

Liu R; Althaus JS; Ellerbrock BR; Becker DA; Gurney ME. 1998. Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosis. Ann Neurol 44(5):763-70. [PubMed: 9818932]  [MGI Ref ID J:51167]

Lo Coco D; Veglianese P; Allievi E; Bendotti C. 2007. Distribution and cellular localization of high mobility group box protein 1 (HMGB1) in the spinal cord of a transgenic mouse model of ALS. Neurosci Lett 412(1):73-7. [PubMed: 17196331]  [MGI Ref ID J:119407]

Lobsiger CS; Boillee S; Pozniak C; Khan AM; McAlonis-Downes M; Lewcock JW; Cleveland DW. 2013. C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice. Proc Natl Acad Sci U S A 110(46):E4385-92. [PubMed: 24170856]  [MGI Ref ID J:202888]

Lougheed R; Turnbull J. 2011. Lack of effect of methylene blue in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. PLoS One 6(10):e23141. [PubMed: 21998625]  [MGI Ref ID J:178117]

Lu CH; Petzold A; Kalmar B; Dick J; Malaspina A; Greensmith L. 2012. Plasma neurofilament heavy chain levels correlate to markers of late stage disease progression and treatment response in SOD1(G93A) mice that model ALS. PLoS One 7(7):e40998. [PubMed: 22815892]  [MGI Ref ID J:189608]

Lucchetti J; Marino M; Papa S; Tortarolo M; Guiso G; Pozzi S; Bonetto V; Caccia S; Beghi E; Bendotti C; Gobbi M. 2013. A mouse model of familial ALS has increased CNS levels of endogenous ubiquinol9/10 and does not benefit from exogenous administration of ubiquinol10. PLoS One 8(7):e69540. [PubMed: 23936040]  [MGI Ref ID J:204944]

Ma X; Hamadeh MJ; Christie BR; Foster JA; Tarnopolsky MA. 2012. Impact of treadmill running and sex on hippocampal neurogenesis in the mouse model of amyotrophic lateral sclerosis. PLoS One 7(4):e36048. [PubMed: 22558322]  [MGI Ref ID J:187274]

Maday S; Wallace KE; Holzbaur EL. 2012. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196(4):407-17. [PubMed: 22331844]  [MGI Ref ID J:181687]

Magnus T; Carmen J; Deleon J; Xue H; Pardo AC; Lepore AC; Mattson MP; Rao MS; Maragakis NJ. 2008. Adult glial precursor proliferation in mutant SOD1G93A mice. Glia 56(2):200-8. [PubMed: 18023016]  [MGI Ref ID J:156289]

Magrane J; Cortez C; Gan WB; Manfredi G. 2014. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 23(6):1413-24. [PubMed: 24154542]  [MGI Ref ID J:206221]

Mancuso R; Olivan S; Osta R; Navarro X. 2011. Evolution of gait abnormalities in SOD1(G93A) transgenic mice. Brain Res 1406:65-73. [PubMed: 21733494]  [MGI Ref ID J:174564]

Mancuso R; Olivan S; Rando A; Casas C; Osta R; Navarro X. 2012. Sigma-1R agonist improves motor function and motoneuron survival in ALS mice. Neurotherapeutics 9(4):814-26. [PubMed: 22935988]  [MGI Ref ID J:193433]

Marconi S; Bonaconsa M; Scambi I; Squintani GM; Rui W; Turano E; Ungaro D; D'Agostino S; Barbieri F; Angiari S; Farinazzo A; Constantin G; Del Carro U; Bonetti B; Mariotti R. 2013. Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model. Neuroscience 248C:333-343. [PubMed: 23727509]  [MGI Ref ID J:207063]

Marinkovic P; Reuter MS; Brill MS; Godinho L; Kerschensteiner M; Misgeld T. 2012. Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 109(11):4296-301. [PubMed: 22371592]  [MGI Ref ID J:182236]

Martin E; Cazenave W; Cattaert D; Branchereau P. 2013. Embryonic alteration of motoneuronal morphology induces hyperexcitability in the mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 54:116-26. [PubMed: 23466698]  [MGI Ref ID J:197944]

Martin LJ; Chen K; Liu Z. 2005. Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked by DNA damage and p53 activation. J Neurosci 25(27):6449-59. [PubMed: 16000635]  [MGI Ref ID J:99428]

Martin LJ; Gertz B; Pan Y; Price AC; Molkentin JD; Chang Q. 2009. The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice. Exp Neurol 218(2):333-46. [PubMed: 19272377]  [MGI Ref ID J:151275]

Martinez JA; Francis GJ; Liu WQ; Pradzinsky N; Fine J; Wilson M; Hanson LR; Frey WH 2nd; Zochodne D; Gordon T; Toth C. 2008. Intranasal delivery of insulin and a nitric oxide synthase inhibitor in an experimental model of amyotrophic lateral sclerosis. Neuroscience 157(4):908-25. [PubMed: 18951954]  [MGI Ref ID J:144873]

Martorana F; Brambilla L; Valori CF; Bergamaschi C; Roncoroni C; Aronica E; Volterra A; Bezzi P; Rossi D. 2012. The BH4 domain of Bcl-XL rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals. Hum Mol Genet 21(4):826-40. [PubMed: 22072391]  [MGI Ref ID J:179740]

Mattiazzi M; D'Aurelio M; Gajewski CD; Martushova K; Kiaei M; Beal MF; Manfredi G. 2002. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 277(33):29626-33. [PubMed: 12050154]  [MGI Ref ID J:132838]

Mavlyutov TA; Epstein ML; Verbny YI; Huerta MS; Zaitoun I; Ziskind-Conhaim L; Ruoho AE. 2013. Lack of sigma-1 receptor exacerbates ALS progression in mice. Neuroscience 240:129-34. [PubMed: 23458708]  [MGI Ref ID J:201365]

Mayra A; Tomimitsu H; Kubodera T; Kobayashi M; Piao W; Sunaga F; Hirai Y; Shimada T; Mizusawa H; Yokota T. 2011. Intraperitoneal AAV9-shRNA inhibits target expression in neonatal skeletal and cardiac muscles. Biochem Biophys Res Commun 405(2):204-9. [PubMed: 21219850]  [MGI Ref ID J:168582]

Mead RJ; Bennett EJ; Kennerley AJ; Sharp P; Sunyach C; Kasher P; Berwick J; Pettmann B; Battaglia G; Azzouz M; Grierson A; Shaw PJ. 2011. Optimised and rapid pre-clinical screening in the SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS). PLoS One 6(8):e23244. [PubMed: 21876739]  [MGI Ref ID J:176347]

Milanese M; Zappettini S; Onofri F; Musazzi L; Tardito D; Bonifacino T; Messa M; Racagni G; Usai C; Benfenati F; Popoli M; Bonanno G. 2011. Abnormal exocytotic release of glutamate in a mouse model of amyotrophic lateral sclerosis. J Neurochem 116(6):1028-42. [PubMed: 21175617]  [MGI Ref ID J:170377]

Millecamps S; Nicolle D; Ceballos-Picot I; Mallet J; Barkats M. 2001. Synaptic sprouting increases the uptake capacities of motoneurons in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci U S A 98(13):7582-7. [PubMed: 11404466]  [MGI Ref ID J:70621]

Mimoto T; Miyazaki K; Morimoto N; Kurata T; Satoh K; Ikeda Y; Abe K. 2012. Impaired antioxydative Keap1/Nrf2 system and the downstream stress protein responses in the motor neuron of ALS model mice. Brain Res 1446:109-18. [PubMed: 22353756]  [MGI Ref ID J:183255]

Mimoto T; Morimoto N; Miyazaki K; Kurata T; Sato K; Ikeda Y; Abe K. 2012. Expression of heat shock transcription factor 1 and its downstream target protein T-cell death associated gene 51 in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Brain Res 1488:123-31. [PubMed: 23063459]  [MGI Ref ID J:193553]

Minciacchi D; Kassa RM; Del Tongo C; Mariotti R; Bentivoglio M. 2009. Voronoi-based spatial analysis reveals selective interneuron changes in the cortex of FALS mice. Exp Neurol 215(1):77-86. [PubMed: 18926824]  [MGI Ref ID J:144577]

Miquel E; Cassina A; Martinez-Palma L; Bolatto C; Trias E; Gandelman M; Radi R; Barbeito L; Cassina P. 2012. Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. PLoS One 7(4):e34776. [PubMed: 22509356]  [MGI Ref ID J:187096]

Moisse K; Mepham J; Volkening K; Welch I; Hill T; Strong MJ. 2009. Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL-/- mice: support for a role for TDP-43 in the physiological response to neuronal injury. Brain Res 1296:176-86. [PubMed: 19619516]  [MGI Ref ID J:157211]

Morel L; Regan M; Higashimori H; Ng SK; Esau C; Vidensky S; Rothstein J; Yang Y. 2013. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288(10):7105-16. [PubMed: 23364798]  [MGI Ref ID J:203513]

Morfini GA; Bosco DA; Brown H; Gatto R; Kaminska A; Song Y; Molla L; Baker L; Marangoni MN; Berth S; Tavassoli E; Bagnato C; Tiwari A; Hayward LJ; Pigino GF; Watterson DM; Huang CF; Banker G; Brown RH Jr; Brady ST. 2013. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLoS One 8(6):e65235. [PubMed: 23776455]  [MGI Ref ID J:203308]

Mourelatos Z; Gonatas NK; Stieber A; Gurney ME; Dal Canto MC. 1996. The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu,Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc Natl Acad Sci U S A 93(11):5472-7. [PubMed: 8643599]  [MGI Ref ID J:78612]

Muller FL; Song W; Jang YC; Liu Y; Sabia M; Richardson A; Van Remmen H. 2007. Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Physiol Regul Integr Comp Physiol 293(3):R1159-68. [PubMed: 17584954]  [MGI Ref ID J:143008]

Naumenko N; Pollari E; Kurronen A; Giniatullina R; Shakirzyanova A; Magga J; Koistinaho J; Giniatullin R. 2011. Gender-Specific Mechanism of Synaptic Impairment and Its Prevention by GCSF in a Mouse Model of ALS. Front Cell Neurosci 5:26. [PubMed: 22180738]  [MGI Ref ID J:190267]

Nawa M; Kage-Nakadai E; Aiso S; Okamoto K; Mitani S; Matsuoka M. 2012. Reduced expression of BTBD10, an Akt activator, leads to motor neuron death. Cell Death Differ 19(8):1398-407. [PubMed: 22388351]  [MGI Ref ID J:204628]

Nguyen KT; Barrett JN; Garcia-Chacon L; David G; Barrett EF. 2011. Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice. Neurobiol Dis 42(3):381-90. [PubMed: 21310237]  [MGI Ref ID J:172765]

Nguyen KT; Garcia-Chacon LE; Barrett JN; Barrett EF; David G. 2009. The Psi(m) depolarization that accompanies mitochondrial Ca2+ uptake is greater in mutant SOD1 than in wild-type mouse motor terminals. Proc Natl Acad Sci U S A 106(6):2007-11. [PubMed: 19174508]  [MGI Ref ID J:144962]

Niessen HG; Angenstein F; Sander K; Kunz WS; Teuchert M; Ludolph AC; Heinze HJ; Scheich H; Vielhaber S. 2006. In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion coefficient. Exp Neurol 201(2):293-300. [PubMed: 16740261]  [MGI Ref ID J:114432]

Niessen HG; Debska-Vielhaber G; Sander K; Angenstein F; Ludolph AC; Hilfert L; Willker W; Leibfritz D; Heinze HJ; Kunz WS; Vielhaber S. 2007. Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 25(6):1669-77. [PubMed: 17432958]  [MGI Ref ID J:122876]

Nishitoh H; Kadowaki H; Nagai A; Maruyama T; Yokota T; Fukutomi H; Noguchi T; Matsuzawa A; Takeda K; Ichijo H. 2008. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22(11):1451-64. [PubMed: 18519638]  [MGI Ref ID J:136428]

Novoselov SS; Mustill WJ; Gray AL; Dick JR; Kanuga N; Kalmar B; Greensmith L; Cheetham ME. 2013. Molecular chaperone mediated late-stage neuroprotection in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. PLoS One 8(8):e73944. [PubMed: 24023695]  [MGI Ref ID J:205932]

Nutini M; Frazzini V; Marini C; Spalloni A; Sensi SL; Longone P. 2011. Zinc pre-treatment enhances NMDAR-mediated excitotoxicity in cultured cortical neurons from SOD1(G93A) mouse, a model of amyotrophic lateral sclerosis. Neuropharmacology 60(7-8):1200-8. [PubMed: 21056589]  [MGI Ref ID J:178509]

Nutini M; Spalloni A; Florenzano F; Westenbroek RE; Marini C; Catterall WA; Bernardi G; Longone P. 2011. Increased expression of the beta3 subunit of voltage-gated Na+ channels in the spinal cord of the SOD1G93A mouse. Mol Cell Neurosci 47(2):108-18. [PubMed: 21458573]  [MGI Ref ID J:177958]

Oh YK; Shin KS; Kang SJ. 2006. AIF translocates to the nucleus in the spinal motor neurons in a mouse model of ALS. Neurosci Lett 406(3):205-10. [PubMed: 16916579]  [MGI Ref ID J:112616]

Ohnishi S; Ito H; Suzuki Y; Adachi Y; Wate R; Zhang J; Nakano S; Kusaka H; Ikehara S. 2009. Intra-bone marrow-bone marrow transplantation slows disease progression and prolongs survival in G93A mutant SOD1 transgenic mice, an animal model mouse for amyotrophic lateral sclerosis. Brain Res 1296:216-24. [PubMed: 19686706]  [MGI Ref ID J:157418]

Oliver PL; Finelli MJ; Edwards B; Bitoun E; Butts DL; Becker EB; Cheeseman MT; Davies B; Davies KE. 2011. Oxr1 Is Essential for Protection against Oxidative Stress-Induced Neurodegeneration. PLoS Genet 7(10):e1002338. [PubMed: 22028674]  [MGI Ref ID J:177995]

Oono M; Okado-Matsumoto A; Shodai A; Ido A; Ohta Y; Abe K; Ayaki T; Ito H; Takahashi R; Taniguchi N; Urushitani M. 2014. Transglutaminase 2 accelerates neuroinflammation in amyotrophic lateral sclerosis through interaction with misfolded superoxide dismutase 1. J Neurochem 128(3):403-18. [PubMed: 24032595]  [MGI Ref ID J:206628]

Ozdinler PH; Benn S; Yamamoto TH; Guzel M; Brown RH Jr; Macklis JD. 2011. Corticospinal Motor Neurons and Related Subcerebral Projection Neurons Undergo Early and Specific Neurodegeneration in hSOD1G93A Transgenic ALS Mice. J Neurosci 31(11):4166-4177. [PubMed: 21411657]  [MGI Ref ID J:170453]

Pan L; Yoshii Y; Otomo A; Ogawa H; Iwasaki Y; Shang HF; Hadano S. 2012. Different human copper-zinc superoxide dismutase mutants, SOD1G93A and SOD1H46R, exert distinct harmful effects on gross phenotype in mice. PLoS One 7(3):e33409. [PubMed: 22438926]  [MGI Ref ID J:187043]

Papadeas ST; Kraig SE; O'Banion C; Lepore AC; Maragakis NJ. 2011. Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo. Proc Natl Acad Sci U S A 108(43):17803-8. [PubMed: 21969586]  [MGI Ref ID J:177447]

Pardo AC; Wong V; Benson LM; Dykes M; Tanaka K; Rothstein JD; Maragakis NJ. 2006. Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice. Exp Neurol 201(1):120-30. [PubMed: 16753145]  [MGI Ref ID J:144898]

Parone PA; Da Cruz S; Han JS; McAlonis-Downes M; Vetto AP; Lee SK; Tseng E; Cleveland DW. 2013. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J Neurosci 33(11):4657-71. [PubMed: 23486940]  [MGI Ref ID J:196358]

Patel BP; Safdar A; Raha S; Tarnopolsky MA; Hamadeh MJ. 2010. Caloric restriction shortens lifespan through an increase in lipid peroxidation, inflammation and apoptosis in the G93A mouse, an animal model of ALS. PLoS One 5(2):e9386. [PubMed: 20195368]  [MGI Ref ID J:157900]

Pedersen WA; Chan SL; Mattson MP. 2000. A mechanism for the neuroprotective effect of apolipoprotein E: isoform-specific modification by the lipid peroxidation product 4-hydroxynonenal. J Neurochem 74(4):1426-33. [PubMed: 10737598]  [MGI Ref ID J:61165]

Pedrini S; Sau D; Guareschi S; Bogush M; Brown RH Jr; Naniche N; Kia A; Trotti D; Pasinelli P. 2010. ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2. Hum Mol Genet 19(15):2974-86. [PubMed: 20460269]  [MGI Ref ID J:161533]

Pehar M; Cassina P; Vargas MR; Castellanos R; Viera L; Beckman JS; Estevez AG; Barbeito L. 2004. Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem 89(2):464-73. [PubMed: 15056289]  [MGI Ref ID J:128978]

Pehar M; Cassina P; Vargas MR; Xie Y; Beckman JS; Massa SM; Longo FM; Barbeito L. 2006. Modulation of p75-dependent motor neuron death by a small non-peptidyl mimetic of the neurotrophin loop 1 domain. Eur J Neurosci 24(6):1575-80. [PubMed: 17004921]  [MGI Ref ID J:112914]

Pena-Altamira E; Crochemore C; Virgili M; Contestabile A. 2005. Neurochemical correlates of differential neuroprotection by long-term dietary creatine supplementation. Brain Res 1058(1-2):183-8. [PubMed: 16140286]  [MGI Ref ID J:101935]

Perez-Garcia MJ; Burden SJ. 2012. Increasing MuSK activity delays denervation and improves motor function in ALS mice. Cell Rep 2(3):497-502. [PubMed: 22939980]  [MGI Ref ID J:196231]

Perlson E; Jeong GB; Ross JL; Dixit R; Wallace KE; Kalb RG; Holzbaur EL. 2009. A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. J Neurosci 29(31):9903-17. [PubMed: 19657041]  [MGI Ref ID J:151459]

Perrin FE; Boisset G; Docquier M; Schaad O; Descombes P; Kato AC. 2005. No widespread induction of cell death genes occurs in pure motoneurons in an amyotrophic lateral sclerosis mouse model. Hum Mol Genet 14(21):3309-20. [PubMed: 16192287]  [MGI Ref ID J:102747]

Pesaresi MG; Amori I; Giorgi C; Ferri A; Fiorenzo P; Gabanella F; Salvatore AM; Giorgio M; Pelicci PG; Pinton P; Carri MT; Cozzolino M. 2011. Mitochondrial redox signalling by p66Shc mediates ALS-like disease through Rac1 inactivation. Hum Mol Genet 20(21):4196-208. [PubMed: 21828072]  [MGI Ref ID J:176680]

Petersen A; Hansson O; Puschban Z; Sapp E; Romero N; Castilho RF; Sulzer D; Rice M; DiFiglia M; Przedborski S; Brundin P. 2001. Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine. Eur J Neurosci 14(9):1425-35. [PubMed: 11722604]  [MGI Ref ID J:128172]

Petri S; Kiaei M; Damiano M; Hiller A; Wille E; Manfredi G; Calingasan NY; Szeto HH; Beal MF. 2006. Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem 98(4):1141-8. [PubMed: 16895581]  [MGI Ref ID J:119276]

Petri S; Kiaei M; Wille E; Calingasan NY; Flint Beal M. 2006. Loss of Fas ligand-function improves survival in G93A-transgenic ALS mice. J Neurol Sci 251(1-2):44-9. [PubMed: 17049562]  [MGI Ref ID J:129276]

Pieri M; Carunchio I; Curcio L; Mercuri NB; Zona C. 2009. Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis. Exp Neurol 215(2):368-79. [PubMed: 19071115]  [MGI Ref ID J:144363]

Pizzasegola C; Caron I; Daleno C; Ronchi A; Minoia C; Carri MT; Bendotti C. 2009. Treatment with lithium carbonate does not improve disease progression in two different strains of SOD1 mutant mice. Amyotroph Lateral Scler 10(4):221-8. [PubMed: 19308767]  [MGI Ref ID J:201035]

Prause J; Goswami A; Katona I; Roos A; Schnizler M; Bushuven E; Dreier A; Buchkremer S; Johann S; Beyer C; Deschauer M; Troost D; Weis J. 2013. Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis. Hum Mol Genet 22(8):1581-600. [PubMed: 23314020]  [MGI Ref ID J:194984]

Prell T; Lautenschlager J; Witte OW; Carri MT; Grosskreutz J. 2012. The unfolded protein response in models of human mutant G93A amyotrophic lateral sclerosis. Eur J Neurosci 35(5):652-60. [PubMed: 22390177]  [MGI Ref ID J:184476]

Pullen AH ; Athanasiou D. 2009. Increase in presynaptic territory of C-terminals on lumbar motoneurons of G93A SOD1 mice during disease progression. Eur J Neurosci 29(3):551-61. [PubMed: 19187267]  [MGI Ref ID J:146652]

Quinlan KA; Schuster JE; Fu R; Siddique T; Heckman CJ. 2011. Altered postnatal maturation of electrical properties in spinal motoneurons in a mouse model of amyotrophic lateral sclerosis. J Physiol 589(Pt 9):2245-60. [PubMed: 21486770]  [MGI Ref ID J:185250]

Raiteri L; Stigliani S; Zappettini S; Mercuri NB; Raiteri M; Bonanno G. 2004. Excessive and precocious glutamate release in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology 46(6):782-92. [PubMed: 15033338]  [MGI Ref ID J:179571]

Rakhit R; Robertson J; Vande Velde C; Horne P; Ruth DM; Griffin J; Cleveland DW; Cashman NR; Chakrabartty A. 2007. An immunological epitope selective for pathological monomer-misfolded SOD1 in ALS. Nat Med 13(6):754-9. [PubMed: 17486090]  [MGI Ref ID J:133800]

Reinholz MM; Merkle CM; Poduslo JF. 1999. Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp Neurol 159(1):204-16. [PubMed: 10486188]  [MGI Ref ID J:57736]

Reyes NA; Fisher JK; Austgen K; VandenBerg S; Huang EJ; Oakes SA. 2010. Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J Clin Invest 120(10):3673-9. [PubMed: 20890041]  [MGI Ref ID J:165330]

Riddoch-Contreras J; Yang SY; Dick JR; Goldspink G; Orrell RW; Greensmith L. 2009. Mechano-growth factor, an IGF-I splice variant, rescues motoneurons and improves muscle function in SOD1(G93A) mice. Exp Neurol 215(2):281-9. [PubMed: 19038252]  [MGI Ref ID J:144380]

Ringer C; Buning LS; Schafer MK; Eiden LE; Weihe E; Schutz B. 2013. PACAP signaling exerts opposing effects on neuroprotection and neuroinflammation during disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 54:32-42. [PubMed: 23466699]  [MGI Ref ID J:197943]

Ringer C; Weihe E; Schutz B. 2012. Calcitonin gene-related peptide expression levels predict motor neuron vulnerability in the superoxide dismutase 1-G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 45(1):547-54. [PubMed: 21964254]  [MGI Ref ID J:178540]

Ringer C; Weihe E; Schutz B. 2009. Pre-symptomatic alterations in subcellular betaCGRP distribution in motor neurons precede astrogliosis in ALS mice. Neurobiol Dis 35(2):286-95. [PubMed: 19465128]  [MGI Ref ID J:150430]

Roberson ED; Halabisky B; Yoo JW; Yao J; Chin J; Yan F; Wu T; Hamto P; Devidze N; Yu GQ; Palop JJ; Noebels JL; Mucke L. 2011. Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci 31(2):700-11. [PubMed: 21228179]  [MGI Ref ID J:168226]

Robertson J; Sanelli T; Xiao S; Yang W; Horne P; Hammond R; Pioro EP; Strong MJ. 2007. Lack of TDP-43 abnormalities in mutant SOD1 transgenic mice shows disparity with ALS. Neurosci Lett 420(2):128-32. [PubMed: 17543992]  [MGI Ref ID J:143016]

Rocha MC; Pousinha PA; Correia AM; Sebastiao AM; Ribeiro JA. 2013. Early changes of neuromuscular transmission in the SOD1(G93A) mice model of ALS start long before motor symptoms onset. PLoS One 8(9):e73846. [PubMed: 24040091]  [MGI Ref ID J:207346]

Rohde G; Kermer P; Reed JC; Bahr M; Weishaupt JH. 2008. Neuron-specific overexpression of the co-chaperone Bcl-2-associated athanogene-1 in superoxide dismutase 1(G93A)-transgenic mice. Neuroscience 157(4):844-9. [PubMed: 18955116]  [MGI Ref ID J:144856]

Rossi D; Brambilla L; Valori CF; Roncoroni C; Crugnola A; Yokota T; Bredesen DE; Volterra A. 2008. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ 15(11):1691-700. [PubMed: 18617894]  [MGI Ref ID J:154357]

Ryu H; Jeon GS; Cashman NR; Kowall NW; Lee J. 2011. Differential expression of c-Ret in motor neurons versus non-neuronal cells is linked to the pathogenesis of ALS. Lab Invest 91(3):342-52. [PubMed: 21283077]  [MGI Ref ID J:169223]

Saito Y; Yokota T; Mitani T; Ito K; Anzai M; Miyagishi M; Taira K; Mizusawa H. 2005. Transgenic small interfering RNA halts amyotrophic lateral sclerosis in a mouse model. J Biol Chem 280(52):42826-30. [PubMed: 16221675]  [MGI Ref ID J:105911]

Sato K; Morimoto N; Kurata T; Mimoto T; Miyazaki K; Ikeda Y; Abe K. 2012. Impaired response of hypoxic sensor protein HIF-1alpha and its downstream proteins in the spinal motor neurons of ALS model mice. Brain Res 1473:55-62. [PubMed: 22871270]  [MGI Ref ID J:193349]

Saxena S; Cabuy E; Caroni P. 2009. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12(5):627-36. [PubMed: 19330001]  [MGI Ref ID J:150509]

Schafer S; Hermans E. 2011. Reassessment of motor-behavioural test analyses enables the detection of early disease-onset in a transgenic mouse model of amyotrophic lateral sclerosis. Behav Brain Res 225(1):7-14. [PubMed: 21723884]  [MGI Ref ID J:175699]

Schoenebeck B; Bader V; Zhu XR; Schmitz B; Lubbert H; Stichel CC. 2005. Sgk1, a cell survival response in neurodegenerative diseases. Mol Cell Neurosci 30(2):249-64. [PubMed: 16125969]  [MGI Ref ID J:129832]

Schonhoff CM; Matsuoka M; Tummala H; Johnson MA; Estevez AG; Wu R; Kamaid A; Ricart KC; Hashimoto Y; Gaston B; Macdonald TL; Xu Z; Mannick JB. 2006. S-nitrosothiol depletion in amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103(7):2404-9. [PubMed: 16461917]  [MGI Ref ID J:106061]

Schutz B. 2005. Imbalanced excitatory to inhibitory synaptic input precedes motor neuron degeneration in an animal model of amyotrophic lateral sclerosis. Neurobiol Dis 20(1):131-40. [PubMed: 16137574]  [MGI Ref ID J:102615]

Sebastia J; Kieran D; Breen B; King MA; Netteland DF; Joyce D; Fitzpatrick SF; Taylor CT; Prehn JH. 2009. Angiogenin protects motoneurons against hypoxic injury. Cell Death Differ 16(9):1238-47. [PubMed: 19444281]  [MGI Ref ID J:164176]

Seijffers R; Zhang J; Matthews JC; Chen A; Tamrazian E; Babaniyi O; Selig M; Hynynen M; Woolf CJ; Brown RH Jr. 2014. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation. Proc Natl Acad Sci U S A 111(4):1622-7. [PubMed: 24474789]  [MGI Ref ID J:206645]

Sgobio C; Trabalza A; Spalloni A; Zona C; Carunchio I; Longone P; Ammassari-Teule M. 2008. Abnormal medial prefrontal cortex connectivity and defective fear extinction in the presymptomatic G93A SOD1 mouse model of ALS. Genes Brain Behav 7(4):427-34. [PubMed: 18081837]  [MGI Ref ID J:149044]

Shan X; Hu JH; Cayabyab FS; Krieger C. 2005. Increased phospho-adducin immunoreactivity in a murine model of amyotrophic lateral sclerosis. Neuroscience 134(3):833-46. [PubMed: 15994023]  [MGI Ref ID J:104428]

Shan X; Vocadlo D; Krieger C. 2009. Mislocalization of TDP-43 in the G93A mutant SOD1 transgenic mouse model of ALS. Neurosci Lett 458(2):70-4. [PubMed: 19379791]  [MGI Ref ID J:150461]

Shan X; Vocadlo DJ; Krieger C. 2012. Reduced protein O-glycosylation in the nervous system of the mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Lett 516(2):296-301. [PubMed: 22521585]  [MGI Ref ID J:188818]

Sharp PS; Akbar MT; Bouri S; Senda A; Joshi K; Chen HJ; Latchman DS; Wells DJ; de Belleroche J. 2008. Protective effects of heat shock protein 27 in a model of ALS occur in the early stages of disease progression. Neurobiol Dis 30(1):42-55. [PubMed: 18255302]  [MGI Ref ID J:141624]

Sharp PS; Dick JR; Greensmith L. 2005. The effect of peripheral nerve injury on disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neuroscience 130(4):897-910. [PubMed: 15652988]  [MGI Ref ID J:132280]

Shi P; Strom AL; Gal J; Zhu H. 2010. Effects of ALS-related SOD1 mutants on dynein- and KIF5-mediated retrograde and anterograde axonal transport. Biochim Biophys Acta 1802(9):707-16. [PubMed: 20510358]  [MGI Ref ID J:165462]

Smittkamp SE; Brown JW; Stanford JA. 2008. Time-course and characterization of orolingual motor deficits in B6SJL-Tg(SOD1-G93A)1Gur/J mice. Neuroscience 151(2):613-21. [PubMed: 18061359]  [MGI Ref ID J:130811]

Solomon JA; Gianforcaro A; Hamadeh MJ. 2011. Vitamin D3 deficiency differentially affects functional and disease outcomes in the G93A mouse model of amyotrophic lateral sclerosis. PLoS One 6(12):e29354. [PubMed: 22216257]  [MGI Ref ID J:182330]

Solomon JA; Tarnopolsky MA; Hamadeh MJ. 2011. One universal common endpoint in mouse models of amyotrophic lateral sclerosis. PLoS One 6(6):e20582. [PubMed: 21687686]  [MGI Ref ID J:174131]

Solomon JN; Lewis CA; Ajami B; Corbel SY; Rossi FM; Krieger C. 2006. Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis. Glia 53(7):744-53. [PubMed: 16518833]  [MGI Ref ID J:156130]

Song L; Gao Y; Zhang X; Le W. 2013. Galactooligosaccharide improves the animal survival and alleviates motor neuron death in SOD1G93A mouse model of amyotrophic lateral sclerosis. Neuroscience 246:281-90. [PubMed: 23673277]  [MGI Ref ID J:201442]

Soon CP; Donnelly PS; Turner BJ; Hung LW; Crouch PJ; Sherratt NA; Tan JL; Lim NK; Lam L; Bica L; Lim S; Hickey JL; Morizzi J; Powell A; Finkelstein DI; Culvenor JG; Masters CL; Duce J; White AR; Barnham KJ; Li QX. 2011. Diacetylbis(N(4)-methylthiosemicarbazonato) Copper(II) (CuII(atsm)) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in Amyotrophic Lateral Sclerosis Mouse Model. J Biol Chem 286(51):44035-44. [PubMed: 22033929]  [MGI Ref ID J:178749]

Spalloni A; Geracitano R; Berretta N; Sgobio C; Bernardi G; Mercuri NB; Longone P; Ammassari-Teule M. 2006. Molecular and synaptic changes in the hippocampus underlying superior spatial abilities in pre-symptomatic G93A+/+ mice overexpressing the human Cu/Zn superoxide dismutase (Gly(93) --> ALA) mutation. Exp Neurol 197(2):505-14. [PubMed: 16309674]  [MGI Ref ID J:104511]

Spalloni A; Origlia N; Sgobio C; Trabalza A; Nutini M; Berretta N; Bernardi G; Domenici L; Ammassari-Teule M; Longone P. 2011. Postsynaptic alteration of NR2A subunit and defective autophosphorylation of alphaCaMKII at threonine-286 contribute to abnormal plasticity and morphology of upper motor neurons in presymptomatic SOD1G93A mice, a murine model for amyotrophic lateral sclerosis. Cereb Cortex 21(4):796-805. [PubMed: 20732897]  [MGI Ref ID J:181827]

Spooren WP; Hengerer B. 2000. DNA laddering and caspase 3-like activity in the spinal cord of a mouse model of familial amyotrophic lateral sclerosis Cell Mol Biol (Noisy-Le-Grand) 46(1):63-9. [PubMed: 10726972]  [MGI Ref ID J:61246]

Staats KA; Bogaert E; Hersmus N; Jaspers T; Luyten T; Bultynck G; Parys JB; Hisatsune C; Mikoshiba K; Van Damme P; Robberecht W; Van Den Bosch L. 2012. Neuronal overexpression of IP(3) receptor 2 is detrimental in mutant SOD1 mice. Biochem Biophys Res Commun 429(3-4):210-3. [PubMed: 23131553]  [MGI Ref ID J:193754]

Staats KA; Van Helleputte L; Jones AR; Bento-Abreu A; Van Hoecke A; Shatunov A; Simpson CL; Lemmens R; Jaspers T; Fukami K; Nakamura Y; Brown RH Jr; Van Damme P; Liston A; Robberecht W; Al-Chalabi A; Van Den Bosch L. 2013. Genetic ablation of phospholipase C delta 1 increases survival in SOD1(G93A) mice. Neurobiol Dis 60:11-7. [PubMed: 23969236]  [MGI Ref ID J:201756]

Staats KA; Van Rillaer M; Scheveneels W; Verbesselt R; Van Damme P; Robberecht W; Van Den Bosch L. 2012. Dantrolene is neuroprotective in vitro, but does not affect survival in SOD1(G(9)(3)A) mice. Neuroscience 220:26-31. [PubMed: 22750242]  [MGI Ref ID J:192509]

Stam NC; Nithianantharajah J; Howard ML; Atkin JD; Cheema SS; Hannan AJ. 2008. Sex-specific behavioural effects of environmental enrichment in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 28(4):717-23. [PubMed: 18702691]  [MGI Ref ID J:140578]

Steinacker P; Hawlik A; Lehnert S; Jahn O; Meier S; Gorz E; Braunstein KE; Krzovska M; Schwalenstocker B; Jesse S; Propper C; Bockers T; Ludolph A; Otto M. 2010. Neuroprotective function of cellular prion protein in a mouse model of amyotrophic lateral sclerosis. Am J Pathol 176(3):1409-20. [PubMed: 20075202]  [MGI Ref ID J:158379]

Steyn FJ; Lee K; Fogarty MJ; Veldhuis JD; McCombe PA; Bellingham MC; Ngo ST; Chen C. 2013. Growth hormone secretion is correlated with neuromuscular innervation rather than motor neuron number in early-symptomatic male amyotrophic lateral sclerosis mice. Endocrinology 154(12):4695-706. [PubMed: 24108071]  [MGI Ref ID J:205143]

Steyn FJ; Ngo ST; Lee JD; Leong JW; Buckley AJ; Veldhuis JD; McCombe PA; Chen C; Bellingham MC. 2012. Impairments to the GH-IGF-I axis in hSOD1G93A mice give insight into possible mechanisms of GH dysregulation in patients with amyotrophic lateral sclerosis. Endocrinology 153(8):3735-46. [PubMed: 22621959]  [MGI Ref ID J:189119]

Stieber A; Gonatas JO; Collard J; Meier J; Julien J; Schweitzer P; Gonatas NK. 2000. The neuronal Golgi apparatus is fragmented in transgenic mice expressing a mutant human SOD1, but not in mice expressing the human NF-H gene. J Neurol Sci 173(1):63-72. [PubMed: 10675581]  [MGI Ref ID J:127959]

Stieber A; Gonatas JO; Gonatas NK. 2000. Aggregates of mutant protein appear progressively in dendrites, in periaxonal processes of oligodendrocytes, and in neuronal and astrocytic perikarya of mice expressing the SOD1(G93A) mutation of familial amyotrophic lateral sclerosis. J Neurol Sci 177(2):114-23. [PubMed: 10980307]  [MGI Ref ID J:130542]

Stifanese R; Averna M; De Tullio R; Pedrazzi M; Beccaria F; Salamino F; Milanese M; Bonanno G; Pontremoli S; Melloni E. 2010. Adaptive modifications in the calpain/calpastatin system in brain cells after persistent alteration in Ca2+ homeostasis. J Biol Chem 285(1):631-43. [PubMed: 19880516]  [MGI Ref ID J:158306]

Sun H; Benardais K; Stanslowsky N; Thau-Habermann N; Hensel N; Huang D; Claus P; Dengler R; Stangel M; Petri S. 2013. Therapeutic potential of mesenchymal stromal cells and MSC conditioned medium in Amyotrophic Lateral Sclerosis (ALS)--in vitro evidence from primary motor neuron cultures, NSC-34 cells, astrocytes and microglia. PLoS One 8(9):e72926. [PubMed: 24069165]  [MGI Ref ID J:206032]

Sunyach C; Michaud M; Arnoux T; Bernard-Marissal N; Aebischer J; Latyszenok V; Gouarne C; Raoul C; Pruss RM; Bordet T; Pettmann B. 2012. Olesoxime delays muscle denervation, astrogliosis, microglial activation and motoneuron death in an ALS mouse model. Neuropharmacology 62(7):2346-52. [PubMed: 22369784]  [MGI Ref ID J:186575]

Tada S; Yasui T; Nakatsuji Y; Okuno T; Koda T; Mochizuki H; Sakoda S; Kikutani H. 2013. BAFF controls neural cell survival through BAFF receptor. PLoS One 8(7):e70924. [PubMed: 23923031]  [MGI Ref ID J:203272]

Taes I; Timmers M; Hersmus N; Bento-Abreu A; Van Den Bosch L; Van Damme P; Auwerx J; Robberecht W. 2013. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum Mol Genet 22(9):1783-90. [PubMed: 23364049]  [MGI Ref ID J:194977]

Takahashi S; Kulkarni AB. 2004. Mutant superoxide dismutase 1 causes motor neuron degeneration independent of cyclin-dependent kinase 5 activation by p35 or p25. J Neurochem 88(5):1295-304. [PubMed: 15009685]  [MGI Ref ID J:88474]

Taylor DM; Gibbs BF; Kabashi E; Minotti S; Durham HD; Agar JN. 2007. Tryptophan 32 potentiates aggregation and cytotoxicity of a copper/zinc superoxide dismutase mutant associated with familial amyotrophic lateral sclerosis. J Biol Chem 282(22):16329-35. [PubMed: 17389599]  [MGI Ref ID J:122717]

Teuchert M; Fischer D; Schwalenstoecker B; Habisch HJ; Bockers TM; Ludolph AC. 2006. A dynein mutation attenuates motor neuron degeneration in SOD1(G93A) mice. Exp Neurol 198(1):271-4. [PubMed: 16427626]  [MGI Ref ID J:107901]

Thompson M; Marecki JC; Marinesco S; Labrie V; Roder JC; Barger SW; Crow JP. 2012. Paradoxical roles of serine racemase and D-serine in the G93A mSOD1 mouse model of amyotrophic lateral sclerosis. J Neurochem 120(4):598-610. [PubMed: 22117694]  [MGI Ref ID J:182278]

Tokuda E; Okawa E; Ono S. 2009. Dysregulation of intracellular copper trafficking pathway in a mouse model of mutant copper/zinc superoxide dismutase-linked familial amyotrophic lateral sclerosis. J Neurochem 111(1):181-91. [PubMed: 19656261]  [MGI Ref ID J:153644]

Tokuda E; Okawa E; Watanabe S; Ono S. 2014. Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1. Hum Mol Genet 23(5):1271-85. [PubMed: 24163136]  [MGI Ref ID J:206215]

Tokuda E; Okawa E; Watanabe S; Ono S; Marklund SL. 2013. Dysregulation of intracellular copper homeostasis is common to transgenic mice expressing human mutant superoxide dismutase-1s regardless of their copper-binding abilities. Neurobiol Dis 54:308-19. [PubMed: 23321002]  [MGI Ref ID J:197756]

Tonges L; Gunther R; Suhr M; Jansen J; Balck A; Saal KA; Barski E; Nientied T; Gotz AA; Koch JC; Mueller BK; Weishaupt JH; Sereda MW; Hanisch UK; Bahr M; Lingor P. 2014. Rho kinase inhibition modulates microglia activation and improves survival in a model of amyotrophic lateral sclerosis. Glia 62(2):217-32. [PubMed: 24311453]  [MGI Ref ID J:207161]

Tovar-y-Romo LB; Tapia R. 2006. Cerebral neurons of transgenic ALS mice are vulnerable to glutamate release stimulation but not to increased extracellular glutamate due to transport blockade. Exp Neurol 199(2):281-90. [PubMed: 16364298]  [MGI Ref ID J:111208]

Towner RA; Smith N; Saunders D; Lupu F; Silasi-Mansat R; West M; Ramirez DC; Gomez-Mejiba SE; Bonini MG; Mason RP; Ehrenshaft M; Hensley K. 2013. In vivo detection of free radicals using molecular MRI and immuno-spin trapping in a mouse model for amyotrophic lateral sclerosis. Free Radic Biol Med 63:351-60. [PubMed: 23722162]  [MGI Ref ID J:205171]

Trieu VN; Liu R; Liu XP; Uckun FM. 2000. A specific inhibitor of janus kinase-3 increases survival in a transgenic mouse model of amyotrophic lateral sclerosis. Biochem Biophys Res Commun 267(1):22-5. [PubMed: 10623568]  [MGI Ref ID J:59400]

Trumbull KA; McAllister D; Gandelman MM; Fung WY; Lew T; Brennan L; Lopez N; Morre J; Kalyanaraman B; Beckman JS. 2012. Diapocynin and apocynin administration fails to significantly extend survival in G93A SOD1 ALS mice. Neurobiol Dis 45(1):137-44. [PubMed: 21820513]  [MGI Ref ID J:179851]

Tudor EL; Galtrey CM; Perkinton MS; Lau KF; De Vos KJ; Mitchell JC; Ackerley S; Hortobagyi T; Vamos E; Leigh PN; Klasen C; McLoughlin DM; Shaw CE; Miller CC. 2010. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience 167(3):774-85. [PubMed: 20188146]  [MGI Ref ID J:161495]

Turner BJ; Ackerley S; Davies KE; Talbot K. 2010. Dismutase-competent SOD1 mutant accumulation in myelinating Schwann cells is not detrimental to normal or transgenic ALS model mice. Hum Mol Genet 19(5):815-24. [PubMed: 20008901]  [MGI Ref ID J:157111]

Turner BJ; Cheah IK; Macfarlane KJ; Lopes EC; Petratos S; Langford SJ; Cheema SS. 2003. Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. J Neurochem 87(3):752-63. [PubMed: 14535957]  [MGI Ref ID J:86152]

Turner BJ; Parkinson NJ; Davies KE; Talbot K. 2009. Survival motor neuron deficiency enhances progression in an amyotrophic lateral sclerosis mouse model. Neurobiol Dis 34(3):511-7. [PubMed: 19332122]  [MGI Ref ID J:150474]

Urushitani M; Sik A; Sakurai T; Nukina N; Takahashi R; Julien JP. 2006. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 9(1):108-18. [PubMed: 16369483]  [MGI Ref ID J:105360]

Vaknin I; Kunis G; Miller O; Butovsky O; Bukshpan S; Beers DR; Henkel JS; Yoles E; Appel SH; Schwartz M. 2011. Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis. PLoS One 6(11):e26921. [PubMed: 22073221]  [MGI Ref ID J:180998]

Valente T; Mancera P; Tusell JM; Serratosa J; Saura J. 2012. C/EBPbeta expression in activated microglia in amyotrophic lateral sclerosis. Neurobiol Aging 33(9):2186-99. [PubMed: 22015310]  [MGI Ref ID J:188186]

Van Damme P; Braeken D; Callewaert G; Robberecht W; Van Den Bosch L. 2005. GluR2 deficiency accelerates motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 64(7):605-12. [PubMed: 16042312]  [MGI Ref ID J:104951]

Vargas MR; Burton NC; Kutzke J; Gan L; Johnson DA; Schafer M; Werner S; Johnson JA. 2013. Absence of Nrf2 or its selective overexpression in neurons and muscle does not affect survival in ALS-linked mutant hSOD1 mouse models. PLoS One 8(2):e56625. [PubMed: 23418589]  [MGI Ref ID J:199339]

Vargas MR; Johnson DA; Johnson JA. 2011. Decreased glutathione accelerates neurological deficit and mitochondrial pathology in familial ALS-linked hSOD1(G93A) mice model. Neurobiol Dis :. [PubMed: 21600285]  [MGI Ref ID J:173346]

Vargas MR; Johnson DA; Sirkis DW; Messing A; Johnson JA. 2008. Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28(50):13574-81. [PubMed: 19074031]  [MGI Ref ID J:143048]

Veldink JH; Bar PR; Joosten EA; Otten M; Wokke JH; van den Berg LH. 2003. Sexual differences in onset of disease and response to exercise in a transgenic model of ALS. Neuromuscul Disord 13(9):737-43. [PubMed: 14561497]  [MGI Ref ID J:128781]

Vijayvergiya C; Beal MF; Buck J; Manfredi G. 2005. Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J Neurosci 25(10):2463-70. [PubMed: 15758154]  [MGI Ref ID J:134416]

Virgili M; Crochemore C; Pena-Altamira E; Contestabile A. 2006. Regional and temporal alterations of ODC/polyamine system during ALS-like neurodegenerative motor syndrome in G93A transgenic mice. Neurochem Int 48(3):201-7. [PubMed: 16290266]  [MGI Ref ID J:129220]

Vukosavic S; Dubois-Dauphin M; Romero N; Przedborski S. 1999. Bax and Bcl-2 interaction in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 73(6):2460-8. [PubMed: 10582606]  [MGI Ref ID J:58488]

Vukosavic S; Stefanis L; Jackson-Lewis V; Guegan C; Romero N; Chen C; Dubois-Dauphin M; Przedborski S. 2000. Delaying caspase activation by bcl-2: A clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis J Neurosci 20(24):9119-25. [PubMed: 11124989]  [MGI Ref ID J:66731]

Wang J; Slunt H; Gonzales V; Fromholt D; Coonfield M; Copeland NG; Jenkins NA; Borchelt DR. 2003. Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12(21):2753-64. [PubMed: 12966034]  [MGI Ref ID J:86421]

Wang R; Yang B; Zhang D. 2011. Activation of interferon signaling pathways in spinal cord astrocytes from an ALS mouse model. Glia 59(6):946-58. [PubMed: 21446050]  [MGI Ref ID J:171207]

Wang Y; Mao XO; Xie L; Banwait S; Marti HH; Greenberg DA; Jin K. 2007. Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. J Neurosci 27(2):304-7. [PubMed: 17215390]  [MGI Ref ID J:117304]

Watanabe S; Nagano S; Duce J; Kiaei M; Li QX; Tucker SM; Tiwari A; Brown RH Jr; Beal MF; Hayward LJ; Culotta VC; Yoshihara S; Sakoda S; Bush AI. 2007. Increased affinity for copper mediated by cysteine 111 in forms of mutant superoxide dismutase 1 linked to amyotrophic lateral sclerosis. Free Radic Biol Med 42(10):1534-42. [PubMed: 17448900]  [MGI Ref ID J:121596]

Wei R; Bhattacharya A; Hamilton RT; Jernigan AL; Chaudhuri AR. 2013. Differential effects of mutant SOD1 on protein structure of skeletal muscle and spinal cord of familial amyotrophic lateral sclerosis: role of chaperone network. Biochem Biophys Res Commun 438(1):218-23. [PubMed: 23886956]  [MGI Ref ID J:210765]

Wendt W; Lubbert H; Stichel CC. 2008. Upregulation of cathepsin S in the aging and pathological nervous system of mice. Brain Res 1232:7-20. [PubMed: 18694734]  [MGI Ref ID J:140397]

West M; Mhatre M; Ceballos A; Floyd RA; Grammas P; Gabbita SP; Hamdheydari L; Mai T; Mou S; Pye QN; Stewart C; West S; Williamson KS; Zemlan F; Hensley K. 2004. The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem 91(1):133-43. [PubMed: 15379894]  [MGI Ref ID J:93284]

Weydt P; Pineda VV; Torrence AE; Libby RT; Satterfield TF; Lazarowski ER; Gilbert ML; Morton GJ; Bammler TK; Strand AD; Cui L; Beyer RP; Easley CN; Smith AC; Krainc D; Luquet S; Sweet IR; Schwartz MW; La Spada AR. 2006. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Cell Metab 4(5):349-62. [PubMed: 17055784]  [MGI Ref ID J:129751]

Weydt P; Yuen EC; Ransom BR; Moller T. 2004. Increased cytotoxic potential of microglia from ALS-transgenic mice. Glia 48(2):179-82. [PubMed: 15378658]  [MGI Ref ID J:156055]

Winkler EA; Sengillo JD; Sagare AP; Zhao Z; Ma Q; Zuniga E; Wang Y; Zhong Z; Sullivan JS; Griffin JH; Cleveland DW; Zlokovic BV. 2014. Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci U S A 111(11):E1035-42. [PubMed: 24591593]  [MGI Ref ID J:207392]

Wong F; Fan L; Wells S; Hartley R; Mackenzie FE; Oyebode O; Brown R; Thomson D; Coleman MP; Blanco G; Ribchester RR. 2009. Axonal and neuromuscular synaptic phenotypes in Wld(S), SOD1(G93A) and ostes mutant mice identified by fiber-optic confocal microendoscopy. Mol Cell Neurosci 42(4):296-307. [PubMed: 19683573]  [MGI Ref ID J:202216]

Woodruff TM; Lee JD; Noakes PG. 2014. Role for terminal complement activation in amyotrophic lateral sclerosis disease progression. Proc Natl Acad Sci U S A 111(1):E3-4. [PubMed: 24381160]  [MGI Ref ID J:206365]

Wooley CM; Sher RB; Kale A; Frankel WN; Cox GA; Seburn KL. 2005. Gait analysis detects early changes in transgenic SOD1(G93A) mice. Muscle Nerve 32(1):43-50. [PubMed: 15880561]  [MGI Ref ID J:115355]

Wootz H; Enjin A; Wallen-Mackenzie A; Lindholm D; Kullander K. 2010. Reduced VGLUT2 expression increases motor neuron viability in Sod1(G93A) mice. Neurobiol Dis 37(1):58-66. [PubMed: 19770042]  [MGI Ref ID J:156910]

Wootz H; Fitzsimons-Kantamneni E; Larhammar M; Rotterman TM; Enjin A; Patra K; Andre E; Van Zundert B; Kullander K; Alvarez FJ. 2013. Alterations in the motor neuron-renshaw cell circuit in the Sod1(G93A) mouse model. J Comp Neurol 521(7):1449-69. [PubMed: 23172249]  [MGI Ref ID J:196338]

Wootz H; Hansson I; Korhonen L; Lindholm D. 2006. XIAP decreases caspase-12 cleavage and calpain activity in spinal cord of ALS transgenic mice. Exp Cell Res 312(10):1890-8. [PubMed: 16566922]  [MGI Ref ID J:111367]

Wootz H; Weber E; Korhonen L; Lindholm D. 2006. Altered distribution and levels of cathepsinD and cystatins in amyotrophic lateral sclerosis transgenic mice: possible roles in motor neuron survival. Neuroscience 143(2):419-30. [PubMed: 16973300]  [MGI Ref ID J:115935]

Xu R; Wu C; Zhang X; Zhang Q; Yang Y; Yi J; Yang R; Tao Y. 2011. Linking hypoxic and oxidative insults to cell death mechanisms in models of ALS. Brain Res 1372:133-44. [PubMed: 21111718]  [MGI Ref ID J:170252]

Yang T; Ramocki MB; Neul JL; Lu W; Roberts L; Knight J; Ward CS; Zoghbi HY; Kheradmand F; Corry DB. 2012. Overexpression of methyl-CpG binding protein 2 impairs T(H)1 responses. Sci Transl Med 4(163):163ra158. [PubMed: 23220634]  [MGI Ref ID J:194417]

Yang YS; Harel NY; Strittmatter SM. 2009. Reticulon-4A (Nogo-A) redistributes protein disulfide isomerase to protect mice from SOD1-dependent amyotrophic lateral sclerosis. J Neurosci 29(44):13850-9. [PubMed: 19889996]  [MGI Ref ID J:154758]

Yasvoina MV; Genc B; Jara JH; Sheets PL; Quinlan KA; Milosevic A; Shepherd GM; Heckman CJ; Ozdinler PH. 2013. eGFP expression under UCHL1 promoter genetically labels corticospinal motor neurons and a subpopulation of degeneration-resistant spinal motor neurons in an ALS mouse model. J Neurosci 33(18):7890-904. [PubMed: 23637180]  [MGI Ref ID J:197149]

Yip PK; Pizzasegola C; Gladman S; Biggio ML; Marino M; Jayasinghe M; Ullah F; Dyall SC; Malaspina A; Bendotti C; Michael-Titus A. 2013. The omega-3 fatty acid eicosapentaenoic acid accelerates disease progression in a model of amyotrophic lateral sclerosis. PLoS One 8(4):e61626. [PubMed: 23620776]  [MGI Ref ID J:200104]

Yoshihara T; Ishigaki S; Yamamoto M; Liang Y; Niwa J; Takeuchi H; Doyu M; Sobue G. 2002. Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 80(1):158-67. [PubMed: 11796754]  [MGI Ref ID J:78835]

Yoshii Y; Otomo A; Pan L; Ohtsuka M; Hadano S. 2011. Loss of glial fibrillary acidic protein marginally accelerates disease progression in a SOD1(H46R) transgenic mouse model of ALS. Neurosci Res 70(3):321-9. [PubMed: 21453731]  [MGI Ref ID J:173581]

Zang DW; Cheema SS. 2002. Degeneration of corticospinal and bulbospinal systems in the superoxide dismutase 1(G93A G1H) transgenic mouse model of familial amyotrophic lateral sclerosis. Neurosci Lett 332(2):99-102. [PubMed: 12384220]  [MGI Ref ID J:133155]

Zang da W; Yang Q; Wang HX; Egan G; Lopes EC; Cheema SS. 2004. Magnetic resonance imaging reveals neuronal degeneration in the brainstem of the superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 20(7):1745-51. [PubMed: 15379995]  [MGI Ref ID J:101293]

Zetterstrom P; Graffmo KS; Andersen PM; Brannstrom T; Marklund SL. 2011. Proteins That Bind to Misfolded Mutant Superoxide Dismutase-1 in Spinal Cords from Transgenic Amyotrophic Lateral Sclerosis (ALS) Model Mice. J Biol Chem 286(23):20130-6. [PubMed: 21493711]  [MGI Ref ID J:173495]

Zhai J; Lin H; Canete-Soler R; Schlaepfer WW. 2005. HoxB2 binds mutant SOD1 and is altered in transgenic model of ALS. Hum Mol Genet 14(18):2629-40. [PubMed: 16079151]  [MGI Ref ID J:103503]

Zhang Y; Cook A; Kim J; Baranov SV; Jiang J; Smith K; Cormier K; Bennett E; Browser RP; Day AL; Carlisle DL; Ferrante RJ; Wang X; Friedlander RM. 2013. Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 55:26-35. [PubMed: 23537713]  [MGI Ref ID J:197906]

Zhang Y; Li M; Drozda M; Chen M; Ren S; Mejia Sanchez RO; Leavitt BR; Cattaneo E; Ferrante RJ; Hayden MR; Friedlander RM. 2003. Depletion of wild-type huntingtin in mouse models of neurologic diseases. J Neurochem 87(1):101-6. [PubMed: 12969257]  [MGI Ref ID J:135605]

Zhao P; Ignacio S; Beattie EC; Abood ME. 2008. Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity. Eur J Neurosci 27(3):572-9. [PubMed: 18279310]  [MGI Ref ID J:132266]

Zhao W; Beers DR; Henkel JS; Zhang W; Urushitani M; Julien JP; Appel SH. 2010. Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia 58(2):231-43. [PubMed: 19672969]  [MGI Ref ID J:159347]

Zhao W; Varghese M; Vempati P; Dzhun A; Cheng A; Wang J; Lange D; Bilski A; Faravelli I; Pasinetti GM. 2012. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease. PLoS One 7(11):e49191. [PubMed: 23145119]  [MGI Ref ID J:195027]

Zhong Z; Deane R; Ali Z; Parisi M; Shapovalov Y; O'Banion MK; Stojanovic K; Sagare A; Boillee S; Cleveland DW; Zlokovic BV. 2008. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci 11(4):420-2. [PubMed: 18344992]  [MGI Ref ID J:136100]

Zhong Z; Ilieva H; Hallagan L; Bell R; Singh I; Paquette N; Thiyagarajan M; Deane R; Fernandez JA; Lane S; Zlokovic AB; Liu T; Griffin JH; Chow N; Castellino FJ; Stojanovic K; Cleveland DW; Zlokovic BV. 2009. Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J Clin Invest 119(11):3437-49. [PubMed: 19841542]  [MGI Ref ID J:154597]

Zhou J; Yi J; Fu R; Liu E; Siddique T; Rios E; Deng HX. 2010. Hyperactive intracellular calcium signaling associated with localized mitochondrial defects in skeletal muscle of an animal model of amyotrophic lateral sclerosis. J Biol Chem 285(1):705-12. [PubMed: 19889637]  [MGI Ref ID J:158298]

Zhu YB; Sheng ZH. 2011. Increased axonal mitochondrial mobility does not slow amyotrophic lateral sclerosis (ALS)-like disease in mutant SOD1 mice. J Biol Chem 286(26):23432-40. [PubMed: 21518771]  [MGI Ref ID J:174825]

Zona C; Pieri M; Carunchio I. 2006. Voltage-dependent sodium channels in spinal cord motor neurons display rapid recovery from fast inactivation in a mouse model of amyotrophic lateral sclerosis. J Neurophysiol 96(6):3314-22. [PubMed: 16899637]  [MGI Ref ID J:136461]

van Zundert B; Peuscher MH; Hynynen M; Chen A; Neve RL; Brown RH Jr; Constantine-Paton M; Bellingham MC. 2008. Neonatal neuronal circuitry shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Neurosci 28(43):10864-74. [PubMed: 18945894]  [MGI Ref ID J:143558]

Health & husbandry

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Colony Maintenance

Breeding & HusbandryWhen maintaining the live congenic colony, hemizygous carriers (preferably males) are bred with FVB/NJ inbred mice. Female hemizygotes are poor breeders, and rarely produce more than one litter before the onset of disease. The Donating Investigator reports that mice carrying this transgene on the congenic FVB/NJ background can die as early as 100 days of age.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2525.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We willfulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3283.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We willfulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Control Information

  Control
   Noncarrier
   001800 FVB/NJ
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.6)