Strain Name:


Stock Number:


Order this mouse


Repository- Live

Use Restrictions Apply, see Terms of Use
Common Names: Casp1-;     ICE-;    
This strain, relevant to studies of inflammation and cell death, carries a knockout allele of the Casp1 gene as well as an incidental Casp4 deficiency.


Strain Information

Type Congenic; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemHomozygote x Homozygote         (Female x Male)   31-JAN-13
Specieslaboratory mouse
GenerationN10pN1+F7 (01-JUN-12)
Generation Definitions
Donating InvestigatorDr. Richard A. Flavell,   Yale University School of Medicine

Caspase 1 (also known as interleukin-1beta converting enzyme or ICE) knockout mice lack part of exons 6 and 7 of the Casp1 gene and do not process pro-IL-1beta (IL1B) or pro-IL-18 (IL18) into their mature forms. Therefore, stimulation of CASP1-deficient monocytes by activators of multiple pattern recognition receptors that form inflammasomes with CASP1 (including Nlrp3 and Nlrc4) fail to secrete mature IL1B or IL18. In addition, secretion of IL-1alpha (IL1A) is reduced. Caspase-1 is involved in particular cell death pathways including pyroptosis, and caspase-1 deficient cells demonstrate reduced lysis upon infection with certain pathogens.

It has recently been confirmed that these mice are de facto Casp1/Casp4(formerly called caspase 11) double knockout mice. This is resultant from the dysfunctional nature of the naturally occuring 129 Casp4 allele. These Casp1 knockout mice were produced in embryonic stem (ES) cells on a 129S2 background.

Homozygous Casp1 targeted mutant mice are viable, fertile, and show no gross abnormalities in appearance, body weight or organ size for at least the first 16 weeks of life. Homozygotes are born at predicted Mendelian frequencies and the absence of mRNA was confirmed by RT-PCR analysis.

A 2.5 kb EcoRI-HindIII fragment containing caspase 1 exons 4-6 and a 1.3 kb EcoRI-SmaI fragment containing exons 8-10 were subcloned with the neomycin resistance gene cassette in a thymidine kinase gene-expressing plasmid to generate the targeting vector. The vector was linearized and introduced into 129S2/SvPas-derived embryonic stem (ES) cells by electroporation. 63 clones resistant to G418 and Gancyclovir were screened by PCR using and exon 10 primer and a neo cassette specific primer. One correctly targeted clone was confirmed by Southern blot analysis. Chimeric mice were generated from the targeted ES cells and chimeras bred to germline. The donating investigator reported that the progeny were backcrossed at least 10 generation on C57BL/6N background (see SNP note below).

A 32 SNP (single nucleotide polymorphism) panel analysis, with 27 markers covering all 19 chromosomes and the X chromosome, as well as 5 markers that distinguish between the C57BL/6J and C57BL/6N substrains, was performed on the rederived living colony at The Jackson Laboratory Repository. While the 27 markers throughout the genome suggested a C57BL/6 genetic background, 2 of 5 markers that determine C57BL/6J from C57BL/6N were found to be segregating. These data suggest the mice sent to The Jackson Laboratory Repository were on a mixed C57BL/6J ; C57BL/6N genetic background.

Control Information

   005304 C57BL/6NJ
  Considerations for Choosing Controls

Related Strains

Strains carrying other alleles of Casp1
004947   NOD.129S2(B6)-Casp1tm1Sesh Casp4del/LtJ
005346   NOD.Cg-Il10tm1Cgn Casp1tm1Sesh Casp4del/LtJ
View Strains carrying other alleles of Casp1     (2 strains)


Phenotype Information

View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Casp1tm1Flv/Casp1tm1Flv Casp4del/Casp4del

  • renal/urinary system phenotype
  • decreased renal glomerular filtration rate
    • reduced after LPS induced acute kidney failure but less than in controls   (MGI Ref ID J:97733)
  • kidney failure
    • LPS induced acute kidney failure is also less severe   (MGI Ref ID J:97733)
  • renal tubular necrosis
    • reduced compared to controls after LPS induced acute kidney failure but not significantly   (MGI Ref ID J:97733)
  • digestive/alimentary phenotype
  • abnormal gut flora balance
    • mice and co-housed wild-type mice exhibit expanded bacterial phylotypes compared with wild-type mice   (MGI Ref ID J:173245)
  • increased susceptibility to induced colitis
    • mice exhibit increased susceptibility to dextran sodium sulfate (DSS)-induced colitis compared with similarly treated wild-type mice   (MGI Ref ID J:173245)
    • mice transmit increased susceptibility to DSS-induced colitis to co-housed wild-type mice   (MGI Ref ID J:173245)
  • immune system phenotype
  • decreased interleukin-1 beta secretion
    • in LPS-primed bone marrow derived macrophages stimulated by S. typhimurium   (MGI Ref ID J:160545)
  • increased susceptibility to induced colitis
    • mice exhibit increased susceptibility to dextran sodium sulfate (DSS)-induced colitis compared with similarly treated wild-type mice   (MGI Ref ID J:173245)
    • mice transmit increased susceptibility to DSS-induced colitis to co-housed wild-type mice   (MGI Ref ID J:173245)

The following phenotype relates to a compound genotype created using this strain.
Contact JAX® Services for customized breeding options.

Casp1tm1Flv/Casp1tm1Flv Casp4del/Casp4del

        involves: 129S2/SvPas * C57BL/6
  • immune system phenotype
  • abnormal cytokine secretion   (MGI Ref ID J:24258)
    • decreased interferon-gamma secretion
      • significantly reduced levels of Ifn gamma are induced by Il12 in splenocytes   (MGI Ref ID J:115310)
    • decreased interleukin-1 alpha secretion
      • no Il1 alpha is released by monocytes in response to LPS   (MGI Ref ID J:24258)
    • decreased interleukin-1 beta secretion
      • no Il1 beta is released by monocytes in response to LPS   (MGI Ref ID J:24258)
    • decreased interleukin-18 secretion
      • significantly lower levels of Il18 are released by cultured splenocytes   (MGI Ref ID J:115310)
      • Il12 treatment fails to cause increased Il18 release but liver and spleen levels increase comparable to controls   (MGI Ref ID J:115310)
    • decreased interleukin-6 secretion
      • secretion by monocytes in response to LPS is reduced   (MGI Ref ID J:24258)
    • decreased tumor necrosis factor secretion
      • secretion by monocytes in response to LPS is reduced   (MGI Ref ID J:24258)
  • decreased circulating interferon-gamma level
    • serum levels are reduced in mice given Il12 daily   (MGI Ref ID J:115310)
  • decreased susceptibility to endotoxin shock
    • 10 fold increase in survival (from 6% in wild-type to 60%) of mice challenged with a high dose of LPS   (MGI Ref ID J:43088)
  • decreased susceptibility to experimental autoimmune encephalomyelitis   (MGI Ref ID J:57101)
  • decreased thymocyte apoptosis
    • Fas mediated apoptosis in thymocytes is suppressed   (MGI Ref ID J:24258)
  • impaired neutrophil chemotaxis
    • following stimulation with monosodium urate (MSU) and calcium pyrophosphate dihydrate (CPPD), neutrophil recruitment is impaired   (MGI Ref ID J:124226)
  • increased susceptibility to bacterial infection
    • macrophages infected with Legionella and cultured for 72 hours show a 200-fold increase in bacterial number   (MGI Ref ID J:117251)
  • renal/urinary system phenotype
  • kidney failure
    • ischemic acute renal failure is less severe than in controls   (MGI Ref ID J:69421)
  • renal tubular necrosis
    • reduced after ischemic reperfusion as compared to controls   (MGI Ref ID J:69421)
  • homeostasis/metabolism phenotype
  • decreased circulating interferon-gamma level
    • serum levels are reduced in mice given Il12 daily   (MGI Ref ID J:115310)
  • hematopoietic system phenotype
  • decreased thymocyte apoptosis
    • Fas mediated apoptosis in thymocytes is suppressed   (MGI Ref ID J:24258)
  • impaired neutrophil chemotaxis
    • following stimulation with monosodium urate (MSU) and calcium pyrophosphate dihydrate (CPPD), neutrophil recruitment is impaired   (MGI Ref ID J:124226)
  • cellular phenotype
  • decreased thymocyte apoptosis
    • Fas mediated apoptosis in thymocytes is suppressed   (MGI Ref ID J:24258)
  • impaired neutrophil chemotaxis
    • following stimulation with monosodium urate (MSU) and calcium pyrophosphate dihydrate (CPPD), neutrophil recruitment is impaired   (MGI Ref ID J:124226)
  • endocrine/exocrine gland phenotype
  • decreased thymocyte apoptosis
    • Fas mediated apoptosis in thymocytes is suppressed   (MGI Ref ID J:24258)

Casp1tm1Flv/Casp1tm1Flv Casp4del/Casp4del

        involves: 129S2/SvPas
  • mortality/aging
  • decreased sensitivity to induced morbidity/mortality
    • only 3 of 16 mice injected with B16M cells die after 12 days compared to all similarly treated wild-type mice   (MGI Ref ID J:59893)
  • tumorigenesis
  • decreased metastatic potential
    • mice injected with B16 cells exhibit reduced metastasis (by volume and density) in the liver compared with similarly treated wild-type mice   (MGI Ref ID J:59893)
    • mice injected with B16 cells exhibit decreased metastasis volume, an indicator of metastatic growth, compared with similarly treated wild-type mice   (MGI Ref ID J:59893)
  • decreased tumor growth/size
    • mice injected with B16 cells exhibit decreased metastasis volume, an indicator of metastatic growth, compared with similarly treated wild-type mice   (MGI Ref ID J:59893)

Casp1tm1Flv/Casp1tm1Flv Casp4del/Casp4del

        involves: 129S2/SvPas * C57BL/6J
  • tumorigenesis
  • decreased incidence of tumors by chemical induction
    • mice treated with 7,12-Dimethylbenz(a)anthracene/12-O-Tetradecanoylphorbol-13-acetate (DMBA) exhibit later onset and a lower incidence of tumors compared with type mice   (MGI Ref ID J:191239)
  • integument phenotype
  • *normal* integument phenotype
    • untreated or TPA, TNF or EGF-treated keratinocytes exhibit normal proliferation   (MGI Ref ID J:191239)
  • homeostasis/metabolism phenotype
  • decreased incidence of tumors by chemical induction
    • mice treated with 7,12-Dimethylbenz(a)anthracene/12-O-Tetradecanoylphorbol-13-acetate (DMBA) exhibit later onset and a lower incidence of tumors compared with type mice   (MGI Ref ID J:191239)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Apoptosis Research

Immunology, Inflammation and Autoimmunity Research
Growth Factors/Receptors/Cytokines

Genes & Alleles

Gene & Allele Information provided by MGI

Allele Symbol Casp1tm1Flv
Allele Name targeted mutation 1, Richard Flavell
Allele Type Targeted (Null/Knockout)
Common Name(s) Casp1-; ICE-; caspase-1-;
Mutation Made ByDr. Richard Flavell,   Yale University School of Medicine
Strain of Origin129S2/SvPas
Gene Symbol and Name Casp1, caspase 1
Chromosome 9
Gene Common Name(s) Caspase-1; ICE; IL1BC; Il1bc; P45; interleukin 1 beta convertase; interleukin 1 beta-converting enzyme;
General Note The ES cells used to generate this allele contain the linked Casp4del truncated allele that fails to produce a functional Casp4. Phenotypes associated with this allele may be affected by the presence of the Caspdel allele. J:193522
Molecular Note A genomic fragment containing part of exon 6 and exon 7 was replaced with a neomycin selection cassette. RT-PCR analysis on samples derived from homozygous mice demonstrated that no detectable transcript was produced from this allele. [MGI Ref ID J:24258]


Genotyping Information

Genotyping Protocols

Casp1tm1Flv, Separated PCR

Helpful Links

Genotyping resources and troubleshooting


References provided by MGI

Selected Reference(s)

Kuida K; Lippke JA; Ku G; Harding MW; Livingston DJ; Su MS; Flavell RA. 1995. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267(5206):2000-3. [PubMed: 7535475]  [MGI Ref ID J:24258]

Additional References

Casp1tm1Flv related

Aachoui Y; Leaf IA; Hagar JA; Fontana MF; Campos CG; Zak DE; Tan MH; Cotter PA; Vance RE; Aderem A; Miao EA. 2013. Caspase-11 protects against bacteria that escape the vacuole. Science 339(6122):975-8. [PubMed: 23348507]  [MGI Ref ID J:193387]

Abdalla H; Srinivasan L; Shah S; Mayer-Barber KD; Sher A; Sutterwala FS; Briken V. 2012. Mycobacterium tuberculosis infection of dendritic cells leads to partially caspase-1/11-independent IL-1beta and IL-18 secretion but not to pyroptosis. PLoS One 7(7):e40722. [PubMed: 22911706]  [MGI Ref ID J:189888]

Akhter A; Caution K; Abu Khweek A; Tazi M; Abdulrahman BA; Abdelaziz DH; Voss OH; Doseff AI; Hassan H; Azad AK; Schlesinger LS; Wewers MD; Gavrilin MA; Amer AO. 2012. Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 37(1):35-47. [PubMed: 22658523]  [MGI Ref ID J:187307]

Albiger B; Dahlberg S; Sandgren A; Wartha F; Beiter K; Katsuragi H; Akira S; Normark S; Henriques-Normark B. 2007. Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cell Microbiol 9(3):633-44. [PubMed: 17004992]  [MGI Ref ID J:135842]

Ali SR; Timmer AM; Bilgrami S; Park EJ; Eckmann L; Nizet V; Karin M. 2011. Anthrax Toxin Induces Macrophage Death by p38 MAPK Inhibition but Leads to Inflammasome Activation via ATP Leakage. Immunity 35(1):34-44. [PubMed: 21683629]  [MGI Ref ID J:174307]

Allam R; Darisipudi MN; Tschopp J; Anders HJ. 2013. Histones trigger sterile inflammation by activating the NLRP3 inflammasome. Eur J Immunol 43(12):3336-42. [PubMed: 23964013]  [MGI Ref ID J:205861]

Allam R; Lawlor KE; Yu EC; Mildenhall AL; Moujalled DM; Lewis RS; Ke F; Mason KD; White MJ; Stacey KJ; Strasser A; O'Reilly LA; Alexander W; Kile BT; Vaux DL; Vince JE. 2014. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep 15(9):982-90. [PubMed: 24990442]  [MGI Ref ID J:217122]

Allen IC; Scull MA; Moore CB; Holl EK; McElvania-TeKippe E; Taxman DJ; Guthrie EH; Pickles RJ; Ting JP. 2009. The NLRP3 inflammasome mediates in vivo innate immunity to influenza a virus through recognition of viral RNA. Immunity 30(4):556-65. [PubMed: 19362020]  [MGI Ref ID J:147962]

Allen IC; TeKippe EM; Woodford RM; Uronis JM; Holl EK; Rogers AB; Herfarth HH; Jobin C; Ting JP. 2010. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207(5):1045-56. [PubMed: 20385749]  [MGI Ref ID J:161241]

Amer A; Franchi L; Kanneganti TD; Body-Malapel M; Ozoren N; Brady G; Meshinchi S; Jagirdar R; Gewirtz A; Akira S; Nunez G. 2006. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281(46):35217-23. [PubMed: 16984919]  [MGI Ref ID J:117251]

Andoh T; Kishi H; Motoki K; Nakanishi K; Kuraishi Y; Muraguchi A. 2008. Protective effect of IL-18 on kainate- and IL-1beta-induced cerebellar ataxia in mice. J Immunol 180(4):2322-8. [PubMed: 18250441]  [MGI Ref ID J:131996]

Andris F; Denanglaire S; Baus E; Rongvaux A; Steuve J; Flavell RA; Leo O. 2011. Metabolic stress boosts humoral responses in vivo independently of inflammasome and inflammatory reaction. J Immunol 186(4):2245-53. [PubMed: 21248260]  [MGI Ref ID J:169140]

Ather JL; Ckless K; Martin R; Foley KL; Suratt BT; Boyson JE; Fitzgerald KA; Flavell RA; Eisenbarth SC; Poynter ME. 2011. Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. J Immunol 187(1):64-73. [PubMed: 21622869]  [MGI Ref ID J:175933]

Bachmann R; Eugster HP; Frei K; Fontana A; Lassmann H. 1999. Impairment of TNF-receptor-1 signaling but not fas signaling diminishes T-cell apoptosis in myelin oligodendrocyte glycoprotein peptide-induced chronic demyelinating autoimmune encephalomyelitis in mice. Am J Pathol 154(5):1417-22. [PubMed: 10329594]  [MGI Ref ID J:114241]

Belcheva A; Irrazabal T; Robertson SJ; Streutker C; Maughan H; Rubino S; Moriyama EH; Copeland JK; Kumar S; Green B; Geddes K; Pezo RC; Navarre WW; Milosevic M; Wilson BC; Girardin SE; Wolever TM; Edelmann W; Guttman DS; Philpott DJ; Martin A. 2014. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 158(2):288-99. [PubMed: 25036629]  [MGI Ref ID J:214622]

Bergsbaken T; Fink SL; den Hartigh AB; Loomis WP; Cookson BT. 2011. Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J Immunol 187(5):2748-54. [PubMed: 21804020]  [MGI Ref ID J:177980]

Biswas A; Wilmanski J; Forsman H; Hrncir T; Hao L; Tlaskalova-Hogenova H; Kobayashi KS. 2011. Negative regulation of Toll-like receptor signaling plays an essential role in homeostasis of the intestine. Eur J Immunol 41(1):182-94. [PubMed: 21182089]  [MGI Ref ID J:174655]

Bossaller L; Chiang PI; Schmidt-Lauber C; Ganesan S; Kaiser WJ; Rathinam VA; Mocarski ES; Subramanian D; Green DR; Silverman N; Fitzgerald KA; Marshak-Rothstein A; Latz E. 2012. Cutting Edge: FAS (CD95) Mediates Noncanonical IL-1beta and IL-18 Maturation via Caspase-8 in an RIP3-Independent Manner. J Immunol 189(12):5508-12. [PubMed: 23144495]  [MGI Ref ID J:190865]

Breitbach K; Sun GW; Kohler J; Eske K; Wongprompitak P; Tan G; Liu Y; Gan YH; Steinmetz I. 2009. Caspase-1 mediates resistance in murine melioidosis. Infect Immun 77(4):1589-95. [PubMed: 19179418]  [MGI Ref ID J:147167]

Brydges SD; Broderick L; McGeough MD; Pena CA; Mueller JL; Hoffman HM. 2013. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J Clin Invest :. [PubMed: 24084736]  [MGI Ref ID J:203992]

Bulua AC; Simon A; Maddipati R; Pelletier M; Park H; Kim KY; Sack MN; Kastner DL; Siegel RM. 2011. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208(3):519-33. [PubMed: 21282379]  [MGI Ref ID J:176847]

Case CL; Kohler LJ; Lima JB; Strowig T; de Zoete MR; Flavell RA; Zamboni DS; Roy CR. 2013. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc Natl Acad Sci U S A 110(5):1851-6. [PubMed: 23307811]  [MGI Ref ID J:211694]

Case CL; Shin S; Roy CR. 2009. Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect Immun 77(5):1981-91. [PubMed: 19237518]  [MGI Ref ID J:148193]

Cassel SL; Janczy JR; Bing X; Wilson SP; Olivier AK; Otero JE; Iwakura Y; Shayakhmetov DM; Bassuk AG; Abu-Amer Y; Brogden KA; Burns TL; Sutterwala FS; Ferguson PJ. 2014. Inflammasome-independent IL-1beta mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci U S A 111(3):1072-7. [PubMed: 24395802]  [MGI Ref ID J:206468]

Chen CJ; Kono H; Golenbock D; Reed G; Akira S; Rock KL. 2007. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13(7):851-6. [PubMed: 17572686]  [MGI Ref ID J:125088]

Compan V; Baroja-Mazo A; Lopez-Castejon G; Gomez AI; Martinez CM; Angosto D; Montero MT; Herranz AS; Bazan E; Reimers D; Mulero V; Pelegrin P. 2012. Cell Volume Regulation Modulates NLRP3 Inflammasome Activation. Immunity 37(3):487-500. [PubMed: 22981536]  [MGI Ref ID J:187661]

Conforti-Andreoni C; Spreafico R; Qian HL; Riteau N; Ryffel B; Ricciardi-Castagnoli P; Mortellaro A. 2011. Uric acid-driven Th17 differentiation requires inflammasome-derived IL-1 and IL-18. J Immunol 187(11):5842-50. [PubMed: 22058415]  [MGI Ref ID J:179683]

Creasey EA; Isberg RR. 2012. The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc Natl Acad Sci U S A 109(9):3481-6. [PubMed: 22308473]  [MGI Ref ID J:182023]

Di Paolo NC; Miao EA; Iwakura Y; Murali-Krishna K; Aderem A; Flavell RA; Papayannopoulou T; Shayakhmetov DM. 2009. Virus binding to a plasma membrane receptor triggers interleukin-1 alpha-mediated proinflammatory macrophage response in vivo. Immunity 31(1):110-21. [PubMed: 19576795]  [MGI Ref ID J:151628]

Dixon LJ; Berk M; Thapaliya S; Papouchado BG; Feldstein AE. 2012. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Invest 92(5):713-23. [PubMed: 22411067]  [MGI Ref ID J:183394]

Dixon LJ; Flask CA; Papouchado BG; Feldstein AE; Nagy LE. 2013. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 8(2):e56100. [PubMed: 23409132]  [MGI Ref ID J:198314]

Dostert C; Guarda G; Romero JF; Menu P; Gross O; Tardivel A; Suva ML; Stehle JC; Kopf M; Stamenkovic I; Corradin G; Tschopp J. 2009. Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One 4(8):e6510. [PubMed: 19652710]  [MGI Ref ID J:152483]

Drennan MB; Stijlemans B; Van den Abbeele J; Quesniaux VJ; Barkhuizen M; Brombacher F; De Baetselier P; Ryffel B; Magez S. 2005. The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88 dependent. J Immunol 175(4):2501-9. [PubMed: 16081822]  [MGI Ref ID J:107495]

Drexler SK; Bonsignore L; Masin M; Tardivel A; Jackstadt R; Hermeking H; Schneider P; Gross O; Tschopp J; Yazdi AS. 2012. Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc Natl Acad Sci U S A 109(45):18384-9. [PubMed: 23090995]  [MGI Ref ID J:191239]

Duewell P; Kono H; Rayner KJ; Sirois CM; Vladimer G; Bauernfeind FG; Abela GS; Franchi L; Nunez G; Schnurr M; Espevik T; Lien E; Fitzgerald KA; Rock KL; Moore KJ; Wright SD; Hornung V; Latz E. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357-61. [PubMed: 20428172]  [MGI Ref ID J:159453]

Dupaul-Chicoine J; Yeretssian G; Doiron K; Bergstrom KS; McIntire CR; LeBlanc PM; Meunier C; Turbide C; Gros P; Beauchemin N; Vallance BA; Saleh M. 2010. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 32(3):367-78. [PubMed: 20226691]  [MGI Ref ID J:158664]

Eisenbarth SC; Colegio OR; O'Connor W; Sutterwala FS; Flavell RA. 2008. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198):1122-6. [PubMed: 18496530]  [MGI Ref ID J:137292]

Elinav E; Strowig T; Kau AL; Henao-Mejia J; Thaiss CA; Booth CJ; Peaper DR; Bertin J; Eisenbarth SC; Gordon JI; Flavell RA. 2011. NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis. Cell 145(5):745-57. [PubMed: 21565393]  [MGI Ref ID J:173245]

Fang R; Tsuchiya K; Kawamura I; Shen Y; Hara H; Sakai S; Yamamoto T; Fernandes-Alnemri T; Yang R; Hernandez-Cuellar E; Dewamitta SR; Xu Y; Qu H; Alnemri ES; Mitsuyama M. 2011. Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. J Immunol 187(9):4890-9. [PubMed: 21957143]  [MGI Ref ID J:179435]

Fantuzzi G; Ku G; Harding MW; Livingston DJ; Sipe JD; Kuida K; Flavell RA; Dinarello CA. 1997. Response to local inflammation of IL-1 beta-converting enzyme- deficient mice. J Immunol 158(4):1818-24. [PubMed: 9029121]  [MGI Ref ID J:110863]

Fantuzzi G; Puren AJ; Harding MW; Livingston DJ; Dinarello CA. 1998. Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice. Blood 91(6):2118-25. [PubMed: 9490698]  [MGI Ref ID J:46737]

Fantuzzi G; Reed DA; Dinarello CA. 1999. IL-12-induced IFN-gamma is dependent on caspase-1 processing of the IL-18 precursor. J Clin Invest 104(6):761-7. [PubMed: 10491411]  [MGI Ref ID J:115310]

Fortier A; de Chastellier C; Balor S; Gros P. 2007. Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by Legionella pneumophila. Cell Microbiol 9(4):910-23. [PubMed: 17087731]  [MGI Ref ID J:148674]

Franchi L; Stoolman J; Kanneganti TD; Verma A; Ramphal R; Nunez G. 2007. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37(11):3030-9. [PubMed: 17935074]  [MGI Ref ID J:126314]

Furlan R; Martino G; Galbiati F; Poliani PL; Smiroldo S; Bergami A; Desina G; Comi G; Flavell R; Su MS; Adorini L. 1999. Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J Immunol 163(5):2403-9. [PubMed: 10452974]  [MGI Ref ID J:57101]

Gao P; Meng XF; Su H; He FF; Chen S; Tang H; Tian XJ; Fan D; Wang YM; Liu JS; Zhu ZH; Zhang C. 2014. Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy. Biochim Biophys Acta 1843(11):2448-60. [PubMed: 25017793]  [MGI Ref ID J:218491]

Gasse P; Riteau N; Charron S; Girre S; Fick L; Petrilli V; Tschopp J; Lagente V; Quesniaux VF; Ryffel B; Couillin I. 2009. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med 179(10):903-13. [PubMed: 19218193]  [MGI Ref ID J:164986]

Glaccum MB; Stocking KL; Charrier K; Smith JL; Willis CR; Maliszewski C ; Livingston DJ ; Peschon JJ ; Morrissey PJ. 1997. Phenotypic and functional characterization of mice that lack the type I receptor for IL-1. J Immunol 159(7):3364-71. [PubMed: 9317135]  [MGI Ref ID J:43088]

Gomes MT; Campos PC; Oliveira FS; Corsetti PP; Bortoluci KR; Cunha LD; Zamboni DS; Oliveira SC. 2013. Critical Role of ASC Inflammasomes and Bacterial Type IV Secretion System in Caspase-1 Activation and Host Innate Resistance to Brucella abortus Infection. J Immunol 190(7):3629-38. [PubMed: 23460746]  [MGI Ref ID J:194921]

Gris D; Ye Z; Iocca HA; Wen H; Craven RR; Gris P; Huang M; Schneider M; Miller SD; Ting JP. 2010. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J Immunol 185(2):974-81. [PubMed: 20574004]  [MGI Ref ID J:162018]

Gross O; Yazdi AS; Thomas CJ; Masin M; Heinz LX; Guarda G; Quadroni M; Drexler SK; Tschopp J. 2012. Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36(3):388-400. [PubMed: 22444631]  [MGI Ref ID J:187333]

Guarda G; Dostert C; Staehli F; Cabalzar K; Castillo R; Tardivel A; Schneider P; Tschopp J. 2009. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460(7252):269-73. [PubMed: 19494813]  [MGI Ref ID J:150357]

Guey B; Bodnar M; Manie SN; Tardivel A; Petrilli V. 2014. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc Natl Acad Sci U S A 111(48):17254-9. [PubMed: 25404286]  [MGI Ref ID J:216652]

Hagar JA; Powell DA; Aachoui Y; Ernst RK; Miao EA. 2013. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341(6151):1250-3. [PubMed: 24031018]  [MGI Ref ID J:201144]

Halle A; Hornung V; Petzold GC; Stewart CR; Monks BG; Reinheckel T; Fitzgerald KA; Latz E; Moore KJ; Golenbock DT. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857-65. [PubMed: 18604209]  [MGI Ref ID J:137866]

Hara H; Tsuchiya K; Kawamura I; Fang R; Hernandez-Cuellar E; Shen Y; Mizuguchi J; Schweighoffer E; Tybulewicz V; Mitsuyama M. 2013. Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat Immunol 14(12):1247-55. [PubMed: 24185614]  [MGI Ref ID J:209011]

Harder J; Franchi L; Munoz-Planillo R; Park JH; Reimer T; Nunez G. 2009. Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor. J Immunol 183(9):5823-9. [PubMed: 19812205]  [MGI Ref ID J:156622]

Henao-Mejia J; Elinav E; Jin C; Hao L; Mehal WZ; Strowig T; Thaiss CA; Kau AL; Eisenbarth SC; Jurczak MJ; Camporez JP; Shulman GI; Gordon JI; Hoffman HM; Flavell RA. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179-85. [PubMed: 22297845]  [MGI Ref ID J:181354]

Hopf V; Gohler A; Eske-Pogodda K; Bast A; Steinmetz I; Breitbach K. 2014. BPSS1504, a cluster 1 type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun 82(5):2006-15. [PubMed: 24595140]  [MGI Ref ID J:209868]

Hsu LC; Ali SR; McGillivray S; Tseng PH; Mariathasan S; Humke EW; Eckmann L; Powell JJ; Nizet V; Dixit VM; Karin M. 2008. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci U S A 105(22):7803-8. [PubMed: 18511561]  [MGI Ref ID J:169881]

Hsu LC; Enzler T; Seita J; Timmer AM; Lee CY; Lai TY; Yu GY; Lai LC; Temkin V; Sinzig U; Aung T; Nizet V; Weissman IL; Karin M. 2011. IL-1beta-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKbeta. Nat Immunol 12(2):144-50. [PubMed: 21170027]  [MGI Ref ID J:169021]

Hu B; Elinav E; Huber S; Booth CJ; Strowig T; Jin C; Eisenbarth SC; Flavell RA. 2010. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A :. [PubMed: 21118981]  [MGI Ref ID J:167130]

Huang H; Chen HW; Evankovich J; Yan W; Rosborough BR; Nace GW; Ding Q; Loughran P; Beer-Stolz D; Billiar TR; Esmon CT; Tsung A. 2013. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. J Immunol 191(5):2665-79. [PubMed: 23904166]  [MGI Ref ID J:205815]

Huber S; Gagliani N; Zenewicz LA; Huber FJ; Bosurgi L; Hu B; Hedl M; Zhang W; O'Connor W Jr; Murphy AJ; Valenzuela DM; Yancopoulos GD; Booth CJ; Cho JH; Ouyang W; Abraham C; Flavell RA. 2012. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491(7423):259-63. [PubMed: 23075849]  [MGI Ref ID J:189217]

Ichinohe T; Lee HK; Ogura Y; Flavell R; Iwasaki A. 2009. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 206(1):79-87. [PubMed: 19139171]  [MGI Ref ID J:144019]

Ichinohe T; Pang IK; Iwasaki A. 2010. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 11(5):404-10. [PubMed: 20383149]  [MGI Ref ID J:158948]

Imaeda AB; Watanabe A; Sohail MA; Mahmood S; Mohamadnejad M; Sutterwala FS; Flavell RA; Mehal WZ. 2009. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest 119(2):305-14. [PubMed: 19164858]  [MGI Ref ID J:146148]

Inoue H; Hiraoka K; Hoshino T; Okamoto M; Iwanaga T; Zenmyo M; Shoda T; Aizawa H; Nagata K. 2008. High levels of serum IL-18 promote cartilage loss through suppression of aggrecan synthesis. Bone 42(6):1102-10. [PubMed: 18374640]  [MGI Ref ID J:136851]

Inoue Y; Shirasuna K; Kimura H; Usui F; Kawashima A; Karasawa T; Tago K; Dezaki K; Nishimura S; Sagara J; Noda T; Iwakura Y; Tsutsui H; Taniguchi S; Yanagisawa K; Yada T; Yasuda Y; Takahashi M. 2014. NLRP3 regulates neutrophil functions and contributes to hepatic ischemia-reperfusion injury independently of inflammasomes. J Immunol 192(9):4342-51. [PubMed: 24696236]  [MGI Ref ID J:209962]

Ippagunta SK; Brand DD; Luo J; Boyd KL; Calabrese C; Stienstra R; Van de Veerdonk FL; Netea MG; Joosten LA; Lamkanfi M; Kanneganti TD. 2010. Inflammasome-independent role of apoptosis-associated speck-like protein containing a CARD (ASC) in T cell priming is critical for collagen-induced arthritis. J Biol Chem 285(16):12454-62. [PubMed: 20177071]  [MGI Ref ID J:165070]

Ippagunta SK; Malireddi RK; Shaw PJ; Neale GA; Walle LV; Green DR; Fukui Y; Lamkanfi M; Kanneganti TD. 2011. The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated Rac activation and actin polymerization. Nat Immunol 12(10):1010-6. [PubMed: 21892172]  [MGI Ref ID J:176441]

Itoi H; Fujimori Y; Tsutsui H; Matsui K; Futatsugi S; Okamura H; Hara H; Hada T; Kakishita E; Nakanishi K. 2001. Fas ligand-induced caspase-1-dependent accumulation of interleukin-18 in mice with acute graft-versus-host disease. Blood 98(1):235-7. [PubMed: 11418486]  [MGI Ref ID J:70749]

Iyer SS; Pulskens WP; Sadler JJ; Butter LM; Teske GJ; Ulland TK; Eisenbarth SC; Florquin S; Flavell RA; Leemans JC; Sutterwala FS. 2009. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A 106(48):20388-93. [PubMed: 19918053]  [MGI Ref ID J:155576]

Jha S; Srivastava SY; Brickey WJ; Iocca H; Toews A; Morrison JP; Chen VS; Gris D; Matsushima GK; Ting JP. 2010. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci 30(47):15811-20. [PubMed: 21106820]  [MGI Ref ID J:166978]

Jin C; Frayssinet P; Pelker R; Cwirka D; Hu B; Vignery A; Eisenbarth SC; Flavell RA. 2011. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci U S A 108(36):14867-72. [PubMed: 21856950]  [MGI Ref ID J:175225]

Jones JW; Kayagaki N; Broz P; Henry T; Newton K; O'Rourke K; Chan S; Dong J; Qu Y; Roose-Girma M; Dixit VM; Monack DM. 2010. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci U S A 107(21):9771-6. [PubMed: 20457908]  [MGI Ref ID J:160545]

Kahlenberg JM; Carmona-Rivera C; Smith CK; Kaplan MJ. 2013. Neutrophil Extracellular Trap-Associated Protein Activation of the NLRP3 Inflammasome Is Enhanced in Lupus Macrophages. J Immunol 190(3):1217-26. [PubMed: 23267025]  [MGI Ref ID J:192601]

Kalantari P; DeOliveira RB; Chan J; Corbett Y; Rathinam V; Stutz A; Latz E; Gazzinelli RT; Golenbock DT; Fitzgerald KA. 2014. Dual engagement of the NLRP3 and AIM2 inflammasomes by plasmodium-derived hemozoin and DNA during malaria. Cell Rep 6(1):196-210. [PubMed: 24388751]  [MGI Ref ID J:206874]

Kanistanon D; Powell DA; Hajjar AM; Pelletier MR; Cohen IE; Way SS; Skerrett SJ; Wang X; Raetz CR; Ernst RK. 2012. Role of Francisella lipid A phosphate modification in virulence and long-term protective immune responses. Infect Immun 80(3):943-51. [PubMed: 22215738]  [MGI Ref ID J:182434]

Kanneganti TD; Ozoren N; Body-Malapel M; Amer A; Park JH; Franchi L; Whitfield J; Barchet W; Colonna M; Vandenabeele P; Bertin J; Coyle A; Grant EP; Akira S; Nunez G. 2006. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440(7081):233-6. [PubMed: 16407888]  [MGI Ref ID J:133267]

Karmakar M; Sun Y; Hise AG; Rietsch A; Pearlman E. 2012. Cutting edge: IL-1beta processing during Pseudomonas aeruginosa infection is mediated by neutrophil serine proteases and is independent of NLRC4 and caspase-1. J Immunol 189(9):4231-5. [PubMed: 23024281]  [MGI Ref ID J:190602]

Kastenmuller W; Torabi-Parizi P; Subramanian N; Lammermann T; Germain RN. 2012. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 150(6):1235-48. [PubMed: 22980983]  [MGI Ref ID J:187962]

Kawaguchi M; Takahashi M; Hata T; Kashima Y; Usui F; Morimoto H; Izawa A; Takahashi Y; Masumoto J; Koyama J; Hongo M; Noda T; Nakayama J; Sagara J; Taniguchi S; Ikeda U. 2011. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123(6):594-604. [PubMed: 21282498]  [MGI Ref ID J:181446]

Kayagaki N; Warming S; Lamkanfi M; Vande Walle L; Louie S; Dong J; Newton K; Qu Y; Liu J; Heldens S; Zhang J; Lee WP; Roose-Girma M; Dixit VM. 2011. Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117-21. [PubMed: 22002608]  [MGI Ref ID J:193522]

Kirkland D; Benson A; Mirpuri J; Pifer R; Hou B; Defranco AL; Yarovinsky F. 2012. B Cell-Intrinsic MyD88 Signaling Prevents the Lethal Dissemination of Commensal Bacteria during Colonic Damage. Immunity 36(2):228-38. [PubMed: 22306056]  [MGI Ref ID J:181331]

Ko DC; Gamazon ER; Shukla KP; Pfuetzner RA; Whittington D; Holden TD; Brittnacher MJ; Fong C; Radey M; Ogohara C; Stark AL; Akey JM; Dolan ME; Wurfel MM; Miller SI. 2012. Functional genetic screen of human diversity reveals that a methionine salvage enzyme regulates inflammatory cell death. Proc Natl Acad Sci U S A 109(35):E2343-52. [PubMed: 22837397]  [MGI Ref ID J:188714]

Koenen TB; Stienstra R; van Tits LJ; de Graaf J; Stalenhoef AF; Joosten LA; Tack CJ; Netea MG. 2011. Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissue. Diabetes 60(2):517-24. [PubMed: 21270263]  [MGI Ref ID J:169785]

Koh YS; Koo JE; Biswas A; Kobayashi KS. 2010. MyD88-dependent signaling contributes to host defense against ehrlichial infection. PLoS One 5(7):e11758. [PubMed: 20668698]  [MGI Ref ID J:163082]

Kolly L; Karababa M; Joosten LA; Narayan S; Salvi R; Petrilli V; Tschopp J; van den Berg WB; So AK; Busso N. 2009. Inflammatory role of ASC in antigen-induced arthritis is independent of caspase-1, NALP-3, and IPAF. J Immunol 183(6):4003-12. [PubMed: 19717512]  [MGI Ref ID J:152292]

Kono H; Orlowski GM; Patel Z; Rock KL. 2012. The IL-1-dependent sterile inflammatory response has a substantial caspase-1-independent component that requires cathepsin C. J Immunol 189(7):3734-40. [PubMed: 22914048]  [MGI Ref ID J:190231]

Kotas ME; Jurczak MJ; Annicelli C; Gillum MP; Cline GW; Shulman GI; Medzhitov R. 2013. Role of caspase-1 in regulation of triglyceride metabolism. Proc Natl Acad Sci U S A 110(12):4810-5. [PubMed: 23487794]  [MGI Ref ID J:194242]

Kurashima Y; Amiya T; Nochi T; Fujisawa K; Haraguchi T; Iba H; Tsutsui H; Sato S; Nakajima S; Iijima H; Kubo M; Kunisawa J; Kiyono H. 2012. Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 3:1034. [PubMed: 22948816]  [MGI Ref ID J:195470]

Labbe K; Miu J; Yeretssian G; Serghides L; Tam M; Finney CA; Erdman LK; Goulet ML; Kain KC; Stevenson MM; Saleh M. 2010. Caspase-12 dampens the immune response to malaria independently of the inflammasome by targeting NF-kappaB signaling. J Immunol 185(9):5495-502. [PubMed: 20876354]  [MGI Ref ID J:165191]

Lage SL; Buzzo CL; Amaral EP; Matteucci KC; Massis LM; Icimoto MY; Carmona AK; D'Imperio Lima MR; Rodrigues MM; Ferreira LC; Amarante-Mendes GP; Bortoluci KR. 2013. Cytosolic flagellin-induced lysosomal pathway regulates inflammasome-dependent and -independent macrophage responses. Proc Natl Acad Sci U S A 110(35):E3321-30. [PubMed: 23942123]  [MGI Ref ID J:200907]

Lamkanfi M; Moreira LO; Makena P; Spierings DC; Boyd K; Murray PJ; Green DR; Kanneganti TD. 2009. Caspase-7 deficiency protects from endotoxin-induced lymphocyte apoptosis and improves survival. Blood 113(12):2742-5. [PubMed: 19168786]  [MGI Ref ID J:146876]

Lamkanfi M; Sarkar A; Vande Walle L; Vitari AC; Amer AO; Wewers MD; Tracey KJ; Kanneganti TD; Dixit VM. 2010. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol 185(7):4385-92. [PubMed: 20802146]  [MGI Ref ID J:164216]

Lara-Tejero M; Sutterwala FS; Ogura Y; Grant EP; Bertin J; Coyle AJ; Flavell RA; Galan JE. 2006. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203(6):1407-12. [PubMed: 16717117]  [MGI Ref ID J:124378]

Lee GS; Subramanian N; Kim AI; Aksentijevich I; Goldbach-Mansky R; Sacks DB; Germain RN; Kastner DL; Chae JJ. 2012. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492(7427):123-7. [PubMed: 23143333]  [MGI Ref ID J:192821]

Lee SH; Hu LL; Gonzalez-Navajas J; Seo GS; Shen C; Brick J; Herdman S; Varki N; Corr M; Lee J; Raz E. 2010. ERK activation drives intestinal tumorigenesis in Apc(min/+) mice. Nat Med 16(6):665-70. [PubMed: 20473309]  [MGI Ref ID J:161529]

Lee Y; Schulte DJ; Shimada K; Chen S; Crother TR; Chiba N; Fishbein MC; Lehman TJ; Arditi M. 2012. Interleukin-1beta is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease. Circulation 125(12):1542-50. [PubMed: 22361326]  [MGI Ref ID J:198098]

Licandro G; Ling Khor H; Beretta O; Lai J; Derks H; Laudisi F; Conforti-Andreoni C; Liang Qian H; Teng GG; Ricciardi-Castagnoli P; Mortellaro A. 2013. The NLRP3 inflammasome affects DNA damage responses after oxidative and genotoxic stress in dendritic cells. Eur J Immunol 43(8):2126-37. [PubMed: 23619996]  [MGI Ref ID J:201020]

Liu N; Belperron AA; Booth CJ; Bockenstedt LK. 2009. The caspase 1 inflammasome is not required for control of murine Lyme borreliosis. Infect Immun 77(8):3320-7. [PubMed: 19487481]  [MGI Ref ID J:151327]

Liu Z; Zaki MH; Vogel P; Gurung P; Finlay BB; Deng W; Lamkanfi M; Kanneganti TD. 2012. Role of inflammasomes in host defense against Citrobacter rodentium infection. J Biol Chem 287(20):16955-64. [PubMed: 22461621]  [MGI Ref ID J:185438]

Lopez-Yglesias AH; Zhao X; Quarles EK; Lai MA; VandenBos T; Strong RK; Smith KD. 2014. Flagellin induces antibody responses through a TLR5- and inflammasome-independent pathway. J Immunol 192(4):1587-96. [PubMed: 24442437]  [MGI Ref ID J:209363]

Lukens JR; Barr MJ; Chaplin DD; Chi H; Kanneganti TD. 2012. Inflammasome-derived IL-1beta regulates the production of GM-CSF by CD4(+) T cells and gammadelta T cells. J Immunol 188(7):3107-15. [PubMed: 22345669]  [MGI Ref ID J:183112]

Lukens JR; Gross JM; Calabrese C; Iwakura Y; Lamkanfi M; Vogel P; Kanneganti TD. 2014. Critical role for inflammasome-independent IL-1beta production in osteomyelitis. Proc Natl Acad Sci U S A 111(3):1066-71. [PubMed: 24395792]  [MGI Ref ID J:206471]

Lukens JR; Gurung P; Vogel P; Johnson GR; Carter RA; McGoldrick DJ; Bandi SR; Calabrese CR; Vande Walle L; Lamkanfi M; Kanneganti TD. 2014. Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516(7530):246-9. [PubMed: 25274309]  [MGI Ref ID J:217490]

Luthi AU; Cullen SP; McNeela EA; Duriez PJ; Afonina IS; Sheridan C; Brumatti G; Taylor RC; Kersse K; Vandenabeele P; Lavelle EC; Martin SJ. 2009. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31(1):84-98. [PubMed: 19559631]  [MGI Ref ID J:151673]

Maelfait J; Vercammen E; Janssens S; Schotte P; Haegman M; Magez S; Beyaert R. 2008. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1beta maturation by caspase-8. J Exp Med 205(9):1967-73. [PubMed: 18725521]  [MGI Ref ID J:138812]

Marichal T; Ohata K; Bedoret D; Mesnil C; Sabatel C; Kobiyama K; Lekeux P; Coban C; Akira S; Ishii KJ; Bureau F; Desmet CJ. 2011. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 17(8):996-1002. [PubMed: 21765404]  [MGI Ref ID J:174513]

Martin RA; Ather JL; Lundblad LK; Suratt BT; Boyson JE; Budd RC; Alcorn JF; Flavell RA; Eisenbarth SC; Poynter ME. 2013. Interleukin-1 receptor and caspase-1 are required for the Th17 response in nitrogen dioxide-promoted allergic airway disease. Am J Respir Cell Mol Biol 48(5):655-64. [PubMed: 23371061]  [MGI Ref ID J:211756]

Martinon F; Petrilli V; Mayor A; Tardivel A; Tschopp J. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237-41. [PubMed: 16407889]  [MGI Ref ID J:124226]

Matusiak M; Van Opdenbosch N; Vande Walle L; Sirard JC; Kanneganti TD; Lamkanfi M. 2015. Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5. Proc Natl Acad Sci U S A 112(5):1541-6. [PubMed: 25605939]  [MGI Ref ID J:217657]

Mayer-Barber KD; Barber DL; Shenderov K; White SD; Wilson MS; Cheever A; Kugler D; Hieny S; Caspar P; Nunez G; Schlueter D; Flavell RA; Sutterwala FS; Sher A. 2010. Caspase-1 independent IL-1beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol 184(7):3326-30. [PubMed: 20200276]  [MGI Ref ID J:160077]

McCoy AJ; Koizumi Y; Toma C; Higa N; Dixit V; Taniguchi S; Tschopp J; Suzuki T. 2010. Cytotoxins of the human pathogen Aeromonas hydrophila trigger, via the NLRP3 inflammasome, caspase-1 activation in macrophages. Eur J Immunol 40(10):2797-803. [PubMed: 20722078]  [MGI Ref ID J:165727]

McElvania Tekippe E; Allen IC; Hulseberg PD; Sullivan JT; McCann JR; Sandor M; Braunstein M; Ting JP. 2010. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS One 5(8):. [PubMed: 20808838]  [MGI Ref ID J:164009]

McKee AS; Munks MW; MacLeod MK; Fleenor CJ; Van Rooijen N; Kappler JW; Marrack P. 2009. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J Immunol 183(7):4403-14. [PubMed: 19734227]  [MGI Ref ID J:152787]

Melnikov VY; Ecder T; Fantuzzi G; Siegmund B; Lucia MS; Dinarello CA; Schrier RW; Edelstein CL. 2001. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest 107(9):1145-52. [PubMed: 11342578]  [MGI Ref ID J:69421]

Mencacci A; Bacci A; Cenci E; Montagnoli C; Fiorucci S; Casagrande A; Flavell RA; Bistoni F; Romani L. 2000. Interleukin 18 restores defective Th1 immunity to Candida albicans in caspase 1-deficient mice. Infect Immun 68(9):5126-31. [PubMed: 10948135]  [MGI Ref ID J:64077]

Meunier E; Dick MS; Dreier RF; Schurmann N; Kenzelmann Broz D; Warming S; Roose-Girma M; Bumann D; Kayagaki N; Takeda K; Yamamoto M; Broz P. 2014. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509(7500):366-70. [PubMed: 24739961]  [MGI Ref ID J:210626]

Miao EA; Leaf IA; Treuting PM; Mao DP; Dors M; Sarkar A; Warren SE; Wewers MD; Aderem A. 2010. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11(12):1136-42. [PubMed: 21057511]  [MGI Ref ID J:167323]

Mirza RE; Fang MM; Weinheimer-Haus EM; Ennis WJ; Koh TJ. 2014. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes 63(3):1103-14. [PubMed: 24194505]  [MGI Ref ID J:208998]

Murakami T; Ockinger J; Yu J; Byles V; McColl A; Hofer AM; Horng T. 2012. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 109(28):11282-7. [PubMed: 22733741]  [MGI Ref ID J:186406]

Muruve DA; Petrilli V; Zaiss AK; White LR; Clark SA; Ross PJ; Parks RJ; Tschopp J. 2008. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452(7183):103-7. [PubMed: 18288107]  [MGI Ref ID J:132658]

Netea MG; Fantuzzi G; Kullberg BJ; Stuyt RJ; Pulido EJ; McIntyre RC Jr; Joosten LA; Van der Meer JW; Dinarello CA. 2000. Neutralization of IL-18 reduces neutrophil tissue accumulation and protects mice against lethal Escherichia coli and Salmonella typhimurium endotoxemia. J Immunol 164(5):2644-9. [PubMed: 10679104]  [MGI Ref ID J:126998]

Netea MG; Kullberg BJ; Joosten LA; Sprong T; Verschueren I; Boerman OC; Amiot F; van den Berg WB; Van der Meer JW. 2001. Lethal Escherichia coli and Salmonella typhimurium endotoxemia is mediated through different pathways. Eur J Immunol 31(9):2529-38. [PubMed: 11536150]  [MGI Ref ID J:71892]

Nogueira CV; Lindsten T; Jamieson AM; Case CL; Shin S; Thompson CB; Roy CR. 2009. Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog 5(6):e1000478. [PubMed: 19521510]  [MGI Ref ID J:211458]

Norton JT; Hayashi T; Crain B; Cho JS; Miller LS; Corr M; Carson DA. 2012. Cutting edge: nitrogen bisphosphonate-induced inflammation is dependent upon mast cells and IL-1. J Immunol 188(7):2977-80. [PubMed: 22387558]  [MGI Ref ID J:183090]

Noulin N; Quesniaux VF; Schnyder-Candrian S; Schnyder B; Maillet I; Robert T; Vargaftig BB; Ryffel B; Couillin I. 2005. Both hemopoietic and resident cells are required for MyD88-dependent pulmonary inflammatory response to inhaled endotoxin. J Immunol 175(10):6861-9. [PubMed: 16272344]  [MGI Ref ID J:119696]

Ocana-Morgner C; Reichardt P; Chopin M; Braungart S; Wahren C; Gunzer M; Jessberger R. 2011. Sphingosine 1-phosphate-induced motility and endocytosis of dendritic cells is regulated by SWAP-70 through RhoA. J Immunol 186(9):5345-55. [PubMed: 21421853]  [MGI Ref ID J:172751]

Oosting M; van de Veerdonk FL; Kanneganti TD; Sturm P; Verschueren I; Berende A; van der Meer JW; Kullberg BJ; Netea MG; Joosten LA. 2011. Borrelia species induce inflammasome activation and IL-17 production through a caspase-1-dependent mechanism. Eur J Immunol 41(1):172-81. [PubMed: 21182088]  [MGI Ref ID J:174656]

Palm NW; Medzhitov R. 2013. Role of the inflammasome in defense against venoms. Proc Natl Acad Sci U S A 110(5):1809-14. [PubMed: 23297192]  [MGI Ref ID J:193717]

Pan Q; Mathison J; Fearns C; Kravchenko VV; Da Silva Correia J; Hoffman HM; Kobayashi KS; Bertin J; Grant EP; Coyle AJ; Sutterwala FS; Ogura Y; Flavell RA; Ulevitch RJ. 2007. MDP-induced interleukin-1{beta} processing requires Nod2 and CIAS1/NALP3. J Leukoc Biol 82(1):177-83. [PubMed: 17403772]  [MGI Ref ID J:122657]

Patankar YR; Lovewell RR; Poynter ME; Jyot J; Kazmierczak BI; Berwin B. 2013. Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa. Infect Immun 81(6):2043-52. [PubMed: 23529619]  [MGI Ref ID J:199532]

Pedra JH; Sutterwala FS; Sukumaran B; Ogura Y; Qian F; Montgomery RR; Flavell RA; Fikrig E. 2007. ASC/PYCARD and caspase-1 regulate the IL-18/IFN-gamma axis during Anaplasma phagocytophilum infection. J Immunol 179(7):4783-91. [PubMed: 17878377]  [MGI Ref ID J:152337]

Pereira MS; Marques GG; Dellama JE; Zamboni DS. 2011. The Nlrc4 Inflammasome Contributes to Restriction of Pulmonary Infection by Flagellated Legionella spp. that Trigger Pyroptosis. Front Microbiol 2:33. [PubMed: 21687424]  [MGI Ref ID J:177981]

Pereira MS; Morgantetti GF; Massis LM; Horta CV; Hori JI; Zamboni DS. 2011. Activation of NLRC4 by flagellated bacteria triggers caspase-1-dependent and -independent responses to restrict Legionella pneumophila replication in macrophages and in vivo. J Immunol 187(12):6447-55. [PubMed: 22079982]  [MGI Ref ID J:180406]

Petrasek J; Bala S; Csak T; Lippai D; Kodys K; Menashy V; Barrieau M; Min SY; Kurt-Jones EA; Szabo G. 2012. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest 122(10):3476-89. [PubMed: 22945633]  [MGI Ref ID J:191666]

Pierini R; Juruj C; Perret M; Jones CL; Mangeot P; Weiss DS; Henry T. 2012. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ 19(10):1709-21. [PubMed: 22555457]  [MGI Ref ID J:204790]

Pierini R; Perret M; Djebali S; Juruj C; Michallet MC; Forster I; Marvel J; Walzer T; Henry T. 2013. ASC controls IFN-gamma levels in an IL-18-dependent manner in caspase-1-deficient mice infected with Francisella novicida. J Immunol 191(7):3847-57. [PubMed: 23975862]  [MGI Ref ID J:205845]

Place DE; Muse SJ; Kirimanjeswara GS; Harvill ET. 2014. Caspase-1-independent interleukin-1beta is required for clearance of Bordetella pertussis infections and whole-cell vaccine-mediated immunity. PLoS One 9(9):e107188. [PubMed: 25198773]  [MGI Ref ID J:221522]

Provoost S; Maes T; Pauwels NS; Vanden Berghe T; Vandenabeele P; Lambrecht BN; Joos GF; Tournoy KG. 2011. NLRP3/caspase-1-independent IL-1beta production mediates diesel exhaust particle-induced pulmonary inflammation. J Immunol 187(6):3331-7. [PubMed: 21844393]  [MGI Ref ID J:179240]

Py BF; Jin M; Desai BN; Penumaka A; Zhu H; Kober M; Dietrich A; Lipinski MM; Henry T; Clapham DE; Yuan J. 2014. Caspase-11 controls interleukin-1beta release through degradation of TRPC1. Cell Rep 6(6):1122-8. [PubMed: 24630989]  [MGI Ref ID J:211710]

Ramos HJ; Lanteri MC; Blahnik G; Negash A; Suthar MS; Brassil MM; Sodhi K; Treuting PM; Busch MP; Norris PJ; Gale M Jr. 2012. IL-1beta signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog 8(11):e1003039. [PubMed: 23209411]  [MGI Ref ID J:195453]

Rider P; Carmi Y; Guttman O; Braiman A; Cohen I; Voronov E; White MR; Dinarello CA; Apte RN. 2011. IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 187(9):4835-43. [PubMed: 21930960]  [MGI Ref ID J:179461]

Ritter M; Gross O; Kays S; Ruland J; Nimmerjahn F; Saijo S; Tschopp J; Layland LE; Prazeres da Costa C. 2010. Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. Proc Natl Acad Sci U S A 107(47):20459-64. [PubMed: 21059925]  [MGI Ref ID J:166590]

Rothfuchs AG; Trumstedt C; Wigzell H; Rottenberg ME. 2004. Intracellular bacterial infection-induced IFN-gamma is critically but not solely dependent on Toll-like receptor 4-myeloid differentiation factor 88-IFN-alpha beta-STAT1 signaling. J Immunol 172(10):6345-53. [PubMed: 15128825]  [MGI Ref ID J:89856]

Sarkar A; Hall MW; Exline M; Hart J; Knatz N; Gatson NT; Wewers MD. 2006. Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18. Am J Respir Crit Care Med 174(9):1003-10. [PubMed: 16908867]  [MGI Ref ID J:135846]

Sato A; Iwasaki A. 2004. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments. Proc Natl Acad Sci U S A 101(46):16274-9. [PubMed: 15534227]  [MGI Ref ID J:94732]

Schnare M; Barton GM; Holt AC; Takeda K; Akira S; Medzhitov R. 2001. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2(10):947-50. [PubMed: 11547333]  [MGI Ref ID J:126395]

Seki E; Tsutsui H; Nakano H; Tsuji N; Hoshino K; Adachi O; Adachi K; Futatsugi S; Kuida K; Takeuchi O; Okamura H; Fujimoto J; Akira S; Nakanishi K. 2001. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta. J Immunol 166(4):2651-7. [PubMed: 11160328]  [MGI Ref ID J:126995]

Sekiyama A; Ueda H; Kashiwamura SI; Sekiyama R; Takeda M; Rokutan K; Okamura H. 2005. A Stress-Induced, Superoxide-Mediated Caspase-1 Activation Pathway Causes Plasma IL-18 Upregulation. Immunity 22(6):669-677. [PubMed: 15963782]  [MGI Ref ID J:99113]

Serbina NV; Kuziel W; Flavell R; Akira S; Rollins B; Pamer EG. 2003. Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19(6):891-901. [PubMed: 14670305]  [MGI Ref ID J:86994]

Shaw PJ; Lukens JR; Burns S; Chi H; McGargill MA; Kanneganti TD. 2010. Cutting Edge: critical role for PYCARD/ASC in the development of experimental autoimmune encephalomyelitis. J Immunol 184(9):4610-4. [PubMed: 20368281]  [MGI Ref ID J:160438]

Sheedy FJ; Grebe A; Rayner KJ; Kalantari P; Ramkhelawon B; Carpenter SB; Becker CE; Ediriweera HN; Mullick AE; Golenbock DT; Stuart LM; Latz E; Fitzgerald KA; Moore KJ. 2013. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14(8):812-20. [PubMed: 23812099]  [MGI Ref ID J:205721]

Shenderov K; Barber DL; Mayer-Barber KD; Gurcha SS; Jankovic D; Feng CG; Oland S; Hieny S; Caspar P; Yamasaki S; Lin X; Ting JP; Trinchieri G; Besra GS; Cerundolo V; Sher A. 2013. Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome. J Immunol 190(11):5722-30. [PubMed: 23630357]  [MGI Ref ID J:204774]

Shenderov K; Riteau N; Yip R; Mayer-Barber KD; Oland S; Hieny S; Fitzgerald P; Oberst A; Dillon CP; Green DR; Cerundolo V; Sher A. 2014. Cutting edge: Endoplasmic reticulum stress licenses macrophages to produce mature IL-1beta in response to TLR4 stimulation through a caspase-8- and TRIF-dependent pathway. J Immunol 192(5):2029-33. [PubMed: 24489101]  [MGI Ref ID J:209937]

Shi CS; Shenderov K; Huang NN; Kabat J; Abu-Asab M; Fitzgerald KA; Sher A; Kehrl JH. 2012. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13(3):255-63. [PubMed: 22286270]  [MGI Ref ID J:181253]

Shigeoka AA; Mueller JL; Kambo A; Mathison JC; King AJ; Hall WF; Correia Jda S; Ulevitch RJ; Hoffman HM; McKay DB. 2010. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol 185(10):6277-85. [PubMed: 20962258]  [MGI Ref ID J:166055]

Shimada K; Crother TR; Karlin J; Chen S; Chiba N; Ramanujan VK; Vergnes L; Ojcius DM; Arditi M. 2011. Caspase-1 Dependent IL-1beta Secretion Is Critical for Host Defense in a Mouse Model of Chlamydia pneumoniae Lung Infection. PLoS One 6(6):e21477. [PubMed: 21731762]  [MGI Ref ID J:174428]

Shimada K; Crother TR; Karlin J; Dagvadorj J; Chiba N; Chen S; Ramanujan VK; Wolf AJ; Vergnes L; Ojcius DM; Rentsendorj A; Vargas M; Guerrero C; Wang Y; Fitzgerald KA; Underhill DM; Town T; Arditi M. 2012. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36(3):401-14. [PubMed: 22342844]  [MGI Ref ID J:187340]

Shio MT; Eisenbarth SC; Savaria M; Vinet AF; Bellemare MJ; Harder KW; Sutterwala FS; Bohle DS; Descoteaux A; Flavell RA; Olivier M. 2009. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5(8):e1000559. [PubMed: 19696895]  [MGI Ref ID J:162910]

Siegmund B; Lehr HA; Fantuzzi G; Dinarello CA. 2001. IL-1beta -converting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci U S A 98(23):13249-54. [PubMed: 11606779]  [MGI Ref ID J:72540]

Silveira TN; Zamboni DS. 2010. Pore formation triggered by Legionella spp. is an Nlrc4 inflammasome-dependent host cell response that precedes pyroptosis. Infect Immun 78(3):1403-13. [PubMed: 20048047]  [MGI Ref ID J:157768]

Smith DJ; McGuire MJ; Tocci MJ; Thiele DL. 1997. IL-1 beta convertase (ICE) does not play a requisite role in apoptosis induced in T lymphoblasts by Fas-dependent or Fas-independent CTL effector mechanisms. J Immunol 158(1):163-70. [PubMed: 8977187]  [MGI Ref ID J:110640]

Song X; Gao H; Lin Y; Yao Y; Zhu S; Wang J; Liu Y; Yao X; Meng G; Shen N; Shi Y; Iwakura Y; Qian Y. 2014. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity 40(1):140-52. [PubMed: 24412611]  [MGI Ref ID J:209396]

Soudja SM; Ruiz AL; Marie JC; Lauvau G. 2012. Inflammatory Monocytes Activate Memory CD8(+) T and Innate NK Lymphocytes Independent of Cognate Antigen during Microbial Pathogen Invasion. Immunity 37(3):549-62. [PubMed: 22940097]  [MGI Ref ID J:187687]

Stienstra R; Joosten LA; Koenen T; van Tits B; van Diepen JA; van den Berg SA; Rensen PC; Voshol PJ; Fantuzzi G; Hijmans A; Kersten S; Muller M; van den Berg WB; van Rooijen N; Wabitsch M; Kullberg BJ; van der Meer JW; Kanneganti T; Tack CJ; Netea MG. 2010. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 12(6):593-605. [PubMed: 21109192]  [MGI Ref ID J:168117]

Stienstra R; van Diepen JA; Tack CJ; Zaki MH; van de Veerdonk FL; Perera D; Neale GA; Hooiveld GJ; Hijmans A; Vroegrijk I; van den Berg S; Romijn J; Rensen PC; Joosten LA; Netea MG; Kanneganti TD. 2011. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci U S A 108(37):15324-9. [PubMed: 21876127]  [MGI Ref ID J:176452]

Sun Q; Gao W; Loughran P; Shapiro R; Fan J; Billiar TR; Scott MJ. 2013. Caspase 1 activation is protective against hepatocyte cell death by up-regulating beclin 1 protein and mitochondrial autophagy in the setting of redox stress. J Biol Chem 288(22):15947-58. [PubMed: 23589298]  [MGI Ref ID J:199620]

Sun S; Xia S; Ji Y; Kersten S; Qi L. 2012. The ATP-P2X7 signaling axis is dispensable for obesity-associated inflammasome activation in adipose tissue. Diabetes 61(6):1471-8. [PubMed: 22415881]  [MGI Ref ID J:196855]

Sutterwala FS; Mijares LA; Li L; Ogura Y; Kazmierczak BI; Flavell RA. 2007. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204(13):3235-45. [PubMed: 18070936]  [MGI Ref ID J:130358]

Tarallo V; Hirano Y; Gelfand BD; Dridi S; Kerur N; Kim Y; Cho WG; Kaneko H; Fowler BJ; Bogdanovich S; Albuquerque RJ; Hauswirth WW; Chiodo VA; Kugel JF; Goodrich JA; Ponicsan SL; Chaudhuri G; Murphy MP; Dunaief JL; Ambati BK; Ogura Y; Yoo JW; Lee DK; Provost P; Hinton DR; Nunez G; Baffi JZ; Kleinman ME; Ambati J. 2012. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149(4):847-59. [PubMed: 22541070]  [MGI Ref ID J:186198]

Taxman DJ; Holley-Guthrie EA; Huang MT; Moore CB; Bergstralh DT; Allen IC; Lei Y; Gris D; Ting JP. 2011. The NLR adaptor ASC/PYCARD regulates DUSP10, mitogen-activated protein kinase (MAPK), and chemokine induction independent of the inflammasome. J Biol Chem 286(22):19605-16. [PubMed: 21487011]  [MGI Ref ID J:190277]

Thakur A; Barrett R; McClellan S; Hazlett L. 2004. Regulation of Pseudomonas aeruginosa corneal infection in IL-1beta converting enzyme (ICE, caspase-1) deficient mice. Curr Eye Res 29(4-5):225-33. [PubMed: 15590467]  [MGI Ref ID J:94634]

Thomas PG; Dash P; Aldridge JR Jr; Ellebedy AH; Reynolds C; Funk AJ; Martin WJ; Lamkanfi M; Webby RJ; Boyd KL; Doherty PC; Kanneganti TD. 2009. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30(4):566-75. [PubMed: 19362023]  [MGI Ref ID J:147960]

Togbe D; Aurore G; Noulin N; Quesniaux VF; Schnyder-Candrian S; Schnyder B; Vasseur V; Akira S; Hoebe K; Beutler B; Ryffel B; Couillin I. 2006. Nonredundant roles of TIRAP and MyD88 in airway response to endotoxin, independent of TRIF, IL-1 and IL-18 pathways. Lab Invest 86(11):1126-35. [PubMed: 16983331]  [MGI Ref ID J:114842]

Toma C; Higa N; Koizumi Y; Nakasone N; Ogura Y; McCoy AJ; Franchi L; Uematsu S; Sagara J; Taniguchi S; Tsutsui H; Akira S; Tschopp J; Nunez G; Suzuki T. 2010. Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-kappaB signaling. J Immunol 184(9):5287-97. [PubMed: 20348425]  [MGI Ref ID J:160469]

Tsuchiya K; Hara H; Kawamura I; Nomura T; Yamamoto T; Daim S; Dewamitta SR; Shen Y; Fang R; Mitsuyama M. 2010. Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. J Immunol 185(2):1186-95. [PubMed: 20566831]  [MGI Ref ID J:162019]

Tsuji NM; Tsutsui H; Seki E; Kuida K; Okamura H; Nakanishi K; Flavell RA. 2004. Roles of caspase-1 in Listeria infection in mice. Int Immunol 16(2):335-43. [PubMed: 14734619]  [MGI Ref ID J:88971]

Tsutsui H; Kayagaki N; Kuida K; Nakano H; Hayashi N; Takeda K; Matsui K; Kashiwamura S; Hada T; Akira S; Yagita H; Okamura H; Nakanishi K. 1999. Caspase-1-independent, Fas/Fas ligand-mediated IL-18 secretion from macrophages causes acute liver injury in mice. Immunity 11(3):359-67. [PubMed: 10514014]  [MGI Ref ID J:57879]

Ulland TK; Janowski AM; Buchan BW; Faron M; Cassel SL; Jones BD; Sutterwala FS. 2013. Francisella tularensis Live Vaccine Strain Folate Metabolism and Pseudouridine Synthase Gene Mutants Modulate Macrophage Caspase-1 Activation. Infect Immun 81(1):201-8. [PubMed: 23115038]  [MGI Ref ID J:190664]

Usui F; Shirasuna K; Kimura H; Tatsumi K; Kawashima A; Karasawa T; Hida S; Sagara J; Taniguchi S; Takahashi M. 2012. Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem Biophys Res Commun 425(2):162-8. [PubMed: 22819845]  [MGI Ref ID J:187166]

Vaine CA; Patel MK; Zhu J; Lee E; Finberg RW; Hayward RC; Kurt-Jones EA. 2013. Tuning innate immune activation by surface texturing of polymer microparticles: the role of shape in inflammasome activation. J Immunol 190(7):3525-32. [PubMed: 23427254]  [MGI Ref ID J:194521]

Vaishnava S; Behrendt CL; Ismail AS; Eckmann L; Hooper LV. 2008. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105(52):20858-63. [PubMed: 19075245]  [MGI Ref ID J:169662]

Vidal-Vanaclocha F; Fantuzzi G; Mendoza L; Fuentes AM; Anasagasti MJ; Martin J; Carrascal T; Walsh P; Reznikov LL; Kim SH; Novick D; Rubinstein M; Dinarello CA. 2000. IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci U S A 97(2):734-9. [PubMed: 10639148]  [MGI Ref ID J:59893]

Vince JE; Wong WW; Gentle I; Lawlor KE; Allam R; O'Reilly L; Mason K; Gross O; Ma S; Guarda G; Anderton H; Castillo R; Hacker G; Silke J; Tschopp J. 2012. Inhibitor of Apoptosis Proteins Limit RIP3 Kinase-Dependent Interleukin-1 Activation. Immunity 36(2):215-27. [PubMed: 22365665]  [MGI Ref ID J:181625]

Walker WE; Nasr IW; Camirand G; Tesar BM; Booth CJ; Goldstein DR. 2006. Absence of innate MyD88 signaling promotes inducible allograft acceptance. J Immunol 177(8):5307-16. [PubMed: 17015716]  [MGI Ref ID J:139443]

Wang B; Feliciani C; Howell BG; Freed I; Cai Q; Watanabe H; Sauder DN. 2002. Contribution of Langerhans cell-derived IL-18 to contact hypersensitivity. J Immunol 168(7):3303-8. [PubMed: 11907086]  [MGI Ref ID J:113976]

Wang J; Li B; Wu MX. 2015. Effective and lesion-free cutaneous influenza vaccination. Proc Natl Acad Sci U S A 112(16):5005-10. [PubMed: 25848020]  [MGI Ref ID J:220964]

Wang W; Faubel S; Ljubanovic D; Mitra A; Falk SA; Kim J; Tao Y; Soloviev A; Reznikov LL; Dinarello CA; Schrier RW; Edelstein CL. 2005. Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice. Am J Physiol Renal Physiol 288(5):F997-F1004. [PubMed: 15644489]  [MGI Ref ID J:97733]

Wang W; Wang X; Chun J; Vilaysane A; Clark S; French G; Bracey NA; Trpkov K; Bonni S; Duff HJ; Beck PL; Muruve DA. 2013. Inflammasome-Independent NLRP3 Augments TGF-beta Signaling in Kidney Epithelium. J Immunol 190(3):1239-49. [PubMed: 23264657]  [MGI Ref ID J:192607]

Wangdi T; Mijares LA; Kazmierczak BI. 2010. In vivo discrimination of type 3 secretion system-positive and -negative Pseudomonas aeruginosa via a caspase-1-dependent pathway. Infect Immun 78(11):4744-53. [PubMed: 20823203]  [MGI Ref ID J:165027]

Wegiel B; Larsen R; Gallo D; Chin BY; Harris C; Mannam P; Kaczmarek E; Lee PJ; Zuckerbraun BS; Flavell R; Soares MP; Otterbein LE. 2014. Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation. J Clin Invest 124(11):4926-40. [PubMed: 25295542]  [MGI Ref ID J:217703]

Willart MA; Deswarte K; Pouliot P; Braun H; Beyaert R; Lambrecht BN; Hammad H. 2012. Interleukin-1alpha controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J Exp Med 209(8):1505-17. [PubMed: 22802353]  [MGI Ref ID J:189157]

Williams CD; Antoine DJ; Shaw PJ; Benson C; Farhood A; Williams DP; Kanneganti TD; Park BK; Jaeschke H. 2011. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury. Toxicol Appl Pharmacol 252(3):289-97. [PubMed: 21396389]  [MGI Ref ID J:173835]

Willingham SB; Allen IC; Bergstralh DT; Brickey WJ; Huang MT; Taxman DJ; Duncan JA; Ting JP. 2009. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol 183(3):2008-15. [PubMed: 19587006]  [MGI Ref ID J:151710]

Wlodarska M; Thaiss CA; Nowarski R; Henao-Mejia J; Zhang JP; Brown EM; Frankel G; Levy M; Katz MN; Philbrick WM; Elinav E; Finlay BB; Flavell RA. 2014. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156(5):1045-59. [PubMed: 24581500]  [MGI Ref ID J:212020]

Woods A; Soulas-Sprauel P; Jaulhac B; Arditi B; Knapp AM; Pasquali JL; Korganow AS; Martin T. 2008. MyD88 negatively controls hypergammaglobulinemia with autoantibody production during bacterial infection. Infect Immun 76(4):1657-67. [PubMed: 18227170]  [MGI Ref ID J:133532]

Wynosky-Dolfi MA; Snyder AG; Philip NH; Doonan PJ; Poffenberger MC; Avizonis D; Zwack EE; Riblett AM; Hu B; Strowig T; Flavell RA; Jones RG; Freedman BD; Brodsky IE. 2014. Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. J Exp Med 211(4):653-68. [PubMed: 24638169]  [MGI Ref ID J:211688]

Xiang M; Shi X; Li Y; Xu J; Yin L; Xiao G; Scott MJ; Billiar TR; Wilson MA; Fan J. 2011. Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J Immunol 187(9):4809-17. [PubMed: 21940680]  [MGI Ref ID J:179453]

Yabal M; Muller N; Adler H; Knies N; Gross CJ; Damgaard RB; Kanegane H; Ringelhan M; Kaufmann T; Heikenwalder M; Strasser A; Gross O; Ruland J; Peschel C; Gyrd-Hansen M; Jost PJ. 2014. XIAP Restricts TNF- and RIP3-Dependent Cell Death and Inflammasome Activation. Cell Rep 7(6):1796-808. [PubMed: 24882010]  [MGI Ref ID J:211783]

Yamamoto M; Yaginuma K; Tsutsui H; Sagara J; Guan X; Seki E; Yasuda K; Yamamoto M; Akira S; Nakanishi K; Noda T; Taniguchi S. 2004. ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules. Genes Cells 9(11):1055-67. [PubMed: 15507117]  [MGI Ref ID J:100807]

Yang Q; Stevenson HL; Scott MJ; Ismail N. 2015. Type I interferon contributes to noncanonical inflammasome activation, mediates immunopathology, and impairs protective immunity during fatal infection with lipopolysaccharide-negative ehrlichiae. Am J Pathol 185(2):446-61. [PubMed: 25481711]  [MGI Ref ID J:219487]

Yarovinsky F; Hieny S; Sher A. 2008. Recognition of Toxoplasma gondii by TLR11 prevents parasite-induced immunopathology. J Immunol 181(12):8478-84. [PubMed: 19050265]  [MGI Ref ID J:142066]

Yazdi AS; Guarda G; Riteau N; Drexler SK; Tardivel A; Couillin I; Tschopp J. 2010. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci U S A 107(45):19449-54. [PubMed: 20974980]  [MGI Ref ID J:167372]

Zaki MH; Boyd KL; Vogel P; Kastan MB; Lamkanfi M; Kanneganti TD. 2010. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32(3):379-91. [PubMed: 20303296]  [MGI Ref ID J:158904]

Zaki MH; Vogel P; Body-Malapel M; Lamkanfi M; Kanneganti TD. 2010. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol 185(8):4912-20. [PubMed: 20855874]  [MGI Ref ID J:164729]

Zamboni DS; Kobayashi KS; Kohlsdorf T; Ogura Y; Long EM; Vance RE; Kuida K; Mariathasan S; Dixit VM; Flavell RA; Dietrich WF; Roy CR. 2006. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7(3):318-25. [PubMed: 16444259]  [MGI Ref ID J:112612]

Zwaferink H; Stockinger S; Hazemi P; Lemmens-Gruber R; Decker T. 2008. IFN-{beta} Increases Listeriolysin O-Induced Membrane Permeabilization and Death of Macrophages. J Immunol 180(6):4116-23. [PubMed: 18322222]  [MGI Ref ID J:132928]

Zwaferink H; Stockinger S; Reipert S; Decker T. 2008. Stimulation of inducible nitric oxide synthase expression by beta interferon increases necrotic death of macrophages upon Listeria monocytogenes infection. Infect Immun 76(4):1649-56. [PubMed: 18268032]  [MGI Ref ID J:133523]

van Diepen JA; Stienstra R; Vroegrijk IO; van den Berg SA; Salvatori D; Hooiveld GJ; Kersten S; Tack CJ; Netea MG; Smit JW; Joosten LA; Havekes LM; van Dijk KW; Rensen PC. 2013. Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion. J Lipid Res 54(2):448-56. [PubMed: 23160218]  [MGI Ref ID J:192450]

van de Veerdonk FL; Joosten LA; Shaw PJ; Smeekens SP; Malireddi RK; van der Meer JW; Kullberg BJ; Netea MG; Kanneganti TD. 2011. The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. Eur J Immunol 41(8):2260-8. [PubMed: 21681738]  [MGI Ref ID J:176811]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX12

Colony Maintenance

Breeding & HusbandryWhen live colonies are maintained, homozygotes or heterozygotes may be bred.
Mating SystemHomozygote x Homozygote         (Female x Male)   31-JAN-13

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls

Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $205.90Female or MaleHomozygous for Casp1tm1Flv  
Price per Pair (US dollars $)Pair Genotype
$411.80Homozygous for Casp1tm1Flv x Homozygous for Casp1tm1Flv  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $267.70Female or MaleHomozygous for Casp1tm1Flv  
Price per Pair (US dollars $)Pair Genotype
$535.40Homozygous for Casp1tm1Flv x Homozygous for Casp1tm1Flv  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

   005304 C57BL/6NJ
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

See Terms of Use tab for General Terms and Conditions

The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use

General Terms and Conditions

For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration


JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty


In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.