Strain Name:

BXSB.129S2(B6)-Cd8atm1Mak/4DcrJ

Stock Number:

021456

Order this mouse

Availability:

Cryopreserved - Ready for recovery

Use Restrictions Apply, see Terms of Use
Cd8alpha-deficient BXSB.Yaa mice (BXSB.Yaa Cd8a-/- or BXSB.Yaa Cd8α-/-) are a BXSB-congenic strain carrying a null mutation of the CD8 antigen alpha chain. The suppressor CD8+ T cell-deficiency of BXSB.Yaa Cd8a-/- mice leads to an accelerated and more severe form of spontaneous lupus-like autoimmune syndrome compared to BXSB/MpJ inbred mice. These BXSB.Yaa Cd8a-/- mice may be useful in studying how MHC class I-dependent CD8+ T cells normally attenuate spontaneous lupus-like autoimmune syndrome.

Description

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Strain Information

Type Congenic; Mutant Strain; Spontaneous Mutation; Targeted Mutation;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Specieslaboratory mouse
GenerationN18p
Generation Definitions
 
Donating InvestigatorDr. Derry Roopenian,   The Jackson Laboratory

Description
Cd8alpha-deficient BXSB.Yaa mice (BXSB.Yaa Cd8a-/- or BXSB.Yaa Cd8α-/-) are a BXSB/MpJ-congenic strain carrying a null mutation of the CD8 antigen alpha chain.

BXSB/MpJ inbred males (Stock No. 000740) develop a spontaneous lupus-like autoimmune syndrome: mortality starts at ~13 weeks of age with 50% lethality by ~30 weeks and 76% lethality by ~40 weeks. BXSB/MpJ inbred females develop a greatly attenuated form of autoimmune disease.

Homozygous (Cd8a-/-) mice are viable and fertile. Homozygotes are deficient in functional cytotoxic T-cells, but exhibit normal helper T-cell development and function. Compared to BXSB/MpJ, the suppressor CD8+ T cell-deficiency of BXSB.Yaa Cd8a-/- mice leads to an accelerated and more severe spontaneous autoimmune phenotype. Specifically, mortality in BXSB.Yaa Cd8a-/- males starts at ~12-15 weeks of age with 50% lethality by ~20 weeks of age. Compared to homozygous males, the homozygous females develop a greatly attenuated form of autoimmune disease.

Heterozygous males (BXSB.Yaa Cd8a+/-) develop the BXSB/MpJ autoimmune phenotype. Heterozygous females develop a greatly attenuated form of autoimmune disease because they lack Yaa.

C57BL/6J-congenic mice harboring the Cd8α null allele are described and available from The Jackson Laboratory Repository as Stock No. 002665.

Development
The Cd8α null allele (Cd8atm1Mak) was designed by Dr. Tak Mak (University of Toronto) with a neomycin resistance cassette replacing exon 1 of the Cd8a gene (CD8 antigen alpha chain) on chromosome 6. C57BL/6J-congenic mice harboring this Cd8α null allele are described and available from The Jackson Laboratory Repository as Stock No. 002665.
Dr. Derry C. Roopenian (The Jackson Laboratory) obtained some of these mutant mice and backcrossed them with BXSB/MpJ inbred mice (Stock No. 000740) for 18 generations, and then maintained the colony by breeding homozygous mice together. In 2003, Dr. Roopenian froze embryos from BXSB.Yaa Cd8a-/- mice at generation N18. In 2013, this frozen stock was transferred to The Jackson Laboratory Repository (Autoimmune Resource) to establish Stock No. 021456. Male mice have the BXSB/MpJ-derived Y chromosome that contains the Y-linked autoimmune accelerator locus (Yaa).

Control Information

  Control
   000740 BXSB/MpJ
 
  Considerations for Choosing Controls

Related Strains

View Autoimmune Resource     (13 strains)

View BXSB Strain     (13 strains)

View Y Chromosomal Aberrations     (17 strains)

Strains carrying   Cd8atm1Mak allele
002665   B6.129S2-Cd8atm1Mak/J
002664   B6;129S-Cd4tm1Mak Cd8atm1Mak/J
007071   CByJ.129S2(B6)-Cd8atm1Mak/J
005513   NOD.129S2(B6)-Cd8atm1Mak/DvsJ
View Strains carrying   Cd8atm1Mak     (4 strains)

View Strains carrying   Yaa     (7 strains)

Strains carrying other alleles of Cd8a
017562   B6(Cg)-Cd8atm1.1(cre)Koni/J
000407   B6.PL-Cd8aa Cd8b1a/(75NS)CyJ
001065   B6.PL-Cd8aa Cd8b1a/(85NS)CyJ
008766   C57BL/6-Tg(Cd8a-cre)1Itan/J
View Strains carrying other alleles of Cd8a     (4 strains)

Strains carrying other alleles of Yaa
000742   BXSB.B6-Yaa+/J
001925   BXSB.B6-Yaa+/MobJ
021330   BXSB.B6-Yaa+/MobJDcrJ
View Strains carrying other alleles of Yaa     (3 strains)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Potential model based on gene homology relationships. Phenotypic similarity to the human disease has not been tested.
CD8 Deficiency, Familial   (CD8A)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Immunology, Inflammation and Autoimmunity Research
Autoimmunity
      lupus erythematosus
      lupus erythematosus, control
CD Antigens, Antigen Receptors, and Histocompatibility Markers
      genes regulating susceptibility to infectious disease and endotoxin
Growth Factors/Receptors/Cytokines
Immunodeficiency
      T cell deficiency
      specific T cell deficiency

Internal/Organ Research
Lymphoid Tissue Defects
      T cell deficiency

Research Tools
Genetics Research
      Tissue/Cell Markers: T cell specific surface marker
Immunology, Inflammation and Autoimmunity Research
      T cell deficiency
      T cell deficiency, xenograft/transplant host
      T cell specific surface marker
      genes regulating susceptibility to infectious disease and endotoxin
      specific T cell deficiency

Cd8atm1Mak related

Immunology, Inflammation and Autoimmunity Research
CD Antigens, Antigen Receptors, and Histocompatibility Markers

Yaa related
Autoimmunity
      lupus erythematosus

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Cd8atm1Mak
Allele Name targeted mutation 1, Tak Mak
Allele Type Targeted (Null/Knockout)
Common Name(s) CD8 KO; CD8-; CD8-KO; CD8KO; CD8alpha-; CD8alpha-; Cd8atm1Mak; Lyt-2-;
Mutation Made ByDr. Tak Mak,   University Health Network/Un of Toronto
Strain of Origin129S2/SvPas
ES Cell Line NameD3
ES Cell Line Strain129S2/SvPas
Gene Symbol and Name Cd8a, CD8 antigen, alpha chain
Chromosome 6
Gene Common Name(s) BB154331; CD8; Leu2; Ly-2; Ly-35; Ly-B; Lyt-2; MAL; T-lymphocyte antigen 2; expressed sequence BB154331; lymphocyte antigen 2; lymphocyte antigen 35; p32;
Molecular Note A neomycin resistance gene was inserted into exon 1. Flow cytometry analysis on thymus and lymph node cells derived from homozygous mice confirmed that no detectable encoded protein was expressed on the cell surface. [MGI Ref ID J:68956] [MGI Ref ID J:82297]
 
Allele Symbol Yaa
Allele Name accelerated autoimmunity and lymphoproliferation
Allele Type Spontaneous
Common Name(s) Is(XOfd1-Mid1;Y)1Mp; Tp(X;Y)1Ekw;
Strain of OriginSB/Le
Gene Symbol and Name Yaa, accelerated autoimmunity and lymphoproliferation transposition
Chromosome Y
Gene Common Name(s) Tp(X;Y)1Ekw;
General Note In congenic C57BL/6 Yaa mice expression of Tlr7 is increased 2-fold.
Molecular Note An approximately 4 MB region of the X chromosome that includes at least 13 known genes (spanning from Ofd1 to Mid1) was translocated to the Y chromosome adjacent to the pseudoautosomal region. Increased RNA expression of Msl3, Tlr7, Tmsb4x and Rab9 was detected in follicular B cells. [MGI Ref ID J:109758] [MGI Ref ID J:111064] [MGI Ref ID J:140028]

Genotyping

Genotyping Information

Genotyping Protocols

Cd8atm1Mak, High Resolution Melting


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Kuhar SG; Feng L; Vidan S; Ross ME; Hatten ME; Heintz N. 1993. Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development 117(1):97-104. [PubMed: 8223263]  [MGI Ref ID J:21456]

McPhee CG; Sproule TJ; Shin DM; Bubier JA; Schott WH; Steinbuck MP; Avenesyan L; Morse HC 3rd; Roopenian DC. 2011. MHC class I family proteins retard systemic lupus erythematosus autoimmunity and B cell lymphomagenesis. J Immunol 187(9):4695-704. [PubMed: 21964024]  [MGI Ref ID J:179430]

Shiels A; Griffin CS. 1993. Aberrant expression of the gene for lens major intrinsic protein in the CAT mouse. Curr Eye Res 12(10):913-21. [PubMed: 8293667]  [MGI Ref ID J:21565]

Additional References

Cd8atm1Mak related

Abe BT; Shin DS; Mocholi E; Macian F. 2012. NFAT1 supports tumor-induced anergy of CD4(+) T cells. Cancer Res 72(18):4642-51. [PubMed: 22865456]  [MGI Ref ID J:191294]

Ahmed KA; Wang L; Munegowda MA; Mulligan S; Gordon JR; Griebel P; Xiang J. 2012. Direct in vivo evidence of CD4+ T cell requirement for CTL response and memory via pMHC-I targeting and CD40L signaling. J Leukoc Biol 92(2):289-300. [PubMed: 22544940]  [MGI Ref ID J:186191]

Alard P; Clark SL; Kosiewicz MM. 2004. Mechanisms of tolerance induced by TGF beta-treated APC: CD4 regulatory T cells prevent the induction of the immune response possibly through a mechanism involving TGF beta. Eur J Immunol 34(4):1021-30. [PubMed: 15048712]  [MGI Ref ID J:115475]

Ali OA; Verbeke C; Johnson C; Sands RW; Lewin SA; White D; Doherty E; Dranoff G; Mooney DJ. 2014. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants. Cancer Res 74(6):1670-81. [PubMed: 24480625]  [MGI Ref ID J:208326]

Andrews NP; Pack CD; Lukacher AE. 2008. Generation of antiviral major histocompatibility complex class I-restricted T cells in the absence of CD8 coreceptors. J Virol 82(10):4697-705. [PubMed: 18337581]  [MGI Ref ID J:153304]

Antony PA; Piccirillo CA; Akpinarli A; Finkelstein SE; Speiss PJ; Surman DR; Palmer DC; Chan CC; Klebanoff CA; Overwijk WW; Rosenberg SA; Restifo NP. 2005. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174(5):2591-601. [PubMed: 15728465]  [MGI Ref ID J:129825]

Bachmaier K; Neu N; Yeung RS; Mak TW; Liu P; Penninger JM. 1999. Generation of humanized mice susceptible to peptide-induced inflammatory heart disease. Circulation 99(14):1885-91. [PubMed: 10199887]  [MGI Ref ID J:129115]

Bachmann MF; Oxenius A; Mak TW; Zinkernagel RM. 1995. T cell development in CD8-/- mice. Thymic positive selection is biased toward the helper phenotype. J Immunol 155(8):3727-33. [PubMed: 7561076]  [MGI Ref ID J:29580]

Barnes MJ; Aksoylar H; Krebs P; Bourdeau T; Arnold CN; Xia Y; Khovananth K; Engel I; Sovath S; Lampe K; Laws E; Saunders A; Butcher GW; Kronenberg M; Steinbrecher K; Hildeman D; Grimes HL; Beutler B; Hoebe K. 2010. Loss of T cell and B cell quiescence precedes the onset of microbial flora-dependent wasting disease and intestinal inflammation in Gimap5-deficient mice. J Immunol 184(7):3743-54. [PubMed: 20190135]  [MGI Ref ID J:160090]

Beilke JN; Kuhl NR; Van Kaer L; Gill RG. 2005. NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nat Med 11(10):1059-65. [PubMed: 16155578]  [MGI Ref ID J:101693]

Belkaid Y; Von Stebut E; Mendez S; Lira R; Caler E; Bertholet S; Udey MC; Sacks D. 2002. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J Immunol 168(8):3992-4000. [PubMed: 11937556]  [MGI Ref ID J:125458]

Ben-David H; Sharabi A; Dayan M; Sela M; Mozes E. 2007. The role of CD8+CD28 regulatory cells in suppressing myasthenia gravis-associated responses by a dual altered peptide ligand. Proc Natl Acad Sci U S A 104(44):17459-64. [PubMed: 17956982]  [MGI Ref ID J:127105]

Berke Z; Wen T; Jin S; Klein G; Dalianis T. 1995. Polyomavirus persists in CD4/8 double-knockout, but not in CD4 or CD8 single-knockout mice. Virology 212(1):268-71. [PubMed: 7676644]  [MGI Ref ID J:110749]

Berke Z; Wen T; Klein G; Dalianis T. 1996. Polyoma tumor development in neonatally polyoma-virus-infected CD4-/- and CD8-/- single knockout and CD4-/-8-/- double knockout mice. Int J Cancer 67(3):405-8. [PubMed: 8707416]  [MGI Ref ID J:113042]

Bhadra R; Gigley JP; Khan IA. 2011. Cutting edge: CD40-CD40 ligand pathway plays a critical CD8-intrinsic and -extrinsic role during rescue of exhausted CD8 T cells. J Immunol 187(9):4421-5. [PubMed: 21949017]  [MGI Ref ID J:179445]

Bitsaktsis C; Huntington J; Winslow G. 2004. Production of IFN-gamma by CD4 T cells is essential for resolving ehrlichia infection. J Immunol 172(11):6894-901. [PubMed: 15153508]  [MGI Ref ID J:90518]

Bitsaktsis C; Nandi B; Racine R; MacNamara KC; Winslow G. 2007. T-Cell-independent humoral immunity is sufficient for protection against fatal intracellular ehrlichia infection. Infect Immun 75(10):4933-41. [PubMed: 17664264]  [MGI Ref ID J:125283]

Bitsaktsis C; Winslow G. 2006. Fatal recall responses mediated by CD8 T cells during intracellular bacterial challenge infection. J Immunol 177(7):4644-51. [PubMed: 16982903]  [MGI Ref ID J:139316]

Boenisch O; D'Addio F; Watanabe T; Elyaman W; Magee CN; Yeung MY; Padera RF; Rodig SJ; Murayama T; Tanaka K; Yuan X; Ueno T; Jurisch A; Mfarrej B; Akiba H; Yagita H; Najafian N. 2010. TIM-3: a novel regulatory molecule of alloimmune activation. J Immunol 185(10):5806-19. [PubMed: 20956339]  [MGI Ref ID J:165781]

Bommireddy R; Engle SJ; Ormsby I; Boivin GP; Babcock GF; Doetschman T. 2004. Elimination of both CD4(+) and CD8(+) T cells but not B cells eliminates inflammation and prolongs the survival of TGFbeta1-deficient mice. Cell Immunol 232(1-2):96-104. [PubMed: 15922720]  [MGI Ref ID J:99033]

Borenstein SH; Graham J; Zhang XL; Chamberlain JW. 2000. CD8+ T cells are necessary for recognition of allelic, but not locus-mismatched or xeno-, HLA class I transplantation antigens. J Immunol 165(5):2341-53. [PubMed: 10946256]  [MGI Ref ID J:80678]

Bosselut R; Feigenbaum L; Sharrow SO; Singer A. 2001. Strength of signaling by CD4 and CD8 coreceptor tails determines the number but not the lineage direction of positively selected thymocytes. Immunity 14(4):483-94. [PubMed: 11336693]  [MGI Ref ID J:132432]

Brochard V; Combadiere B; Prigent A; Laouar Y; Perrin A; Beray-Berthat V; Bonduelle O; Alvarez-Fischer D; Callebert J; Launay JM; Duyckaerts C; Flavell RA; Hirsch EC; Hunot S. 2009. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119(1):182-92. [PubMed: 19104149]  [MGI Ref ID J:144702]

Bry L; Brenner MB. 2004. Critical role of T cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acute mucosal infection with Citrobacter rodentium, an attaching and effacing pathogen. J Immunol 172(1):433-41. [PubMed: 14688352]  [MGI Ref ID J:87077]

Bumgardner GL; Gao D; Li J; Baskin JH; Heininger M; Orosz CG. 2000. Rejection responses to allogeneic hepatocytes by reconstituted SCID mice, CD4, KO, and CD8 KO mice. Transplantation 70(12):1771-80. [PubMed: 11152110]  [MGI Ref ID J:66571]

Burne MJ; Daniels F; El Ghandour A; Mauiyyedi S; Colvin RB; O'Donnell MP; Rabb H. 2001. Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest 108(9):1283-90. [PubMed: 11696572]  [MGI Ref ID J:118005]

Cardoso EM; Macedo MG; Rohrlich P; Ribeiro E; Silva MT; Lemonnier FA; de Sousa M. 2002. Increased hepatic iron in mice lacking classical MHC class I molecules. Blood 100(12):4239-41. [PubMed: 12393413]  [MGI Ref ID J:115559]

Chan WC; Duong TT; Yeung RS. 2004. Presence of IFN-gamma does not indicate its necessity for induction of coronary arteritis in an animal model of Kawasaki disease. J Immunol 173(5):3492-503. [PubMed: 15322214]  [MGI Ref ID J:92708]

Chen SY; Takeoka Y; Ansari AA; Boyd R; Klinman DM; Gershwin ME. 1996. The natural history of disease expression in CD4 and CD8 gene-deleted New Zealand black (NZB) mice. J Immunol 157(6):2676-84. [PubMed: 8805673]  [MGI Ref ID J:35433]

Chen Z; Yu S; Concha HQ; Zhu Y; Mix E; Winblad B; Ljunggren HG; Zhu J. 2004. Kainic acid-induced excitotoxic hippocampal neurodegeneration in C57BL/6 mice: B cell and T cell subsets may contribute differently to the pathogenesis. Brain Behav Immun 18(2):175-85. [PubMed: 14759595]  [MGI Ref ID J:105331]

Chiang EY; Stroynowski I. 2004. A nonclassical MHC class I molecule restricts CTL-mediated rejection of a syngeneic melanoma tumor. J Immunol 173(7):4394-401. [PubMed: 15383569]  [MGI Ref ID J:93729]

Ciurea A; Hunziker L; Klenerman P; Hengartner H; Zinkernagel RM. 2001. Impairment of CD4(+) T cell responses during chronic virus infection prevents neutralizing antibody responses against virus escape mutants. J Exp Med 193(3):297-305. [PubMed: 11157050]  [MGI Ref ID J:124426]

Crosby JR; Shen HH; Borchers MT; Justice JP; Ansay T; Lee JJ; Lee NA. 2002. Ectopic expression of IL-5 identifies an additional CD4(+) T cell mechanism of airway eosinophil recruitment. Am J Physiol Lung Cell Mol Physiol 282(1):L99-108. [PubMed: 11741821]  [MGI Ref ID J:107840]

Cui W; Liu Y; Weinstein JS; Craft J; Kaech SM. 2011. An Interleukin-21- Interleukin-10-STAT3 Pathway Is Critical for Functional Maturation of Memory CD8(+) T Cells. Immunity 35(5):792-805. [PubMed: 22118527]  [MGI Ref ID J:178927]

D'Souza CD; Cooper AM; Frank AA; Ehlers S; Turner J; Bendelac A; Orme IM. 2000. A novel nonclassic beta2-microglobulin-restricted mechanism influencing early lymphocyte accumulation and subsequent resistance to tuberculosis in the lung. Am J Respir Cell Mol Biol 23(2):188-93. [PubMed: 10919985]  [MGI Ref ID J:114179]

Dalloul AH; Ngo K; Fung-Leung WP. 1996. CD4-negative cytotoxic T cells with a T cell receptor alpha/beta intermediate expression in CD8-deficient mice. Eur J Immunol 26(1):213-8. [PubMed: 8566069]  [MGI Ref ID J:112982]

Daniel D; Meyer-Morse N; Bergsland EK; Dehne K; Coussens LM; Hanahan D. 2003. Immune Enhancement of Skin Carcinogenesis by CD4+ T Cells. J Exp Med 197(8):1017-28. [PubMed: 12695493]  [MGI Ref ID J:82978]

DeNardo DG; Barreto JB; Andreu P; Vasquez L; Tawfik D; Kolhatkar N; Coussens LM. 2009. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91-102. [PubMed: 19647220]  [MGI Ref ID J:151976]

Deal EM; Lahl K; Narvaez CF; Butcher EC; Greenberg HB. 2013. Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses. J Clin Invest 123(6):2464-74. [PubMed: 23635775]  [MGI Ref ID J:201445]

Di Piazza M; Nowell CS; Koch U; Durham AD; Radtke F. 2012. Loss of cutaneous TSLP-dependent immune responses skews the balance of inflammation from tumor protective to tumor promoting. Cancer Cell 22(4):479-93. [PubMed: 23079658]  [MGI Ref ID J:192029]

Dragovic SM; Hill T; Christianson GJ; Kim S; Elliott T; Scott D; Roopenian DC; Van Kaer L; Joyce S. 2011. Proteasomes, TAP, and endoplasmic reticulum-associated aminopeptidase associated with antigen processing control CD4+ Th cell responses by regulating indirect presentation of MHC class II-restricted cytoplasmic antigens. J Immunol 186(12):6683-92. [PubMed: 21572029]  [MGI Ref ID J:175483]

Drake DR 3rd; Lukacher AE. 1998. Beta 2-microglobulin knockout mice are highly susceptible to polyoma virus tumorigenesis. Virology 252(1):275-84. [PubMed: 9875336]  [MGI Ref ID J:52185]

Duong TT; Silverman ED; Bissessar MV; Yeung RS. 2003. Superantigenic activity is responsible for induction of coronary arteritis in mice: an animal model of Kawasaki disease. Int Immunol 15(1):79-89. [PubMed: 12502728]  [MGI Ref ID J:81746]

Duthie MS; Kahn SJ. 2006. During acute Trypanosoma cruzi infection highly susceptible mice deficient in natural killer cells are protected by a single alpha-galactosylceramide treatment. Immunology 119(3):355-61. [PubMed: 16879622]  [MGI Ref ID J:118525]

Ehinger M; Vestberg M; Johansson AC; Johannesson M; Svensson A; Holmdahl R. 2001. Influence of CD4 or CD8 deficiency on collagen-induced arthritis. Immunology 103(3):291-300. [PubMed: 11454058]  [MGI Ref ID J:110421]

Ehst BD; Ingulli E; Jenkins MK. 2003. Development of a novel transgenic mouse for the study of interactions between CD4 and CD8 T cells during graft rejection. Am J Transplant 3(11):1355-62. [PubMed: 14525595]  [MGI Ref ID J:91742]

Elhage R; Gourdy P; Brouchet L; Jawien J; Fouque MJ; Fievet C; Huc X; Barreira Y; Couloumiers JC; Arnal JF; Bayard F. 2004. Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am J Pathol 165(6):2013-8. [PubMed: 15579444]  [MGI Ref ID J:94976]

Engel I; Hammond K; Sullivan BA; He X; Taniuchi I; Kappes D; Kronenberg M. 2010. Co-receptor choice by V alpha14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection. J Exp Med 207(5):1015-29. [PubMed: 20404101]  [MGI Ref ID J:161237]

Enoh VT; Fairchild CD; Lin CY; Varma TK; Sherwood ER. 2006. Differential effect of imipenem treatment on wild-type and NK cell-deficient CD8 knockout mice during acute intra-abdominal injury. Am J Physiol Regul Integr Comp Physiol 290(3):R685-93. [PubMed: 16269570]  [MGI Ref ID J:105682]

Erman B; Alag AS; Dahle O; van Laethem F; Sarafova SD; Guinter TI; Sharrow SO; Grinberg A; Love PE; Singer A. 2006. Coreceptor signal strength regulates positive selection but does not determine CD4/CD8 lineage choice in a physiologic in vivo model. J Immunol 177(10):6613-25. [PubMed: 17082573]  [MGI Ref ID J:126026]

Evel-Kabler K; Song XT; Aldrich M; Huang XF; Chen SY. 2006. SOCS1 restricts dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest 116(1):90-100. [PubMed: 16357940]  [MGI Ref ID J:105256]

Fang M; Sigal LJ. 2005. Antibodies and CD8+ T cells are complementary and essential for natural resistance to a highly lethal cytopathic virus. J Immunol 175(10):6829-36. [PubMed: 16272340]  [MGI Ref ID J:119697]

Fischbein MP; Ardehali A; Yun J; Schoenberger S; Laks H; Irie Y; Dempsey P; Cheng G; Fishbein MC; Bonavida B. 2000. CD40 signaling replaces CD4+ lymphocytes and its blocking prevents chronic rejection of heart transplants. J Immunol 165(12):7316-22. [PubMed: 11120867]  [MGI Ref ID J:118395]

Ford MS; Zhang ZX; Chen W; Zhang L. 2006. Double-negative T regulatory cells can develop outside the thymus and do not mature from CD8+ T cell precursors. J Immunol 177(5):2803-9. [PubMed: 16920915]  [MGI Ref ID J:139556]

Foucras G; Coudert JD; Coureau C; Guery JC. 2000. Dendritic cells prime in vivo alloreactive CD4 T lymphocytes toward type 2 cytokine- and TGF-beta-producing cells in the absence of CD8 T cell activation. J Immunol 165(9):4994-5003. [PubMed: 11046027]  [MGI Ref ID J:118923]

Fragoso RC; Pyarajan S; Irie HY; Burakoff SJ. 2006. A CD8/Lck transgene is able to drive thymocyte differentiation. J Immunol 177(9):6007-17. [PubMed: 17056525]  [MGI Ref ID J:140528]

Freland S; Ljunggren H. 2000. beta2-Microglobulin/CD8 -/- mice reveal significant role for CD8+ T cells in graft rejection responses in beta2-microglobulin -/- mice Scand J Immunol 51(3):219-23. [PubMed: 10736089]  [MGI Ref ID J:61231]

French JD; Roark CL; Born WK; O'brien RL. 2005. {gamma}{delta} T cell homeostasis is established in competition with {alpha}{beta} T cells and NK cells. Proc Natl Acad Sci U S A 102(41):14741-6. [PubMed: 16203967]  [MGI Ref ID J:102497]

Friedline RH ; Brown DS ; Nguyen H ; Kornfeld H ; Lee J ; Zhang Y ; Appleby M ; Der SD ; Kang J ; Chambers CA. 2009. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med 206(2):421-34. [PubMed: 19188497]  [MGI Ref ID J:146644]

Fujii S; Goto A; Shimizu K. 2009. Antigen mRNA-transfected, allogeneic fibroblasts loaded with NKT-cell ligand confer antitumor immunity. Blood 113(18):4262-72. [PubMed: 19164596]  [MGI Ref ID J:148431]

Fung-Leung WP; Louie MC; Limmer A; Ohashi PS; Ngo K; Chen L; Kawai K; Lacy E; Loh DY; Mak TW. 1993. The lack of CD8 alpha cytoplasmic domain resulted in a dramatic decrease in efficiency in thymic maturation but only a moderate reduction in cytotoxic function of CD8+ T lymphocytes. Eur J Immunol 23(11):2834-40. [PubMed: 8223860]  [MGI Ref ID J:113044]

Fung-Leung WP; Schilham MW; Rahemtulla A; Kundig TM; Vollenweider M; Potter J; van Ewijk W; Mak TW. 1991. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65(3):443-9. [PubMed: 1673361]  [MGI Ref ID J:68956]

Fung-Leung WP; Wallace VA; Gray D; Sha WC; Pircher H; Teh HS; Loh DY; Mak TW. 1993. CD8 is needed for positive selection but differentially required for negative selection of T cells during thymic ontogeny. Eur J Immunol 23(1):212-6. [PubMed: 8419174]  [MGI Ref ID J:112993]

Ganesan AP; Johansson M; Ruffell B; Yagui-Beltran A; Lau J; Jablons DM; Coussens LM. 2013. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma. J Immunol 191(4):2009-17. [PubMed: 23851682]  [MGI Ref ID J:205696]

Gao Y; Tao J; Li MO; Zhang D; Chi H; Henegariu O; Kaech SM; Davis RJ; Flavell RA; Yin Z. 2005. JNK1 is essential for CD8+ T cell-mediated tumor immune surveillance. J Immunol 175(9):5783-9. [PubMed: 16237070]  [MGI Ref ID J:119340]

Goldszmid RS; Bafica A; Jankovic D; Feng CG; Caspar P; Winkler-Pickett R; Trinchieri G; Sher A. 2007. TAP-1 indirectly regulates CD4+ T cell priming in Toxoplasma gondii infection by controlling NK cell IFN-{gamma} production. J Exp Med 204(11):2591-602. [PubMed: 17923502]  [MGI Ref ID J:126112]

Gorbachev AV; Fairchild RL. 2004. CD40 engagement enhances antigen-presenting langerhans cell priming of IFN-gamma-producing CD4+ and CD8+ T cells independently of IL-12. J Immunol 173(4):2443-52. [PubMed: 15294958]  [MGI Ref ID J:92689]

Gramaglia I; Sahlin H; Nolan JP; Frangos JA; Intaglietta M; van der Heyde HC. 2005. Cell- rather than antibody-mediated immunity leads to the development of profound thrombocytopenia during experimental Plasmodium berghei malaria. J Immunol 175(11):7699-707. [PubMed: 16301680]  [MGI Ref ID J:122163]

Grayson MH; Cheung D; Rohlfing MM; Kitchens R; Spiegel DE; Tucker J; Battaile JT; Alevy Y; Yan L; Agapov E; Kim EY; Holtzman MJ. 2007. Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia. J Exp Med 204(11):2759-69. [PubMed: 17954569]  [MGI Ref ID J:126124]

Grdic D; Hornquist E; Kjerrulf M; Lycke NY. 1998. Lack of local suppression in orally tolerant CD8-deficient mice reveals a critical regulatory role of CD8+ T cells in the normal gut mucosa. J Immunol 160(2):754-62. [PubMed: 9551910]  [MGI Ref ID J:45177]

Guleria I; Gubbels Bupp M; Dada S; Fife B; Tang Q; Ansari MJ; Trikudanathan S; Vadivel N; Fiorina P; Yagita H; Azuma M; Atkinson M; Bluestone JA; Sayegh MH. 2007. Mechanisms of PDL1-mediated regulation of autoimmune diabetes. Clin Immunol 125(1):16-25. [PubMed: 17627890]  [MGI Ref ID J:125272]

Hancock WW; Tsai TL; Madaio MP; Gasser DL. 2003. Cutting Edge: Multiple autoimmune pathways in kd/kd mice. J Immunol 171(6):2778-81. [PubMed: 12960297]  [MGI Ref ID J:85380]

He X; He X; Dave VP; Zhang Y; Hua X; Nicolas E; Xu W; Roe BA; Kappes DJ. 2005. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433(7028):826-33. [PubMed: 15729333]  [MGI Ref ID J:95867]

Hegde S; Niederkorn JY. 2000. The role of cytotoxic T lymphocytes in corneal allograft rejection. Invest Ophthalmol Vis Sci 41(11):3341-7. [PubMed: 11006223]  [MGI Ref ID J:115389]

Hida S; Ogasawara K; Sato K; Abe M; Takayanagi H; Yokochi T; Sato T; Hirose S; Shirai T; Taki S; Taniguchi T. 2000. CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling Immunity 13(5):643-55. [PubMed: 11114377]  [MGI Ref ID J:66034]

Hornquist CE; Ekman L; Grdic KD; Schon K; Lycke NY. 1995. Paradoxical IgA immunity in CD4-deficient mice. Lack of cholera toxin-specific protective immunity despite normal gut mucosal IgA differentiation. J Immunol 155(6):2877-87. [PubMed: 7673704]  [MGI Ref ID J:110845]

Huber M; Timms E; Mak TW; Rollinghoff M; Lohoff M. 1998. Effective and long-lasting immunity against the parasite Leishmania major in CD8-deficient mice. Infect Immun 66(8):3968-70. [PubMed: 9673288]  [MGI Ref ID J:48826]

Hung K; Hayashi R; Lafond-Walker A; Lowenstein C; Pardoll D; Levitsky H. 1998. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188(12):2357-68. [PubMed: 9858522]  [MGI Ref ID J:51677]

Hussell T; Openshaw PJ. 2000. IL-12-activated NK cells reduce lung eosinophilia to the attachment protein of respiratory syncytial virus but do not enhance the severity of illness in CD8 T cell-immunodeficient conditions. J Immunol 165(12):7109-15. [PubMed: 11120841]  [MGI Ref ID J:118396]

Hutchins NA; Chung CS; Borgerding JN; Ayala CA; Ayala A. 2013. Kupffer Cells Protect Liver Sinusoidal Endothelial Cells from Fas-Dependent Apoptosis in Sepsis by Down-Regulating gp130. Am J Pathol 182(3):742-54. [PubMed: 23306157]  [MGI Ref ID J:193702]

Iannacone M; Sitia G; Isogawa M; Whitmire JK; Marchese P; Chisari FV; Ruggeri ZM; Guidotti LG. 2008. Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci U S A 105(2):629-34. [PubMed: 18184798]  [MGI Ref ID J:131089]

Ip CW; Kroner A; Bendszus M; Leder C; Kobsar I; Fischer S; Wiendl H; Nave KA; Martini R. 2006. Immune cells contribute to myelin degeneration and axonopathic changes in mice overexpressing proteolipid protein in oligodendrocytes. J Neurosci 26(31):8206-16. [PubMed: 16885234]  [MGI Ref ID J:111136]

Jia Y; Domenico J; Takeda K; Han J; Wang M; Armstrong M; Reisdorph N; O'Connor BP; Lucas JJ; Gelfand EW. 2013. Steroidogenic enzyme Cyp11a1 regulates Type 2 CD8+ T cell skewing in allergic lung disease. Proc Natl Acad Sci U S A 110(20):8152-7. [PubMed: 23630275]  [MGI Ref ID J:197329]

Joetham A; Okamoto M; Takeda K; Schedel M; Ohnishi H; Dakhama A; Gelfand EW. 2011. CD8 regulates T regulatory cell production of IL-6 and maintains their suppressive phenotype in allergic lung disease. J Immunol 186(1):113-20. [PubMed: 21115736]  [MGI Ref ID J:168721]

Joetham A; Takeda K; Miyahara N; Matsubara S; Ohnishi H; Koya T; Dakhama A; Gelfand EW. 2007. Activation of naturally occurring lung CD4+CD25+ regulatory T cells requires CD8 and MHC I interaction. Proc Natl Acad Sci U S A 104(38):15057-62. [PubMed: 17855564]  [MGI Ref ID J:125195]

Justice JP; Crosby J; Borchers MT; Tomkinson A; Lee JJ; Lee NA. 2002. CD4(+) T cell-dependent airway mucus production occurs in response to IL-5 expression in lung. Am J Physiol Lung Cell Mol Physiol 282(5):L1066-74. [PubMed: 11943672]  [MGI Ref ID J:108354]

Kanakaraj P; Schafer PH; Cavender DE; Wu Y; Ngo K; Grealish PF; Wadsworth SA; Peterson PA; Siekierka JJ; Harris CA; Fung-Leung WP. 1998. Interleukin (IL)-1 receptor-associated kinase (IRAK) requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production. J Exp Med 187(12):2073-9. [PubMed: 9625767]  [MGI Ref ID J:110860]

Kang TW; Yevsa T; Woller N; Hoenicke L; Wuestefeld T; Dauch D; Hohmeyer A; Gereke M; Rudalska R; Potapova A; Iken M; Vucur M; Weiss S; Heikenwalder M; Khan S; Gil J; Bruder D; Manns M; Schirmacher P; Tacke F; Ott M; Luedde T; Longerich T; Kubicka S; Zender L. 2011. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479(7374):547-51. [PubMed: 22080947]  [MGI Ref ID J:179823]

Khan IA; Schwartzman JD; Kasper LH; Moretto M. 1999. CD8+ CTLs are essential for protective immunity against Encephalitozoon cuniculi infection. J Immunol 162(10):6086-91. [PubMed: 10229850]  [MGI Ref ID J:120238]

Kikuchi T; Andarini S; Xin H; Gomi K; Tokue Y; Saijo Y; Honjo T; Watanabe A; Nukiwa T. 2005. Involvement of fractalkine/CX3CL1 expression by dendritic cells in the enhancement of host immunity against Legionella pneumophila. Infect Immun 73(9):5350-7. [PubMed: 16113250]  [MGI Ref ID J:100418]

Kimura T; Griffin DE. 2000. The role of CD8(+) T cells and major histocompatibility complex class I expression in the central nervous system of mice infected with neurovirulent Sindbis virus. J Virol 74(13):6117-25. [PubMed: 10846095]  [MGI Ref ID J:126435]

Kish DD; Li X; Fairchild RL. 2009. CD8 T cells producing IL-17 and IFN-gamma initiate the innate immune response required for responses to antigen skin challenge. J Immunol 182(10):5949-59. [PubMed: 19414746]  [MGI Ref ID J:148247]

Klein MA; Frigg R; Flechsig E; Raeber AJ; Kalinke U; Bluethmann H; Bootz F; Suter M; Zinkernagel RM; Aguzzi A. 1997. A crucial role for B cells in neuroinvasive scrapie [see comments] Nature 390(6661):687-90. [PubMed: 9414161]  [MGI Ref ID J:44933]

Kobrynski LJ; Sousa AO; Nahmias AJ; Lee FK. 2005. Cutting edge: antibody production to pneumococcal polysaccharides requires CD1 molecules and CD8+ T cells. J Immunol 174(4):1787-90. [PubMed: 15699104]  [MGI Ref ID J:96541]

Koh DR; Fung-Leung WP; Ho A; Gray D; Acha-Orbea H; Mak TW. 1992. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/- mice. Science 256(5060):1210-3. [PubMed: 1589800]  [MGI Ref ID J:1033]

Koh DR; Ho A; Rahemtulla A; Fung-Leung WP; Griesser H; Mak TW. 1995. Murine lupus in MRL/lpr mice lacking CD4 or CD8 T cells. Eur J Immunol 25(9):2558-62. [PubMed: 7589126]  [MGI Ref ID J:28923]

Kosiewicz MM; Alard P; Liang S; Clark SL. 2004. Mechanisms of tolerance induced by transforming growth factor-beta-treated antigen-presenting cells: CD8 regulatory T cells inhibit the effector phase of the immune response in primed mice through a mechanism involving Fas ligand. Int Immunol 16(5):697-706. [PubMed: 15096489]  [MGI Ref ID J:89454]

Koya T; Matsuda H; Matsubara S; Miyahara N; Dakhama A; Takeda K; Gelfand EW. 2009. Differential effects of dendritic cell transfer on airway hyperresponsiveness and inflammation. Am J Respir Cell Mol Biol 41(3):271-80. [PubMed: 19151321]  [MGI Ref ID J:164635]

Lacorazza HD; Nikolich-Zugich J. 2004. Exclusion and inclusion of TCR alpha proteins during T cell development in TCR-transgenic and normal mice. J Immunol 173(9):5591-600. [PubMed: 15494509]  [MGI Ref ID J:132808]

Laffont S; Seillet C; Ortaldo J; Coudert JD; Guery JC. 2008. Natural killer cells recruited into lymph nodes inhibit alloreactive T-cell activation through perforin-mediated killing of donor allogeneic dendritic cells. Blood 112(3):661-71. [PubMed: 18505782]  [MGI Ref ID J:138424]

Lesourne R; Uehara S; Lee J; Song KD; Li L; Pinkhasov J; Zhang Y; Weng NP; Wildt KF; Wang L; Bosselut R; Love PE. 2009. Themis, a T cell-specific protein important for late thymocyte development. Nat Immunol 10(8):840-7. [PubMed: 19597498]  [MGI Ref ID J:151075]

Lin X; Ma X; Rodriguez M; Roos RP. 2004. CD4+ T cells are important for clearance of DA strain of TMEV from the central nervous system of SJL/J mice. Int Immunol 16(9):1237-40. [PubMed: 15262897]  [MGI Ref ID J:91962]

Lin X; Pease LR; Murray PD; Rodriguez M. 1998. Theiler's virus infection of genetically susceptible mice induces central nervous system-infiltrating CTLs with no apparent viral or major myelin antigenic specificity. J Immunol 160(11):5661-8. [PubMed: 9605173]  [MGI Ref ID J:47789]

Liu M; Chien CC; Burne-Taney M; Molls RR; Racusen LC; Colvin RB; Rabb H. 2006. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J Am Soc Nephrol 17(3):765-74. [PubMed: 16481417]  [MGI Ref ID J:135790]

Liu P; Aitken K; Kong YY; Opavsky MA; Martino T; Dawood F; Wen WH; Kozieradzki I; Bachmaier K; Straus D; Mak TW; Penninger JM. 2000. The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat Med 6(4):429-34. [PubMed: 10742150]  [MGI Ref ID J:119597]

Liu R; Van Kaer L; La Cava A; Price M; Campagnolo DI; Collins M; Young DA; Vollmer TL; Shi FD. 2006. Autoreactive T cells mediate NK cell degeneration in autoimmune disease. J Immunol 176(9):5247-54. [PubMed: 16621990]  [MGI Ref ID J:131629]

Liu Y; Teige A; Mondoc E; Ibrahim S; Holmdahl R; Issazadeh-Navikas S. 2011. Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice. J Clin Invest 121(1):249-64. [PubMed: 21157037]  [MGI Ref ID J:171844]

Ma F; Feng J; Zhang C; Li Y; Qi G; Li H; Wu Y; Fu Y; Zhao Y; Chen H; Du J; Tang H. 2014. The requirement of CD8+ T cells to initiate and augment acute cardiac inflammatory response to high blood pressure. J Immunol 192(7):3365-73. [PubMed: 24600037]  [MGI Ref ID J:210252]

Maeno T; Houghton AM; Quintero PA; Grumelli S; Owen CA; Shapiro SD. 2007. CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol 178(12):8090-6. [PubMed: 17548647]  [MGI Ref ID J:148578]

Mak TW; Rahemtulla A; Schilham M; Koh DR; Fung-Leung WP. 1992. Generation of mutant mice lacking surface expression of CD4 or CD8 by gene targeting. J Autoimmun 5 Suppl A:55-9. [PubMed: 1503636]  [MGI Ref ID J:575]

Maldonado MA; MacDonald GC; Kakkanaiah VN; Fecho K; Dransfield M; Sekiguchi D; Cohen PL; Eisenberg RA. 1999. Differential control of autoantibodies and lymphoproliferation by Fas ligand expression on CD4+ and CD8+ T cells in vivo. J Immunol 163(6):3138-42. [PubMed: 10477580]  [MGI Ref ID J:119603]

Marquis M; Lewandowski D; Dugas V; Aumont F; Senechal S; Jolicoeur P; Hanna Z; de Repentigny L. 2006. CD8+ T cells but not polymorphonuclear leukocytes are required to limit chronic oral carriage of Candida albicans in transgenic mice expressing human immunodeficiency virus type 1. Infect Immun 74(4):2382-91. [PubMed: 16552068]  [MGI Ref ID J:107387]

Matheson JM; Johnson VJ; Luster MI. 2005. Immune mediators in a murine model for occupational asthma: studies with toluene diisocyanate. Toxicol Sci 84(1):99-109. [PubMed: 15590890]  [MGI Ref ID J:106452]

Matundan H; Mott KR; Ghiasi H. 2014. Role of CD8+ T cells and lymphoid dendritic cells in protection from ocular herpes simplex virus 1 challenge in immunized mice. J Virol 88(14):8016-27. [PubMed: 24807710]  [MGI Ref ID J:214403]

McPhee CG; Bubier JA; Sproule TJ; Park G; Steinbuck MP; Schott WH; Christianson GJ; Morse HC 3rd; Roopenian DC. 2013. IL-21 is a double-edged sword in the systemic lupus erythematosus-like disease of BXSB.Yaa mice. J Immunol 191(9):4581-8. [PubMed: 24078696]  [MGI Ref ID J:206236]

Meehan TF; DeLuca HF. 2002. CD8+ T cells are not necessary for 1alpha,25-dihydroxyvitamin D3 to suppress experimental autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 99(8):5557-60. [PubMed: 11929984]  [MGI Ref ID J:76066]

Meissner NN; Lund FE; Han S; Harmsen A. 2005. CD8 T cell-mediated lung damage in response to the extracellular pathogen pneumocystis is dependent on MHC class I expression by radiation-resistant lung cells. J Immunol 175(12):8271-9. [PubMed: 16339567]  [MGI Ref ID J:122256]

Messaoudi I; Warner J; Nikolich-Zugich D; Fischer M; Nikolich-Zugich J. 2006. Molecular, cellular, and antigen requirements for development of age-associated T cell clonal expansions in vivo. J Immunol 176(1):301-8. [PubMed: 16365422]  [MGI Ref ID J:126270]

Mishra A; Schlotman J; Wang M; Rothenberg ME. 2007. Critical role for adaptive T cell immunity in experimental eosinophilic esophagitis in mice. J Leukoc Biol 81(4):916-24. [PubMed: 17194734]  [MGI Ref ID J:121455]

Miyahara N; Swanson BJ; Takeda K; Taube C; Miyahara S; Kodama T; Dakhama A; Ott VL; Gelfand EW. 2004. Effector CD8(+) T cells mediate inflammation and airway hyper-responsiveness. Nat Med 10(8):865-9. [PubMed: 15258576]  [MGI Ref ID J:91610]

Miyahara N; Takeda K; Kodama T; Joetham A; Taube C; Park JW; Miyahara S; Balhorn A; Dakhama A; Gelfand EW. 2004. Contribution of antigen-primed CD8(+) T cells to the development of airway hyperresponsiveness and inflammation is associated with IL-13. J Immunol 172(4):2549-58. [PubMed: 14764728]  [MGI Ref ID J:88063]

Miyahara N; Takeda K; Miyahara S; Taube C; Joetham A; Koya T; Matsubara S; Dakhama A; Tager AM; Luster AD; Gelfand EW. 2005. Leukotriene B4 receptor-1 is essential for allergen-mediated recruitment of CD8+ T cells and airway hyperresponsiveness. J Immunol 174(8):4979-84. [PubMed: 15814727]  [MGI Ref ID J:98154]

Montgomery CP; Daniels M; Zhao F; Alegre ML; Chong AS; Daum RS. 2014. Protective immunity against recurrent Staphylococcus aureus skin infection requires antibody and interleukin-17A. Infect Immun 82(5):2125-34. [PubMed: 24614654]  [MGI Ref ID J:210239]

Moretto M; Durell B; Schwartzman JD; Khan IA. 2001. Gamma delta T cell-deficient mice have a down-regulated CD8+ T cell immune response against Encephalitozoon cuniculi infection. J Immunol 166(12):7389-97. [PubMed: 11390490]  [MGI Ref ID J:123806]

Mosenson JA; Zloza A; Nieland JD; Garrett-Mayer E; Eby JM; Huelsmann EJ; Kumar P; Denman CJ; Lacek AT; Kohlhapp FJ; Alamiri A; Hughes T; Bines SD; Kaufman HL; Overbeck A; Mehrotra S; Hernandez C; Nishimura MI; Guevara-Patino JA; Le Poole IC. 2013. Mutant HSP70 reverses autoimmune depigmentation in vitiligo. Sci Transl Med 5(174):174ra28. [PubMed: 23447019]  [MGI Ref ID J:213320]

Mott KR; Underhill D; Wechsler SL; Ghiasi H. 2008. Lymphoid-related CD11c+ CD8alpha+ dendritic cells are involved in enhancing herpes simplex virus type 1 latency. J Virol 82(20):9870-9. [PubMed: 18667491]  [MGI Ref ID J:153404]

Murphy KA; Erickson JR; Johnson CS; Seiler CE; Bedi J; Hu P; Pluhar GE; Epstein AL; Ohlfest JR. 2014. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol 192(1):224-33. [PubMed: 24293627]  [MGI Ref ID J:207088]

Murphy TJ; Choileain NN; Zang Y; Mannick JA; Lederer JA. 2005. CD4+CD25+ regulatory T cells control innate immune reactivity after injury. J Immunol 174(5):2957-63. [PubMed: 15728508]  [MGI Ref ID J:97723]

Murray PD; Pavelko KD; Leibowitz J; Lin X; Rodriguez M. 1998. CD4(+) and CD8(+) T cells make discrete contributions to demyelination and neurologic disease in a viral model of multiple sclerosis. J Virol 72(9):7320-9. [PubMed: 9696828]  [MGI Ref ID J:92227]

Murthy AK; Li W; Chaganty BK; Kamalakaran S; Guentzel MN; Seshu J; Forsthuber TG; Zhong G; Arulanandam BP. 2011. Tumor Necrosis Factor Alpha Production from CD8+ T Cells Mediates Oviduct Pathological Sequelae following Primary Genital Chlamydia muridarum Infection. Infect Immun 79(7):2928-35. [PubMed: 21536799]  [MGI Ref ID J:173482]

Najafian N; Chitnis T; Salama AD; Zhu B; Benou C; Yuan X; Clarkson MR; Sayegh MH; Khoury SJ. 2003. Regulatory functions of CD8+CD28- T cells in an autoimmune disease model. J Clin Invest 112(7):1037-48. [PubMed: 14523041]  [MGI Ref ID J:85805]

Nakagawa T; Tsuruoka M; Ogura H; Okuyama Y; Arima Y; Hirano T; Murakami M. 2010. IL-6 positively regulates Foxp3+CD8+ T cells in vivo. Int Immunol 22(2):129-39. [PubMed: 20042455]  [MGI Ref ID J:157654]

Nakanishi Y; Lu B; Gerard C; Iwasaki A. 2009. CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462(7272):510-3. [PubMed: 19898495]  [MGI Ref ID J:155104]

Newell KA; He G; Guo Z; Kim O; Szot GL; Rulifson I; Zhou P; Hart J; Thistlethwaite JR; Bluestone JA. 1999. Cutting edge: blockade of the CD28/B7 costimulatory pathway inhibits intestinal allograft rejection mediated by CD4+ but not CD8+ T cells. J Immunol 163(5):2358-62. [PubMed: 10452966]  [MGI Ref ID J:57103]

Ngai P; McCormick S; Small C; Zhang X; Zganiacz A; Aoki N; Xing Z. 2007. Gamma interferon responses of CD4 and CD8 T-cell subsets are quantitatively different and independent of each other during pulmonary Mycobacterium bovis BCG infection. Infect Immun 75(5):2244-52. [PubMed: 17307945]  [MGI Ref ID J:121875]

Oakley MS; Majam V; Mahajan B; Gerald N; Anantharaman V; Ward JM; Faucette LJ; McCutchan TF; Zheng H; Terabe M; Berzofsky JA; Aravind L; Kumar S. 2009. Pathogenic roles of CD14, galectin-3, and OX40 during experimental cerebral malaria in mice. PLoS One 4(8):e6793. [PubMed: 19710907]  [MGI Ref ID J:152399]

Oakley MS; McCutchan TF; Anantharaman V; Ward JM; Faucette L; Erexson C; Mahajan B; Zheng H; Majam V; Aravind L; Kumar S. 2008. Host biomarkers and biological pathways that are associated with the expression of experimental cerebral malaria in mice. Infect Immun 76(10):4518-29. [PubMed: 18644885]  [MGI Ref ID J:140145]

Ochi A; Nguyen AH; Bedrosian AS; Mushlin HM; Zarbakhsh S; Barilla R; Zambirinis CP; Fallon NC; Rehman A; Pylayeva-Gupta Y; Badar S; Hajdu CH; Frey AB; Bar-Sagi D; Miller G. 2012. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med 209(9):1671-87. [PubMed: 22908323]  [MGI Ref ID J:191814]

Okamoto M; Takeda K; Joetham A; Ohnishi H; Matsuda H; Swasey CH; Swanson BJ; Yasutomo K; Dakhama A; Gelfand EW. 2008. Essential role of Notch signaling in effector memory CD8+ T cell-mediated airway hyperresponsiveness and inflammation. J Exp Med 205(5):1087-97. [PubMed: 18426985]  [MGI Ref ID J:136299]

Oliveira-dos-Santos AJ; Penninger JM; Rieker-Geley T; Matsumoto G; Mak TM; Wick G. 1998. Thymic heterotypic cellular complexes in gene-targeted mice with defined blocks in T cell development and adhesion molecule expression. Eur J Immunol 28(9):2882-92. [PubMed: 9754575]  [MGI Ref ID J:49877]

Olsson T; Bakhiet M; Hojeberg B; Ljungdahl A; Edlund C; Andersson G; Ekre HP; Fung-Leung WP; Mak T; Wigzell H; et al.. 1993. CD8 is critically involved in lymphocyte activation by a T. brucei brucei-released molecule. Cell 72(5):715-27. [PubMed: 8453666]  [MGI Ref ID J:112991]

Opavsky MA; Penninger J; Aitken K; Wen WH; Dawood F; Mak T; Liu P. 1999. Susceptibility to myocarditis is dependent on the response of alphabeta T lymphocytes to coxsackieviral infection. Circ Res 85(6):551-8. [PubMed: 10488058]  [MGI Ref ID J:114217]

Ortega SB; Kashi VP; Tyler AF; Cunnusamy K; Mendoza JP; Karandikar NJ. 2013. The disease-ameliorating function of autoregulatory CD8 T cells is mediated by targeting of encephalitogenic CD4 T cells in experimental autoimmune encephalomyelitis. J Immunol 191(1):117-26. [PubMed: 23733879]  [MGI Ref ID J:205352]

Park JH; Adoro S; Lucas PJ; Sarafova SD; Alag AS; Doan LL; Erman B; Liu X; Ellmeier W; Bosselut R; Feigenbaum L; Singer A. 2007. 'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nat Immunol 8(10):1049-59. [PubMed: 17873878]  [MGI Ref ID J:125259]

Pearce EL; Shedlock DJ; Shen H. 2004. Functional characterization of MHC class II-restricted CD8+CD4- and CD8-CD4- T cell responses to infection in CD4-/- mice. J Immunol 173(4):2494-9. [PubMed: 15294964]  [MGI Ref ID J:92690]

Pearson T; Markees TG; Serreze DV; Pierce MA; Marron MP; Wicker LS; Peterson LB; Shultz LD; Mordes JP; Rossini AA; Greiner DL. 2003. Genetic disassociation of autoimmunity and resistance to costimulation blockade-induced transplantation tolerance in nonobese diabetic mice. J Immunol 171(1):185-95. [PubMed: 12816997]  [MGI Ref ID J:109845]

Penninger JM; Neu N; Timms E; Wallace VA; Koh DR; Kishihara K; Pummerer C; Mak TW. 1993. The induction of experimental autoimmune myocarditis in mice lacking CD4 or CD8 molecules [corrected] [published erratum appears in J Exp Med 1994 Jan 1;179(1):371] J Exp Med 178(5):1837-42. [PubMed: 8228830]  [MGI Ref ID J:15279]

Penninger JM; Sirard C; Mittrucker HW; Chidgey A; Kozieradzki I; Nghiem M; Hakem A; Kimura T; Timms E; Boyd R; Taniguchi T; Matsuyama T; Mak TW. 1997. The interferon regulatory transcription factor IRF-1 controls positive and negative selection of CD8+ thymocytes. Immunity 7(2):243-54. [PubMed: 9285409]  [MGI Ref ID J:111439]

Petrofsky M; Bermudez LE. 2005. CD4+ T cells but Not CD8+ or gammadelta+ lymphocytes are required for host protection against Mycobacterium avium infection and dissemination through the intestinal route. Infect Immun 73(5):2621-7. [PubMed: 15845464]  [MGI Ref ID J:97613]

Pien GC; Nguyen KB; Malmgaard L; Satoskar AR; Biron CA. 2002. A unique mechanism for innate cytokine promotion of T cell responses to viral infections. J Immunol 169(10):5827-37. [PubMed: 12421964]  [MGI Ref ID J:80075]

Pillai AB; George TI; Dutt S; Strober S. 2009. Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood 113(18):4458-67. [PubMed: 19221040]  [MGI Ref ID J:148423]

Rabb H; Daniels F; O'Donnell M; Haq M; Saba SR; Keane W; Tang WW. 2000. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol 279(3):F525-31. [PubMed: 10966932]  [MGI Ref ID J:114177]

Recher M; Lang KS; Hunziker L; Freigang S; Eschli B; Harris NL; Navarini A; Senn BM; Fink K; Lotscher M; Hangartner L; Zellweger R; Hersberger M; Theocharides A; Hengartner H; Zinkernagel RM. 2004. Deliberate removal of T cell help improves virus-neutralizing antibody production. Nat Immunol 5(9):934-42. [PubMed: 15300247]  [MGI Ref ID J:92168]

Ribas A; Wargo JA; Comin-Anduix B; Sanetti S; Schumacher LY; McLean C; Dissette VB; Glaspy JA; McBride WH; Butterfield LH; Economou JS. 2004. Enhanced tumor responses to dendritic cells in the absence of CD8-positive cells. J Immunol 172(8):4762-9. [PubMed: 15067052]  [MGI Ref ID J:89152]

Riddle DS; Miller PJ; Vincent BG; Kepler TB; Maile R; Frelinger JA; Collins EJ. 2008. Rescue of cytotoxic function in the CD8alpha knockout mouse by removal of MHC class II. Eur J Immunol 38(6):1511-21. [PubMed: 18465769]  [MGI Ref ID J:136196]

Roberts SJ; Ng BY; Filler RB; Lewis J; Glusac EJ; Hayday AC; Tigelaar RE; Girardi M. 2007. Characterizing tumor-promoting T cells in chemically induced cutaneous carcinogenesis. Proc Natl Acad Sci U S A 104(16):6770-5. [PubMed: 17412837]  [MGI Ref ID J:120942]

Rottenberg ME; Bakhiet M; Olsson T; Kristensson K; Mak T; Wigzell H; Orn A. 1993. Differential susceptibilities of mice genomically deleted of CD4 and CD8 to infections with Trypanosoma cruzi or Trypanosoma brucei. Infect Immun 61(12):5129-33. [PubMed: 8225589]  [MGI Ref ID J:111017]

Rottenberg ME; Gigliotti Rothfuchs AC; Gigliotti D; Svanholm C; Bandholtz L; Wigzell H. 1999. Role of innate and adaptive immunity in the outcome of primary infection with Chlamydia pneumoniae, as analyzed in genetically modified mice. J Immunol 162(5):2829-36. [PubMed: 10072530]  [MGI Ref ID J:124536]

Rottenberg ME; Riarte A; Sporrong L; Altcheh J; Petray P; Ruiz AM; Wigzell H; Orn A. 1995. Outcome of infection with different strains of Trypanosoma cruzi in mice lacking CD4 and/or CD8. Immunol Lett 45(1-2):53-60. [PubMed: 7622189]  [MGI Ref ID J:112349]

Russell MS; Dudani R; Krishnan L; Sad S. 2009. IFN-gamma expressed by T cells regulates the persistence of antigen presentation by limiting the survival of dendritic cells. J Immunol 183(12):7710-8. [PubMed: 19923462]  [MGI Ref ID J:157498]

Ruzek D; Salat J; Singh SK; Kopecky J. 2011. Breakdown of the Blood-Brain Barrier during Tick-Borne Encephalitis in Mice Is Not Dependent on CD8 T-Cells. PLoS One 6(5):e20472. [PubMed: 21629771]  [MGI Ref ID J:172575]

Sanapala S; Yu JJ; Murthy AK; Li W; Guentzel MN; Chambers JP; Klose KE; Arulanandam BP. 2012. Perforin- and granzyme-mediated cytotoxic effector functions are essential for protection against Francisella tularensis following vaccination by the defined F. tularensis subsp. novicida DeltafopC vaccine strain. Infect Immun 80(6):2177-85. [PubMed: 22493083]  [MGI Ref ID J:186522]

Sardinha LR; Elias RM; Mosca T; Bastos KR; Marinho CR; D'Imperio Lima MR; Alvarez JM. 2006. Contribution of NK, NK T, gammadelta T, and alphabeta T cells to the gamma interferon response required for liver protection against Trypanosoma cruzi. Infect Immun 74(4):2031-42. [PubMed: 16552032]  [MGI Ref ID J:107423]

Sawa S; Kamimura D; Jin GH; Morikawa H; Kamon H; Nishihara M; Ishihara K; Murakami M; Hirano T. 2006. Autoimmune arthritis associated with mutated interleukin (IL)-6 receptor gp130 is driven by STAT3/IL-7-dependent homeostatic proliferation of CD4+ T cells. J Exp Med 203(6):1459-70. [PubMed: 16717113]  [MGI Ref ID J:124381]

Schaeffer M; Han SJ; Chtanova T; van Dooren GG; Herzmark P; Chen Y; Roysam B; Striepen B; Robey EA. 2009. Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii. J Immunol 182(10):6379-93. [PubMed: 19414791]  [MGI Ref ID J:148321]

Schilham MW; Fung-Leung WP; Rahemtulla A; Kuendig T; Zhang L; Potter J; Miller RG; Hengartner H; Mak TW. 1993. Alloreactive cytotoxic T cells can develop and function in mice lacking both CD4 and CD8. Eur J Immunol 23(6):1299-304. [PubMed: 8500525]  [MGI Ref ID J:12572]

Schmidt D; Verdaguer J; Averill N; Santamaria P. 1997. A mechanism for the major histocompatibility complex-linked resistance to autoimmunity. J Exp Med 186(7):1059-75. [PubMed: 9314555]  [MGI Ref ID J:108768]

Semmling V; Lukacs-Kornek V; Thaiss CA; Quast T; Hochheiser K; Panzer U; Rossjohn J; Perlmutter P; Cao J; Godfrey DI; Savage PB; Knolle PA; Kolanus W; Forster I; Kurts C. 2010. Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol 11(4):313-20. [PubMed: 20190758]  [MGI Ref ID J:158986]

Senaldi G; Shaklee CL; Mak TW; Ulich TR. 1999. Corynebacterium parvum- and Mycobacterium bovis Bacillus Calmette and Guerin-induced granuloma formation in mice lacking CD4 and CD8. Cell Immunol 193(2):155-61. [PubMed: 10222057]  [MGI Ref ID J:114269]

Serpe CJ; Coers S; Sanders VM; Jones KJ. 2003. CD4+ T, but not CD8+ or B, lymphocytes mediate facial motoneuron survival after facial nerve transection. Brain Behav Immun 17(5):393-402. [PubMed: 12946661]  [MGI Ref ID J:105952]

Sherwood ER; Enoh VT; Murphey ED; Lin CY. 2004. Mice depleted of CD8+ T and NK cells are resistant to injury caused by cecal ligation and puncture. Lab Invest 84(12):1655-65. [PubMed: 15448711]  [MGI Ref ID J:110788]

Sherwood ER; Lin CY; Tao W; Hartmann CA; Dujon JE; French AJ; Varma TK. 2003. Beta 2 microglobulin knockout mice are resistant to lethal intraabdominal sepsis. Am J Respir Crit Care Med 167(12):1641-9. [PubMed: 12626348]  [MGI Ref ID J:103038]

Shi FD; Li H; Wang H; Bai X; van der Meide PH; Link H; Ljunggren HG. 1999. Mechanisms of nasal tolerance induction in experimental autoimmune myasthenia gravis: identification of regulatory cells. J Immunol 162(10):5757-63. [PubMed: 10229808]  [MGI Ref ID J:120564]

Singer DS; Zinger H; Kohn LD; Mozes E. 1999. Differing MHC class I requirements for induction and propagation of experimental systemic lupus erythematosus. Eur J Immunol 29(7):2259-68. [PubMed: 10427989]  [MGI Ref ID J:115300]

Stabile E; Kinnaird T; la Sala A; Hanson SK; Watkins C; Campia U; Shou M; Zbinden S; Fuchs S; Kornfeld H; Epstein SE; Burnett MS. 2006. CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of interleukin-16. Circulation 113(1):118-24. [PubMed: 16380545]  [MGI Ref ID J:121521]

Stromberg PE; Woolsey CA; Clark AT; Clark JA; Turnbull IR; McConnell KW; Chang KC; Chung CS; Ayala A; Buchman TG; Hotchkiss RS; Coopersmith CM. 2009. CD4+ lymphocytes control gut epithelial apoptosis and mediate survival in sepsis. FASEB J 23(6):1817-25. [PubMed: 19158156]  [MGI Ref ID J:150554]

Sun K; Metzger DW. 2008. Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nat Med 14(5):558-64. [PubMed: 18438414]  [MGI Ref ID J:136669]

Sun Y; Blink SE; Chen JH; Fu YX. 2005. Regulation of follicular dendritic cell networks by activated T cells: the role of CD137 signaling. J Immunol 175(2):884-90. [PubMed: 16002686]  [MGI Ref ID J:100693]

Swanson KA; Zheng Y; Heidler KM; Zhang ZD; Webb TJ; Wilkes DS. 2004. Flt3-ligand, IL-4, GM-CSF, and adherence-mediated isolation of murine lung dendritic cells: assessment of isolation technique on phenotype and function. J Immunol 173(8):4875-81. [PubMed: 15470028]  [MGI Ref ID J:93713]

Tada Y; Ho A; Koh DR; Mak TW. 1996. Collagen-induced arthritis in CD4- or CD8-deficient mice: CD8+ T cells play a role in initiation and regulate recovery phase of collagen-induced arthritis. J Immunol 156(11):4520-6. [PubMed: 8666829]  [MGI Ref ID J:110669]

Tanchot C; Lemonnier FA; Perarnau B; Freitas AA; Rocha B. 1997. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276(5321):2057-62. [PubMed: 9197272]  [MGI Ref ID J:82165]

Taneja V; Taneja N; Paisansinsup T; Behrens M; Griffiths M; Luthra H; David CS. 2002. CD4 and CD8 T cells in susceptibility/protection to collagen-induced arthritis in HLA-DQ8-transgenic mice: implications for rheumatoid arthritis. J Immunol 168(11):5867-75. [PubMed: 12023391]  [MGI Ref ID J:134936]

Tao J; Gao Y; Li MO; He W; Chen L; Harvev B; Davis RJ; Flavell RA; Yin Z. 2007. JNK2 negatively regulates CD8(+) T cell effector function and anti-tumor immune response. Eur J Immunol 37(3):818-29. [PubMed: 17301952]  [MGI Ref ID J:118685]

Tatituri RV; Watts GF; Bhowruth V; Barton N; Rothchild A; Hsu FF; Almeida CF; Cox LR; Eggeling L; Cardell S; Rossjohn J; Godfrey DI; Behar SM; Besra GS; Brenner MB; Brigl M. 2013. Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proc Natl Acad Sci U S A 110(5):1827-32. [PubMed: 23307809]  [MGI Ref ID J:193701]

Taube C; Miyahara N; Ott V; Swanson B; Takeda K; Loader J; Shultz LD; Tager AM; Luster AD; Dakhama A; Gelfand EW. 2006. The leukotriene B4 receptor (BLT1) is required for effector CD8+ T cell-mediated, mast cell-dependent airway hyperresponsiveness. J Immunol 176(5):3157-64. [PubMed: 16493075]  [MGI Ref ID J:129412]

Tilloy F; Treiner E; Park SH; Garcia C; Lemonnier F; de la Salle H; Bendelac A; Bonneville M; Lantz O. 1999. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med 189(12):1907-21. [PubMed: 10377186]  [MGI Ref ID J:55844]

Tumanov AV; Koroleva EP; Christiansen PA; Khan MA; Ruddy MJ; Burnette B; Papa S; Franzoso G; Nedospasov SA; Fu YX; Anders RA. 2009. T cell-derived lymphotoxin regulates liver regeneration. Gastroenterology 136(2):694-704.e4. [PubMed: 18952083]  [MGI Ref ID J:145619]

Tzelepis F; Persechini PM; Rodrigues MM. 2007. Modulation of CD4+ T cell-dependent specific cytotoxic CD8+ T cells differentiation and proliferation by the timing of increase in the pathogen load. PLoS ONE 2(4):e393. [PubMed: 17460760]  [MGI Ref ID J:129273]

Urbieta M; Barao I; Jones M; Jurecic R; Panoskaltsis-Mortari A; Blazar BR; Murphy WJ; Levy RB. 2010. Hematopoietic progenitor cell regulation by CD4+CD25+ T cells. Blood 115(23):4934-43. [PubMed: 20200356]  [MGI Ref ID J:161563]

Urdahl KB; Liggitt D; Bevan MJ. 2003. CD8+ T cells accumulate in the lungs of Mycobacterium tuberculosis-infected Kb-/-Db-/- mice, but provide minimal protection. J Immunol 170(4):1987-94. [PubMed: 12574368]  [MGI Ref ID J:82297]

Van Kaer L; Rabacal WA; Scott Algood HM; Parekh VV; Olivares-Villagomez D. 2013. In vitro induction of regulatory CD4+CD8alpha+ T cells by TGF-beta, IL-7 and IFN-gamma. PLoS One 8(7):e67821. [PubMed: 23844100]  [MGI Ref ID J:204307]

VanLith ML; Kohlgraf KG; Sivinski CL; Tempero RM; Hollingsworth MA. 2002. MUC1-specific anti-tumor responses: molecular requirements for CD4-mediated responses. Int Immunol 14(8):873-82. [PubMed: 12147624]  [MGI Ref ID J:113544]

Venet F; Chung CS; Huang X; Lomas-Neira J; Chen Y; Ayala A. 2009. Lymphocytes in the development of lung inflammation: a role for regulatory CD4+ T cells in indirect pulmonary lung injury. J Immunol 183(5):3472-80. [PubMed: 19641139]  [MGI Ref ID J:151875]

Vu MD; Amanullah F; Li Y; Demirci G; Sayegh MH; Li XC. 2004. Different costimulatory and growth factor requirements for CD4+ and CD8+ T cell-mediated rejection. J Immunol 173(1):214-21. [PubMed: 15210777]  [MGI Ref ID J:90930]

Wallace VA; Fung-Leung WP; Timms E; Gray D; Kishihara K; Loh DY; Penninger J; Mak TW. 1992. CD45RA and CD45RBhigh expression induced by thymic selection events. J Exp Med 176(6):1657-63. [PubMed: 1460424]  [MGI Ref ID J:110723]

Wallace VA; Kondo S; Kono T; Xing Z; Timms E; Furlonger C; Keystone E; Gauldie J; Sauder DN; Mak TW; Paige CJ. 1994. A role for CD4+ T cells in the pathogenesis of skin fibrosis in tight skin mice. Eur J Immunol 24(6):1463-6. [PubMed: 7911425]  [MGI Ref ID J:18913]

Wallace VA; Penninger J; Mak TW. 1994. T-Cell development in CD4, CD8, and p56(lck) Gene-Targeted mice.. In: Transgenesis and Targeted Mutagenesis in Immunology. Academic Press, Inc..  [MGI Ref ID J:21662]

Wang B; Fujisawa H; Zhuang L; Freed I; Howell BG; Shahid S; Shivji GM; Mak TW; Sauder DN. 2000. CD4(+) Th1 and CD8(+) type 1 cytotoxic T cells both play a crucial role in the full development of contact hypersensitivity J Immunol 165(12):6783-90. [PubMed: 11120799]  [MGI Ref ID J:66170]

Wang T; Chen L; Ahmed E; Ma L; Yin D; Zhou P; Shen J; Xu H; Wang CR; Alegre ML; Chong AS. 2008. Prevention of allograft tolerance by bacterial infection with Listeria monocytogenes. J Immunol 180(9):5991-9. [PubMed: 18424719]  [MGI Ref ID J:134678]

Weber SE; Tian H; Pirofski LA. 2011. CD8+ cells enhance resistance to pulmonary serotype 3 Streptococcus pneumoniae infection in mice. J Immunol 186(1):432-42. [PubMed: 21135172]  [MGI Ref ID J:168003]

Wei B; Su TT; Dalwadi H; Stephan RP; Fujiwara D; Huang TT; Brewer S; Chen L; Arditi M; Borneman J; Rawlings DJ; Braun J. 2008. Resident enteric microbiota and CD8(+) T cells shape the abundance of marginal zone B cells. Eur J Immunol 38(12):3411-3425. [PubMed: 19009526]  [MGI Ref ID J:141389]

Wei B; Wingender G; Fujiwara D; Chen DY; McPherson M; Brewer S; Borneman J; Kronenberg M; Braun J. 2010. Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. J Immunol 184(3):1218-26. [PubMed: 20048124]  [MGI Ref ID J:159495]

Wen T; Trumper L; Fung-Leung W; Rahemtulla A; Klein E; Klein G; Mak TW. 1998. Requirement of the CD8+ or CD4+ T lymphocyte subsets for the rejection of lymphoma and fibrosarcoma grafts studied in gene knockout hosts. Immunol Lett 61(2-3):187-90. [PubMed: 9657273]  [MGI Ref ID J:47925]

Wesche-Soldato DE; Chung CS; Gregory SH; Salazar-Mather TP; Ayala CA; Ayala A. 2007. CD8+ T cells promote inflammation and apoptosis in the liver after sepsis: role of Fas-FasL. Am J Pathol 171(1):87-96. [PubMed: 17591956]  [MGI Ref ID J:122836]

Wiesel M; Kratky W; Oxenius A. 2011. Type I IFN substitutes for T cell help during viral infections. J Immunol 186(2):754-63. [PubMed: 21160039]  [MGI Ref ID J:168770]

Willimsky G; Schmidt K; Loddenkemper C; Gellermann J; Blankenstein T. 2013. Virus-induced hepatocellular carcinomas cause antigen-specific local tolerance. J Clin Invest 123(3):1032-43. [PubMed: 23454765]  [MGI Ref ID J:196378]

Xiang J; Huang H; Liu Y. 2005. A new dynamic model of CD8+ T effector cell responses via CD4+ T helper-antigen-presenting cells. J Immunol 174(12):7497-505. [PubMed: 15944248]  [MGI Ref ID J:100792]

Xin H; Kikuchi T; Andarini S; Ohkouchi S; Suzuki T; Nukiwa T; Hagiwara K; Honjo T; Saijo Y. 2005. Antitumor immune response by CX3CL1 fractalkine gene transfer depends on both NK and T cells. Eur J Immunol 35(5):1371-80. [PubMed: 15789339]  [MGI Ref ID J:97809]

Xu R; Johnson AJ; Liggitt D; Bevan MJ. 2004. Cellular and humoral immunity against vaccinia virus infection of mice. J Immunol 172(10):6265-71. [PubMed: 15128815]  [MGI Ref ID J:89851]

Yang PL; Althage A; Chung J; Maier H; Wieland S; Isogawa M; Chisari FV. 2010. Immune effectors required for hepatitis B virus clearance. Proc Natl Acad Sci U S A 107(2):798-802. [PubMed: 20080755]  [MGI Ref ID J:156523]

Yuan X; Ansari MJ; D'Addio F; Paez-Cortez J; Schmitt I; Donnarumma M; Boenisch O; Zhao X; Popoola J; Clarkson MR; Yagita H; Akiba H; Freeman GJ; Iacomini J; Turka LA; Glimcher LH; Sayegh MH. 2009. Targeting Tim-1 to overcome resistance to transplantation tolerance mediated by CD8 T17 cells. Proc Natl Acad Sci U S A 106(26):10734-9. [PubMed: 19528638]  [MGI Ref ID J:150842]

Yusuf N; Nasti TH; Katiyar SK; Jacobs MK; Seibert MD; Ginsburg AC; Timares L; Xu H; Elmets CA. 2008. Antagonistic roles of CD4+ and CD8+ T-cells in 7,12-dimethylbenz(a)anthracene cutaneous carcinogenesis. Cancer Res 68(10):3924-30. [PubMed: 18483278]  [MGI Ref ID J:135019]

Zhang B; Zhang Y; Niu L; Vella AT; Mittler RS. 2010. Dendritic cells and Stat3 are essential for CD137-induced CD8 T cell activation-induced cell death. J Immunol 184(9):4770-8. [PubMed: 20351189]  [MGI Ref ID J:160463]

Zhang G; Peng Y; Schoenlaub L; Elliott A; Mitchell W; Zhang Y. 2013. Formalin-inactivated Coxiella burnetii phase I vaccine-induced protection depends on B cells to produce protective IgM and IgG. Infect Immun 81(6):2112-22. [PubMed: 23545296]  [MGI Ref ID J:199523]

Zhang GX; Xiao BG; Bakhiet M; van der Meide P; Wigzell H; Link H; Olsson T. 1996. Both CD4+ and CD8+ T cells are essential to induce experimental autoimmune myasthenia gravis. J Exp Med 184(2):349-56. [PubMed: 8760788]  [MGI Ref ID J:110750]

Zhang JM; Wang Y; Miao YJ; Zhang Y; Wu YN; Jia LX; Qi YF; Du J. 2013. Knockout of CD8 delays reendothelialization and accelerates neointima formation in injured arteries of mouse via TNF-alpha inhibiting the endothelial cells migration. PLoS One 8(5):e62001. [PubMed: 23658704]  [MGI Ref ID J:200538]

Zhang S; Bernard D; Khan WI; Kaplan MH; Bramson JL; Wan Y. 2009. CD4+ T-cell-mediated anti-tumor immunity can be uncoupled from autoimmunity via the STAT4/STAT6 signaling axis. Eur J Immunol 39(5):1252-9. [PubMed: 19338001]  [MGI Ref ID J:148099]

Zhang XL; Zhao S; Borenstein SH; Liu Y; Jayabalasingham B; Chamberlain JW. 2001. CD8 expression up to the double-positive CD3(low/intermediate) stage of thymic differentiation is sufficient for development of peripheral functional cytotoxic T lymphocytes. J Exp Med 194(5):685-93. [PubMed: 11535636]  [MGI Ref ID J:71351]

Zhou HF; Yan H; Cannon JL; Springer LE; Green JM; Pham CT. 2013. CD43-mediated IFN-gamma production by CD8+ T cells promotes abdominal aortic aneurysm in mice. J Immunol 190(10):5078-85. [PubMed: 23585675]  [MGI Ref ID J:202563]

Zhou S; Kurt-Jones EA; Cerny AM; Chan M; Bronson RT; Finberg RW. 2009. MyD88 intrinsically regulates CD4 T-cell responses. J Virol 83(4):1625-34. [PubMed: 19052080]  [MGI Ref ID J:153385]

Zhu Y; Bao L; Zhu S; Chen Z; van der Meide P; Nennesmo I; Winblad B; Ljunggren HG; Zhu J. 2002. CD4 and CD8 T cells, but not B cells, are critical to the control of murine experimental autoimmune neuritis. Exp Neurol 177(1):314-20. [PubMed: 12429233]  [MGI Ref ID J:118779]

Zou Q; Wu B; Xue J; Fan X; Feng C; Geng S; Wang M; Wang B. 2014. CD8+ Treg cells suppress CD8+ T cell-responses by IL-10-dependent mechanism during H5N1 influenza virus infection. Eur J Immunol 44(1):103-14. [PubMed: 24114149]  [MGI Ref ID J:208656]

de Visser KE; Korets LV; Coussens LM. 2005. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7(5):411-23. [PubMed: 15894262]  [MGI Ref ID J:98942]

van den Broek ME; Kagi D; Ossendorp F; Toes R; Vamvakas S; Lutz WK ; Melief CJ ; Zinkernagel RM ; Hengartner H. 1996. Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184(5):1781-90. [PubMed: 8920866]  [MGI Ref ID J:36584]

Yaa related

Anders HJ; Krug A; Pawar RD. 2008. Molecular mimicry in innate immunity? The viral RNA recognition receptor TLR7 accelerates murine lupus. Eur J Immunol 38(7):1795-9. [PubMed: 18581336]  [MGI Ref ID J:137453]

Arabo A; Costa O; Tron F; Caston J. 2005. Spatial and motor abilities during the course of autoimmune disease in (NZW x BXSB)F1 lupus-prone mice. Behav Brain Res 165(1):126-37. [PubMed: 16168499]  [MGI Ref ID J:115747]

Baccala R; Gonzalez-Quintial R; Schreiber RD; Lawson BR; Kono DH; Theofilopoulos AN. 2012. Anti-IFN-alpha/beta Receptor Antibody Treatment Ameliorates Disease in Lupus-Predisposed Mice. J Immunol 189(12):5976-84. [PubMed: 23175700]  [MGI Ref ID J:190844]

Boehm GW; Sherman GF; Hoplight BJ 2nd; Hyde LA; Bradway DM; Galaburda AM; Ahmed SA; Denenberg VH. 1998. Learning in year-old female autoimmune BXSB mice. Physiol Behav 64(1):75-82. [PubMed: 9661985]  [MGI Ref ID J:49007]

Boross P; Arandhara VL; Martin-Ramirez J; Santiago-Raber ML; Carlucci F; Flierman R; van der Kaa J; Breukel C; Claassens JW; Camps M; Lubberts E; Salvatori D; Rastaldi MP; Ossendorp F; Daha MR; Cook HT; Izui S; Botto M; Verbeek JS. 2011. The inhibiting Fc receptor for IgG, FcgammaRIIB, is a modifier of autoimmune susceptibility. J Immunol 187(3):1304-13. [PubMed: 21724994]  [MGI Ref ID J:179175]

Bubier JA; Sproule TJ; Foreman O; Spolski R; Shaffer DJ; Morse HC 3rd; Leonard WJ; Roopenian DC. 2009. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc Natl Acad Sci U S A 106(5):1518-23. [PubMed: 19164519]  [MGI Ref ID J:144484]

Deane JA; Pisitkun P; Barrett RS; Feigenbaum L; Town T; Ward JM; Flavell RA; Bolland S. 2007. Control of Toll-like Receptor 7 Expression Is Essential to Restrict Autoimmunity and Dendritic Cell Proliferation. Immunity 27(5):801-10. [PubMed: 17997333]  [MGI Ref ID J:127600]

Denenberg VH; Hoplight B; Sherman GF; Mobraaten LE. 2001. Effects of the uterine environment and neocortical ectopias upon behavior of BXSB-Yaa+mice. Dev Psychobiol 38(3):154-63. [PubMed: 11279592]  [MGI Ref ID J:72331]

Denenberg VH; Sherman G; Schrott LM; Waters NS; Boehm GW; Galaburda AM; Mobraaten LE. 1996. Effects of embryo transfer and cortical ectopias upon the behavior of BXSB-Yaa and BXSB-Yaa + mice. Brain Res Dev Brain Res 93(1-2):100-8. [PubMed: 8804696]  [MGI Ref ID J:33655]

Eisenberg RA; Izui S; McConahey PJ; Hang L; Peters CJ; Theofilopoulos AN; Dixon FJ. 1980. Male determined accelerated autoimmune disease in BXSB mice: transfer by bone marrow and spleen cells. J Immunol 125(3):1032-6. [PubMed: 7410826]  [MGI Ref ID J:6372]

Fairhurst AM; Hwang SH; Wang A; Tian XH; Boudreaux C; Zhou XJ; Casco J; Li QZ; Connolly JE; Wakeland EK. 2008. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 38(7):1971-8. [PubMed: 18521959]  [MGI Ref ID J:137309]

Fossati L; Iwamoto M; Merino R; Izui S. 1995. Selective enhancing effect of the Yaa gene on immune responses against self and foreign antigens. Eur J Immunol 25(1):166-73. [PubMed: 7843228]  [MGI Ref ID J:22499]

Fossati L; Sobel ES; Iwamoto M; Cohen PL; Eisenberg RA; Izui S. 1995. The Yaa gene-mediated acceleration of murine lupus: Yaa- T cells from non-autoimmune mice collaborate with Yaa+ B cells to produce lupus autoantibodies in vivo. Eur J Immunol 25(12):3412-7. [PubMed: 8566031]  [MGI Ref ID J:31227]

Hang LM; Izui S; Dixon FJ. 1981. (NZW x BXSB)F1 hybrid. A model of acute lupus and coronary vascular disease with myocardial infarction. J Exp Med 154(1):216-21. [PubMed: 7252427]  [MGI Ref ID J:38157]

Hudgins CC; Steinberg RT; Klinman DM; Reeves MJ; Steinberg AD. 1985. Studies of consomic mice bearing the Y chromosome of the BXSB mouse. J Immunol 134(6):3849-54. [PubMed: 3989299]  [MGI Ref ID J:7823]

Hugin AW; Fossati-Jimack L; Izui S. 2000. The autoimmune accelerating yaa mutation does not accelerate murine AIDS. Cell Immunol 200(2):76-80. [PubMed: 10753498]  [MGI Ref ID J:114277]

Hyde LA; Stavnezer AJ; Bimonte HA; Sherman GF; Denenberg VH. 2002. Spatial and nonspatial Morris maze learning: impaired behavioral flexibility in mice with ectopias located in the prefrontal cortex. Behav Brain Res 133(2):247-59. [PubMed: 12110458]  [MGI Ref ID J:108472]

Izui S; Masuda K; Yoshida H. 1984. Acute SLE in F1 hybrids between SB/Le and NZW mice; prominently enhanced formation of gp70 immune complexes by a Y chromosome-associated factor from SB/Le mice. J Immunol 132(2):701-4. [PubMed: 6690614]  [MGI Ref ID J:7276]

Izui S; Merino R; Fossati L; Iwamoto M. 1994. The role of the Yaa gene in lupus syndrome. Int Rev Immunol 11(3):211-30. [PubMed: 7930846]  [MGI Ref ID J:21990]

Jansson L; Holmdahl R. 1994. The Y chromosome-linked autoimmune accelerating yaa gene suppresses collagen-induced arthritis. Eur J Immunol 24(5):1213-7. [PubMed: 8181531]  [MGI Ref ID J:18810]

Kamada H; Takaoka Y; Kitagaki K; Nagai H. 1995. Effect of cyclophosphamide on lymphokine production in MRL/lpr.Yaa mice. Inflamm Res 44(11):491-8. [PubMed: 8597884]  [MGI Ref ID J:30518]

Kawano H; Abe M; Zhang D; Saikawa T; Fujimori M; Hirose S; Shirai T. 1992. Heterozygosity of the major histocompatibility complex controls the autoimmune disease in (NZW x BXSB) F1 mice. Clin Immunol Immunopathol 65(3):308-14. [PubMed: 1451334]  [MGI Ref ID J:3381]

Khaled AR; Butfiloski EJ; Villas B; Sobel ES; Schiffenbauer J. 1999. Aberrant expression of the NF-kappaB and IkappaB proteins in B cells from viable motheaten mice. Autoimmunity 30(2):115-28. [PubMed: 10435725]  [MGI Ref ID J:117314]

Kikuchi S; Amano H; Amano E; Fossati-Jimack L; Santiago-Raber ML; Moll T; Ida A; Kotzin BL; Izui S. 2005. Identification of 2 major loci linked to autoimmune hemolytic anemia in NZB mice. Blood 106(4):1323-9. [PubMed: 15860660]  [MGI Ref ID J:117292]

Kikuchi S; Fossati-Jimack L; Moll T; Amano H; Amano E; Ida A; Ibnou-Zekri N; Laporte C; Santiago-Raber ML; Rozzo SJ; Kotzin BL; Izui S. 2005. Differential role of three major New Zealand black-derived loci linked with Yaa-induced murine lupus nephritis. J Immunol 174(2):1111-7. [PubMed: 15634937]  [MGI Ref ID J:95829]

Kikuchi S; Santiago-Raber ML; Amano H; Amano E; Fossati-Jimack L; Moll T; Kotzin BL; Izui S. 2006. Contribution of NZB autoimmunity 2 to Y-linked autoimmune acceleration-induced monocytosis in association with murine systemic lupus. J Immunol 176(5):3240-7. [PubMed: 16493085]  [MGI Ref ID J:129409]

Kim HJ; Wang X; Radfar S; Sproule TJ; Roopenian DC; Cantor H. 2011. CD8+ T regulatory cells express the Ly49 Class I MHC receptor and are defective in autoimmune prone B6-Yaa mice. Proc Natl Acad Sci U S A 108(5):2010-5. [PubMed: 21233417]  [MGI Ref ID J:169125]

Kofler R; McConahey PJ; Duchosal MA; Balderas RS; Theofilopoulos AN; Dixon FJ. 1991. An autosomal recessive gene that delays expression of lupus in BXSB mice. J Immunol 146(4):1375-9. [PubMed: 1991974]  [MGI Ref ID J:10973]

Kono DH; Balomenos D; Park MS; Theofilopoulos AN. 2000. Development of lupus in BXSB mice is independent of IL-4. J Immunol 164(1):38-42. [PubMed: 10604990]  [MGI Ref ID J:112421]

Kuroki A; Moll T; Lopez-Hoyos M; Fossati-Jimack L; Ibnou-Zekri N; Kikuchi S; Merino J; Merino R; Izui S. 2004. Enforced Bcl-2 expression in B lymphocytes induces rheumatoid factor and anti-DNA production, but the Yaa mutation promotes only anti-DNA production. Eur J Immunol 34(4):1077-84. [PubMed: 15048718]  [MGI Ref ID J:88856]

Leiter EH; Prochazka M; Shultz LD. 1987. Effect of immunodeficiency on diabetogenesis in genetically diabetic (db/db) mice. J Immunol 138(10):3224-9. [PubMed: 3553324]  [MGI Ref ID J:32752]

Lin Q; Xiu Y; Jiang Y; Tsurui H; Nakamura K; Kodera S; Ohtsuji M; Ohtsuji N; Shiroiwa W; Tsukamoto K; Amano H; Amano E; Kinoshita K; Sudo K; Nishimura H; Izui S; Shirai T; Hirose S. 2006. Genetic dissection of the effects of stimulatory and inhibitory IgG Fc receptors on murine lupus. J Immunol 177(3):1646-54. [PubMed: 16849473]  [MGI Ref ID J:137977]

Maeda K; Malykhin A; Teague-Weber BN; Sun XH; Farris AD; Coggeshall KM. 2009. Interleukin-6 aborts lymphopoiesis and elevates production of myeloid cells in systemic lupus erythematosus-prone B6.Sle1.Yaa animals. Blood 113(19):4534-40. [PubMed: 19224760]  [MGI Ref ID J:148718]

McPhee CG; Bubier JA; Sproule TJ; Park G; Steinbuck MP; Schott WH; Christianson GJ; Morse HC 3rd; Roopenian DC. 2013. IL-21 is a double-edged sword in the systemic lupus erythematosus-like disease of BXSB.Yaa mice. J Immunol 191(9):4581-8. [PubMed: 24078696]  [MGI Ref ID J:206236]

Merino R; Fossati L; Lacour M; Lemoine R; Higaki M; Izui S. 1992. H-2-linked control of the Yaa gene-induced acceleration of lupus-like autoimmune disease in BXSB mice. Eur J Immunol 22(2):295-9. [PubMed: 1537372]  [MGI Ref ID J:2011]

Merino R; Iwamoto M; Gershwin ME; Izui S. 1994. The Yaa gene abrogates the major histocompatibility complex association of murine lupus in (NZB x BXSB)F1 hybrid mice. J Clin Invest 94(2):521-5. [PubMed: 8040305]  [MGI Ref ID J:19547]

Merino R; Shibata T; De Kossodo S; Izui S. 1989. Differential effect of the autoimmune Yaa and lpr genes on the acceleration of lupus-like syndrome in MRL/MpJ mice. Eur J Immunol 19(11):2131-7. [PubMed: 2599002]  [MGI Ref ID J:108759]

Moll T; Martinez-Soria E; Santiago-Raber ML; Amano H; Pihlgren-Bosch M; Marinkovic D; Izui S. 2005. Differential activation of anti-erythrocyte and anti-DNA autoreactive B lymphocytes by the Yaa mutation. J Immunol 174(2):702-9. [PubMed: 15634889]  [MGI Ref ID J:132847]

Morel L; Croker BP; Blenman KR; Mohan C; Huang G; Gilkeson G; Wakeland EK. 2000. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proc Natl Acad Sci U S A 97(12):6670-5. [PubMed: 10841565]  [MGI Ref ID J:62719]

Murphy ED; Roths JB. 1979. A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation. Arthritis Rheum 22(11):1188-94. [PubMed: 315777]  [MGI Ref ID J:6235]

Ozaki K; Spolski R; Ettinger R; Kim HP; Wang G; Qi CF; Hwu P; Shaffer DJ; Akilesh S; Roopenian DC; Morse HC 3rd; Lipsky PE; Leonard WJ. 2004. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173(9):5361-71. [PubMed: 15494482]  [MGI Ref ID J:93740]

Pisetsky DS; Klatt C; Dawson D; Roths JB. 1985. The influence of Yaa on anti-DNA responses of B6-lpr mice. Clin Immunol Immunopathol 37(3):369-76. [PubMed: 3931946]  [MGI Ref ID J:109825]

Pisitkun P; Deane JA; Difilippantonio MJ; Tarasenko T; Satterthwaite AB; Bolland S. 2006. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312(5780):1669-72. [PubMed: 16709748]  [MGI Ref ID J:109758]

Rankin J; Boyle JJ; Rose SJ; Gabriel L; Lewis M; Thiruudaian V; Rogers NJ; Izui S; Morley BJ. 2007. The Bxs6 locus of BXSB mice is sufficient for high-level expression of gp70 and the production of gp70 immune complexes. J Immunol 178(7):4395-401. [PubMed: 17371996]  [MGI Ref ID J:145049]

Rosenblatt N; Hartmann KU; Loor F. 1994. The Yaa gene-dependent B-cell deficiency worsens the generalized lymphadenopathy and autoimmunity of C57BL/6-gld male mice. Immunology 83(3):476-83. [PubMed: 7835973]  [MGI Ref ID J:21189]

Rosenblatt N; Hartmann KU; Loor F. 1994. The Yaa mutation induces the development of autoimmunity in mice heterozygous for the gld (generalized lymphadenopathy disease) mutation. Cell Immunol 156(2):519-28. [PubMed: 8025960]  [MGI Ref ID J:19169]

Santiago ML; Fossati L; Jacquet C; Muller W; Izui S; Reininger L. 1997. Interleukin-4 protects against a genetically linked lupus-like autoimmune syndrome. J Exp Med 185(1):65-70. [PubMed: 8996242]  [MGI Ref ID J:37574]

Santiago ML; Mary C; Parzy D; Jacquet C; Montagutelli X; Parkhouse RM; Lemoine R; Izui S; Reininger L. 1998. Linkage of a major quantitative trait locus to Yaa gene-induced lupus-like nephritis in (NZW x C57BL/6)F1 mice. Eur J Immunol 28(12):4257-67. [PubMed: 9862363]  [MGI Ref ID J:52110]

Santiago-Raber ML; Kikuchi S; Borel P; Uematsu S; Akira S; Kotzin BL; Izui S. 2008. Evidence for genes in addition to Tlr7 in the Yaa translocation linked with acceleration of systemic lupus erythematosus. J Immunol 181(2):1556-62. [PubMed: 18606711]  [MGI Ref ID J:137656]

Schrott LM; Waters NS; Boehm GW; Sherman GF; Morrison L; Rosen GD; Behan PO; Galaburda AM; Denenberg VH. 1993. Behavior, cortical ectopias, and autoimmunity in BXSB-Yaa and BXSB-Yaa+ mice. Brain Behav Immun 7(3):205-23. [PubMed: 8147964]  [MGI Ref ID J:14455]

Shimizu M; Sekine K; Matsuzawa A; Iwaguchi T. 1992. Cell electrophoretic characterization of abnormally expanded lymphocytes in autoimmune lprcg, lpr, gld and Yaa mice, and of thymocyte subsets. Electrophoresis 13(3):136-42. [PubMed: 1592043]  [MGI Ref ID J:2361]

Smith HR; Chused TM; Steinberg AD. 1983. The effect of the X-linked immune deficiency gene (xid) upon the Y chromosome-related disease of BXSB mice. J Immunol 131(3):1257-62. [PubMed: 6886419]  [MGI Ref ID J:7172]

Subramanian S; Tus K; Li QZ; Wang A; Tian XH; Zhou J; Liang C; Bartov G; McDaniel LD; Zhou XJ; Schultz RA; Wakeland EK. 2006. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U S A 103(26):9970-5. [PubMed: 16777955]  [MGI Ref ID J:111064]

Suzuki H; Yasukawa K; Saito T; Narazaki M; Hasegawa A; Taga T; Kishimoto T. 1993. Serum soluble interleukin-6 receptor in MRL/lpr mice is elevated with age and mediates the interleukin-6 signal. Eur J Immunol 23(5):1078-82. [PubMed: 8477802]  [MGI Ref ID J:4970]

Taguchi N; Hashimoto Y; Naiki M; Farr AG; Boyd RL; Ansari AA; Shultz LD; Kotzin BL; Dorshkind K; Ikehara S; Gershwin ME. 1999. Abnormal thymic expression of epithelial cell adhesion molecule (EP-CAM) in New Zealand Black (NZB) mice. J Autoimmun 13(4):393-404. [PubMed: 10585755]  [MGI Ref ID J:59174]

Takahashi S; Fossati L; Iwamoto M; Merino R; Motta R; Kobayakawa T; Izui S. 1996. Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest 97(7):1597-604. [PubMed: 8601623]  [MGI Ref ID J:32235]

Takeoka Y; Taguchi N; Shultz L; Boyd RL; Naiki M; Ansari AA; Gershwin ME. 1999. Apoptosis and the thymic microenvironment in murine lupus. J Autoimmun 13(3):325-34. [PubMed: 10550220]  [MGI Ref ID J:58407]

Teuscher C; Noubade R; Spach K; McElvany B; Bunn JY; Fillmore PD; Zachary JF; Blankenhorn EP. 2006. Evidence that the Y chromosome influences autoimmune disease in male and female mice. Proc Natl Acad Sci U S A 103(21):8024-9. [PubMed: 16702550]  [MGI Ref ID J:110221]

The Australian Phenomics Facility at The Australian National University. 2006. Heritable mouse mutants from the ENU mutagenesis program at the Australian Phenomics Facility at The Australian National University MGI Direct Data Submission :.  [MGI Ref ID J:104190]

Theofilopoulos AN; Eisenberg RA; Bourdon M; Crowell JS Jr; Dixon FJ. 1979. Distribution of lymphocytes identified by surface markers in murine strains with systemic lupus erythematosus-like syndromes. J Exp Med 149(2):516-34. [PubMed: 762500]  [MGI Ref ID J:108760]

Waisberg M; Tarasenko T; Vickers BK; Scott BL; Willcocks LC; Molina-Cruz A; Pierce MA; Huang CY; Torres-Velez FJ; Smith KG; Barillas-Mury C; Miller LH; Pierce SK; Bolland S. 2011. Genetic susceptibility to systemic lupus erythematosus protects against cerebral malaria in mice. Proc Natl Acad Sci U S A 108(3):1122-7. [PubMed: 21187399]  [MGI Ref ID J:169698]

Wilber A; O'Connor TP; Lu ML; Karimi A; Schneider MC. 2003. Dnase1l3 deficiency in lupus-prone MRL and NZB/W F1 mice. Clin Exp Immunol 134(1):46-52. [PubMed: 12974753]  [MGI Ref ID J:109815]

Wofsy D; Kerger CE; Seaman WE. 1984. Monocytosis in the BXSB model for systemic lupus erythematosus. J Exp Med 159(2):629-34. [PubMed: 6363600]  [MGI Ref ID J:7308]

Yoh K; Shibuya K; Morito N; Nakano T; Ishizaki K; Shimohata H; Nose M; Izui S; Shibuya A; Koyama A; Engel JD; Yamamoto M; Takahashi S. 2003. Transgenic overexpression of GATA-3 in T lymphocytes improves autoimmune glomerulonephritis in mice with a BXSB/MpJ-Yaa genetic background. J Am Soc Nephrol 14(10):2494-502. [PubMed: 14514727]  [MGI Ref ID J:131473]

Zhang MC; Furukawa H; Tokunaka K; Saiga K; Date F; Owada Y; Nose M; Ono M. 2008. Mast cell hyperplasia in the skin of Dsg4-deficient hypotrichosis mice, which are long-living mutants of lupus-prone mice. Immunogenetics 60(10):599-607. [PubMed: 18677469]  [MGI Ref ID J:140028]

Health & husbandry

The genotypes of the animals provided may not reflect those discussed in the strain description or the mating scheme utilized by The Jackson Laboratory prior to cryopreservation. Please inquire for possible genotypes for this specific strain.

Health & Colony Maintenance Information

Animal Health Reports

Production of mice from cryopreserved embryos or sperm occurs in a maximum barrier room, G200.

Colony Maintenance

Breeding & HusbandryTo maintain the live colony, homozygous mice may be bred together. Homozygous mice are viable and fertile, but exhibit an accelerated spontaneous autoimmune phenotype compared to BXSB/MpJ inbred mice (Stock No. 000740). Specifically, mortality in BXSB.Yaa Cd8a-/- males starts at ~12-15 weeks of age with 50% lethality by ~20 weeks of age. Compared to males, the BXSB.Yaa Cd8a-/- females develop a greatly attenuated form of autoimmune disease. Heterozygotes will develop the sex-specific autoimmune phenotype of BXSB/MpJ. The expected coat color is white-bellied agouti.

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $2525.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Cryopreserved

Cryopreserved Mice - Ready for Recovery

Price (US dollars $)
Cryorecovery* $3283.00
Animals Provided

At least two mice that carry the mutation (if it is a mutant strain) will be provided. Their genotypes may not reflect those discussed in the strain description. Please inquire for possible genotypes and see additional details below.

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Supply Notes

  • Cryorecovery - Standard.
    Progeny testing is not required.

    The average number of mice provided from recovery of our cryopreserved strains is 10. The total number of animals provided, their gender and genotype will vary. We will fulfill your order by providing at least two pair of mice, at least one animal of each pair carrying the mutation of interest. Please inquire if larger numbers of animals with specific genotype and genders are needed. Animals typically ship between 10 and 14 weeks from the date of your order. If a second cryorecovery is needed in order to provide the minimum number of animals, animals will ship within 25 weeks. IMPORTANT NOTE: The genotypes of animals provided may not reflect the mating scheme utilized by The Jackson Laboratory prior to cryopreservation, or that discussed in the strain description. Please inquire about possible genotypes which will be recovered for this specific strain. The Jackson Laboratory cannot guarantee the reproductive success of mice shipped to your facility. If the mice are lost after the first three days (post-arrival) or do not produce progeny at your facility, a new order and fee will be necessary.

    Cryorecovery to establish a Dedicated Supply for greater quantities of mice. Mice recovered can be used to establish a dedicated colony to contractually supply you mice according to your requirements. Price by quotation. For more information on Dedicated Supply, please contact JAX® Services, Tel: 1-800-422-6423 (from U.S.A., Canada or Puerto Rico only) or 1-207-288-5845 (from any location).

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Cryopreserved. Ready for recovery. Please refer to pricing and supply notes on the strain data sheet for further information.

Control Information

  Control
   000740 BXSB/MpJ
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)