Strain Name:


Stock Number:


Order this mouse


Repository- Live

Use Restrictions Apply, see Terms of Use
Common Names: MMTV-PyMT;     MMTV-PyVmT, MT634, MTAG, PyMT, PyV-mT, PyVT;    
MMTV-PyMT (MMTV-PyVmT) females develop palpable mammary tumors which metastasize to the lung. Mean latency is 92 days of age. Male carriers develop mammary tumors with a later onset. These mice express the Polyoma Virus middle T antigen under the direction of the mouse mammary tumor virus promoter/enhancer and may be suitable for use in studies related to breast cancer.


Strain Information

Type Congenic; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemNoncarrier x Hemizygote         (Female x Male)   27-JUN-13
Specieslaboratory mouse
GenerationN10+pN4 (21-APR-15)
Generation Definitions
Donating Investigator Lesley Ellies,   University of California, San Diego

The MMTV-PyVmT transgene has the mouse mammary tumor virus (MMTV) long terminal repeat upstream of a cDNA sequence encoding the Polyoma Virus middle T antigen (PyVmT). Transgenic mice are viable, but show loss of lactational ability due to activation of the estrogen responsive transgene during pregnancy leading to tumorigenesis. Female carriers develop palpable mammary tumors with a mean latency of 92 days of age, as compared with 53 days in FVB/N-Tg(MMTV-PyVT)634Mul/J mice (Stock No. 002374). Adenocarcinomas arise in virgin and breeder females and occasionally in males, which are well-differentiated, multifocal and eventually involve the entire mammary fat pad. Tumor-bearing females have reduced lung metastasis compared to the 80-90% incidence found in FVB/N-Tg(MMTV-PyVT)634Mul/J mice. Transgene expression is detected at high levels in male and female mammary glands. Lower levels are detected in salivary gland, seminal vesicles, ovaries, and lungs (believed to be the result of pulmonary metastases).

To derive the MMTV-PyVmT transgene, cDNA encoding the Polyoma Virus middle T antigen was inserted into the expression vector, pMMTV-SV40, resulting in a fusion gene of the PyVT oncogene and SV40 poly A and 3' processing signals, driven by the Mouse Mammary Tumor Virus (MMTV) LTR. Construct DNA was injected into the pronuclei of FVB/N zygotes. Transgenic progeny were identified by Southern blot analysis using a PyVT cDNA probe and founder line #634 was established. The donating investigator reports that these mice were backcrossed to C57BL/6J mice for at least 10 generations (see SNP note). Upon arrival at The Jackson Laboratory, mice were bred to C57BL/6J (Stock No. 000664) for at least one generation to establish the colony.

A 32 SNP (single nucleotide polymorphism) panel analysis, with 27 markers covering all 19 chromosomes and the X chromosome, as well as 5 markers that distinguish between the C57BL/6J and C57BL/6N substrains, was performed on the rederived living colony at The Jackson Laboratory Repository. While the 27 markers throughout the genome suggested a C57BL/6 genetic background, 3 of 5 markers that determine C57BL/6J from C57BL/6N were found to be segregating. These data suggest the mice sent to The Jackson Laboratory Repository were on a mixed C57BL/6J ; C57BL/6N genetic background.

Control Information

   000664 C57BL/6J (approximate)
  Considerations for Choosing Controls

Related Strains

Strains carrying   Tg(MMTV-PyVT)634Mul allele
002374   FVB/N-Tg(MMTV-PyVT)634Mul/J
View Strains carrying   Tg(MMTV-PyVT)634Mul     (1 strain)

View Strains carrying other alleles of MMTV     (18 strains)


Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Characteristics of this human disease are associated with transgenes and other mutation types in the mouse.
Breast Cancer
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.


  • tumorigenesis
  • increased mammary adenocarcinoma incidence   (MGI Ref ID J:48285)
    • mammary tumors appear in males and females with 100% penetrance by 40 days of age   (MGI Ref ID J:51424)
    • all female carriers develop palpable mammary tumors by 5 weeks of age; male carriers also develop these tumors with a later age of onset (median 83 days of age)   (MGI Ref ID J:46460)
    • tumors are multifocal, highly fibrotic, and involved the entire mammary fat pad   (MGI Ref ID J:46460)
  • increased metastatic potential   (MGI Ref ID J:48285)
    • pulmonary metastases are observed in 94% of tumor-bearing female mice and 80% of tumor-bearing male mice   (MGI Ref ID J:46460)
  • endocrine/exocrine gland phenotype
  • lactation failure
    • inability to lactate from the time of the first pregnancy   (MGI Ref ID J:46460)
  • integument phenotype
  • lactation failure
    • inability to lactate from the time of the first pregnancy   (MGI Ref ID J:46460)


        multiple strains
  • tumorigenesis
  • decreased mammary gland tumor incidence
    • in F1 FVB/N mice crossed to the P/J, DBA/1J, NZW/LacJ, C57BL/6NIcr, CAST/Ei, NOD/LtJ, CBA/CaJ, SWR/J, AKR/J, BUB/BnJ, ST/J, KK/HiJ, or MOLF/Ei strains, an increased latency of the onset of the appearance of primary mammary tumors is seen compared to the inbred FVB/N strain   (MGI Ref ID J:48854)
  • decreased metastatic potential
    • in F1 FVB/N mice crossed to the RF/J, C58/J, C57BR/cdJ, NZB/B1NJ, I/LnJ, DBA/2J, KK/HiJ, MOLF/Ei, SEA/GnJ, NZW/LacJ, or CE/J strains, an decrease in pulmonary metastatic index is seen   (MGI Ref ID J:48854)
  • increased mammary adenocarcinoma incidence
    • in F1 FVB/N mice crossed to either the I/LnJ or C58/J strains, an acceleration of the onset of the appearance of primary mammary tumors is seen compared to the inbred FVB/N strain   (MGI Ref ID J:48854)
  • increased metastatic potential
    • in F1 FVB/N mice crossed to the AKR/J strain, an increase in pulmonary metastatic index is seen   (MGI Ref ID J:48854)


        involves: 129 * C57BL/6 * FVB/N
  • tumorigenesis
  • increased mammary adenocarcinoma incidence
    • all female virgin mice develop cancer tumors in the breast by 14 weeks of age   (MGI Ref ID J:117336)


  • tumorigenesis
  • altered tumor morphology
    • metastatic lung tumors exhibit more blood vessel staining compared with equivalent tumors in Mmp9tm1Tvu/Mmp9tm1Tvu Tg(MMTV-PyVT)634Mul mice   (MGI Ref ID J:140033)
    • increased tumor growth/size
      • proliferation and apoptosis of tumor cells are increased compared with cells from Mmp9tm1Tvu/Mmp9tm1Tvu Tg(MMTV-PyVT)634Mul mice with the balance resulting in increased tumor size   (MGI Ref ID J:140033)
  • increased mammary gland tumor incidence   (MGI Ref ID J:140033)
    • mice develop mammary gland tumors with a median age of tumor latency of 66 days in females and 133.5 days in males unlike wild-type mice   (MGI Ref ID J:147458)
  • respiratory system phenotype
  • increased lung weight   (MGI Ref ID J:147458)


        involves: C57BL/6 * FVB/N
  • tumorigenesis
  • increased mammary gland tumor incidence
    • mice develop mammary gland tumors with a median age of tumor latency of 73 days in females and 137 days in males unlike wild-type mice   (MGI Ref ID J:147458)
  • respiratory system phenotype
  • increased lung weight   (MGI Ref ID J:147458)


        involves: FVB/N
  • tumorigenesis
  • increased mammary gland tumor incidence
    • average onset of tumor development is 66 days   (MGI Ref ID J:133325)
    • tumor nodules are present throughout the entire mammary gland   (MGI Ref ID J:133325)
    • extensive adenomas are found   (MGI Ref ID J:133325)
  • endocrine/exocrine gland phenotype
  • abnormal mammary gland morphology
    • tumor nodules are present throughout the entire mammary gland   (MGI Ref ID J:133325)
  • integument phenotype
  • abnormal mammary gland morphology
    • tumor nodules are present throughout the entire mammary gland   (MGI Ref ID J:133325)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Cancer Research
Increased Tumor Incidence
      Gonadal Tumors
      Mammary Gland Tumors
      Other Tissues/Organs
      tumor metastasis

Genes & Alleles

Gene & Allele Information provided by MGI

Allele Symbol Tg(MMTV-PyVT)634Mul
Allele Name transgene insertion 634, William Muller
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) MMTV-PyMT; MMTV-PyVmT; MT634; MTAG; PyMT; PyV-mT; PyVT; Tg(MMTVPyVT)634Mul; TgN(MMTVPyVT)634Mul;
Mutation Made ByDr. William Muller,   McGill University
Strain of OriginFVB/N
Expressed Gene PyVT, Polyoma virus middle T antigen, polyoma virus
Promoter MMTV, Mouse Mammary Tumor Virus, MMTV
General Note Additional lines produced include lines 121, 196, 235, 654, 668, 670.

These mice are used to study metastatic disease.

Molecular Note This transgene expresses polyoma virus middle T antigen under the control of the mouse mammary tumor virus LTR. Expression of this transgene was detected at high levels in male and female mammary glands. Other expression sites include salivary gland, seminal vesicles, ovaries, and lung. [MGI Ref ID J:46460]


Genotyping Information

Genotyping Protocols

Tg(MMTV-PyVT)634Mul, High Resolution Melting
Tg(MMTV-PyVT)634Mul, Standard PCR

Helpful Links

Genotyping resources and troubleshooting


References provided by MGI

Selected Reference(s)

Davie SA; Maglione JE; Manner CK; Young D; Cardiff RD; MacLeod CL; Ellies LG. 2007. Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice. Transgenic Res 16(2):193-201. [PubMed: 17206489]  [MGI Ref ID J:121391]

Additional References

Tg(MMTV-PyVT)634Mul related

Ahn R; Sabourin V; Ha JR; Cory S; Maric G; Im YK; Hardy WR; Zhao H; Park M; Hallett M; Siegel PM; Pawson T; Ursini-Siegel J. 2013. The ShcA PTB Domain Functions as a Biological Sensor of Phosphotyrosine Signaling during Breast Cancer Progression. Cancer Res 73(14):4521-32. [PubMed: 23695548]  [MGI Ref ID J:199117]

Al Masri A; Gendler SJ. 2005. Muc1 affects c-Src signaling in PyV MT-induced mammary tumorigenesis. Oncogene 24(38):5799-808. [PubMed: 15897873]  [MGI Ref ID J:101766]

Albright CD; Salganik RI; Van Dyke T. 2004. Dietary depletion of vitamin e and vitamin a inhibits mammary tumor growth and metastasis in transgenic mice. J Nutr 134(5):1139-44. [PubMed: 15113960]  [MGI Ref ID J:90173]

Almholt K; Juncker-Jensen A; Laerum OD; Dano K; Johnsen M; Lund LR; Romer J. 2008. Metastasis is strongly reduced by the matrix metalloproteinase inhibitor Galardin in the MMTV-PymT transgenic breast cancer model. Mol Cancer Ther 7(9):2758-67. [PubMed: 18790756]  [MGI Ref ID J:152124]

Almholt K; Lund LR; Rygaard J; Nielsen BS; Dano K; Romer J; Johnsen M. 2005. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int J Cancer 113(4):525-32. [PubMed: 15472905]  [MGI Ref ID J:94645]

Asrani K; Keri RA; Galisteo R; Brown SA; Morgan SJ; Ghosh A; Tran NL; Winkles JA. 2013. The HER2- and heregulin beta1 (HRG)-inducible TNFR superfamily member Fn14 promotes HRG-driven breast cancer cell migration, invasion, and MMP9 expression. Mol Cancer Res 11(4):393-404. [PubMed: 23378579]  [MGI Ref ID J:205464]

Asselin-Labat ML; Sutherland KD; Vaillant F; Gyorki DE; Wu D; Holroyd S; Breslin K; Ward T; Shi W; Bath ML; Deb S; Fox SB; Smyth GK; Lindeman GJ; Visvader JE. 2011. Gata-3 negatively regulates the tumor-initiating capacity of mammary luminal progenitor cells and targets the putative tumor suppressor caspase-14. Mol Cell Biol 31(22):4609-22. [PubMed: 21930782]  [MGI Ref ID J:178780]

Bachawal SV; Jensen KC; Lutz AM; Gambhir SS; Tranquart F; Tian L; Willmann JK. 2013. Earlier detection of breast cancer with ultrasound molecular imaging in a transgenic mouse model. Cancer Res 73(6):1689-98. [PubMed: 23328585]  [MGI Ref ID J:196899]

Bachawal SV; Jensen KC; Wilson KE; Tian L; Lutz AM; Willmann JK. 2015. Breast Cancer Detection by B7-H3-Targeted Ultrasound Molecular Imaging. Cancer Res 75(12):2501-9. [PubMed: 25899053]  [MGI Ref ID J:222692]

Balboni AL; Hutchinson JA; DeCastro AJ; Cherukuri P; Liby K; Sporn MB; Schwartz GN; Wells WA; Sempere LF; Yu PB; DiRenzo J. 2013. DeltaNp63alpha-mediated activation of bone morphogenetic protein signaling governs stem cell activity and plasticity in normal and malignant mammary epithelial cells. Cancer Res 73(2):1020-30. [PubMed: 23243027]  [MGI Ref ID J:194364]

Basu GD; Pathangey LB; Tinder TL; Lagioia M; Gendler SJ; Mukherjee P. 2004. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer. Mol Cancer Res 2(11):632-42. [PubMed: 15561779]  [MGI Ref ID J:94659]

Basu GD; Tinder TL; Bradley JM; Tu T; Hattrup CL; Pockaj BA; Mukherjee P. 2006. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. J Immunol 177(4):2391-402. [PubMed: 16888001]  [MGI Ref ID J:138387]

Bentires-Alj M; Neel BG. 2007. Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res 67(6):2420-4. [PubMed: 17347513]  [MGI Ref ID J:120339]

Berger T; Cheung CC; Elia AJ; Mak TW. 2010. Disruption of the Lcn2 gene in mice suppresses primary mammary tumor formation but does not decrease lung metastasis. Proc Natl Acad Sci U S A 107(7):2995-3000. [PubMed: 20133630]  [MGI Ref ID J:157568]

Berger T; Ueda T; Arpaia E; Chio II; Shirdel EA; Jurisica I; Hamada K; You-Ten A; Haight J; Wakeham A; Cheung CC; Mak TW. 2013. Flotillin-2 deficiency leads to reduced lung metastases in a mouse breast cancer model. Oncogene 32(41):4989-94. [PubMed: 23146906]  [MGI Ref ID J:203238]

Beristain AG; Molyneux SD; Joshi PA; Pomroy NC; Di Grappa MA; Chang MC; Kirschner LS; Prive GG; Pujana MA; Khokha R. 2015. PKA signaling drives mammary tumorigenesis through Src. Oncogene 34(9):1160-73. [PubMed: 24662820]  [MGI Ref ID J:219256]

Bierie B; Stover DG; Abel TW; Chytil A; Gorska AE; Aakre M; Forrester E; Yang L; Wagner KU; Moses HL. 2008. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res 68(6):1809-19. [PubMed: 18339861]  [MGI Ref ID J:133311]

Bist P; Leow SC; Phua QH; Shu S; Zhuang Q; Loh WT; Nguyen TH; Zhou JB; Hooi SC; Lim LH. 2011. Annexin-1 interacts with NEMO and RIP1 to constitutively activate IKK complex and NF-kappaB: implication in breast cancer metastasis. Oncogene 30(28):3174-85. [PubMed: 21383699]  [MGI Ref ID J:174635]

Brantley-Sieders DM; Zhuang G; Hicks D; Fang WB; Hwang Y; Cates JM; Coffman K; Jackson D; Bruckheimer E; Muraoka-Cook RS; Chen J. 2008. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest 118(1):64-78. [PubMed: 18079969]  [MGI Ref ID J:130805]

Braumuller H; Wieder T; Brenner E; Assmann S; Hahn M; Alkhaled M; Schilbach K; Essmann F; Kneilling M; Griessinger C; Ranta F; Ullrich S; Mocikat R; Braungart K; Mehra T; Fehrenbacher B; Berdel J; Niessner H; Meier F; van den Broek M; Haring HU; Handgretinger R; Quintanilla-Martinez L; Fend F; Pesic M; Bauer J; Zender L; Schaller M; Schulze-Osthoff K; Rocken M. 2013. T-helper-1-cell cytokines drive cancer into senescence. Nature 494(7437):361-5. [PubMed: 23376950]  [MGI Ref ID J:194546]

Bu W; Chen J; Morrison GD; Huang S; Creighton CJ; Huang J; Chamness GC; Hilsenbeck SG; Roop DR; Leavitt AD; Li Y. 2011. Keratin 6a marks mammary bipotential progenitor cells that can give rise to a unique tumor model resembling human normal-like breast cancer. Oncogene 30(43):4399-409. [PubMed: 21532625]  [MGI Ref ID J:178580]

Bugge TH; Lund LR; Kombrinck KK; Nielsen BS; Holmback K; Drew AF; Flick MJ; Witte DP; Dano K; Degen JL. 1998. Reduced metastasis of Polyoma virus middle T antigen-induced mammary cancer in plasminogen-deficient mice. Oncogene 16(24):3097-104. [PubMed: 9671388]  [MGI Ref ID J:48285]

Butinar M; Prebanda MT; Rajkovic J; Jeric B; Stoka V; Peters C; Reinheckel T; Kruger A; Turk V; Turk B; Vasiljeva O. 2014. Stefin B deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model. Oncogene 33(26):3392-400. [PubMed: 23955077]  [MGI Ref ID J:212612]

Cao Y; Luo JL; Karin M. 2007. IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci U S A 104(40):15852-7. [PubMed: 17890319]  [MGI Ref ID J:125555]

Casbon AJ; Reynaud D; Park C; Khuc E; Gan DD; Schepers K; Passegue E; Werb Z. 2015. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci U S A 112(6):E566-75. [PubMed: 25624500]  [MGI Ref ID J:220022]

Chang SH; Elemento O; Zhang J; Zhuang ZW; Simons M; Hla T. 2014. ELAVL1 regulates alternative splicing of eIF4E transporter to promote postnatal angiogenesis. Proc Natl Acad Sci U S A 111(51):18309-14. [PubMed: 25422430]  [MGI Ref ID J:216804]

Chen D; Goswami CP; Burnett RM; Anjanappa M; Bhat-Nakshatri P; Muller W; Nakshatri H. 2014. Cancer affects microRNA expression, release, and function in cardiac and skeletal muscle. Cancer Res 74(16):4270-81. [PubMed: 24980554]  [MGI Ref ID J:214245]

Chen P; O'Neal JF; Ebelt ND; Cantrell MA; Mitra S; Nasrazadani A; Vandenbroek TL; Heasley LE; Van Den Berg CL. 2010. Jnk2 effects on tumor development, genetic instability and replicative stress in an oncogene-driven mouse mammary tumor model. PLoS One 5(5):e10443. [PubMed: 20454618]  [MGI Ref ID J:160923]

Chen Z; Zhang Y; Jia C; Wang Y; Lai P; Zhou X; Wang Y; Song Q; Lin J; Ren Z; Gao Q; Zhao Z; Zheng H; Wan Z; Gao T; Zhao A; Dai Y; Bai X. 2014. mTORC1/2 targeted by n-3 polyunsaturated fatty acids in the prevention of mammary tumorigenesis and tumor progression. Oncogene 33(37):4548-57. [PubMed: 24096482]  [MGI Ref ID J:214352]

Cheng AM; Saxton TM; Sakai R; Kulkarni S; Mbamalu G; Vogel W; Tortorice CG; Cardiff RD; Cross JC; Muller WJ; Pawson T. 1998. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95(6):793-803. [PubMed: 9865697]  [MGI Ref ID J:51424]

Cheung KJ; Gabrielson E; Werb Z; Ewald AJ. 2013. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155(7):1639-51. [PubMed: 24332913]  [MGI Ref ID J:205494]

Clark-Knowles KV; Dewar-Darch D; Jardine KE; McBurney MW. 2013. SIRT1 catalytic activity has little effect on tumor formation and metastases in a mouse model of breast cancer. PLoS One 8(11):e82106. [PubMed: 24278473]  [MGI Ref ID J:209772]

Cook RS; Jacobsen KM; Wofford AM; DeRyckere D; Stanford J; Prieto AL; Redente E; Sandahl M; Hunter DM; Strunk KE; Graham DK; Earp HS 3rd. 2013. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J Clin Invest 123(8):3231-42. [PubMed: 23867499]  [MGI Ref ID J:201406]

Coombs GS; Schmitt AA; Canning CA; Alok A; Low IC; Banerjee N; Kaur S; Utomo V; Jones CM; Pervaiz S; Toone EJ; Virshup DM. 2012. Modulation of Wnt/beta-catenin signaling and proliferation by a ferrous iron chelator with therapeutic efficacy in genetically engineered mouse models of cancer. Oncogene 31(2):213-25. [PubMed: 21666721]  [MGI Ref ID J:179415]

Cozma D; Lukes L; Rouse J; Qiu TH; Liu ET; Hunter KW. 2002. A bioinformatics-based strategy identifies c-Myc and Cdc25A as candidates for the Apmt mammary tumor latency modifiers. Genome Res 12(6):969-75. [PubMed: 12045150]  [MGI Ref ID J:77063]

Cramer EP; Glenthoj A; Hager M; Juncker-Jensen A; Engelholm LH; Santoni-Rugiu E; Lund LR; Laerum OD; Cowland JB; Borregaard N. 2012. No effect of NGAL/lipocalin-2 on aggressiveness of cancer in the MMTV-PyMT/FVB/N mouse model for breast cancer. PLoS One 7(6):e39646. [PubMed: 22737251]  [MGI Ref ID J:187808]

Cuevas BD; Winter-Vann AM; Johnson NL; Johnson GL. 2006. MEKK1 controls matrix degradation and tumor cell dissemination during metastasis of polyoma middle-T driven mammary cancer. Oncogene 25(36):4998-5010. [PubMed: 16568086]  [MGI Ref ID J:112298]

Curino AC; Engelholm LH; Yamada SS; Holmbeck K; Lund LR; Molinolo AA; Behrendt N; Nielsen BS; Bugge TH. 2005. Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. J Cell Biol 169(6):977-85. [PubMed: 15967816]  [MGI Ref ID J:99636]

Dadachova E; Nguyen A; Lin EY; Gnatovskiy L; Lu P; Pollard JW. 2005. Treatment with rhenium-188-perrhenate and iodine-131 of NIS-expressing mammary cancer in a mouse model remarkably inhibited tumor growth. Nucl Med Biol 32(7):695-700. [PubMed: 16243644]  [MGI Ref ID J:103586]

Dai L; Guinea MC; Slomiany MG; Bratoeva M; Grass GD; Tolliver LB; Maria BL; Toole BP. 2013. CD147-Dependent Heterogeneity in Malignant and Chemoresistant Properties of Cancer Cells. Am J Pathol 182(2):577-85. [PubMed: 23178078]  [MGI Ref ID J:192310]

De Palma M; Mazzieri R; Politi LS; Pucci F; Zonari E; Sitia G; Mazzoleni S; Moi D; Venneri MA; Indraccolo S; Falini A; Guidotti LG; Galli R; Naldini L. 2008. Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14(4):299-311. [PubMed: 18835032]  [MGI Ref ID J:140090]

DeNardo DG; Barreto JB; Andreu P; Vasquez L; Tawfik D; Kolhatkar N; Coussens LM. 2009. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91-102. [PubMed: 19647220]  [MGI Ref ID J:151976]

Deeb KK; Michalowska AM; Yoon CY; Krummey SM; Hoenerhoff MJ; Kavanaugh C; Li MC; Demayo FJ; Linnoila I; Deng CX; Lee EY; Medina D; Shih JH; Green JE. 2007. Identification of an Integrated SV40 T/t-Antigen Cancer Signature in Aggressive Human Breast, Prostate, and Lung Carcinomas with Poor Prognosis. Cancer Res 67(17):8065-8080. [PubMed: 17804718]  [MGI Ref ID J:124885]

Dong D; Ni M; Li J; Xiong S; Ye W; Virrey JJ; Mao C; Ye R; Wang M; Pen L; Dubeau L; Groshen S; Hofman FM; Lee AS. 2008. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 68(2):498-505. [PubMed: 18199545]  [MGI Ref ID J:131417]

Du Z; Podsypanina K; Huang S; McGrath A; Toneff MJ; Bogoslovskaia E; Zhang X; Moraes RC; Fluck M; Allred DC; Lewis MT; Varmus HE; Li Y. 2006. Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proc Natl Acad Sci U S A 103(46):17396-401. [PubMed: 17090666]  [MGI Ref ID J:117125]

Ellies LG. 2003. PyV-mT-induced parotid gland hyperplasia as detected by altered lectin reactivity is not modulated by inducible nitric oxide deficiency. Arch Oral Biol 48(6):415-22. [PubMed: 12749913]  [MGI Ref ID J:84218]

Ellies LG; Fishman M; Hardison J; Kleeman J; Maglione JE; Manner CK; Cardiff RD; MacLeod CL. 2003. Mammary tumor latency is increased in mice lacking the inducible nitric oxide synthase. Int J Cancer 106(1):1-7. [PubMed: 12794750]  [MGI Ref ID J:84004]

Emtage PC; Wan Y; Hitt M; Graham FL; Muller WJ; Zlotnik A; Gauldie J. 1999. Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models [see comments] Hum Gene Ther 10(5):697-709. [PubMed: 10210138]  [MGI Ref ID J:54403]

Esteva-Font C; Jin BJ; Verkman AS. 2014. Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice. FASEB J 28(3):1446-53. [PubMed: 24334548]  [MGI Ref ID J:210686]

Eubank TD ; Roberts RD ; Khan M ; Curry JM ; Nuovo GJ ; Kuppusamy P ; Marsh CB. 2009. Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res 69(5):2133-40. [PubMed: 19223554]  [MGI Ref ID J:146607]

Eyob H; Ekiz HA; Derose YS; Waltz SE; Williams MA; Welm AL. 2013. Inhibition of ron kinase blocks conversion of micrometastases to overt metastases by boosting antitumor immunity. Cancer Discov 3(7):751-60. [PubMed: 23612011]  [MGI Ref ID J:203569]

Fabris VT. 2014. From chromosomal abnormalities to the identification of target genes in mouse models of breast cancer. Cancer Genet 207(6):233-46. [PubMed: 25176624]  [MGI Ref ID J:214799]

Fan H; Zhao X; Sun S; Luo M; Guan JL. 2013. Function of focal adhesion kinase scaffolding to mediate endophilin A2 phosphorylation promotes epithelial-mesenchymal transition and mammary cancer stem cell activities in vivo. J Biol Chem 288(5):3322-33. [PubMed: 23255596]  [MGI Ref ID J:195658]

Fantozzi A; Christofori G. 2006. Mouse models of breast cancer metastasis. Breast Cancer Res 8(4):212. [PubMed: 16887003]  [MGI Ref ID J:116013]

Fend L; Accart N; Kintz J; Cochin S; Reymann C; Le Pogam F; Marchand JB; Menguy T; Slos P; Rooke R; Fournel S; Bonnefoy JY; Preville X; Haegel H. 2013. Therapeutic effects of anti-CD115 monoclonal antibody in mouse cancer models through dual inhibition of tumor-associated macrophages and osteoclasts. PLoS One 8(9):e73310. [PubMed: 24019914]  [MGI Ref ID J:206408]

Fierz Y; Novosyadlyy R; Vijayakumar A; Yakar S; LeRoith D. 2010. Insulin-sensitizing therapy attenuates type 2 diabetes-mediated mammary tumor progression. Diabetes 59(3):686-93. [PubMed: 19959755]  [MGI Ref ID J:164155]

Flowers M; Schroeder JA; Borowsky AD; Besselsen DG; Thomson CA; Pandey R; Thompson PA. 2010. Pilot study on the effects of dietary conjugated linoleic acid on tumorigenesis and gene expression in PyMT transgenic mice. Carcinogenesis 31(9):1642-9. [PubMed: 20624750]  [MGI Ref ID J:163639]

Forrester E; Chytil A; Bierie B; Aakre M; Gorska AE; Sharif-Afshar AR; Muller WJ; Moses HL. 2005. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 65(6):2296-302. [PubMed: 15781643]  [MGI Ref ID J:97162]

Franci C; Zhou J; Jiang Z; Modrusan Z; Good Z; Jackson E; Kouros-Mehr H. 2013. Biomarkers of residual disease, disseminated tumor cells, and metastases in the MMTV-PyMT breast cancer model. PLoS One 8(3):e58183. [PubMed: 23520493]  [MGI Ref ID J:199913]

Francis SM; Chakrabarti S; Dick FA. 2011. A context-specific role for retinoblastoma protein-dependent negative growth control in suppressing mammary tumorigenesis. PLoS One 6(2):e16434. [PubMed: 21364977]  [MGI Ref ID J:171066]

Frohlich C; Nehammer C; Albrechtsen R; Kronqvist P; Kveiborg M; Sehara-Fujisawa A; Mercurio AM; Wewer UM. 2011. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression. Mol Cancer Res 9(11):1449-61. [PubMed: 21875931]  [MGI Ref ID J:205399]

Gao D; Joshi N; Choi H; Ryu S; Hahn M; Catena R; Sadik H; Argani P; Wagner P; Vahdat LT; Port JL; Stiles B; Sukumar S; Altorki NK; Rafii S; Mittal V. 2012. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res 72(6):1384-94. [PubMed: 22282653]  [MGI Ref ID J:184945]

Garmy-Susini B; Avraamides CJ; Schmid MC; Foubert P; Ellies LG; Barnes L; Feral C; Papayannopoulou T; Lowy A; Blair SL; Cheresh D; Ginsberg M; Varner JA. 2010. Integrin alpha4beta1 signaling is required for lymphangiogenesis and tumor metastasis. Cancer Res 70(8):3042-51. [PubMed: 20388801]  [MGI Ref ID J:158943]

Ghosh SK; Uchida M; Yoo B; Ross AW; Gendler SJ; Gong J; Moore A; Medarova Z. 2013. Targeted imaging of breast tumor progression and therapeutic response in a human uMUC-1 expressing transgenic mouse model. Int J Cancer 132(8):1860-7. [PubMed: 23015160]  [MGI Ref ID J:193507]

Gocheva V; Wang HW; Gadea BB; Shree T; Hunter KE; Garfall AL; Berman T; Joyce JA. 2010. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24(3):241-55. [PubMed: 20080943]  [MGI Ref ID J:156936]

Goel S; Gupta N; Walcott BP; Snuderl M; Kesler CT; Kirkpatrick ND; Heishi T; Huang Y; Martin JD; Ager E; Samuel R; Wang S; Yazbek J; Vakoc BJ; Peterson RT; Padera TP; Duda DG; Fukumura D; Jain RK. 2013. Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J Natl Cancer Inst 105(16):1188-201. [PubMed: 23899555]  [MGI Ref ID J:202527]

Goh J; Tsai J; Bammler TK; Farin FM; Endicott E; Ladiges WC. 2013. Exercise training in transgenic mice is associated with attenuation of early breast cancer growth in a dose-dependent manner. PLoS One 8(11):e80123. [PubMed: 24312199]  [MGI Ref ID J:209759]

Goldberger N; Walker RC; Kim CH; Winter S; Hunter KW. 2013. Inherited variation in miR-290 expression suppresses breast cancer progression by targeting the metastasis susceptibility gene Arid4b. Cancer Res 73(8):2671-81. [PubMed: 23447578]  [MGI Ref ID J:197056]

Gordon RR; Hunter KW; La Merrill M; Sorensen P; Threadgill DW; Pomp D. 2008. Genotype X diet interactions in mice predisposed to mammary cancer: II. Tumors and metastasis. Mamm Genome 19(3):179-89. [PubMed: 18288525]  [MGI Ref ID J:136011]

Gordon RR; Hunter KW; Sorensen P; Pomp D. 2008. Genotype x diet interactions in mice predisposed to mammary cancer. I. Body weight and fat. Mamm Genome 19(3):163-78. [PubMed: 18286334]  [MGI Ref ID J:132804]

Graham RA; Morris JR; Cohen EP; Taylor-Papadimitriou J. 2001. Up-regulation of MUC1 in mammary tumors generated in a double-transgenic mouse expressing human MUC1 cDNA, under the control of 1.4-kb 5' MUC1 promoter sequence and the middle T oncogene, expressed from the MMTV promoter. Int J Cancer 92(3):382-7. [PubMed: 11291075]  [MGI Ref ID J:68466]

Granovsky M; Fata J; Pawling J; Muller WJ; Khokha R; Dennis JW. 2000. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 6(3):306-12. [PubMed: 10700233]  [MGI Ref ID J:60960]

Grum-Schwensen B; Klingelhofer J; Grigorian M; Almholt K; Nielsen BS; Lukanidin E; Ambartsumian N. 2010. Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors. Cancer Res 70(3):936-47. [PubMed: 20103644]  [MGI Ref ID J:156859]

Guillory B; Sakwe AM; Saria M; Thompson P; Adhiambo C; Koumangoye R; Ballard B; Binhazim A; Cone C; Jahanen-Dechent W; Ochieng J. 2010. Lack of fetuin-A (alpha2-HS-glycoprotein) reduces mammary tumor incidence and prolongs tumor latency via the transforming growth factor-beta signaling pathway in a mouse model of breast cancer. Am J Pathol 177(5):2635-44. [PubMed: 20847285]  [MGI Ref ID J:166263]

Guy CT; Cardiff RD; Muller WJ. 1992. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12(3):954-61. [PubMed: 1312220]  [MGI Ref ID J:46460]

Guy CT; Muthuswamy SK; Cardiff RD; Soriano P; Muller WJ. 1994. Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev 8(1):23-32. [PubMed: 7507074]  [MGI Ref ID J:72125]

Hakem A; Sanchez-Sweatman O; You-Ten A; Duncan G; Wakeham A; Khokha R; Mak TW. 2005. RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 19(17):1974-9. [PubMed: 16107613]  [MGI Ref ID J:100482]

Hariri M; Wood GA; DiGrappa MA; MacPherson M; Backman SA; Yaffe MJ; Mak TW; Boyd NF; Khokha R. 2004. Experimental manipulation of radiographic density in mouse mammary gland. Breast Cancer Res 6(5):R540-5. [PubMed: 15318935]  [MGI Ref ID J:92894]

Hassan S; Buchanan M; Jahan K; Aguilar-Mahecha A; Gaboury L; Muller WJ; Alsawafi Y; Mourskaia AA; Siegel PM; Salvucci O; Basik M. 2011. CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer 129(1):225-32. [PubMed: 20830712]  [MGI Ref ID J:173812]

Hebbard L; Cecena G; Golas J; Sawada J; Ellies LG; Charbono A; Williams R; Jimenez RE; Wankell M; Arndt KT; DeJoy SQ; Rollins RA; Diesl V; Follettie M; Chen L; Rosfjord E; Cardiff RD; Komatsu M; Boschelli F; Oshima RG. 2011. Control of mammary tumor differentiation by SKI-606 (bosutinib). Oncogene 30(3):301-12. [PubMed: 20818417]  [MGI Ref ID J:168815]

Hebbard LW; Garlatti M; Young LJ; Cardiff RD; Oshima RG; Ranscht B. 2008. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res 68(5):1407-16. [PubMed: 18316604]  [MGI Ref ID J:132759]

Hedlund M; Ng E; Varki A; Varki NM. 2008. alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res 68(2):388-94. [PubMed: 18199532]  [MGI Ref ID J:131420]

Herschkowitz JI; Simin K; Weigman VJ; Mikaelian I; Usary J; Hu Z; Rasmussen KE; Jones LP; Assefnia S; Chandrasekharan S; Backlund MG; Yin Y; Khramtsov AI; Bastein R; Quackenbush J; Glazer RI; Brown PH; Green JE; Kopelovich L; Furth PA; Palazzo JP; Olopade OI; Bernard PS; Churchill GA; Van Dyke T; Perou CM. 2007. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76. [PubMed: 17493263]  [MGI Ref ID J:160877]

Hodgson JG; Malek T; Bornstein S; Hariono S; Ginzinger DG; Muller WJ; Gray JW. 2005. Copy number aberrations in mouse breast tumors reveal loci and genes important in tumorigenic receptor tyrosine kinase signaling. Cancer Res 65(21):9695-704. [PubMed: 16266989]  [MGI Ref ID J:102690]

Hu Y; Bai L; Geiger T; Goldberger N; Walker RC; Green JE; Wakefield LM; Hunter KW. 2013. Genetic background may contribute to PAM50 gene expression breast cancer subtype assignments. PLoS One 8(8):e72287. [PubMed: 24015230]  [MGI Ref ID J:205937]

Huang Y; Yuan J; Righi E; Kamoun WS; Ancukiewicz M; Nezivar J; Santosuosso M; Martin JD; Martin MR; Vianello F; Leblanc P; Munn LL; Huang P; Duda DG; Fukumura D; Jain RK; Poznansky MC. 2012. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A 109(43):17561-6. [PubMed: 23045683]  [MGI Ref ID J:190374]

Hulit J; Suyama K; Chung S; Keren R; Agiostratidou G; Shan W; Dong X; Williams TM; Lisanti MP; Knudsen K; Hazan RB. 2007. N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res 67(7):3106-16. [PubMed: 17409417]  [MGI Ref ID J:120832]

Hunter KW; Broman KW; Voyer TL; Lukes L; Cozma D; Debies MT; Rouse J; Welch DR. 2001. Predisposition to efficient mammary tumor metastatic progression is linked to the breast cancer metastasis suppressor gene Brms1. Cancer Res 61(24):8866-72. [PubMed: 11751410]  [MGI Ref ID J:73358]

Husemann Y; Geigl JB; Schubert F; Musiani P; Meyer M; Burghart E; Forni G; Eils R; Fehm T; Riethmuller G; Klein CA. 2008. Systemic spread is an early step in breast cancer. Cancer Cell 13(1):58-68. [PubMed: 18167340]  [MGI Ref ID J:131063]

Iyengar P; Espina V; Williams TW; Lin Y; Berry D; Jelicks LA; Lee H; Temple K; Graves R; Pollard J; Chopra N; Russell RG; Sasisekharan R; Trock BJ; Lippman M; Calvert VS; Petricoin EF; Liotta L; Dadachova E; Pestell RG; Lisanti MP; Bonaldo P; Scherer PE. 2005. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 115(5):1163-1176. [PubMed: 15841211]  [MGI Ref ID J:98091]

Izumchenko E; Singh MK; Plotnikova OV; Tikhmyanova N; Little JL; Serebriiskii IG; Seo S; Kurokawa M; Egleston BL; Klein-Szanto A; Pugacheva EN; Hardy RR; Wolfson M; Connolly DC; Golemis EA. 2009. NEDD9 promotes oncogenic signaling in mammary tumor development. Cancer Res 69(18):7198-206. [PubMed: 19738060]  [MGI Ref ID J:152685]

Jaskelioff M; Song W; Xia J; Liu C; Kramer J; Koido S; Gendler SJ; Calderwood SK; Gong J. 2009. Telomerase deficiency and telomere dysfunction inhibit mammary tumors induced by polyomavirus middle T oncogene. Oncogene 28(48):4225-36. [PubMed: 19734944]  [MGI Ref ID J:157042]

Johansson J; Berg T; Kurzejamska E; Pang MF; Tabor V; Jansson M; Roswall P; Pietras K; Sund M; Religa P; Fuxe J. 2013. MiR-155-mediated loss of C/EBPbeta shifts the TGF-beta response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene 32(50):5614-24. [PubMed: 23955085]  [MGI Ref ID J:205160]

Kazerounian S; Gerald D; Huang M; Chin YR; Udayakumar D; Zheng N; O'Donnell RK; Perruzzi C; Mangiante L; Pourat J; Phung TL; Bravo-Nuevo A; Shechter S; McNamara S; Duhadaway JB; Kocher ON; Brown LF; Toker A; Prendergast GC; Benjamin LE. 2013. RhoB differentially controls Akt function in tumor cells and stromal endothelial cells during breast tumorigenesis. Cancer Res 73(1):50-61. [PubMed: 23135917]  [MGI Ref ID J:194113]

Kelly-Spratt KS; Pitteri SJ; Gurley KE; Liggitt D; Chin A; Kennedy J; Wong CH; Zhang Q; Buson TB; Wang H; Hanash SM; Kemp CJ. 2011. Plasma proteome profiles associated with inflammation, angiogenesis, and cancer. PLoS One 6(5):e19721. [PubMed: 21589862]  [MGI Ref ID J:172643]

Kim C; Yang H; Fukushima Y; Saw PE; Lee J; Park JS; Park I; Jung J; Kataoka H; Lee D; Heo WD; Kim I; Jon S; Adams RH; Nishikawa S; Uemura A; Koh GY. 2014. Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption. Cancer Cell 25(1):102-17. [PubMed: 24434213]  [MGI Ref ID J:208154]

Kim IS; Baek SH. 2010. Mouse models for breast cancer metastasis. Biochem Biophys Res Commun 394(3):443-7. [PubMed: 20230796]  [MGI Ref ID J:159230]

Kim JW; Evans C; Weidemann A; Takeda N; Lee YS; Stockmann C; Branco-Price C; Brandberg F; Leone G; Ostrowski MC; Johnson RS. 2012. Loss of fibroblast HIF-1alpha accelerates tumorigenesis. Cancer Res 72(13):3187-95. [PubMed: 22556263]  [MGI Ref ID J:189318]

Koh YJ; Kim HZ; Hwang SI; Lee JE; Oh N; Jung K; Kim M; Kim KE; Kim H; Lim NK; Jeon CJ; Lee GM; Jeon BH; Nam DH; Sung HK; Nagy A; Yoo OJ; Koh GY. 2010. Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell 18(2):171-84. [PubMed: 20708158]  [MGI Ref ID J:163671]

Kouros-Mehr H; Bechis SK; Slorach EM; Littlepage LE; Egeblad M; Ewald AJ; Pai SY; Ho IC; Werb Z. 2008. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13(2):141-52. [PubMed: 18242514]  [MGI Ref ID J:131913]

Kuch V; Schreiber C; Thiele W; Umansky V; Sleeman JP. 2013. Tumor-initiating properties of breast cancer and melanoma cells in vivo are not invariably reflected by spheroid formation in vitro, but can be increased by long-term culturing as adherent monolayers. Int J Cancer 132(3):E94-105. [PubMed: 22907275]  [MGI Ref ID J:193510]

Kupferman ME; Fini ME; Muller WJ; Weber R; Cheng Y; Muschel RJ. 2000. Matrix metalloproteinase 9 promoter activity is induced coincident with invasion during tumor progression Am J Pathol 157(6):1777-83. [PubMed: 11106549]  [MGI Ref ID J:66129]

Kurpios NA; Sabolic NA; Shepherd TG; Fidalgo GM; Hassell JA. 2003. Function of PEA3 Ets transcription factors in mammary gland development and oncogenesis. J Mammary Gland Biol Neoplasia 8(2):177-90. [PubMed: 14635793]  [MGI Ref ID J:87017]

La Merrill M; Baston DS; Denison MS; Birnbaum LS; Pomp D; Threadgill DW. 2009. Mouse breast cancer model-dependent changes in metabolic syndrome-associated phenotypes caused by maternal dioxin exposure and dietary fat. Am J Physiol Endocrinol Metab 296(1):E203-10. [PubMed: 18840765]  [MGI Ref ID J:145631]

Lahlou H; Sanguin-Gendreau V; Zuo D; Cardiff RD; McLean GW; Frame MC; Muller WJ. 2007. Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc Natl Acad Sci U S A 104(51):20302-7. [PubMed: 18056629]  [MGI Ref ID J:141541]

Lam JB; Chow KH; Xu A; Lam KS; Liu J; Wong NS; Moon RT; Shepherd PR; Cooper GJ; Wang Y. 2009. Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities. PLoS ONE 4(3):e4968. [PubMed: 19319191]  [MGI Ref ID J:147458]

Lancaster M; Rouse J; Hunter KW. 2005. Modifiers of mammary tumor progression and metastasis on mouse chromosomes 7, 9, and 17. Mamm Genome 16(2):120-6. [PubMed: 15859357]  [MGI Ref ID J:97671]

Le Voyer T; Lu Z; Babb J; Lifsted T; Williams M; Hunter K. 2000. An epistatic interaction controls the latency of a transgene-induced mammary tumor. Mamm Genome 11(10):883-9. [PubMed: 11003704]  [MGI Ref ID J:64663]

Le Voyer T; Rouse J; Lu Z; Lifsted T; Williams M; Hunter KW. 2001. Three loci modify growth of a transgene-induced mammary tumor: suppression of proliferation associated with decreased microvessel density. Genomics 74(3):253-61. [PubMed: 11414753]  [MGI Ref ID J:70229]

Lee IH; Sohn M; Lim HJ; Yoon S; Oh H; Shin S; Shin JH; Oh SH; Kim J; Lee DK; Noh DY; Bae DS; Seong JK; Bae YS. 2014. Ahnak functions as a tumor suppressor via modulation of TGFbeta/Smad signaling pathway. Oncogene 33(38):4675-84. [PubMed: 24662814]  [MGI Ref ID J:214424]

Ley S; Weigert A; Weichand B; Henke N; Mille-Baker B; Janssen RA; Brune B. 2013. The role of TRKA signaling in IL-10 production by apoptotic tumor cell-activated macrophages. Oncogene 32(5):631-40. [PubMed: 22410777]  [MGI Ref ID J:193372]

Li L; Hanahan D. 2013. Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell 153(1):86-100. [PubMed: 23540692]  [MGI Ref ID J:197249]

Li SH; Hawthorne VS; Neal CL; Sanghera S; Xu J; Yang J; Guo H; Steeg PS; Yu D. 2009. Upregulation of neutrophil gelatinase-associated lipocalin by ErbB2 through nuclear factor-kappaB activation. Cancer Res 69(24):9163-8. [PubMed: 19951994]  [MGI Ref ID J:155393]

Li Y; Welm B; Podsypanina K; Huang S; Chamorro M; Zhang X; Rowlands T; Egeblad M; Cowin P; Werb Z; Tan LK; Rosen JM; Varmus HE. 2003. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 100(26):15853-8. [PubMed: 14668450]  [MGI Ref ID J:87520]

Lifsted T; Le Voyer T; Williams M; Muller W; Klein-Szanto A; Buetow KH ; Hunter KW. 1998. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77(4):640-4. [PubMed: 9679770]  [MGI Ref ID J:48854]

Lin EY; Jones JG; Li P; Zhu L; Whitney KD; Muller WJ; Pollard JW. 2003. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5):2113-26. [PubMed: 14578209]  [MGI Ref ID J:86499]

Lin EY; Li JF; Gnatovskiy L; Deng Y; Zhu L; Grzesik DA; Qian H; Xue XN; Pollard JW. 2006. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238-46. [PubMed: 17114237]  [MGI Ref ID J:116132]

Lin EY; Pollard JW. 2004. Macrophages: modulators of breast cancer progression. Novartis Found Symp 256:158-68; discussion 168-72, 259. [PubMed: 15027489]  [MGI Ref ID J:90229]

Lin FJ; Chen X; Qin J; Hong YK; Tsai MJ; Tsai SY. 2010. Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J Clin Invest 120(5):1694-707. [PubMed: 20364082]  [MGI Ref ID J:161485]

Liu K; Caldwell SA; Abrams SI. 2005. Cooperative disengagement of Fas and intercellular adhesion molecule-1 function in neoplastic cells confers enhanced colonization efficiency. Cancer Res 65(3):1045-54. [PubMed: 15705906]  [MGI Ref ID J:96563]

Lopez JI; Camenisch TD; Stevens MV; Sands BJ; McDonald J; Schroeder JA. 2005. CD44 attenuates metastatic invasion during breast cancer progression. Cancer Res 65(15):6755-63. [PubMed: 16061657]  [MGI Ref ID J:100774]

Lukes L; Crawford NP; Walker R; Hunter KW. 2009. The origins of breast cancer prognostic gene expression profiles. Cancer Res 69(1):310-8. [PubMed: 19118016]  [MGI Ref ID J:143027]

Luo M; Fan H; Nagy T; Wei H; Wang C; Liu S; Wicha MS; Guan JL. 2009. Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res 69(2):466-74. [PubMed: 19147559]  [MGI Ref ID J:143710]

Luo M; Zhao X; Chen S; Liu S; Wicha MS; Guan JL. 2013. Distinct FAK activities determine progenitor and mammary stem cell characteristics. Cancer Res 73(17):5591-602. [PubMed: 23832665]  [MGI Ref ID J:201836]

Ma Z; Gibson SL; Byrne MA; Zhang J; White MF; Shaw LM. 2006. Suppression of insulin receptor substrate 1 (IRS-1) promotes mammary tumor metastasis. Mol Cell Biol 26(24):9338-51. [PubMed: 17030605]  [MGI Ref ID J:117024]

Maglione JE; Moghanaki D; Young LJ; Manner CK; Ellies LG; Joseph SO; Nicholson B; Cardiff RD; MacLeod CL. 2001. Transgenic Polyoma middle-T mice model premalignant mammary disease. Cancer Res 61(22):8298-305. [PubMed: 11719463]  [MGI Ref ID J:72996]

Man AK; Young LJ; Tynan JA; Lesperance J; Egeblad M; Werb Z; Hauser CA; Muller WJ; Cardiff RD; Oshima RG. 2003. Ets2-dependent stromal regulation of mouse mammary tumors. Mol Cell Biol 23(23):8614-25. [PubMed: 14612405]  [MGI Ref ID J:86530]

Mardilovich K; Shaw LM. 2009. Hypoxia regulates insulin receptor substrate-2 expression to promote breast carcinoma cell survival and invasion. Cancer Res 69(23):8894-901. [PubMed: 19920186]  [MGI Ref ID J:155053]

Marjon NA; Hu C; Hathaway HJ; Prossnitz ER. 2014. G protein-coupled estrogen receptor regulates mammary tumorigenesis and metastasis. Mol Cancer Res 12(11):1644-54. [PubMed: 25030371]  [MGI Ref ID J:216705]

Maroulakou IG; Oemler W; Naber SP; Tsichlis PN. 2007. Akt1 ablation inhibits, whereas Akt2 ablation accelerates, the development of mammary adenocarcinomas in mouse mammary tumor virus (MMTV)-ErbB2/neu and MMTV-polyoma middle T transgenic mice. Cancer Res 67(1):167-77. [PubMed: 17210696]  [MGI Ref ID J:117336]

Martin MD; Carter KJ; Jean-Philippe SR; Chang M; Mobashery S; Thiolloy S; Lynch CC; Matrisian LM; Fingleton B. 2008. Effect of ablation or inhibition of stromal matrix metalloproteinase-9 on lung metastasis in a breast cancer model is dependent on genetic background. Cancer Res 68(15):6251-9. [PubMed: 18676849]  [MGI Ref ID J:140033]

McCartan D; Bolger JC; Fagan A; Byrne C; Hao Y; Qin L; McIlroy M; Xu J; Hill AD; Gaora PO; Young LS. 2012. Global characterization of the SRC-1 transcriptome identifies ADAM22 as an ER-independent mediator of endocrine-resistant breast cancer. Cancer Res 72(1):220-9. [PubMed: 22072566]  [MGI Ref ID J:181041]

Moadel RM; Nguyen AV; Lin EY; Lu P; Mani J; Blaufox MD; Pollard JW; Dadachova E. 2003. Positron emission tomography agent 2-deoxy-2-[18F]fluoro-D-glucose has a therapeutic potential in breast cancer. Breast Cancer Res 5(6):R199-205. [PubMed: 14580255]  [MGI Ref ID J:86497]

Mouw JK; Yui Y; Damiano L; Bainer RO; Lakins JN; Acerbi I; Ou G; Wijekoon AC; Levental KR; Gilbert PM; Hwang ES; Chen YY; Weaver VM. 2014. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat Med 20(4):360-7. [PubMed: 24633304]  [MGI Ref ID J:210315]

Murakami M; Giampietro C; Giannotta M; Corada M; Torselli I; Orsenigo F; Cocito A; d'Ario G; Mazzarol G; Confalonieri S; Di Fiore PP; Dejana E. 2011. Abrogation of junctional adhesion molecule-a expression induces cell apoptosis and reduces breast cancer progression. PLoS One 6(6):e21242. [PubMed: 21695058]  [MGI Ref ID J:174294]

Muraoka RS; Dumont N; Ritter CA; Dugger TC; Brantley DM; Chen J; Easterly E; Roebuck LR; Ryan S; Gotwals PJ; Koteliansky V; Arteaga CL. 2002. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109(12):1551-9. [PubMed: 12070302]  [MGI Ref ID J:86709]

Nagle JA; Ma Z; Byrne MA; White MF; Shaw LM. 2004. Involvement of insulin receptor substrate 2 in mammary tumor metastasis. Mol Cell Biol 24(22):9726-35. [PubMed: 15509777]  [MGI Ref ID J:94107]

Nasr Z; Robert F; Porco JA Jr; Muller WJ; Pelletier J. 2013. eIF4F suppression in breast cancer affects maintenance and progression. Oncogene 32(7):861-71. [PubMed: 22484424]  [MGI Ref ID J:193363]

Neznanov N; Man AK; Yamamoto H; Hauser CA; Cardiff RD; Oshima RG. 1999. A single targeted Ets2 allele restricts development of mammary tumors in transgenic mice. Cancer Res 59(17):4242-6. [PubMed: 10485465]  [MGI Ref ID J:57272]

Nguyen A; Burack WR; Stock JL; Kortum R; Chaika OV; Afkarian M; Muller WJ; Murphy KM; Morrison DK; Lewis RE; McNeish J; Shaw AS. 2002. Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 22(9):3035-45. [PubMed: 11940661]  [MGI Ref ID J:75739]

Niemeyer CC; Spencer-Dene B; Wu JX; Adamson ED. 1999. Preneoplastic mammary tumor markers: Cripto and Amphiregulin are overexpressed in hyperplastic stages of tumor progression in transgenic mice. Int J Cancer 81(4):588-91. [PubMed: 10225449]  [MGI Ref ID J:54862]

Novitskiy SV; Pickup MW; Gorska AE; Owens P; Chytil A; Aakre M; Wu H; Shyr Y; Moses HL. 2011. TGF-beta receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. Cancer Discov 1(5):430-41. [PubMed: 22408746]  [MGI Ref ID J:185747]

Novosyadlyy R; Lann DE; Vijayakumar A; Rowzee A; Lazzarino DA; Fierz Y; Carboni JM; Gottardis MM; Pennisi PA; Molinolo AA; Kurshan N; Mejia W; Santopietro S; Yakar S; Wood TL; LeRoith D. 2010. Insulin-mediated acceleration of breast cancer development and progression in a nonobese model of type 2 diabetes. Cancer Res 70(2):741-51. [PubMed: 20068149]  [MGI Ref ID J:156752]

Oghumu S; Varikuti S; Terrazas C; Kotov D; Nasser MW; Powell CA; Ganju RK; Satoskar AR. 2014. CXCR3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model. Immunology 143(1):109-19. [PubMed: 24679047]  [MGI Ref ID J:219472]

Ojalvo LS; King W; Cox D; Pollard JW. 2009. High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol 174(3):1048-64. [PubMed: 19218341]  [MGI Ref ID J:146811]

Ojalvo LS; Whittaker CA; Condeelis JS; Pollard JW. 2010. Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol 184(2):702-12. [PubMed: 20018620]  [MGI Ref ID J:159401]

Owens TW; Rogers RL; Best SA; Ledger A; Mooney AM; Ferguson A; Shore P; Swarbrick A; Ormandy CJ; Simpson PT; Carroll JS; Visvader JE; Naylor MJ. 2014. Runx2 is a novel regulator of mammary epithelial cell fate in development and breast cancer. Cancer Res 74(18):5277-86. [PubMed: 25056120]  [MGI Ref ID J:215993]

Pakala SB; Rayala SK; Wang RA; Ohshiro K; Mudvari P; Reddy SD; Zheng Y; Pires R; Casimiro S; Pillai MR; Costa L; Kumar R. 2013. MTA1 Promotes STAT3 Transcription and Pulmonary Metastasis in Breast Cancer. Cancer Res 73(12):3761-3770. [PubMed: 23580571]  [MGI Ref ID J:198473]

Partridge EA; Le Roy C; Di Guglielmo GM; Pawling J; Cheung P; Granovsky M; Nabi IR; Wrana JL; Dennis JW. 2004. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306(5693):120-4. [PubMed: 15459394]  [MGI Ref ID J:93100]

Patsialou A; Wyckoff J; Wang Y; Goswami S; Stanley ER; Condeelis JS. 2009. Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res 69(24):9498-506. [PubMed: 19934330]  [MGI Ref ID J:155533]

Peace BE; Toney-Earley K; Collins MH; Waltz SE. 2005. Ron receptor signaling augments mammary tumor formation and metastasis in a murine model of breast cancer. Cancer Res 65(4):1285-93. [PubMed: 15735014]  [MGI Ref ID J:96786]

Pedersen TX; Pennington CJ; Almholt K; Christensen IJ; Nielsen BS; Edwards DR; Romer J; Dano K; Johnsen M. 2005. Extracellular protease mRNAs are predominantly expressed in the stromal areas of microdissected mouse breast carcinomas. Carcinogenesis 26(7):1233-40. [PubMed: 15760918]  [MGI Ref ID J:99389]

Pickup MW; Laklai H; Acerbi I; Owens P; Gorska AE; Chytil A; Aakre M; Weaver VM; Moses HL. 2013. Stromally derived lysyl oxidase promotes metastasis of transforming growth factor-beta-deficient mouse mammary carcinomas. Cancer Res 73(17):5336-46. [PubMed: 23856251]  [MGI Ref ID J:202531]

Politi K; Kljuic A; Szabolcs M; Fisher P; Ludwig T; Efstratiadis A. 2004. 'Designer' tumors in mice. Oncogene 23(8):1558-65. [PubMed: 14661057]  [MGI Ref ID J:87544]

Provenzano PP; Inman DR; Eliceiri KW; Beggs HE; Keely PJ. 2008. Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer. Am J Pathol 173(5):1551-65. [PubMed: 18845837]  [MGI Ref ID J:141117]

Pylayeva Y; Gillen KM; Gerald W; Beggs HE; Reichardt LF; Giancotti FG. 2009. Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J Clin Invest 119(2):252-66. [PubMed: 19147981]  [MGI Ref ID J:145974]

Qian B; Deng Y; Im JH; Muschel RJ; Zou Y; Li J; Lang RA; Pollard JW. 2009. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4(8):e6562. [PubMed: 19668347]  [MGI Ref ID J:152473]

Qian BZ; Li J; Zhang H; Kitamura T; Zhang J; Campion LR; Kaiser EA; Snyder LA; Pollard JW. 2011. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222-5. [PubMed: 21654748]  [MGI Ref ID J:186831]

Qian X; Hulit J; Suyama K; Eugenin EA; Belbin TJ; Loudig O; Smirnova T; Zhou ZN; Segall J; Locker J; Phillips GR; Norton L; Hazan RB. 2013. p21CIP1 mediates reciprocal switching between proliferation and invasion during metastasis. Oncogene 32(18):2292-303, 2303.e1-7. [PubMed: 22751124]  [MGI Ref ID J:198021]

Qian X; Li G; Vass WC; Papageorge A; Walker RC; Asnaghi L; Steinbach PJ; Tosato G; Hunter K; Lowy DR. 2009. The Tensin-3 protein, including its SH2 domain, is phosphorylated by Src and contributes to tumorigenesis and metastasis. Cancer Cell 16(3):246-58. [PubMed: 19732724]  [MGI Ref ID J:152691]

Qin J; Chen X; Xie X; Tsai MJ; Tsai SY. 2010. COUP-TFII regulates tumor growth and metastasis by modulating tumor angiogenesis. Proc Natl Acad Sci U S A 107(8):3687-92. [PubMed: 20133706]  [MGI Ref ID J:157554]

Qin L; Liao L; Redmond A; Young L; Yuan Y; Chen H; O'Malley BW; Xu J. 2008. The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Mol Cell Biol 28(19):5937-50. [PubMed: 18644862]  [MGI Ref ID J:140358]

Qin L; Liu Z; Chen H; Xu J. 2009. The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res 69(9):3819-27. [PubMed: 19383905]  [MGI Ref ID J:148269]

Qiu TH; Chandramouli GV; Hunter KW; Alkharouf NW; Green JE; Liu ET. 2004. Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human disease. Cancer Res 64(17):5973-81. [PubMed: 15342376]  [MGI Ref ID J:92401]

Rauh MJ; Blackmore V; Andrechek ER; Tortorice CG; Daly R; Lai VK; Pawson T; Cardiff RD; Siegel PM; Muller WJ. 1999. Accelerated mammary tumor development in mutant polyomavirus middle T transgenic mice expressing elevated levels of either the Shc or Grb2 adapter protein. Mol Cell Biol 19(12):8169-79. [PubMed: 10567542]  [MGI Ref ID J:58608]

Reddy JP; Peddibhotla S; Bu W; Zhao J; Haricharan S; Du YC; Podsypanina K; Rosen JM; Donehower LA; Li Y. 2010. Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation. Proc Natl Acad Sci U S A 107(8):3728-33. [PubMed: 20133707]  [MGI Ref ID J:157553]

Regan Anderson TM; Peacock DL; Daniel AR; Hubbard GK; Lofgren KA; Girard BJ; Schorg A; Hoogewijs D; Wenger RH; Seagroves TN; Lange CA. 2013. Breast tumor kinase (Brk/PTK6) is a mediator of hypoxia-associated breast cancer progression. Cancer Res 73(18):5810-20. [PubMed: 23928995]  [MGI Ref ID J:204358]

Ricciardelli C; Frewin KM; Tan Ide A; Williams ED; Opeskin K; Pritchard MA; Ingman WV; Russell DL. 2011. The ADAMTS1 protease gene is required for mammary tumor growth and metastasis. Am J Pathol 179(6):3075-85. [PubMed: 22001177]  [MGI Ref ID J:180068]

Richard S; Vogel G; Huot ME; Guo T; Muller WJ; Lukong KE. 2008. Sam68 haploinsufficiency delays onset of mammary tumorigenesis and metastasis. Oncogene 27(4):548-56. [PubMed: 17621265]  [MGI Ref ID J:132092]

Ritland SR; Rowse GJ; Chang Y; Gendler SJ. 1997. Loss of heterozygosity analysis in primary mammary tumors and lung metastases of MMTV-MTAg and MMTV-neu transgenic mice. Cancer Res 57(16):3520-5. [PubMed: 9270023]  [MGI Ref ID J:72134]

Robinson GW; Wagner KU; Hennighausen L. 2001. Functional mammary gland development and oncogene-induced tumor formation are not affected by the absence of the retinoblastoma gene. Oncogene 20(48):7115-9. [PubMed: 11704837]  [MGI Ref ID J:73006]

Rosner A; Miyoshi K; Landesman-Bollag E; Xu X; Seldin DC; Moser AR; MacLeod CL; Shyamala G; Gillgrass AE; Cardiff RD. 2002. Pathway pathology: histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. Am J Pathol 161(3):1087-97. [PubMed: 12213737]  [MGI Ref ID J:78873]

Rubashkin MG; Cassereau L; Bainer R; DuFort CC; Yui Y; Ou G; Paszek MJ; Davidson MW; Chen YY; Weaver VM. 2014. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res 74(17):4597-611. [PubMed: 25183785]  [MGI Ref ID J:214798]

Ruffell B; Affara NI; Cottone L; Junankar S; Johansson M; DeNardo DG; Korets L; Reinheckel T; Sloane BF; Bogyo M; Coussens LM. 2013. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev 27(19):2086-98. [PubMed: 24065739]  [MGI Ref ID J:202830]

Ryu S; McDonnell K; Choi H; Gao D; Hahn M; Joshi N; Park SM; Catena R; Do Y; Brazin J; Vahdat LT; Silver RB; Mittal V. 2013. Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 23(1):63-76. [PubMed: 23328481]  [MGI Ref ID J:194343]

Sanders S; Thorgeirsson SS. 2000. Promotion of hepatocarcinogenesis by phenobarbital in c-myc/TGF-alpha transgenic mice. Mol Carcinog 28(3):168-73. [PubMed: 10942533]  [MGI Ref ID J:64633]

Sangrar W; Zirgnibl RA; Gao Y; Muller WJ; Jia Z; Greer PA. 2005. An identity crisis for fps/fes: oncogene or tumor suppressor? Cancer Res 65(9):3518-22. [PubMed: 15867340]  [MGI Ref ID J:98281]

Santidrian AF; Matsuno-Yagi A; Ritland M; Seo BB; LeBoeuf SE; Gay LJ; Yagi T; Felding-Habermann B. 2013. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest 123(3):1068-81. [PubMed: 23426180]  [MGI Ref ID J:196392]

Sceneay J; Liu MC; Chen A; Wong CS; Bowtell DD; Moller A. 2013. The antioxidant N-acetylcysteine prevents HIF-1 stabilization under hypoxia in vitro but does not affect tumorigenesis in multiple breast cancer models in vivo. PLoS One 8(6):e66388. [PubMed: 23840457]  [MGI Ref ID J:203723]

Schaffner F; Versteeg HH; Schillert A; Yokota N; Petersen LC; Mueller BM; Ruf W. 2010. Cooperation of tissue factor cytoplasmic domain and PAR2 signaling in breast cancer development. Blood 116(26):6106-13. [PubMed: 20861457]  [MGI Ref ID J:167394]

Schaffner F; Yokota N; Carneiro-Lobo T; Kitano M; Schaffer M; Anderson GM; Mueller BM; Esmon CT; Ruf W. 2013. Endothelial protein C receptor function in murine and human breast cancer development. PLoS One 8(4):e61071. [PubMed: 23593394]  [MGI Ref ID J:200026]

Schmid MC; Avraamides CJ; Foubert P; Shaked Y; Kang SW; Kerbel RS; Varner JA. 2011. Combined Blockade of Integrin-alpha4beta1 Plus Cytokines SDF-1alpha or IL-1beta Potently Inhibits Tumor Inflammation and Growth. Cancer Res 71(22):6965-75. [PubMed: 21948958]  [MGI Ref ID J:178009]

Schoeffner DJ; Matheny SL; Akahane T; Factor V; Berry A; Merlino G; Thorgeirsson UP. 2005. VEGF contributes to mammary tumor growth in transgenic mice through paracrine and autocrine mechanisms. Lab Invest 85(5):608-23. [PubMed: 15765121]  [MGI Ref ID J:98204]

Schreiber C; Kuch V; Umansky V; Sleeman JP. 2013. Autochthonous mouse melanoma and mammary tumors do not express the pluripotency genes Oct4 and Nanog. PLoS One 8(2):e57465. [PubMed: 23468991]  [MGI Ref ID J:199393]

Schurigt U; Sevenich L; Vannier C; Gajda M; Schwinde A; Werner F; Stahl A; von Elverfeldt D; Becker AK; Bogyo M; Peters C; Reinheckel T. 2008. Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model. Biol Chem 389(8):1067-74. [PubMed: 18710344]  [MGI Ref ID J:152448]

Seitzer N; Mayr T; Streit S; Ullrich A. 2010. A single nucleotide change in the mouse genome accelerates breast cancer progression. Cancer Res 70(2):802-12. [PubMed: 20068154]  [MGI Ref ID J:156750]

Sevenich L; Schurigt U; Sachse K; Gajda M; Werner F; Muller S; Vasiljeva O; Schwinde A; Klemm N; Deussing J; Peters C; Reinheckel T. 2010. Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci U S A 107(6):2497-502. [PubMed: 20133781]  [MGI Ref ID J:157541]

Sevenich L; Werner F; Gajda M; Schurigt U; Sieber C; Muller S; Follo M; Peters C; Reinheckel T. 2010. Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice. Oncogene :. [PubMed: 20818432]  [MGI Ref ID J:164578]

Shepard CR; Kassis J; Whaley DL; Kim HG; Wells A. 2007. PLC gamma contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene 26(21):3020-6. [PubMed: 17130835]  [MGI Ref ID J:122884]

Shishido SN; Delahaye A; Beck A; Nguyen TA. 2014. The anticancer effect of PQ1 in the MMTV-PyVT mouse model. Int J Cancer 134(6):1474-83. [PubMed: 24038078]  [MGI Ref ID J:211971]

Shishido SN; Faulkner EB; Beck A; Nguyen TA. 2013. The effect of antineoplastic drugs in a male spontaneous mammary tumor model. PLoS One 8(6):e64866. [PubMed: 23755153]  [MGI Ref ID J:204255]

Shishido SN; Prasain K; Beck A; Nguyen TD; Hua DH; Nguyen TA. 2013. Bioavailability and efficacy of a gap junction enhancer (PQ7) in a mouse mammary tumor model. PLoS One 8(6):e67174. [PubMed: 23776708]  [MGI Ref ID J:204221]

Singh MK; Izumchenko E; Klein-Szanto AJ; Egleston BL; Wolfson M; Golemis EA. 2010. Enhanced genetic instability and dasatinib sensitivity in mammary tumor cells lacking NEDD9. Cancer Res 70(21):8907-16. [PubMed: 20940402]  [MGI Ref ID J:165792]

Song SJ; Poliseno L; Song MS; Ala U; Webster K; Ng C; Beringer G; Brikbak NJ; Yuan X; Cantley LC; Richardson AL; Pandolfi PP. 2013. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154(2):311-24. [PubMed: 23830207]  [MGI Ref ID J:199994]

Song Y; Aglipay JA; Bernstein JD; Goswami S; Stanley P. 2010. The bisecting GlcNAc on N-glycans inhibits growth factor signaling and retards mammary tumor progression. Cancer Res 70(8):3361-71. [PubMed: 20395209]  [MGI Ref ID J:158940]

Sounni NE; Dehne K; van Kempen L; Egeblad M; Affara NI; Cuevas I; Wiesen J; Junankar S; Korets L; Lee J; Shen J; Morrison CJ; Overall CM; Krane SM; Werb Z; Boudreau N; Coussens LM. 2010. Stromal regulation of vessel stability by MMP14 and TGF{beta}. Dis Model Mech 3(5-6):317-32. [PubMed: 20223936]  [MGI Ref ID J:159238]

Spassov DS; Wong CH; Wong SY; Reiter JF; Moasser MM. 2013. Trask loss enhances tumorigenic growth by liberating integrin signaling and growth factor receptor cross-talk in unanchored cells. Cancer Res 73(3):1168-79. [PubMed: 23243018]  [MGI Ref ID J:194368]

Spicer AP; Rowse GJ; Lidner TK; Gendler SJ. 1995. Delayed mammary tumor progression in Muc-1 null mice. J Biol Chem 270(50):30093-101. [PubMed: 8530414]  [MGI Ref ID J:30128]

Spiotto MT; Banh A; Papandreou I; Cao H; Galvez MG; Gurtner GC; Denko NC; Le QT; Koong AC. 2010. Imaging the unfolded protein response in primary tumors reveals microenvironments with metabolic variations that predict tumor growth. Cancer Res 70(1):78-88. [PubMed: 20028872]  [MGI Ref ID J:155736]

Stewart TJ; Abrams SI. 2007. Altered immune function during long-term host-tumor interactions can be modulated to retard autochthonous neoplastic growth. J Immunol 179(5):2851-9. [PubMed: 17709499]  [MGI Ref ID J:128726]

Stewart TJ; Liewehr DJ; Steinberg SM; Greeneltch KM; Abrams SI. 2009. Modulating the expression of IFN regulatory factor 8 alters the protumorigenic behavior of CD11b+Gr-1+ myeloid cells. J Immunol 183(1):117-28. [PubMed: 19542426]  [MGI Ref ID J:149980]

Stockmann C; Doedens A; Weidemann A; Zhang N; Takeda N; Greenberg JI; Cheresh DA; Johnson RS. 2008. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456(7223):814-8. [PubMed: 18997773]  [MGI Ref ID J:143170]

Tao Y; Shen C; Luo S; Traore W; Marchetto S; Santoni MJ; Xu L; Wu B; Shi C; Mei J; Bates R; Liu X; Zhao K; Xiong WC; Borg JP; Mei L. 2014. Role of Erbin in ErbB2-dependent breast tumor growth. Proc Natl Acad Sci U S A 111(42):E4429-38. [PubMed: 25288731]  [MGI Ref ID J:216431]

Tardaguila M; Mira E; Garcia-Cabezas MA; Feijoo AM; Quintela-Fandino M; Azcoitia I; Lira SA; Manes S. 2013. CX3CL1 Promotes Breast Cancer via Transactivation of the EGF Pathway. Cancer Res 73(14):4461-73. [PubMed: 23720051]  [MGI Ref ID J:199104]

Tehranian A; Morris DW; Min BH; Bird DJ; Cardiff RD; Barry PA. 1996. Neoplastic transformation of prostatic and urogenital epithelium by the polyoma virus middle T gene. Am J Pathol 149(4):1177-91. [PubMed: 8863667]  [MGI Ref ID J:101640]

Tran HD; Luitel K; Kim M; Zhang K; Longmore GD; Tran DD. 2014. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res 74(21):6330-40. [PubMed: 25164016]  [MGI Ref ID J:216694]

Tran K; Risingsong R; Royce DB; Williams CR; Sporn MB; Pioli PA; Gediya LK; Njar VC; Liby KT. 2013. The combination of the histone deacetylase inhibitor vorinostat and synthetic triterpenoids reduces tumorigenesis in mouse models of cancer. Carcinogenesis 34(1):199-210. [PubMed: 23042302]  [MGI Ref ID J:193646]

Trimble MS; Xin JH; Guy CT; Muller WJ; Hassell JA. 1993. PEA3 is overexpressed in mouse metastatic mammary adenocarcinomas. Oncogene 8(11):3037-42. [PubMed: 7692372]  [MGI Ref ID J:72260]

Trimboli AJ; Cantemir-Stone CZ; Li F; Wallace JA; Merchant A; Creasap N; Thompson JC; Caserta E; Wang H; Chong JL; Naidu S; Wei G; Sharma SM; Stephens JA; Fernandez SA; Gurcan MN; Weinstein MB; Barsky SH; Yee L; Rosol TJ; Stromberg PC; Robinson ML; PepinF; Hallett M; Park M; Ostrowski MC; Leone G. 2009. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461(7267):1084-91. [PubMed: 19847259]  [MGI Ref ID J:153747]

Trimboli AJ; Fukino K; de Bruin A; Wei G; Shen L; Tanner SM; Creasap N; Rosol TJ; Robinson ML; Eng C; Ostrowski MC; Leone G. 2008. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res 68(3):937-45. [PubMed: 18245497]  [MGI Ref ID J:131862]

Ursini-Siegel J; Hardy WR; Zuo D; Lam SH; Sanguin-Gendreau V; Cardiff RD; Pawson T; Muller WJ. 2008. ShcA signalling is essential for tumour progression in mouse models of human breast cancer. EMBO J 27(6):910-20. [PubMed: 18273058]  [MGI Ref ID J:133325]

Vasiljeva O; Korovin M; Gajda M; Brodoefel H; Bojic L; Kruger A; Schurigt U; Sevenich L; Turk B; Peters C; Reinheckel T. 2008. Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 27(30):4191-9. [PubMed: 18345026]  [MGI Ref ID J:138505]

Vasiljeva O; Papazoglou A; Kruger A; Brodoefel H; Korovin M; Deussing J; Augustin N; Nielsen BS; Almholt K; Bogyo M; Peters C; Reinheckel T. 2006. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66(10):5242-50. [PubMed: 16707449]  [MGI Ref ID J:109056]

Versteeg HH; Schaffner F; Kerver M; Ellies LG; Andrade-Gordon P; Mueller BM; Ruf W. 2008. Protease-activated receptor (PAR) 2, but not PAR1, signaling promotes the development of mammary adenocarcinoma in polyoma middle T mice. Cancer Res 68(17):7219-27. [PubMed: 18757438]  [MGI Ref ID J:138924]

Vervoort VS; Lu M; Valencia F; Lesperance J; Breier G; Oshima R; Pasquale EB. 2008. A novel Flk1-TVA transgenic mouse model for gene delivery to angiogenic vasculature. Transgenic Res 17(3):403-15. [PubMed: 18027100]  [MGI Ref ID J:134089]

Vomachka AJ; Pratt SL; Lockefeer JA; Horseman ND. 2000. Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth. Oncogene 19(8):1077-84. [PubMed: 10713693]  [MGI Ref ID J:61017]

Wallace JA; Li F; Balakrishnan S; Cantemir-Stone CZ; Pecot T; Martin C; Kladney RD; Sharma SM; Trimboli AJ; Fernandez SA; Yu L; Rosol TJ; Stromberg PC; Lesurf R; Hallett M; Park M; Leone G; Ostrowski MC. 2013. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer. PLoS One 8(8):e71533. [PubMed: 23977064]  [MGI Ref ID J:206347]

Walsh CA; Bolger JC; Byrne C; Cocchiglia S; Hao Y; Fagan A; Qin L; Cahalin A; McCartan D; McIlroy M; O'Gaora P; Xu J; Hill AD; Young LS. 2014. Global gene repression by the steroid receptor coactivator SRC-1 promotes oncogenesis. Cancer Res 74(9):2533-44. [PubMed: 24648347]  [MGI Ref ID J:210822]

Wan Y; Emtage P; Foley R; Carter R; Gauldie J. 1999. Murine dendritic cells transduced with an adenoviral vector expressing a defined tumor antigen can overcome anti-adenovirus neutralizing immunity and induce effective tumor regression. Int J Oncol 14(4):771-6. [PubMed: 10087328]  [MGI Ref ID J:54273]

Wang S; Yuan Y; Liao L; Kuang SQ; Tien JC; O'Malley BW; Xu J. 2009. Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc Natl Acad Sci U S A 106(1):151-6. [PubMed: 19109434]  [MGI Ref ID J:143510]

Webster MA; Hutchinson JN; Rauh MJ; Muthuswamy SK; Anton M; Tortorice CG; Cardiff RD; Graham FL; Hassell JA; Muller WJ. 1998. Requirement for both Shc and phosphatidylinositol 3' kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol Cell Biol 18(4):2344-59. [PubMed: 9528804]  [MGI Ref ID J:56327]

Webster MA; Martin-Soudant N; Nepveu A; Cardiff RD; Muller WJ. 1998. The induction of uterine leiomyomas and mammary tumors in transgenic mice expressing polyomavirus (PyV) large T (LT) antigen is associated with the ability of PyV LT antigen to form specific complexes with retinoblastoma and CUTL1 family members. Oncogene 16(15):1963-72. [PubMed: 9591780]  [MGI Ref ID J:56288]

Wei H; Wei S; Gan B; Peng X; Zou W; Guan JL. 2011. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25(14):1510-27. [PubMed: 21764854]  [MGI Ref ID J:174193]

Welford AF; Biziato D; Coffelt SB; Nucera S; Fisher M; Pucci F; Di Serio C; Naldini L; De Palma M; Tozer GM; Lewis CE. 2011. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest 121(5):1969-73. [PubMed: 21490397]  [MGI Ref ID J:173948]

Welm AL; Sneddon JB; Taylor C; Nuyten DS; van de Vijver MJ; Hasegawa BH; Bishop JM. 2007. The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans. Proc Natl Acad Sci U S A 104(18):7570-5. [PubMed: 17456594]  [MGI Ref ID J:121299]

White DE; Kurpios NA; Zuo D; Hassell JA; Blaess S; Mueller U; Muller WJ. 2004. Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6(2):159-70. [PubMed: 15324699]  [MGI Ref ID J:92547]

Williams TM; Cheung MW; Park DS; Razani B; Cohen AW; Muller WJ; Di Vizio D; Chopra NG; Pestell RG; Lisanti MP. 2003. Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol Biol Cell 14(3):1027-42. [PubMed: 12631721]  [MGI Ref ID J:132472]

Williams TM; Medina F; Badano I; Hazan RB; Hutchinson J; Muller WJ; Chopra NG; Scherer PE; Pestell RG; Lisanti MP. 2004. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem 279(49):51630-46. [PubMed: 15355971]  [MGI Ref ID J:95195]

Williams TM; Sotgia F; Lee H; Hassan G; Di Vizio D; Bonuccelli G; Capozza F; Mercier I; Rui H; Pestell RG; Lisanti MP. 2006. Stromal and epithelial caveolin-1 both confer a protective effect against mammary hyperplasia and tumorigenesis: caveolin-1 antagonizes cyclin d1 function in mammary epithelial cells. Am J Pathol 169(5):1784-801. [PubMed: 17071600]  [MGI Ref ID J:114569]

Wolford CC; McConoughey SJ; Jalgaonkar SP; Leon M; Merchant AS; Dominick JL; Yin X; Chang Y; Zmuda EJ; O'Toole SA; Millar EK; Roller SL; Shapiro CL; Ostrowski MC; Sutherland RL; Hai T. 2013. Transcription factor ATF3 links host adaptive response to breast cancer metastasis. J Clin Invest 123(7):2893-906. [PubMed: 23921126]  [MGI Ref ID J:201626]

Wong CS; Moller A. 2013. Siah: a promising anticancer target. Cancer Res 73(8):2400-6. [PubMed: 23455005]  [MGI Ref ID J:197053]

Wong CS; Sceneay J; House CM; Halse HM; Liu MC; George J; Hunnam TC; Parker BS; Haviv I; Ronai Z; Cullinane C; Bowtell DD; Moller A. 2012. Vascular normalization by loss of Siah2 results in increased chemotherapeutic efficacy. Cancer Res 72(7):1694-704. [PubMed: 22354750]  [MGI Ref ID J:184932]

Wong SY; Crowley D; Bronson RT; Hynes RO. 2008. Analyses of the role of endogenous SPARC in mouse models of prostate and breast cancer. Clin Exp Metastasis 25(2):109-18. [PubMed: 18058030]  [MGI Ref ID J:133592]

Wyckoff JB; Wang Y; Lin EY; Li JF; Goswami S; Stanley ER; Segall JE; Pollard JW; Condeelis J. 2007. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67(6):2649-56. [PubMed: 17363585]  [MGI Ref ID J:120318]

Xiao G; Deng A; Liu H; Ge G; Liu X. 2012. Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. Proc Natl Acad Sci U S A 109(38):15419-24. [PubMed: 22949674]  [MGI Ref ID J:190150]

Xue C; Plieth D; Venkov C; Xu C; Neilson EG. 2003. The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 63(12):3386-94. [PubMed: 12810675]  [MGI Ref ID J:83971]

Yang D; Stewart TJ; Smith KK; Georgi D; Abrams SI; Liu K. 2008. Downregulation of IFN-gammaR in association with loss of Fas function is linked to tumor progression. Int J Cancer 122(2):350-62. [PubMed: 17918178]  [MGI Ref ID J:135543]

Yang H; Rouse J; Lukes L; Lancaster M; Veenstra T; Zhou M; Shi Y; Park YG; Hunter K. 2004. Caffeine suppresses metastasis in a transgenic mouse model: a prototype molecule for prophylaxis of metastasis. Clin Exp Metastasis 21(8):719-35. [PubMed: 16035617]  [MGI Ref ID J:101443]

Yang L; Huang J; Ren X; Gorska AE; Chytil A; Aakre M; Carbone DP; Matrisian LM; Richmond A; Lin PC; Moses HL. 2008. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23-35. [PubMed: 18167337]  [MGI Ref ID J:131064]

Ye D; Zhao Y; Hildebrand RB; Singaraja RR; Hayden MR; Van Berkel TJ; Van Eck M. 2011. The dynamics of macrophage infiltration into the arterial wall during atherosclerotic lesion development in low-density lipoprotein receptor knockout mice. Am J Pathol 178(1):413-22. [PubMed: 21224078]  [MGI Ref ID J:168077]

Yeh IJ; Ogba N; Bensigner H; Welford SM; Montano MM. 2013. HEXIM1 down-regulates hypoxia-inducible factor-1alpha protein stability. Biochem J 456(2):195-204. [PubMed: 24015760]  [MGI Ref ID J:203807]

Yeo EJ; Cassetta L; Qian BZ; Lewkowich I; Li JF; Stefater JA 3rd; Smith AN; Wiechmann LS; Wang Y; Pollard JW; Lang RA. 2014. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res 74(11):2962-73. [PubMed: 24638982]  [MGI Ref ID J:211687]

Yori JL; Lozada KL; Seachrist DD; Mosley JD; Abdul-Karim FW; Booth CN; Flask CA; Keri RA. 2014. Combined SFK/mTOR inhibition prevents rapamycin-induced feedback activation of AKT and elicits efficient tumor regression. Cancer Res 74(17):4762-71. [PubMed: 25023728]  [MGI Ref ID J:214234]

Zabuawala T; Taffany DA; Sharma SM; Merchant A; Adair B; Srinivasan R; Rosol TJ; Fernandez S; Huang K; Leone G; Ostrowski MC. 2010. An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res 70(4):1323-33. [PubMed: 20145133]  [MGI Ref ID J:157608]

Zhang H; Kuang SQ; Liao L; Zhou S; Xu J. 2004. Haploid inactivation of the amplified-in-breast cancer 3 coactivator reduces the inhibitory effect of peroxisome proliferator-activated receptor gamma and retinoid X receptor on cell proliferation and accelerates polyoma middle-T antigen-induced mammary tumorigenesis in mice. Cancer Res 64(19):7169-77. [PubMed: 15466215]  [MGI Ref ID J:93653]

Zhang H; Stephens LC; Kumar R. 2006. Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clin Cancer Res 12(5):1479-86. [PubMed: 16533771]  [MGI Ref ID J:110213]

Zhao Y; Kumbrink J; Lin BT; Bouton AH; Yang S; Toselli PA; Kirsch KH. 2013. Expression of a phosphorylated substrate domain of p130Cas promotes PyMT-induced c-Src-dependent murine breast cancer progression. Carcinogenesis 34(12):2880-90. [PubMed: 23825155]  [MGI Ref ID J:204348]

Zoratti GL; Tanabe LM; Varela FA; Murray AS; Bergum C; Colombo E; Lang JE; Molinolo AA; Leduc R; Marsault E; Boerner J; List K. 2015. Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling. Nat Commun 6:6776. [PubMed: 25873032]  [MGI Ref ID J:222717]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX9

Colony Maintenance

Breeding & HusbandryWhen maintaining a live colony, C57BL/6J inbred females (Stock No. 000664) may be bred with hemizygous males.
Mating SystemNoncarrier x Hemizygote         (Female x Male)   27-JUN-13

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls

Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $239.00Female or MaleHemizygous for Tg(MMTV-PyVT)634Mul  
Price per Pair (US dollars $)Pair Genotype
$313.00Noncarrier x Hemizygous for Tg(MMTV-PyVT)634Mul  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $310.70Female or MaleHemizygous for Tg(MMTV-PyVT)634Mul  
Price per Pair (US dollars $)Pair Genotype
$406.90Noncarrier x Hemizygous for Tg(MMTV-PyVT)634Mul  

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Repository-Live represents an exclusive set of over 1800 unique mouse models across a vast array of research areas. Breeding colonies provide mice for large and small orders and fluctuate in size depending on current research demand. If a strain is not immediately available, you will receive an estimated availability timeframe for your inquiry or order in 2-3 business days. Repository strains typically are delivered at 4 to 8 weeks of age. Requests for specific ages will be noted but not guaranteed and we do not accept age requests for breeder pairs. However, if cohorts of mice (5 or more of one gender) are needed at a specific age range for experiments, we will do our best to accommodate your age request.

Control Information

   000664 C57BL/6J (approximate)
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.

Important Note


Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.

See Terms of Use tab for General Terms and Conditions

The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use

General Terms and Conditions

For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration


JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty


In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.