Strain Name:

STOCK Tg(Camk2a-tTA)1Mmay Tg(tetO-MAPT*P301L)#Kha/J

Stock Number:

024854

Order this mouse

Availability:

Under Development - Now Accepting Orders

Estimated Available for Distribution Date: 15-DEC-14
Use Restrictions Apply, see Terms of Use
Common Names: rTg4510;    
These rTg4510 double transgenic mice may be useful for studying the formation of neurofibrillary tangles associated with the progression of Alzheimer's disease and Frontotemporal Dementia.

Description

Strain Information

Type Mutant Stock; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Mating SystemSee Colony Maintenance under the Health & Care tab         (Female x Male)   11-APR-14
Specieslaboratory mouse
GenerationF1 (23-MAY-14)
Generation Definitions

Description
Transgenic mice expressing the tetracycline-controlled transactivator protein (tTA) under regulatory control of the forebrain-specific calcium-calmodulin-dependent kinase II (Camk2a) promoter were crossed with tetO-MAPT*P301L transgenic mice containing a tetracycline operator (tetO) driving expression of the human four-repeat microtubule-associated protein tau (MAPT) gene. The resulting rTg(tauP301L)4510 bitransgenic mice expressing approximately 13 units of transgene exhibit age-independent behavioral and pathological abnormalities, as well as age-dependent functional and structural abnormalities, associated with the progression of Alzheimer's disease. After treatment with dox, neuronal death ceases and the ability to acquire and retain new spatial memories is restored. Learning and memory tests performed on rTg4510 mice indicate impairments in the hippocampus and amygdala dysfunction. In addition, significant tau burden is observed in the amygdala. The behavioral and amygdala pathologies mimic the neurodegenerative tauopathy, frontotemporal dementia with parkinsonism linked to chromosome 17(FTDP-17). Double hemizygous mice are viable and fertile.

Development
A transgenic construct was designed with 8.5 kb of the mouse CaMKIIalpha promoter placed upstream of the tetracycline-regulated transactivator (tTA or "Tet-Off") gene (flanked by an artificial intron and splice sites at the 5' end and by a polyadenylation signal from SV40 at the 3' end). Founder line B was established and maintained on a mixed B6;CBA genetic background upon its arrival at The Jackson Laboratory (as Stock No. 003010). These mice were obtained by Dr. David Borchelt (University of Florida) and then backcrossed to C57BL/6J inbred mice for at least eight generations prior to sending back to The Jackson Laboratory as Stock No. 007004.

The tetO-MAPT*P301L transgene was designed with the human four-repeat microtubule-associated protein tau (MAPT), lacking the amino terminal sequence (4R0N) and containing the frontotemporal dementia-associated P301L mutation sequences. Expression of this tauP310L gene was driven by a tetracycline operator (tetO) upstream of a cytomegalovirus minimal promoter, and contained exons 2-3 of the mouse prion protein gene (prnp) untranslated sequence. This transgene was microinjected into fertilized FVB/NCrl oocytes. The resulting mice were bred with FVB/NCrl mice to establish the colony as Stock No. 015815. This rTg(tauP301L)4510 bitransgenic strain (Stock No. 024854) will be an F1 created from crossing B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ (Stock No. 007004) and FVB-Tg(tetO-MAPT*P301L)#Kha/JlwsJ (Stock No. 015815).

Control Information

  Control
   Noncarrier
   See control note: 019019 (B6FVBF1/J)
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Tg(Camk2a-tTA)1Mmay allele
016198   129S6.Cg-Tg(Camk2a-tTA)1Mmay/JlwsJ
007004   B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ
003010   B6;CBA-Tg(Camk2a-tTA)1Mmay/J
View Strains carrying   Tg(Camk2a-tTA)1Mmay     (3 strains)

Strains carrying   Tg(tetO-MAPT*P301L)#Kha allele
015815   FVB-Tg(tetO-MAPT*P301L)#Kha/JlwsJ
View Strains carrying   Tg(tetO-MAPT*P301L)#Kha     (1 strain)

View Strains carrying other alleles of Camk2a     (19 strains)

View Strains carrying other alleles of MAPT     (17 strains)

Strains carrying other alleles of tTA
008079   129S-Ppargtm2Yba/J
011008   B6.129P2(Cg)-Gt(ROSA)26Sortm1(tTA)Roos/J
009602   B6.129S4(Cg)-Kcnn2tm2Jpad/J
009603   B6.129S4-Kcnn3tm1Jpad/J
008227   B6.129S4-Ppargtm3Yba/J
012359   B6.Cg-Pvalbtm1.1(tTA2)Hze/J
016868   B6.Cg-Ssttm1.2(tTA2)Hze/J
003563   B6.Cg-Tg(Cebpb-tTA)5Bjd/J
003767   B6.Cg-Tg(Eno2tTA)5021Nes/J
003763   B6.Cg-Tg(Eno2tTA)5030Nes/J
018306   B6.Cg-Tg(Fos-tTA,Fos-EGFP*)1Mmay/J
005964   B6.Cg-Tg(GFAP-tTA)110Pop/J
002618   B6.Cg-Tg(MMTVtTA)1Mam/J
008284   B6.Cg-Tg(Scg2-tTA)1Jt/J
023970   B6.Cg-Tg(Sirpa-tTA)AUmri/J
023971   B6.Cg-Tg(Sirpa-tTA)SUmri/J
006361   B6.Cg-Tg(Sp7-tTA,tetO-EGFP/cre)1Amc/J
017722   B6.Cg-Tg(Tal1-tTA)19Dgt/J
017754   B6;129-Omptm1(tTA)Gogo/J
007585   B6;129S4-Npytm2Rpa/J
002709   B6;C3-Tg(TettTALuc)1Dgs/J
008344   B6;DBA-Tg(Fos-tTA,Fos-EGFP*)1Mmay Tg(tetO-lacZ,tTA*)1Mmay/J
010573   B6;SJL-Tg(Prl-tTA)6-5Jek/J
008082   B6;SJL-Tg(Tagln-tTA)1Mrab Tg(tetO-Mcpt1)1Mrab/J
008603   C.129P2(B6)-Gt(ROSA)26Sortm1(tTA)Roos/J
010712   C57BL/6-Tg(Camk2a-tTA)1Stl/J
013585   FVB-Tg(Cdh5-tTA)D5Lbjn/J
005625   FVB-Tg(Pcp2-tTA)3Horr/J
003170   FVB.Cg-Tg(Myh6-tTA)6Smbf/J
006209   FVB.Cg-Tg(Tal1-tTA)19Dgt/J
005942   FVB/N-Tg(Pf4-tTA/VP16)42Kra/J
004937   NOD.Cg-Tg(Ins2-tTA)1Doi/DoiJ
006999   STOCK Dbttm1Geh Tg(Cebpb-tTA)5Bjd Tg(tetO-DBT)A1Geh/J
008335   STOCK Foxa2tm1.1(rtTa)Moon/J
008600   STOCK Gt(ROSA)26Sortm1(tTA)Roos/J
005701   STOCK Pdx1tm1Macd/J
014092   STOCK Tg(ACTB-tTA2,-MAPT/lacZ)1Luo/J
003271   STOCK Tg(CMV-tTA)3Bjd/J
018124   STOCK Tg(Prnp-tTA)F959Sbp/J
009606   STOCK Tg(Six2-EGFP/cre)1Amc/J
003275   STOCK Tg(tetL)1Bjd/J
003274   STOCK Tg(tetNZL)2Bjd/J
016970   STOCK Tg(tetO-HCV)1Mlch/Mmjax
View Strains carrying other alleles of tTA     (43 strains)

Strains carrying other alleles of tetO
008079   129S-Ppargtm2Yba/J
016178   B6(Cg)-Tg(tetO-Cry2)3Jt/J
016176   B6(Cg)-Tg(tetO-Per2)2Jt/J
023757   B6(Cg)-Tg(tetO-tetX,lacZ)1Gogo/UmriJ
009602   B6.129S4(Cg)-Kcnn2tm2Jpad/J
009603   B6.129S4-Kcnn3tm1Jpad/J
023910   B6.Cg-Col1a1tm1(tetO-Lin28a)Gqda/J
023911   B6.Cg-Col1a1tm2(tetO-LIN28B)Gqda/J
023912   B6.Cg-Col1a1tm3(tetO-Mirlet7g/Mir21)Gqda/J
017983   B6.Cg-Col1a1tm9(tetO-Dnmt3b_i1)Jae Gt(ROSA)26Sortm1(rtTA*M2)Jae/J
014588   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm6(tetO-MSI2)Jae/J
023749   B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae Tg(tetO-Pou5f1,-Sox2,-Klf4,-Myc)1Srn/J
014648   B6.Cg-Gt(ROSA)26Sortm37(H1/tetO-RNAi:Taz)Arte/ZkhuJ
006361   B6.Cg-Tg(Sp7-tTA,tetO-EGFP/cre)1Amc/J
016998   B6.Cg-Tg(TetO-Axin1,EGFP)TA6Cos/J
003762   B6.Cg-Tg(tetFosb)4468Nes/J
007051   B6.Cg-Tg(tetO-APPSwInd)102Dbo/Mmjax
007052   B6.Cg-Tg(tetO-APPSwInd)107Dbo/Mmjax
007049   B6.Cg-Tg(tetO-APPSwInd)885Dbo/Mmjax
007618   B6.Cg-Tg(tetO-Arntl)1Jt/J
017555   B6.Cg-Tg(tetO-CALY)5Cber/J
024114   B6.Cg-Tg(tetO-CHRM4*)2Blr/J
008277   B6.Cg-Tg(tetO-Clockm1Jt)CL57Jt/J
008468   B6.Cg-Tg(tetO-DTA)1Gfi/J
017791   B6.Cg-Tg(tetO-Hamp)2181Nca/J
009344   B6.Cg-Tg(tetO-Ifng)184Pop/J
009136   B6.Cg-Tg(tetO-Kcnj2,lacZ)1Gogo/J
013583   B6.Cg-Tg(tetO-LRRK2)C7874Cai/J
020652   B6.Cg-Tg(tetO-Mif)279Aren/J
017331   B6.Cg-Tg(tetO-Ppp3ca*)11255Kndl/J
017332   B6.Cg-Tg(tetO-Ppp3ca*)13967Kndl/J
017330   B6.Cg-Tg(tetO-TAg*)175Kndl/J
006234   B6.Cg-Tg(tetO-cre)1Jaw/J
005738   B6.FVB-Tg(tetO-EGFP,-Tgfbr2)8Mcle/J
021025   B6;129-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm1(tetO-cre)Haho/J
006911   B6;129-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm2(tetO-Pou5f1)Jae/J
011001   B6;129S4-Col1a1tm1(tetO-Pou5f1,-Klf4,-Sox2,-Myc)Hoch/J
016836   B6;129S4-Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm7(tetO-HIST1H2BJ/GFP)Jae/J
012433   B6;C3-Tg(ACTA1-rtTA,tetO-cre)102Monk/J
002709   B6;C3-Tg(TettTALuc)1Dgs/J
023598   B6;C3-Tg(tetO-AIMP2)630Tmd/J
023642   B6;C3-Tg(tetO-AIMP2)634Tmd/J
016841   B6;C3-Tg(tetO-TARDBP)12Vle/J
014650   B6;C3-Tg(tetO-TARDBP*)4Vle/J
012450   B6;D2-Tg(tetO-SNCA)1Cai/J
008344   B6;DBA-Tg(Fos-tTA,Fos-EGFP*)1Mmay Tg(tetO-lacZ,tTA*)1Mmay/J
024742   B6;DBA-Tg(tetO-GCaMP6s)2Niell/J
024088   B6;FVB-Tg(tetO-AML1/ETO)8Dzh/J
008082   B6;SJL-Tg(Tagln-tTA)1Mrab Tg(tetO-Mcpt1)1Mrab/J
010575   B6;SJL-Tg(tetO-Egfr*)2-9Jek/J
010577   B6;SJL-Tg(tetO-Erbb2*)8-4Jek/J
002621   B6;SJL-Tg(tetop-lacZ)2Mam/J
006004   B6C3-Tg(tetO-APPSwInd)885Dbo/Mmjax
016976   B6C3-Tg(tetO-SNCA*A53T)33Vle/J
018913   B6N.Cg-Tg(tetO-GFP,-lacZ)G3Rsp/J
006244   C.Cg-Tg(tetO-cre)1Jaw/J
017719   C3HeB/FeJ-Tg(tetO-TAg)1Efr/J
017955   C57BL/6-Tg(Gfap-rtTA,tetO-MAOB,-lacZ)1Jkan/J
005706   C57BL/6-Tg(tetO-CDK5R1/GFP)337Lht/J
006618   C57BL/6-Tg(tetO-COX8A/EYFP)1Ksn/J
017613   C57BL/6-Tg(tetO-Cdkn1b)1Scpr/J
013729   C57BL/6-Tg(tetO-EDN1,-lacZ)9Mhus/J
016260   C57BL/6-Tg(tetO-Fbxl21)38Jt/J
016179   C57BL/6-Tg(tetO-Fbxl21*)11Jt/J
010713   C57BL/6-Tg(tetO-GFP/tetX)5696Stl/J
013728   C57BL/6-Tg(tetO-NOS2,-lacZ)240iMhus/J
016181   C57BL/6-Tg(tetO-Nr1d1)1Schb/J
016581   C57BL/6J-Tg(tetO-Btrc*)1Jt/J
008278   C57BL/6J-Tg(tetO-Clock)1Jt/J
016580   C57BL/6J-Tg(tetO-Usf1)2Jt/J
021065   FVB(C)-Tg(tetO-Npc1/YFP)1Mps/J
017542   FVB-Tg(Myh6/tetO-ATP2B4)1Jmol/J
016571   FVB-Tg(Myh6/tetO-Gata6)2Jmol/J
014155   FVB-Tg(Myh6/tetO-Itpr1)22.3Jmol/J
014153   FVB-Tg(Myh6/tetO-Itpr2)3.11Jmol/J
014154   FVB-Tg(Myh6/tetO-Itpr2)4.9Jmol/J
012684   FVB-Tg(Myh6/tetO-POSTN)22.1Jmol/J
010580   FVB-Tg(Myh6/tetO-PRKCA*)1Jmk/J
013156   FVB-Tg(tetO-CDK5R1*)1Vln/J
013777   FVB-Tg(tetO-Cacna1g)1Jmol/J
013778   FVB-Tg(tetO-Cacnb2)1Jmol/J
013779   FVB-Tg(tetO-Cacnb2)2Jmol/J
013780   FVB-Tg(tetO-Cib1)1Jmol/J
010578   FVB-Tg(tetO-Dusp6)1Jmol/J
017333   FVB-Tg(tetO-Gnai2*,-lacZ)382Kndl/J
008685   FVB-Tg(tetO-Kdr*)4377.5Rwng/J
023397   FVB-Tg(tetO-Lmnb1)AF1Yfu/J
008695   FVB-Tg(tetO-MET)23Rwng/J
012387   FVB-Tg(tetO-Ppargc1a)1Dpk/J
012385   FVB-Tg(tetO-Ppargc1b)7Dpk/J
022979   FVB-Tg(tetO-Thbs4)17.7Jmol/J
006439   FVB-Tg(tetO/CMV-KRAS*G12C)9.1Msmi/J
019038   FVB.Cg-Tg(tetO-GLI1)10Rup/Mmjax
019039   FVB.Cg-Tg(tetO-KLF4)32831Rup/Mmjax
008244   FVB.Cg-Tg(tetO-cre)1Jaw/J
012459   FVB/N-Tg(Myh6*/tetO-Capn1)L2Gwd/J
005941   FVB/N-Tg(tetO-Aurkb,lacZ)41Kra/J
006202   FVB/N-Tg(tetO-BCR/ABL1)2Dgt/J
014547   FVB/N-Tg(tetO-Fasl)BDepa/J
019376   FVB/N-Tg(tetO-MYC)36aBop/J
022938   FVB/N-Tg(tetO-Wnt5a)17Rva/J
003315   FVB/N-Tg(tetORo1-lacZ)3Conk/J
005076   NOD.Cg-Tg(tetO-EGFP/FADD)1Doi/DoiJ
006999   STOCK Dbttm1Geh Tg(Cebpb-tTA)5Bjd Tg(tetO-DBT)A1Geh/J
011004   STOCK Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm3(tetO-Pou5f1,-Sox2,-Klf4,-Myc)Jae/J
011011   STOCK Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm4(tetO-Pou5f1,-Sox2,-Klf4,-Myc)Jae/J
011013   STOCK Gt(ROSA)26Sortm1(rtTA*M2)Jae Col1a1tm5(tetO-Pou5f1,-Klf4,-Myc)Jae/J
018999   STOCK Gt(ROSA)26Sortm1(tTA,tetO-Mir155)Fjsl/J
017596   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#aAhmb/J
017597   STOCK Gt(ROSA)26Sortm1.1(rtTA,EGFP)Nagy Tg(SMN2)89Ahmb Smn1tm1Msd Tg(SMN2*delta7)4299Ahmb Tg(tetO-SMN2,-luc)#bAhmb/J
008755   STOCK Tg(Ins2-rtTA)2Efr Tg(teto-DTA)1Gfi/J
012477   STOCK Tg(Myh6*/tetO-GCaMP2)1Mik/J
016572   STOCK Tg(Myh6/tetO-Gata4)1Jmol/J
014544   STOCK Tg(tetO-ABL1*P242E*P249E)CPdav/J
014093   STOCK Tg(tetO-CHRM3*)1Blr/J
008790   STOCK Tg(tetO-DISC1*)1001Plet/J
008168   STOCK Tg(tetO-DTA)1Gfi/J
017755   STOCK Tg(tetO-GCAMP2)12iRyu/J
024509   STOCK Tg(tetO-Gata6)1Abl/J
016970   STOCK Tg(tetO-HCV)1Mlch/Mmjax
005104   STOCK Tg(tetO-HIST1H2BJ/GFP)47Efu/J
005699   STOCK Tg(tetO-Ipf1,EGFP)956.6Macd/J
005728   STOCK Tg(tetO-Ipf1,lacZ)958.1Macd/J
012441   STOCK Tg(tetO-LRRK2*G2019S)E3Cai/J
017918   STOCK Tg(tetO-MAML1*/EGFP)2Akar/J
017599   STOCK Tg(tetO-SMN2,-luc)#aAhmb/J
017600   STOCK Tg(tetO-SMN2,-luc)#bAhmb/J
012442   STOCK Tg(tetO-SNCA*A53T)E2Cai/J
006224   STOCK Tg(tetO-cre)1Jaw/J
017906   STOCK Tg(tetO-hop/EGFP,-COP4/mCherry)6Kftnk/J
012345   STOCK Tg(tetO-tdTomato,-Syp/EGFP*)1.1Luo/J
012449   STOCK Tg(teto-LRRK2)C7874Cai/J
View Strains carrying other alleles of tetO     (132 strains)

Phenotype

Phenotype Information

View Related Disease (OMIM) Terms

Related Disease (OMIM) Terms provided by MGI
- Characteristics of this human disease are associated with transgenes and other mutation types in the mouse.
Alzheimer Disease; AD
Frontotemporal Dementia; FTD
- Potential model based on transgenic expression of an ortholog of a human gene that is associated with this disease. Phenotypic similarity to the human disease has not been tested.
Parkinson Disease, Late-Onset; PD   (MAPT)
Parkinson-Dementia Syndrome   (MAPT)
Pick Disease of Brain   (MAPT)
Supranuclear Palsy, Progressive, 1; PSNP1   (MAPT)
View Mammalian Phenotype Terms

Mammalian Phenotype Terms provided by MGI
      assigned by genotype

Tg(Camk2a-tTA)1Mmay/0 Tg(tetO-MAPT*P301L)#Kha/0

        involves: 129S6/SvEvTac * FVB/N
  • behavior/neurological phenotype
  • abnormal anxiety-related response   (MGI Ref ID J:207366)
    • decreased anxiety-related response
      • amount of time spent in open arms of elevated plus maze is increased relative to nontransgenic mice at 6 and 10 months of age, but not 2 months   (MGI Ref ID J:207366)
      • higher ratio of time spent in open not closed arms relative to nontransgenic mice at 10 months of age, but not 2 or 6 months   (MGI Ref ID J:207366)
      • exploration of light chamber is increased relative to nontransgenic mice at 6 months of age, but not 2 or 10 months   (MGI Ref ID J:207366)
      • higher ratio of time spent in light not dark relative to nontransgenic miceat 10 months of age, but not 2 or 6 months   (MGI Ref ID J:207366)
    • increased anxiety-related response
      • decreased tendency to explore the center of the open field relative to nontransgenic mice   (MGI Ref ID J:207366)
  • hyperactivity
    • mice exhibit progressive hyperactivity in open field analysis and elevated plus maze   (MGI Ref ID J:207366)
    • total distance travelled in open field assay is increased relative to nontransgenic mice at 6 and 10 months of age, but not 2 months   (MGI Ref ID J:207366)
    • average speed is increased relative to nontransgenic mice at 6 and 10 months of age, but not 2 months   (MGI Ref ID J:207366)
    • total time spent immobile is increased relative to nontransgenic mice at 6 and 10 months of age, but not 2 months   (MGI Ref ID J:207366)
  • impaired contextual conditioning behavior
    • progressive decrease in percent of time spent freezing in response to unconditioned stimulus beginning at 2 months of age   (MGI Ref ID J:207366)
  • impaired cued conditioning behavior
    • progressive decrease in percent of time spent freezing in response to conditioned stimulus beginning at 6 months of age   (MGI Ref ID J:207366)
  • increased exploration in new environment   (MGI Ref ID J:207366)
  • nervous system phenotype
  • neurofibrillary tangles
    • neurofibrilliary tangles are observed by immunostaining in the CA1 region of the hippocampus beginning at 6 months of age and progressing to an extensive pathology by 11 months of age   (MGI Ref ID J:207366)
    • neurofibrilliary tangles are observed by immunostaining in the amygdala beginning at 2 months of age and progressing to an extensive pathology by 10 months of age   (MGI Ref ID J:207366)
  • tau protein deposits
    • tau burden increases with age in the amygdala and CA1 region of the hippocampus   (MGI Ref ID J:207366)

The following phenotype information is associated with a similar, but not exact match to this JAX® Mice strain.

Tg(Camk2a-tTA)1Mmay/0 Tg(tetO-MAPT*P301L)#Kha/0

        involves: 129/Sv * C57BL/6 * CBA * FVB/N
  • nervous system phenotype
  • abnormal dentate gyrus morphology
    • progressive atrophy of dentate granule cells   (MGI Ref ID J:185792)
  • hippocampal neuron degeneration
    • progressive atrophy of hippocampal pyramidal neurons   (MGI Ref ID J:185792)

Tg(Camk2a-tTA)1Mmay/0 Tg(tetO-MAPT*P301L)#Kha/0

        involves: FVB/N
  • behavior/neurological phenotype
  • abnormal gait
    • from about 9.5 months of age, the most severely affected mutants exhibit decreased ambulation   (MGI Ref ID J:102973)
  • abnormal spatial reference memory
    • mutants first exhibit impaired spatial reference memory at 2.5 months of age, showing a slightly reduced search bias for the target quadrant than controls in the Morris water maze   (MGI Ref ID J:102973)
    • spatial memory retention becomes more impaired with age, especially after 4 months of age, with the mean probe performance being equal to random swimming, indicating little or no retention of spatial memory   (MGI Ref ID J:102973)
    • mutants exhibit cognitive impairments in the acquisition phases of the Morris water maze, showing a longer mean distance to locate the hidden platform   (MGI Ref ID J:102973)
  • decreased exploration in new environment
    • reduction in exploration in open-field tests   (MGI Ref ID J:102973)
  • dystonia
    • develop dystonic posture with tail rigor at 9.5 months of age   (MGI Ref ID J:102973)
  • hunched posture
    • from about 9.5 months of age, the most severely affected mutants develop hunched posture with hindlimb dysfunction and tail rigor   (MGI Ref ID J:102973)
  • impaired coordination
    • mutants exhibit longer latencies to traverse a beam   (MGI Ref ID J:102973)
  • impaired swimming
    • mutants develop an age-dependent increase in the time taken to start swimming, however they are able to achieve comparable mean swim speeds during probe trials   (MGI Ref ID J:102973)
  • limb grasping
    • clasping and limb retraction when lifted by the tail   (MGI Ref ID J:102973)
  • growth/size/body phenotype
  • weight loss
    • from about 9.5 months of age, the most severely affected mutants exhibit decreased body weight   (MGI Ref ID J:102973)
  • nervous system phenotype
  • abnormal corticospinal tract morphology
    • atrophy of the dorsal corticospinal tracts accompanied by loss of neurofilament   (MGI Ref ID J:102973)
  • abnormal spinal cord morphology
    • spinal cords appear thinner, however, no decrease in motor neuron density is seen   (MGI Ref ID J:102973)
  • astrocytosis
    • reactive astrocytes in forebrains of 10 month old mutants   (MGI Ref ID J:102973)
  • decreased brain weight
    • 4-7% reduction in brain weight at 4 months of age   (MGI Ref ID J:102973)
  • forebrain atrophy
    • atrophy of the forebrain is seen by 5 months of age   (MGI Ref ID J:102973)
  • neurofibrillary tangles
    • age-dependent progression of tau processing that results in pathophysiological deposition of tau as mature tangles in the brain   (MGI Ref ID J:102973)
    • mutants exhibit age-dependent progression of neurofibrillary tangle formation, with tangles first appearing in the neocortex and then progressing into the hippocampus and limbic structures with increasing age   (MGI Ref ID J:102973)
    • neurofibrillary tangles develop in the hippocampus in a distinct pattern; mature tangles occur initially in CA1 pyramidal neurons, spread to CA2, and by 8.5 months of age include pyramidal neurons in CA2 and granular neurons of the dentate gyrus   (MGI Ref ID J:102973)
  • neuron degeneration
    • degeneration in the hippocampus and neocortex is seen in 10 month old mutants   (MGI Ref ID J:102973)
    • hippocampal neuron degeneration
      • massive neuronal loss, most apparent in the CA1 region of the hippocampus   (MGI Ref ID J:102973)
  • tau protein deposits
    • abnormal conformations of tau are present in the hippocampus and neocortex of 2.5-month old mutants   (MGI Ref ID J:102973)
  • muscle phenotype
  • dystonia
    • develop dystonic posture with tail rigor at 9.5 months of age   (MGI Ref ID J:102973)

Tg(Camk2a-tTA)1Mmay/? Tg(tetO-MAPT*P301L)#Kha/?

        involves: 129S6/SvEvTac * FVB/N
  • nervous system phenotype
  • abnormal hippocampus CA1 region morphology
    • significant decrease in total numbers of CA1 hippocampal neurons   (MGI Ref ID J:99626)
    • CA1 neuron estimates were stabilized after brief (6- to 8-week) doxycycline treatment   (MGI Ref ID J:99626)
  • abnormal neuron morphology
    • the neuronal inclusions composed of a mass of straight tau filaments   (MGI Ref ID J:99626)
    • when treated with doxycycline at 2.5 month, the tau pathology ceased to progress   (MGI Ref ID J:99626)
    • decreased hippocampus pyramidal cell number
      • approximately 23% of CA1 pyramidal cells remaining at 8.5 months   (MGI Ref ID J:99626)
      • CA1 neuron estimates were stabilized after brief (6- to 8-week) doxycycline treatment   (MGI Ref ID J:99626)
  • decreased brain weight
    • a significant loss in brain weight by 5.5 months   (MGI Ref ID J:99626)
    • when treated with doxycycline during 5.5 to 10 months, the loss of brain weight was significantly protected   (MGI Ref ID J:99626)
  • forebrain atrophy
    • gross atrophy of the forebrain was evident in a 10-month-old mouse   (MGI Ref ID J:99626)
  • neurofibrillary tangles
    • develop argyrophilic tangle-like inclusions in the cortex by 4 months and in the hippocampal formation by 5.5 months   (MGI Ref ID J:99626)
    • when treated with doxycycline at 2.5 month, the tau pathology ceased to progress   (MGI Ref ID J:99626)
  • behavior/neurological phenotype
  • abnormal spatial learning
    • he retention of spatial memory examined by the Morris water maze were impaired as the mice aged   (MGI Ref ID J:99626)
    • deficit in spatial navigation was also seen in younger mice   (MGI Ref ID J:99626)
    • the performance improved when treated with doxycycline at 2.5 month-old or at 5.5 month-old   (MGI Ref ID J:99626)
View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

MAPT related

Neurobiology Research
Alzheimer's Disease
Parkinson's Disease

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Tg(Camk2a-tTA)1Mmay
Allele Name transgene insertion 1, Mark Mayford
Allele Type Transgenic (Inserted expressed sequence)
Common Name(s) CAMK-rTA; CaMKII-tTA; CaMKIIalpha-tTA; CamDAT; Tg(CaMKIItTA)Mmay; Tgalpha-CaMkII-tTA; line B; pCaMKII-tTA;
Mutation Made ByDr. Mark Mayford,   The Scripps Research Institute
Site of ExpressionExpresses tTA in forebrain neurons.
Expressed Gene tTA, tetracycline-controlled transactivator, E. coli
The tetracycline-resistance gene (TetR), arose from chemically mutated Escherichia coli genome which was screened for tetracycline dependence (Gossen and Bujard, 1992). TetR was fused at the C-terminus with the viral co-activator, virion protein 16 of the herpes simplex virus (VP-16). The tetracycline-inhibitable transcription factor is a component of a bigenic system that allows doxycycline (a tetracycline analog) regulatable expression of genes that are under the direction of the tetracycline responsive promoter (TetOp)promoter.
Promoter Camk2a, calcium/calmodulin-dependent protein kinase II alpha, mouse, laboratory
General Note This transgene is line B.

Transgenic mice are viable, fertile, and display no overt phenotypic defects. Administration of tetracycline analogs such as doxycycline blocks transgene expression.

Molecular Note The transgene contains the tetracycline-controlled transactivator protein (tTA) under regulatory control of the forebrain specific calcium/calmodulin-dependent kinase II promoter. [MGI Ref ID J:37107]
 
 
 
Allele Symbol Tg(tetO-MAPT*P301L)#Kha
Allele Name transgene insertion, Karen Hsiao Ashe
Allele Type Transgenic (Inducible, Inserted expressed sequence)
Common Name(s) Tg(tetO-TauP301L)4510; rTg4510;
Strain of OriginFVB/N
Expressed Gene MAPT, microtubule-associated protein tau, human
Promoter tetO, tet operator,
Molecular Note The human four-repeat tau gene lacking the amino-terminal sequences (4R0N) containing the frontotemporal dementia-associated P301L mutation sequence was placed downstream of the tetracycline-responsive (TRE or tetO) promoter and inserted into the contextof the mouse prion protein gene (prnp) exons 2-3 transcribed but untranslated sequences. When mice are crossed with a line expressing a tTA transgene, Tg(Camk2a-tTA)1Mmay, these mice show the doxycycline sensitivity for transgene suppression. At leasttwo bitransgenic lines were established that can be suppressed with doxycycline. One bitransgenic mouse strain expressing approximately 13 units of tauP301L transgene was named rTg(tau P301L)4510 and was analyzed further. [MGI Ref ID J:99626]
 
 

Genotyping

Genotyping Information

Genotyping Protocols

B6 Tau Strain - Probe,

Probe


B6 Tau strain, QPCR
Tg(tTA),

Probe


Generic tTA, Melt Curve Analysis


Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Selected Reference(s)

Cook C; Dunmore JH; Murray ME; Scheffel K; Shukoor N; Tong J; Castanedes-Casey M; Phillips V; Rousseau L; Penuliar MS; Kurti A; Dickson DW; Petrucelli L; Fryer JD. 2014. Severe amygdala dysfunction in a MAPT transgenic mouse model of frontotemporal dementia. Neurobiol Aging 35(7):1769-77. [PubMed: 24503275]  [MGI Ref ID J:207366]

Santacruz K; Lewis J; Spires T; Paulson J; Kotilinek L; Ingelsson M; Guimaraes A; DeTure M; Ramsden M; McGowan E; Forster C; Yue M; Orne J; Janus C; Mariash A; Kuskowski M; Hyman B; Hutton M; Ashe KH. 2005. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476-81. [PubMed: 16020737]  [MGI Ref ID J:99626]

Additional References

Tg(Camk2a-tTA)1Mmay related

Ageta H; Ikegami S; Miura M; Masuda M; Migishima R; Hino T; Takashima N; Murayama A; Sugino H; Setou M; Kida S; Yokoyama M; Hasegawa Y; Tsuchida K; Aosaki T; Inokuchi K. 2010. Activin plays a key role in the maintenance of long-term memory and late-LTP. Learn Mem 17(4):176-85. [PubMed: 20332189]  [MGI Ref ID J:185839]

Aleksic T; Baumann B; Wagner M; Adler G; Wirth T; Weber CK. 2007. Cellular immune reaction in the pancreas is induced by constitutively active IkappaB kinase-2. Gut 56(2):227-36. [PubMed: 16870717]  [MGI Ref ID J:130547]

Alexander GM; Rogan SC; Abbas AI; Armbruster BN; Pei Y; Allen JA; Nonneman RJ; Hartmann J; Moy SS; Nicolelis MA; McNamara JO; Roth BL. 2009. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63(1):27-39. [PubMed: 19607790]  [MGI Ref ID J:154952]

Alvarez-Saavedra M; Saez MA; Kang D; Zoghbi HY; Young JI. 2007. Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis. Hum Mol Genet 16(19):2315-25. [PubMed: 17635839]  [MGI Ref ID J:124365]

Badanich KA; Doremus-Fitzwater TL; Mulholland PJ; Randall PK; Delpire E; Becker HC. 2011. NR2B-deficient mice are more sensitive to the locomotor stimulant and depressant effects of ethanol. Genes Brain Behav 10(7):805-16. [PubMed: 21762461]  [MGI Ref ID J:188172]

Barco A; Patterson S; Alarcon JM; Gromova P; Mata-Roig M; Morozov A; Kandel ER. 2005. Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron 48(1):123-37. [PubMed: 16202713]  [MGI Ref ID J:105355]

Bedford L; Hay D; Devoy A; Paine S; Powe DG; Seth R; Gray T; Topham I; Fone K; Rezvani N; Mee M; Soane T; Layfield R; Sheppard PW; Ebendal T; Usoskin D; Lowe J; Mayer RJ. 2008. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 28(33):8189-98. [PubMed: 18701681]  [MGI Ref ID J:138991]

Bejar R; Yasuda R; Krugers H; Hood K; Mayford M. 2002. Transgenic calmodulin-dependent protein kinase II activation: dose-dependent effects on synaptic plasticity, learning, and memory. J Neurosci 22(13):5719-26. [PubMed: 12097524]  [MGI Ref ID J:112443]

Bertocchi I; Oberto A; Longo A; Mele P; Sabetta M; Bartolomucci A; Palanza P; Sprengel R; Eva C. 2011. Regulatory functions of limbic Y1 receptors in body weight and anxiety uncovered by conditional knockout and maternal care. Proc Natl Acad Sci U S A 108(48):19395-400. [PubMed: 22084082]  [MGI Ref ID J:180396]

Born HA; Kim JY; Savjani RR; Das P; Dabaghian YA; Guo Q; Yoo JW; Schuler DR; Cirrito JR; Zheng H; Golde TE; Noebels JL; Jankowsky JL. 2014. Genetic suppression of transgenic APP rescues Hypersynchronous network activity in a mouse model of Alzeimer's disease. J Neurosci 34(11):3826-40. [PubMed: 24623762]  [MGI Ref ID J:209607]

Cao L; Molina J; Abad C; Carmona-Mora P; Cardenas Oyarzo A; Young JI; Walz K. 2014. Correct developmental expression level of Rai1 in forebrain neurons is required for control of body weight, activity levels and learning and memory. Hum Mol Genet 23(7):1771-82. [PubMed: 24218365]  [MGI Ref ID J:207141]

Chandrasekaran K; Hazelton JL; Wang Y; Fiskum G; Kristian T. 2006. Neuron-specific conditional expression of a mitochondrially targeted fluorescent protein in mice. J Neurosci 26(51):13123-7. [PubMed: 17182763]  [MGI Ref ID J:118452]

Chang KH; Multani PS; Sun KH; Vincent F; de Pablo Y; Ghosh S; Gupta R; Lee HP; Lee HG; Smith MA; Shah K. 2011. Nuclear envelope dispersion triggered by deregulated Cdk5 precedes neuronal death. Mol Biol Cell 22(9):1452-62. [PubMed: 21389115]  [MGI Ref ID J:182975]

Chen AP; Ohno M; Giese KP; Kuhn R; Chen RL; Silva AJ. 2006. Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory. J Neurosci Res 83(1):28-38. [PubMed: 16342120]  [MGI Ref ID J:107042]

Chen L; Ding Y; Cagniard B; Van Laar AD; Mortimer A; Chi W; Hastings TG; Kang UJ; Zhuang X. 2008. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 28(2):425-33. [PubMed: 18184785]  [MGI Ref ID J:131093]

Cheng HY; Dziema H; Papp J; Mathur DP; Koletar M; Ralph MR; Penninger JM; Obrietan K. 2006. The molecular gatekeeper Dexras1 sculpts the photic responsiveness of the mammalian circadian clock. J Neurosci 26(50):12984-95. [PubMed: 17167088]  [MGI Ref ID J:116668]

Cheng J; Ji D. 2013. Rigid firing sequences undermine spatial memory codes in a neurodegenerative mouse model. Elife 2:e00647. [PubMed: 23805379]  [MGI Ref ID J:207802]

Cheng N; Cai H; Belluscio L. 2011. In Vivo Olfactory Model of APP-Induced Neurodegeneration Reveals a Reversible Cell-Autonomous Function. J Neurosci 31(39):13699-704. [PubMed: 21957232]  [MGI Ref ID J:176127]

Chiu C; Reid CA; Tan HO; Davies PJ; Single FN; Koukoulas I; Berkovic SF; Tan SS; Sprengel R; Jones MV; Petrou S. 2008. Developmental impact of a familial GABAA receptor epilepsy mutation. Ann Neurol 64(3):284-93. [PubMed: 18825662]  [MGI Ref ID J:194736]

Chuhma N; Tanaka KF; Hen R; Rayport S. 2011. Functional connectome of the striatal medium spiny neuron. J Neurosci 31(4):1183-92. [PubMed: 21273403]  [MGI Ref ID J:188102]

Crook ZR; Housman D. 2011. Huntington's disease: can mice lead the way to treatment? Neuron 69(3):423-35. [PubMed: 21315254]  [MGI Ref ID J:174750]

Cruz JC; Tseng HC; Goldman JA; Shih H; Tsai LH. 2003. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40(3):471-83. [PubMed: 14642273]  [MGI Ref ID J:104240]

Diaz-Hernandez M; Diez-Zaera M; Sanchez-Nogueiro J; Gomez-Villafuertes R; Canals JM; Alberch J; Miras-Portugal MT; Lucas JJ. 2009. Altered P2X7-receptor level and function in mouse models of Huntington's disease and therapeutic efficacy of antagonist administration. FASEB J 23(6):1893-906. [PubMed: 19171786]  [MGI Ref ID J:150552]

DuBoff B; Gotz J; Feany MB. 2012. Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75(4):618-32. [PubMed: 22920254]  [MGI Ref ID J:188334]

Eckermann K; Mocanu MM; Khlistunova I; Biernat J; Nissen A; Hofmann A; Schonig K; Bujard H; Haemisch A; Mandelkow E; Zhou L; Rune G; Mandelkow EM. 2007. The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J Biol Chem 282(43):31755-65. [PubMed: 17716969]  [MGI Ref ID J:126788]

Elkharaz J; Ugun-Klusek A; Constantin-Teodosiu D; Lawler K; Mayer RJ; Billett E; Lowe J; Bedford L. 2013. Implications for oxidative stress and astrocytes following 26S proteasomal depletion in mouse forebrain neurones. Biochim Biophys Acta 1832(12):1930-8. [PubMed: 23851049]  [MGI Ref ID J:204108]

Engel T; Goni-Oliver P; Gomez-Ramos P; Moran MA; Lucas JJ; Avila J; Hernandez F. 2008. Hippocampal neuronal subpopulations are differentially affected in double transgenic mice overexpressing frontotemporal dementia and parkinsonism linked to chromosome 17 tau and glycogen synthase kinase-3beta. Neuroscience 157(4):772-80. [PubMed: 18951953]  [MGI Ref ID J:144874]

Engel T; Lucas JJ; Gomez-Ramos P; Moran MA; Avila J; Hernandez F. 2006. Cooexpression of FTDP-17 tau and GSK-3beta in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol Aging 27(9):1258-68. [PubMed: 16054268]  [MGI Ref ID J:113439]

Favilla C; Abel T; Kelly MP. 2008. Chronic Galphas signaling in the striatum increases anxiety-related behaviors independent of developmental effects. J Neurosci 28(51):13952-6. [PubMed: 19091983]  [MGI Ref ID J:143516]

Fleischmann A; Abdus-Saboor I; Sayed A; Shykind B. 2013. Functional interrogation of an odorant receptor locus reveals multiple axes of transcriptional regulation. PLoS Biol 11(5):e1001568. [PubMed: 23700388]  [MGI Ref ID J:201434]

Formentini L; Pereira MP; Sanchez-Cenizo L; Santacatterina F; Lucas JJ; Navarro C; Martinez-Serrano A; Cuezva JM. 2014. In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning. EMBO J 33(7):762-78. [PubMed: 24521670]  [MGI Ref ID J:208039]

Freudenberg F; Marx V; Mack V; Layer LE; Klugmann M; Seeburg PH; Sprengel R; Celikel T. 2013. GluA1 and its PDZ-interaction: a role in experience-dependent behavioral plasticity in the forced swim test. Neurobiol Dis 52:160-7. [PubMed: 23262314]  [MGI Ref ID J:197650]

Fridmacher V; Kaltschmidt B; Goudeau B; Ndiaye D; Rossi FM; Pfeiffer J; Kaltschmidt C; Israel A; Memet S. 2003. Forebrain-specific neuronal inhibition of nuclear factor-kappaB activity leads to loss of neuroprotection. J Neurosci 23(28):9403-8. [PubMed: 14561868]  [MGI Ref ID J:86217]

Fukui H; Moraes CT. 2009. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet 18(6):1028-36. [PubMed: 19095717]  [MGI Ref ID J:145737]

Fuster-Matanzo A; Llorens-Martin M; Sirerol-Piquer MS; Garcia-Verdugo JM; Avila J; Hernandez F. 2013. Dual effects of increased glycogen synthase kinase-3beta activity on adult neurogenesis. Hum Mol Genet 22(7):1300-15. [PubMed: 23257288]  [MGI Ref ID J:193849]

Giusti-Rodriguez P; Gao J; Graff J; Rei D; Soda T; Tsai LH. 2011. Synaptic Deficits Are Rescued in the p25/Cdk5 Model of Neurodegeneration by the Reduction of beta-Secretase (BACE1). J Neurosci 31(44):15751-6. [PubMed: 22049418]  [MGI Ref ID J:177847]

Gomez de Barreda E; Perez M; Gomez Ramos P; de Cristobal J; Martin-Maestro P; Moran A; Dawson HN; Vitek MP; Lucas JJ; Hernandez F; Avila J. 2010. Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiol Dis 37(3):622-9. [PubMed: 20004245]  [MGI Ref ID J:158536]

Gomez-Sintes R; Hernandez F; Bortolozzi A; Artigas F; Avila J; Zaratin P; Gotteland JP; Lucas JJ. 2007. Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO J 26(11):2743-54. [PubMed: 17510631]  [MGI Ref ID J:122627]

Gross C; Zhuang X; Stark K; Ramboz S; Oosting R; Kirby L; Santarelli L; Beck S; Hen R. 2002. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416(6879):396-400. [PubMed: 11919622]  [MGI Ref ID J:75722]

Gruart A; Benito E; Delgado-Garcia JM; Barco A. 2012. Enhanced cAMP response element-binding protein activity increases neuronal excitability, hippocampal long-term potentiation, and classical eyeblink conditioning in alert behaving mice. J Neurosci 32(48):17431-41. [PubMed: 23197734]  [MGI Ref ID J:193114]

Han HJ; Allen CC; Buchovecky CM; Yetman MJ; Born HA; Marin MA; Rodgers SP; Song BJ; Lu HC; Justice MJ; Probst FJ; Jankowsky JL. 2012. Strain background influences neurotoxicity and behavioral abnormalities in mice expressing the tetracycline transactivator. J Neurosci 32(31):10574-86. [PubMed: 22855807]  [MGI Ref ID J:185792]

Hansen KF; Sakamoto K; Wayman GA; Impey S; Obrietan K. 2010. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One 5(11):e15497. [PubMed: 21124738]  [MGI Ref ID J:167123]

Hasan MT; Schonig K; Berger S; Graewe W; Bujard H. 2001. Long-term, noninvasive imaging of regulated gene expression in living mice. Genesis 29(3):116-22. [PubMed: 11252052]  [MGI Ref ID J:127660]

Hawk JD; Bookout AL; Poplawski SG; Bridi M; Rao AJ; Sulewski ME; Kroener BT; Manglesdorf DJ; Abel T. 2012. NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors. J Clin Invest 122(10):3593-602. [PubMed: 22996661]  [MGI Ref ID J:191754]

Heng MY; Lin ST; Verret L; Huang Y; Kamiya S; Padiath QS; Tong Y; Palop JJ; Huang EJ; Ptacek LJ; Fu YH. 2013. Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model. J Clin Invest 123(6):2719-29. [PubMed: 23676464]  [MGI Ref ID J:197168]

Hidvegi T; Schmidt BZ; Hale P; Perlmutter DH. 2005. Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. J Biol Chem 280(47):39002-15. [PubMed: 16183649]  [MGI Ref ID J:104112]

Igaz LM; Kwong LK; Lee EB; Chen-Plotkin A; Swanson E; Unger T; Malunda J; Xu Y; Winton MJ; Trojanowski JQ; Lee VM. 2011. Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest 121(2):726-38. [PubMed: 21206091]  [MGI Ref ID J:170756]

Isiegas C; McDonough C; Huang T; Havekes R; Fabian S; Wu LJ; Xu H; Zhao MG; Kim JI; Lee YS; Lee HR; Ko HG; Lee N; Choi SL; Lee JS; Son H; Zhuo M; Kaang BK; Abel T. 2008. A novel conditional genetic system reveals that increasing neuronal cAMP enhances memory and retrieval. J Neurosci 28(24):6220-30. [PubMed: 18550764]  [MGI Ref ID J:137375]

Jancic D; Lopez de Armentia M; Valor LM; Olivares R; Barco A. 2009. Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cereb Cortex 19(11):2535-47. [PubMed: 19213815]  [MGI Ref ID J:211460]

Jankowsky JL; Slunt HH; Gonzales V; Savonenko AV; Wen JC; Jenkins NA; Copeland NG; Younkin LH; Lester HA; Younkin SG; Borchelt DR. 2005. Persistent amyloidosis following suppression of Abeta production in a transgenic model of Alzheimer disease. PLoS Med 2(12):e355. [PubMed: 16279840]  [MGI Ref ID J:109829]

Jerecic J; Schulze CH; Jonas P; Sprengel R; Seeburg PH; Bischofberger J. 2001. Impaired NMDA receptor function in mouse olfactory bulb neurons by tetracycline-sensitive NR1 (N598R) expression. Brain Res Mol Brain Res 94(1-2):96-104. [PubMed: 11597769]  [MGI Ref ID J:130561]

Kaltschmidt B; Ndiaye D; Korte M; Pothion S; Arbibe L; Prullage M; Pfeiffer J; Lindecke A; Staiger V; Israel A; Kaltschmidt C; Memet S. 2006. NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Mol Cell Biol 26(8):2936-46. [PubMed: 16581769]  [MGI Ref ID J:107412]

Karlen A; Karlsson TE; Mattsson A; Lundstromer K; Codeluppi S; Pham TM; Backman CM; Ogren SO; Aberg E; Hoffman AF; Sherling MA; Lupica CR; Hoffer BJ; Spenger C; Josephson A; Brene S; Olson L. 2009. Nogo receptor 1 regulates formation of lasting memories. Proc Natl Acad Sci U S A 106(48):20476-81. [PubMed: 19915139]  [MGI Ref ID J:155587]

Kelly MP; Stein JM; Vecsey CG; Favilla C; Yang X; Bizily SF; Esposito MF; Wand G; Kanes SJ; Abel T. 2009. Developmental etiology for neuroanatomical and cognitive deficits in mice overexpressing Galphas, a G-protein subunit genetically linked to schizophrenia. Mol Psychiatry 14(4):398-415, 347. [PubMed: 19030002]  [MGI Ref ID J:166114]

Kholodilov N; Kim SR; Yarygina O; Kareva T; Cho JW; Baohan A; Burke RE. 2011. Glial cell line-derived neurotrophic factor receptor-alpha1 expressed in striatum in trans regulates development and injury response of dopamine neurons of the substantia nigra. J Neurochem 116(4):486-98. [PubMed: 21133924]  [MGI Ref ID J:170428]

Klug JR; Mathur BN; Kash TL; Wang HD; Matthews RT; Robison AJ; Anderson ME; Deutch AY; Lovinger DM; Colbran RJ; Winder DG. 2012. Genetic inhibition of CaMKII in dorsal striatal medium spiny neurons reduces functional excitatory synapses and enhances intrinsic excitability. PLoS One 7(9):e45323. [PubMed: 23028932]  [MGI Ref ID J:191787]

Kolber BJ; Boyle MP; Wieczorek L; Kelley CL; Onwuzurike CC; Nettles SA; Vogt SK; Muglia LJ. 2010. Transient early-life forebrain corticotropin-releasing hormone elevation causes long-lasting anxiogenic and despair-like changes in mice. J Neurosci 30(7):2571-81. [PubMed: 20164342]  [MGI Ref ID J:157835]

Kopeikina KJ; Carlson GA; Pitstick R; Ludvigson AE; Peters A; Luebke JI; Koffie RM; Frosch MP; Hyman BT; Spires-Jones TL. 2011. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain. Am J Pathol 179(4):2071-82. [PubMed: 21854751]  [MGI Ref ID J:176290]

Krestel HE; Mihaljevic AL; Hoffman DA; Schneider A. 2004. Neuronal co-expression of EGFP and beta-galactosidase in mice causes neuropathology and premature death. Neurobiol Dis 17(2):310-8. [PubMed: 15474368]  [MGI Ref ID J:93090]

Krestel HE; Shimshek DR; Jensen V; Nevian T; Kim J; Geng Y; Bast T; Depaulis A; Schonig K; Schwenk F; Bujard H; Hvalby O; Sprengel R; Seeburg PH. 2004. A genetic switch for epilepsy in adult mice. J Neurosci 24(46):10568-78. [PubMed: 15548671]  [MGI Ref ID J:96556]

Kvajo M; McKellar H; Gogos JA. 2012. Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience 211:136-64. [PubMed: 21821099]  [MGI Ref ID J:184660]

Larsen RS; Corlew RJ; Henson MA; Roberts AC; Mishina M; Watanabe M; Lipton SA; Nakanishi N; Perez-Otano I; Weinberg RJ; Philpot BD. 2011. NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat Neurosci 14(3):338-44. [PubMed: 21297630]  [MGI Ref ID J:170349]

Le TT; McGovern VL; Alwine IE; Wang X; Massoni-Laporte A; Rich MM; Burghes AH. 2011. Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet 20(18):3578-91. [PubMed: 21672919]  [MGI Ref ID J:174960]

Lee AS; Duman RS; Pittenger C. 2008. A double dissociation revealing bidirectional competition between striatum and hippocampus during learning. Proc Natl Acad Sci U S A 105(44):17163-8. [PubMed: 18955704]  [MGI Ref ID J:144070]

Lee B; Cao R; Choi YS; Cho HY; Rhee AD; Hah CK; Hoyt KR; Obrietan K. 2009. The CREB/CRE transcriptional pathway: protection against oxidative stress-mediated neuronal cell death. J Neurochem 108(5):1251-65. [PubMed: 19141071]  [MGI Ref ID J:146168]

Lee HG; Casadesus G; Nunomura A; Zhu X; Castellani RJ; Richardson SL; Perry G; Felsher DW; Petersen RB; Smith MA. 2009. The neuronal expression of MYC causes a neurodegenerative phenotype in a novel transgenic mouse. Am J Pathol 174(3):891-7. [PubMed: 19164506]  [MGI Ref ID J:146151]

Leo D; Gainetdinov RR. 2013. Transgenic mouse models for ADHD. Cell Tissue Res :. [PubMed: 23681253]  [MGI Ref ID J:198682]

Li YC; Kellendonk C; Simpson EH; Kandel ER; Gao WJ. 2011. D2 receptor overexpression in the striatum leads to a deficit in inhibitory transmission and dopamine sensitivity in mouse prefrontal cortex. (Correction) Proc Natl Acad Sci U S A 108(29):12107-12. [PubMed: 21730148]  [MGI Ref ID J:174363]

Licht T; Eavri R; Goshen I; Shlomai Y; Mizrahi A; Keshet E. 2010. VEGF is required for dendritogenesis of newly born olfactory bulb interneurons. Development 137(2):261-71. [PubMed: 20040492]  [MGI Ref ID J:157255]

Lim Y; Kehm VM; Lee EB; Soper JH; Li C; Trojanowski JQ; Lee VM. 2011. {alpha}-Syn Suppression Reverses Synaptic and Memory Defects in a Mouse Model of Dementia with Lewy Bodies. J Neurosci 31(27):10076-87. [PubMed: 21734300]  [MGI Ref ID J:174555]

Lim Y; Kehm VM; Li C; Trojanowski JQ; Lee VM. 2010. Forebrain overexpression of alpha-synuclein leads to early postnatal hippocampal neuron loss and synaptic disruption. Exp Neurol 221(1):86-97. [PubMed: 19833127]  [MGI Ref ID J:156801]

Lin X; Parisiadou L; Gu XL; Wang L; Shim H; Sun L; Xie C; Long CX; Yang WJ; Ding J; Chen ZZ; Gallant PE; Tao-Cheng JH; Rudow G; Troncoso JC; Liu Z; Li Z; Cai H. 2009. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein. Neuron 64(6):807-27. [PubMed: 20064389]  [MGI Ref ID J:156512]

Lindeberg J; Mattsson R; Ebendal T. 2002. Timing the doxycycline yields different patterns of genomic recombination in brain neurons with a new inducible Cre transgene. J Neurosci Res 68(2):248-53. [PubMed: 11948670]  [MGI Ref ID J:82535]

Ljungberg MC; Ali YO; Zhu J; Wu CS; Oka K; Zhai RG; Lu HC. 2012. CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Hum Mol Genet 21(2):251-67. [PubMed: 22027994]  [MGI Ref ID J:179018]

Lopez ME; Klein AD; Dimbil UJ; Scott MP. 2011. Anatomically defined neuron-based rescue of neurodegenerative niemann-pick type C disorder. J Neurosci 31(12):4367-78. [PubMed: 21430138]  [MGI Ref ID J:170312]

Lopez de Armentia M; Jancic D; Olivares R; Alarcon JM; Kandel ER; Barco A. 2007. cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J Neurosci 27(50):13909-18. [PubMed: 18077703]  [MGI Ref ID J:130579]

Lopez-Menendez C; Gamir-Morralla A; Jurado-Arjona J; Higuero AM; Campanero MR; Ferrer I; Hernandez F; Avila J; Diaz-Guerra M; Iglesias T. 2013. Kidins220 accumulates with tau in human Alzheimer's disease and related models: modulation of its calpain-processing by GSK3beta/PP1 imbalance. Hum Mol Genet 22(3):466-82. [PubMed: 23118350]  [MGI Ref ID J:191216]

Lucas JJ; Hernandez F; Gomez-Ramos P; Moran MA; Hen R; Avila J. 2001. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20(1-2):27-39. [PubMed: 11226152]  [MGI Ref ID J:67070]

Mack V; Burnashev N; Kaiser KM; Rozov A; Jensen V; Hvalby O; Seeburg PH; Sakmann B; Sprengel R. 2001. Conditional restoration of hippocampal synaptic potentiation in Glur-A-deficient mice. Science 292(5526):2501-4. [PubMed: 11431570]  [MGI Ref ID J:76021]

Marxreiter F; Ettle B; May VE; Esmer H; Patrick C; Kragh CL; Klucken J; Winner B; Riess O; Winkler J; Masliah E; Nuber S. 2013. Glial A30P alpha-synuclein pathology segregates neurogenesis from anxiety-related behavior in conditional transgenic mice. Neurobiol Dis 59:38-51. [PubMed: 23867236]  [MGI Ref ID J:201663]

Marxreiter F; Nuber S; Kandasamy M; Klucken J; Aigner R; Burgmayer R; Couillard-Despres S; Riess O; Winkler J; Winner B. 2009. Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein. Eur J Neurosci 29(5):879-90. [PubMed: 19291219]  [MGI Ref ID J:147049]

May VE; Nuber S; Marxreiter F; Riess O; Winner B; Winkler J. 2012. Impaired olfactory bulb neurogenesis depends on the presence of human wild-type alpha-synuclein. Neuroscience 222:343-55. [PubMed: 22814000]  [MGI Ref ID J:192503]

Mayford M; Bach ME; Huang YY; Wang L; Hawkins RD; Kandel ER. 1996. Control of memory formation through regulated expression of a CaMKII transgene. Science 274(5293):1678-83. [PubMed: 8939850]  [MGI Ref ID J:37107]

McKinney BC; Schneider JS; Schafer GL; Lowing JL; Mohan S; Zhao MX; Heng MY; Albin RL; Seasholtz AF; Akil H; Murphy GG. 2008. Decreased locomotor activity in mice expressing tTA under control of the CaMKII alpha promoter. Genes Brain Behav 7(2):203-13. [PubMed: 17640289]  [MGI Ref ID J:145601]

Melnikova T; Fromholt S; Kim H; Lee D; Xu G; Price A; Moore BD; Golde TE; Felsenstein KM; Savonenko A; Borchelt DR. 2013. Reversible pathologic and cognitive phenotypes in an inducible model of Alzheimer-amyloidosis. J Neurosci 33(9):3765-79. [PubMed: 23447589]  [MGI Ref ID J:195259]

Messing L; Decker JM; Joseph M; Mandelkow E; Mandelkow EM. 2013. Cascade of tau toxicity in inducible hippocampal brain slices and prevention by aggregation inhibitors. Neurobiol Aging 34(5):1343-54. [PubMed: 23158765]  [MGI Ref ID J:203380]

Mocanu MM; Nissen A; Eckermann K; Khlistunova I; Biernat J; Drexler D; Petrova O; Schonig K; Bujard H; Mandelkow E; Zhou L; Rune G; Mandelkow EM. 2008. The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28(3):737-48. [PubMed: 18199773]  [MGI Ref ID J:131379]

Morozov A; Muzzio IA; Bourtchouladze R; Van-Strien N; Lapidus K; Yin D; Winder DG; Adams JP; Sweatt JD; Kandel ER. 2003. Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron 39(2):309-25. [PubMed: 12873387]  [MGI Ref ID J:128795]

Muyllaert D; Terwel D; Kremer A; Sennvik K; Borghgraef P; Devijver H; Dewachter I; Van Leuven F. 2008. Neurodegeneration and neuroinflammation in cdk5/p25-inducible mice: a model for hippocampal sclerosis and neocortical degeneration. Am J Pathol 172(2):470-85. [PubMed: 18202185]  [MGI Ref ID J:131373]

Nakagawa S; Kim JE; Lee R; Malberg JE; Chen J; Steffen C; Zhang YJ; Nestler EJ; Duman RS. 2002. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 22(9):3673-82. [PubMed: 11978843]  [MGI Ref ID J:128620]

Nakashiba T; Young JZ; McHugh TJ; Buhl DL; Tonegawa S. 2008. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 319(5867):1260-4. [PubMed: 18218862]  [MGI Ref ID J:131852]

Nicholls RE; Alarcon JM; Malleret G; Carroll RC; Grody M; Vronskaya S; Kandel ER. 2008. Transgenic mice lacking NMDAR-dependent LTD exhibit deficits in behavioral flexibility. Neuron 58(1):104-17. [PubMed: 18400167]  [MGI Ref ID J:135145]

Nicholls RE; Zhang XL; Bailey CP; Conklin BR; Kandel ER; Stanton PK. 2006. mGluR2 acts through inhibitory Galpha subunits to regulate transmission and long-term plasticity at hippocampal mossy fiber-CA3 synapses. Proc Natl Acad Sci U S A 103(16):6380-5. [PubMed: 16606834]  [MGI Ref ID J:109030]

Nie T; McDonough CB; Huang T; Nguyen PV; Abel T. 2007. Genetic disruption of protein kinase A anchoring reveals a role for compartmentalized kinase signaling in theta-burst long-term potentiation and spatial memory. J Neurosci 27(38):10278-88. [PubMed: 17881534]  [MGI Ref ID J:145104]

Niewoehner B; Single FN; Hvalby O; Jensen V; Borgloh SM; Seeburg PH; Rawlins JN; Sprengel R; Bannerman DM. 2007. Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur J Neurosci 25(3):837-46. [PubMed: 17313573]  [MGI Ref ID J:119834]

Nuber S; Petrasch-Parwez E; Winner B; Winkler J; von Horsten S; Schmidt T; Boy J; Kuhn M; Nguyen HP; Teismann P; Schulz JB; Neumann M; Pichler BJ; Reischl G; Holzmann C; Schmitt I; Bornemann A; Kuhn W; Zimmermann F; Servadio A; Riess O. 2008. Neurodegeneration and motor dysfunction in a conditional model of Parkinson's disease. J Neurosci 28(10):2471-84. [PubMed: 18322092]  [MGI Ref ID J:132774]

Odeh F; Leergaard TB; Boy J; Schmidt T; Riess O; Bjaalie JG. 2011. Atlas of transgenic Tet-Off Ca2+/calmodulin-dependent protein kinase II and prion protein promoter activity in the mouse brain. Neuroimage 54(4):2603-11. [PubMed: 21093594]  [MGI Ref ID J:204506]

Paine SM; Anderson G; Bedford K; Lawler K; Mayer RJ; Lowe J; Bedford L. 2013. Pale body-like inclusion formation and neurodegeneration following depletion of 26S proteasomes in mouse brain neurones are independent of alpha-synuclein. PLoS One 8(1):e54711. [PubMed: 23382946]  [MGI Ref ID J:195914]

Palais G; Nguyen Dinh Cat A; Friedman H; Panek-Huet N; Millet A; Tronche F; Gellen B; Mercadier JJ; Peterson A; Jaisser F. 2009. Targeted transgenesis at the HPRT locus: an efficient strategy to achieve tightly controlled in vivo conditional expression with the tet system. Physiol Genomics 37(2):140-6. [PubMed: 19141541]  [MGI Ref ID J:157969]

Parisiadou L; Xie C; Cho HJ; Lin X; Gu XL; Long CX; Lobbestael E; Baekelandt V; Taymans JM; Sun L; Cai H. 2009. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 29(44):13971-80. [PubMed: 19890007]  [MGI Ref ID J:154755]

Parisiadou L; Yu J; Sgobio C; Xie C; Liu G; Sun L; Gu XL; Lin X; Crowley NA; Lovinger DM; Cai H. 2014. LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity. Nat Neurosci 17(3):367-76. [PubMed: 24464040]  [MGI Ref ID J:206832]

Pickrell AM; Fukui H; Wang X; Pinto M; Moraes CT. 2011. The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions. J Neurosci 31(27):9895-904. [PubMed: 21734281]  [MGI Ref ID J:174561]

Pletnikov MV; Ayhan Y; Nikolskaia O; Xu Y; Ovanesov MV; Huang H; Mori S; Moran TH; Ross CA. 2008. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 13(2):173-86, 115. [PubMed: 17848917]  [MGI Ref ID J:146881]

Pogorelov VM; Nomura J; Kim J; Kannan G; Ayhan Y; Yang C; Taniguchi Y; Abazyan B; Valentine H; Krasnova IN; Kamiya A; Cadet JL; Wong DF; Pletnikov MV. 2012. Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model. Neuropharmacology 62(3):1242-51. [PubMed: 21315744]  [MGI Ref ID J:183592]

Pozueta J; Lefort R; Shelanski ML. 2013. Synaptic changes in Alzheimer's disease and its models. Neuroscience 251:51-65. [PubMed: 22687952]  [MGI Ref ID J:207068]

Pujadas L; Gruart A; Bosch C; Delgado L; Teixeira CM; Rossi D; de Lecea L; Martinez A; Delgado-Garcia JM; Soriano E. 2010. Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J Neurosci 30(13):4636-49. [PubMed: 20357114]  [MGI Ref ID J:159385]

Ramsden M; Kotilinek L; Forster C; Paulson J; McGowan E; SantaCruz K; Guimaraes A; Yue M; Lewis J; Carlson G; Hutton M; Ashe KH. 2005. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25(46):10637-47. [PubMed: 16291936]  [MGI Ref ID J:102973]

Robbins EM; Krupp AJ; Perez de Arce K; Ghosh AK; Fogel AI; Boucard A; Sudhof TC; Stein V; Biederer T. 2010. SynCAM 1 adhesion dynamically regulates synapse number and impacts plasticity and learning. Neuron 68(5):894-906. [PubMed: 21145003]  [MGI Ref ID J:167742]

Roberts AC; Diez-Garcia J; Rodriguiz RM; Lopez IP; Lujan R; Martinez-Turrillas R; Pico E; Henson MA; Bernardo DR; Jarrett TM; Clendeninn DJ; Lopez-Mascaraque L; Feng G; Lo DC; Wesseling JF; Wetsel WC; Philpot BD; Perez-Otano I. 2009. Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation. Neuron 63(3):342-56. [PubMed: 19679074]  [MGI Ref ID J:154942]

Rocher AB; Crimins JL; Amatrudo JM; Kinson MS; Todd-Brown MA; Lewis J; Luebke JI. 2010. Structural and functional changes in tau mutant mice neurons are not linked to the presence of NFTs. Exp Neurol 223(2):385-93. [PubMed: 19665462]  [MGI Ref ID J:162373]

Sakai N; Tsubokawa H; Matsuzaki M; Kajimoto T; Takahashi E; Ren Y; Ohmori S; Shirai Y; Matsubayashi H; Chen J; Duman RS; Kasai H; Saito N. 2004. Propagation of gammaPKC translocation along the dendrites of Purkinje cell in gammaPKC-GFP transgenic mice. Genes Cells 9(10):945-57. [PubMed: 15461665]  [MGI Ref ID J:133986]

Samuels BA; Hsueh YP; Shu T; Liang H; Tseng HC; Hong CJ; Su SC; Volker J; Neve RL; Yue DT; Tsai LH. 2007. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56(5):823-37. [PubMed: 18054859]  [MGI Ref ID J:169741]

Sano Y; Ornthanalai VG; Yamada K; Homma C; Suzuki H; Suzuki T; Murphy NP; Itohara S. 2009. X11-like protein deficiency is associated with impaired conflict resolution in mice. J Neurosci 29(18):5884-96. [PubMed: 19420255]  [MGI Ref ID J:148481]

Schmeisser MJ; Baumann B; Johannsen S; Vindedal GF; Jensen V; Hvalby OC; Sprengel R; Seither J; Maqbool A; Magnutzki A; Lattke M; Oswald F; Boeckers TM; Wirth T. 2012. IkappaB kinase/nuclear factor kappaB-dependent insulin-like growth factor 2 (Igf2) expression regulates synapse formation and spine maturation via Igf2 receptor signaling. J Neurosci 32(16):5688-703. [PubMed: 22514330]  [MGI Ref ID J:184438]

Schmidt-Strassburger U; Schips TG; Maier HJ; Kloiber K; Mannella F; Braunstein KE; Holzmann K; Ushmorov A; Liebau S; Boeckers TM; Wirth T. 2012. Expression of constitutively active FoxO3 in murine forebrain leads to a loss of neural progenitors. FASEB J 26(12):4990-5001. [PubMed: 22935140]  [MGI Ref ID J:193342]

Schonig K; Schwenk F; Rajewsky K; Bujard H. 2002. Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 30(23):e134. [PubMed: 12466566]  [MGI Ref ID J:81196]

Sorolla MA; Rodriguez-Colman MJ; Tamarit J; Tamarit J; Ortega Z; Lucas JJ; Ferrer I; Rosa J; Cabiscol E. 2010. Protein oxidation in Huntington disease affects energy production and vitamin B6 metabolism. Free Radic Biol Med 49(4):612-21. [PubMed: 20639122]  [MGI Ref ID J:162547]

Suh J; Rivest AJ; Nakashiba T; Tominaga T; Tonegawa S. 2011. Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory. Science :. [PubMed: 22052975]  [MGI Ref ID J:178297]

Sundaram JR; Chan ES; Poore CP; Pareek TK; Cheong WF; Shui G; Tang N; Low CM; Wenk MR; Kesavapany S. 2012. Cdk5/p25-Induced Cytosolic PLA2-Mediated Lysophosphatidylcholine Production Regulates Neuroinflammation and Triggers Neurodegeneration. J Neurosci 32(3):1020-34. [PubMed: 22262900]  [MGI Ref ID J:179887]

Sundaram JR; Poore CP; Sulaimee NH; Pareek T; Asad AB; Rajkumar R; Cheong WF; Wenk MR; Dawe GS; Chuang KH; Pant HC; Kesavapany S. 2013. Specific inhibition of p25/Cdk5 activity by the Cdk5 inhibitory peptide reduces neurodegeneration in vivo. J Neurosci 33(1):334-43. [PubMed: 23283346]  [MGI Ref ID J:193916]

Svenningsson P; Chergui K; Rachleff I; Flajolet M; Zhang X; Yacoubi ME; Vaugeois JM; Nomikos GG; Greengard P. 2006. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311(5757):77-80. [PubMed: 16400147]  [MGI Ref ID J:104116]

Sydow A; Van der Jeugd A; Zheng F; Ahmed T; Balschun D; Petrova O; Drexler D; Zhou L; Rune G; Mandelkow E; D'Hooge R; Alzheimer C; Mandelkow EM. 2011. Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic tau mutant. J Neurosci 31(7):2511-25. [PubMed: 21325519]  [MGI Ref ID J:169532]

Tanaka KF; Matsui K; Sasaki T; Sano H; Sugio S; Fan K; Hen R; Nakai J; Yanagawa Y; Hasuwa H; Okabe M; Deisseroth K; Ikenaka K; Yamanaka A. 2012. Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. Cell Rep 2(2):397-406. [PubMed: 22854021]  [MGI Ref ID J:186771]

Trantham-Davidson H; Vazdarjanova A; Dai R; Terry A; Bergson C. 2008. Up-regulation of calcyon results in locomotor hyperactivity and reduced anxiety in mice. Behav Brain Res 189(2):244-9. [PubMed: 18295356]  [MGI Ref ID J:181086]

Vazdarjanova A; Bunting K; Muthusamy N; Bergson C. 2011. Calcyon upregulation in adolescence impairs response inhibition and working memory in adulthood. Mol Psychiatry 16(6):672-84. [PubMed: 21403673]  [MGI Ref ID J:181085]

Wang L; Xie C; Greggio E; Parisiadou L; Shim H; Sun L; Chandran J; Lin X; Lai C; Yang WJ; Moore DJ; Dawson TM; Dawson VL; Chiosis G; Cookson MR; Cai H. 2008. The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J Neurosci 28(13):3384-91. [PubMed: 18367605]  [MGI Ref ID J:133490]

Ward NL; Putoczki T; Mearow K; Ivanco TL; Dumont DJ. 2005. Vascular-specific growth factor angiopoietin 1 is involved in the organization of neuronal processes. J Comp Neurol 482(3):244-56. [PubMed: 15690488]  [MGI Ref ID J:95553]

Weible AP; Schwarcz L; Wickersham IR; Deblander L; Wu H; Callaway EM; Seung HS; Kentros CG. 2010. Transgenic targeting of recombinant rabies virus reveals monosynaptic connectivity of specific neurons. J Neurosci 30(49):16509-13. [PubMed: 21147990]  [MGI Ref ID J:166740]

Wieczorek L; Maas JW Jr; Muglia LM; Vogt SK; Muglia LJ. 2010. Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory. PLoS One 5(10):e13385. [PubMed: 20976279]  [MGI Ref ID J:166523]

Wiltgen BJ; Law M; Ostlund S; Mayford M; Balleine BW. 2007. The influence of Pavlovian cues on instrumental performance is mediated by CaMKII activity in the striatum. Eur J Neurosci 25(8):2491-7. [PubMed: 17445244]  [MGI Ref ID J:125036]

Wortge S; Eshkind L; Cabezas-Wallscheid N; Lakaye B; Kim J; Heck R; Abassi Y; Diken M; Sprengel R; Bockamp E. 2010. Tetracycline-controlled transgene activation using the ROSA26-iM2-GFP knock-in mouse strain permits GFP monitoring of DOX-regulated transgene-expression. BMC Dev Biol 10:95. [PubMed: 20815887]  [MGI Ref ID J:165820]

Wu D; Qiu Y; Gao X; Yuan XB; Zhai Q. 2011. Overexpression of SIRT1 in Mouse Forebrain Impairs Lipid/Glucose Metabolism and Motor Function. PLoS One 6(6):e21759. [PubMed: 21738790]  [MGI Ref ID J:174424]

Yamamoto A; Lucas JJ; Hen R. 2000. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease [see comments] Cell 101(1):57-66. [PubMed: 10778856]  [MGI Ref ID J:61490]

Yamasaki TR; Blurton-Jones M; Morrissette DA; Kitazawa M; Oddo S; LaFerla FM. 2007. Neural stem cells improve memory in an inducible mouse model of neuronal loss. J Neurosci 27(44):11925-33. [PubMed: 17978032]  [MGI Ref ID J:127469]

Yasuda M; Johnson-Venkatesh EM; Zhang H; Parent JM; Sutton MA; Umemori H. 2011. Multiple forms of activity-dependent competition refine hippocampal circuits in vivo. Neuron 70(6):1128-42. [PubMed: 21689599]  [MGI Ref ID J:175245]

Yasuda M; Mayford MR. 2006. CaMKII activation in the entorhinal cortex disrupts previously encoded spatial memory. Neuron 50(2):309-18. [PubMed: 16630840]  [MGI Ref ID J:108340]

Ye X; Cai Q. 2014. Snapin-mediated BACE1 retrograde transport is essential for its degradation in lysosomes and regulation of APP processing in neurons. Cell Rep 6(1):24-31. [PubMed: 24373968]  [MGI Ref ID J:207508]

Yetman MJ; Jankowsky JL. 2013. Wild-type neural progenitors divide and differentiate normally in an amyloid-rich environment. J Neurosci 33(44):17335-41. [PubMed: 24174666]  [MGI Ref ID J:204201]

Yeung ST; Myczek K; Kang AP; Chabrier MA; Baglietto-Vargas D; Laferla FM. 2014. Impact of hippocampal neuronal ablation on neurogenesis and cognition in the aged brain. Neuroscience 259:214-22. [PubMed: 24316470]  [MGI Ref ID J:207913]

Yin DM; Chen YJ; Lu YS; Bean JC; Sathyamurthy A; Shen C; Liu X; Lin TW; Smith CA; Xiong WC; Mei L. 2013. Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1. Neuron 78(4):644-57. [PubMed: 23719163]  [MGI Ref ID J:201544]

Yin DM; Sun XD; Bean JC; Lin TW; Sathyamurthy A; Xiong WC; Gao TM; Chen YJ; Mei L. 2013. Regulation of spine formation by ErbB4 in PV-positive interneurons. J Neurosci 33(49):19295-303. [PubMed: 24305825]  [MGI Ref ID J:204147]

Yue M; Hanna A; Wilson J; Roder H; Janus C. 2011. Sex difference in pathology and memory decline in rTg4510 mouse model of tauopathy. Neurobiol Aging 32(4):590-603. [PubMed: 19427061]  [MGI Ref ID J:173738]

Zeng H; Horie K; Madisen L; Pavlova MN; Gragerova G; Rohde AD; Schimpf BA; Liang Y; Ojala E; Kramer F; Roth P; Slobodskaya O; Dolka I; Southon EA; Tessarollo L; Bornfeldt KE; Gragerov A; Pavlakis GN; Gaitanaris GA. 2008. An inducible and reversible mouse genetic rescue system. PLoS Genet 4(5):e1000069. [PubMed: 18464897]  [MGI Ref ID J:136987]

Zhou M; Rebholz H; Brocia C; Warner-Schmidt JL; Fienberg AA; Nairn AC; Greengard P; Flajolet M. 2010. Forebrain overexpression of CK1delta leads to down-regulation of dopamine receptors and altered locomotor activity reminiscent of ADHD. Proc Natl Acad Sci U S A 107(9):4401-6. [PubMed: 20145109]  [MGI Ref ID J:158611]

de Calignon A; Fox LM; Pitstick R; Carlson GA; Bacskai BJ; Spires-Jones TL; Hyman BT. 2010. Caspase activation precedes and leads to tangles. Nature 464(7292):1201-4. [PubMed: 20357768]  [MGI Ref ID J:159296]

de Calignon A; Polydoro M; Suarez-Calvet M; William C; Adamowicz DH; Kopeikina KJ; Pitstick R; Sahara N; Ashe KH; Carlson GA; Spires-Jones TL; Hyman BT. 2012. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73(4):685-97. [PubMed: 22365544]  [MGI Ref ID J:182498]

Tg(tetO-MAPT*P301L)#Kha related

Abisambra JF; Jinwal UK; Blair LJ; O'Leary JC 3rd; Li Q; Brady S; Wang L; Guidi CE; Zhang B; Nordhues BA; Cockman M; Suntharalingham A; Li P; Jin Y; Atkins CA; Dickey CA. 2013. Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J Neurosci 33(22):9498-507. [PubMed: 23719816]  [MGI Ref ID J:198658]

Cheng J; Ji D. 2013. Rigid firing sequences undermine spatial memory codes in a neurodegenerative mouse model. Elife 2:e00647. [PubMed: 23805379]  [MGI Ref ID J:207802]

DuBoff B; Gotz J; Feany MB. 2012. Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75(4):618-32. [PubMed: 22920254]  [MGI Ref ID J:188334]

Han HJ; Allen CC; Buchovecky CM; Yetman MJ; Born HA; Marin MA; Rodgers SP; Song BJ; Lu HC; Justice MJ; Probst FJ; Jankowsky JL. 2012. Strain background influences neurotoxicity and behavioral abnormalities in mice expressing the tetracycline transactivator. J Neurosci 32(31):10574-86. [PubMed: 22855807]  [MGI Ref ID J:185792]

Harris JA; Koyama A; Maeda S; Ho K; Devidze N; Dubal DB; Yu GQ; Masliah E; Mucke L. 2012. Human P301L-mutant tau expression in mouse entorhinal-hippocampal network causes tau aggregation and presynaptic pathology but no cognitive deficits. PLoS One 7(9):e45881. [PubMed: 23029293]  [MGI Ref ID J:191974]

Khan UA; Liu L; Provenzano FA; Berman DE; Profaci CP; Sloan R; Mayeux R; Duff KE; Small SA. 2014. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease. Nat Neurosci 17(2):304-11. [PubMed: 24362760]  [MGI Ref ID J:208008]

Kopeikina KJ; Carlson GA; Pitstick R; Ludvigson AE; Peters A; Luebke JI; Koffie RM; Frosch MP; Hyman BT; Spires-Jones TL. 2011. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain. Am J Pathol 179(4):2071-82. [PubMed: 21854751]  [MGI Ref ID J:176290]

Kopeikina KJ; Wegmann S; Pitstick R; Carlson GA; Bacskai BJ; Betensky RA; Hyman BT; Spires-Jones TL. 2013. Tau causes synapse loss without disrupting calcium homeostasis in the rTg4510 model of tauopathy. PLoS One 8(11):e80834. [PubMed: 24278327]  [MGI Ref ID J:209779]

Kuchibhotla KV; Wegmann S; Kopeikina KJ; Hawkes J; Rudinskiy N; Andermann ML; Spires-Jones TL; Bacskai BJ; Hyman BT. 2014. Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci U S A 111(1):510-4. [PubMed: 24368848]  [MGI Ref ID J:206375]

Larson ME; Sherman MA; Greimel S; Kuskowski M; Schneider JA; Bennett DA; Lesne SE. 2012. Soluble alpha-Synuclein Is a Novel Modulator of Alzheimer's Disease Pathophysiology. J Neurosci 32(30):10253-66. [PubMed: 22836259]  [MGI Ref ID J:186543]

Liu L. 2012. Trans-Synaptic spread of Tau pathology In Vivo PLoS ONE 7(2):e31302.  [MGI Ref ID J:179960]

Ljungberg MC; Ali YO; Zhu J; Wu CS; Oka K; Zhai RG; Lu HC. 2012. CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Hum Mol Genet 21(2):251-67. [PubMed: 22027994]  [MGI Ref ID J:179018]

Nash KR; Lee DC; Hunt JB Jr; Morganti JM; Selenica ML; Moran P; Reid P; Brownlow M; Guang-Yu Yang C; Savalia M; Gemma C; Bickford PC; Gordon MN; Morgan D. 2013. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiol Aging 34(6):1540-8. [PubMed: 23332170]  [MGI Ref ID J:203368]

Polydoro M; de Calignon A; Suarez-Calvet M; Sanchez L; Kay KR; Nicholls SB; Roe AD; Pitstick R; Carlson GA; Gomez-Isla T; Spires-Jones TL; Hyman BT. 2013. Reversal of Neurofibrillary Tangles and Tau-Associated Phenotype in the rTgTauEC Model of Early Alzheimer's Disease. J Neurosci 33(33):13300-11. [PubMed: 23946388]  [MGI Ref ID J:200903]

Pozueta J; Lefort R; Shelanski ML. 2013. Synaptic changes in Alzheimer's disease and its models. Neuroscience 251:51-65. [PubMed: 22687952]  [MGI Ref ID J:207068]

Ramsden M; Kotilinek L; Forster C; Paulson J; McGowan E; SantaCruz K; Guimaraes A; Yue M; Lewis J; Carlson G; Hutton M; Ashe KH. 2005. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25(46):10637-47. [PubMed: 16291936]  [MGI Ref ID J:102973]

Rocher AB; Crimins JL; Amatrudo JM; Kinson MS; Todd-Brown MA; Lewis J; Luebke JI. 2010. Structural and functional changes in tau mutant mice neurons are not linked to the presence of NFTs. Exp Neurol 223(2):385-93. [PubMed: 19665462]  [MGI Ref ID J:162373]

Spires-Jones TL; Friedman T; Pitstick R; Polydoro M; Roe A; Carlson GA; Hyman BT. 2014. Methylene blue does not reverse existing neurofibrillary tangle pathology in the rTg4510 mouse model of tauopathy. Neurosci Lett 562:63-8. [PubMed: 24462887]  [MGI Ref ID J:212051]

Vanderweyde T; Yu H; Varnum M; Liu-Yesucevitz L; Citro A; Ikezu T; Duff K; Wolozin B. 2012. Contrasting Pathology of the Stress Granule Proteins TIA-1 and G3BP in Tauopathies. J Neurosci 32(24):8270-83. [PubMed: 22699908]  [MGI Ref ID J:185575]

Yue M; Hanna A; Wilson J; Roder H; Janus C. 2011. Sex difference in pathology and memory decline in rTg4510 mouse model of tauopathy. Neurobiol Aging 32(4):590-603. [PubMed: 19427061]  [MGI Ref ID J:173738]

de Calignon A; Fox LM; Pitstick R; Carlson GA; Bacskai BJ; Spires-Jones TL; Hyman BT. 2010. Caspase activation precedes and leads to tangles. Nature 464(7292):1201-4. [PubMed: 20357768]  [MGI Ref ID J:159296]

de Calignon A; Polydoro M; Suarez-Calvet M; William C; Adamowicz DH; Kopeikina KJ; Pitstick R; Sahara N; Ashe KH; Carlson GA; Spires-Jones TL; Hyman BT. 2012. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73(4):685-97. [PubMed: 22365544]  [MGI Ref ID J:182498]

Health & husbandry

Health & Colony Maintenance Information

Animal Health Reports

Room Number           AX12

Colony Maintenance

Breeding & HusbandryCarrier mice from Stock No. 007004 are bred every generation to carrier mice from Stock No. 015815.
Mating SystemSee Colony Maintenance under the Health & Care tab         (Female x Male)   11-APR-14

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


 

This strain is currently Under Development - Now Accepting Orders.
Estimated Available for Distribution Date: 15-DEC-14

Please note: You may now place orders for this strain although it is not yet ready for distribution. Estimated available for distribution dates are provided to keep customers better informed on strains under development. Please note that our Colony Managers routinely monitor the target date and edit it based on breeding performance and other factors. The length of time it takes to make a new strain available for distribution depends on genotype, age, number of animals sent by the Donating Investigator, breeding performance, additional strain development (backcrossing, making homozygous), and anticipated demand for the strain.

Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $232.00FemaleHemizygous for Tg(Camk2a-tTA)1Mmay, Hemizygous for Tg(tetO-MAPT*P301L)#Kha  
$232.00FemaleHemizygous for Tg(Camk2a-tTA)1Mmay, Noncarrier  
Individual Mouse $232.00FemaleNoncarrier, Hemizygous for Tg(tetO-MAPT*P301L)#Kha  
Price per Pair (US dollars $)Pair Genotype
$471.00B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ (007004) x FVB-Tg(tetO-MAPT*P301L)#Kha/JlwsJ (015815)  
$471.00FVB-Tg(tetO-MAPT*P301L)#Kha/JlwsJ (015815) x B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ (007004)  

Standard Supply

Under Development - Now Accepting Orders The strain development process (i.e. importation, rederivation, and colony expansion) usually takes six to nine months.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $301.60FemaleHemizygous for Tg(Camk2a-tTA)1Mmay, Hemizygous for Tg(tetO-MAPT*P301L)#Kha  
$301.60FemaleHemizygous for Tg(Camk2a-tTA)1Mmay, Noncarrier  
Individual Mouse $301.60FemaleNoncarrier, Hemizygous for Tg(tetO-MAPT*P301L)#Kha  
Price per Pair (US dollars $)Pair Genotype
$612.30B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ (007004) x FVB-Tg(tetO-MAPT*P301L)#Kha/JlwsJ (015815)  
$612.30FVB-Tg(tetO-MAPT*P301L)#Kha/JlwsJ (015815) x B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ (007004)  

Standard Supply

Under Development - Now Accepting Orders The strain development process (i.e. importation, rederivation, and colony expansion) usually takes six to nine months.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Under Development - Now Accepting Orders The strain development process (i.e. importation, rederivation, and colony expansion) usually takes six to nine months.

Control Information

  Control
   Noncarrier
   See control note: 019019 (B6FVBF1/J)
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.6)