Strain Name:

D2.Cg-Gpnmb+Tg(Thy1-YFP)HJrs/SjJ

Stock Number:

025018

Order this mouse

Availability:

Under Development - Now Accepting Orders

Estimated Available for Distribution Date: 13-APR-15
Use Restrictions Apply, see Terms of Use
These thy1-YFP-H transgenic mice express yellow fluorescent protein at high levels in motor and sensory neurons, as well as subsets of central neurons. Axons are brightly fluorescent all the way to the terminals. This line provides a strong and specific "Golgi-like" vital marker for several widely studied neuronal subsets, with minimal labeling of nearby axons.

Description

Strain Information

Type Wild-Type Allele;
Type Congenic; Mutant Strain; Transgenic;
Additional information on Genetically Engineered and Mutant Mice.
Visit our online Nomenclature tutorial.
Additional information on Congenic nomenclature.
Mating SystemNoncarrier x Hemizygote         (Female x Male)   15-MAY-14
Mating SystemHemizygote x Noncarrier         (Female x Male)   15-MAY-14
Specieslaboratory mouse
 
Donating Investigator Simon John,   JAX

Description
These mice express spectral variants of GFP (yellow-YFP) at high levels in motor and sensory neurons, as well as subsets of central neurons. Axons are brightly fluorescent all the way to the terminals. No expression is detectable in nonneural cells. The transgenic insert used to make this strain is identical to that used in the construction of Stock No. 003709). The primary difference between these two strains is the specific neuron subsets which express YFP. In this strain, a few motor axons are labeled in muscle tissue, allowing determination of branching pattern and definition of which muscle fibers are innervated by a single motor axon. Approximately 10-30% of sensory neurons are labeled in dorsal root ganglia. Layer 5 pyramidal cells are selectively labeled in cerebral cortex. Pyramidal neurons are selectively labeled in the hippocampus. Approximately 10-30% of retinal ganglion cells are exclusively labeled in the retina. Many (but not all) mossy fibers are strongly labeled in cerebellar cortex, but no neurons are labeled in this area. In short, this line provides a strong and specific "Golgi-like" vital marker for several widely studied neuronal subsets, with minimal labeling of nearby axons. Fluorescence appears somewhat dim at birth but brightens in adult mice. Availability of multiple spectral variants is useful for double-labeling applications or breeding to other CFP/GFP lines.

This strain is on a genetic background different from that on which the allele was first characterized. It should be noted that the phenotype could vary from that originally described. We will modify the strain description if necessary as published results become available.

Development
A transgenic construct containing a YFP gene under the direction of regulatory elements derived from the mouse Thy1 gene was injected into fertilized B6CBAF1 mouse eggs. Regulatory elements are composed of a 6.5 kbp fragment obtained from the 5' portion of the Thy1 gene, extending from the promoter to the intron following exon 4. Exon 3 and its flanking introns are absent. The deleted sequences are required for expression in non-neural cells but not in neurons. The remainder of the sequence is required for neuronal expression. Founder animals were obtained and crossed with wildtype C57BL/6J mice. This line was then backcrossed to DBA/2J-Gpnmb+ (see Stock No. 007048) for 8 generations by the donating laboratory.

Control Information

  Control
   Noncarrier
   000671 DBA/2J
 
  Considerations for Choosing Controls

Related Strains

Strains carrying   Gpnmb+ allele
024704   D2.Cg-Gpnmb+Tg(Thy1-CFP)23Jrs/SjJ
007048   DBA/2J-Gpnmb+/SjJ
View Strains carrying   Gpnmb+     (2 strains)

Strains carrying   Tg(Thy1-YFP)HJrs allele
003782   B6.Cg-Tg(Thy1-YFP)HJrs/J
024705   D2.Cg-Tg(Thy1-YFP)HJrs/SjJ
View Strains carrying   Tg(Thy1-YFP)HJrs     (2 strains)

Strains carrying other alleles of Gpnmb
000957   AKXD28/TyJ
018554   B6N(Cg)-Gpnmbtm1.1(KOMP)Vlcg/J
000671   DBA/2J
View Strains carrying other alleles of Gpnmb     (3 strains)

Strains carrying other alleles of Thy1
005895   B10.Cg-Thy1a H2d Tg(TcraCl1,TcrbCl1)1Shrm/J
001317   B6.Cg-Gpi1a Thy1a Igha/J
017798   B6.Cg-Mapttm1Hnd Tg(Thy1-MAPT*)3610Gds/Mmjax
009126   B6.Cg-Nos2tm1Lau Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
025855   B6.Cg-Ptprca Lag3tm1Doi Tg(CAG-luc,-GFP)L2G85Chco Thy1a/J
022073   B6.Cg-Rag1tm1Mom Thy1a Tg(Tcra2C,Tcrb2C)1Dlo/J
014550   B6.Cg-Thy1a Tg(TcraCWM5,TcrbCWM5)1807Wuth/J
005023   B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J
008730   B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
007901   B6.Cg-Tg(Thy1-Brainbow1.0)HLich/J
007911   B6.Cg-Tg(Thy1-Brainbow1.1)MLich/J
007921   B6.Cg-Tg(Thy1-Brainbow2.1)RLich/J
003710   B6.Cg-Tg(Thy1-CFP)23Jrs/J
014131   B6.Cg-Tg(Thy1-CFP)IJrs/GfngJ
007940   B6.Cg-Tg(Thy1-CFP/COX8A)C1Lich/J
007967   B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich/J
012597   B6.Cg-Tg(Thy1-COL25A1)861Yfu/J
007612   B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J
007615   B6.Cg-Tg(Thy1-COP4/EYFP)9Gfng/J
013161   B6.Cg-Tg(Thy1-Clomeleon)1Gjau/J
007919   B6.Cg-Tg(Thy1-EGFP)OJrs/GfngJ
005630   B6.Cg-Tg(Thy1-EYFP)15Jrs/J
009611   B6.Cg-Tg(Thy1-Nlgn1)6Hnes/J
009612   B6.Cg-Tg(Thy1-Nlgn2)6Hnes/J
021069   B6.Cg-Tg(Thy1-PA-GFP)5Rmpl/J
021070   B6.Cg-Tg(Thy1-PA-GFP)6Rmpl/J
003709   B6.Cg-Tg(Thy1-YFP)16Jrs/J
005627   B6.Cg-Tg(Thy1-YFP/Syp)10Jrs/J
007606   B6.Cg-Tg(Thy1-cre/ERT2,-EYFP)AGfng/J
025854   B6.FVB-Ptprca Tg(CAG-luc,-GFP)L2G85Chco Thy1a/J
000406   B6.PL-Thy1a/CyJ
000983   B6.PL/(84NS)CyJ
004807   B6;129-Psen1tm1Mpm Tg(APPSwe,tauP301L)1Lfa/Mmjax
007910   B6;CBA-Tg(Thy1-Brainbow1.0)LLich/J
011070   B6;CBA-Tg(Thy1-EGFP)SJrs/NdivJ
017892   B6;CBA-Tg(Thy1-GCaMP2.2c)8Gfng/J
017893   B6;CBA-Tg(Thy1-GCaMP3)6Gfng/J
014130   B6;CBA-Tg(Thy1-YFP)GJrs/GfngJ
014651   B6;CBA-Tg(Thy1-spH)21Vnmu/J
015814   B6;CBA-Tg(Thy1-spH)64Vnmu/FrkJ
012341   B6;SJL-Tg(Thy1-COP3/EYFP)1Gfng/J
012344   B6;SJL-Tg(Thy1-COP3/EYFP)4Gfng/J
012348   B6;SJL-Tg(Thy1-COP3/EYFP)8Gfng/J
012350   B6;SJL-Tg(Thy1-COP4*H134R/EYFP)20Gfng/J
008004   B6;SJL-Tg(Thy1-ECFP/VAMP2)1Sud/J
012836   B6;SJL-Tg(Thy1-TARDBP)4Singh/J
007610   B6;SJL-Tg(Thy1-cre/ERT2,-EYFP)VGfng/J
012332   B6;SJL-Tg(Thy1-hop/EYFP)2Gfng/J
012334   B6;SJL-Tg(Thy1-hop/EYFP)4Gfng/J
006554   B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
025401   B6SJL-Tg(Thy1-COX8A/Dendra)57Gmnf/J
017590   B6SJL-Tg(Thy1-DCTN1*G59S)M2Pcw/J
007880   B6SJL-Tg(Thy1-Stx1a/EYFP)1Sud/J
007856   B6SJL-Tg(Thy1-Syt1/ECFP)1Sud/J
017589   B6SJL-Tg(Thy1-TARDBP*G298S)S97Pcw/J
017351   BKa.Cg-Ptprcb Bmi1tm1Ilw Thy1a/J
007687   BKa.Cg-Sox17tm1Sjm Ptprcb Thy1a/J
007686   BKa.Cg-Sox17tm2Sjm Ptprcb Thy1a/J
024703   C3A.Cg-Pde6b+Tg(Thy1-CFP)23Jrs/SjJ
007027   C57BL/6-Tg(Thy1-APPSwDutIowa)BWevn/Mmjax
010800   C57BL/6-Tg(Thy1-PTGS2)300Kand/J
010703   C57BL/6-Tg(Thy1-PTGS2)303Kand/J
012769   C57BL/6-Tg(Thy1-Sncg)HvP36Putt/J
024339   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.11Dkim/J
025393   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.17Dkim/J
024276   C57BL/6J-Tg(Thy1-GCaMP6f)GP5.5Dkim/J
025776   C57BL/6J-Tg(Thy1-GCaMP6s)GP4.12Dkim/J
024275   C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J
025533   C57BL/6N-Sncatm1Mjff Tg(Thy1-SNCA)15Mjff/J
016936   C57BL/6N-Tg(Thy1-SNCA)12Mjff/J
017682   C57BL/6N-Tg(Thy1-SNCA)15Mjff/J
005307   CBy.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
005922   CBy.Cg-Thy1a Tg(TcraCl1,TcrbCl1)1Shrm/J
005443   CBy.PL(B6)-Thy1a/ScrJ
024704   D2.Cg-Gpnmb+Tg(Thy1-CFP)23Jrs/SjJ
018671   D2.Cg-Tg(Thy1-CFP)23Jrs/SjJ
025019   D2.Cg-Tg(Thy1-YFP/Syp)10Jrs/SjJ
008230   FVB(Cg)-Tg(Thy1-SOD1*G93A)T3Hgrd/J
006143   FVB/N-Tg(Thy1-cre)1Vln/J
024476   NOD.Cg-Stat4tm1Gru Thy1a Ifngr1tm1Agt Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/LmbrJ
005686   NOD.Cg-Thy1a Tg(TcraCl4,TcrbCl4)1Shrm/ShrmJ
004483   NOD.NON-Thy1a/1LtJ
002721   NOD.NON-Thy1a/J
005651   SJL.AK-Thy1a/TseJ
003961   SJL.Cg Thy1a-Noxo1hslt/J
021226   STOCK Tg(Thy1-Brainbow3.1)18Jrs/J
021225   STOCK Tg(Thy1-Brainbow3.1)3Jrs/J
021227   STOCK Tg(Thy1-Brainbow3.2)7Jrs/J
013162   STOCK Tg(Thy1-Clomeleon)12Gjau/J
013163   STOCK Tg(Thy1-Clomeleon)13Gjau/J
007788   STOCK Tg(Thy1-EGFP)MJrs/J
012708   STOCK Tg(Thy1-cre/ERT2,-EYFP)HGfng/PyngJ
View Strains carrying other alleles of Thy1     (92 strains)

Strains carrying other alleles of YFP
005483   129-Tg(CAG-EYFP)7AC5Nagy/J
021011   B6(D2)-Tg(CAG-Brainbow1.0)2Eggn/J
021012   B6(D2)-Tg(CAG-Brainbow1.0)3Eggn/J
016959   B6.129(Cg)-Foxp3tm4(YFP/cre)Ayr/J
010818   B6.129-Ifnb1tm1Lky/J
006412   B6.129-Il12btm1Lky/J
017578   B6.129S4-Mcpt8tm1(cre)Lky/J
006148   B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J
007920   B6.Cg-Gt(ROSA)26Sortm2(CAG-EYFP)Hze/J
007903   B6.Cg-Gt(ROSA)26Sortm3(CAG-EYFP)Hze/J
014545   B6.Cg-Tg(Chat-COP4*H134R/EYFP,Slc18a3)5Gfng/J
014546   B6.Cg-Tg(Chat-COP4*H134R/EYFP,Slc18a3)6Gfng/J
008829   B6.Cg-Tg(Itgax-Venus)1Mnz/J
008299   B6.Cg-Tg(NEFL-EYFP/Nefh)40Gsn/J
008828   B6.Cg-Tg(Prdm1-EYFP)1Mnz/J
014548   B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)8Gfng/J
007901   B6.Cg-Tg(Thy1-Brainbow1.0)HLich/J
007911   B6.Cg-Tg(Thy1-Brainbow1.1)MLich/J
007921   B6.Cg-Tg(Thy1-Brainbow2.1)RLich/J
007612   B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J
007615   B6.Cg-Tg(Thy1-COP4/EYFP)9Gfng/J
013161   B6.Cg-Tg(Thy1-Clomeleon)1Gjau/J
005630   B6.Cg-Tg(Thy1-EYFP)15Jrs/J
003709   B6.Cg-Tg(Thy1-YFP)16Jrs/J
005627   B6.Cg-Tg(Thy1-YFP/Syp)10Jrs/J
007606   B6.Cg-Tg(Thy1-cre/ERT2,-EYFP)AGfng/J
013081   B6.FVB-Tg(Per1-Venus)33Obr/Mmjax
006716   B6;129P2-Olfr545tm4Mom/MomJ
008774   B6;129P2-Runx3tm1Litt/J
014539   B6;129S-Gt(ROSA)26Sortm39(CAG-hop/EYFP)Hze/J
008636   B6;C-Tg(Prnp-APP695*/EYFP)49Gsn/J
007910   B6;CBA-Tg(Thy1-Brainbow1.0)LLich/J
014130   B6;CBA-Tg(Thy1-YFP)GJrs/GfngJ
005620   B6;D2-Tg(S100B-EYFP)1Wjt/J
012355   B6;SJL-Tg(Pvalb-COP4*H134R/EYFP)15Gfng/J
012341   B6;SJL-Tg(Thy1-COP3/EYFP)1Gfng/J
012344   B6;SJL-Tg(Thy1-COP3/EYFP)4Gfng/J
012348   B6;SJL-Tg(Thy1-COP3/EYFP)8Gfng/J
012350   B6;SJL-Tg(Thy1-COP4*H134R/EYFP)20Gfng/J
007610   B6;SJL-Tg(Thy1-cre/ERT2,-EYFP)VGfng/J
012332   B6;SJL-Tg(Thy1-hop/EYFP)2Gfng/J
012334   B6;SJL-Tg(Thy1-hop/EYFP)4Gfng/J
014555   B6;SJL-Tg(Tph2-COP4*H134R/EYFP)5Gfng/J
025114   B6N.Cg-Tg(Camk2a-P2rx2/YC3.1)21Khakh/J
007880   B6SJL-Tg(Thy1-Stx1a/EYFP)1Sud/J
015864   C.129S4(B6)-Il12btm1Lky/J
017353   C.129S4(B6)-Il13tm1(YFP/cre)Lky/J
017582   C.129S4(B6)-Mcpt8tm1(cre)Lky/J
008830   C.Cg-Tg(Itgax-Venus)1Mnz/J
017978   C57BL/6-Tg(Slc17a6-COP4*H134R/EYFP)2Oki/J
006618   C57BL/6-Tg(tetO-COX8A/EYFP)1Ksn/J
006362   C57BL/6J-Tg(CMV-Cox8a/EYFP)17J/J
007857   C57BL/6J-Tg(Eno2-YFP/Cox8a)YRwb/J
007860   C57BL/6J-Tg(Eno2-YFP/Cox8a)ZRwb/J
025019   D2.Cg-Tg(Thy1-YFP/Syp)10Jrs/SjJ
021065   FVB(C)-Tg(tetO-Npc1/YFP)1Mps/J
018067   FVB-Tg(Prism)1849Htz/J
018071   FVB-Tg(Prism)1861Htz/J
018068   FVB-Tg(Prism)1989Htz/J
009618   NOD.129(B6)-Il12btm1Lky/JbsJ
009422   NOD.Cg-Tg(Itgax-Venus)1Mnz/QtngJ
005130   STOCK Gt(ROSA)26Sortm1(Smo/EYFP)Amc/J
017472   STOCK Tg(Acp5-CFP,Ibsp-YFP,Dmp1-RFP)1Pmay/J
011107   STOCK Tg(CAG-Venus)1Hadj/J
020942   STOCK Tg(Cp-HIST1H2BB/Venus)47Hadj/J
016252   STOCK Tg(Hoxb7-Venus*)17Cos/J
024964   STOCK Tg(Pcp2-COP4*H134R/EYFP)U126Isop/J
021226   STOCK Tg(Thy1-Brainbow3.1)18Jrs/J
021225   STOCK Tg(Thy1-Brainbow3.1)3Jrs/J
021227   STOCK Tg(Thy1-Brainbow3.2)7Jrs/J
013162   STOCK Tg(Thy1-Clomeleon)12Gjau/J
013163   STOCK Tg(Thy1-Clomeleon)13Gjau/J
012708   STOCK Tg(Thy1-cre/ERT2,-EYFP)HGfng/PyngJ
025194   STOCK Tg(Vmn1r206-Mapt/YFP)1Dlc/J
View Strains carrying other alleles of YFP     (74 strains)

Phenotype

Phenotype Information

View Research Applications

Research Applications
This mouse can be used to support research in many areas including:

Neurobiology Research
Fluorescent protein expression in neural tissue

Research Tools
Fluorescent Proteins
Neurobiology Research
      cell marker

YFP related

Research Tools
Fluorescent Proteins

Genes & Alleles

Gene & Allele Information provided by MGI

 
Allele Symbol Gpnmb+
Allele Name wild type
Allele Type Not Applicable
Site of ExpressionIris of the eys.
Gene Symbol and Name Gpnmb, glycoprotein (transmembrane) nmb
Chromosome 6
Gene Common Name(s) Dchil; HGFIN; NMB; Osteoactivin; dendritic cell associated heparan sulfate proteoglycans dependent integrin ligand; ipd; iris pigment dispersion;
 
Allele Symbol Tg(Thy1-YFP)HJrs
Allele Name transgene insertion H, Joshua R Sanes
Allele Type Transgenic (Reporter)
Common Name(s) Tg(Thy1-YFPH)2Jrs; TgN(Thy1-YFP-H)2Jrs; YFP-H; thy1-YFP line H; thy1-YFP-H; thy1-YFP-Htg;
Mutation Made By Joshua Sanes,   Harvard University
Strain of Origin(C57BL/6J x CBA)F1
Site of ExpressionSensory neurons in dorsal root ganglia, and pyramidal cells in Layer 5 of the cerebral cortex and in the hippocampus express YFP, 10-30% of retinal ganglion cells are exclusively labeled in the retina, mossy fibers are strongly labeled in cerebellar cortex.
Expressed Gene YFP, Yellow Fluorescent Protein, jellyfish
Yellow Fluorescent Protein (YFP) is a derivative of Green Fluorescent Protein (GFP), a versatile reporter molecule which has found use in many biological applications. The original molecule has been modified in order to enhance fluorescence intensity and shift the wavelength emitted when excited. When YFP is utilized in a transgenic construct, tissue expressing sufficient amounts of YFP will fluoresce yellowish-green when exposed to a 513 nm light source.
Promoter Thy1, thymus cell antigen 1, theta, mouse, laboratory
General Note Transgenic mice express spectral variants of GFP (yellow-YFP) at high levels in motor and sensory neurons, as well as subsets of central neurons. Axons are brightly fluorescent all the way to the terminals. No expression is detectable in nonneural cells.In these mice a few motor axons are labeled in muscle tissue, allowing determination of branching pattern and definition of which muscle fibers are innervated by a single motor axon. Approximately 10-30% of sensory neurons are labeled in dorsal root ganglia. Layer 5 pyramidal cells are selectively labeled in cerebral cortex. Pyramidal neurons are selectively labeled in the hippocampus. Approximately 10-30% of retinal ganglion cells are exclusively labeled in the retina. Many (but not all) mossy fibers are strongly labeled in cerebellar cortex, but no neurons are labeled in this area. In short, this line provides a strong and specific "Golgi-like" vital marker for several widely studied neuronal subsets, with minimal labeling of nearby axons. Fluorescenceappears somewhat dim at birth but brightens in adult mice.
Molecular Note The transgene contains a YFP gene under the direction of regulatory elements derived from the mouse Thy1 gene. The regulatory elements are composed of a 6.5 kb fragment obtained from the 5' portion of the Thy1 gene, extending from the promoter to the intron following exon 4, but lacking exon 3 and its flanking introns. Nine lines were generated (12, 16, 21, A, C, D, F, G, and H). [MGI Ref ID J:93699]
 
 

Genotyping

Genotyping Information

Genotyping Protocols

Tg(Thy1-YFP)HJrs-alternate2,

MELT



Helpful Links

Genotyping resources and troubleshooting

References

References provided by MGI

Additional References

Gpnmb+ related

Bosco A; Crish SD; Steele MR; Romero CO; Inman DM; Horner PJ; Calkins DJ; Vetter ML. 2012. Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 7(8):e43602. [PubMed: 22952717]  [MGI Ref ID J:191663]

Howell GR; Libby RT; Jakobs TC; Smith RS; Phalan FC; Barter JW; Barbay JM; Marchant JK; Mahesh N; Porciatti V; Whitmore AV; Masland RH; John SW. 2007. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 179(7):1523-37. [PubMed: 18158332]  [MGI Ref ID J:131073]

Howell GR; Libby RT; Marchant JK; Wilson LA; Cosma IM; Smith RS; Anderson MG; John SW. 2007. Absence of glaucoma in DBA/2J mice homozygous for wild-type versions of Gpnmb and Tyrp1. BMC Genet 8(1):45. [PubMed: 17608931]  [MGI Ref ID J:123136]

Huang W; Xing W; Ryskamp DA; Punzo C; Krizaj D. 2011. Localization and phenotype-specific expression of ryanodine calcium release channels in C57BL6 and DBA/2J mouse strains. Exp Eye Res 93(5):700-9. [PubMed: 21933672]  [MGI Ref ID J:189480]

Nguyen JV; Soto I; Kim KY; Bushong EA; Oglesby E; Valiente-Soriano FJ; Yang Z; Davis CH; Bedont JL; Son JL; Wei JO; Buchman VL; Zack DJ; Vidal-Sanz M; Ellisman MH; Marsh-Armstrong N. 2011. Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. Proc Natl Acad Sci U S A 108(3):1176-81. [PubMed: 21199938]  [MGI Ref ID J:168848]

Porciatti V; Chou TH; Feuer WJ. 2010. C57BL/6J, DBA/2J, and DBA/2J.Gpnmb mice have different visual signal processing in the inner retina. Mol Vis 16:2939-47. [PubMed: 21203347]  [MGI Ref ID J:168340]

Williams PA; Howell GR; Barbay JM; Braine CE; Sousa GL; John SW; Morgan JE. 2013. Retinal ganglion cell dendritic atrophy in DBA/2J glaucoma. PLoS One 8(8):e72282. [PubMed: 23977271]  [MGI Ref ID J:199858]

Tg(Thy1-YFP)HJrs related

Akbik FV; Bhagat SM; Patel PR; Cafferty WB; Strittmatter SM. 2013. Anatomical plasticity of adult brain is titrated by Nogo Receptor 1. Neuron 77(5):859-66. [PubMed: 23473316]  [MGI Ref ID J:197940]

Angata K; Huckaby V; Ranscht B; Terskikh A; Marth JD; Fukuda M. 2007. Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol Cell Biol 27(19):6659-68. [PubMed: 17682066]  [MGI Ref ID J:126687]

Babetto E; Beirowski B; Janeckova L; Brown R; Gilley J; Thomson D; Ribchester RR; Coleman MP. 2010. Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo. J Neurosci 30(40):13291-304. [PubMed: 20926655]  [MGI Ref ID J:165098]

Bannerman PG; Hahn A. 2007. Enhanced visualization of axonopathy in EAE using thy1-YFP transgenic mice. J Neurol Sci 260(1-2):23-32. [PubMed: 17493638]  [MGI Ref ID J:136606]

Beaudoin GM 3rd; Schofield CM; Nuwal T; Zang K; Ullian EM; Huang B; Reichardt LF. 2012. Afadin, a ras/rap effector that controls cadherin function, promotes spine and excitatory synapse density in the hippocampus. J Neurosci 32(1):99-110. [PubMed: 22219273]  [MGI Ref ID J:179366]

Beirowski B; Adalbert R; Wagner D; Grumme DS; Addicks K; Ribchester RR; Coleman MP. 2005. The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neurosci 6(1):6. [PubMed: 15686598]  [MGI Ref ID J:96660]

Bittner T; Fuhrmann M; Burgold S; Jung CK; Volbracht C; Steiner H; Mitteregger G; Kretzschmar HA; Haass C; Herms J. 2009. gamma-Secretase inhibition reduces spine density in vivo via an amyloid precursor protein-dependent pathway. J Neurosci 29(33):10405-9. [PubMed: 19692615]  [MGI Ref ID J:151919]

Bittner T; Fuhrmann M; Burgold S; Ochs SM; Hoffmann N; Mitteregger G; Kretzschmar H; LaFerla FM; Herms J. 2010. Multiple events lead to dendritic spine loss in triple transgenic Alzheimer's disease mice. PLoS One 5(11):e15477. [PubMed: 21103384]  [MGI Ref ID J:166981]

Bogdanik LP; Burgess RW. 2011. A valid mouse model of AGRIN-associated congenital myasthenic syndrome. Hum Mol Genet :. [PubMed: 21890498]  [MGI Ref ID J:176117]

Bridge KE; Berg N; Adalbert R; Babetto E; Dias T; Spillantini MG; Ribchester RR; Coleman MP. 2009. Late onset distal axonal swelling in YFP-H transgenic mice. Neurobiol Aging 30(2):309-21. [PubMed: 17658198]  [MGI Ref ID J:145817]

Buskila Y; Crowe SE; Ellis-Davies GC. 2013. Synaptic deficits in layer 5 neurons precede overt structural decay in 5xFAD mice. Neuroscience 254:152-9. [PubMed: 24055684]  [MGI Ref ID J:207428]

Capetillo-Zarate E; Gracia L; Yu F; Banfelder JR; Lin MT; Tampellini D; Gouras GK. 2011. High-Resolution 3D Reconstruction Reveals Intra-Synaptic Amyloid Fibrils. Am J Pathol 179(5):2551-8. [PubMed: 21925470]  [MGI Ref ID J:177369]

Charrier C; Joshi K; Coutinho-Budd J; Kim JE; Lambert N; de Marchena J; Jin WL; Vanderhaeghen P; Ghosh A; Sassa T; Polleux F. 2012. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149(4):923-35. [PubMed: 22559944]  [MGI Ref ID J:185134]

Chen AI; Nguyen CN; Copenhagen DR; Badurek S; Minichiello L; Ranscht B; Reichardt LF. 2011. TrkB (Tropomyosin-Related Kinase B) Controls the Assembly and Maintenance of GABAergic Synapses in the Cerebellar Cortex. J Neurosci 31(8):2769-80. [PubMed: 21414899]  [MGI Ref ID J:169866]

Chen Y; Hancock ML; Role LW; Talmage DA. 2010. Intramembranous valine linked to schizophrenia is required for neuregulin 1 regulation of the morphological development of cortical neurons. J Neurosci 30(27):9199-208. [PubMed: 20610754]  [MGI Ref ID J:161775]

Comley LH; Wishart TM; Baxter B; Murray LM; Nimmo A; Thomson D; Parson SH; Gillingwater TH. 2011. Induction of cell stress in neurons from transgenic mice expressing yellow fluorescent protein: implications for neurodegeneration research. PLoS One 6(3):e17639. [PubMed: 21408118]  [MGI Ref ID J:171713]

Cone FE; Steinhart MR; Oglesby EN; Kalesnykas G; Pease ME; Quigley HA. 2012. The effects of anesthesia, mouse strain and age on intraocular pressure and an improved murine model of experimental glaucoma. Exp Eye Res 99:27-35. [PubMed: 22554836]  [MGI Ref ID J:196815]

Conforti L; Fang G; Beirowski B; Wang MS; Sorci L; Asress S; Adalbert R; Silva A; Bridge K; Huang XP; Magni G; Glass JD; Coleman MP. 2007. NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration. Cell Death Differ 14(1):116-27. [PubMed: 16645633]  [MGI Ref ID J:132236]

Conforti L; Wilbrey A; Morreale G; Janeckova L; Beirowski B; Adalbert R; Mazzola F; Di Stefano M; Hartley R; Babetto E; Smith T; Gilley J; Billington RA; Genazzani AA; Ribchester RR; Magni G; Coleman M. 2009. Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. J Cell Biol 184(4):491-500. [PubMed: 19237596]  [MGI Ref ID J:163222]

Crowe SE; Ellis-Davies GC. 2014. Spine pruning in 5xFAD mice starts on basal dendrites of layer 5 pyramidal neurons. Brain Struct Funct 219(2):571-80. [PubMed: 23417057]  [MGI Ref ID J:214142]

Deans MR; Krol A; Abraira VE; Copley CO; Tucker AF; Goodrich LV. 2011. Control of neuronal morphology by the atypical cadherin Fat3. Neuron 71(5):820-32. [PubMed: 21903076]  [MGI Ref ID J:176668]

Demyanenko GP; Schachner M; Anton E; Schmid R; Feng G; Sanes J; Maness PF. 2004. Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron 44(3):423-37. [PubMed: 15504324]  [MGI Ref ID J:96525]

Demyanenko GP; Siesser PF; Wright AG; Brennaman LH; Bartsch U; Schachner M; Maness PF. 2011. L1 and CHL1 Cooperate in Thalamocortical Axon Targeting. Cereb Cortex 21(2):401-12. [PubMed: 20576928]  [MGI Ref ID J:171029]

Djurisic M; Vidal GS; Mann M; Aharon A; Kim T; Ferrao Santos A; Zuo Y; Hubener M; Shatz CJ. 2013. PirB regulates a structural substrate for cortical plasticity. Proc Natl Acad Sci U S A 110(51):20771-6. [PubMed: 24302763]  [MGI Ref ID J:205501]

Dombeck DA; Khabbaz AN; Collman F; Adelman TL; Tank DW. 2007. Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice. Neuron 56(1):43-57. [PubMed: 17920014]  [MGI Ref ID J:125132]

English AW; Cucoranu D; Mulligan A; Rodriguez JA; Sabatier MJ. 2011. Neurotrophin-4/5 is implicated in the enhancement of axon regeneration produced by treadmill training following peripheral nerve injury. Eur J Neurosci 33(12):2265-71. [PubMed: 21623957]  [MGI Ref ID J:176369]

English AW; Liu K; Nicolini JM; Mulligan AM; Ye K. 2013. Small-molecule trkB agonists promote axon regeneration in cut peripheral nerves. Proc Natl Acad Sci U S A 110(40):16217-16222. [PubMed: 24043773]  [MGI Ref ID J:201140]

English AW; Meador W; Carrasco DI. 2005. Neurotrophin-4/5 is required for the early growth of regenerating axons in peripheral nerves. Eur J Neurosci 21(10):2624-34. [PubMed: 15926911]  [MGI Ref ID J:101068]

Farah MH; Pan BH; Hoffman PN; Ferraris D; Tsukamoto T; Nguyen T; Wong PC; Price DL; Slusher BS; Griffin JW. 2011. Reduced BACE1 Activity Enhances Clearance of Myelin Debris and Regeneration of Axons in the Injured Peripheral Nervous System. J Neurosci 31(15):5744-54. [PubMed: 21490216]  [MGI Ref ID J:170970]

Feng G; Mellor RH; Bernstein M; Keller-Peck C; Nguyen QT; Wallace M; Nerbonne JM; Lichtman JW; Sanes JR. 2000. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41-51. [PubMed: 11086982]  [MGI Ref ID J:93699]

Feng Y; Walsh CA. 2004. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44(2):279-93. [PubMed: 15473967]  [MGI Ref ID J:94756]

Fu M; Yu X; Lu J; Zuo Y. 2012. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483(7387):92-5. [PubMed: 22343892]  [MGI Ref ID J:181541]

Fuhrmann M; Bittner T; Jung CK; Burgold S; Page RM; Mitteregger G; Haass C; LaFerla FM; Kretzschmar H; Herms J. 2010. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nat Neurosci 13(4):411-3. [PubMed: 20305648]  [MGI Ref ID J:159680]

Garrett AM; Schreiner D; Lobas MA; Weiner JA. 2012. gamma-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron 74(2):269-76. [PubMed: 22542181]  [MGI Ref ID J:188387]

Gasparini L; Crowther RA; Martin KR; Berg N; Coleman M; Goedert M; Spillantini MG. 2011. Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32(3):419-33. [PubMed: 19356824]  [MGI Ref ID J:173742]

Gastinger MJ; Kunselman AR; Conboy EE; Bronson SK; Barber AJ. 2008. Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2 Akita diabetic mice. Invest Ophthalmol Vis Sci 49(6):2635-42. [PubMed: 18515593]  [MGI Ref ID J:137045]

Gomez-Climent MA; Guirado R; Castillo-Gomez E; Varea E; Gutierrez-Mecinas M; Gilabert-Juan J; Garcia-Mompo C; Vidueira S; Sanchez-Mataredona D; Hernandez S; Blasco-Ibanez JM; Crespo C; Rutishauser U; Schachner M; Nacher J. 2011. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is expressed in a subpopulation of mature cortical interneurons characterized by reduced structural features and connectivity. Cereb Cortex 21(5):1028-41. [PubMed: 20843898]  [MGI Ref ID J:183825]

Goto K; Kato G; Kawahara I; Luo Y; Obata K; Misawa H; Ishikawa T; Kuniyasu H; Nabekura J; Takaki M. 2013. In vivo imaging of enteric neurogenesis in the deep tissue of mouse small intestine. PLoS One 8(1):e54814. [PubMed: 23382976]  [MGI Ref ID J:195788]

Gould TW; Buss RR; Vinsant S; Prevette D; Sun W; Knudson CM; Milligan CE; Oppenheim RW. 2006. Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci 26(34):8774-86. [PubMed: 16928866]  [MGI Ref ID J:111890]

Groves ML; McKeon R; Werner E; Nagarsheth M; Meador W; English AW. 2005. Axon regeneration in peripheral nerves is enhanced by proteoglycan degradation. Exp Neurol 195(2):278-92. [PubMed: 15950970]  [MGI Ref ID J:131689]

Gunnersen JM; Kuek A; Phipps JA; Hammond VE; Puthussery T; Fletcher EL; Tan SS. 2009. Seizure-related gene 6 (Sez-6) in amacrine cells of the rodent retina and the consequence of gene deletion. PLoS One 4(8):e6546. [PubMed: 19662096]  [MGI Ref ID J:152476]

Hirst TC; Ribchester RR. 2013. Segmentation of the mouse fourth deep lumbrical muscle connectome reveals concentric organisation of motor units. J Physiol 591(Pt 19):4859-75. [PubMed: 23940381]  [MGI Ref ID J:214161]

Ichinohe N; Knight A; Ogawa M; Ohshima T; Mikoshiba K; Yoshihara Y; Terashima T; Rockland KS. 2008. Unusual patch-matrix organization in the retrosplenial cortex of the reeler mouse and Shaking rat Kawasaki. Cereb Cortex 18(5):1125-38. [PubMed: 17728262]  [MGI Ref ID J:158489]

Jaworski T; Lechat B; Demedts D; Gielis L; Devijver H; Borghgraef P; Duimel H; Verheyen F; Kugler S; Van Leuven F. 2011. Dendritic degeneration, neurovascular defects, and inflammation precede neuronal loss in a mouse model for tau-mediated neurodegeneration. Am J Pathol 179(4):2001-15. [PubMed: 21839061]  [MGI Ref ID J:176300]

Joyal JS; Sitaras N; Binet F; Rivera JC; Stahl A; Zaniolo K; Shao Z; Polosa A; Zhu T; Hamel D; Djavari M; Kunik D; Honore JC; Picard E; Zabeida A; Varma DR; Hickson G; Mancini J; Klagsbrun M; Costantino S; Beausejour C; Lachapelle P; Smith LE; Chemtob S;Sapieha P. 2011. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood 117(22):6024-35. [PubMed: 21355092]  [MGI Ref ID J:177800]

Keller-Peck CR; Walsh MK; Gan WB; Feng G; Sanes JR; Lichtman JW. 2001. Asynchronous synapse elimination in neonatal motor units: studies using GFP transgenic mice. Neuron 31(3):381-94. [PubMed: 11516396]  [MGI Ref ID J:71121]

Kim JV; Dustin ML. 2006. Innate response to focal necrotic injury inside the blood-brain barrier. J Immunol 177(8):5269-77. [PubMed: 17015712]  [MGI Ref ID J:139445]

Kreutzfeldt M; Bergthaler A; Fernandez M; Bruck W; Steinbach K; Vorm M; Coras R; Blumcke I; Bonilla WV; Fleige A; Forman R; Muller W; Becher B; Misgeld T; Kerschensteiner M; Pinschewer DD; Merkler D. 2013. Neuroprotective intervention by interferon-gamma blockade prevents CD8+ T cell-mediated dendrite and synapse loss. J Exp Med 210(10):2087-103. [PubMed: 23999498]  [MGI Ref ID J:202844]

Krieger F; Elflein N; Ruiz R; Guerra J; Serrano AL; Asan E; Tabares L; Jablonka S. 2013. Fast motor axon loss in SMARD1 does not correspond to morphological and functional alterations of the NMJ. Neurobiol Dis 54:169-82. [PubMed: 23295857]  [MGI Ref ID J:197642]

Lai CS; Franke TF; Gan WB. 2012. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483(7387):87-91. [PubMed: 22343895]  [MGI Ref ID J:181540]

Li X; Zhang P; Yang Y; Xiong Y; Qi Y; Hu H. 2008. Differentiation and developmental origin of cerebellar granule neuron ectopia in protein O-mannose UDP-N-acetylglucosaminyl transferase 1 knockout mice. Neuroscience 152(2):391-406. [PubMed: 18295407]  [MGI Ref ID J:135670]

Li YN; Pinzon-Duarte G; Dattilo M; Claudepierre T; Koch M; Brunken WJ. 2012. The expression and function of netrin-4 in murine ocular tissues. Exp Eye Res 96(1):24-35. [PubMed: 22281059]  [MGI Ref ID J:196758]

Liu X; Grishanin RN; Tolwani RJ; Renteria RC; Xu B; Reichardt LF; Copenhagen DR. 2007. Brain-derived neurotrophic factor and TrkB modulate visual experience-dependent refinement of neuronal pathways in retina. J Neurosci 27(27):7256-67. [PubMed: 17611278]  [MGI Ref ID J:122929]

Lorenzetto E; Panteri R; Marino R; Keller F; Buffelli M. 2008. Impaired nerve regeneration in reeler mice after peripheral nerve injury. Eur J Neurosci 27(1):12-9. [PubMed: 18093172]  [MGI Ref ID J:132197]

Madisen L; Zwingman TA; Sunkin SM; Oh SW; Zariwala HA; Gu H; Ng LL; Palmiter RD; Hawrylycz MJ; Jones AR; Lein ES; Zeng H. 2010. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133-40. [PubMed: 20023653]  [MGI Ref ID J:155793]

Margolis DJ; Gartland AJ; Euler T; Detwiler PB. 2010. Dendritic calcium signaling in ON and OFF mouse retinal ganglion cells. J Neurosci 30(21):7127-38. [PubMed: 20505081]  [MGI Ref ID J:165048]

Micheva KD; Busse B; Weiler NC; O'Rourke N; Smith SJ. 2010. Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68(4):639-53. [PubMed: 21092855]  [MGI Ref ID J:167857]

Milde S; Fox AN; Freeman MR; Coleman MP. 2013. Deletions within its subcellular targeting domain enhance the axon protective capacity of Nmnat2 in vivo. Sci Rep 3:2567. [PubMed: 23995269]  [MGI Ref ID J:207794]

Nadeau S; Filali M; Zhang J; Kerr BJ; Rivest S; Soulet D; Iwakura Y; de Rivero Vaccari JP; Keane RW; Lacroix S. 2011. Functional Recovery after Peripheral Nerve Injury is Dependent on the Pro-Inflammatory Cytokines IL-1{beta} and TNF: Implications for Neuropathic Pain. J Neurosci 31(35):12533-12542. [PubMed: 21880915]  [MGI Ref ID J:176222]

Niu S; Yabut O; D'Arcangelo G. 2008. The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci 28(41):10339-48. [PubMed: 18842893]  [MGI Ref ID J:141125]

Oglesby E; Quigley HA; Zack DJ; Cone FE; Steinhart MR; Tian J; Pease ME; Kalesnykas G. 2012. Semi-automated, quantitative analysis of retinal ganglion cell morphology in mice selectively expressing yellow fluorescent protein. Exp Eye Res 96(1):107-15. [PubMed: 22210127]  [MGI Ref ID J:196788]

Ohshima T; Hirasawa M; Tabata H; Mutoh T; Adachi T; Suzuki H; Saruta K; Iwasato T; Itohara S; Hashimoto M; Nakajima K; Ogawa M; Kulkarni AB; Mikoshiba K. 2007. Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development 134(12):2273-82. [PubMed: 17507397]  [MGI Ref ID J:135129]

Ozdinler PH; Benn S; Yamamoto TH; Guzel M; Brown RH Jr; Macklis JD. 2011. Corticospinal Motor Neurons and Related Subcerebral Projection Neurons Undergo Early and Specific Neurodegeneration in hSOD1G93A Transgenic ALS Mice. J Neurosci 31(11):4166-4177. [PubMed: 21411657]  [MGI Ref ID J:170453]

Padmashri R; Reiner BC; Suresh A; Spartz E; Dunaevsky A. 2013. Altered structural and functional synaptic plasticity with motor skill learning in a mouse model of fragile X syndrome. J Neurosci 33(50):19715-23. [PubMed: 24336735]  [MGI Ref ID J:205490]

Pan F; Aldridge GM; Greenough WT; Gan WB. 2010. Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome. Proc Natl Acad Sci U S A 107(41):17768-73. [PubMed: 20861447]  [MGI Ref ID J:165411]

Parkhurst CN; Yang G; Ninan I; Savas JN; Yates JR 3rd; Lafaille JJ; Hempstead BL; Littman DR; Gan WB. 2013. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596-609. [PubMed: 24360280]  [MGI Ref ID J:205483]

Pitt D; Gonzales E; Cross AH; Goldberg MP. 2010. Dysmyelinated axons in shiverer mice are highly vulnerable to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated toxicity. Brain Res 1309:146-54. [PubMed: 19896473]  [MGI Ref ID J:158545]

Porrero C; Rubio-Garrido P; Avendano C; Clasca F. 2010. Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice. Brain Res 1345:59-72. [PubMed: 20510892]  [MGI Ref ID J:161506]

Pramparo T; Youn YH; Yingling J; Hirotsune S; Wynshaw-Boris A. 2010. Novel embryonic neuronal migration and proliferation defects in Dcx mutant mice are exacerbated by Lis1 reduction. J Neurosci 30(8):3002-12. [PubMed: 20181597]  [MGI Ref ID J:157825]

Price V; Wang L; D'Mello SR. 2013. Conditional deletion of histone deacetylase-4 in the central nervous system has no major effect on brain architecture or neuronal viability. J Neurosci Res 91(3):407-15. [PubMed: 23239283]  [MGI Ref ID J:210138]

Probst B; Rock R; Gessler M; Vortkamp A; Puschel AW. 2007. The rodent Four-jointed ortholog Fjx1 regulates dendrite extension. Dev Biol 312(1):461-70. [PubMed: 18028897]  [MGI Ref ID J:130206]

Ranson A; Sengpiel F; Fox K. 2013. The role of GluA1 in ocular dominance plasticity in the mouse visual cortex. J Neurosci 33(38):15220-5. [PubMed: 24048851]  [MGI Ref ID J:202597]

Risher WC; Andrew RD; Kirov SA. 2009. Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia 57(2):207-21. [PubMed: 18720409]  [MGI Ref ID J:156224]

Rupp NJ; Wegenast-Braun BM; Radde R; Calhoun ME; Jucker M. 2011. Early onset amyloid lesions lead to severe neuritic abnormalities and local, but not global neuron loss in APPPS1 transgenic mice. Neurobiol Aging 32(12):2324.e1-6. [PubMed: 20970889]  [MGI Ref ID J:188225]

Schaefer AM; Sanes JR; Lichtman JW. 2005. A compensatory subpopulation of motor neurons in a mouse model of amyotrophic lateral sclerosis. J Comp Neurol 490(3):209-19. [PubMed: 16082680]  [MGI Ref ID J:102773]

Schlomann U; Schwamborn JC; Muller M; Fassler R; Puschel AW. 2009. The stimulation of dendrite growth by Sema3A requires integrin engagement and focal adhesion kinase. J Cell Sci 122(Pt 12):2034-42. [PubMed: 19454481]  [MGI Ref ID J:150568]

Schmidt H; Stonkute A; Juttner R; Koesling D; Friebe A; Rathjen FG. 2009. C-type natriuretic peptide (CNP) is a bifurcation factor for sensory neurons. Proc Natl Acad Sci U S A 106(39):16847-52. [PubMed: 19805384]  [MGI Ref ID J:153212]

Schon C; Hoffmann NA; Ochs SM; Burgold S; Filser S; Steinbach S; Seeliger MW; Arzberger T; Goedert M; Kretzschmar HA; Schmidt B; Herms J. 2012. Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice. PLoS One 7(12):e53547. [PubMed: 23300938]  [MGI Ref ID J:195824]

Singhal N; Xu R; Martin PT. 2012. Distinct contributions of Galgt1 and Galgt2 to carbohydrate expression and function at the mouse neuromuscular junction. Mol Cell Neurosci 51(3-4):112-26. [PubMed: 22982027]  [MGI Ref ID J:203675]

Stanwood GD; Parlaman JP; Levitt P. 2005. Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine D1 receptor mutant mice. J Comp Neurol 487(3):270-82. [PubMed: 15892099]  [MGI Ref ID J:99709]

Stuss DP; Boyd JD; Levin DB; Delaney KR. 2012. MeCP2 mutation results in compartment-specific reductions in dendritic branching and spine density in layer 5 motor cortical neurons of YFP-H mice. PLoS One 7(3):e31896. [PubMed: 22412847]  [MGI Ref ID J:186936]

Talantova M; Sanz-Blasco S; Zhang X; Xia P; Akhtar MW; Okamoto S; Dziewczapolski G; Nakamura T; Cao G; Pratt AE; Kang YJ; Tu S; Molokanova E; McKercher SR; Hires SA; Sason H; Stouffer DG; Buczynski MW; Solomon JP; Michael S; Powers ET; Kelly JW; Roberts A; Tong G; Fang-Newmeyer T; Parker J; Holland EA; Zhang D; Nakanishi N; Chen HS; Wolosker H; Wang Y; Parsons LH; Ambasudhan R; Masliah E; Heinemann SF; Pina-Crespo JC; Lipton SA. 2013. Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci U S A 110(27):E2518-27. [PubMed: 23776240]  [MGI Ref ID J:198709]

Thomson SR; Nahon JE; Mutsaers CA; Thomson D; Hamilton G; Parson SH; Gillingwater TH. 2012. Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy. PLoS One 7(12):e52605. [PubMed: 23285108]  [MGI Ref ID J:195758]

Tomita K; Kubo T; Matsuda K; Yano K; Tohyama M; Hosokawa K. 2007. Myelin-associated glycoprotein reduces axonal branching and enhances functional recovery after sciatic nerve transection in rats. Glia 55(14):1498-507. [PubMed: 17705198]  [MGI Ref ID J:156299]

Tsai J; Grutzendler J; Duff K; Gan WB. 2004. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7(11):1181-3. [PubMed: 15475950]  [MGI Ref ID J:94364]

Um K; Niu S; Duman JG; Cheng JX; Tu YK; Schwechter B; Liu F; Hiles L; Narayanan AS; Ash RT; Mulherkar S; Alpadi K; Smirnakis SM; Tolias KF. 2014. Dynamic control of excitatory synapse development by a Rac1 GEF/GAP regulatory complex. Dev Cell 29(6):701-15. [PubMed: 24960694]  [MGI Ref ID J:213862]

Vargas ME; Watanabe J; Singh SJ; Robinson WH; Barres BA. 2010. Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci U S A 107(26):11993-8. [PubMed: 20547838]  [MGI Ref ID J:161370]

Ventruti A; Kazdoba TM; Niu S; D'Arcangelo G. 2011. Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain. Neuroscience 189:32-42. [PubMed: 21664258]  [MGI Ref ID J:175650]

Wang XD; Su YA; Wagner KV; Avrabos C; Scharf SH; Hartmann J; Wolf M; Liebl C; Kuhne C; Wurst W; Holsboer F; Eder M; Deussing JM; Muller MB; Schmidt MV. 2013. Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss. Nat Neurosci 16(6):706-13. [PubMed: 23644483]  [MGI Ref ID J:203358]

Whiteus C; Freitas C; Grutzendler J. 2014. Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period. Nature 505(7483):407-11. [PubMed: 24305053]  [MGI Ref ID J:207919]

Wijetunge LS; Angibaud J; Frick A; Kind PC; Nagerl UV. 2014. Stimulated emission depletion (STED) microscopy reveals nanoscale defects in the developmental trajectory of dendritic spine morphogenesis in a mouse model of fragile X syndrome. J Neurosci 34(18):6405-12. [PubMed: 24790210]  [MGI Ref ID J:211059]

Wilhelm JC; Xu M; Cucoranu D; Chmielewski S; Holmes T; Lau KS; Bassell GJ; English AW. 2012. Cooperative roles of BDNF expression in neurons and Schwann cells are modulated by exercise to facilitate nerve regeneration. J Neurosci 32(14):5002-9. [PubMed: 22492055]  [MGI Ref ID J:184131]

Williams PA; Howell GR; Barbay JM; Braine CE; Sousa GL; John SW; Morgan JE. 2013. Retinal ganglion cell dendritic atrophy in DBA/2J glaucoma. PLoS One 8(8):e72282. [PubMed: 23977271]  [MGI Ref ID J:199858]

Wu SH; Arevalo JC; Sarti F; Tessarollo L; Gan WB; Chao MV. 2009. Ankyrin Repeat-rich Membrane Spanning/Kidins220 protein regulates dendritic branching and spine stability in vivo. Dev Neurobiol 69(9):547-57. [PubMed: 19449316]  [MGI Ref ID J:162839]

Yamashita N; Ohshima T; Nakamura F; Kolattukudy P; Honnorat J; Mikoshiba K; Goshima Y. 2012. Phosphorylation of CRMP2 (Collapsin Response Mediator Protein 2) Is Involved in Proper Dendritic Field Organization. J Neurosci 32(4):1360-1365. [PubMed: 22279220]  [MGI Ref ID J:180581]

Yang G; Parkhurst CN; Hayes S; Gan WB. 2013. Peripheral elevation of TNF-alpha leads to early synaptic abnormalities in the mouse somatosensory cortex in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 110(25):10306-11. [PubMed: 23733958]  [MGI Ref ID J:197382]

Ye H; Tan YL; Ponniah S; Takeda Y; Wang SQ; Schachner M; Watanabe K; Pallen CJ; Xiao ZC. 2008. Neural recognition molecules CHL1 and NB-3 regulate apical dendrite orientation in the neocortex via PTP alpha. EMBO J 27(1):188-200. [PubMed: 18046458]  [MGI Ref ID J:130375]

Yu X; Wang G; Gilmore A; Yee AX; Li X; Xu T; Smith SJ; Chen L; Zuo Y. 2013. Accelerated experience-dependent pruning of cortical synapses in ephrin-A2 knockout mice. Neuron 80(1):64-71. [PubMed: 24094103]  [MGI Ref ID J:201801]

Zhang S; Boyd J; Delaney K; Murphy TH. 2005. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. J Neurosci 25(22):5333-8. [PubMed: 15930381]  [MGI Ref ID J:134932]

Zhou L; Gall D; Qu Y; Prigogine C; Cheron G; Tissir F; Schiffmann SN; Goffinet AM. 2010. Maturation of 'neocortex isole' in vivo in mice. J Neurosci 30(23):7928-39. [PubMed: 20534841]  [MGI Ref ID J:160889]

Zuo Y; Lin A; Chang P; Gan WB. 2005. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46(2):181-9. [PubMed: 15848798]  [MGI Ref ID J:130614]

Zuo Y; Yang G; Kwon E; Gan WB. 2005. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436(7048):261-5. [PubMed: 16015331]  [MGI Ref ID J:131883]

Health & husbandry

Health & Colony Maintenance Information

Colony Maintenance

Breeding & HusbandryHemizygous mice are viable and fertile
Mating SystemNoncarrier x Hemizygote         (Female x Male)   15-MAY-14
Hemizygote x Noncarrier         (Female x Male)   15-MAY-14

Pricing and Purchasing

Pricing, Supply Level & Notes, Controls


 

This strain is currently Under Development - Now Accepting Orders.
Estimated Available for Distribution Date: 13-APR-15

Please note: You may now place orders for this strain although it is not yet ready for distribution. Estimated available for distribution dates are provided to keep customers better informed on strains under development. Please note that our Colony Managers routinely monitor the target date and edit it based on breeding performance and other factors. The length of time it takes to make a new strain available for distribution depends on genotype, age, number of animals sent by the Donating Investigator, breeding performance, additional strain development (backcrossing, making homozygous), and anticipated demand for the strain.

Pricing for USA, Canada and Mexico shipping destinations View International Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $232.00Female or MaleWild-type for Gpnmb+, Hemizygous for Tg(Thy1-YFP)HJrs  
Price per Pair (US dollars $)Pair Genotype
$302.00Wild-type for Gpnmb<+> Hemizygous for Tg(Thy1-YFP)HJrs x Wild-type for Gpnmb<+> Noncarrier  
$302.00Wild-type for Gpnmb<+> Noncarrier x Wild-type for Gpnmb<+> Hemizygous for Tg(Thy1-YFP)HJrs  

Standard Supply

Under Development - Now Accepting Orders The strain development process (i.e. importation, rederivation, and colony expansion) usually takes six to nine months.

Pricing for International shipping destinations View USA Canada and Mexico Pricing

Live Mice

Price per mouse (US dollars $)GenderGenotypes Provided
Individual Mouse $301.60Female or MaleWild-type for Gpnmb+, Hemizygous for Tg(Thy1-YFP)HJrs  
Price per Pair (US dollars $)Pair Genotype
$392.60Wild-type for Gpnmb<+> Hemizygous for Tg(Thy1-YFP)HJrs x Wild-type for Gpnmb<+> Noncarrier  
$392.60Wild-type for Gpnmb<+> Noncarrier x Wild-type for Gpnmb<+> Hemizygous for Tg(Thy1-YFP)HJrs  

Standard Supply

Under Development - Now Accepting Orders The strain development process (i.e. importation, rederivation, and colony expansion) usually takes six to nine months.

View USA Canada and Mexico Pricing View International Pricing

Standard Supply

Under Development - Now Accepting Orders The strain development process (i.e. importation, rederivation, and colony expansion) usually takes six to nine months.

Control Information

  Control
   Noncarrier
   000671 DBA/2J
 
  Considerations for Choosing Controls
  Control Pricing Information for Genetically Engineered Mutant Strains.
 

Payment Terms and Conditions

Terms are granted by individual review and stated on the customer invoice(s) and account statement. These transactions are payable in U.S. currency within the granted terms. Payment for services, products, shipping containers, and shipping costs that are rendered are expected within the payment terms indicated on the invoice or stated by contract. Invoices and account balances in arrears of stated terms may result in The Jackson Laboratory pursuing collection activities including but not limited to outside agencies and court filings.


See Terms of Use tab for General Terms and Conditions


The Jackson Laboratory's Genotype Promise

The Jackson Laboratory has rigorous genetic quality control and mutant gene genotyping programs to ensure the genetic background of JAX® Mice strains as well as the genotypes of strains with identified molecular mutations. JAX® Mice strains are only made available to researchers after meeting our standards. However, the phenotype of each strain may not be fully characterized and/or captured in the strain data sheets. Therefore, we cannot guarantee a strain's phenotype will meet all expectations. To ensure that JAX® Mice will meet the needs of individual research projects or when requesting a strain that is new to your research, we suggest ordering and performing tests on a small number of mice to determine suitability for your particular project.
Ordering Information
JAX® Mice
Surgical and Preconditioning Services
JAX® Services
Customer Services and Support
Tel: 1-800-422-6423 or 1-207-288-5845
Fax: 1-207-288-6150
Technical Support Email Form

Terms of Use

Terms of Use


General Terms and Conditions


For Licensing and Use Restrictions view the link(s) below:
- Use of MICE by companies or for-profit entities requires a license prior to shipping.

Contact information

General inquiries regarding Terms of Use

Contracts Administration

phone:207-288-6470

JAX® Mice, Products & Services Conditions of Use

"MICE" means mouse strains, their progeny derived by inbreeding or crossbreeding, unmodified derivatives from mouse strains or their progeny supplied by The Jackson Laboratory ("JACKSON"). "PRODUCTS" means biological materials supplied by JACKSON, and their derivatives. "RECIPIENT" means each recipient of MICE, PRODUCTS, or services provided by JACKSON including each institution, its employees and other researchers under its control. MICE or PRODUCTS shall not be: (i) used for any purpose other than the internal research, (ii) sold or otherwise provided to any third party for any use, or (iii) provided to any agent or other third party to provide breeding or other services. Acceptance of MICE or PRODUCTS from JACKSON shall be deemed as agreement by RECIPIENT to these conditions, and departure from these conditions requires JACKSON's prior written authorization.

No Warranty

MICE, PRODUCTS AND SERVICES ARE PROVIDED “AS IS”. JACKSON EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, WITH RESPECT TO MICE, PRODUCTS OR SERVICES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF NON-INFRINGEMENT OF ANY PATENT, TRADEMARK, OR OTHER INTELLECTUAL PROPERTY RIGHTS.

In case of dissatisfaction for a valid reason and claimed in writing by a purchaser within ninety (90) days of receipt of mice, products or services, JACKSON will, at its option, provide credit or replacement for the mice or product received or the services provided.

No Liability

In no event shall JACKSON, its trustees, directors, officers, employees, and affiliates be liable for any causes of action or damages, including any direct, indirect, special, or consequential damages, arising out of the provision of MICE, PRODUCTS or services, including economic damage or injury to property and lost profits, and including any damage arising from acts or negligence on the part of JACKSON, its agents or employees. Unless prohibited by law, in purchasing or receiving MICE, PRODUCTS or services from JACKSON, purchaser or recipient, or any party claiming by or through them, expressly releases and discharges JACKSON from all such causes of action or damages, and further agrees to defend and indemnify JACKSON from any costs or damages arising out of any third party claims.

MICE and PRODUCTS are to be used in a safe manner and in accordance with all applicable governmental rules and regulations.

The foregoing represents the General Terms and Conditions applicable to JACKSON’s MICE, PRODUCTS or services. In addition, special terms and conditions of sale of certain MICE, PRODUCTS or services may be set forth separately in JACKSON web pages, catalogs, price lists, contracts, and/or other documents, and these special terms and conditions shall also govern the sale of these MICE, PRODUCTS and services by JACKSON, and by its licensees and distributors.

Acceptance of delivery of MICE, PRODUCTS or services shall be deemed agreement to these terms and conditions. No purchase order or other document transmitted by purchaser or recipient that may modify the terms and conditions hereof, shall be in any way binding on JACKSON, and instead the terms and conditions set forth herein, including any special terms and conditions set forth separately, shall govern the sale of MICE, PRODUCTS or services by JACKSON.


(6.8)